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Abstract. For the Schrödinger equation (i∂t + 1)u = 0 on a torus, an arbitrary non-empty open
set � provides control and observability of the solution: ‖u|t=0‖L2(T2) ≤ KT ‖u‖L2((0,T )×�). We

show that the same result remains true for (i∂t + 1 − V )u = 0 where V ∈ L2(T2), and T2 is
a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was
proved for V ∈ C(T2) and conjectured for V ∈ L∞(T2). The higher dimensional generalization
remains open for V ∈ L∞(Tn).

1. Introduction

The purpose of this paper is to prove a case of the conjecture made by the last two authors
in [8]. It concerned control and observability for Schrödinger operators on tori with L∞

potentials. Here we prove that for two-dimensional tori the desired results are valid for
potentials which are merely in L2.

To state the result consider

T2
:= R2/AZ× BZ, A,B ∈ R \ {0}, V ∈ L2(T2),

(−1+ V (z)− λ)u(z) = f (z), z ∈ T2, (1.1)

and
i∂tu(t, z) = (−1+ V (z))u(t, z), z ∈ T2, (1.2)

The first theorem concerns solutions of the stationary Schrödinger equation and is
applicable to high energy eigenfunctions:
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Theorem 1. Let � ⊂ T2 be a non-empty open set. There exists a constant K = K(�),
depending only on �, such that for any solution of (1.1) we have

‖u‖L2(T2) ≤ K(‖f ‖L2(T2) + ‖u‖L2(�)). (1.3)

Theorem 1 can be deduced from the following dynamical result:

Theorem 2. Let � ⊂ T2 be a non-empty open set and let T > 0. There exists a constant
K , depending only on �, T and V , such that for any solution of (1.2) we have

‖u(0, ·)‖2
L2(T2)

≤ K

∫ T

0
‖u(t, ·)‖2

L2(�)
dt. (1.4)

An estimate of this type is called an observability result. Once we have it, the HUM
method (see [19]) automatically provides the following control result:

Theorem 3. Let� ⊂ T2 be any non-empty open set and let T > 0. For any u0 ∈ L
2(T2),

there exists f ∈ L2([0, T ] ×�) such that the solution of the equation

(i∂t +1− V (z))u(t, z) = f1[0,T ]×�(t, z), u(0, ·) = u0,

satisfies
u(T , ·) ≡ 0.

In the case of V ≡ 0 (and rational tori) the estimates (1.3) and (1.4) were proved by
Jaffard [13] and Haraux [12] (in dimension 2) and Komornik [16] (in higher dimensions)
using Kahane’s work [17] on lacunary Fourier series. For V ∈ C∞(T2) the results above
were proved by the last two authors [8], and for a class potentials including continuous
potentials on Tn, by Anantharaman–Macia [1]. The paper [1] resolves other questions
concerning semiclassical measures on tori and contains further references; see also [4].
For a presentation of other aspects of control theory for the Schrödinger equation we refer
to [18]—see also [6, §3].

The paper is organized as follows. In §2 we present dispersive estimates which allow
approximation of rough potentials by smooth potentials. In §3 we refine some of the one-
dimensional observability estimates and show that they hold for potentials W ∈ Lp(T1),
p > 1. The next §4 is devoted to semiclassical observability estimates for a family of
smooth potentials compact in L2(T2). In the following section an observability result is
proved for general tori with constants uniform in a compact set in L2 (Proposition 5.1(i)).
Combined with the results from §2, that gives the proof of the theorem.

2. A priori estimates for solutions to Schrödinger equations

The proof of observability for rough potentials will follow from observability for smooth
potentials with estimates controlled by constants depending only on L2 norms of the po-
tential. The approximation argument uses dispersion estimates for the Schrödinger group
on the torus and we first show that these estimates hold in the presence of a potential.
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2.1. The case of T1

We start with the simpler case of one-dimensional equations. It will be needed in §3 but
it also introduces the idea of the proof in an elementary setting.

We first make some general comments. The operator −∂2
x + W , W ∈ L1(T1), is

defined by Friedrichs’ extension (see for instance [10, Theorem 4.10]) using the quadratic
form

q(v, v) =

∫
T1

(
|∂xv(x)|

2
+W(x)|v(x)|2

)
dx, v ∈ H 1(T1),

which is bounded from below since∣∣∣∣∫
T1
W(x)|v(x)|2 dx

∣∣∣∣ ≤ C‖W‖L1‖u‖
2
L∞ ≤ C‖W‖L1‖∂xv‖L2‖v‖L2

≤ −Cε‖W‖L1‖∂xv‖
2
L2 −

C

ε
‖W‖L1‖v‖

2
L2 .

Hence P = −∂2
x + W defined on C∞(T1) has a unique self-adjoint extension with the

domain containing H 1(T1). When W ∈ L2(T1) the operator is self-adjoint with the
domain H 2(T1). The resolvent, (−∂2

x +W − z)
−1 , z /∈ R, is compact and the spectrum

is discrete with eigenvalues λj →∞.
The following estimate applies to solutions of the Schrödinger equation satisfying the

Floquet periodicity conditions

v(x + 2π) = e2πikv(x), (2.1)

or equivalently to solutions of the Schrödinger equation with ∂x replaced by ∂x + ik. (We
note that u(x) := e−ikxv(x) is periodic and ∂xv(x) = eikx(∂x + ik)u(x).)

Proposition 2.1. For any W ∈ L2(T1), there exists C > 0 such that for any k ∈ [0, 1)
and u0 ∈ L

2(T1), the solution to the Schrödinger equation

(i∂t + (∂x + ik)
2
−W)u = 0, v|t=0 = u0, (2.2)

satisfies
‖u‖L∞(T1

x ;L
2(0,T )) ≤ C(1+

√
T )(1+ ‖W‖L2(T1))‖u0‖L2(T1). (2.3)

Proof. For W ≡ 0 we put T = 2π so that, with cn = û0(n), we have

‖eit∂
2
xu0‖

2
L∞x L

2
t
= sup

x

∫ 2π

0

∣∣∣∑
n∈Z

cne
−it |n+k|2+inx

∣∣∣2 dt
= sup

x

∑
n,m∈Z

∫ 2π

0
ei(|n+k|

2
−|m+k|2)tei(n−m)xcnc̄m dt

= sup
x

∑
n∈Z

∣∣∣ ∑
m∈Z

±(m+k)=n+k

cme
imx
∣∣∣2 ≤ 4

∑
n∈Z
|cn|

2
≤ C‖u0‖

2
L2(T1)

. (2.4)
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(We note that±(m+k) = n+k has one solution only when k 6= 0, 1/2 and two solutions
m = ±n for k = 0 andm = n,−n−1 for k = 1/2.) For a non-zero potentialW ∈ L2(T1)

we use Duhamel’s formula to write

u(t) = eit∂
2
xu0 +

1
i

∫ t

0
ei(t−s)∂

2
x (Wu(s)) ds.

Applying (2.4) (now with a small T > 0) and the Minkowski inequality we obtain

‖u‖L∞x L
2
t (0,T )

≤ C‖u0‖L2
x
+

∫ T

0
‖1s<te

i(t−s)1(Wu(s))‖L∞x L2
s (0,T )

ds

≤ C‖u0‖L2
x
+

∫ T

0
‖ei(t−s)1(Wu(s))‖L∞x L2

s (0,T )
ds

≤ C‖u0‖L2
x
+ C

∫ T

0
‖Wu(s)‖L2

x
ds

≤ C‖u0‖L2
x
+ C
√
T ‖W‖L2‖u‖L∞x L

2
t (0,T )

. (2.5)

Hence
‖u‖L∞x L

2
t (0,T )

≤ 2C‖u‖L2
x

if
√
T ‖W‖L2 ≤ 1/4. (2.6)

To obtain the estimate for multiples of T satisfying (2.6) we note that, by the invariance of
the L2

x norm of u(t),
∫ kT
(k−1)T ‖u(t)‖

2
L∞x
dt ≤ 2C‖u((k − 1)t)‖L2

x
= 2C‖u0‖L2

x
. Iterating

this inequality gives (2.3). ut

2.2. The case of two-dimensional tori

We now assume that A = 2π,B = 2πγ−1 > 0 in the definition of T2. The case of
general A,B follows by rescaling. For n = (n1, n2) ∈ Z2, we set

|n| =

√
n2

1 + γ n
2
2, n · x = n1x1 + γ n2x2. (2.7)

We start with some general observations. If V ∈ L2(T2
;R) then−1+V on C∞(T2)

is a symmetric operator. Also, by Sobolev inequalities,

(−1+ i)−1
: L2(T2)→ H 2(T2) ↪→ C1−ε(T2) ↪→ L∞(T2),

is a compact operator. Hence, as multiplication by V ∈ L2 is bounded L∞ → L2,
V (−1 + i)−1 is a compact operator on L2. It follows that the operator −1 + V is es-
sentially self-adjoint and has a discrete spectrum (see for instance [10, Theorem 4.19]).
Since for u ∈ H 2(T2) ⊂ L∞(T2), we have V u ∈ L2, the domain is equal to H 2(T2). In
particular,

u(t) := eit (1−V )u0 ∈ C
0(Rt ;H 2(T2)) ∩ C1(Rt ;L2(T2)),

and

u(t) = eit1u0 +
1
i

∫ t

0
ei(t−s)1(V u(s)) ds. (2.8)
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Proposition 2.2. Let T > 0. For any compact subset V ⊂ L2(T2), there exist C(V) and
ε > 0 such that for any V ∈ V + B(0, ε) ⊂ L2(T2) and any

v0 ∈ L
2(T2), f ∈ L1((0, T );L2(T2))+ L4/3(T2

;L2(0, T )),

the solution to
(i∂t + (1− V ))u = f, u|t=0 = v0, (2.9)

satisfies

‖u‖L∞((0,T );L2(T2))∩L4(T2
x ;L

2(0,T ))

≤ C(V)
(
‖v0‖L2(T2) + ‖f ‖L1((0,T );L2(T2))+L4/3(T2;L2(0,T ))

)
. (2.10)

Before proving this result, let us show how it implies that Jaffard’s result (Theorem 2 with
V = 0) is stable under perturbation with potentials small in L2(T2):

Corollary 2.3. For any non-empty open set � and T > 0, there exist constants κ,K > 0
such that for V ∈ L2(T2),

‖V ‖L2(T2) ≤ κ ⇒ ‖u0‖
2
L2(T2)

≤ K

∫ T

0
‖e−it (−1+V )u0‖

2
L2(�)

dt,

for any u0 ∈ L
2(T2).

