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Abstract. We study a semilinear equation with derivatives satisfying a null condition on slowly
rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists
globally in time and decays with a quantitative rate to the trivial solution. The proof uses the ro-
bust vector field method. It makes use of the decay properties of the linear wave equation on Kerr
spacetime, in particular the improved decay rates in the region {r ≤ t/4}.

1. Introduction

In this paper, we consider the global existence for small data for a semilinear equation
with null condition on a Kerr spacetime. Kerr spacetimes are stationary axisymmetric
asymptotically flat black hole solutions to the vacuum Einstein equations

Rµν = 0

in 3 + 1 dimensions. They are parametrized by two parameters (M, a), representing re-
spectively the mass and the angular momentum of a black hole. We study semilinear
equations on a Kerr spacetime with a � M of the form

�gK8 = F(D8),

where �gK is the Laplace–Beltrami operator for the Kerr metric gK , and F denotes non-
linear terms that are at least quadratic and satisfy the null condition that we will define in
Section 1.2.

The corresponding problem on Minkowski spacetime has been well studied. In 4+1
or higher dimensions, the decay of the linear wave equation is sufficiently fast for one
to prove global existence for small data of nonlinear wave equations with any quadratic
nonlinearity [16]. However, in 3+1 dimensions, which is also the dimension of physical
relevance, the decay rate is only sufficient to prove the almost global existence of solu-
tions [15]. Indeed, a counterexample is known [14] for the equation

�m8 = (∂t8)
2.
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Nevertheless, if the quadratic nonlinearity satisfies the null condition defined by Klainer-
man, it has been proved independently by Christodoulou [4] and Klainerman [17] that any
solutions for sufficiently small initial data are global in time. There has been an extensive
literature on extensions and variations of the original results, including the cases of the
multiple-speed system and the exterior domains ([26], [27], [21], [22]).

The decay rate of the solutions to the linear wave equation on Kerr spacetimes with
a � M has been proved in [7], [1], [29] and [20]. The known decay outside the set
{ct∗ ≤ r ≤ Ct∗} is sufficiently strong and the proof (in [7], [1] and [20]) is sufficiently
robust that one expects the main obstacle to proving a small data global existence result (if
it indeed holds) would come from quantities in the set {ct∗ ≤ r ≤ Ct∗}. This set, however,
approaches the same set in Minkowski spacetime as t∗ → ∞ due to the asymptotic
flatness of Kerr spacetimes. Therefore, one expects that with a null condition similar to
that on Minkowski spacetime, a similar global existence result holds. Indeed, we have
(see the precise version in Section 1.2)

Main Theorem 1.1. Consider �gK8 = F(D8) where F satisfies the null condition
(see Section 1.2). Then for any initial data that are sufficiently small, the solution exists
globally in time.

Our major motivation for studying the null condition on a Kerr spacetime is the problem
of the stability of the Kerr spacetime. It is conjectured that Kerr spacetimes are stable. In
the framework of the initial value problem, the stability of Kerr spacetime would mean
that for any solution to the vacuum Einstein equations with initial data close to the initial
data of a Kerr spacetime, its maximal Cauchy development has an exterior region that
approaches a nearby, but possibly different, Kerr spacetime. In the case of the Minkowski
spacetime, the null condition has served as a good model problem for the study of the
stability of the Minkowski spacetime. We hope that this work will find relevance to the
problem of the stability of the Kerr spacetime.

1.1. Some related known results

We turn to some relevant work on linear and nonlinear scalar wave equations on Kerr
spacetimes. The decay of solutions to the linear wave equation on Kerr spacetimes has
received considerable attention. We mention some results on Kerr spacetimes with a > 0
here and refer the readers to [7], [19] for references on the corresponding problem on
Schwarzschild spacetimes. There has been a large literature on the mode stability and
nonquantitative decay of azimuthal modes (see for example [25], [12], [32], [10], [11]
and references in [7]). The first global result for the Cauchy problem was obtained by
Dafermos–Rodnianski [6], who proved that for a class of small, axisymmetric, station-
ary perturbations of Schwarzschild spacetime, which include Kerr spacetimes that rotate
sufficiently slowly, solutions to the wave equation are uniformly bounded. Similar results
were obtained later using an integrated decay estimate on slowly rotating Kerr spacetimes
by Tataru–Tohaneanu [30]. Using the integrated decay estimate, Tohaneanu also proved
Strichartz estimates [31].
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Decay for general solutions to the wave equation on sufficiently slowly rotating Kerr
spacetimes was first proved by Dafermos–Rodnianski [7] with a quantitative rate of |8| ≤
C(t∗)−1+Ca . A similar result was later obtained by [1] using a physical space construction
to obtain an integrated decay estimate. In all of [30], [7] and [1], the integrated decay
estimate is proved and plays an important role. All proofs of such estimates rely heavily
on the separability of the wave equation, or equivalently, the existence of a Killing tensor
on Kerr spacetime. In a recent work [8], Dafermos–Rodnianski prove the nondegenerate
energy decay and the pointwise decay assuming the integrated local energy decay estimate
and boundedness for the wave equation on an asymptotically flat spacetime. Their work
shows a decay rate of |8| ≤ Ct−1 and improves the rates in [7] and [1]. In a similar
framework, but assuming in addition exact stationarity, Tataru [29] proved a local decay
rate of (t∗)−3 using Fourier-analytic methods. This applies in particular to sufficiently
slowly rotating Kerr spacetimes. Dafermos and Rodnianski have recently announced a
proof for the decay of solutions to the wave equation on the full range of sub-extremal
Kerr spacetimes a < M .

For nonlinear equations, global existence for the equation with power nonlinearity
�gk8 = ±|8|

p8 was initiated in [23] and [24], in which the large data subcritical de-
focusing case of p = 2 is studied. Later, there have been much work on the small data
problem in which the sign of the nonlinearity is not important, and the dispersive proper-
ties of the linear equation play a crucial role. Global existence was proved for small radial
data for p > 3 on Reissner–Nordström spacetime [5] and for general small data vanish-
ing on the bifurcate sphere for p > 2 [2] on Schwarzschild spacetime. Global existence
was also proved for p = 4 on Schwarzschild spacetime with general data that has small
nondegenerate energy [13]. This was extended to the case of sufficiently slowly rotating
Kerr spacetime in [31]. A counterexample is known for the case 0 < p <

√
2 [3]. To our

knowledge, the present work is the first work on semilinear equations with derivatives on
black hole spacetimes.

1.2. The statement of the Main Theorem

Before introducing the null condition and stating the precise version of the Main Theorem,
we briefly introduce the necessary concepts and notations on Kerr geometry and the vector
field method. See [20] for more details.

The Kerr metric in the Boyer–Lindquist coordinates takes the following form:

gK = −

(
1−

2M

r
(
1+ a2 cos2 θ

r2

))dt2 + 1+ a2 cos2 θ
r2

1− 2M
r
+

a2

r2

dr2
+ r2

(
1+

a2 cos2 θ

r2

)
dθ2

+ r2
(

1+
a2

r2 +

(
2M
r

)
a2 sin2 θ

r2
(
1+ a2 cos2 θ

r2

)) sin2 θdφ2

− 4M
a sin2 θ

r
(
1+ a2 cos2 θ

r2

)dtdφ. (1)
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Let r+ be the larger root of 1 = r2
− 2Mr + a2. Then r = r+ is the event horizon. In

this paper, we will use the coordinate system (t∗, r, θ, φ∗) defined by

t∗ = t + χ(r)h(r), where
dh(r)

dr
=

2Mr
r2 − 2Mr + a2 ,

φ∗ = φ + χ(r)P (r), where
dP (r)

dr
=

a

r2 − 2Mr + a2 ,

where

χ(r) =

{
1, r ≤ r−Y − (r

−

Y − r+)/2,
0, r ≥ r−Y − (r

−

Y − r+)/4,

r+ is as above and r−Y > r+ is a fixed constant very close to r+, the value of which can
be determined from the proof of the energy estimates in [20]. Following the notation in
[20], we will use t∗ = τ to denote the t∗ slice on which we want to prove estimates, and
t∗ = τ0 to denote the t∗ slice on which the initial data is posed.

In [20], following [6], various quantities are defined via an explicit identification of
the Kerr spacetime with the corresponding Schwarzschild spacetime with the same mass.
We recall the identification:

r2
S − 2MrS = r2

− 2Mr + a2, tS + χ(rS)2M log(rS − 2M) = t∗,
θS = θ, φS = φ

∗,

where χ is as above.
Define

r∗S = rS + 2M log(rS − 2M)− 3M − 2M logM,

µ = 2M/rS, u = 1
2 (tS − r

∗

S ), v = 1
2 (tS + r

∗

S ).

We note that the variable u will also be used to quantify decay.
We define in coordinates

L = ∂u in the (u, v, θS, φS) coordinates,

L = 2∂t∗ + χ(r)
a

Mr+
∂φ∗ − L.

We can now define the “good” and “bad” derivatives. Define

6∇ ∈

{
1
r
∂θ ,

1
r
∂φ

}
, D ∈

{
L,

1
r
∂θ ,

1
r
∂φ

}
, D ∈

{
1

1− µ
L,L,

1
r
∂θ ,

1
r
∂φ

}
.

Notice that D spans the whole tangent space and we always have [D, ∂t∗ ] = 0.
We now define the null condition. On Minkowski spacetime, the classical null condi-

tion can be defined geometrically by requiring the nonlinearity to have the form

Aµν∂µ8∂ν8,

where A satisfies Aµνξµξν = 0 whenever ξ is null. On Kerr spacetime, we would like
to define a notion of the null condition that includes this geometric notion. This is also
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because many physically relevant semilinear equations satisfy this condition. On the other
hand, in order to prove the global existence result, we need to use the vector fields that
capture the good derivative. We would therefore like to define the null condition using
the vector fields defined in [7], [20], i.e., using D and D. In particular, we want the
nonlinearity to have at least one good, i.e., D, derivative. This on its own is however
inconsistent with the geometric null condition. We therefore allow a term in the quadratic
nonlinearity that does not have a good derivative but decays in r .

Definition 1.2. Consider the nonlinearity F(8,D8, t∗, r, θ, φ∗).We say that F satisfies
the null condition if

F = 30(8, t
∗, r, θ, φ∗)D8D8+31(8, t

∗, r, θ, φ∗)D8D8+ C(8,D8, t∗, r, θ, φ∗),

where

|D
i1
8∂

i2
t∗∂

i3
r ∂

i4
θ ∂

i5
φ∗3j | ≤ C(t

∗)−i2r−i3 for i1 + i2 + i3 + i4 + i5 ≤ 16, j = 0, 1,

|D
i1
8∂

i2
t∗∂

i3
r ∂

i4
θ ∂

i5
φ∗31| ≤ C(t

∗)−i2r−1−i3 for i1 + i2 + i3 + i4 + i5 ≤ 16 and r ≥ 9t∗/10,

and C denotes a polynomial that is at least cubic inD8 (with coefficients in8, t∗, r, θ, φ∗)
satisfying

|D
i1
8∂

i2
t∗∂

i3
r ∂

i4
θ ∂

i5
φ∗C| ≤ C(t

∗)−i2r−i3
S∑
s=3

|D8|s for i1 + i2 + i3 + i4 + i5 ≤ 16.

Remark 1.3. The null condition is a special structure for the quadratic nonlinearity. We
note that in our case, the restriction is necessary only for r ≥ 9t∗/10. Moreover, higher
order terms should give better estimates and do not need any special structure.

Under this definition of the null condition, global existence holds for small data.
Moreover, the solution 8 satisfies pointwise decay estimates. In order to appropriately
describe smallness, we introduce the language of compatible currents. Define the energy-
momentum tensor

Tµν = ∂µ8∂ν8−
1
2gµν∂

α8∂α8.

By virtue of the wave equation, T is divergence-free,

∇
µTµν = 0.

For a vector field V , define the compatible currents

J Vµ (8) = V
νTµν(8), KV (8) = πVµνT

µν(8),

where πVµν is the deformation tensor defined by

πVµν =
1
2 (∇µVν +∇νVµ).
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In particular, KV (8) = πVµν = 0 if V is Killing. Since the energy-momentum tensor is
divergence-free,

∇
µJ Vµ (8) = K

V (8).

We also define the modified currents

J V,wµ (8) = J Vµ (8)+
1
8 (w∂µ8

2
− ∂µw8

2),

KV,w(8) = KV (8)+ 1
4w∂

ν8∂ν8−
1
8�gw8

2.

Then
∇
µJ V,wµ (8) = KV,w(8).

In [20], we have used the currents corresponding to N and (Z,wZ) defined by

N = ∂t∗ + e(y1(r)Ŷ + y2(r)V̂ ), Z = u2L+ v2L, wZ =
8tr∗S (1− 2M/rS)

r
,

where

y1(r) = 1+
1

(log(r − r+))3
, y2(r) =

1
(log(r − r+))3

,

r+ is the larger root of1 = r2
− 2Mr+ a2, and Ŷ and V̂ are compactly supported vector

fields in a neighborhood of {r+ ≤ r ≤ r−Y } and are null in {r+ ≤ r ≤ r−Y }, and e is an
appropriately small constant depending only on a (see [20]). Since N is future-directed,
we have the pointwise inequality

JNµ (8)n
µ
6t∗
≥ 0.

In [20] we have shown that there exists a constant C such that∫
6t∗

JZ,w
Z

µ (8)n
µ
6t∗
+ C(t∗)2

∫
6t∗∩{r≤r

−

Y }

JNµ (8)n
µ
6t∗
≥ 0.

These energy quantities will be used for 8 as well as for derivatives of 8. We now de-
fine the commutators that we will use. ∂t∗ is a Killing vector field that is defined as the
coordinate vector field with respect to the (t∗, r, θ, φ∗) coordinate system. Near the event
horizon, we use the commutator Ŷ which is compactly supported in {r ≤ r+Y } (where
r+Y > r−Y is an explicit constant in [20]), null in {r+ ≤ r ≤ r−Y } and transverse to
the event horizon (see [20]). Ŷ has good positivity property that reflects the celebrated
red-shift effect. In the region of large r , we use the commutators �̃. Let �i be a basis
of vector fields of rotations in Schwarzschild spacetimes. An explicit realization can be
� = ∂φ, sinφ∂θ ±

cosφ cos θ
sin θ ∂φ . Define �̃i = χ(r)�i to be cutoff so that it is supported in

{r > R�} and equals �i for r > R� + 1 for some large R. We also use the commutator
S that would provide an improved decay rate of the solution. It is defined as

S = t∗∂t∗ + h(rS)∂r ,
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where

h(rS) =

{
rS − 2M, rS ∼ 2M,
r∗S (1− µ), r ≥ R,

for some large R, and is interpolated so that it is smooth and nonnegative. For the com-
mutators, we also use the notation that

0 ∈ {∂t∗ , �̃}.

We are now in a position to state our Main Theorem precisely.

Theorem 1.4. Consider the equation

�g8 = F(8,D8, t
∗, r, θ, φ∗), (2)

where F satisfies the null condition. There exists an ε such that if the initial data of 8
satisfies∑

i+j+k=16

∫
6τ0

(
JZ+CN,w

Z

µ (Ŷ k∂ it∗�̃
j8)n

µ
6τ0
+ JZ+CN,w

Z

µ (Ŷ kS∂ it∗�̃
j8)n

µ
6τ0

)
≤ ε

and
13∑
`=0

(
r|D`8(τ0)| + r|D

`S8(τ0)|
)
≤ ε,

then 8 exists globally in time. Moreover, for all η > 0, we can take a sufficiently small
such that the solution 8 obeys the decay estimate

|8| ≤ Cεr−1u−1/2(t∗)η, |D8| ≤ Cεr−1u−1(t∗)η, |D8| ≤ Cεr−1(t∗)−1+η

for r ≥ R,

|8| ≤ Cδε(t
∗)−3/2+ηrδ, |D8| ≤ Cδε(t

∗)−3/2+ηr−1/2+δ for r ≤ t∗/4.

We specialize to a particular case which resembles better the classical null condition [17].

Theorem 1.5. Consider the equation

�g8 = 0(8)A
µν∂µ8∂ν8, (3)

where A satisfies Aµνξµξν = 0 whenever ξ ∈ TK is null. Then the statement of Theo-
rem 1.4 holds.

The above formulation is geometric and independent of the choice of coordinates. We
note that this condition is obviously satisfied by the wave map equation in the intrinsic
formulation.

1.3. The case of Minkowski spacetime

We now outline the proof of the main theorem. In the original proof in [17], many sym-
metries of Minkowski spacetime are captured and exploited using the vector field method.
Kerr spacetime, on the other hand, lacks symmetries and this limits the set of vector fields
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that are at our disposal. In view of this, we would like to re-examine the proof of the
small data global existence result for the nonlinear wave equation with a null condition
on Minkowski spacetime, using only the vector fields whose analogues in Kerr spacetimes
have been established in previous works. In particular, we would have to avoid using the
Lorentz boost.

We first study the decay properties of the solutions to the linear wave equation on
Minkowski spacetime. Since the vector field T = ∂t is Killing and Z = u2∂u + v

2∂v is
conformally Killing, we see for w = 8t that∫

6t

J Tµ (8)n
µ
6t
,

∫
6t

JZ,w
Z

µ (8)n
µ
6t

are conserved in time.
Decay can be proved using the above conserved quantities for V8 for appropriate

vector fields V . It is proved separately for r ≥ t/2 and r ≤ t/2. In the former case,
we use the fact that �ij = xi∂xj + xj∂xi is Killing on Minkowski spacetime and hence
�m(�k8) = 0. Since � has a weight in r , it can be proved that

|D8|2 ≤ Cr−2
2∑
k=0

∫
6t

J Tµ (�
k8)n

µ
6t
.

Notice that in this region r−2
≤ Ct−2. It is known, for example by the representation

formula, that this decay rate cannot be improved. In the region r ≤ t/2, however, the
decay rate is better. One can consider the conformal energy∫

JZ,w
Z

µ (8)n
µ
6t
≥

∫
6t

(
u2(L8)2 + v2(L8)2 + (u2

+ v2)|6∇8|2 +

(
u2
+ v2

r2

)
82
)
,

where u = 1
2 (t − r), v =

1
2 (t + r). In particular, we have

|D8|2 ≤ t−2
∫
6t∩{r≤t/2}

τ 2(D8)2 ≤ t−2
∫
JZ,w

Z

µ (8)n
µ
6t
.

To improve the decay rate in this region, we can consider the equation for S8 = (t∂t +
r∂r)8 and use the integrated decay estimates as in [19], [20]. This approach allows us to
avoid the use of Lorentz boost of [17] and the global elliptic estimates of [18], neither of
which has a clear analogue in Kerr spacetimes. On Minkowski spacetime, a local energy
decay estimate can be proved using the vector field

(
1 − 1

(1+r2)(1+δ)/2

)
∂r for the linear

wave equation [28], which together with the conformal energy yields∫ (1.1)t

t

∫
6t ′∩{r≤t

′/2}
r−1−δJ Tµ (8)n

µ
6t ′
dt ′ ≤ C

∫
6τ∩{r≤t/2}

(D8)2

≤ Ct−2
∫
JZ,w

Z

µ (8)n
µ
6t
.
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This would imply that there exists a “dyadic” sequence ti ∼ (1.1)i t0 on which there is
better decay ∫

6ti∩{r≤t/2}
r−1−δJ Tµ (8)n

µ
6ti
≤ Ct−3

i

∫
JZ,w

Z

µ (8)n
µ
6t
.

Since S is Killing on Minkowski spacetime, �m8 = 0 implies �m(S8) = 0. Then the
above argument would give∫ (1.1)t

t

∫
6t∩{r≤t/2}

r−1−δJ Tµ (S8)n
µ
6t
dt ≤ t−2

∫
JZ,w

Z

µ (S8)n
µ
6t
.

Since S = t∂t + r∂r has a weight in t , we can integrate along the integral curves of S
from the “good” ti slice and get∫

6t∩{r≤t/2}
r−1−δJ Tµ (8)n

µ
6t
≤ Ct−3

∫
JZ,w

Z

µ (8)n
µ
6t0
.

Together with the use of �, we have the pointwise estimate

|D8|2 ≤ Cr−1+δ
2∑
k=0

∫
6t∩{r≤t/2}

r−1−δJ Tµ (�
k8)n

µ
6t

≤ Cr−1+δt−3
2∑
k=0

∫
JZ,w

Z

µ (�k8)n
µ
6t0
.

