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Abstract. The joint spectral radius of a finite set of real d × d matrices is defined to be the maxi-
mum possible exponential rate of growth of products of matrices drawn from that set. In previous
work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of
matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain
characteristic ratio which depends continuously upon the parameter. In this note we answer some
open questions from that paper by showing that the dependence of the ratio function upon the pa-
rameter takes the form of a devil’s staircase. We show in particular that this devil’s staircase attains
every rational value strictly between 0 and 1 on some interval, and attains irrational values only in
a set of Hausdorff dimension zero. This result generalises to include certain one-parameter families
considered by other authors. We also give explicit formulas for the preimages of both rational and
irrational numbers under the ratio function, thereby establishing a large family of pairs of matrices
for which the joint spectral radius may be calculated exactly.

Keywords. Joint spectral radius, devil’s staircase, finiteness conjecture, Sturmian sequence, bal-
anced word

1. Introduction

The spectral radius of a d × d real matrix A, which we denote by ρ(A), is defined to
be the maximum of the moduli of the eigenvalues of A. If ‖ · ‖ is any norm on Rd , then
the spectral radius satisfies the well-known identity ρ(A) = limn→∞ ‖A

n
‖

1/n. Given a
bounded set A of real d × d matrices, we by analogy define the joint spectral radius of A
to be the quantity

%(A) := lim
n→∞

max{‖Ain · · ·Ai1‖
1/n
: Aij ∈ A}.

It is not difficult to establish that this limit exists (essentially as a consequence of subaddi-
tivity) and that its value is independent of the choice of norm ‖·‖. The joint spectral radius
was introduced by G.-C. Rota and G. Strang in 1960 (see [29], later reprinted in [28]) and

I. D. Morris: Department of Mathematics, University of Surrey,
Guildford GU2 7XH, United Kingdom; e-mail: ian.morris.ergodic@gmail.com
N. Sidorov: School of Mathematics, University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom; e-mail: sidorov@manchester.ac.uk

Mathematics Subject Classification (2010): Primary 15A18, 15A60; Secondary 37B10, 65K10,
68R15



1748 Ian D. Morris, Nikita Sidorov

is the subject of ongoing research interest, which has dealt with its applications, its com-
putation and approximation, and its intrinsic properties as a mathematical function. For a
broad range of references on this topic we direct the reader to [5, 13, 16, 26].

It is not difficult to show that the joint spectral radius admits the alternative formula-
tion

%(A) = sup
(Ai )

∞

i=1∈AN
lim sup
n→∞

‖An · · ·A1‖
1/n,

and that when A is compact there exists a sequence (Ai) of elements of A such that
‖An · · ·A1‖

1/n
→ %(A). (A proof of this statement may be found in [16].) In this paper

we are concerned with the following general question: given a finite set of matrices A
and a sequence (Ai) in A such that ‖An · · ·A1‖

1/n
→ %(A), what can we say about the

structure of the sequence (Ai)?
A question of particular interest is that of when there exist periodic sequences of ma-

trices which achieve this maximal rate of growth. In [21], J. Lagarias and Y. Wang asked
whether every finite set A of d × d real matrices has the property that ‖An · · ·A1‖

1/n
→

%(A) for some periodic sequence of elements of A, or, equivalently, whether every A has
the property that %(A) = ρ(Ak · · ·A1)

1/k for some finite sequence A1, . . . , Ak ∈ A.
We shall say that A has the finiteness property if such a periodic sequence exists. The
existence of pairs of 2× 2 matrices which do not satisfy the finiteness property was sub-
sequently established by T. Bousch and J. Mairesse [4], with additional proofs being given
later by V. Blondel, J. Theys and A. Vladimirov [3] and V. Kozyakin [19]. The finiteness
property continues to be the subject of research investigation: some sufficient conditions
for the finiteness property have been given in [6, 7, 8, 17], and in a recent preprint N.
Guglielmi and V. Protasov have given an algorithm for the rigorous verification of the
finiteness property for real matrices [12].