Proof. The Duhamel formula gives

u = e−it (−1+V )u0 = e
it1u0 +

1
i

∫ t

0
ei(t−s)1(V u(s)) ds,

and Jaffard’s result (estimate (1.4) for V = 0) applies to the first term. Hence, for a
constant K0 depending on � and T ,

‖u0‖L2(T2) ≤ K0

∫ T

0
‖eit1u0‖

2
L2(�)

dt

= K0

∫ T

0

∥∥∥∥eit (1−V )u0 −
1
i

∫ t

0
ei(t−s)1(V u(s)) ds

∥∥∥∥2

L2(�)

dt

≤ 2K0

∫ T

0
‖eit (1−V )u0‖

2
L2(�)

dt

+ 2K0T

∥∥∥∥∫ t

0
ei(t−s)1(V u(s)) ds

∥∥∥∥2

L∞((0,T );L2(T2))

. (2.11)

We now use Proposition 2.2 with V = {V }, v0 = 0 and f = V u to obtain∥∥∥∥∫ t

0
ei(t−s)1(V u(s)) ds

∥∥∥∥
L∞((0,T );L2(T2))

≤ C‖V u‖L4/3(T2;L2(0,T ))

≤ C‖V ‖L2(T2)‖u‖L4(T2;L2(0,T )).
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Applying Proposition 2.2 to the right-hand side, now with v0 = u0, f = 0, gives∥∥∥∥∫ t

0
ei(t−s)1(V u(s)) ds

∥∥∥∥
L∞((0,T );L2(T2))

≤ C‖V ‖L2(T2)‖u0‖L2(T2),

so that (2.11) becomes

‖u‖2
L2(T2)

≤ 2K0

∫ T

0
‖eit (1−V )u0‖

2
L2(�)

dt + 2CK0T ‖V ‖
2
L2(T2)

‖u0‖
2
L2(T2))

.

To conclude, it suffices to take 2CK0T κ
2
≤ 1/2. (We note that since K0 depends on �

and T while C depends on T , we have no other choice than taking κ > 0 small.) ut

Remark. In §5 we will eliminate the smallness assumption on ‖V ‖L2 and that will prove
Theorem 2.

The proof of Proposition 2.2 proceeds in several steps. We start by proving the esti-
mate for V = 0, then we prove the general case by a perturbation argument.

The next proposition is a “fuzzy” version of the classical estimate of Zygmund:

∃C > 0 ∀τ ∈ N,
∥∥∥ ∑
n∈Z2, |n|2=τ

cne
in·x
∥∥∥2

L4(T2)
≤ C

∑
n∈Z2, |n|2=τ

|cn|
2, (2.12)

and it is motivated by the Córdoba square function estimate [9]:

Proposition 2.4. There exists C > 0 such that for any κ ≥ 0 and 0 < h < 1, and any
u ∈ L2(T2) satisfying

û(n) = 0 for n /∈ B(κ, h) :=
{
n ∈ Z2

;
∣∣h2
|n|2 − 1

∣∣ ≤ κ2h2},
we have

‖u‖L4(T2) ≤

{
C(1+ κ)1/4(1+ κ2h)1/4‖u‖L2(T2) if κ ≤ h−1,

C(1+ κ)1/2‖u‖L2(T2) if κ ≥ h−1.
(2.13)

We note that the case of κ = 0 in (2.13) is (2.12), while κ = h−1 is simply Sobolev
embeddings and κ = h−1/2 is Sogge’s estimate for spectral projectors [22], [23, Theorem
10.11] (for which we give an arithmetic proof below).

Proof. We first note that we can assume that κ ≥ 1 as the sets B(κ, h) increase with
increasing κ .

For a constant δ > 0, to be fixed later, we distinguish two regimes: κh ≥ δ

and κh ≤ δ. In the first regime, the estimate follows from the Sobolev embedding
H 1/2(T2) → L4(T2): û(n) = 0 unless |n|2 ≤ h−2

+ κ2
≤ (1/δ + 1)κ2, and this

implies
‖u‖H 1/2(T2) ≤ Cδκ

1/2
‖u‖L2 .

From now on we assume that hκ ≤ δ. In this regime, we can change the set B(κ, h)
to

A(κ, h) :=
{
n ∈ Z2

;
∣∣h|n| − 1

∣∣ ≤ κ2h2}.
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The idea is to prove an arithmetic version of the Córdoba square function estimate [9].
Indeed, the usual version allows one only to work with κ ≥ h−1/2 (the uncertainty prin-
ciple). Our version below allows us to get estimates all the way down to κ ∼ 1 (that is,
much beyond the uncertainty principle). We first notice that we can also assume that the
spectrum of u is also contained in the upper quadrant {z ∈ C; Re z ≥ 0, Im z ≥ 0} of the
plane (here and in what follows we identify R2 with C). Indeed, if the result is true for the
upper quadrant, by symmetry, it is true for any quadrant, and with a different constant in
the general case. Then we decompose the intersection of the annulus with this quadrant
into a disjoint union of angular sectors of angles hκ:

A(κ, h) ∩ {Im z ≥ 0,Re z ≥ 0} =
Nκ,h⋃
α=0

Aα(κ, h), Nκ,h :=

[
π

2hκ

]
,

where

Aα(κ, h) :=
{
z; Re z ≥ 0, Im z ≥ 0,

∣∣h|z| − 1
∣∣ ≤ κ2h2, arg(z) ∈ [αhκ, (α + 1)hκ)

}
.

The proof relies on the following geometric lemma which will be proved in Appendix B:

Lemma 2.5. Fix δ > 0 small enough. Then there exists Q ∈ N such that for any 0 <
h < 1 and any 1 ≤ κ ≤ δ/h, we have

∀α, β, α′, β ′ ∈ {0, 1, . . . , Nκ,h},
(Aα(κ, h)+Aβ(κ, h)) ∩ (Aα′(κ, h)+Aβ ′(κ, h)) 6= ∅

⇒ |α − α′| + |β − β ′| ≤ Q or |α − β ′| + |β − α′| ≤ Q. (2.14)

We apply the lemma as folllows. We have

u =

Nκ,h∑
α=0

Uα, u2
=

Nκ,h∑
α,β=0

UαUβ , Uα :=
∑

n∈Z2∩Aα(κ,h)

une
in·x,

and hence

‖u‖4
L4(T2)

=

Nκ,h∑
α,β,α′,β ′=0

∫
T2
UαUβUα′Uβ ′(x) dx. (2.15)

The integral vanishes unless

(Aα(κ, h)+Aβ(κ, h)) ∩ (Aα′(κ, h)+Aβ ′(κ, h)) 6= ∅

as otherwise

n ∈ Z2
∩Aα, m ∈ Z2

∩Aβ , p ∈ Z2
∩Aα′ , q ∈ Z2

∩Aβ ′ ⇒ n+m− (p + q) 6= 0,

and, using the inner product (2.7),
∫
T2 e

ix·(n+m−p−q) dx = 0. Lemma 2.5 then shows that
we can restrict the sum in (2.15) to the subset of indices (α, β, α′, β ′) satisfying

|α − α′| + |β − β ′| ≤ Q or |α − β ′| + |β − α′| ≤ Q.
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This and an application of Hölder’s inequality,∣∣∣∣∫
T2
UαUβUα′Uβ ′(x) dx

∣∣∣∣ ≤ ‖Uα‖L4(T2)‖Uβ‖L4(T2)‖Uα′‖L4(T2)‖Uβ ′‖L4(T2)

≤

{
(‖Uα‖

2
L4(T2)

+ ‖Uα′‖
2
L4(T2)

)(‖Uβ‖
2
L4(T2)

+ ‖Uβ ′‖
2
L4(T2)

)

(‖Uα‖
2
L4(T2)

+ ‖Uβ ′‖
2
L4(T2)

)(‖Uβ‖
2
L4(T2)

+ ‖Uα′‖
2
L4(T2)

)

give

‖u‖4
L4(T2)

≤ CQ2
(Nκ,h∑
α=0

‖Uα‖
2
L4(T2)

)2
. (2.16)

To estimate the norms of Uα we write

‖Uα‖L4(T2) ≤ C‖Uα‖
1/2
L∞(T2)

‖Uα‖
1/2
L2(T2)

≤

( ∑
n∈Z2∩Aα(κ,h)

|un|
)1/2( ∑

n∈Z2∩Aα(κ,h)

|un|
2
)1/4

≤ C|Z2
∩Aα(κ, h)|

1/4
‖Uα‖L2(T2). (2.17)

To estimate the number of integral points in Aα(κ, h), we first notice that Aα(κ, h) is
included in a rectangle of height 1+ κ and width 1+ 3κ2h.

8 J. BOURGAIN, N. BURQ, AND M. ZWORSKI

This and an application of Hölder’s inequality,
∣∣∣
∫

T2

UαUβUα′Uβ′(x)dx
∣∣ ≤ ‖Uα‖L4(T2)‖Uβ‖L4(T2)‖Uα′‖L4(T2)‖Uβ′‖L4(T2)

≤





(
‖Uα‖2

L4(T2) + ‖Uα′‖2
L4(T2)

)(
‖Uβ‖2

L4(T2) + ‖Uβ′‖2
L4(T2)

)

(
‖Uα‖2

L4(T2) + ‖Uβ′‖2
L4(T2)

)(
‖Uβ‖2

L4(T2) + ‖Uα′‖2
L4(T2)

)
,

give

(2.16) ‖u‖4
L4(T2) ≤ CQ2

(Nκ,h∑

α=0

‖Uα‖2
L4(T2)

)2

.

To estimate the norms of Uα we write

‖Uα‖L4(T2) ≤ C‖Uα‖1/2

L∞(T2)‖Uα‖
1/2

L2(T2)

≤
( ∑

n∈Z2∩Aα

|un|
)1/2( ∑

n∈Z2∩Aα

|un|2
)1/4 ≤ C|Z2 ∩ Aα(κ, h)| 14‖Uα‖L2(T2).

(2.17)

To estimate the number of integral points in Aα(κ, h), we first notice that Aα(κ, h) is
included in a rectangle of height 1 + κ and width 1 + 3κ2h.

hκ

1/h

hκ2
1 + κ

1 + 3κ2h

Figure 1. The angular region Aα(κ, h) fitted inside a rectangle.