We now study how this decay rate can be used for the nonlinear problem. The main
idea is to prove the above conservation and decay estimates in a bootstrap setting, showing
that the decay to the linear wave equation is sufficiently strong that the nonlinear terms
can be treated as error. In this framework, the decay of t−1 is borderline and since the
decay rate is better when r ≤ t/2, the difficulty arises when dealing with terms in the
region r ≥ t/2. Furthermore, in order to achieve this decay of t−1 it is imperative to show
that

∫
6t
J Tµ (8)n

µ
6t

is uniformly bounded in time.
We now show a heuristic argument. With the inhomogeneous term, the conservation

law for the energy now has the error term∫
6t

J Tµ (8)n
µ
6t
≤

∫
6t0

J Tµ (8)n
µ
6t0
+

(∫ t

t0

(∫
6t

(�m8)
2
)1/2

dt

)2

,

and that for the conformal energy has the error term∫
6t

JZ,w
Z

µ (8)n
µ
6t
≤

∫
6t0

JZ,w
Z

µ (8)n
µ
6t0
+

(∫ t

t0

(∫
6t

(t2 + r2)(�m8)
2
)1/2

dt

)2

Since �m8 is quadratic in D8, we can use Hölder’s inequality on the inside integral to
control one term in L2 and one in L∞. However, since on the linear levelD8 is bounded
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in L2 and decays as t−1 in L∞, the inhomogeneous term for the estimate for the energy
is controlled by (∫ t

t0

t−1
(∫

6t

J Tµ (8)n
µ
6t

)1/2

dt

)2

.

This is insufficient to show that the energy is bounded. We therefore need to make use of
the null condition. The null condition would allow one to prove∫

(D8D8)2 ≤ Ct−2
∫
6t

JZ,w
Z

µ (∂k8)n
µ
6t
. (4)

In order to prove this estimate, we observe that in the conformal energy, the good deriva-
tives (∂v , 6∇) has better decay rates. In order to use this, we then need to control the confor-
mal energy. Using again the null condition, the inhomogeneous term in the conservation
law for the conformal energy can be bounded by(∫ t

t0

t−1
(∫

6t

JZ,w
Z

µ (8)n
µ
6t

)1/2

dt

)2

.

This would not be sufficient to prove that the conformal energy is bounded, but is suffi-
cient to prove that it grows no faster than tη for sufficiently small data. This in turn would
be sufficient to prove the boundedness of the energy and obtain all the necessary decay
rates. In practice, the argument is more complicated as we need to control the higher order
energy and conformal energy in order to obtain the decay rates.

1.4. The case of Kerr spacetime

In [7] and [20], all the analogues of the above estimates have been proved in the linear
setting in Kerr spacetimes. However, it is apparent from the linear case that several issues
arise when we apply a similar strategy to the nonlinear problem on Kerr spacetime.

Among other issues, two difficulties loom large. The first is the lack of symmetries in
Kerr spacetimes. While Kerr spacetimes possess the Killing vector field ∂t∗ , it is space-
like in a neighborhood of the event horizon and thus does not give nonnegative conserved
quantities. The works [6], [7] suggest that we can instead use the vector fields N and Z
on Kerr spacetime as substitutes for T and Z on Minkowski spacetime. N is constructed
as the Killing vector field ∂t∗ added to a small amount of the red-shift vector field near
the event horizon. The red-shift vector field, first introduced in [9], takes advantage of the
geometry of the event horizon and has been used crucially to obtain decay rates in [9],
[6], [7], [19], and [20]. It is one of the few stable features of the Schwarzschild space-
time. The vector field Z approaches the corresponding Z on Minkowski spacetime at the
asymptotically flat end and has the weights in r and t∗ from which we can prove decay.
These vector fields, however, do not correspond to any symmetries of Kerr spacetimes,
and therefore, as is already apparent in the linear scenario, the energy estimates would
contain error terms that need to be controlled. One consequence is that even in the lin-
ear setting, the conformal energy is not bounded. Similar issues arise for the vector field
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commutators � and S, which are crucial to obtaining pointwise decay estimates, whose
corresponding error terms at the linear level have been studied in [7], [19], [20]. A further
issue that arises in the case of the Kerr spacetime is the lack of good vector field commu-
tators that are useful to obtain control of higher order derivatives. This has been treated
in the linear setting in [6] and [7] using ∂t∗ and the red-shift vector field as commutators
and retrieving all other derivatives via elliptic estimates. In the nonlinear setting, we again
use elliptic estimates, noting however that the proof of the elliptic estimates now couples
with that of the energy estimates in a bootstrap argument.

Secondly, Kerr spacetimes contain trapped null geodesics. As a consequence, any
decay results at the linear level must involve a loss of derivatives. This is manifested in
the degeneracy of the integrated decay estimate near r = 3M . We note, however, that on
the linear level the nondegenerate energy can be proved to be bounded without any loss of
derivatives. We therefore prove energy bounds that are consistent with the linear scenario.
We would try to prove on the highest level of derivatives only a boundedness result and
begin to prove decay results on the level of fewer derivatives. However, as we will see,
the nonlinear effect comes into play and it is not possible to prove even the boundedness
of the nondegenerate energy at the highest level of derivatives. We can nevertheless show
that the energy is bounded by (t∗)η. On the level of one less derivative, we can prove
that the conformal energy grows no faster than τ 1+η. Using this fact as we prove the
estimates for the nondegenerate energy, we can show that at this level of derivatives, the
nondegenerate energy is bounded. This is crucial for obtaining the necessary borderline
decay of (t∗)−1 in r ≥ t∗/2, thus allowing us to close the bootstrap argument. Trapping
would also cause a loss in derivatives when controlling the error terms arising from the
commutation with S. To tackle this problem, we would commute with S only once. With
this approach, we would not have an improved decay forDS8 in r ≤ t∗/2. Nevertheless,
we can show that the bootstrap can be closed. Here we make use of the fact that as we
close the assumptions for S8, we are at a level of derivatives of 8 such that the local
energy flux decays.

In the next section, we will introduce the energy quantities on Kerr spacetimes that can
be thought of as analogues of the energy, conformal energy and integrated local energy.
In Section 2, we will state the energy estimates that they satisfy. In Section 4, we will
state the elliptic estimates that will be used. Then in Section 5, we prove the necessary
L∞ estimates. With all this preparation, we then prove all the estimates using a bootstrap
argument in Section 6. This then easily implies the main theorem in Section 7.

2. The energy quantities

We use three kinds of energy quantities, following the notation in [20]. They represent
the nondegenerate energy, the conformal energy and the energy norm for the integrated
decay estimate. The nondegenerate energy controls all derivatives:

Proposition 2.1. ∫
6τ

(D8)2 ≤ C

∫
6τ

JNµ (8)n
µ
6τ
.
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The conformal energy gives different weights to different derivatives and this will be
crucially used to capture the null condition:

Proposition 2.2.∫
6τ∩{r≥r

−

Y }

(
u2(L8)2 + v2(L8)2 + (u2

+ v2)|6∇8|2 +

(
u2
+ v2

r2

)
82
)

≤ C

∫
6τ

JZ+N,w
Z

µ (8)n
µ
6τ
+ C2τ 2

∫
6τ∩{r≤r

−

Y }

JNµ (8)n
µ
6τ
.

We use the following notations even though they do not correspond to any vector fields:

Definition 2.3.

KX0(8) = r−1−δ
1{|r−3M|≥M/8}J

N
µ (8)n

µ
6τ
+ r−1−δ(∂r8)

2
+ r−3−δ82,

KX1(8) = r−1−δJNµ (8)n
µ
6τ
+ r−3−δ82.

3. The energy estimates

We have proved in [20] the energy estimates for the energy quantities defined in the last
section for �gK8 = G. We have boundedness for the nondegenerate energy:

Proposition 3.1. Let G = G1 +G2 be any way to decompose the function G. Then∫
6τ

JNµ (8)n
µ
6τ
+

∫
H(τ ′,τ )

JNµ (8)n
µ

H+ +
∫∫

R(τ ′,τ )∩{r≤r−Y }
KN (8)+

∫∫
R(τ ′,τ )

KX0(8)

≤ C

(∫
6τ ′

JNµ (8)n
µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

G2
1

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂mt∗G2)
2
+ sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}

G2
2

)
.

We need an extra derivative for the inhomogeneous term because of trapping. If we know
a priori thatG is supported away from the trapped region, this loss in derivative is unnec-
essary.

Proposition 3.2. Let G = G1 + G2 be any way to decompose the function G. Suppose
G2 is supported away from {r : |r − 3M| ≤ M/8}. Then∫
6τ

JNµ (8)n
µ
6τ
+

∫
H(τ ′,τ )

JNµ (8)n
µ

H+ +
∫∫

R(τ ′,τ )∩{r≤r−Y }
KN (8)+

∫∫
R(τ ′,τ )

KX0(8)

≤ C

(∫
6τ ′

JNµ (8)n
µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

G2
1

)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

G2
1

+

∫∫
R(τ ′−1,τ+1)

r1+δG2
2

)
.
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The estimates for KX1 were also proved. It is estimated in the same way as KX0 but with
an extra derivative.

Proposition 3.3.∫∫
R(τ ′,τ )

KX1(8) ≤ C

( 1∑
m=0

∫
6τ ′

JNµ (∂
m
t∗8)n

µ
6τ ′
+

1∑
m=0

(∫ τ+1

τ ′−1

(∫
6t∗

(∂mt∗G1)
2
)1/2

dt∗
)2

+

1∑
m=0

∫∫
R(τ ′−1,τ+1)

(∂mt∗G1)
2
+

2∑
m=0

∫∫
R(τ ′−1,τ+1)

r1+δ(∂mt∗G2)
2

+ sup
t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M|≤M/8}

(∂mt∗G2)
2
)
.

As before, if the inhomogeneous term is supported away from the trapped set, we can
save a derivative:

Proposition 3.4. Let G = G1 + G2 be any way to decompose the function G. Suppose
G2 is supported away from {r : |r − 3M| ≤ M/8}. Then

∫∫
R(τ ′,τ )

KX1(8) ≤ C

1∑
m=0

(∫
6τ ′

JNµ (∂
m
t∗8)n

µ
6τ ′
+

(∫ τ+1

τ ′−1

(∫
6t∗

(∂mt∗G1)
2
)1/2

dt∗
)2

+

∫∫
R(τ ′−1,τ+1)

(∂mt∗G1)
2
+

∫∫
R(τ ′−1,τ+1)

r1+δ(∂mt∗G2)
2
)
.

The conformal energy satisfies the following estimates:

Proposition 3.5. For δ, δ′ > 0 sufficiently small and 0 ≤ γ < 1, there exist c = c(δ, γ )
and C = C(δ, γ ) such that the following estimate holds for any solution to �gK8 = G:

c

∫
6τ

JZ,w
Z

µ (8)n
µ
6τ
+ τ 2

∫
6τ∩{r≤γ τ }

JNµ (8)n
µ
6τ

≤ C

∫
6τ0

JZ+CN,w
Z

µ (8)n
µ
6τ0
+ C

∫∫
R(τ0,τ )

t∗r−1+δKX1(8)

+ Cδ′
∫∫

R(τ0,τ )∩{r≤t∗/2}
(t∗)2KX0(8)+ C(δ′ + a)

∫∫
R(τ0,τ )∩{r≤r

−

Y }

(t∗)2KN (8)

+ C(δ′)−1
(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2G2

)1/2

dt∗
)2

+ C(δ′)−1
1∑

m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗G)
2

+ C(δ′)−1 sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2G2.
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Remark 3.6. As in Proposition 3.2, we can save a derivative if we know that the inho-
mogeneous term is supported away from the trapped region. More precisely, let G =
G1 +G2 be any way to decompose the function G. Suppose G2 is supported away from
{r : |r − 3M| ≤ M/8}. Then we can replace

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗G)
2
+ sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2G2

by

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗G1)
2
+

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δG2
2

+ sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2G2

1

in Proposition 3.5. This follows from a straightforward modification of the proof in [20].

The estimates for KX0 and KX1 can be localized to r ≤ t∗/2 if we control them by
the conformal energy:

Proposition 3.7. (i) (Localized estimate for X0)∫∫
R(τ ′,τ )∩{r≤t∗/2}

KX0(8)

≤ C

(
τ−2

∫
6τ ′

JZ+N,w
Z

µ (8)n
µ
6τ ′
+ C

∫
6τ ′∩{r≤r

−

Y }

JNµ (8)n
µ
6τ ′

)

+ C

( 1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δ′(∂mt∗G)
2

+ sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}∩{r≤9t∗/10}

G2
)
.

(ii) (Localized estimate for X1)∫∫
R(τ ′,τ )∩{r≤t∗/2}

KX1(8)

≤ C

(
τ−2

1∑
m=0

∫
6τ ′

JZ+N,w
Z

µ (∂mt∗8)n
µ
6τ ′
+ C

1∑
m=0

∫
6τ ′∩{r≤r

−

Y }

JNµ (∂
m
t∗8)n

µ
6τ ′

)

+ C

( 2∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δ(∂mt∗G)
2

+ sup
t∗∈[τ ′−1,τ+1]

1∑
m=0

∫
6t∗∩{|r−3M|≤M/8}∩{r≤9t∗/10}

(∂mt∗G)
2
)
.
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Remark 3.8. As before, ifG = G1+G2 andG2 is supported outside {|r−3M| ≤ M/8},
we can replace, in Proposition 3.7(i),

1∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δ(∂mt∗G2)
2

+ sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}∩{r≤9t∗/10}

G2

by ∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δG2
2;

and in Proposition 3.7(ii), replace

2∑
m=0

∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δ(∂mt∗G2)
2

+

1∑
m=0

sup
t∗∈[τ ′−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}∩{r≤9t∗/10}

(∂mt∗G2)
2

by
1∑

m=0

∫∫
R(τ ′−1,τ+1)∩{r≤9t∗/10}

r1+δ(∂mt∗G2)
2.

4. The elliptic estimates and Hardy inequality

We have also proved in [20] the following elliptic estimates:

Proposition 4.1. Suppose �gK8 = G. For m ≥ 1 and for any α, we have

(i) (Boundedness of weighted energy)∫
6τ∩{r≥r

−

Y }

rα(Dm8)2 ≤ Cα

(m−1∑
j=0

∫
6τ

rαJNµ (∂
j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(DjG)2
)
.

(ii) (Boundedness of local energy) For any 0 < γ < γ ′,∫
6τ∩{r

−

Y ≤r≤γ t
∗}

rα(Dm8)2

≤ Cα

(m−1∑
j=0

∫
6τ∩{r≤γ ′t∗}

rαJNµ (∂
j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(DjG)2
)
.

We need a Hardy-type inequality that improves the analogous one in [20]:
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Proposition 4.2. For R > R′,∫
6τ∩{r≥R}

rα−282
≤ C

∫
6τ∩{r≥R′}

rαJNµ (8)n
µ
6τ
.

Proof. Let k(r) be defined by solving

k′(r, θ, φ) = rα−2 vol

in the region r ≥ R′, where vol = vol(r, θ, φ) is the volume density on 6τ with r, θ, φ
coordinates, with boundary condition k(R′, θ, φ) = 0. Now

∫
6τ∩{r≥R}

rα−282
=

∫∫∫
∞

R′
k′(r)82 dr dθ dφ ≤ − 2

∫∫∫
k(r)8∂r8dr dθ dφ

≤ 2
(∫∫∫

∞

R′

1+ k(r)2

1+ k′(r)
(∂r8)

2 dr dθ dφ

)1/2(∫∫∫ ∞
R′
(1+ k′(r))82 dr dθ dφ

)1/2

Notice that vol ∼ r2, k(r) ∼ rα+1 and 1 + k′(r) ∼ rα . Hence 1+k(r)2
1+k′(r) ∼ rα vol. The

lemma follows. ut

With the help of this Hardy inequality, we are able to “localize” the elliptic estimates for
r ≥ R.

Proposition 4.3. Suppose �gK8 = G. For m ≥ 1 and for any α, and any R > R′,

∫
6τ∩{r≥R}

rα(Dm8)2

≤ Cα,R,R′

(m−1∑
j=0

∫
6τ∩{r≥R′}

rαJNµ (∂
j
t∗8)n

µ
6τ
+

m−2∑
j=0

∫
6τ

rα(DjG)2
)
.

Near the event horizon, elliptic estimates have been proved to control all the derivatives
if we have control on the ∂t∗ and the Ŷ derivatives [6], [7], [20]:

Proposition 4.4. Suppose �gK8 = G. For every m ≥ 1,

∫
6τ∩{r≤r

−

Y }

(Dm8)2

≤ C

( ∑
j+k≤m−1

∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗ Ŷ

k8)n
µ
6τ
+

m−2∑
j=0

∫
6τ∩{r≤r

−

Y }

(DjG)2
)
.

This is useful together with the following control for the equation commuted with Ŷ :
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Proposition 4.5. Suppose �gK8 = G. For every k ≥ 0,∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
k8)n

µ
6τ
+

∫
H(τ ′,τ )

JNµ (Ŷ
k8)n

µ
6τ
+

∫∫
R(τ ′,τ )∩{r≤r−Y }

JNµ (Ŷ
k8)n

µ
6t∗

≤ C

( ∑
j+m≤k

∫
6τ ′∩{r≤r

+

Y }

JNµ (∂
j
t∗ Ŷ

m8)n
µ
6τ ′
+

k∑
j=0

∫
6τ∩{r≤r

+

Y }

JNµ (∂
j
t∗8)n

µ
6τ

+

k∑
j=0

∫∫
R(τ ′,τ )∩{r≤23M/8}

JNµ (∂
j
t∗8)n

µ
6t∗
+

k∑
j=0

∫∫
R(τ ′,τ )∩{r≤23M/8}

(DjG)2
)
.

5. Pointwise estimates

We prove pointwise estimates using Sobolev embedding. We will have different estimates
in the regions {r ≥ t∗/4} and {r ≤ t∗/4}.

We first consider {r ≥ t∗/4}. For this region, we will prove five different pointwise
estimates. First, we prove a boundedness result forD8 (Proposition 5.1) using only stan-
dard Sobolev embedding and the elliptic estimates of Proposition 4.1. Then we prove
decay estimates of r−1 for D`8 using the r weight in the vector field commutator �̃
and the nondegenerate energy (Proposition 5.2). It is crucial that this depends only on the
nondegenerate energy but not the conformal energy because we will not be able to prove
boundedness of the conformal energy (which already is the case in the linear situation,
see [7], [1], [20]). Notice that Proposition 5.1 does not follow from Proposition 5.2 be-
cause the latter requires an extra derivative. This save in derivatives is strictly speaking
not necessary for the bootstrap if we have instead assumed an extra derivative of regular-
ity in the initial data. Thirdly, using similar ideas, we will prove the decay of r−1 for 8
using �̃ and the conformal energy (Proposition 5.3). Then we prove an extra decay rate of
D8 using the conformal energy. For any derivatives, we will have an extra decay in the u
variable, which degenerates in the wave zone (Proposition 5.5). For the good derivatives,
we will have an extra decay in the v variable (Proposition 5.6). This decay rate will be
crucial in capturing the good derivative in the null condition.

Proposition 5.1. For r ≥ t∗/4 we have

|D8|2 ≤ C

( 2∑
k=0

∫
6τ

JNµ (∂
k
t∗8)n

µ
6τ
+

1∑
k=0

∫
6τ

(Dk�gK8)
2
)
.

Proof. By standard Sobolev embedding in three dimensions and Proposition 4.1,

|D8|2 ≤ C

3∑
k=1

∫
6τ∩{r≥r

−

Y }

(Dk8)2

≤ C

( 2∑
k=0

∫
6τ

JNµ (∂
k
t∗8)n

µ
6τ
+

1∑
k=0

∫
6τ

(Dk�gK8)
2
)
. ut
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We then prove the decay rate of r−1 for D`8. The idea here is standard: Making use
of the commutator �̃, we use the Sobolev embedding on the 2-sphere and then integrate
along the r direction.

Proposition 5.2. For r ≥ t∗/4 and ` ≥ 1, we have

|D`8|2 ≤ Cr−2
(∑̀
m=0

2∑
k=0

∫
6τ

JNµ (∂
m
t∗ �̃

k8)n
µ
6τ

+

`−1∑
j=0

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(Dj�gK (�̃
k8))2

)
.

Proof. We have

r2
|D`8|2 ≤ C

∫
S2

(
(D`8)2 + (�̃D`8)2 + (�̃2D`8)2

)
r2 dA

≤ C

2∑
k=0

(∫
S2(r̃)

(�̃kD`8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
|∂r�̃

kD`8�̃kD`8|(r ′)2 + (�̃kD`8)2r ′
)
dAdr ′

)
.