In [13], together with K. G. Hare and J. Theys the present authors investigated the
finiteness property for pairs of matrices of the form Aα := {A

(α)
0 , A

(α)
1 }, where

A
(α)
0 :=

(
1 1
0 1

)
, A

(α)
1 := α

(
1 0
1 1

)
(1.1)

and α ∈ [0, 1]. It was shown in particular that if (xi) ∈ {0, 1}N is a sequence such that
‖A

(α)
xn · · ·A

(α)
x1 ‖

1/n
→ %(Aα), then the proportion of terms of (xi) which are equal to 1

is well-defined and equal to a value r(α) ∈ [0, 1] which depends only on α. We further
showed that r is a continuous function of α, and gave an explicit expression for a value α∗
such that r(α∗) /∈ Q, providing a completely explicit example of a pair of matrices which
does not have the finiteness property (see formula (8.2) below).

In this paper we undertake a detailed study of the behaviour of the function r for α
belonging to the larger domain [0,∞). We extend the results described above in several
directions. Firstly, we give an explicit formula for r−1(γ ) when γ ∈ (0, 1)∩Q, and prove
that this preimage is always an interval with nonempty interior. This allows us to construct
an infinite family of examples of pairs of 2 × 2 matrices where the joint spectral radius
may be computed exactly. Since the problem of devising algorithms for the computation
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of the joint spectral radius is ongoing (for some recent contributions see [1, 5, 12, 20,
26]), these examples are potentially of value for the testing of new algorithms.

Secondly, we show that the function r takes the form of a devil’s staircase, as was
conjectured in [13, 30]. The methods which we use to obtain these first two results are
significantly more general than those used in [13], and can also be applied to the families
of pairs of matrices studied by other authors in [4, 19]. We show in particular that r takes
rational values only in the complement of a set of Hausdorff dimension zero. This result
was previously noted in a special case in [4], though no proof was given.

Finally, we give an explicit formula for r−1(γ ) when γ ∈ (0, 1)\Q, and in the special
case of the matrices given by (1.1) we provide some inequalities for use in the rigorous
computation of its value. We thus show how to construct an uncountable family of explicit
examples for which the finiteness property is not satisfied. As with our explicit description
of pairs of matrices which have the finiteness property, we anticipate that these examples
may be of value in future in the analysis of algorithms for computing the joint spectral
radius.

2. Notation and statement of results

Throughout this paper we will consider pairs of real 2 × 2 matrices which we denote
by A0, A1. To describe the structure of sequences of these matrices we use the space of
symbolic sequences, 62 := {0, 1}N. We refer to the elements of 62 as infinite words.
We equip 62 with the infinite product topology, with respect to which it is compact and
metrisable. On some occasions it will be useful to employ a metric on 62: to this end,
given sequences (xi), (yi) ∈ 62 we define

d[(xi), (yi)] := 2−max{i: xi=yi },

where 2−∞ is interpreted to mean 0. This defines an ultrametric on 62 which generates
the infinite product topology. We also define the shift transformation T : 62 → 62 by
T [(xi)] := (xi+1), which is a continuous surjection. If a pair of matrices B := {B0, B1}

is given, then following the terminology of [13, 24] we shall say that a sequence x =
(xi) ∈ 62 is weakly extremal for B if ‖Bxn · · ·Bx1‖

1/n
→ %(B) as n→∞.

In addition to considering infinite sequences in {0, 1} we shall also find it useful to
consider finite sequences, which we refer to as finite words. If u = (ui)ni=1 is a finite word
we call n the length of u and define |u| := n. To simplify certain statements we allow the
word of length zero, which we refer to as the empty word.