Now, the number of integral points in any rectangle of height H and width W is bounded
by C max(H, 1) max(W, 1). (To see this, notice that open discs of radius 1

2
centered at the

integer points are pairwise disjoint and are all included in a rectangle of height H + 1 and
width W + 1.) Hence, recalling that κh ≤ δ,

|Z2 ∩ Aα(κ, h)| ≤ C(1 + κ)(1 + 3κ2h) ≤ C(1 + κ)2.

Combining this with (2.17) and (2.16) gives

‖u‖4
L4(T2) ≤ C(1 + κ)(1 + κ2h)‖u‖4

L2(T2),

concluding the proof. �

Fig. 1. The angular region Aα(κ, h) fitted inside a rectangle.

Now, the number of integral points in any rectangle of height H and width W is
bounded by Cmax(H, 1)max(W, 1). (To see this, notice that open discs of radius 1/2
centered at the integer points are pairwise disjoint and are all included in a rectangle of
height H + 1 and width W + 1.) Hence, recalling that κh ≤ δ, we have

|Z2
∩Aα(κ, h)| ≤ C(1+ κ)(1+ 3κ2h) ≤ C(1+ κ)2.

Combining this with (2.17) and (2.16) gives

‖u‖4
L4(T2)

≤ C(1+ κ)(1+ κ2h)‖u‖4
L2(T2)

,

concluding the proof. ut
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The next step in the proof of Proposition 2.2 is an optimal (at least in terms of the spectral
region where it holds) resolvent estimate—see Kenig–Dos Santos–Salo [11, Remark 1.2]
and Bourgain–Shao–Sogge–Yao [3] for related results.

Proposition 2.6. For any compact subset V ⊂ L2(T2), there exist C(V) and ε > 0 such
that for any V ∈ V + B(0, ε), any f ∈ C∞(T2) and any τ ∈ C with |Im τ | ≥ 1,

‖(−1+ V − τ)−1f ‖L4(T2) ≤ C‖f ‖L4/3(T2). (2.18)

We deduce it from Proposition 2.4 and the following elementary result:

Lemma 2.7. Assume that V is a compact subset of L2(T2). Then for any δ > 0 there
exists Cδ > 0 and for any V ∈ V there exists Vδ ∈ L∞(T2) such that

‖Vδ − V ‖L2(T2) ≤ δ, ‖Vδ‖L∞(T2) ≤ Cδ.

Proof. This is obvious for V = {V0} since L∞ ⊂ L2 is dense. Applying it with δ replaced
by δ/2 the statement remains true for V with ‖V − V0‖L2 ≤ δ/2. A covering argument
provides the result for a general compact set in L2. ut

Proof of Proposition 2.6. For Re τ ≤ C for any fixed C, we get (2.18) directly. Indeed,
from (−1 − τ + V )u = f , multiplying by u, integrating by parts and taking real and
imaginary parts, we get

‖∇u‖2
L2(T2)

− Re τ‖u‖2
L2(T2)

≤
∥∥V |u|2∥∥

L1(T2)
+ ‖u‖L4(T2)‖f ‖L4/3(T2),

|Im τ | ‖u‖2
L2(T2)

≤ ‖u‖L4(T2)‖f ‖L4/3(T2).

Since |Im τ | ≥ 1, the Sobolev embedding and Lemma 2.7 imply

‖u‖2
L4(T2)

≤ C‖u‖2
H 1(T2)

≤ C
(
‖Vδ − V ‖L2(T2)‖u‖

2
L4(T2)

+ ‖Vδ‖L∞(T2)‖u‖
2
L2(T2)

+ ‖u‖L4(T2)‖f ‖L4/3(T2)

)
≤ C(δ + ε)‖u‖2

L4(T2)
+ C(‖Vδ‖L∞(T2) + 1)‖u‖L4(T2)‖f ‖L4/3(T2)

and choosing ε < δ = 1
4C gives the result.

For Re τ > C we start with the case of V = 0 and notice that

(−1− τ)−1
= (−1− τ)−1/2((−1− τ̄ )−1/2)∗ : L4/3

→ L4

follows from (−1− τ)−1/2
: L2
→ L4

= (L4/3)∗. Here the square root is defined using
the spectral theorem and the branches chosen for ± Im τ > 1 so that

(λ− τ)1/2 (λ− τ̄ )1/2 = λ− τ, λ ≥ 0.

Hence we need to prove that

‖u‖L4(T2) ≤ C‖f ‖L2(T2), u := (−1− τ)−1/2f.
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To use Proposition 2.4 we write the resolvent applied to f using the Fourier series

u =
∑
n

fn

(|n|2 − τ)1/2
ein·x = u0+

∞∑
j=1

uj , uj :=
∑

2j−1≤||n|2−Re τ |<2j

fn

(|n|2 − τ)1/2
ein·x .

We note that u0 =
∑
||n|2−Re τ |<1 fn(|n|

2
− τ)−1/2ein·x and hence Proposition 2.4 gives

‖u0‖L4(T2) ≤ C‖f ‖L2(T2).

Applying (2.13) to uj ’s with h = (Re τ)−1/2 and κ = 2j/2 gives

‖u− u0‖L4(T2) ≤ C
∑
j

2j/4‖uj‖L2(T2)

≤

( ∞∑
j=1

2−j/2
)1/2

( ∞∑
j=1

2j
∑

2j−1≤||n|2−Re τ |<2j

|fn|
2∣∣|n|2 − τ ∣∣

)1/2

≤ C‖f ‖L2(T2),

which concludes the proof of Proposition 2.6 for V = 0.
The general case V 6= 0 follows from the same perturbation argument as in the case

Re τ ≤ C. Indeed, from (−1− τ)u = −V u+ f, we deduce

|Im τ | ‖u‖2
L2(T2)

≤ ‖u‖L4(T2)‖f ‖L4/3(T2),

and from the resolvent estimate for V = 0,

‖u‖L4(T2) ≤ C‖V u‖L4/3(T2) + ‖f ‖L4/3(T2)

≤ C
(
‖Vδ − V ‖L2(T2)‖u‖L4(T2) + ‖Vδ‖L∞(T2)‖u‖L2(T2) + ‖f ‖L4/3(T2)

)
≤ Cδ‖u‖L4(T2) + C

(
‖Vδ‖L∞(T2)‖u‖

1/2
L4(T2)

‖f ‖
1/2
L4/3(T2)

+ ‖f ‖L4/3(T2)

)
.

Choosing δ small enough gives the desired estimate. ut

Proof of Proposition 2.2. Let us first study the contribution of v0. Putting T u0 =

eit (1−V )u0 we have

T T ∗f =

∫ T

0
ei(t−s)(1−V )f (s) ds =

∫ t

0
ei(t−s)(1−V )f (s) ds+

∫ T

t

ei(t−s)(1−V )f (s) ds.

To prove that T : L2(T2)→ L4(T2
x;L

2(0, T )) it suffices to prove that

T T ∗ : L4/3(T2
x;L

2(0, T ))→ L4(T2
x;L

2(0, T )),

and we will show it for the two operators on the right-hand side, say the first one. That
means showing that for solutions to (i∂t +1− V )v = f , v|t=0 = 0, we have

‖v‖L4(T2;L2(0,T )) ≤ C‖f ‖L4/3(T2;L2(0,T )). (2.19)
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Let U = ve−t1t>0 and F = f e−t10<t<T . We have (i∂t +1−V + i)U = F and hence,
by taking the Fourier transform in t ,

(1− V + i − τ)Û = F̂ .

Proposition 2.6 now shows that for any τ ∈ R,

‖Û (τ )‖L4(T2) ≤ C‖F̂ (τ )‖L4/3(T2),

which implies

‖u‖L4(T2
x ;L

2(0,T )) ≤ C‖U‖L4(T2
x ;L

2(Rt )) = C‖Û‖L4(T2
x ;L

2(Rτ ))

≤ C‖Û‖L2(Rτ ;L4(T2
x ))
≤ C′‖F̂‖L2(Rτ ;L4/3(T2

x ))

≤ C′‖F̂‖L4/3(T2
x ;L

2(Rτ )) = C
′
‖F‖L4/3(T2

x ;L
2(0,T )), (2.20)

concluding the proof of (2.19).
Part of the nonhomogeneous estimate in (2.10),

‖v‖L∞((0,T );L2(T2))∩L4(T2
x ;L

2(0,T )) ≤ C‖f ‖L1((0,T );L2(T2)),

follows from the boundedness of the operator T from L2 to L4(T2
;L2(0, T )) and the

Minkowski inequality. Finally, since the dual of the operator f 7→
∫ t

0 e
i(t−s)(1−V )f (s) ds

is g 7→
∫ T
t
ei(t−s)(1−V )g(s) ds, we also get

‖u‖L∞((0,T );L2(T2)) ≤ C‖f ‖L1((0,T );L2(T2))+L4/3(T2;L2(0,T )),

which concludes the proof of Proposition 2.2. ut

We conclude this section with a continuity result which will be useful later:

Proposition 2.8. Consider a sequence {Vn}n∈N ⊂ L2(T2) converging to V ∈ L2(T2).
Then there exists C > 0 such that for any v0 ∈ L

2(T2),

‖e−it (−1+V )v0−e
−it (−1+Vn)v0‖L∞((0,T );L2(T2)) ≤ C‖V−Vn‖L2(T2)‖u0‖L2(T2). (2.21)

Remark. The result in Proposition 2.8 can be stated more generally, for a compact subset
V ⊂ L2(T2), and is equivalent to the Lipschitz continuity of the map

V ∈ V ⊂ L2(T2) 7→ e−it (−1+V ) ∈ L∞((0, T );L(L2(T2))).

A slight modification of the proof presented here shows that it is in fact also Lipschitz on
bounded subsets of Lp, p > 2. It would be interesting to investigate such properties on
other manifolds, as they seem to depend strongly on the geometry. Indeed, the analysis
in [5, Theorem 2] is likely to give that on spheres, there exists a sequence of potentials
{Vn}n∈N such that for any T > 0 and p <∞,

lim
n→∞
‖Vn‖Lp(S2) = 0, but lim

n→∞
‖eit1 − eit (1−Vn)‖L∞((0,T );L(L2(S2))) > 0.
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Proof of Proposition 2.8. Let u = eit (1−V )v0 and un = eit (1−Vn)v0, so that the Duhamel
formula gives

u− un =
1
i

∫ t

0
ei(t−s)(1−V )((Vn − V )un(s)) ds.