Noticing that |[D, �̃]8| ≤ C|D8|, we have

r2
|D`8|2 ≤ C

2∑
k=0

(∫
S2(r̃)

(�̃kD`8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
|∂rD

`�̃k8D`�̃k8|(r ′)2 + (�̃kD`8)2r ′
)
dAdr ′

)
≤ C

2∑
k=0

(∫
S2(r̃)

(D`�̃k8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
|D`+1�̃k8D`�̃k8|(r ′)2 + (D`�̃k8)2r ′

)
dAdr ′

)
≤ C

2∑
k=0

(∫
S2(r̃)

(D`�̃k8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
(D`+1�̃k8)2(r ′)2 + (D`�̃k8)2(r ′)2

)
dAdr ′

)
.

Take r ≤ r̃ ≤ r + 1. By Proposition 4.1,

2∑
k=0

∫ r+1

r

∫
S2(r ′)

(
(D`+1�̃k8)2(r ′)2 + (D`�̃k8)2(r ′)2

)
dAdr ′

≤ C

(∑̀
m=0

2∑
k=0

∫
6τ

JNµ (∂
m
t∗�

k8)n
µ
6τ
+

`−1∑
j=0

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(Dj�gK (�̃
k8))2

)
.
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By pigeonholing on this we also see that for some r̃ ,
2∑
k=0

∫
S2(r̃)

(D`�k8)2r̃2 dA

≤ C

(∑̀
m=0

2∑
k=0

∫
6τ

JNµ (∂
m
t∗�

k8)n
µ
6τ
+

`−1∑
j=0

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(Dj�gK (�̃
k8))2

)
. ut

We would also like to prove the pointwise decay in r for 8. However, we need to use the
conformal energy as well as the nondegenerate energy. We note that only the decay in r
will be used in the bootstrap argument, the decay in u is proved to achieve the decay rate
asserted in Theorem 1.

Proposition 5.3. Consider �gK8 = G. For r ≥ t∗/4, we have

|8|2 ≤ Cr−2(1+ |u|)−1
( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ

+ Cτ 2
2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.

Proof. Following the proof of Proposition 5.2, we have

r2
|8|2

≤ C

2∑
k=0

(∫
S2(r̃)

(�̃k8)2r̃2 dA+

∣∣∣∣∫ r̃

r

∫
S2(r ′)

(
|�̃k8D�̃k8|(r ′)2 + (�̃k8)2r ′

)
dAdr ′

∣∣∣∣).
We will treat separately the cases |u| ≤ 1, u ≥ 1, u ≤ 1. For |u| ≤ 1, take r ≤ r̃ ≤ r + 1.
By Proposition 2.2,

2∑
k=0

∫ r+1

r

∫
S2(r ′)

(
(D�̃k8)2(r ′)2 + (�̃k8)2(r ′)2

)
dAdr ′

≤ C

( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ
+ Cτ 2

2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.

By pigeonholing on this we also see that for some r̃ ,
2∑
k=0

∫
S2(r̃)

(�k8)2r̃2 dA

≤ C

( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ
+ Cτ 2

2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.

For u ≥ 1, pick a fixed R and let r̃ ∈ [R,R + 1]. Then by a pigeonhole argument, there
is some r̃ such that

2∑
k=0

∫
S2(r̃)

(�̃k8)2r̃2 dA

≤ Cu−2
( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ
+ Cτ 2

2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.
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By Proposition 2.2,
2∑
k=0

∫ r

R

∫
S2(r ′)

(
|�̃k8D�̃k8|(r ′)2 + (�̃k8)2r ′

)
dAdr ′

≤ C(rt∗u−2
+ ru−2)

( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ

+ Cτ 2
2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.

Using the fact that t∗ ≤ Cu in this region, we have the desired bound in this region.
Finally, for u ≤ 1, pick r̃ ∈ [−2u,−3u]. Then by a pigeonhole argument, there is

an r̃ such that
2∑
k=0

∫
S2(r̃)

(�̃k8)2r̃2 dA

≤ Cu−2
( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ
+ Cτ 2

2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
.

By Proposition 2.2,
2∑
k=0

∫
∞

r

∫
S2(r ′)

(
|�̃k8D�̃k8|(r ′)2 + (�̃k8)2r ′

)
dAdr ′

≤ C|u|−1
( 2∑
k=0

∫
6τ

JZ+N,w
Z

µ (�k8)n
µ
6τ
+ Cτ 2

2∑
k=0

∫
6τ∩{r≤r

−

Y }

JNµ (�
k8)n

µ
6τ

)
,

which gives the desired bound. ut

We would like to use the conformal energy and elliptic estimates to prove decay in the
u variable. However, we need to be careful when applying the localized version of the
elliptic estimates. In particular, we need to perform a dyadic decomposition in the vari-
able u. We remark that we can prove this for any number of derivatives by iterating the
cutoff procedure in the proof of the following proposition. However, as this will not be
necessary later, we will be content with the following proposition:

Proposition 5.4. Suppose �gK8 = G. Let r ≥ t∗/4, ` = 1 or 2 and u0 be the u-
coordinate corresponding to the two sphere given by the coordinate functions (τ, r0).
Then∫ r0+1

r0

∫
S2(r ′)

(D`8)2(r ′)2 dAdr ′

≤ C(1+ |u0|)
−2

`−1∑
j=0

(∫
6τ

JZ+CNµ (∂
j
t∗8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗8)n

µ
6τ

)
+ C

`−2∑
j=0

∫
6τ∩{u∼u0}∩{r≥τ/2}

(DjG)2.
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Proof. The ` = 1 case is trivial. For ` = 2, we consider separately Case 0: |u0| ≤ C∗,
Case 1k: 2k ≤ u0 ≤ 2k+1, and Case 2k: −2k+1

≤ u0 ≤ −2k , k ≥ logC∗
log 2 for some

sufficiently large but fixed C∗. In Case 0, we have |u| ≤ C for the range [r0, r0 + 1] and
hence the proposition is obvious as we have 1 ≤ C(1+ |u|)−2.

For the other cases, we consider a cutoff function χ : R→ R≥0 which is compactly
supported in [−2, 2] and identically 1 in [−1, 1]. In Case 1k (resp. 2k), we consider 8̃
be defined by 8̃(τ, r, θ, φ) = χ(2−k+3(r − r0))8(τ, r, θ, φ). Then 8̃ is supported in
[r0 − 2k−2, r0 + 2k−2

] and equals 8 in [r0 − 2k−3, r0 + 2k−3
]. On the support of 8̃,

|�gK 8̃−G| ≤ C
∑1
j=0 2−(2−j)k|Dj8|. Moreover, on the support of 8̃,

|u− u0| ≤
1
2
|r∗S − (r

∗

0 )S | ≤
1
2
|r − r0| +

M

2

∣∣∣∣log
r − 2M
r0 − 2M

∣∣∣∣ ≤ |r − r0| ≤ 2k−1

for r0 sufficiently large (which we can assume for otherwise τ and r must both be
bounded, in which case we must be in Case 0 for appropriately chosen C∗). Hence u ∼ 2k

(resp. u ∼ −2k).
Therefore, by Proposition 4.1(i) applied twice, first to 8̃ then to 8, we have∫ r0+1

r0

∫
S2(r ′)

(D28)2(r ′)2 dAdr ′ ≤

∫
6τ∩{r0≤r≤r0+1}

(D28̃)2

≤ C

1∑
j=0

∫
6τ∩{r0−2k−3≤r≤r0+2k−3}

JNµ (∂
j
t∗8̃)n

µ
6τ

+ C

1∑
j=0

∫
6τ∩{r0−2k−2≤r≤r0+2k−2}

2−(2−j)2k(Dj8)2 + C
∫
6τ∩{r0−2k−2≤r≤r0+2k−2}

G2

≤ C

1∑
j=0

∫
6τ∩{r0−2k−2≤r≤r0+2k−2}

(2−2k82
+ JNµ (∂

j
t∗8)n

µ
6τ
)

+ C

∫
6τ∩{r0−2k−2≤r≤r0+2k−2}

G2

≤ C(1+ |u0|)
−2

1∑
j=0

(∫
6τ

JZ+CNµ (∂
j
t∗8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗8)n

µ
6τ

)
+ C

∫
6τ∩{u∼u0}

G2. ut

Using this we can prove more decay in the u variable:

Proposition 5.5. Suppose �gK8 = G. For r ≥ t∗/4 and ` ≥ 1, we have

|D8|2 ≤ Cr−2(1+ |u|)−2
1∑

j=0

2∑
k=0

(∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ

)
+ Cr−2

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(�gK (�̃
k8))2.
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Proof. Following the proof of Proposition 5.2, we have

r2
|D8|2 ≤ C

2∑
k=0

(∫
S2(r̃)

(D�k8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
(D2�k8)(D�k8)(r ′)2 + (D�k8)2r ′

)
dAdr ′

)
.

Take r ≤ r̃ ≤ r + 1. Then by Proposition 5.4,

2∑
k=0

∫ r+1

r

∫
S2(r ′)

(
(D2�k8)(D�k8)(r ′)2 + (D�k8)2r ′

)
dAdr ′

≤ C(1+|u|)−2
1∑

j=0

2∑
k=0

(∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ
+Cτ 2

∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ

)

+C

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(�gK (�̃
k8))2.

By pigeonholing on this we also find that for some r̃ ,

2∑
k=0

∫
S2(r̃)

(D`�k8)2r̃2 dA

≤ C(1+ |u|)−2
1∑

j=0

2∑
k=0

(∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ

)

+ C

2∑
k=0

∫
6τ∩{u′∼u}∩{r≥τ/2}

(�gK (�̃
k8))2. ut

We have a better pointwise decay for a “good” derivative:

Proposition 5.6. For r ≥ t∗/4, we have

|D̄8|2 ≤ Cr−4
2∑
k=0

∑
i+j≤1

(∫
6τ

JNµ (S
i∂
j
t∗8)n

µ
6τ
+

∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ
+

∫
6τ

(�gK (�̃
k8))2

)

+ Cr−2
2∑
k=0

∫
6τ∩{r≥τ/2}

(�gK (�̃
k8))2.
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Proof. We have

r2
|D̄8|2 ≤ C

∫
S2

(
(D̄8)2 + (�̃D̄8)2 + (�̃2D̄8)2

)
r2 dA

≤ C

2∑
k=0

(∫
S2(r̃)

(�̃kD̄8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
|∂r�̃

kD̄8�̃kD̄8|(r ′)2 + (�̃kD̄8)2r ′
)
dAdr ′

)
.

Noticing that |[D, �̃]8| ≤ C|D8|, |[D̄, �̃]8| ≤ C(|D̄8| + r−1
|D8|) and |[D̄, ∂r ]8| ≤

Cr−1
|D8|, we have

r2
|D̄8|2 ≤ C

2∑
k=0

(∫
S2(r̃)

(�̃kD̄8)2r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
|∂rD̄�̃

k8D̄�̃k8|(r ′)2 + (�̃kD̄8)2r ′
)
dAdr ′

)
≤ C

2∑
k=0

(∫
S2(r̃)

(
(D̄�̃k8)2 + r̃−2(D�̃k8)2

)
r̃2 dA

+

∫ r̃

r

∫
S2(r ′)

(
(D̄D�̃k8)2 + (D̄�̃k8)2 + (r ′)−2(D�̃k8)2

)
(r ′)2 dAdr ′

)
. (5)

The last term already exhibits better decay rate:∫ r̃

r

∫
S2(r ′)

(r ′)−2(D�̃k8)2(r ′)2 dAdr ′ ≤ Cr−2
∫
6τ

JNµ (�̃
k8)n

µ
6τ
.

We will now show that the energy quantities involving D̄ obey better decay rates. This is
immediate for the term

∫ r̃
r

∫
S2(r ′)(D̄�̃

k8)2(r ′)2 dAdr ′ using the conformal energy:∫ r̃

r

∫
S2(r ′)

(D̄�̃k8)2(r ′)2 dAdr ′

≤ Cv−2
(∫

6τ

JZ+CNµ (�̃k8)n
µ
6τ
+ Cτ 2

∫
6τ∩{r≤r

−

Y }

JNµ (�̃
k8)n

µ
6τ

)
.

However, we note that this cannot be shown directly for the term∫ r̃

r

∫
S2(r ′)

(D̄D�̃k8)2(r ′)2 dAdr ′

with the conformal energy because �gK does not commute with derivatives in every di-
rection. In order to remedy this, we use the nondegenerate energy for S8. In particular,
we use the fact that for r ≥ r−Y , |D̄8| ≤ Cv−1(|S8| + u|D8| + vr−1

|D8|). We have



1652 Jonathan Luk

∫ r̃

r

∫
S2(r ′)

(D̄D�̃k8)2(r ′)2 dAdr ′

≤ C

∫ r̃

r

∫
S2(r ′)

(
(v′)−2(SD�̃k8)2 + (u′)2(v′)−2(D2�̃k8)2

+ (r ′)−2(D2�̃k8)2
)
(r ′)2 dAdr ′

≤ C

∫ r̃

r

∫
S2(r ′)

(
(v′)−2(DS�̃k8)2 + (v′)−2(D�̃k8)2

+ (u′)2(v′)−2(D2�̃k8)2 + (r ′)−2(D2�̃k8)2
)
(r ′)2 dAdr ′.

Take r ≤ r̃ ≤ r + 1. We have, for the first two terms,∫ r+1

r

∫
S2(r ′)

(v′)−2((DS�̃k8)2 + (D�̃k8)2)(r ′)2 dAdr ′
≤ Cv−2

1∑
j=0

∫
6τ

JNµ (S
j �̃k8)n

µ
6τ
.

The third term can be estimated by Proposition 5.4,∫ r+1

r

∫
S2(r ′)

(u′)2(v′)−2(D2�̃k8)(r ′)2 dAdr ′

≤ Cv−2
1∑

j=0

(∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ
+ Cτ 2

∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ

)
+ C

∫
6τ∩{u′∼u}∩{r≥τ/2}

(�gK (�̃
k8))2.

The fourth term can be estimated elliptically by Proposition 4.1:∫ r+1

r

∫
S2(r ′)

(r ′)−2(D2�̃k8)2(r ′)2 dAdr ′

≤ Cr−2
( 1∑
j=0

∫
6τ

JNµ (∂
j
t∗�̃

k8)n
µ
6τ
+

∫
6τ

(�gK (�̃
k8))2

)
.

Collecting all the above estimates and noting that r ≥ τ/2, we get

2∑
k=0

∫ r+1

r

∫
S2(r ′)

(
(D̄D�̃k8)2 + (D̄�̃k8)2 + (r ′)−2(D�̃k8)2

)
(r ′)2 dAdr ′

≤ Cv−2
2∑
k=0

∑
i+j≤1

(∫
6τ

JNµ (S
i∂
j
t∗8)n

µ
6τ
+

∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ
+

∫
6τ

(�gK (�̃
k8))2

)
+ C

2∑
k=0

∫
6τ∩{r≥τ/2}

(�gK (�̃
k8))2. (6)
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By pigeonholing on this we also deduce that for some r̃ ,

2∑
k=0

∫
S2(r̃)

(
(D̄�̃k8)2 + r̃−2(D�̃k8)2

)
r̃2 dA

≤ Cv−2
2∑
k=0

∑
i+j≤1

(∫
6τ

JNµ (S
i∂
j
t∗8)n

µ
6τ
+

∫
6τ

JZ+CNµ (∂
j
t∗�̃

k8)n
µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
j
t∗�̃

k8)n
µ
6τ
+

∫
6τ

(�gK (�̃
k8))2

)

+ C

2∑
k=0

∫
6τ∩{r≥τ/2}

(�gK (�̃
k8))2. (7)

(5)–(7) together imply the proposition. ut

We now turn to the region r ≤ t∗/4. We first show a simple Sobolev embedding result.

Proposition 5.7. Suppose �gK8 = G. For ` ≥ 1 and r ≤ t∗/4,

|D`8|2 ≤ C

( ∑
j+m≤`+1

∫
6τ∩{r≤t∗/2}

JNµ (∂
m
t∗ Ŷ

j8)n
µ
6τ
+

∑̀
j=0

∫
6τ

(DjG)2
)
.

We can capture better estimates in r if we use an extra derivative.

Proposition 5.8. For ` ≥ 1 and r ≤ t∗/4,

|D`8|2 ≤ Cr−2
( ∑
j+m+k≤`+2

∫
6τ∩{r≤t∗/2}

JNµ (∂
m
t∗ Ŷ

j �̃k8)n
µ
6τ

+

`+1−k∑
j=0

2∑
k=0

∫
6τ

(Dj�gK (�̃
k8))2

)
.

Proof. We only need to consider the situation when r ≥ R� + C. For otherwise, this
proposition is implied by Proposition 5.7 since r is finite. We assume from now on that
r ≥ R� + C. Following the proof of Proposition 5.2, we have

r2
|D`8|2 ≤ C

2∑
k=0

∫
S2(r̃)

(
(D`�̃k8)2r̃2 dA+

∫ r

r̃

∫
S2(r ′)

(
(D`+1�̃k8)2(r ′)2

+ (D`�̃k8)2(r ′)2
)
dAdr ′

)
Take r − 1 ≤ r̃ ≤ r . By Propositions 4.1(ii) and 4.4,

2∑
k=0

∫ r

r−1

∫
S2(r ′)

(
(D`+1�̃k8)2(r ′)2 + (D`�̃k8)2(r ′)2

)
dAdr ′

≤ C

( ∑
j+m≤`

2∑
k=0

∫
6τ∩{r≤t∗/2}

JNµ (∂
m
t∗ Ŷ

j�k8)n
µ
6τ
+

`−1∑
j=0

2∑
k=0

∫
6τ

(Dj�gK (�̃
k8))2

)
.
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By pigeonholing on this we also infer that for some r̃ with r − 1 ≤ r̃ ≤ r ,

2∑
k=0

∫
S2(r̃)

(D�k8)2r̃2 dA

≤ C

( ∑
j+m≤`

2∑
k=0

∫
6τ∩{r≤t∗/2}

JNµ (∂
m
t∗ Ŷ

j�k8)n
µ
6τ
+

`−1∑
j=0

2∑
k=0

∫
6τ

(Dj�gK (�̃
k8))2

)
. ut

We also have pointwise estimates for 8 instead of D8 if we use the conformal energy.

Proposition 5.9. Suppose �gK8 = 0. For r ≤ t∗/4,

|8|2 ≤ Cτ−2
( ∑
i+j≤2

∫
6τ

JZ+N,w
Z

µ (Ŷ i∂
j
t∗8)n

µ
6τ

+ Cτ 2
∑
i+j≤2

∫
6τ∩{r≤r

−

Y }

JNµ (Ŷ
i∂
j
t∗8)n

µ
6τ

)
.

Proof. By Sobolev embedding in three dimensions, for r ≤ t∗/4,

|8|2 ≤ C

2∑
k=0

∫
6τ∩{r≤t∗/4}

(Dk8)2.

Then, using the elliptic estimates in Propositions 4.1(ii) and 4.4, we have

|8|2 ≤ C
∑
i+j≤2

∫
6τ∩{r≤t∗/2}

(
82
+ JNµ (Ŷ

i∂
j
t∗8)n

µ
6τ

)
.

Using Proposition 2.2, we conclude the proof. ut

We proceed to show that the pointwise estimate is better if we use the vector field commu-
tator S. To this end, we first show that we can control a fixed t∗ quantity by an integrated
quantity. The proof follows ideas in [19], [20] and applies an integration in the direction
of S.

Proposition 5.10. For any sufficiently regular 8, not necessarily satisfying any differen-
tial equations, and α0 a constant,∫

6τ∩{r≤τ/4}
rα0−282

≤ Cτ−1
∫∫

R(τ/1.1,τ )∩{r≤t∗/3}

(
rα0−282

+ rα0−2(S8)2
)
.

Proof. To use the estimates for S8, we need to integrate along integral curves of S.
The following argument imitates that for proving improved decay for the homogeneous
equation in [20]. We first find the integral curves by solving the ordinary differential
equation

drS

dt∗S
=
h(rS)

t∗S
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where h(rS) is as in the definition of S. Hence the integral curves are given by

exp
(∫ rS
(rS )0

dr ′S
h(r ′S )

)
t∗S

= constant,

where (rS)0 > 2M can be chosen arbitrarily. Let σ = t∗, ρ = exp
(∫ rS
(rS )0

dr ′S
h(r ′S )

)
/t∗S and

consider (σ, ρ, xA, xB) as a new system of coordinates. Notice that

∂σ =
h(rS)

t∗S
∂rS + ∂t∗S

=
1
t∗S
S.