With the pair of matrices A = {A0, A1} fixed, we define A(α)0 := A0 and A(α)1 := αA1

for all real numbers α ≥ 0, and let Aα := {A
(α)
0 , A

(α)
1 }. We shall denote the quantity

%(Aα) simply by %(α). The function % : [0,∞) → R is continuous (see for example
[14]). For every x ∈ 62, n ≥ 1 and α ≥ 0 we define Aα(x, n) := A

(α)
xn · · ·A

(α)
x1 and

A(x, n) := A1(x, n) = Axn · · ·Ax1 . If u is a finite word of length m ≥ 1, we similarly
define Aα(u) = A

(α)
um · · ·A

(α)
u1 and A(u) = A1(u).

In this paper we are concerned specifically with pairs of matrices such that the max-
imum growth rate of partial products occurs along Sturmian sequences. A large range
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of definitions of Sturmian sequence exist in the literature: see for example [25] and the
surveys in [10, 22]. The definition which we give in this section is not the most straight-
forward to state, but is the most suited to the proof methods which are used later in this
article. In order to state this definition and describe its main consequences, we require
some further terminology.

Given a finite word u, let |u|1 denote the number of entries of u which are equal to 1,
and if u is not the empty word, define the slope of u to be the quantity ς(u) := |u|1/|u|. If
u = (ui)

n
i=1 and v = (vi)mi=1 are finite words then we define the concatenation of u with

v, denoted by uv, to be the finite word ω = (ωi)n+mi=1 such that ωi = ui for 1 ≤ i ≤ n and
ωi = vi−n for n < i ≤ n + m. We use the symbols 0 and 1 to denote the words of unit
length with entries 0 and 1 respectively. For positive integers k we use the notation uk to
denote the successive concatenation of k copies of the word u, and we define u0 to be the
empty word. The word uk will be referred to as the kth power of u. Using these notational
conventions it is clear that any finite word may be written in the form 1ak0ak−1 · · · 1a1

for some finite collection of nonnegative integers ai . Given a finite word u of nonzero
length n, we use the symbol u∞ to denote the unique infinite word x = (xi)∞i=1 such that
xi+kn = ui for all k ≥ 0 and 1 ≤ i ≤ n.

We say that the finite word u is a subword of the finite word v if v = aub for some
(possibly empty) finite words a and b. If a is empty then we say that u prefixes v. We
shall also say that a finite word u prefixes an infinite word x ∈ 62 if ui = xi for all i in
the range 1 ≤ i ≤ |u|. A word u will be called balanced if for every pair of subwords v1,
v2 of u with |v1| = |v2| we have

∣∣|v1|1 − |v2|1
∣∣ ≤ 1. Clearly u is balanced if and only

if every subword of u is balanced. We say that x ∈ 62 is balanced if every prefix of x
is balanced. We say that two finite words u = (ui), v = (vi) are cyclically equivalent if
they are equivalent by some cyclic permutation; that is, they share the same length n and
there exists an integer k such that ui = vi+k for 1 ≤ i ≤ n − k and ui = vi+k−n for
n − k < i ≤ n. It is not difficult to see that u and v are cyclically equivalent if and only
if there exist (possibly empty) finite words a and b such that u = ab and v = ba. We
say that u is cyclically balanced if it is balanced and all of its cyclic permutations are also
balanced. One can show that a nonempty finite word u is cyclically balanced if and only
if u∞ is balanced (see e.g. [13, Lemma 4.7]).

An infinite word x ∈ 62 will be called Sturmian if it is balanced and recurrent with
respect to T . It follows that if u is a finite nonempty word, then u∞ is Sturmian if and
only if u is cyclically balanced. The key properties of Sturmian sequences are outlined by
the following theorem, the proof of which may be found in [22, 25].