Proposition 2.2 applied with V = {V }, v0 = 0 and f = (Vn − V )un, and Hölder’s
inequality give

‖uV − un‖L∞((0,T );L2(T2
x ))
≤ C‖(V − Vn)un‖L4/3(T2;L2(0,T ))

≤ C‖V − Vn‖L2(T2)‖un‖L4(T2;L2(0,T )).

Applying Proposition 2.2 again, now with V = {Vn; n ∈ N} ∪ {V }, and f = 0, we
estimate the right-hand side to obtain the desired estimate:

‖uV − un‖L∞((0,T );L2(T2
x ))
≤ C‖V − Vn‖L2(T2)‖v0‖L2(T2

x )
. ut

3. One-dimensional observability estimates

In this section we consider the one-dimensional analog of our result which we prove
for Lp potentials, p > 1. In applications to control and observability on 2-tori we will
use it only for p = 2 but the finer estimate may be of independent interest.

Let us recall (see Section 2.1) that the operator −∂2
x +W , W ∈ L1(T1), which is de-

fined on C∞(T1) has a unique self-adjoint extension with the domain containing H 1(T1)

(if W ∈ L2(T1) the domain is H 2(T1)). The resolvent (−∂2
x + W − z)

−1, z /∈ R, is
compact and the spectrum is discrete with eigenvalues λj →∞.

We have the following one-dimensional observability result which holds for functions
satisfying the Floquet boundary conditions:

Proposition 3.1. Assume that W ∈ Lp(T1), p > 1, and ω ⊂ T1 is a non-empty open
set. Then for any T > 0 there exists K0 > 0 such that for any k ∈ R and v ∈ L2(T1),

‖v‖2
L2(T1)

≤ K0

∫ T

0
‖eit ((∂x+ik)

2
−W)v‖2

L2(ω)
dt. (3.1)

Let us first notice that conjugating with eix[k], we can replace k by k − [k] and hence
assume that k ∈ [0, 1]. We first prove the stationary version following the elementary
approach of [7]:

Proposition 3.2. Under the assumptions of Proposition 3.1 there exists C1 =

C1(ω, ‖W‖Lp(T1)) such that for any τ ∈ R, any solution to

(−(∂x + ik)
2
+W − τ)u = g

satisfies
‖u‖L2(T1) ≤ C1(〈τ 〉

−1/2
‖g‖L2(T1) + ‖u‖L2(ω)). (3.2)

This follows from the following result which holds for W = 0.
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Lemma 3.3. Let ω ⊂ T1 be an open set. Then there exists a constant C0 = C0(ω) such
that for any k ∈ R and any u ∈ H 1(T1) satisfying

(−(∂x + ik)
2
− τ)u = f + g, (3.3)

we have

‖u‖L2(T1) + 〈τ 〉
−1/2
‖∂xu‖L2(T1)

≤ C0
(
‖f ‖H−1(T1) + 〈τ 〉

−1/2
‖g‖L2(T1) + ‖u‖L2(ω)

)
. (3.4)

Proof. We start by showing that there exists a constant C such that for any k ∈ R and any
u ∈ H 1(T1) satisfying

(−(∂x + ik)
2
− τ)u = (∂x + ik)f + g, (3.5)

we have
‖u‖L2(T1) ≤ C

(
‖f ‖L2(T1) + 〈τ 〉

−1/2
‖g‖L2(T1) + ‖u‖L2(ω)

)
. (3.6)

The elementary proof given in [7] shows that it is true for k = 0. For any solution U
to (3.5), let v = e−ikxu, which is no longer periodic but satisfies the Floquet condi-
tions (2.1) and

(−∂2
x − τ)v = ∂xF +G, F = e−ikxf, G = e−ikxg.

Choosing a parametrization on T1 so that 2π ∈ ω we take χ ∈ C∞(T1) equal to
one in a neighbourhood of T1

\ ω, and vanishing in a neighbourhood of 2π . Hence,
suppχv ⊂ (ε, 2π − ε) and u = χv defines a function on T1 such that

(−∂2
x − τ)u = ∂x(χF + 2χ ′v)+ χG− χ ′F − χ ′′v.

Applying (3.6) for k = 0, we obtain, using the properties of χ ,

‖χv‖L2(T1) ≤ C
(
‖χF + 2χ ′v‖L2(T1) + 〈τ 〉

−1/2
‖χG− χ ′F − χ ′′v‖L2(T1)

)
≤ C′

(
‖F‖L2(T1) + 〈τ 〉

−1/2
‖G‖L2(T1) + ‖v‖L2(ω)

)
,

which, coming back to u, implies that (3.6) holds for any k.
Since for k ∈ [0, 1],

‖f ‖H−1 = inf{‖F‖L2 + ‖ikF +H‖L2; f = (∂x + ik)F +H }

≥
1
2 inf{‖F‖L2 + ‖H‖L2; f = (∂x + ik)F +H },

the estimate on ‖u‖L2(T1), u(x) = e
ikxv(x), in (3.4) follows from (3.6).

To estimate (∂x + ik)u we write

‖(∂x + ik)u‖
2
L2(T1)

= 〈(−(∂x + ik)
2
− τ)u, u〉L2(T1) + τ‖u‖

2
L2(T1)

= 〈f + g, u〉L2(T1) + τ‖u‖
2
L2(T1)

≤ ‖f ‖H−1(T1)‖u‖H 1(T1) + ‖g‖L2(T1)‖u‖L2(T1) + 〈τ 〉‖u‖
2
L2(T1)

≤
1
2‖(∂x + ik)u‖

2
L2(T1)

+ C‖f ‖2
H−1(T1)

+ C‖g‖2
L2(T1)

+ C〈τ 〉‖u‖2
L2(T1)

.

Using the estimate for ‖u‖L2(T1) and the fact that k ∈ [0, 1] we obtain (3.4). ut
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Proof of Proposition 3.2. With the constant C1 depending on τ (but not on k) the estimate
(3.2) follows from the conjugation u 7→ v = e−ikxu and the unique continuation property
for −∂2

x +W , W ∈ Lp, p > 1. As pointed out in [14], this result is implicit in the paper
of Schechter–Simon [21].

To obtain the dependence of constants for large 〈τ 〉 we first observe that interpolation
between the H−1 and L2 estimates in Lemma 3.3 shows that if (−(∂x + ik)2 − τ)u =
g + f , then

‖u‖L2 + 〈τ 〉
−1/2
‖∂xu‖L2 ≤ C〈τ 〉

−1/2
‖g‖L2 + C〈τ 〉

(s−1)/2
‖f ‖H−s + C‖u‖L2(ω)

for 0 ≤ s ≤ 1. As a consequence, if (−(∂x + ik)2 − τ)u = g −Wu, then

‖u‖L2 ≤ C〈τ 〉
−1/2
‖g‖L2 + C〈τ 〉

(s−1)/2
‖Wu‖H−s + C‖u‖L2(ω). (3.7)

By Sobolev embeddings, for any s < 1/2, there exists C > 0 such that for any u ∈
H s(T1),

‖u‖L2/(1−2s)(T1) ≤ C‖u‖H s (T1).

By duality, we deduce L2/(1+2s)(T1) → H−s(T1). Choosing s = 1/(2p) < 1/2, and
applying Hölder’s inequality we obtain

‖Wu‖H−s ≤ C‖Wu‖L2/(1+2s) ≤ C‖W‖Lp‖u‖L2/(1−2s)

≤ C‖W‖Lp‖u‖H s ≤ C′‖W‖Lp‖u‖
1−s
L2 (‖u‖L2 + ‖∂xu‖L2)

s

≤ C′‖W‖Lp
(
〈τ 〉(1+δ)s

2/(2(1−s))
‖u‖L2 + 〈τ 〉

−(1+δ)s/2
‖∂xu‖L2

)
.

Combining this with (3.7) yields

‖u‖L2 + 〈τ 〉
−1/2
‖∂xu‖L2 ≤ C〈τ 〉

−1/2
‖g‖L2 + C‖u‖L2(ω)

+ C2〈τ 〉
(s−1)/2

〈τ 〉(1+δ)s
2/(2(1−s))

‖u‖L2 + C3〈τ 〉
(s−1)/2

〈τ 〉−(1+δ)s/2‖u‖H 1 .

Since 0 < s < 1, taking 〈τ 〉 large enough allows us to absorb the last term on the right-
hand side in the left-hand side. The same is true for the third term since

(1+ δ)s2

2(1− s)
+
s − 1

2
=
−1+ 2s + δs2

1− s
,

which is negative for 0 < s < 1/2 if we choose δ small enough. ut

Proof of Proposition 3.1. Let us now show how to pass from the estimate in Proposi-
tion 3.2 to an observability result. This was already achieved in [6] in a more general
semiclassical setting. For completeness we present a simple version of it here—see [20].

For χ ∈ C∞0 (R), put w = χ(t)eitPu0, which solves

(i∂t + P)w = iχ
′(t)eitPu0 = v, P := −(∂x + ik)

2
+W(x).

Taking Fourier transforms with respect to time, we get

(P − τ)ŵ(τ ) = v̂(τ ).
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Using the estimate in Proposition 3.2, we write

‖ŵ(τ )‖L2(T1) ≤
C

1+
√
|τ |
‖̂v(τ)‖L2(T1) + C‖ŵ(τ )‖L2(ω).

Now, taking the L2 norm with respect to the τ variable gives

‖ŵ(τ )‖L2(Rτ×T1)

≤
C

1+
√
N
‖̂v(τ)‖L2(Rτ×T1) + C‖ŵ(τ )‖L2(Rτ×ω) +

(∫
|τ≤N

‖̂v(τ)‖2
L2(T1)

dτ

)1/2

.

From this we notice that

‖ŵ(τ )‖L2(Rτ×T1) = ‖u0‖L2(T1)‖χ‖L2(R), ‖̂v(τ)‖L2(Rτ×T1) = ‖u0‖L2(T1)‖χ
′
‖L2(R),

‖ŵ(τ )‖L2(Rτ×ω) = ‖χ(t)e
itPu0‖L2(Rt×T1).