Now for each fixed ρ, we have

82(τ ) ≤ 82(τ ′)+

∣∣∣∣∫ τ

τ ′

1
σ
S(82) dσ

∣∣∣∣.
Multiplying by ρα and integrating along a finite region of ρ, we get∫ ρ2

ρ1

82(τ )ραdρ ≤

∫ ρ2

ρ1

82(τ ′)ραdρ +

∫ ρ2

ρ1

∫ τ

τ ′

∣∣∣∣2ρασ 8S8

∣∣∣∣ dσdρ.
We choose α so that α = 0 for r ≤ r−Y and α = α0 for r ≥ R and smooth depending
on r in between. We would like to change coordinates back to (t∗S , rS, x

A
S , x

B
S ). Notice

that since h(rS) is everywhere positive, (ρ, τ ) would correspond to a point with a larger
value of rS than (ρ, τ ′). Therefore,

∫ (rS )2

2M
82(τ )

exp
(
(1+ α)

∫ rS
2M

dr ′S
h(r ′S )

)
τh(rS)

drS ≤

∫ (rS )2

2M
82(τ ′)

exp
(
(1+ α)

∫ rS
(rS )0

dr ′S
h(r ′S )

)
τ ′h(rS)

drS

+

∫ τ

τ ′

∫ (rS )2

2M

∣∣∣∣ 2
σ
8S8

∣∣∣∣exp
(
(1+ α)

∫ rS
(rS )0

dr ′S
h(r ′S )

)
t∗h(rS)

drS dt
∗.

We have to compare exp
(
(1+ α(rS))

∫ rS
(rS )0

dr ′S
h(r ′S )

)
/h(rS) with the volume form. Very

close to the horizon, h(rS) = rS − 2M and α(r) = 0. Hence

exp
(
(1+ α)

∫ rS
(rS )0

dr ′S
h(r ′S )

)
h(rS)

= e

∫ rS
(rS )0

dr′
S

h(r′
S
)

(
1

rS − 2M

)
∼ 1.

On the other hand, for r ≥ R, h(rS) = (rS+2M log(rS−2M)−3M−2M logM)(1−µ)
and α(rS) = α0. In particular, for a sufficiently large choice of R, h(rS) ∼ rS . Hence

exp
(
(1+ α)

∫ rS
(rS )0

dr ′S
h(r ′S )

)
h(rS)

∼

exp
(
(1+ α)

∫ rS
(rS )0

dr ′S
h(r ′S )

)
rS

∼
r
α0
S

R
∼ rα0−2.
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The corresponding expression on the compact set [r−Y , R] is obviously bounded. Hence,
since the volume density both on a slice and on a spacetime region is ∼ r2, we have∫

6τ∩{r<r2}

82(τ )

τ
rα0−2

≤ C

(∫
6τ ′∩{r<r2}

82(τ ′)

τ ′
rα0−2

+

∫∫
R(τ ′,τ )∩{r<r2}

rα0−2
∣∣∣∣ 2
(t∗)2

8S8

∣∣∣∣).
This easily implies the following improved decay for the nondegenerate energy for τ ′ ∈
[τ/1.1, τ ]:∫

6τ∩{r<τ/4}
rα0−282

≤ Cτ−1
(∫

6τ ′∩{r<τ
′/3}

rα0−282
+

∫∫
R(τ/1.1,τ )∩{r<t∗/3}

rα0−2(S8)2
)
. (8)

By choosing an appropriate τ̃ , we have∫
6τ̃∩{r<τ̃/3}

rα0−282
≤ Cτ−1

∫∫
R(τ/1.1,τ )∩{r<t∗/3}

rα0−282.

Now, applying (8) with τ ′ = τ̃ , we have∫
6τ∩{r≤τ/4}

r−1−δ82

≤ Cτ

(∫
6τ̃∩{r<τ̃/3}

82

τ̃
rα0−2

+

∫∫
R(τ̃ ,τ )∩{r<t∗/3}

rα0−2
∣∣∣∣ 2
(t∗)2

8S8

∣∣∣∣)
≤ Cτ−1

(∫∫
R(τ/1.1,τ )∩{r≤t∗/3}

rα0−282
+

∫∫
R(τ/1.1,τ )∩{r≤t∗/3}

rα0−2(S8)2
)
,

using Cauchy–Schwarz for the second term. ut

By Sobolev embedding, this would give an improved decay estimate in t∗ in the region
{r ≤ t∗/4}. For the application, we also need an improved decay in r , which we get by
commuting with the angular momentum �̃.

Proposition 5.11. Suppose �gK8 = G. For r ≤ t∗/4 and ` ≥ 1, we have

|D`8|2 ≤ C(t∗)−1r−1+δ
∑

i+j≤`−1

2∑
k=0

∫∫
R(t∗/1.1,t∗)∩{r≤t∗/2}

(
KX1(Ŷ i∂

j
t∗�̃

k8)

+KX1(SŶ i∂
j
t∗�̃

k8)
)

+ C(t∗)−1r−1+δ
`−1∑
j=0

2∑
k=0

∫∫
R(t∗/1.1,t∗)∩{r≤t∗/2}

r−1−δ(Dj�gK (�̃
k8))2.
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Proof. Using a similar argument as before, except for choosing r̃ ≤ r , we have

r1−δ
|D`8|2 ≤ C

2∑
k=0

∫
S2
(�̃kD`8)2r1−δ dA

≤ C

( 2∑
k=0

∫
S2(r̃)

(D`�k8)2r̃1−δ dA

+

∫ r

r̃

∫
S2(r ′)

(
(D`+1�k8)2 + (D`�k8)2

)
(r ′)1−δ dAdr ′

)
.

Using Proposition 5.10, we have∫ r

r̃

∫
S2(r ′)

(D`�k8)2(r ′)1−δ dAdr ′ ≤ C

∫
6τ∩{r≤τ/4}

r−1−δ(D`�k8)2

≤ Cτ−1
∫∫

R(τ/1.1,τ )∩{r≤t∗/3}

(
r−1−δ(D`�k8)2 + r−1−δ(SD`�k8)2

)
.

By first commuting [D, S] and then using Proposition 4.1(ii) and 4.4 on each fixed
t∗ slice in the integral, we have∫∫

R(τ/1.1,τ )∩{r≤t∗/3}

(
r−1−δ(D`�k8)2 + r−1−δ(SD`�k8)2

)
≤ C

∑
i+j≤`−1

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

r−1−δ(JNµ (Y i∂j−it∗ �̃k8)n
µ
6τ

+ JNµ (SY
i∂
j−i
t∗ �̃k8)n

µ
6τ

)
+ C

`−1∑
j=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

r−1−δ(Dj�gK (�̃
k8))2

≤ C
∑

i+j≤`−1

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX1(Y i∂

j−i
t∗ �̃k8)+KX1(SY i∂

j−i
t∗ �̃k8)

)
+ C

`−1∑
j=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

r−1−δ(Dj�gK (�̃
k8))2.

Therefore,

r1−δ
|D`8|2

≤ Cτ−1
∑

i+j≤`−1

2∑
k=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX1(Ŷ i∂

j
t∗�̃

k8)+KX1(SŶ i∂
j
t∗�̃

k8)
)

+ Cτ−1
`−1∑
j=0

2∑
k=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

r−1−δ(Dj�gK (�̃
k8))2. ut
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Similar ideas can be used to prove decay of 8 without derivatives, except for a loss in
powers of r . This will not be used for the bootstrap argument, but will be used to prove
the decay for 8 in the statement of Theorem 1.

Proposition 5.12. Suppose �gK8 = G. For r ≤ t∗/4, we have

|8|2 ≤ C(t∗)−1rδ
2∑
k=0

∫∫
R(t∗/1.1,t∗)∩{r≤t∗/3}

(
KX1(�̃k8)+KX1(S�̃k8)

)
.

Proof. Fix R. Taking r̃ ∈ [R, τ/5], we have

r−δ|8|2 ≤ C

2∑
k=0

∫
S2
(�̃k8)2r−δ dA

≤ C

2∑
k=0

(∫
S2(r̃)

(�k8)2r̃−δ dA

+

∣∣∣∣∫ r

r̃

∫
S2(r ′)

(
|�k8D�k8|2(r ′)−δ + (�k8)2(r ′)−1−δ) dAdr ′∣∣∣∣).

There exists r̃ ∈ [R, τ/5] such that∫
S2(r̃)

(�k8)2r̃−δ dA ≤ τ−1
∫ τ/4

r+

∫
S2(r ′)

(�k8)2(r ′)−δ dAdr ′.

Using Proposition 5.10, we have∫ τ/4

r+

∫
S2(r̃)

(�k8)2(r ′)−δ dAdr ′ ≤ Cτ

∫
6τ∩{r≤τ/4}

r−3−δ(�k8)2

≤ C

∫∫
R(τ/1.1,τ )∩{r≤t∗/3}

(
r−3−δ(�k8)2 + r−3−δ(S�k8)2

)
≤ C

∫∫
R(τ/1.1,τ )∩{r≤t∗/3}

(
KX1(�̃k8)+KX1(S�̃k8)

)
.

Using Proposition 5.10, we also have∣∣∣∣∫ r

r̃

∫
S2(r ′)

(
|�k8D�k8|2(r ′)−δ + (�k8)2(r ′)−1−δ) dAdr ′∣∣∣∣

≤ C

∫
6τ∩{r≤τ/4}

(
r−3−δ(�k8)2 + r−1−δ(D�k8)2

)
≤ Cτ−1

∫∫
R(τ/1.1,τ )∩{r≤t∗/3}

(
r−3−δ(�k8)2 + r−3−δ(S�k8)2 + r−1−δ(D�k8)2

+ r−1−δ(SD�k8)2
)

≤ Cτ−1
∫∫

R(τ/1.1,τ )∩{r≤t∗/3}

(
KX1(�̃k8)+KX1(S�̃k8)

)
.
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Therefore,

|8|2 ≤ Cτ−1rδ
2∑
k=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX1(�̃k8)+KX1(S�̃k8)

)
. ut

6. Bootstrap

Bootstrap Assumptions (J): We first introduce the bootstrap assumptions corresponding
to energy quantities on a fixed t∗ slice:∑
i+j=16

A−1
j

∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
+

∑
i+k=16

A−1
Y

∫
6τ

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤ ετ η16 , (9)

∑
i+j=15

A−1
j

(∫
6τ

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)
+

∑
i+k=15

A−1
Y τ 2

∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤ ετ 1+η15 , (10)

∑
i+j≤14

A−1
j

(∫
6τ

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)
+

∑
i+k≤14

A−1
Y τ 2

∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤ ετ η14 , (11)

∑
i+j≤15

A−1
j

∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
≤ ε, (12)

∑
i+j=13

A−1
S,j

∫
6τ

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ
+

∑
i+k=13

A−1
S,Y

∫
6τ

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ ετ ηS,13 , (13)

∑
i+j=12

A−1
S,j

(∫
6τ

JZ+N,w
Z

µ (S∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ

)
+

∑
i+k=12

A−1
S,Y τ

2
∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ ετ 1+ηS,12 , (14)

∑
i+j≤11

A−1
S,j

(∫
6τ

JZ+N,w
Z

µ (S(∂ it∗�̃
j8))n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (S(∂
i
t∗�̃

j8))n
µ
6τ

)
+

∑
i+k≤12

A−1
S,Y τ

2
∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ ετ ηS,11 , (15)

∑
i+j≤12

A−1
S,j

∫
6τ

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ
≤ ε. (16)

Bootstrap Assumptions (K): We also need bootstrap assumptions for the energy quanti-
ties in a spacetime slab:
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∑
i+j=16

A−1
X,j

∫∫
R(τ0,τ )

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤ ετ η16 , (17)

∑
i+j=15

A−1
X,j

∫∫
R(τ0,τ )

KX1(∂ it∗�̃
j8) ≤ ετ η16 , (18)

∑
i+j≤15

A−1
X,j

∫∫
R(τ0,τ )

KX0(∂ it∗�̃
j8) ≤ ε, (19)

∑
i+j≤14

A−1
X,j

∫∫
R(τ0,τ )

KX1(∂ it∗�̃
j8) ≤ ε, (20)

∑
i+j≤15

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤ ετ−1+η15 , (21)

∑
i+j≤14

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(∂ it∗�̃
j8) ≤ ετ−1+η15 , (22)

∑
i+j≤14

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤ ετ−2+η14 , (23)

∑
i+j≤13

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(∂ it∗�̃
j8) ≤ ετ−2+η14 , (24)

∑
i+j=13

A−1
S,X,j

∫∫
R(τ0,τ )

KX0(S∂ it∗�̃
j8) ≤ ετ ηS,13 , (25)

∑
i+j≤12

A−1
S,X,j

∫∫
R(τ0,τ )

KX0(S∂ it∗�̃
j8) ≤ ε, (26)

∑
i+j+k≤12

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX0(S∂ it∗�̃
j8) ≤ ετ−1+ηS,12 , (27)

∑
i+j≤11

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(S∂ it∗�̃
j8) ≤ ετ−1+ηS,12 , (28)

∑
i+j≤11

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX0(S∂ it∗�̃
j8) ≤ ετ−2+ηS,11 , (29)

∑
i+j≤10

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(S∂ it∗�̃
j8) ≤ ετ−2+ηS,11 . (30)

Bootstrap Assumptions (P): We also introduce bootstrap assumptions for the pointwise
behavior. For r ≥ t∗/4,

13∑
j=0

|0j8|2 ≤ BAεr−2(t∗)1+η14 , (31)

13∑
j=0

|D0j8|2 ≤ BAε, (32)
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13−j∑
`=1

12∑
j=0

|D`0j8|2 ≤ BAεr−2, (33)

8∑
j=0

|D0j8|2 ≤ BAεr−2(t∗)η14(1+ |u|)−2, (34)

8∑
j=0

|D̄0j8|2 ≤ BAεr−2(t∗)−2+η14 , (35)

6∑
j=0

|S0j8|2 ≤ BSAεr
−2(t∗)ηS,11 , (36)

8∑
j=0

|DS0j8|2 ≤ BSAεr
−2, (37)

6∑
j=0

|DS0j8|2 ≤ BSAεr
−2(t∗)ηS,11(1+ |u|)−2. (38)

For r ≤ t∗/4,
13∑
j=0

|0j8|2 ≤ BAε(t∗)−1+η14 , (39)

14−j∑
`=1

13∑
j=0

|D`0j8|2 ≤ BAε(t∗)−1+η14 , (40)

13−j∑
`=1

12∑
j=0

|D`0j8|2 ≤ BAε(t∗)−2+η14 , (41)

9−j∑
`=1

8∑
j=0

|D`0j8|2 ≤ BAε(t∗)−3+ηS,11r−1+δ, (42)

6∑
j=0

|S0j8|2 ≤ BSAε(t
∗)−2+ηS,11 , (43)

7−j∑
`=1

6∑
j=0

|D`S0j8|2 ≤ BSAεr
−2(t∗)−2+ηS,11 . (44)

Remark 6.1. Notice that in general, for most of the bootstrap assumptions on 8, there
is a corresponding one on S8. The arguments to retrieve these assumptions are quite
similar, we only have to estimate the commutator term (in a manner similar to [19], [20])
and track the appropriate constants.

Remark 6.2. Notice that all these assumptions are satisfied initially by the assumption
of the theorem.
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Remark 6.3. We will bootstrap to improve the constantsAj ,AX,j ,AS ,AS,X,j ,AY ,AS,Y
and B. The constant B is only used for the bootstrap of the pointwise estimates. The
constants satisfy

1� B ∼ BS � A0 � AX,0 � A1 � · · · � A16 � AX,16 � AY

� AS,0 � AS,X,0 � · · · � AS,X,13 � AS,Y ,

We will use A as a shorthand to denote the maximum of all these constants, i.e., AS,Y .
We will always assume by taking ε small that

Aε � 1.

Moreover, we set the constants so that

Aj−1/Aj � AX,j−1/Aj � δ′η−1, δ ∼ δ′ � Aj/AX,j .

The η’s, on the other hand, satisfy

δ ∼ δ′ � η16 � η15 � η14 � ηS,13 � ηS,12 � ηS,11.

The η’s are chosen so that

Aj/AX,j � η14 � 1 for all j.

ε will be much smaller than any combinations of the other constants.

We will use energy estimates and decay estimates to eventually close the bootstrap.
In order to derive the estimates, we consider equations for 0k8. We now introduce the
notations that will facilitate the discussion below.

Definition 6.4.

Gk =
∑
|j |=k

|�gK (0
j8)|, Uk =

∑
|j |=k

|[�gK , 0
j
]8|, Nk =

∑
|j |=k

|0j (�gK8)|.

Definition 6.5.

G≤k =
∑
|j |≤k

|�gK (0
j8)|, U≤k =

∑
|j |≤k

|[�gK , 0
j
]8|, N≤k =

∑
|j |≤k

|0j (�gK8)|.

In order to keep track of the constants, we also introduce

Definition 6.6. Define Uk,j = |[�gK , ∂
k−j
t∗ �̃j ]8| and U≤k,≤j =

∑
j ′≤j,k′≤k Uk′,j ′ .

Remark 6.7. We will refer to G as the inhomogeneous term, U as the commutator term
and N as the nonlinear term. Clearly we have Gk ≤ Uk +Nk and G≤k ≤ U≤k +N≤k

We now estimate the inhomogeneous terms that will appear in the analysis several
times below. It is necessary to study the commutator terms and the nonlinear terms to-
gether because the estimates for each depend on the estimates for the other when we use
elliptic estimates.
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Proposition 6.8. Uk satisfies the following estimates:

∫
6τ

rα(D`Uk,j )
2
≤ C

(k+`−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

+

k+`−i−1∑
m=0

j−1∑
i=0

∫
6τ

rα−4(DmNi)
2
)

(45)

for α ≤ 4, where it is understood that
∑
−1
i=0 = 0.

Proof. The commutator terms are estimated in [19]. Notice that since �̃ is supported
away from the trapped set, there is no loss of derivatives in using the integrated decay
estimate. We have Uk,j supported in {r ≥ R�} and

|Uk,j | ≤ C

j∑
i=0

|∂
k−j
t∗ [�gK , �̃

i
]8| ≤ C

j−1∑
i=0

r−2(
|D2∂

k−j
t∗ �̃i8| + |D∂

k−j
t∗ �̃i8|

)
,

and therefore

|D`Uk,j | ≤ C

`+2∑
m=1

j−1∑
i=0

r−2
|Dm∂

k−j
t∗ �̃i8| ≤ C

k+`−j+2∑
m=1

j−1∑
i=0

r−2
|Dm�̃i8|,

where, as in the statement of the proposition, it is understood that the sum vanishes if
j = 0. Hence, using the elliptic estimate for {r ≥ R�}, i.e., Proposition 4.3,

∫
6τ

rα(D`Uk,j )
2
≤ C

k+`−j+2∑
m=1

j−1∑
i=0

∫
6τ∩{r≥R�}

rα−4(Dm�̃i8)2

≤ C

k+`−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

+ C

k+`−i−1∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4((DmUi,i)2 + (DmNi)2). (46)

Now we can estimate Uk by induction: Fix any k and we will induct on j . By definition,
Uk,0 = 0. Now, assume that for all k + ` ≤ 16 and for some j0 ≥ 1, we have

∑
k+`≤M, j≤min{j0−1,k}

∫
6τ

rα(D`Uk,j )
2

≤ C

(M−i∑
m=0

j0−2∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ
+

M−1−i∑
m=0

j0−1∑
i=0

∫
6τ

rα−4(DmNi)
2
)

for all α ≤ 4. Then, using (46), we find that for k + ` ≤ 16, and j0 ≤ k,
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∫
6τ

rα(D`Uk,j0)
2
≤ C

(k+`−i∑
m=0

j0−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

+

k+`−i−1∑
m=0

j0−1∑
i=0

∫
6τ

rα−4(DmNi)
2
)
.

Hence, (45) holds. ut

We now estimate the nonlinear term Nk . Since Nk is at least quadratic, we do not need to
be precise about the constants A and we will always estimate with the maximum A.

Proposition 6.9. Nk satisfies the following estimates for fixed t∗ = τ :∑
k+`=16

∫
6τ

(D`Nk)
2
≤ CBA2ε2τ−2+η16 ,

∑
k+`≤15

∫
6τ

(D`Nk)
2
≤ CBA2ε2τ−2.

Nk also satisfy the following estimates when integrated over t∗ ∈ [τ/1.1, τ ]:∑
k+`=15

∫∫
R(τ/1.1,τ )

r−1−δ(D`Nk)
2
≤ CBA2ε2τ−2+η16 ,

∑
k+`≤14

∫∫
R(τ/1.1,τ )

r−1−δ(D`Nk)
2
≤ CBA2ε2τ−2.

Proof. Here, there is no need to distinguish between the good and bad derivatives. We
have

|D`Nk| ≤ |D
`0k(3iD8D8)| + |0

kC|.

We claim that the most important terms will be those that are quadratic in Dj+10i8 or
cubic of the form

(Dj1+10i18)(Dj2+10i28)(0i38)

with i1 + j1, i2 + j2 ≤ 8. For by the assumptions every term has the form

(Dj10i18)(Dj20i28)(Dj30i38)(Dj40i48) . . . (Djr0ir8),

with r ≥ 2, at least two j ’s ≥ 1 and i + j ≤ 9 for all but at most one factor. If all
factors have i + j ≤ 9 or the factor with i + j > 9 has i ≥ 1, we can reduce to the case
Dj1+10i18Dj2+10i28 by putting all other factors in L∞ using Bootstrap Assumptions
(31), (32), (39) and (40). If the factor with i + j > 9 has i = 0 we reduce to

(Dj1+10i18)(Dj2+10i28)(0i38)

again by putting all other factors in L∞ using Bootstrap Assumptions (31), (32), (39)
and (40). We have
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∫
6τ

(D`Nk)
2
≤ C

(
sup

∑
i1+j1≤8

|Dj1+10i18|2
) ∑̀
j2=0

k∑
i2=0

∫
6τ

|Dj2+10i28|2

+ C
(

sup
∑

i1+j1≤8

|Dj1+10i18|2
)(

sup
∑

i2+j2≤8

r2
|Dj2+10i28|2

) k∑
i3=0

∫
6τ

r−2
|0i38|2

≤ CBAετ−2
`+1∑
i=1

k∑
j=0

∫
6τ

(Di0j8)2

using Hardy’s inequality in Proposition 4.2

≤ CBAετ−2
∑̀
i+m=0

k∑
j=0

∫
6τ

JNµ (∂
m
t∗0

j Ŷ i8)n
µ
6τ

+ CBAετ−2
∑

i+j≤k+`−1

∫
6τ

(
(DiU≤j )

2
+ (DiN≤j )

2)
using the elliptic estimates in Propositions 4.1, 4.4

≤ CBAετ−2
(∑̀
i=0

k∑
j=0

∫
6τ

JNµ (∂
m
t∗0

j Ŷ i8)n
µ
6τ
+

∑
i+j≤k+`−1

∫
6τ

(DiN≤j )
2
)
,

where we have used Proposition 6.8 in the last step. Now, a simple induction would show
that ∑

k+`=16

∫
6τ

(D`Nk)
2
≤ CBA2ε2τ−2+η,

∑
k+`≤15

∫
6τ

(D`Nk)
2
≤ CBA2ε2τ−2.

We now move on to the terms integrated over t∗ ∈ [τ/1.1, τ ]. Arguing as before, and
noticing that the elliptic estimate in Proposition 4.1 also allows weights in r , we have∫∫

R(τ/1.1,τ )
r−1−δ(D`Nk)

2

≤ CBAετ−2
∑̀
i+m=0

k∑
j=0

∫∫
R(τ/1.1,τ )

r−1−δJNµ (∂
m
t∗0

j Ŷ i8)n
µ
6τ

+ CBAετ−2
∑

i+j≤k+`−1

∫∫
R(τ/1.1,τ )

r−1−δ((DiU≤j )2 + (DiN≤j )2)
≤ CBAετ−2

∑̀
i=0

k∑
j=0

∫∫
R(τ/1.1,τ )

r−1−δJNµ (∂
m
t∗0

j Ŷ i8)n
µ
6τ

+ CBAετ−2
∑

i+j≤k+`−1

∫∫
R(τ/1.1,τ )

r−1−δ(DiN≤j )
2

≤ CBAετ−2
∑̀
i=0

k∑
j=0

∫∫
R(τ/1.1,τ )

KX1(∂mt∗0
j Ŷ i8)

+ CBAετ−2
∑

i+j≤k+`−1

∫∫
R(τ/1.1,τ )

r−1−δ(DiN≤j )
2

Now, Bootstrap Assumptions (18), (20) and an induction on k+` conclude the proof. ut
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Now, the estimates for Nk will also give improved estimates for Uk via Proposition 6.8:

Proposition 6.10. The following estimates for Uk on a fixed t∗ slice hold for α ≤ 2:∑
k+`=16

∫
6τ

rα(D`Uk,j )
2
≤ CAj−1ετ

η16 ,

∑
k+`=15

∫
6τ

rα(D`Uk,j )
2
≤ CAj−1ετ

−1+η15 ,

∑
k+`≤14

∫
6τ

rα(D`Uk,j )
2
≤ CAj−1ετ

−2+η14 .

The following estimates for Uk integrated on [τ/1.1, τ ] also hold for α ≤ 1+ δ:∑
k+`=16

∫∫
R(τ/1.1,τ )

rα(D`Uk,j )
2
≤ CAX,j−1ετ

η16 ,

∑
k+`=15

∫∫
R(τ/1.1,τ )

rα(D`Uk,j )
2
≤ CAX,j−1ετ

−1+η15 ,

∑
k+`≤14

∫∫
R(τ/1.1,τ )

rα(D`Uk,j )
2
≤ CAX,j−1ετ

−2+η14 .

Proof. We first prove the estimates for the terms constant in τ . By Proposition 6.8,∫
6τ

rα(D`Uk,j )
2

≤ C

(k+`−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ
+

k+`−1−i∑
m=0

j−1∑
i=0

∫
6τ

rα−4(DmNi)
2
)

for α ≤ 4.
The second term satisfies the required estimate by Proposition 6.9. We estimate the

first term. By (9),

16−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ
≤ CAj−1ετ

η16 .

By (10) and Proposition 2.2,

15−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

≤ C

(15−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≤τ/2}

JNµ (∂
m
t∗ �̃

i8)n
µ
6τ
+

15−i∑
m=0

j−1∑
i=0

τ−2
∫
6τ∩{r≥τ/2}

JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

)
≤ CAj−1ετ

−1+η15 .
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By (11) and Proposition 2.2,

14−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

≤ C

(14−i∑
m=0

j−1∑
i=0

∫
6τ∩{r≤τ/2}

JNµ (∂
m
t∗ �̃

i8)n
µ
6τ
+

14−i∑
m=0

j−1∑
i=0

τ−2
∫
6τ∩{r≥τ/2}

JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

)
≤ CAj−1ετ

−2+η14 .

For the integrated terms, we similarly have, by Proposition 6.8,

∫∫
R(τ/1.1,τ )

rα(D`Uk,j )
2

≤ C

(k+`−i∑
m=0

j−1∑
i=0

∫∫
R(τ/1.1,τ )∩{r≥R�−1}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6τ

+

k+`−1−i∑
m=0

j−1∑
i=0

∫∫
R(τ/1.1,τ )

rα−4(DmNi)
2
)

for α ≤ 4.

The second term can be estimated by Proposition 6.9. Notice that r−1+δJNµ (8)n
µ
6τ
≤

KX0(8). Hence, following the argument above for the fixed τ case, we would have proved
the proposition for the case α ≤ 1− δ. Nevertheless, with more care, we can improve to
α ≤ 1+ δ. We have

k+`−i∑
m=0

j−1∑
i=0

∫∫
R(τ/1.1,τ )∩{r≥R�}

rα−4JNµ (∂
m
t∗ �̃

i8)n
µ
6t∗

≤ C

k+`−i∑
m=0

j−1∑
i=0

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂mt∗ �̃

i8)+ r−2+2δKX0(∂mt∗ �̃
i8)

)
.

For k + ` = 16, this is bounded by CAX,j−1ετ
η16 by (17). For k + ` = 15, this is

bounded by CAX,j−1ετ
−1+η15 by (21) and (19). For k + ` ≤ 14, this is bounded by

CAX,j−1ετ
−2+η14 by (23) and (19) since 2δ ≤ η14. ut

While the above is sufficient to recover the bootstrap assumptions for the pointwise
bounds, we will need improvements to achieve the energy bounds. For the improvements,
we study separately the regions r ≤ t∗/4, t∗/4 ≤ r ≤ 9t∗/10 and r ≥ 9t∗/10. For
r ≥ t∗/4, we will only show the improvement for Nk instead of the derivatives of Nk .
Various complications would arise in estimating the derivatives of Nk . For r ≤ t∗/4,
however, we will estimate also the derivatives of Nk as they will be necessary to estimate
the error terms arising from commuting with the red-shift vector field.
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Proposition 6.11.

∑
`+k=16

∫
6τ∩{r≤τ/4}

r1−δ(D`Nk)
2
≤ CBA2ε2τ−3+ηS,11+η16 ,

∑
`+k=15

∫
6τ∩{r≤τ/4}

r1−δ(D`Nk)
2
≤ CBA2ε2τ−4+ηS,11+η15 ,

∑
`+k≤14

∫
6τ∩{r≤τ/4}

r1−δ(D`Nk)
2
≤ CBA2ε2τ−5+ηS,11+η14 .

Proof. As before, we only have to estimate terms quadratic in Dj0i8 with j ≥ 1 or
cubic of the form

(Dj1+10i18)(Dj2+10i28)(0i38)

with i1 + j1, i2 + j2 ≤ 8. We have∫
6τ

r1−δ(D`Nk)
2

≤ C
(

sup
r≤τ/4

∑
i1+j1≤8

r1−δ
|Dj1+10i18|2

) ∑̀
j2=0

k∑
i2=0

∫
6τ∩{r≤τ/4}

|Dj2+10i28|2

+ C
(

sup
r≤τ/4

∑
i1+j1≤8

r1−δ
|Dj1+10i18|2

)2 k∑
i3=0

τ 2δ
∫
6τ∩{r≤τ/4}

r−2
|0i38|2

≤ CBAετ−3+ηS,11
`+1∑
i=1

k∑
j=0

∫
6τ∩{r≤τ/4}

(Di0j8)2

+ CBA2ε2τ−6+2ηS,11+2δ
k∑

i3=0

∫
6τ

(D0i38)2

by Hardy’s inequality (notice now that the second term has more decay than we need, so
we will drop it from now on)

≤ CBAετ−3+ηS,11
∑̀
i+m=0

k∑
j=0

∫
6τ∩{r≤τ/2}

JNµ (∂
m
t∗0

j Ŷ i8)n
µ
6τ

+ CBAετ−3+ηS,11
`−1∑
i=0

k∑
j=0

∫
6τ

(
(DiUj )

2
+ (DiNj )

2)
≤ CBAετ−3+ηS,11

( ∑
i+j≤k+`

∫
6τ

JNµ (0
j Ŷ i8)n

µ
6τ
+

∑
i+j≤k+`−1

∫
6τ

(DiNj )
2
)
. (47)

The proposition would follow from an induction on k + ` and Bootstrap Assumptions
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(9)–(11). The k+` = 0 case also follows from the above computation as we have adopted
the notation that

∑
i+j≤−1 = 0. ut

We now move to the region {t∗/4 ≤ r ≤ 9t∗/10}. In this region, u ∼ t∗, and therefore
we can exploit the decay in the variable u given by the estimates from the conformal
energy.

Proposition 6.12. ∫
6τ∩{τ/4≤r≤9τ/10}

N2
16 ≤ CBA

2ε2τ−4+η14+η16 ,∫
6τ∩{τ/4≤r≤9τ/10}

N2
15 ≤ CBA

2ε2τ−5+η14+η15,

14∑
j=0

∫
6τ∩{τ/4≤r≤9τ/10}

N2
j ≤ CBA

2ε2τ−6+2η14 .

Proof. Arguing as before, we see that the main terms for the nonlinearity are those that are
quadratic inD8 or those that are cubic with the form 0i38D0i18D0i28with i1, i2 ≤ 8.
The quadratic terms can be estimated:

bk/2c∑
i1=0

k∑
i2=0

∫
6τ∩{τ/4≤r≤9τ/10}

|D0i18D0i28|2

≤ C
( 8∑
i1=0

sup
τ/4≤r≤9τ/10

|D0i18|2
) k∑
i2=0

∫
6τ∩{τ/4≤r≤9τ/10}

|D0i28|2

≤ CABετ−4+η14
k∑
i=0

∫
6τ∩{τ/4≤r≤9τ/10}

|D0i8|2.

The particular cubic term can be estimated as follows:

bk/2c∑
i1,i2=0

k∑
i3=0

∫
6τ∩{τ/4≤r≤9τ/10}

|0i38D0i18D0i28|2

≤ C
( 8∑
i1=0

sup
τ/4≤r≤9τ/10

|D0i18|2
)2 k∑

i3=0

∫
6τ∩{τ/4≤r≤9τ/10}

|0i38|2

≤ CA2B2ε2τ−8+2η14
k∑
i=0

∫
6τ∩{τ/4≤r≤9τ/10}

|0i8|2.

In principle, for k ≤ 15, we can then control the last term using the conformal energy.
For k = 16, however, conformal energy is not available, and we need to use Hardy’s
inequality:



1670 Jonathan Luk

Aετ−8+2η14
k∑
i=0

∫
6τ∩{τ/4≤r≤9τ/10}

|0i8|2 ≤ CAετ−6+2η14
k∑
i=0

∫
6τ

r−2
|0i8|2

≤ CAετ−6+2η14
k∑
i=0

∫
6τ

JNµ (0
i8)n

µ
6τ
.

The estimates now follow from Bootstrap Assumptions (9)–(11). ut

For many applications, we only need a much weaker estimate on Nk . We write down the
following proposition which corresponds to the estimates that will be proved for the quan-
tities involving S. This would allow a unified approach in dealing with many estimates
with or without S.

Proposition 6.13. ∫
6τ∩{r≤9τ/10}

r1−δN2
16 ≤ CA

2ε2τ−3+ηS,11+η16 ,∫
6τ∩{r≤9τ/10}

r1−δN2
≤15 ≤ CA

2ε2τ−4+ηS,11+η15 .

We now move to the estimates forNk in the region {r ≥ 9t∗/10}. Here, we need to exploit
the null condition:

Proposition 6.14. For α = 0 or 2,∫
6τ∩{r≥9τ/10}

N2
16 ≤ CBA

2ε2τ−2+η16 ,∫
6τ∩{r≥9τ/10}

rαN2
15 ≤ CBA

2ε2τ−3+α+η15 ,

14∑
j=0

∫
6τ∩{r≥9τ/10}

rαN2
j ≤ CBA

2ε2τ−4+α+η14 .

Proof. Following the argument before, we reduce to quadratic and cubic terms. This time,
however, the null condition plays a crucial role. For the quadratic terms, we need to con-
sider

D̄0i18D0i28, D0i18D̄0i28, r−1(D0i18D0i28),

where i1 ≥ i2. For the cubic terms, we need to consider

D0i18D0i28D0i38, D̄0i18D0i280i38.

Notice that the first cubic term can be dominated pointwise by quadratic terms of the third
type listed above using Bootstrap Assumptions (33) and (42). The second cubic term can
also be dominated by the first two types of quadratic terms if i3 ≤ 13 by (31) and (39).
We can thus assume i3 > 13 and hence i1, i2 ≤ 8. We now estimate the quadratic terms:
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bk/2c∑
i2=0

k−j∑
i1=0

∫
6τ∩{r≥9τ/10}

rα
(
|D̄0i18D0i28|2+|D0i18D̄0i28|2+ r−2

|D0i18D0i28|2
)

≤ C
(

sup
r≥9τ/10

8∑
i2=0

r2
|D0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D̄0i18|2

+ C
(

sup
r≥9τ/10

8∑
i2=0

r2
|D̄0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D0i18|2

+ Cτ−2
(

sup
r≥9τ/10

8∑
i2=0

r2
|D0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D0i18|2

≤ CABε

k∑
i=0

∫
6τ∩{r≥9τ/10}

rα−2
|D̄0i8|2

+ CABετ−2+η14
k∑
i=0

∫
6τ∩{r≥9τ/10}

rα−2
|D0i8|2.

We then estimate the particular cubic term:

k∑
i3=0

8∑
i1,i2=0

∫
6τ∩{r≥9τ/10}

rα(D̄0i18D0i280i38)2

≤ C

(
sup

r≥9τ/10

8∑
i1=0

r2
|D0i28|2

)(
sup

r≥9τ/10

8∑
i2=0

r2
|D̄0i28|2

)

×

k∑
i3=0

∫
6τ∩{r≥9τ/10}

rα−4
|0i18|2

≤ CA2B2ε2τ−2+η14
k∑
i=0

∫
6τ∩{r≥9τ/10}

rα−4
|0i8|2.

Therefore,∫
6τ∩{r≥9τ/10}

N2
16

≤ CABετ−2
16∑
i=0

∫
6τ∩{r≥9τ/10}

|D̄0i8|2 + CABετ−4+η14
16∑
i=0

∫
6τ∩{r≥9τ/10}

|D0i8|2

+ CA2B2ε2τ−4+η14
16∑
i=0

∫
6τ∩{r≥9τ/10}

r−2
|0i8|2

≤ (CABετ−2
+ (CABε + CA2B2ε2)τ−4+η14)

16∑
i=0

∫
6τ∩{r≥9τ/10}

|D0i8|2

≤ CA2Bε2τ−2+η16 ,
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and∫
6τ∩{r≥9τ/10}

N2
k

≤ CABετ−4
k∑
i=0

∫
6τ∩{r≥9τ/10}

τ 2
|D̄0i8|2 + CABετ−4+η14

k∑
i=0

∫
6τ∩{r≥9τ/10}

|D0i8|2

+ CA2B2ε2τ−4+η14
k∑
i=0

∫
6τ∩{r≥9τ/10}

r−2
|0i8|2

≤ CABετ−4
k∑
i=0

∫
6τ∩{r≥9τ/10}

τ 2
|D̄0i8|2

+ (CABε + CA2B2ε2)τ−4+η14
k∑
i=0

∫
6τ

|D0i8|2,

and ∫
6τ∩{r≥9τ/10}

r2N2
k ≤ CABετ

−2
k∑
i=0

∫
6τ∩{r≥9τ/10}

τ 2
|D̄0i8|2

+ CABετ−2+η14
k∑
i=0

∫
6τ∩{r≥9τ/10}

|D0i8|2

+ CA2B2ε2τ−2+η14
k∑
i=0

∫
6τ∩{r≥9τ/10}

r−2
|0i8|2

≤ CABετ−2
k∑
i=0

∫
6τ∩{r≥9τ/10}

τ 2
|D̄0i8|2

+ (CABε + CA2B2ε2)τ−2+η14
k∑
i=0

∫
6τ

|D0i8|2.

The conclusion follows from Proposition 2.2 and Bootstrap Assumptions (9)–(11). ut

From the estimates for Uk and Nk and the L2-L∞ estimates in the last section, we get the
following pointwise bounds:

Proposition 6.15. For r ≥ t∗/4,

13∑
j=0

|0j8|2 ≤ (B/2)Aεr−2(t∗)1+η15 , (48)

13∑
j=0

|D0j8|2 ≤ (B/2)Aε, (49)
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13−j∑
`=1

12∑
j=0

|D`0j8|2 ≤ (B/2)Aεr−2, (50)

8∑
j=0

|D0j8|2 ≤ (B/2)Aεr−2(t∗)η14(1+ |u|)−2, (51)

8∑
j=0

|D̄0j8|2 ≤ (B/2)Aεr−2(t∗)−2+η14 . (52)

For r ≤ t∗/4,

13∑
j=0

|0j8|2 ≤ (B/2)Aε(t∗)−1+η15 , (53)

14−j∑
`=1

13∑
j=0

|D`0j8|2 ≤ BAε(t∗)−1+η15 , (54)

13−j∑
`=1

12∑
j=0

|D`0j8|2 ≤ BAε(t∗)−2+η14 , (55)

9−j∑
`=1

8∑
j=0

|D`0j8|2 ≤ (B/2)Aεr−1+δ(t∗)−3+ηS,11 . (56)

Proof. (48) is immediate from Proposition 5.3 and Bootstrap Assumptions (10) and (11).
By Proposition 5.1,

13∑
j=0

|D0j8|2 ≤ C

( 15∑
k=0

∫
6τ

JNµ (0
k8)n

µ
6τ
+

1∑
k=0

∫
6τ

(DkG≤13)
2
)
.

Hence we get (49) by Bootstrap Assumption (12) and Propositions 6.9 and 6.10. The
constant is improved since Aε � 1 and C � B.

By Proposition 5.2,

13−j∑
`=1

12∑
j=0

|D`0j8|2

≤ Cr−2
(13−j∑
m=0

2∑
k=0

12∑
j=0

∫
6τ

JNµ (∂
m
t∗�

k0j8)n
µ
6τ
+

∑
m+k≤10

∫
6τ

(DmG≤k)
2
)

≤ Cr−2
( 11∑
j=0

∫
6τ

JNµ (0
j8)n

µ
6τ
+

∑
m+k≤10

∫
6τ

(DmG≤k)
2
)
.