Hence we deduce that if
C‖χ ′‖L2

‖χ‖L2(1+
√
N)
≤

1
2
,

then

‖u0‖L2
x
≤ C′‖χ(t)eitPu0‖L2(Rt×T1

x )
+ C′

(∫
|τ |≤N

‖̂v(τ)‖2
L2
x
dτ

)1/2

. (3.8)

To understand the last term on the right-hand side we define Sobolev norms associated
to P . Let {ϕn}∞n=1 be an orthonormal basis of L2(T1) consisting of eigenfuctions of P .
We then put

‖u‖2
H k
P

:=

∞∑
j=1

〈λn〉
2k
|un|

2, Pϕn = λnϕn, un := 〈u, ϕn〉.

In this notation w = χ(t)
∑
n une

−itλnϕn, and

v̂(τ ) =
∑
n

χ̂ ′(τ − λn)unϕn.

Hence ∫ N

0
‖̂v(τ)‖2

L2
x
dτ =

∞∑
n=1

|un|
2
∫ N

0
|(τ − λn)χ̂(τ − λn)|

2 dτ

=

∞∑
n=1

|un|
2
∫ N

0
O(〈τ − λn〉−∞) dτ

≤ CN,M

∞∑
n=1

〈λn〉
−M
|un|

2
= CN,M‖u‖

2
H−MP

for any M . Taking M = 2 and combining this with (3.8) we obtain

‖u0‖L2(T1) ≤ C‖χ(t)e
itPu0‖L2(Rt×ω) + C‖u0‖H−2

P
. (3.9)
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To complete the proof, it remains to eliminate the last term on the right-hand side of (3.9).
For this, we apply the now classical uniqueness-compactness argument of Bardos–
Lebeau–Rauch [2] (see also [8, §4]) or the direct argument presented in the Appendix. We
note that both approaches rely on the unique continuation property of−(∂x+ik)2+W(x),
W ∈ Lp(T1), p > 1. Notice also that in this argument, to get the independence of the
constant from k ∈ [0, 1], it is enough to use the compactness of [0, 1]. ut

For later use we also record the following approximation result:

Proposition 3.4. Assume that the sequence of potentials Wj converges to W in Lp(T1),
p ≥ 2. Then there existsK0 > 0 such that for any k ∈ R and u ∈ L2(T1), and any j ∈ N,

‖u‖2
L2(T1)

≤ K0

∫ T

0
‖eit ((∂x+ik)

2
−Wj )v‖2

L2(ω)
dt. (3.10)

Proof. The conclusion follows from Proposition 3.1 by a simple perturbation argument.
Put P = −(∂x + ik)2+W and Pj = −(∂2

x + ik)
2
+Wj . Then, according to the Duhamel

formula, we have

e−itP v = e−itPj v +
1
i

∫ t

0
e−i(t−s)Pj (W −Wj )e

−isP v ds,

and consequently, according to (2.3), we obtain

‖e−itP v − e−itPj v‖L∞((0,T );L2(T1)) ≤ C‖(W −Wj )e
−isP v‖L1((0,T );L2(T1))

≤ C
√
T ‖W −Wj‖L2(T1)‖e

−isP v‖L∞(T1
x ;L

2(0,T ))

≤ C
√
T ‖W −Wj‖L2(T1)‖v‖L2(T1).

According to (3.1) we have

‖v‖2
L2(T1)

≤ K0

∫ T

0
‖e−itP v‖2

L2(ω)
dt

≤ 2K0

∫ T

0
‖e−itPj v‖2

L2(ω)
dt + 2C2T ‖W −Wj‖

2
L2(T1)

‖v‖2
L2(T1)

,

which implies (3.10) if ‖W −Wj‖L2(T1) is small enough. ut

4. Semiclassical observation estimates in dimension 2

We revisit and refine the arguments of [8]. The key point in our analysis will be the
following variant of [8, Proposition 3.1]. The key difference is that now the main constant
is determined in terms of the geometry of the problem and the potential V .



Control for Schrödinger operators on 2-tori 1613

Proposition 4.1. Suppose that Vj ∈ C∞(T2
;R) converges to V in the L2(T2) topology.

Let χ ∈ C∞0 (−1, 1) be equal to 1 near 0, and define

5h,ρ,ju0 := χ

(
h2(−1+ Vj )− 1

ρ

)
u0, ρ > 0.

Then for any non-empty open subset � of T2 and T > 0, there exists a constant K > 0
such that for any j there exist ρj , h0,j > 0 such that for any 0 < h < h0,j and u0 ∈

L2(T2),

‖5h,ρj ,ju0‖
2
L2 ≤ K

∫ T

0
‖e−it (−1+Vj )5h,ρj ,ju0‖

2
L2(�)

dt. (4.1)

In the proof we argue by contradiction. We first observe that if the estimate (4.1) is true
for some ρ > 0, then it is true for all 0 < ρ′ < ρ. As a consequence, if (4.1) were false
then for any j , there would exist sequences

hn,j → 0, ρn,j → 0, u0,n,j = 5hn,j ,ρn,j ,jv0,n,j ∈ L
2,

i∂tun,j (t, z) = (−1+ Vj (z))un,j (t, z), un,j (0, z) = u0,n,j (z),

such that

1 = ‖u0,n,j‖
2
L2 ,

∫ T

0
‖un,j (t, ·)‖

2
L2(�)

dt ≤
1
K
.

Each sequence n 7→ un,j is bounded in L2
loc(R × T2) and consequently, after possibly

extracting a subsequence, there exists a semiclassical defect measure µj on Rt × T ∗T2
z

such that for any function ϕ ∈ C0
0(Rt ) and any a ∈ C∞0 (T

∗T2
z), we have

〈µj , ϕ(t)a(z, ζ )〉 = lim
n→∞

∫
Rt×T2

ϕ(t)(a(z, hn,jDz)un,j )(t, z)un,j (t, z) dt dz. (4.2)

Furthermore, standard arguments‡ show that:

• We have
µj ((t0, t1)× T

∗T2
z) = t1 − t0. (4.3)

• The measure µj on Rt × T ∗(T2) is supported in the set

6 := {(t, z, ζ ) ∈ Rt × T2
z × R2

ζ ; |ζ | = 1}

and is invariant under the action of the geodesic flow:

ξ · ∇x(µj ) = 0. (4.4)

• The mass of the measure on � is bounded:

µj ((0, T )× T ∗�) ≤ 1/K. (4.5)

‡ See [1] for a review of recent results about measures used for the Schrödinger equation.
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We are going to show that a proper choice of the constant K above contradicts (4.3).
When no confusion is likely to occur we will drop the index j for conciseness.

We start by decomposing 6 into its rational and irrational parts. For that we identify
T2
' [0, A)x × [0, B)y where A,B ∈ R \ {0}, and define

6Q := 6 ∩

{(
t, z,

(Ap,Bq)√
A2p2 + B2q2

)
; p, q ∈ Z, gcd(p, q) = 1

}
.

The flow on 6Q is periodic. Its complement is the set of irrational points,

6R\Q := 6 \6Q,

and it also invariant under the flow.

4.1. The irrational directions

For simplicity we assume here that A = B = 2π , that is, T2
= T1

×T1, as the argument
is the same as in the general case.

Let us first define µR\Q to be the restriction of the measure µ to 6R\Q. Since µ is
invariant, for any open set � ⊂ T2 and any s ∈ R,

µR\Q((t1, t2)×�× R2) = µR\Q((t1, t2)×8s(�× R2))

where the flow8s is defined by8s(z, ζ ) = (z+sζ, ζ ). As a consequence, for any S > 0,

µR\Q((t1, t2)×�× R2) =
1
S

∫ S

0
µR\Q((t1, t2)×8s(�× R2)) ds

=

∫
1t∈(t1,t2) ×

1
S

∫ S

0
1(z,ζ )∈8s (�×R2) ds dµR\Q.

.

The equidistribution theorem shows that for any (z, ζ ) in the support of µR\Q,

lim
S→∞

1
S

∫ S

0
1(z,ζ )∈8s (�×R2) ds =

vol(�)
vol(T2)

.

Hence the dominated convergence theorem and (4.3) show that

µR\Q((t1, t2)×�× R2) =
vol(�)
vol(T2)

µR\Q((t1, t2)× T2
× R2). (4.6)

4.2. Dense rational directions

We now consider the restriction of the measure µ to the set of rational directions,6Q. We
first consider the case of p/q for which p2

+q2 is large (we again assume thatA = B = 1
as the general argument is the same). In some sense that corresponds to being close to the
irrational case.
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Lemma 4.2. For any open set �, there exist N ∈ N and δ > 0 such that for any
(p, q) ∈ Z2 with gcd(p, q) = 1 and

√
p2 + q2 ≥ N ,

lim inf
S→∞

1
S

∫ S

0
1(z,ζ )∈8s (�×R2) ds ≥ δ, ζ =

(p, q)√
p2 + q2

.

Proof. For any z0 = (x0, y0) ∈ � choose N > 4π/ε where B(z0, 2ε) ⊂ �. Assume that
p ≥ N/2 > 2π/ε and that p ≥ q (the case of q ≤ p is similar). Put

sk :=

√
p2 + q2

p
(2kπ − x0), k = 0, . . . , p − 1.

Since p and q are coprime, q is a generator of the group Z/pZ. Consequently, the points

Yk =
sk√

p2 + q2
q − y0 ∈ T1

are at distance exactly 2π/p from each other. (Here and below, addition on T1 is meant
mod 2πZ.) We conclude that for any z ∈ T1 there exists

Jz ⊂ {0, . . . , p − 1}, |Jz| = [εp/π ], such that |y + Yk − y0| ≤ ε for k ∈ Jz.

Since the flow is given by

8−s

(
(x, y),

(p, q)√
p2 + q2

)
=

(
(x, y)−

s√
p2 + q2

(p, q),
(p, q)√
p2 + q2

)
,

for any k ∈ J , we have 8−sk
(
z, (p, q)/

√
p2 + q2

)
∈ B(z0, ε) × R2. Since 2π/p < ε,

we also find that for |s − sk| < ε,

8−s

(
z,

(p, q)√
p2 + q2

)
∈ B(z0, 2ε)× R2

⊂ �× R2.