We hence get (50) by Bootstrap Assumption (12) and Propositions 6.9 and 6.10. The
constant is improved since Aε � 1 and C � B.
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By Proposition 5.5, for r ≥ t∗/4, we have
8∑

j=0

|D0j8|2 ≤ Cr−2(1+ |u|)−2
1∑

m=0

2∑
k=0

8∑
j=0

(∫
6τ

JZ+CNµ (∂mt∗ �̃
k0j8)n

µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
m
t∗ �̃

k0j8)n
µ
6τ

)

+ Cr−2
2∑
k=0

8∑
j=0

∫
6τ∩{u′∼u}∩{r≥τ/4}

(�gK (�̃
k0j8))2

≤ CAετ η14r−2(1+ |u|)−2
+ Cr−2

∫ ∫
6τ∩{u′∼u}∩{r≥τ/4}

G2
≤10

by Bootstrap Assumption (11)

≤ CAετ η14r−2(1+ |u|)−2
+ CAε(t∗)−2+η14r−2

+ CA2Bε2(t∗)−2+η14r−2

by Propositions 6.13, 6.14 and 6.10

≤ (B/2)Aεr−2(t∗)η14(1+ |u|)−2.

Hence we have proved (51).
By Proposition 5.6, for r ≥ t∗/4, we have

8∑
j=0

|D̄0j8|2

≤ Cr−4
2∑
k=0

8∑
j=0

∑
i+m≤1

(∫
6τ

JNµ (S
i∂mt∗0

j8)n
µ
6τ
+

∫
6τ

JZ+CNµ (∂mt∗ �̃
k0j8)n

µ
6τ

+ Cτ 2
∫
6τ∩{r≤r

−

Y }

JNµ (∂
m
t∗ �̃

k0j8)n
µ
6τ
+

∫
6τ

(�gK (�̃
k0j8))2

)

+ Cr−2
2∑
k=0

8∑
j=0

∫
6τ∩{r≥τ/2}

(�gK (�̃
k0j8))2

≤ CAεr−4(t∗)η14 + CAε(t∗)−2+η14r−2
+ CA2Bε2(t∗)−2+η14r−2

≤ (B/2)Aεr−2(t∗)−2+η14 .

Hence we have proved (52) and completed the proof for r ≥ t∗/4.
We now move to the pointwise estimates in the region r ≤ t∗/4. (53) follows directly

from Proposition 5.9 and Bootstrap Assumptions (10) and (11). By Proposition 5.7,
14−j∑
`=1

13∑
j=0

|D`0j8|2

≤ C

( ∑
i+j≤15

∫
6τ∩{r≤t∗/2}

JNµ (Ŷ
i0j8)n

µ
6τ
+

14−j∑
`=1

13∑
j=0

∫
6τ

(D`G≤j )
2
)
,

where we have used the fact that [Ŷ , 0] = 0. Hence (54) follows from Bootstrap Assump-
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tions (10) and (11) and Propositions 6.9 and 6.10. Next, (55) follows similarly to (54): by
Proposition 5.7,

13−j∑
`=1

12∑
j=0

|D`0j8|2

≤ C

( ∑
i+j≤14

∫
6τ∩{r≤t∗/2}

JNµ (Ŷ
i0j8)n

µ
6τ
+

13−j∑
`=1

13∑
j=0

∫
6τ

(D`G≤j )
2
)
.

Hence (55) follows from Bootstrap Assumption (11) and Propositions 6.9 and 6.10.
Finally, by Proposition 5.10, for r ≤ t∗/4, we have

9−j∑
`=1

8∑
j=0

|D`0j8|2

≤ C(t∗)−1r−1+δ
∑

i+j≤10

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX1(Y i0j8)+KX1(SY i0j8)

+ r−1−δ(DiGj )
2)

≤ CAετ−3+ηS,11r−1+δ
+ CA2ε2τ−3+η14r−1+δ

≤ (B/2)Aετ−3+ηS,11r−1+δ,

where in the third line we have used Bootstrap Assumptions (24) and (30) and Propo-
sitions 6.13, 6.14 and 6.10. The only caveat is that when using (30), the vector fields Ŷ
and S are in different order. However, since [S, Ŷ ] ∼ D, we can estimate the commutator
term by (24). ut

Now that we have proved the L∞ bounds, we will replace the constant B in Bootstrap
Assumptions (31)–(35), (39), (42) by C in the sequel. Notice that we have originally
assumedB � A0 and thereforeC � A0 still holds. We now proceed to recover Bootstrap
Assumptions (K) that do not involve the commutators Y or S. We first retrieve (21)–(24).
Notice also that we will retrieve (17) and (19) later together with (9) and (12).

Proposition 6.16.∑
i+j≤15

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤
ε

2
τ−1+η15 , (57)

∑
i+j≤14

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(∂ it∗�̃
j8) ≤

ε

2
τ−1+η15 , (58)

∑
i+j≤14

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤
ε

2
τ−2+η14 , (59)

∑
i+j≤13

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(∂ it∗�̃
j8) ≤

ε

2
τ−2+η14 . (60)

Proof. We first prove the estimates involvingX0, i.e., (57) and (59). By Proposition 3.7(i)
and the Remark following it and the fact that |∂mt∗Nk| ≤ |N≤k+m|, we have
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∑
i+j≤15

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤ C

∑
i+j≤15

A−1
X,j

(
τ−2

∫
6τ/1.1

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ/1.1

+ C

∫
6τ/1.1∩{r≤r

−

Y }

JNµ (∂
i
t∗�̃

j8)n
µ
6τ/1.1

)
+ C

∑
i+j≤15

A−1
X,j

(∫∫
R(τ/1.1−1,τ+1)∩{r≤9t∗/10}

r1+δN2
≤16

+ sup
t∗∈[τ/1.1−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}

N2
≤16

+

∫∫
R(τ/1.1−1,τ+1)∩{r≤9t∗/10}

r1+δ(U≤15,≤j )
2
)

≤ C
∑

i+j≤15

(A−1
X,jAj ετ

−1+η15 + A−1
X,jA

2ε2τ−2+ηS,11+η16+2δ
+ CA−1

X,jAX,j−1ετ
−1+η15)

≤ (ε/2)τ−1+η15 ,

by Propositions 6.13, 6.14 and 6.10. Notice that our integrated estimates forU in Proposi-
tion 6.10 are only for [τ/1.1, τ ]. Nevertheless, for the region [τ/1.1−1, τ/1.1]∩[τ, τ+1],
we can integrate over the fixed τ estimate in the same proposition. By Proposition 3.7(i)
and the Remark following it and the fact that |∂mt∗Nk| ≤ |N≤k+m|, we have

∑
i+j≤14

A−1
X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

(
KX0(∂ it∗�̃

j8)+KN (∂ it∗�̃
j8)

)
≤ C

∑
i+j≤14

A−1
X,j

(
τ−2

∫
6τ/1.1

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ/1.1

+ C

∫
6τ/1.1∩{r≤r

−

Y }

JNµ (∂
i
t∗�̃

j8)n
µ
6τ/1.1

)
+ C

∑
i+j≤14

A−1
X,j

(∫∫
R(τ/1.1−1,τ+1)∩{r≤9t∗/10}

r1+δN2
≤15

+ sup
t∗∈[τ/1.1−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}

N2
≤15

+

∫∫
R(τ/1.1−1,τ+1)∩{r≤9t∗/10}

r1+δ(U≤14,≤j )
2
)

≤ C
∑

i+j≤14

(A−1
X,jAj ετ

−2+η14 + A−1
X,jA

2ε2τ−3+ηS,11+η15+2δ
+ A−1

X,jAX,j−1ετ
−2+η14)

≤ (ε/2)τ−2+η14 .
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The proof of (58) and (60) proceeds in an identical manner. Notice that using Proposition
3.7(ii), the right hand side when we estimate (58) (respectively (60)) is identical to that
when we estimate (57) (respectively (59)). ut

Now we move on to retrieving Bootstrap Assumptions (J) with better constants:

Proposition 6.17. ∑
i+j=16

A−1
j

∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
≤ (ε/4)τ η16 , (61)

∑
i+j≤15

A−1
j

∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
≤ (ε/2), (62)

∑
i+j=16

A−1
X,j

(∫∫
R(τ0,τ )

KX0(∂ it∗�̃
j8)+

∫∫
R(τ0,τ )∩{r≤r

−

Y }

KN (∂ it∗�̃
j8)

)
≤ (ε/2)τ η16 ,

(63)∑
i+j=15

A−1
X,j

∫∫
R(τ0,τ )

KX1(∂ it∗�̃
j8) ≤ (ε/2)τ η16 , (64)

∑
i+j≤15

A−1
X,j

∫∫
R(τ0,τ )

KX0(∂ it∗�̃
j8) ≤ ε/2, (65)

∑
i+j≤14

A−1
X,j

∫∫
R(τ0,τ )

KX1(∂ it∗�̃
j8) ≤ ε. (66)

Proof. We will prove the slightly stronger statements with AX,j replaced by Aj . Using
Propositions 3.1 and 3.2, we have

∑
i+j=16

A−1
j

(∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
+

∫∫
R(τ0,τ )

KX0(∂ it∗�̃
j8)

+

∫∫
R(τ0,τ )∩{r≤r

−

Y }

KN (∂ it∗�̃
j8)

)
≤ C

∑
i+j=16

A−1
j

(∫
6τ0

JNµ (∂
i
t∗�̃

j8)n
µ
6τ ′
+

(∫ τ+1

τ0−1

(∫
6t∗

N2
16

)1/2

dt∗
)2

+

∫∫
R(τ0−1,τ+1)

N2
16 +

∫∫
R(τ0−1,τ+1)

r1+δU2
16,j

+ sup
t∗∈[τ0−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}

U2
16,j

)
≤ C

∑
i+j=16

A−1
j (ε + A2ε2η−1

16 τ
η16 + AX,j−1ετ

η16) ≤ (ε/4)τ η16 .

We now turn to the estimates for
∑15
j=0 |0

j8|. We have
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∑
i+j≤15

A−1
j

(∫
6τ

JNµ (∂
i
t∗�̃

j8)n
µ
6τ
+

∫∫
R(τ0,τ )

KX0(∂ it∗�̃
j8)

)

≤ C
∑

i+j≤15

A−1
j

(∫
6τ0

JNµ (∂
i
t∗�̃

j8)n
µ
6τ0
+

(∫ τ+1

τ0−1

(∫
6t∗

N2
≤15

)1/2

dt∗
)2

+

∫∫
R(τ0−1,τ+1)

N2
≤15 +

∫∫
R(τ0−1,τ+1)

r1+δU2
≤15,≤j

+ sup
t∗∈[τ0−1,τ+1]

∫
6t∗∩{|r−3M|≤M/8}

U2
≤15,≤j

)
≤ C

∑
i+j≤15

A−1
j (ε + A2ε2

+ CAX,j−1ε) ≤ ε/2.

It now remains to show (64) and (66). By Proposition 3.4 they can be estimated by exactly
the same terms as (63) and (65) respectively. The proposition hence follows. ut

We now move on to control the conformal energy and close the part of Bootstrap As-
sumption (10) without Ŷ .

Proposition 6.18.

∑
i+j=15

A−1
j

(∫
6τ

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)
≤ (ε/4)τ 1+η15 . (67)

Proof. By Proposition 3.5,∑
i+j=15

A−1
j

(∫
6τ

JZ,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)
≤ C

∑
i+j=15

A−1
j

(∫
6τ0

JZ+CN,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ0

+ δ′
∫∫

R(τ0,τ )∩{r≤t∗/2}
(t∗)2KX0(∂ it∗�̃

j8)

+ (δ′ + a)

∫∫
R(τ0,τ )∩{r≤r

−

Y }

(t∗)2KN (∂ it∗�̃
j8)

+ (δ′)−1
(∫∫

R(τ0,τ )
t∗r−1+δKX1(∂ it∗�̃

j8)

+

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗N15)
2
+

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δU2
15,j

+

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2G2

15,j

)1/2

dt∗
)2

+ sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2N2

15

))
.
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We will estimate the terms one by one. First, the term with the initial data, i.e., the very
first term, is clearly bounded byC(

∑
j A
−1
j )ε. Second, we consider the two (t∗)2K terms.

To this end, we define as before τ0 ≤ τ1 ≤ · · · ≤ τn = τ with τi+1 ≤ (1.1)τi , and
n ∼ log(τ − τ0) is the minimum such that this can be done. Thus, these two terms can be
bounded, using Bootstrap Assumption (21)

δ′
∑

i+j=15

A−1
j

∫∫
R(τ0,τ )∩{r≤t∗/2}

(t∗)2KX0(∂ it∗�̃
j8)

+ (δ′ + a)

∫∫
R(τ0,τ )∩{r≤r

−

Y }

(t∗)2KN (∂ it∗�̃
j8)

≤ C
∑

i+j=15

A−1
j

n−1∑
k=0

(
δ′τ 2

k

∫∫
R(τk,τk+1)∩{r≤t∗/2}

KX0(∂ it∗�̃
j8)

+ (δ′ + a)τ 2
k

∫∫
R(τ0,τ )∩{r≤r

−

Y }

KN (∂ it∗�̃
j8)

)
≤ C

(∑
j

AX,j

Aj

)
ε(2δ′ + a)τ 1+η15 .

This is acceptable since a, δ′ � Aj/AX,j . Third, the term with t∗r−1+δK can be bounded
using Bootstrap Assumption (18):

(δ′)−1
∑

i+j=15

A−1
j

∫∫
R(τ0,τ )

t∗r−1+δKX1(∂ it∗�̃
j8)

≤ C(δ′)−1
∑

i+j=15

A−1
j

n−1∑
k=0

τk

∫∫
R(τk,τk+1)

KX1(∂ it∗�̃
j8) ≤ C(δ′)−1

(∑
j

AX,j

Aj

)
τ 1+η16 .

This is acceptable since η16 � η15 and therefore the constant can be improved for τ large.
Fourth, the integrals involving N15 can be bounded using Propositions 6.13 and 6.14:

C(δ′)−1A−1
0

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗N15)
2

≤ CA2A−1
0 ε2(δ′)−1

∫ τ

τ0

(t∗)−1+ηS,11+η15+2δdt∗ ≤ CA2A−1
0 ε2(δ′)−1τ ηS,11+η15+2δ,

C(δ′)−1A−1
0

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2N2

15

)1/2

dt∗
)2

≤ CA2A−1
0 ε2(δ′)−1τ 1+η15 ,

C(δ′)−1A−1
0 sup

t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2N2

15 ≤ CA
2A−1

0 ε2(δ′)−1.

These are all acceptable since ε would beat all the constants. Fifth, for the commutator
terms U2

15,j , we estimate by Proposition 6.10:
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(δ′)−1A−1
j

∫∫
R(τ0,τ )

(t∗)2r1+δ(U15,j )
2
≤ C

n−1∑
i=0

(δ′)−1
∫∫

R(τi ,τi+1)
τ 2
i r

1+δ(U15,j )
2

≤ C(δ′)−1AX,j−1

Aj
τ 1+η15 ,

and

(δ′)−1A−1
j

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2U2

15,j

)1/2

dt∗
)2

≤ C(δ′)−1Aj−1

Aj
τ.

Since Aj−1/Aj � AX,j−1/Aj � δ′, all terms are acceptable. ut

With 14 or less derivatives, the conformal energy behaves better. We now close the part
of Bootstrap Assumption (11) without Ŷ .

Proposition 6.19.

∑
i+j≤14

A−1
j

(∫
6τ

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)
≤ (ε/4)τ η14 . (68)

Proof. By Proposition 3.5, and noticing that U is supported away from {|r − 3M| ≤
M/8}, we have

∑
i+j≤14

A−1
j

(∫
6τ

JZ+N,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (∂
i
t∗�̃

j8)n
µ
6τ

)

≤ C
∑

i+j≤14

A−1
j

(∫
6τ0

JZ+CN,w
Z

µ (∂ it∗�̃
j8)n

µ
6τ0

+ δ′
∫∫

R(τ0,τ )∩{r≤t∗/2}
(t∗)2KX0(∂ it∗�̃

j8)

+ (δ′ + a)

∫∫
R(τ0,τ )∩{r≤r

−

Y }

(t∗)2KN (∂ it∗�̃
j8)

+ (δ′)−1
(∫∫

R(τ0,τ )
t∗r−1+δKX1(∂ it∗�̃

j8)

+

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗N≤15)
2

+

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δU2
≤15,≤j +

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2G2

≤15,≤j

)1/2

dt∗
)2

+ sup
t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2N2

≤15

))
.
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As before, we estimate each term one by one. First, the term with initial data is clearly
bounded byC

∑
j Aj ε. Second, the (t∗)2K terms can be bounded, using (23) and dividing

the interval into τ0 < τ1 < · · · < τn = τ as before, by

C
AX,j

Aj
ε(2δ′ + a)

n−1∑
i=0

τ
η14
i ≤ C

AX,j

Aj
εη−1

14 (2δ + a)τ
η14 .

This is acceptable since a, δ′ � Aj/AX,j . Third, the t∗r−1+δK term can be bounded,
using Bootstrap Assumptions (20) and (22), by

(δ′)−1
∑

i+j≤14

A−1
j

∫∫
R(τ0,τ )

t∗r−1+δKX1(∂ it∗�̃
j8)

≤ (δ′)−1
∑

i+j≤14

A−1
j

(∫∫
R(τ0,τ )∩{r≤t∗/2}

t∗KX1(∂ it∗�̃
j8)

+

∫∫
R(τ0,τ )∩{r≥t∗/2}

t∗r−1+δKX1(∂ it∗�̃
j8)

)
≤ C(δ′)−1

∑
i+j≤14

A−1
j

n−1∑
k=0

(
τk

∫∫
R(τk,τk+1)∩{r≤t∗/2}

KX1(∂ it∗�̃
j8)

+ τ δk

∫∫
R(τk,τk+1)∩{r≥t∗/2}

KX1(∂ it∗�̃
j8)

)
≤ C(δ′)−1

∑
j

AX,j

Aj
η−1

15 τ
η15 ,

which is acceptable for τ large since η15 � η14.
Fourth, the integrals involvingN≤14 can be bounded using Propositions 6.13 and 6.14

by noticing that |∂t∗N≤14| ≤ CN≤15:

C(δ′)−1A−1
0

1∑
m=0

∫∫
R(τ0,τ )∩{r≤9t∗/10}

(t∗)2r1+δ(∂mt∗N≤14)
2

≤ CA2A−1
0 ε2(δ′)−1

∫ τ

τ0

(t∗)−2+ηS,11+η15+2δdt∗ ≤ CA2A−1
0 ε2(δ′)−1,

C(δ′)−1A−1
0

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2N2

15

)1/2

dt∗
)2

≤ CA2A−1
0 ε2(δ′)−1η−1

15 τ
η15 ,

C(δ′)−1A−1
0 sup

t∗∈[τ0,τ ]

∫
6t∗∩{r

−

Y ≤r≤25M/8}
(t∗)2N2

15 ≤ CA
2A−1

0 ε2(δ′)−1,

which is acceptable since ε � Aδη−1
15 . Fifth, for the commutator terms U2

≤14,≤j , we
estimate by Proposition 6.10:



1682 Jonathan Luk

(δ′)−1A−1
j

∫∫
R(τ0,τ )

(t∗)2r1+δ(U≤14,≤j )
2
≤ C

n−1∑
i=0

(δ′)−1AX,j−1τ
2
i τ
−2+η14
i

≤ C(δ′)−1η−1
14
AX,j−1

Aj
τ η14 ,

(δ′)−1A−1
j

(∫ τ

τ0

(∫
6t∗∩{r≥t

∗/2}
r2U2
≤14,j

)1/2

dt∗
)2

≤ C(δ′)−1Aj−1

Aj
η−1

14 τ.

Since Aj−1/Aj � AX,j−1/Aj � δ′η−1
14 , all terms are acceptable. ut

We now consider terms involving commutation with Ŷ and recover Bootstrap Assump-
tions (9)–(11).

Proposition 6.20. ∑
i+k=16

∫
6τ

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤
AY

4
ετ η16 ,

∑
i+k=15

τ 2
∫
6τ∩{r≤r

−

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤
AY

4
ετ 1+η15 ,

∑
i+k≤14

τ 2
∫
6τ∩{r≤r

−

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤
AY

4
ετ η14 .