Hence, using the assumption that q ≤ p,∫ 2π
√
p2+q2

0
18−s (z,ζ )∈�×R2 ds ≥ [εp/π ]ε > 2π

√
p2 + q2 δ, ζ = (p, q)/

√
p2 + q2,

for some δ > 0. Since the evolution of (z, ζ ) is periodic with period 2π
√
p2 + q2, the

lemma follows. ut

Let us now fix N as in Lemma 4.2 and let µQ,N be the restriction of µQ to rational direc-
tions satisfying

√
p2 + q2 ≥ N . As in the study of the irrational directions, Lemma 4.2

and Fatou’s Lemma imply

µQ,N ((t1, t2)×�× R2) ≥ δµQ,N ((t1, t2)× T2
× R2). (4.7)
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4.3. Isolated rational directions

This section is closest to the arguments of [8, §3]. We allow here existence of points in6Q
whose evolution misses � altogether. The contradiction is derived from that assumption.
It is now important to keep A and B arbitrary, T2

= R2/AZ × BZ. The constraints on
the constant K will not be only geometric as in §§4.1, 4.2, but will also involve the limit
potential V . Hence we return to the notation of (4.2) and keep the index j .

Ξ0

Ξ⊥
0

Ξ0

Ξ⊥
0

(n/m, a)

a

1

Fig. 2. Left: a rectangle, R, covering a rational torus T2. In that case we obtain a periodic solution
onR. Right: the irrational case; the strip with sidesm40×R4⊥0 ,40 = (n/m, a) (not normalized to
have norm one) also covers the torus [0, 1] × [0, a]. Periodic functions are pulled back to functions
satisfying (4.10). This figure is borrowed from [8].

We consider the restriction of the measure µ to any of the finitely many isolated
rational directions:

40 =
(Ap,Bq)√
A2p2 + B2q2

,

√
p2 + q2 ≤ N. (4.8)

We first recall the following simple result [8, Lemma 2.7] (see Fig. 2 for an illustra-
tion).

Lemma 4.3. Suppose that 40 is given by (4.8) and

F : (x, y) 7→ z = F(x, y) = x4⊥0 + y40, 4⊥0 =
1√

A2p2 + B2q2
(Bq,−Ap).

(4.9)
If u = u(z) is periodic with respect to AZ× BZ then

F ∗u(x + ka, y + `b) = F ∗u(x, y − kγ ), k, ` ∈ Z, (x, y) ∈ R2, (4.10)

where, for any fixed p, q ∈ Z,

a =
−(q2

+ p2)AB√
A2p2 + B2q2

, b =

√
A2p2 + B2q2, γ = −

pq(B2
− A2)√

A2p2 + B2q2
.
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When B/A = r/s ∈ Q then

F ∗u(x + kã, y + `b) = F ∗u(x, y), k, ` ∈ Z, (x, y) ∈ R2,

for ã = (p2s2
+ q2r2)a.

Indeed, with

A = 1√
A2p2 + B2q2

(
qB pA

−pA qB

)
,

we have

A
(

0
b

)
=

(
−pA

qB

)
, A

(
a

γ

)
=

(
−qA

pB

)
,

which implies

u

(
A
(

x + ka

y + kγ + lb

))
= u

(
A
(
x

y

))
.

We now identify un,j with F ∗un,j , and consider the Schrödinger equation on the strip
R = Rx × [0, b]y (or the rectangle R = [0, a]x × [0, b]y in the case when A/B ∈ Q). In
this coordinate system, 40 = (0, 1).

Choosing a function χ ∈ C∞0 (R
2) equal to 1 near (0, 0) we define, for ε > 0,

χε := χ
(
((η, ζ )− (0, 1))/ε

)
, η, ζ ∈ R,

and
un,j,ε(x, y) = χε(hn,jDx)un,j .

We denote by µj,ε the semiclassical measure of the sequence (un,j,ε)n∈N (j, ε are pa-
rameters). Since µj,ε = (χε(ζ ))

2µj (where we skipped the pull-back by F ), we have

lim
ε→0+

µj,ε = µj |{(t,z,ζ ); ζ=(0,1)}. (4.11)

We now recall the following normal-form result given in [8, Proposition 2.3 and Corollary
2.4]:

Proposition 4.4. Suppose that F : R2
→ R2 is given by (4.9) and that V ∈ C∞(R2) is

periodic with respect to AZ × BZ. Let a, b and γ be as in (4.10). Let χ ∈ C∞0 (R
2) be

equal to 0 in a neighbourhood of η = 0. Suppose that Vj (x, y) ∈ C∞(T1
× T1). Then

there exist operators

Qj (x, y, hDy) ∈ C
∞(R)⊗90(R), Rj (x, y, hDx, hDy) ∈ 9

0(R2),

(where 90 denotes the space of semiclassical pseudodifferential operators of order 0)
such that (F−1)∗QF ∗ and (F−1)∗RF ∗ preserve AZ× BZ periodicity, and

(I + hQj )(D
2
y + F

∗Vj (x, y))χ(hDx, hDy)

= (D2
y +Wj (x))(I + hQj )χ(hDx, hDy)+ hRj , (4.12)

where Wj (x) = (1/b)
∫ b

0 F
∗Vj (x, y) dy satisfies Wj (x + a) = Wj (x).
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Moreover, there exist operators Pj = Pj (x, y, hDx, hDy) ∈ 90(R2) such that (with
properties as above)

(I + hQj )(D
2
x +D

2
y + F

∗Vj (x, y))χ(hDx, hDy)

=
(
(D2

x +D
2
y +Wj (x))(I + hQj )+ Pj

)
χ(hDx, hDy)+ hRj , (4.13)

Pj (x, y, x, η) =
2
i
ξ∂xqj (x, y, η)χ̃ε(ξ, η), qj = σ(Qj ), (4.14)

where χ̃ ∈ C∞0 (R
2) is equal to 1 on the support of χ .

Using Proposition 4.4 we define

vn,j,ε = (1+ hQj )un,j,ε, h = hn,j .

Since the operator Qj is bounded on L2, the semiclassical defect measures associated
to vn,j,ε and un,j,ε are equal. We now consider the time dependent Schrödinger equation
satisfied by vn,j,ε . With

Qn,j := Qj (x, y, hn,jDy), Rn,j := R(x, y, hn,jDx, hn,jDy),

Pn,j := Pj (x, y, hn,jDx, hn,jDy),
(4.15)

given in Proposition 4.4 and χn,j,ε := χ(hn,jDz), we have

(i∂t +1−Wj (x))vn,j

= (I + hn,jQn,j )(i∂t +1− Vj (x, y))χn,j,εun,j − Pn,jχn,j,εun,j − hn,jRn,j,εun,j

= −Pn,jχn,j,εun,j + [V, χn,j,ε]un,j + oL2(1) = −Pn,jχn,j,εun,j + oL2
x,y
(1). (4.16)

We also recall that according to (4.14), on the support of µj,ε , the symbol of the operator
W is smaller than Cε. This implies that

(i∂t +1−Wj (x))vn,j,ε = fn,j,ε (4.17)

with
lim sup
n→∞

‖fn,j,ε‖
2
L2((0,T )×T2)

= 〈µj,ε, |Pn,j |
2
〉 ≤ Cj ε

2. (4.18)

The simple observation that

eit (∂
2
y+∂

2
x−Wj (x)) = eit∂

2
y eit (∂

2
x−Wj (x))

shows that we can write

vn,j,ε(t, x, y) =
∑
k∈Z

e−i(tk
2
+ky)vn,j,ε,k(t, x), fn,j,ε(t, x, y) =

∑
k∈Z

e−ikyfn,j,ε,k(t, x),

where
(i∂t + ∂

2
x −Wj (x))vn,j,ε,k = fn,j,ε,k

and the coefficients satisfy the Floquet condition (see [8, proof of Proposition 2.2])

vn,j,ε,k(t, x + a) = e
2πiγ k/bvn,j,ε,k(t, x) = e

2πiγkvn,j,ε,k(t, x),

fn,j,ε,k(t, x + a) = e
2πiγkfn,j,ε,k(t, x), γk := γ k/b = [γ k/b] ∈ [0, 1).
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Since Wj (x + a) = Wj (x) and

‖W −Wj‖
2
L2([0,a]x )

=

∫ a

0

(
1
b

∫ b

0

∫
(F ∗V (x, y)− F ∗Vj (x, y)) dy

)2

dx

≤ ‖F ∗(V − Vj )‖
2
L2([0,a]x×[0,b]y )

≤ C40‖V − Vj‖L2(T2)→ 0, j →∞,

we can apply Proposition 3.4 to un,j,ε,k(t, x) = e−2iπγ kx/(ab)vn,j,ε,k(t, x), which is peri-
odic on the torus R/aZ. For that we fix a domain ω ⊂ [0, a]x such that for any x ∈ ω, the
line {x} × [0, b]y encounters �. The estimate (3.10) gives the following non-geometric
estimate (it is here that the dependence on the potential enters):

‖vn,j,ε,k‖
2
L∞((0,T );L2([0,a]x ))

≤ 2‖vn,j,ε,k|t=0‖L2([0,a]x ) + 2‖fn,j,ε,k‖2L1((0,T );L2([0,a]x ))

≤ K0

∫ T

0
‖eit (∂

2
x−Wj (x))vn,j,ε,k|t=0‖

2
L2(ω)

dt + C‖fn,j,ε,k‖
2
L2((0,T )×[0,a]x )

≤ K0

∫ T

0
‖vn,j,ε,k‖

2
L2(ω)

dt + C‖fn,j,ε,k‖
2
L2((0,T )×[0,a]x )

.

Summing over k ∈ Z gives

‖vn,j,ε‖
2
L∞((0,T );L2([0,a]x×[0,b]y )

≤ K0

∫ T

0
‖vn,j,ε |t=0‖

2
L2(ω)

dt + C‖fn,j,ε‖
2
L2((0,T )×[0,a]x )

.

Taking first the limit as n→∞, we obtain, according to (4.18),

µj,ε
(
(0, T )× ([0, a] × [0, b]y)× R2)

≤ K0µj,ε
(
(0, T )× ω × [0, b]y × R2)

+ Cj ε.

Then taking the limit as ε → 0, we conclude that, according to (4.11),

µj
(
(0, T )×([0, a]x×[0, b]y)×{(0, 1)}

)
≤ K0µj

(
(0, T )×ω×[0, b]y×{(0, 1)}

)
. (4.19)

Since any vertical line over ω encounters the open set �, we have

min
x∈ω

∫
�∩({x}×[0,b]y )

dy > δ0 > 0.

This and the invariance of the measure under the flow (which is now just the translation
in the y direction) imply that

µj
(
(0, T )× ω × [0, b]y × {(0, 1)}

)
≤ δ0µj

(
(0, T )×�× {(0, 1)}

)
.

Combining this with (4.19) we find that there exists a constant K(0,1), independent of j ,
such that

µj
(
(0, T )× ([0, a]x × [0, b]y)× {(0, 1)}

)
≤ K(0,1)µj

(
(0, T )×�× {(0, 1)}

)
.
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Returning to an arbitrary rational direction

ζp,q =
(p, q)√

A2p2 + B2q2
,

√
p2 + q2 ≤ N,

we conclude that there exists a constant Kp,q such that

µj ((0, T )× T2
× ζp,q) ≤ Kp,qµj ((0, T )×�× ζp,q). (4.20)

4.4. Conclusion of the proof of Proposition 4.1

If the constant K in the statement of the proposition is chosen so that, with δ in (4.7),

K

T
> max

(
vol(T2)

vol(�)
,

1
δ
, max√

p2+q2≤N

Kp,q

)
,

then, according to (4.6) and (4.7), we must have

µ((0, T )× T2
× R2) < T ,

which contradicts (4.3) and completes the proof of Proposition 4.1.

5. From smooth to rough potentials

Proposition 4.1 was proved under the assumptions that Vj ∈ C∞(T2) converge to V ∈
L2(T2). To pass to L2 potentials we will now use the results of §2.2.

5.1. Classical observation estimate for smooth potentials

The first proposition is the analogue of [8, Proposition 4.1] but with constants described
by Proposition 4.1.

Proposition 5.1. Suppose that Vj ∈ C∞(T2
;R) converge to V in the L2(T2) topology.

Then for any non-empty open subset � of T2 and T > 0, there exists C > 0 such that for
any j ∈ N there exists Cj such that for any u0 ∈ L

2(T2), we have

‖u0‖L2(T2) ≤ C‖e
it (1−Vj )u0‖L2((0,T )×�) + Cj‖u0‖H−2(T2). (5.1)

Proof. To obtain the estimate (5.1) from Proposition 4.1, we apply pseudodifferential
calculus in the time variable. This was already performed in [8], but since we need a
precise dependence on the constants we recall the argument. Consider a j -dependent
partition of unity

1 = ϕ0,j (r)
2
+

∞∑
k=1

ϕk,j (r)
2, ϕk,j (r) := ϕ(R

−k
j |r|), R > 1,

ϕ ∈ C∞0 ((R
−1
j , Rj ); [0, 1]), (R−1

j , Rj ) ⊂ {r; χ(r/ρj ) ≥ 1/2},
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where χ and ρj come from Proposition 4.1. Then, we decompose u0 dyadically:

‖u0‖
2
L2 =

∞∑
k=0

‖ϕk,j (PVj )u0‖
2
L2 , PVj := −1+ Vj .

Let ψ ∈ C∞0 ((0, T ); [0, 1]) satisfy ψ(t) > 1/2 for T/3 < t < 2T/3. We first observe
(using the time translation invariance of the Schrödinger equation) that in Proposition 4.1
we have actually proved that

‖5h,ρj ,ju0‖
2
L2 ≤ K

∫
R
ψ(t)2‖e−it (−1+Vj )5h,ρj ,ju0‖

2
L2(�)

dt, 0 < h < h0, (5.2)

which is the version we will use.
Taking Kj large enough so that R−Kj ≤ h0,j , where h0,j is as in Proposition 4.1, we

apply (5.2) to the dyadic pieces:

‖u0‖
2
L2 =

∑
k∈Z
‖ϕk,j (PVj )u0‖

2
L2

≤

Kj∑
k=0

‖ϕk,j (PVj )u0‖
2
L2 + C

∞∑
k=Kj+1

∫ T

0
ψ(t)2‖ϕk,j (PVj ) e

−itPVj u0‖
2
L2(�)

dt

=

Kj∑
k=0

‖ϕk,j (PVj )u0‖
2
L2 + C

∞∑
k=Kj+1

∫
R
‖ψ(t)ϕk,j (PVj ) e

−itPVj u0‖
2
L2(�)

dt.

Using the equation we can replace ϕ(PVj ) by ϕ(Dt ), which means that we do not change
the domain of z integration. We need to consider the commutator of ψ ∈ C∞0 ((0, T )) and
ϕk,j (Dt )=ϕ(R

−jDt ). If ψ̃ ∈ C∞0 ((0, T )) is equal to 1 on suppψ then the semiclassical
pseudodifferential calculus with h = R−kj (see for instance [23, Chapter 4]) gives

ψ(t)ϕk,j (Dt ) = ψ(t)ϕk,j (Dt )ψ̃(t)+ Ej (t,Dt ), ∂αEj = O(〈t〉−N 〈τ 〉−NR−Nkj ),

(5.3)
for all N and uniformly in k.

The errors obtained from Ek can be absorbed into the ‖u0‖H−2(T2) term on the right-
hand side (with a constant depending on j ). Hence we obtain

‖u0‖
2
L2 ≤ Cj‖u0‖

2
H−2(T2)

+ C

∞∑
k=0

∫ T

0
‖ψ(t)ϕk,j (Dt ) e

−itPVj u0‖
2
L2(�)

dt

≤ C̃j‖u0‖
2
H−2(T2)

+K

∞∑
k=0

〈ϕk,j (Dt )
2ψ̃(t) e

−itPVj u0, ψ̃(t) e
−itPVj u0〉L2(Rt×�)

= C̃j‖u0‖
2
H−2(T2)

+K

∫
R
‖ψ̃(t) e−itPV u0‖

2
L2(�)

dt

≤ C̃j‖u0‖
2
H−2(T2)

+K

∫ T

0
‖e−itPV u0‖

2
L2(�)

dt,

where the last inequality is the statement of the proposition. ut
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5.2. Proof of Theorem 2

We can now deduce Theorem 2 from Proposition 5.1. For that we consider a sequence Vj
of smooth potentials converging to V in L2(T2) (to construct such a sequence, consider
the Littlewood–Paley cut-off Vj = χ(2−2j1)V with χ ∈ C∞0 (R) equal to 1 near 0). We
now have, according to Proposition 5.1,

‖u0‖L2(T2) ≤ C‖e
it (1−Vj )u0‖L2((0,T )×�) +Dj‖u0‖H−2(T2).

On the other hand, according to (2.21), we have

‖eit (1−Vj )u0‖L2((0,T )×�) ≤ ‖e
it (1−V )u0‖L2((0,T )×�) + C‖V − Vj‖L2(T2)‖u0‖L2(T2

x )
,

hence, we deduce

‖u0‖L2(T2) ≤ C‖e
it (1−V )u0‖L2((0,T )×�)+C‖V−Vj‖L2(T2)‖u0‖L2(T2

x )
+Dj‖u0‖H−2(T2),

and consequently, taking j large enough so that C‖V − Vj‖L2(T2) ≤ 1/2, we conclude
that

‖u0‖L2(T2) ≤ 2C‖eit (1−V )u0‖L2((0,T )×�) + 2Dj‖u0‖H−2(T2).

It remains to eliminate the last term on the right-hand side. For this we use again the
classical uniqueness-compactness argument of Bardos–Lebeau–Rauch [2] (see also [8,
§4]) or the direct argument presented in the Appendix. The needed unique continuation
result for L2 potentials in R2 follows, as it did in §2.1, from the results of [21].

Appendix A. A quantitative version of the uniqueness-compactness argument

We present an abstract result which eliminates the low-frequency contributions in observ-
ability estimates.

Let P be an unbounded self-adjoint operator on a Hilbert space H. We assume that
the spectrum of P is discrete:

Pϕn = λnϕn, λ1 ≤ λ2 ≤ · · · , λn ≥ n
δ/C0, δ > 0,

where {ϕ}∞n=1 form an orthonormal basis of H.
We define P -based Sobolev spaces using the norms

‖ϕ‖2Hs
P
:=

∞∑
n=1

〈λn〉
2s
|〈ϕ, ϕn〉|

2. (A.1)

The Schrödinger group for P is formed by the following unitary operators on H:

U(t)ϕ = exp(−itP )ϕ =
∞∑
n=1

〈ϕ, ϕn〉e
−itλnϕn.

We have the following general result:
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Theorem 4. Suppose that A : H→ H is a bounded operator with the property that for
any λ ∈ R there exists a constant C(λ) such that for ϕ ∈ H2

P ,

‖ϕ‖H ≤ C(λ)(‖(P − λ)ϕ‖H + ‖Aϕ‖H). (A.2)

Suppose also that for some ε > 0, T > 0, C1 and C2,

‖ϕ‖2H ≤ C1

∫ t

0
‖AU(s)ϕ‖2H ds + C2‖ϕ‖

2
H−εP

, T /4 ≤ t ≤ T . (A.3)

Then there exists an explicitly computable constant K such that

‖ϕ‖2H ≤ K
∫ T

0
‖AU(t)ϕ‖2H dt. (A.4)

Remarks. 1. We do not compute the constant explicitly but the construction in the proof
certainly allows that.

2. In the applications in this paper,

P = −1+ V, H = L2(T2), A = 1�, � ⊂ T2 open,

or
P = −(∂x + ik)

2
+W, H = L2(T1), A = 1ω, ω ⊂ T1 open.