Proof. The idea is to use Proposition 13 and the fact that it gives control of an integrated-
in-time quantity. From this we can extract a good slice to improve the constant. By Propo-
sition 4.5,∑
i+k=16

(∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
+

∫∫
R(τ ′,τ )∩{r≤r−Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6t∗

)

≤ C

( ∑
j+m≤16

∫
6τ ′∩{r≤r

+

Y }

JNµ (∂
j
t∗ Ŷ

m8)n
µ
6τ ′
+

16∑
j=0

∫
6τ∩{r≤r

+

Y }

JNµ (∂
j
t∗8)n

µ
6τ

+

16∑
j=0

∫∫
R(τ ′,τ )∩{r≤23M/8}

JNµ (∂
j
t∗8)n

µ
6t∗
+

∑
i+j≤16

∫∫
R(τ ′,τ )∩{r≤23M/8}

(DiG≤j,0)
2
)

≤ CAY (τ
′)η16 + CA0τ

η16 + CA2ε2(τ ′)−1+η16 ,

by (9), (17) and Proposition 6.9. Take τ ′ = τ − A0. Then∑
i+k=16

∫∫
R(τ−A0,τ )∩{r≤r

−

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6t∗
≤ CAY τ

η16 + CA0τ
η16 + CA2ε2τ−1+η16 .

Hence there is some τ̃ ∈ [τ − A0, τ ] such that∑
i+k=16

∫
6τ̃∩{r≤r

−

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ̃
≤ CAYA

−1
0 τ η16 + Cτ η16 + CA2ε2τ−1+η16 .
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We also have, by (9) and the elliptic estimates in Proposition 4.1,∑
i+k=16

∫
6τ̃∩{r

−

Y ≤r≤r
+

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ̃

≤ C

16∑
i=0

∫
6τ̃∩{r

−

Y ≤r≤t
∗/2}

JNµ (∂
i
t∗8)n

µ
6τ̃
+

∑
i+j≤15

∫
6τ̃

(DiG≤j,0)
2

≤ CA0τ
η16 + CA2ε2τ−1+η16 .

Now reapplying Proposition 4.5, from τ̃ to τ , we get∑
i+k=16

∫
6τ∩{r≤r

+

Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ

≤ C
∑

j+m≤16

∫
6τ̃∩{r≤r

+

Y }

JNµ (∂
j
t∗ Ŷ

m8)n
µ
6τ̃
+ CA0τ

η16 + CA2ε2

≤ CAYA
−1
0 τ η16 + CA0τ

η16 + CA2ε2τ−1+η16 .

Since C � A0 � AY , we get the first statement in the proposition. The derivations for
the other bounds are identical, with the constants and exponents replaced appropriately.

ut

From this we can also derive some integrated estimates for Y k0j8. This will be useful in
controlling the commutator [�gK , S].

Proposition 6.21.∑
i+k=16

∫∫
R(τ/1.1,τ )∩{r≤r−Y }

JNµ (Ŷ
k∂ it∗8)n

µ
6τ
≤ AY ετ

η16 ,

∑
i+k=15

τ 2
∫∫

R(τ/1.1,τ )∩{r≤r−Y }
JNµ (Ŷ

k∂ it∗8)n
µ
6τ
≤ AY ετ

1+η15 ,

∑
i+k≤14

τ 2
∫∫

R(τ/1.1,τ )∩{r≤r−Y }
JNµ (Ŷ

k∂ it∗8)n
µ
6τ
≤ AY ετ

η14 .

Proof. This is a direct consequence of Propositions 4.5, 6.9, 6.20, as well as Bootstrap
Assumptions (9)–(11). ut

We will finally proceed to the quantities associated to the vector field S. Recall from [20]
that for large values of r ,∣∣∣∣[�gK , S]8−(2+

r∗µ

r

)
�g8−

2
r

(
r∗

r
−1−

2r∗µ
r

)
∂r∗8−2

((
r∗

r
−1
)
−

3r∗µ
2r

)
618

∣∣∣∣
≤ Car−2

2∑
k=1

|Dk8|.
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and that for finite values of r , we have

|[�gK , S]8| ≤ C
2∑
k=1

|Dk8|.

Moreover, all the coefficients in the commutator term obey the same estimates (with a
different constant) upon differentiation. Therefore,

�gK (S0
k8) = Vk + S(Uk)+ S(Nk),

where

(D`Vk)
2
≤ Cr−4(log r)2

(`+1∑
j=1

(Dj0k+18)2 +

`+2∑
j=1

(Dj0k8)2
)
.

We will now estimate these three terms separately. We first estimate the Vk terms:

Proposition 6.22. For α ≤ 2,∑
`+k≤13

∫
6τ

rα(D`V≤k)
2
≤ CAY ετ

−2+η14+δ.

For α ≤ 1+ δ, ∑
`+k=13

∫∫
R(τ/1.1,τ )

rα(D`V≤k)
2
≤ CAY ετ

−1+η15+δ,

∑
`+k≤12

∫∫
R(τ/1.1,τ )

rα(D`V≤k)
2
≤ CAY ετ

−2+η14+δ.

Proof. By the elliptic estimates in Propositions 4.1 and 4.4, we have, for α ≤ 2,∑
`+k≤13

∫
6τ

rα(D`V≤k)
2

≤ C
∑

i+j≤12

∫
6τ

rα−4+δJNµ (Ŷ
i0j8)n

µ
6τ
+ C

∑
i+j≤11

∫
6τ

rα−4+δ(DiG≤j )
2

≤ C(AY ε + A
2ε2)τ−2+η14+δ,

where we have used Propositions 6.9 and 6.10, Bootstrap Assumptions (11) (for r ≤
9t∗/10) and (12) (for r ≥ 9t∗/10).

By the elliptic estimates in Propositions 4.1 and 4.4, we have∫∫
R(τ/1.1,τ )

rα(D`V≤k)
2
≤ C

`+k+1∑
i+j=0

∫∫
R(τ/1.1,τ )

rα−4+δJNµ (Ŷ
i0j8)n

µ
6τ

+ C

`+k∑
i+j=0

∫∫
R(τ/1.1,τ )

rα−4+δ(DiG≤j )
2.

We first consider the case `+ k = 13. For the first term, we divide into r ≤ t∗/2 (which
we estimate by (22) and Proposition 6.21) and r ≥ t∗/2 (which we estimate using the
extra decay in r by (19)). The second term contains the Uk and the Nk part. The Uk
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part can be estimated by Proposition 6.10. The Nk part can be estimated by Proposition
6.9. The `+ k ≤ 12 case is completely analogous, replacing Bootstrap Assumption (22)
by (24). ut

We then proceed to the estimates for S(Uk). Notice that when we prove the estimates for
the derivatives for S(Uk), the derivatives for S(Nk) will be involved. As in the proof of
the estimates for Uk , we will first prove estimates for the derivatives of S(Uk) depending
on S(Nk), and close the estimates after we control S(Nk).

Proposition 6.23. The following estimates for S(Uk) on a fixed t∗ slice hold for α ≤ 2:

∑
k+`=13

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

ηS,13 +

13−j∑
m=1

∫
6τ

(DmS(N≤j−1))
2,

∑
k+`=12

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−1+ηS,12 +

12−j∑
m=1

∫
6τ

(DmS(N≤j−1))
2,

∑
k+`≤11

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−2+ηS,11 +

11−j∑
m=1

∫
6τ

(DmS(N≤j−1))
2.

The following estimates for S(Uk) integrated on [τ/1.1, τ ] also hold for α ≤ 1+ δ:∑
k+`=13

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

ηS,13 +

13−j∑
m=1

∫∫
R(τ/1.1,τ )

r−2(DmS(N≤j−1))
2,

∑
k+`=12

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

−1+ηS,12 +

12−j∑
m=1

∫∫
R(τ/1.1,τ )

r−2(DmS(N≤j−1))
2,

∑
k+`≤11

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

−2+ηS,11 +

11−j∑
m=1

∫∫
R(τ/1.1,τ )

r−2(DmS(N≤j−1))
2.

Proof. Notice that D`(S(Uk,j )) is supported in {r ≥ R�} and satisfies

|D`(S(Uk,j ))| ≤ C

`+2∑
m=1

j−1∑
i=0

r−2(
|DmS∂

k−j
t∗ �̃i8| + |Dm∂

k−j
t∗ �̃i8|

)
≤ C

`+k−j+2∑
m=1

j−1∑
i=0

r−2(
|DmS�̃i8| + |Dm�̃i8|

)
.
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We can ignore the last term because it appears already inD`Uk,j and can be estimated by
Proposition 6.10. We have

∫
6τ

rα(D`(S(Uk,j )))
2
≤ C

`+k−j+2∑
m=1

j−1∑
i=0

∫
6τ∩{r≥R�}

rα−4(DmS�̃i8)2

≤ C

`+k−j+1∑
m=1

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗S�̃

i8)n
µ
6τ

+ C

`+k−j∑
m=1

j−1∑
i=0

∫
6τ

r−2(Dm�gK (S�̃
i8))2

≤ C

`+k−j+1∑
m=1

j−1∑
i=0

∫
6τ∩{r≥R�−1}

rα−4JNµ (∂
m
t∗S�̃

i8)n
µ
6τ

+ C

`+k−j∑
m=1

∫
6τ

r−2((DmS(U≤j−1,≤j−1))
2
+ (DmS(N≤j−1))

2
+ (DmV≤j−1)

2).
We now apply the bootstrap assumptions. By Bootstrap Assumption (13) and Proposition
6.22,

∑
k+`=13

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

ηS,13 +

13−j∑
m=1

∫
6τ

(
(DmS(U≤j−1,≤j−1))

2
+ (DmS(N≤j−1))

2).
By Bootstrap Assumption (12) (for r ≥ t∗/2), (14) (for r ≤ t∗/2) and Proposition 6.22,

∑
k+`=12

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−1+ηS,12 +

12−j∑
m=1

∫
6τ

(
(DmS(U≤j−1,≤j−1))

2
+ (DmS(N≤j−1))

2).
By Bootstrap Assumption (12) (for r ≥ t∗/2), (15) (for r ≤ t∗/2) and Proposition 6.22,

∑
k+`≤11

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−2+ηS,11 +

11−j∑
m=1

∫
6τ

(
(DmS(U≤j−1,≤j−1))

2
+ (DmS(N≤j−1))

2).
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Noticing that Uk,0 = 0, we can deduce the first three statements in the proposition using
induction on j (see proof of Proposition 6.8). For the integrated-in-time estimate, we note
that r−1−δJNµ (0

i8) ≤ CKX0(0i8) and use Bootstrap Assumptions (25)–(27) and (29)
(see proof of Propositions 6.8 and 6.10). ut

We then move on to the S(Nk) terms; first we will prove an estimate for the derivatives of
S(Nk). The decay rate here is not optimal, but would be sufficient to close the bootstrap
argument. Our approach here is to prove the decay rate that is driven only by the pointwise
decay of D`8 but not by that of D`S8. The latter can, in principle, be done by similar
methods, but we will skip it since it will not be necessary. In subsequent propositions, we
will then prove refined decay rate for S(Nk) (without derivatives) as well as forD`S(Nk)
restricted to the region r ≤ t∗/4.

Proposition 6.24. S(Nk) satisfies the following estimates for any fixed t∗ = τ :

∑
k+`=13

∫
6τ

(D`S(Nk))
2
≤ CBSA

2ε2τ−2+ηS,11 ,

∑
k+`≤12

∫
6τ

(D`S(Nk))
2
≤ CA2ε2τ−2+η14+δ.

S(Nk) also satisfies the following integrated estimates over t∗ ∈ [τ/1.1, τ ]:

∑
k+`=12

∫∫
R(τ/1.1,τ )

r−1−δ(D`S(Nk))
2
≤ CBSA

2ε2τ−2+ηS,11 ,

∑
k+`≤11

∫∫
R(τ/1.1,τ )

r−1−δ(D`S(Nk))
2
≤ CA2ε2τ−2+η14+δ.

Proof. We would like to do a reduction similar to how we estimated Nk . Clearly, only
the quadratic and cubic terms matter and we only need to consider terms that contain S,
for the other terms are already controlled by the estimates of Nk . We will call terms that
are already in Nk “good”. The only cubic terms that are relevant are those which contain
S0i8 since in the terms with Dj+1S0i8, we can put all but one other factor in L∞

using Bootstrap Assumptions (31), (33), (39) and (40). Notice also that the conditions for
D830, D831 and D8C in the definition of the null condition guarantee that the bounds
do not deteriorate if S acts on the coefficients. The relevant terms are

(Dj1S0i18)(Dj20i28) and (Dj10i18)(Dj20i28)(S0i38).

We first treat the case k + ` ≤ 12. In this case we will always put factors without S
in L∞. We have
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6τ

(D`S(Nk))
2

≤ C
∑

i1+i2+j1+j2≤k+`+2, j1,j2≥1

∫
6τ

(Dj1S0i18)2(Dj20i28)2

+ C
∑

i1+i2+i3+j1+j2≤14, j1,j2≥1

∫
6τ

(Dj10i18)2(Dj20i28)2(S0i38)2 + good terms

≤ C
( ∑
i+j≤k+`+1, j≥1

sup(Dj0i8)2
) ∑
i+j≤k+`+1,j≥1

∫
6τ

(DjS0i8)2

+ C
( ∑
i+j≤k+`+1, j≥1

sup(Dj0i8)2
)( ∑

i+j≤k+`+1, j≥1

sup r2(Dj0i8)2
)

×

∑
i≤k+`

∫
6τ

r−2(S0i8)2 + good terms

≤ CAετ−2+η14
∑

i+j≤k+`+1, j≥1

∫
6τ

(DjS0i8)2

+ CA2ε2τ−2+η14
∑
i≤k+`

∫
6τ

JNµ (S0
i8)n

µ
6τ
+ good terms

using Bootstrap Assumptions (32), (33), (37), (41) and (44) and Proposition 4.2

≤ CAετ−2+η14
∑
i≤k+`

∫
6τ

(
JNµ (S0

i8)n
µ
6τ
+ JNµ (0

i8)n
µ
6τ

)
+ CAετ−2+η14

∑
i+j≤k+`−1

∫
6τ

(
(DiU≤j )

2
+ (DiS(U≤j ))

2
+ (DiN≤j )

2

+ (DiS(N≤j ))
2
+ (DiV≤j )

2).
We now apply the estimates for the inhomogeneous terms, i.e., Propositions 6.9, 6.10,
6.22, 6.23. Since k + ` ≤ 12, we have∫

6τ

(D`S(Nk))
2

≤ CAετ−2+η14
∑
i≤12

∫
6τ

(
JNµ (S0

i8)n
µ
6τ
+ JNµ (0

i8)n
µ
6τ

)
+ CA2ε2τ−2+η14+δ

+ CAετ−2+η14
∑

i+j≤k+`−1

∫
6τ

(DiS(N≤j ))
2.

The desired estimates then follow from an induction, together with Bootstrap Assump-
tions (12) and (16), since according to this notation

∑
−1
i+j=0 = 0.

We then treat the case k + ` = 13. In this case it is possible to have 14 derivatives
falling on the factor with 8, which hence cannot be controlled in L∞. However, in this
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scenario, we must have ∑
i+j=14

(DS8)(Dj0i8)

and therefore DS8 can be controlled in L∞ by Bootstrap Assumptions (37) and (44). In
short, we have

∑
k+`=13

∫
6τ

(D`S(Nk))
2

≤ C
∑

i1+i2+j1+j2≤15, j1,j2≥1

∫
6τ

(Dj1S0i18)2(Dj20i28)2

+ C
∑

i1+i2+i3+j1+j2≤15, j1,j2≥1

∫
6τ

(Dj10i18)2(Dj20i28)2(S0i38)2 + good terms

≤ C
( ∑
i+j≤14, j≥1

sup(Dj0i8)2
) ∑
i+j≤14, j≥1

∫
6τ

(DjS0i8)2

+ (sup(DS8)2)
∑

i+j=14, j≥1

∫
6τ

(Dj0i8)2

+ C
( ∑
i+j≤14, j≥1

sup(Dj0i8)2
)( ∑

i+j≤14, j≥1

sup r2(Dj0i8)2
)

×

∑
i≤13

∫
6τ

r−2(S0i8)2

+ good terms

≤ CAετ−2+η14
∑

i+j≤14, j≥1

∫
6τ

(DjS0i8)2

+ CBSAετ
−2+ηS,11

∑
i+j=14, j≥1

∫
6τ

(Dj0i8)2

+ CA2ε2τ−2+η14
∑
i≤13

∫
6τ

JNµ (S0
i8)n

µ
6τ
+ good terms

using Bootstrap Assumption (32), (33), (37), (41) and (44) and Proposition 4.2

≤ CAετ−2+η14
∑
i≤13

∫
6τ

JNµ (S0
i8)n

µ
6τ
+ CBSAετ

−2+ηS,11
∑
i≤13

∫
6τ

JNµ (0
i8)n

µ
6τ

+ CAετ−2+η14
∑

`+k≤12

∫
6τ

(
(D`U≤k)

2
+ (DiS(U≤k))

2
+ (D`N≤k)

2

+ (D`S(N≤k))
2
+ (D`V≤k)

2).
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We now apply the estimates for the inhomogeneous terms, i.e., Propositions 6.9, 6.10,
6.22, 6.23:

∑
k+`=13

∫
6τ

(D`S(Nk))
2

≤ CAετ−2+η14
∑
i≤13

∫
6τ

JNµ (S0
i8)n

µ
6τ
+ CBSAετ

−2+ηS,11
∑
i≤13

∫
6τ

JNµ (0
i8)n

µ
6τ

+ CAετ−2+η14
∑

`+k≤12

∫
6τ

(D`S(N≤k))
2,

which is acceptable. The estimates for the terms integrated in t∗ are proved analogously,
noting that the elliptic estimate in Proposition 4.1 would allow for weight in r , and using
the second parts of Propositions 6.9, 6.10, 6.22 and 6.23. ut

This would allow us to close the estimates for S(Uk) from Proposition 6.23.

Proposition 6.25. The following estimates for S(Uk) on a fixed t∗ slice hold for α ≤ 2:

∑
k+`=13

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

ηS,13 ,

∑
k+`=12

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−1+ηS,12 ,

∑
k+`≤11

∫
6τ

rα
(
D`(S(Uk,j ))

)2
≤ CAS,j−1ετ

−2+ηS,11 .

The following estimates for S(Uk) integrated on [τ/1.1, τ ] also hold for α ≤ 1+ δ:

∑
k+`=13

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

ηS,13 ,

∑
k+`=12

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

−1+ηS,12 ,

∑
k+`≤11

∫∫
R(τ/1.1,τ )

rα
(
D`(S(Uk,j ))

)2
≤ CAS,X,j−1ετ

−2+ηS,11 .

Proof. This follows directly from Proposition 6.23 and 6.24. ut

In the region {r ≤ t∗/4}, we have refined decay rates for D`S(Nk):
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Proposition 6.26.

∑
k+`=13

∫
6τ∩{r≤t∗/4}

r1−δ(D`S(Nk))
2
≤ CA2ε2τ−3+ηS,11 ,

∑
k+`≤12

∫
6τ∩{r≤t∗/4}

r1−δ(D`S(Nk))
2
≤ CA2ε2τ−4+ηS,12+ηS,11 .

Proof. Take k + ` ≤ 13. Notice that |[D, S]8| ≤ C|D8|.
We would like to do a reduction similar to how we estimated Nk . Clearly, only the

quadratic and cubic terms matter and we only need to consider terms that contain S, for
the other terms are already controlled by the estimates of Nk . Notice also as before that
the conditions in the null condition guarantee that the bounds do not deteriorate if S acts
on the coefficients. The relevant terms are

(Dj1S0i18)(Dj20i28), j1, j2 ≥ 1,

(Dj1S0i18)(Dj20i28)(0i38), j1, j2 ≥ 1, i3 > 8,

(Dj10i18)(Dj20i28)(S0i38), j1, j2 ≥ 1, i3 > 8.

We first tackle the quadratic terms:

∑
i1+`1≤7, `1≥1

∑
i2+j2≤k+`+1, j2≥1

∫
6τ∩{r≤τ/4}

r1−δ(
|Dj1S0i18Dj20i28|2

+ |Dj10i18Dj2S0i28|2
)

≤ C
(

sup
r≤τ/4

∑
i+j≤7, j≥1

r1−δ
|DjS0i8|2

) ∑
i+j≤k+`+1, j≥1

∫
6τ∩{r≤τ/4}

|Dj0i8|2

+ C
(

sup
r≤τ/4

∑
i+j≤7, j≥1

r1−δ
|Dj0i8|2

) ∑
i+j≤k+`+1, j≥1

∫
6τ∩{r≤τ/4}

|DjS0i8|2

≤ CAετ−2+ηS,11
∑

i+j≤k+`

∫
6τ∩{r≤9τ/10}

JNµ (Ŷ
j0i8)

+ CAετ−3+ηS,11
∑

i+j≤k+`

∫
6τ∩{r≤9τ/10}

JNµ (Ŷ
jS0i8)

+ CAετ−2+ηS,11
∑

i+j≤k+`−1

∫
6τ∩{r≤9τ/10}

(
(DiUj )

2
+ (DiNj )

2)
+ CAετ−3+ηS,11

∑
i+j≤k+`−1

∫
6τ∩{r≤9τ/10}

(
(DiS(Uj ))

2
+ (DiS(Nj ))

2
+ (DiVj )

2)
by Bootstrap Assumptions (33) and (35) and the elliptic estimates of Propositions 4.1 and
4.4. Since k + `− 1 ≤ 12, the inhomogeneous terms can be bounded using Propositions
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6.9, 6.10, 6.22, 6.24 and 6.25 to be

≤ CA2ε2τ−4+ηS,12+ηS,11 .