Proof. We start by observing that (A.3) and the definition (A.1) imply that for N >

(2C2)
1/ε ,

‖(I −5)ϕ‖2 ≤ 2C1

∫ t

0
‖AU(s)(I −5)ϕ‖2 ds, T /4 ≤ t ≤ T ,

5ϕ :=
∑
λn≤N

〈ϕ, ϕn〉ϕn.
(A.5)

For reasons which will be explained below we will use this inequality for t = T/4 and
apply it with ϕ replaced by U(T/2)ϕ:

‖(I −5)ϕ‖2 ≤ 2C1

∫ 3T/4

T/2
‖AU(t)(I −5)ϕ‖2 dt. (A.6)

We will show that the same estimate is true for 5ϕ. For that let µ1 < · · · < µr1 be
the enumeration of {λn}

K1
n=1 and define

ψr :=
∑
λn=µr

〈ϕ, ϕn〉ϕn,

so that

U(t)5ϕ =
∑
n≤K1

e−iλnt 〈ϕ, ϕn〉ϕn =

r1∑
r=1

eiµr tψr .
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Since (P − µr)ψr = 0, we can apply (A.2) to obtain

‖ψr‖ ≤ K2‖Aψr‖, K2 = max
n≤K1

C(λn). (A.7)

The functions t 7→ eiµr t , r = 1, . . . , r1, are linearly independent and there exists a
constant K3 = K3(µ1, . . . , µr1 , T ) such that for any f1, . . . , fr1 ∈ H,∫ 3T/4

T/2

∥∥∥ r1∑
r=1

eiµr tfr

∥∥∥2
dt ≥ K3

r1∑
r=1

‖fr‖
2, (A.8)

as both sides provide equivalent norms on ×r1r=1H.
Applying (A.8) with fr = Aψr and (A.7) gives

‖AU(t)5ϕ‖2
L2((T /2,3T/4);H) =

∫ 3T/4

T/2

∥∥∥ r1∑
r=1

Aψre
iµr t

∥∥∥2
dt ≥ K2

r1∑
r=1

‖Aψr‖
2

≥ K2K3

r1∑
r=1

‖ψr‖
2
= K2K3‖5ϕ‖. (A.9)

The combination of (A.6) and (A.9) does not yet provide the estimate (A.4). However,
if

5Mϕ :=
∑
λn≤M

〈ϕ, ϕn〉ϕn,

then for M sufficiently large we have

‖AU(t)(I −5M +5)ϕ‖
2
L2((0,T );H)

≥ K2
2K

2
3‖5ϕ‖

2
+ (1/4C2

1)‖(I −5M)ϕ‖
2
−K4M

−1
‖ϕ‖2, (A.10)

where K4 will be defined below. In fact, if we choose η ∈ C∞0 ((0, T )) equal to 1 on
[T/2, 3T/4], then the left-hand side in (A.10) is estimated from below by∫
‖AU(t)(I −5M +5)ϕ‖

2η(t) dt =

∫
‖AU(t)(I −5M)ϕ‖

2η(t) dt

+

∫
‖AU(t)5ϕ‖2η(t) dt − 2 Re

∫
〈AU(t)(I −5M)ϕ,AU(t)5ϕ〉η(t) dt.

We can apply (A.5) and (A.9) to estimate the first two terms from below. Since

2 Re
∫
〈AU(t)(I −5M)ϕ,AU(t)5ϕ〉η(t) dt

= 2 Re
∑
λn<N

∑
λm>M

〈ϕ, ϕn〉〈ϕm, ϕ〉〈Aϕn, Aϕm〉

∫
ei(λn−λm)tη(t) dt

≤ CP ‖A‖
2
∑
λn<N

∑
λm>M

|λn − λm|
−P
‖ϕ‖2 ≤ K4M

−1
‖ϕ‖2

if we choose P sufficiently large, we obtain (A.10).
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We now have to deal with the remaining eigenfunctions corresponding toN≤λn<M .
Let µr1+1 < · · · < µr2 be the enumeration of these eigenvalues. Put

τ =
T

10r2
. (A.11)

The Vandermonde matrix (eiµrpτ )1≤r≤r2,1≤p≤r2 is non-singular and hence we can find
scalars σp with max |σp| = 1 satisfying

r2∑
p=1

σpe
iµrpτ = 0 for r ≤ r1,

∣∣∣ r2∑
p=1

σpe
iµrpτ

∣∣∣ ≥ K5 for r1 < r ≤ r2, (A.12)

with a constant K5 = K5(µ1, . . . , µr2 , T ). (Note the implicit dependence on M .)
If we define

ϕ̃ =
∑
λn>N

( r2∑
r=1

σpe
iλnpτ

)
〈ϕ, ϕn〉ϕn, (A.13)

then

(I −5)ϕ̃ = ϕ̃ and U(t)ϕ̃ =

r2∑
r=1

σpU(t + pτ)ϕ. (A.14)

Applying (A.5), (A.12) and the definition (A.13) gives

4C2
1‖AU(t)ϕ̃‖

2
L2((T /2,3T/4);H) ≥ ‖ϕ̃‖

2
≥

∑
N≤λn<M

∣∣∣ r2∑
r=1

σpe
iλnpτ

∣∣∣2|〈ϕ, ϕn〉|2
≥ K2

5‖(5M −5)ϕ‖
2.

The choice of τ in (A.11) and (A.14) show that

‖AU(t)ϕ‖ ≥
K5

2C1r2
‖(5M −5)ϕ‖

2. (A.15)

This gives

‖AU(t)(I −5M +5)ϕ‖L2((0,T );H) ≤ ‖AU(t)ϕ‖L2((0,T );H) +
√
T ‖(5M −5)ϕ‖

≤

(
1+

2
√
T r2C1

K5

)
‖AU(t)ϕ‖L2((0,T );H),

which combined with (A.10) and (A.15) produces(
1+

2(
√
T + 1)r2C1

K5

)
‖AU(t)ϕ‖L2((0,T );H) ≥ K2K3‖5ϕ‖ + (1/2C1)‖(I −5M)ϕ‖

+ ‖(5M −5)ϕ‖ −
√
K4/M ‖ϕ‖

2

≥ (K6 −
√
K4/M)‖ϕ‖.

A K6 and K4 are independent of M , we obtain (A.4) by choosing M large enough. ut
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Appendix B. Proof of Lemma 2.5

This is a purely geometric result which does not involve integer points. It is a consequence
of the fact that the circle is curved but we prove it by explicit calculations.

We start with the case where γ = 1 (recall that in Lemma 2.5 the modulus is defined
by |(x1, x2)|

2
= x2

1 + γ x
2
2 ). We perform a change of variables x 7→ xh, and denote

ε = κ2h2. We are reduced to proving that for

Bε,α =
{
z ∈ C; Re z ≥ 0, Im z ≥ 0,

∣∣|z| − 1
∣∣ ≤ ε, arg(z) ∈ [α

√
ε, (α + 1)

√
ε)
}
,

(B.1)
we have

Lemma B.1. There exist ε0 > 0 and Q > 0 such that for any 0 < ε ≤ ε0, we have

∀αj ∈ {0, 1, . . . , Nε}, j = 1, . . . 4, Nε := [π/2
√
ε],

(Bε,α1 + Bε,α2) ∩ (Bε,α3 + Bε,α4) 6= ∅

⇒ |α1 − α3| + |α2 − α4| ≤ Q or |α1 − α4| + |α2 − α3| ≤ Q. (B.2)

Proof. We first observe that it is enough to prove the lemma with the condition
∣∣|z| − 1

∣∣
< ε replaced by 0 ≤ |z| − 1 ≤ ε in the definition of Bε,α: 0 ≤ 1− |z| ≤ ε is the same as
0 ≤ |z|/(1− ε)− 1 ≤ ε/(1− ε).

Let zj = ρj e
iθj ∈ Bε,αj , 1 ≤ j ≤ 4, be such that z1 + z2 = z3 + z4. By possibly

exchanging z1 and z2 we can assume θ1 ≥ θ2 and similarly that θ3 ≥ θ4. In particular,

(θ1 − θ2)/2 ∈ [0, π/4], (θ3 − θ4)/2 ∈ [0, π/4]. (B.3)

Since ρj ∈ [1, 1+ ε], we have

|eiθ1 + eiθ2 − eiθ3 − eiθ4 | ≤ 4ε,

which is the same as∣∣ei/2(θ1+θ2) cos
(
θ1−θ2

2

)
− ei/2(θ3+θ4) cos

(
θ3−θ4

2

)∣∣ ≤ 2ε. (B.4)

On the other hand,∣∣e i2 (θ1+θ2) cos
(
θ1−θ2

2

)
− e

i
2 (θ3+θ4) cos

(
θ3−θ4

2

)∣∣
=
∣∣ei/2(θ1+θ2−θ3−θ4) cos

(
θ1−θ2

2

)
− cos

(
θ3−θ4

2

)∣∣ ≥ ∣∣sin
(
θ1+θ2−θ3−θ4

2

)
cos
(
θ1−θ2

2

)∣∣.
Since (B.3) implies that cos

(
θ1−θ2

2

)
≥ 1/
√

2, we deduce from (B.4) that∣∣sin
(
θ1+θ2−θ3−θ4

2

)∣∣ ≤ 2
√

2 ε.

We also have (θ1 + θ2 − θ3 − θ4)/2 ∈ [−π/2, π/2] and as |sin θ | ≥ 2|θ |/π for −π/2 ≤
θ ≤ π/2, we conclude that ∣∣ θ1+θ2−θ3−θ4

2

∣∣ ≤ π√2 ε. (B.5)
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We assumed that zj = ρj eiθj ∈ Bε,αj and that means that 0 ≤ θj −
√
ε αj <

√
ε. Hence

(B.5) gives
|α1 + α2 − α3 − α4| ≤ C

√
ε + 2 ≤ 3, (B.6)

provided that ε > 0 small enough.
Going back to (B.3) and (B.4) we get, with p = θ1−θ2

2 , q = θ3−θ4
2 ,

|cosp − cos q| = 2
∣∣sin

(p+q
2

)
sin
(p−q

2

)∣∣ ≤ 2ε. (B.7)

As, p, q ∈ [0, π/4] we get ∣∣p+q
2

p−q
2

∣∣ ≤ π2

4 ε.

This is the same as (recall that 0 ≤ θ1 − θ2, 0 ≤ θ3 − θ4)

(|θ1 − θ2| − |θ3 − θ4|)(|θ1 − θ2| + |θ3 − θ4|) ≤ 4π2ε, (B.8)

and this gives

|(θ1−θ2)−(θ3−θ4)| ≤
(
(|θ1−θ2|−|θ3−θ4|)(|θ1−θ2|+|θ3−θ4|)

)1/2
≤ 2π

√
ε. (B.9)

Using again the fact that 0 ≤ θj −
√
ε αj <

√
ε, this gives

|(α1 − α2)− (α3 − α4)| ≤ 2π + 2. (B.10)

Finally, from (B.6) and (B.10) we obtain

|α1 − α3| ≤ π + 5/2, |α2 − α4| ≤ π + 5/2,

which proves Lemma 2.5 in the case γ = 1 (notice that here only the first term in the
alternative is possible which follows from the assumption θ1 ≥ θ2, θ3 ≥ θ4). The general
case follows by applying the transformation (x1, x2) ∈ R2

7→ (x1,
√
γ x2) ∈ R2. ut
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