We then move on to the cubic terms:

∑
i1+j1≤7, j1≥1

∑
i2+j2≤7, j2≥1

k∑
i3=0

∫
6τ∩{r≤9τ/10}

r1−δ((Dj1S0i18Dj20i280i38)2

+ (Dj10i18Dj20i28S0i38)2
)

≤ C
(

sup
r≤τ/4

∑
i+j≤7, j≥1

r2(DjS0i8)2
)(

sup
r≤τ/4

∑
i+j≤7, j≥1

r1−δ(Dj0i8)2
)

×

k∑
i=0

∫
6τ∩{r≤τ/4}

r−2(0i38)2

+ C
(

sup
r≤τ/4

∑
i+j≤7, j≥1

r1−δ(Dj0i8)2
)2
τ 1+δ

k∑
i=0

∫
6τ∩{r≤τ/4}

r−2(S0i8)2

≤ CA2ε2τ−5+2ηS,11
k∑
i=0

∫
6τ

(D0i8)2 + CA2ε2τ−5+2ηS,11+δ
k∑
i=0

∫
6τ

(DS0i8)2,

by Bootstrap Assumptions (33) and (35), which now clearly decays better than we need
by using Bootstrap Assumptions (12), (13) and (16). Therefore,∫
6τ∩{r≤τ/4}

r1−δ(D`S(Nk))
2
≤ CAετ−2+ηS,11

∑
i+j≤k+`

∫
6τ∩{r≤9τ/10}

JNµ (Ŷ
j0i8)

+ CAετ−3+ηS,11
∑

i+j≤k+`

∫
6τ∩{r≤9τ/10}

JNµ (Ŷ
jS0i8)

+ CA2ε2τ−4+ηS,12+ηS,11 .

The proposition follows from Bootstrap Assumptions (11) and (13)–(15). ut

A similar decay rate can be proved in the region {r ≤ 9t∗/10}, if we do not require the
estimate for the derivatives:

Proposition 6.27.∫
6τ∩{r≤9t∗/10}

r1−δ(S(N13))
2
≤ CA2ε2τ−3+ηS,11 ,

12∑
k=0

∫
6τ∩{r≤9t∗/10}

r1−δ(S(Nk))
2
≤ CA2ε2τ−4+ηS,12+ηS,11 .
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Proof. Take k ≤ 13. The proof follows very closely that of the previous proposition,
by noting that we have similar pointwise decay estimates in the region (without higher
derivatives) by Bootstrap Assumptions (34) and (38). As in the previous proposition, the
relevant terms are

(DS0i18)(D0i28),

(DS0i18)(D0i28)(0i38), i3 > 8,

(D0i18)(D0i28)(S0i38), i3 > 8.

We first tackle the quadratic terms:

6∑
i1=0

k∑
i2=0

∫
6τ∩{r≤9τ/10}

r1−δ(
|DS0i18D0i28|2 + |D0i18DS0i28|2

)
≤ C

(
sup

r≤9τ/10

6∑
i=0

r1−δ
|DS0i8|2

) k∑
i=0

∫
6τ∩{r≤9τ/10}

|D0i8|2

+ C
(

sup
r≤9τ/10

6∑
i=0

r1−δ
|D0i8|2

) k∑
i=0

∫
6τ∩{r≤9τ/10}

|DS0i8|2

≤ CA2ε2τ−4+η14+ηS,11 + CAετ−3+ηS,11
k∑
i=0

∫
6τ∩{r≤9τ/10}

|DS0i8|2.

We then move on to the cubic terms:

6∑
i1,i2=0

k∑
i3=0

∫
6τ∩{r≤9τ/10}

r1−δ((DS0i18D0i280i38)2 + (D0i18D0i28S0i38)2)
≤ C

(
sup

r≤9τ/10

6∑
i=0

r2(DS0i8)2
)(

sup
r≤9τ/10

6∑
i=0

r1−δ(D0i8)2
)

×

k∑
i=0

∫
6τ∩{r≤9τ/10}

r−2(0i8)2

+ C
(

sup
r≤9τ/10

6∑
i=0

r1−δ(D0i8)2
)2
τ 1+δ

k∑
i=0

∫
6τ∩{r≤9τ/10}

r−2(S0i8)2

≤ CA2ε2τ−5+2ηS,11
k∑
i=0

∫
6τ

(D0i8)2 + CA2ε2τ−5+2ηS,11+δ
k∑
i=0

∫
6τ

(DS0i8)2

≤ CA3ε3τ−5+2ηS,11 + CA2ε2τ−5+2ηS,11+δ
k∑
i=0

∫
6τ

(DS0i8)2.

Therefore,
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6τ∩{r≤τ/4}

r1−δ(S(Nk))
2
≤ CA2ε2τ−4+η14+ηS,11

+CAετ−3+ηS,11
k∑
i=0

∫
6τ∩{r≤9τ/10}

(DS0i8)2+CA2ε2τ−5+2ηS,11+δ
k∑
i=0

∫
6τ

(DS0i8)2.

The proposition follows from Bootstrap Assumptions (13)–(15). ut

We then move on to the region {r ≥ 9t∗/10}.

Proposition 6.28. For α = 0 or 2,∫
6τ∩{r≥9τ/10}

(S(N13))
2
≤ CA2ε2τ−2+ηS,13 ,∫

6τ∩{r≥9τ/10}
rα(S(N12))

2
≤ CA2ε2τ−3+α+ηS,12 ,

11∑
k=0

∫
6τ∩{r≥9τ/10}

r1−δ(S(Nk))
2
≤ CA2ε2τ−4+α+ηS,11 .

Proof. Take k ≤ 13. Following the reduction before and noticing that [D, S] ∼ D and
[D̄, S] ∼ D̄, we have to consider the quadratic terms

D̄S0i18D0i28, D̄0i18DS0i28, DS0i18D̄0i28,

D0i18D̄S0i28, r−1(DS0i18D0i28), r−1(D0i18DS0i28),

for i1 ≥ i2 and the cubic terms

D̄0i18D0i28S0i38, D0i18D̄0i28S0i38, r−1(D0i18D0i28S0i38).

For these cubic terms, we can assume i1, i2 ≤ 6, for otherwise i3 ≤ 6 and we can control
the last factor in the sup norm and reduce to the quadratic terms above. The cubic terms

D̄S0i18D0i280i38, D̄0i18DS0i280i38, DS0i18D̄0i280i38),

D0i18D̄S0i280i38, r−1(DS0i18D0i280i38), r−1(D0i18DS0i280i38)

are irrelevant here because i3 ≤ 13 and we can thus control the last factor in the sup norm
to reduce to the quadratic terms above. As before, we also have terms that do not have S
(from S3 or from the commutators [D, S], [D̄, S]), but they already appear in Nk and we
will use the estimates proved for Nk in Proposition 6.14.

We first estimate the quadratic terms. The crucial technical point here is that we do
not have an improved pointwise decay estimate for D̄S0i8 because we have used S in
the proof of Proposition 5.6 and we are only commuting with S once. Nevertheless, since
k ≤ 13, we can instead put D0i8 in L∞. We have
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bk/2c∑
i2=0

k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα(quadratic terms)2

≤ C
(

sup
r≥9τ/10

6∑
i2=0

r2
|D0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D̄S0i18|2

+ C
(

sup
r≥9τ/10

6∑
i2=0

r2
|DS0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D̄0i18|2

+ C
(

sup
r≥9τ/10

6∑
i2=0

r2
|D̄0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|DS0i18|2

+ C
(

sup
r≥9τ/10

k∑
i1=0

r2
|D0i18|2

) 6∑
i2=0

∫
6τ∩{r≥9τ/10}

rα−2
|D̄S0i28|2

+ Cτ−2
(

sup
r≥9τ/10

6∑
i2=0

r2
|D0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|DS0i18|2

+ Cτ−2
(

sup
r≥9τ/10

6∑
i2=0

r2
|DS0i28|2

) k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|D0i18|2

≤ CAε

k∑
i1=0

∫
6τ∩{r≥9τ/10}

rα−2(|D̄S0i18|2 + |D̄0i18|2)

+ CAετ−2+η14
k∑

i1=0

∫
6τ∩{r≥9τ/10}

rα−2
|DS0i18|2

+ CAετ−4+α+ηS,11 sup
r≥9τ/10

k∑
i1=0

r2
|D0i18|2 + CAετ−4+α.

We then estimate the cubic terms:

bk/2c∑
i1,i2=0

k∑
i3=0

∫
6τ∩{r≥9τ/10}

rα(cubic terms)2

≤ C
(

sup
r≥9τ/10

6∑
i1=0

(r2D̄0i18)2
)(

sup
r≥9τ/10

6∑
i2=0

r2(D0i28)2
)

×

k∑
i3=0

∫
6τ∩{r≥9τ/10}

rα−4(S0i38)2

+ Cτ−2
(

sup
r≥9τ/10

6∑
i1=0

r2(D0i18)2
)2 k∑

i3=0

∫
6τ∩{r≥9τ/10}

rα−4(S0i38)2

≤ CA2ε2τ−2+η14
k∑

i3=0

∫
6τ∩{r≥9τ/10}

rα−2(DS0i38)2,
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which is better than the estimates obtained for the quadratic terms. We hence focus on the
quadratic terms and spell out explicitly what the estimates amount to for different values
of k and α:

6∑
i2=0

13∑
i1=0

∫
6τ∩{r≥9τ/10}

(quadratic terms)2 ≤ CA2ε2τ−2+ηS,13 + CA2ε2τ−4+ηS,11+η16 ,

6∑
i2=0

12∑
i1=0

∫
6τ∩{r≥9τ/10}

(quadratic terms)2 ≤ CA2ε2τ−3+ηS,12 + CA2ε2τ−4+ηS,11 ,

6∑
i2=0

11∑
i1=0

∫
6τ∩{r≥9τ/10}

(quadratic terms)2 ≤ CA2ε2τ−4+ηS,11 + CA2ε2τ−4+ηS,11 ,

6∑
i2=0

12∑
i1=0

∫
6τ∩{r≥9τ/10}

r2(quadratic terms)2 ≤ CA2ε2(τ−1+ηS,12 + τ−2+η14+τ−2+ηS,11),

6∑
i2=0

11∑
i1=0

∫
6τ∩{r≥9τ/10}

r2(quadratic terms)2 ≤ CA2ε2(τ−2+ηS,11 + τ−2+η14). ut

With the estimates for the inhomogeneous terms for the equations involving S, we can
now retrieve the bootstrap assumptions involving S. We will follow the order that we
proved the estimates without S, namely, first proving the pointwise estimates, then the
integrated estimates, then the energy estimates and finally the energy estimates involving
also Ŷ . Noticing that Uk,j (respectively Nk) and S(Uk,j ) (respectively S(Nk)) satisfy
similar estimates (see Propositions 6.13, 6.14, 6.10, 6.27, 6.28 and 6.25), we focus on
showing that the estimates for Vk are enough to close the bootstrap assumptions. We
now prove the pointwise estimates and retrieve Bootstrap Assumptions (37), (38), (43)
and (44).

Proposition 6.29. For r ≥ t∗/4,

8∑
j=0

|DS0j8|2 ≤ (BS/2)Aεr−2, (69)

6∑
j=0

|DS0j8|2 ≤ (BS/2)Aεr−2(t∗)ηS,11(1+ |u|)−2. (70)

For r ≤ t∗/4,

6∑
j=0

|S0j8|2 ≤ (BS/2)Aε(t∗)−2+η15 , (71)

7−j∑
`=1

6∑
j=0

|D`S0j8|2 ≤ (BS/2)Aεr−2(t∗)−2+η15 . (72)
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Proof. The proof of the estimates for r ≥ t∗/4 (i.e. (69) and (70)) is completely analo-
gous to Proposition 6.15, with the use of Propositions 6.10, 6.13, 6.14 replaced by Propo-
sitions 6.22, 6.25, 6.27, 6.28 appropriately. Notice especially that the estimates in Propo-
sition 6.22 for V are better than those in Proposition 6.25 for SU and are thus acceptable.

(71) follows directly from Proposition 5.9 and Bootstrap Assumptions (11) and (15).
Here, we need to use also (11) because we would need to permute S with ∂t∗ and would
get terms that do not contain S.

(72) follows directly from Proposition 5.8, Bootstrap Assumptions (11) and (15), as
well as Propositions 6.10, 6.13, 6.22, 6.25 and 6.26 to control the inhomogeneous terms.
As before, (11) and Propositions 6.10, 6.13 are used to control the terms arising from
[S, ∂t∗ ]. Notice here that the decay rate for

∑7−j
`=1

∑6
j=0 |D

`S0j8|2 is not as good as that

for
∑9−j
`=1

∑8
j=0 |D

`0j8|2 because in proving the decay rate for
∑9−j
`=1

∑8
j=0 |D

`0j8|2,
we have used the quantities associated to S8, while we do not have estimates for S28 at
our disposal. ut

As before, once we have proved the L∞ bounds, we will replace the constant BS by C.

Proposition 6.30.∑
i+j+k≤12

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX0(S∂ it∗�̃
j8) ≤ (ε/2)τ−1+ηS,12 , (73)

∑
i+j≤11

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(S∂ it∗�̃
j8) ≤ (ε/2)τ−1+ηS,12 , (74)

∑
i+j≤11

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX0(S∂ it∗�̃
j8) ≤ (ε/2)τ−2+ηS,11 , (75)

∑
i+j≤10

A−1
S,X,j

∫∫
R(τ/1.1,τ )∩{r≤t∗/2}

KX1(S∂ it∗�̃
j8) ≤ (ε/2)τ−2+ηS,11 . (76)

Proof. This follows exactly as Proposition 6.16 except for replacing the use of Proposi-
tions 6.10, 6.13 and 6.14 with Propositions 6.22, 6.25, 6.27 and 6.28. ut

Proposition 6.31. ∑
i+j=13

A−1
S,j

∫
6τ

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ
≤ (ε/4)τ ηS,13 , (77)

∑
i+j≤12

A−1
S,j

∫
6τ

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ
≤ ε/2, (78)

∑
i+j=13

A−1
S,X,j

∫∫
R(τ0,τ )

KX0(S∂ it∗�̃
j8) ≤ (ε/2)τ ηS,13 , (79)

∑
i+j≤12

A−1
S,X,j

∫∫
R(τ0,τ )

KX0(S∂ it∗�̃
j8) ≤ ε/2. (80)
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Proof. This follows exactly as Proposition 6.17 except for replacing the use of Proposi-
tions 6.10, 6.13 and 6.14 with Propositions 6.22, 6.25, 6.27 and 6.28. ut

Proposition 6.32.∑
i+j=12

A−1
S,j

(∫
6τ

JZ+N,w
Z

µ (S∂ it∗�̃
j8)n

µ
6τ
+ Cτ 2

∫
6τ∩{r≤9τ/10}

JNµ (S∂
i
t∗�̃

j8)n
µ
6τ

)
≤ (ε/4)τ 1+ηS,12 . (81)

Proof. This follows exactly as Proposition 6.18 except for replacing the use of Proposi-
tions 6.10, 6.13 and 6.14 with Propositions 6.22, 6.25, 6.27 and 6.28. ut

Proposition 6.33.∑
i+j≤11

A−1
S,j

(∫
6τ

JZ+N,w
Z

µ (S(∂ it∗�̃
j8))n

µ
6τ

+ Cτ 2
∫
6τ∩{r≤9τ/10}

JNµ (S(∂
i
t∗�̃

j8))n
µ
6τ

)
≤ (ε/4)τ ηS,11 (82)

Proof. This follows exactly as Proposition 6.19 except for replacing the use of Proposi-
tions 6.10, 6.13 and 6.14 with Propositions 6.22, 6.25, 6.27 and 6.28. ut

To close the bootstrap argument we need finally to consider energy quantities with both
S and Ŷ .

Proposition 6.34. ∑
i+k=13

A−1
S,Y

∫
6τ

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ (ε/4)τ ηS,13 ,

∑
i+k=12

A−1
S,Y τ

2
∫
6τ∩{r≤r

−

Y }

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ (ε/4)τ 1+ηS,12 ,

∑
i+k≤11

A−1
S,Y τ

2
∫
6τ∩{r≤r

−

Y }

JNµ (Ŷ
kS∂ it∗8)n

µ
6τ
≤ (ε/4)τ ηS,11 .

Proof. This follows exactly as Proposition 6.20 except for replacing the use of Proposi-
tions 6.13 with Propositions 6.22 and 6.27. ut

7. Proof of Theorem 1

Now all the bootstrap assumptions are closed and all the estimates hold. The solution
hence exists globally by a standard local existence argument that we omit here. The decay
estimates of the derivatives of 8 claimed in the theorem are restatements of (51), (52),
(33). The decay estimates follow from the use of Proposition 5.3 and (6.19) for r ≥ R
and Proposition 5.12 and (60) for r ≤ t∗/4.

Acknowledgments. The author thanks his advisor Igor Rodnianski for his continual support and
encouragement and for many enlightening discussions.



The null condition for wave equations on Kerr spacetimes 1699

References

[1] Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr
spacetime. arXiv:0908.2265 (2009)

[2] Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equa-
tion on Schwarzschild space. Comm. Math. Phys. 268, 481–504 (2006) Zbl 1123.58018
MR 2259204

[3] Catania, D., Georgiev, V.: Blow up for the semilinear wave equation in schwarzschild metric.
Differential Integral Equations 19, 799–830 (2006) Zbl 1212.35314 MR 2235896

[4] Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data.
Comm. Pure Appl. Math. 39, 267–282 (1986) Zbl 0612.35090 MR 0820070

[5] Dafermos, M., Rodnianski, I.: Small-amplitude nonlinear waves on a black hole background.
J. Math. Pures Appl. (9) 84, 1147–1172 (2005) Zbl 1079.35069 MR 2162222

[6] Dafermos, M., Rodnianski, I.: A proof of the uniform boundedness of solutions to the
wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185, 467–559 (2011)
Zbl 1226.83029 MR 2827094

[7] Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. arXiv:gr-
qc/0811.0354 (2008)

[8] Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation
with applications to black hole spacetimes. In: XVIth International Congress on Mathematical
Physics, World Sci., 421–432 (2009) Zbl 1211.83019 MR 2730803

[9] Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole space-
times. Comm. Pure Appl. Math. 62, 859–919 (2009) Zbl 1169.83008 MR 2527808

[10] Finster, F., Kamran, N., Smoller, J., Yau, S. T.: Decay of solutions of the wave equation in the
Kerr geometry. Comm. Math. Phys. 264, 465–503 (2006) Zbl 1194.83015 MR 2215614

[11] Finster, F., Kamran, N., Smoller, J., Yau, S. T.: Erratum: “Decay of solutions of the wave
equation in the Kerr geometry”. Comm. Math. Phys. 280, 563–573 (2008) Zbl 1194.83014
MR 2395483

[12] Hartle, J. B., Wilkins, D. C.: Analytic properties of the Teukolsky equation. Comm. Math.
Phys. 38, 47–63 (1974) MR 0351359

[13] Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild
black hole backgrounds. Comm. Math. Phys. 293, 37–83 (2010) Zbl 202.35327
MR 2563798

[14] John, F.: Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure
Appl. Math. 34, 29–51 (1981) Zbl 0453.35060 MR 0600571

[15] John, F., Klainerman, S.: Almost global existence to nonlinear wave equations in three space
dimensions. Comm. Pure Appl. Math. 37, 443–455 (1984) Zbl 0599.35104 MR 0745325

[16] Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave
equation. Comm. Pure Appl. Math. 38, 321–332 (1985) Zbl 0635.35059 MR 0784477

[17] Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Non-
linear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe,
NM, 1984), Lectures in Appl. Math. 23, Amer. Math. Soc., Providence, RI, 293–326 (1986)
Zbl 0599.35105 MR 0837683

[18] Klainerman, S., Sideris, T.: On almost global existence for nonrelativistic wave equations in
3D. Comm. Pure Appl. Math. 49, 307–321 (1996) Zbl 0867.35064 MR 1374174

[19] Luk, J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black
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