Theorem 2.1. For each γ ∈ [0, 1] define a set Xγ ⊂ 62 as follows: we have x ∈ Xγ if
and only if there exists δ ∈ R such that either

xn ≡ bγ (n+ 1)+ δc − bγ n+ δc or xn ≡ dγ (n+ 1)+ δe − dγ n+ δe,

where bxc = max{n ∈ Z : n ≤ x} and dxe = min{n ∈ Z : n ≥ x}. Then an infinite
word x ∈ 62 is Sturmian if and only if x ∈

⋃
γ∈[0,1]Xγ . The sets Xγ have the following

properties:

(i) Each Xγ is compact and satisfies TXγ = Xγ .
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(ii) The restriction of T toXγ is uniquely ergodic, i.e., T has a unique invariant measure.
(iii) If x ∈ Xγ then n−1 #{1 ≤ i ≤ n : xi = 1} → γ as n→∞.
(iv) If γ = p/q in least terms then the cardinality of Xγ is equal to q. If γ is irrational

then Xγ is uncountable.

Whilst our primary objective is to continue the study of the pair of matrices defined by
(1.1) which were examined in [3, 13, 30], the methods which we use are general enough
to encompass a larger family. The following definition describes the minimum properties
necessary for our arguments to apply:

Definition 2.2. Let A = {A0, A1} be a pair of 2 × 2 real matrices. We shall say that A
satisfies the technical hypotheses if the following properties hold:

(i) The matrices A0 and A1 are nonnegative, invertible, have positive trace, and do not
have a common invariant subspace.

(ii) If u is a finite word which is not of the form 1n or 0n then all of the entries of the
matrix A(u) are positive.

We shall further say that A satisfies the Sturmian hypothesis if there exists a function
r : [0,∞)→ [0, 1] such that the following properties hold:

(iii) For each α ≥ 0, every x ∈ Xr(α) is weakly extremal for Aα .
(iv) For each α ≥ 0, if x ∈ 62 is weakly extremal for Aα then n−1 #{1 ≤ i ≤ n : xi = 1}
→ r(α).

(v) If u is a finite word which is not cyclically balanced then ρ(Aα(u)) < %(α)|u|.

The function r will be called the 1-ratio function of the pair A.

Note that as a consequence of (iv), if r exists then it is unique. By [24, Theorem 2.3]
and the minimality of the invariant sets Xγ , the hypothesis (iii) is in fact equivalent to
the hypothesis that Xr(α) contains at least one extremal infinite word. Some conditions
equivalent to (iv) have been used by other authors: a description of these conditions and
a proof of their equivalence are given in [24, §6].

A range of examples of pairs A which satisfy the Sturmian hypothesis are known.
In [13], the authors together with K. G. Hare and J. Theys proved that the family of
matrices given by (1.1) satisfies parts (iii)–(v) of the Sturmian hypothesis for α restricted
to the interval [0, 1]. If we extend the definition of r to the interval [0,∞) by defining
r(α) = 1−r(1/α) for each α ∈ (1,∞), then by taking advantage of the relationA0 = A

T
1

it is not difficult to show the Sturmian hypothesis in full for the family Aα . The essential
points of this argument are contained in Lemma 3.1 below.

In the earlier work [4], T. Bousch and J. Mairesse also proved that the Sturmian hy-
pothesis holds for the matrices

A0 :=

(
eκh0 + 1 0
eκ 1

)
, A1 :=

(
1 eκ

0 eκh1 + 1

)
, (2.1)

subject to the inequalities κ, h0, h1 > 0 and h0 + h1 < 2. Clearly the examples given by
(1.1) and (2.1) also satisfy the technical hypotheses. In a series of papers, V. S. Kozyakin
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has shown that the Sturmian hypothesis holds for pairs of triangular matrices having the
form

A0 :=

(
a b

0 1

)
, A1 :=

(
1 0
c d

)
where 0 < a, d < 1 ≤ bc; an overview of this work is given in [19]. Note that the
examples considered by Kozyakin satisfy the technical hypotheses in the case b, c > 0,
and are simultaneously similar to a pair of matrices satisfying the technical hypotheses
when b, c < 0.

In order to state the explicit formula for the intervals r−1(p/q) which forms part of
our first theorem we require one last definition, namely that of a standard pair. The set
of all standard pairs, which we denote by P , is defined to be the smallest nonempty set
of ordered pairs of finite words which has the following two properties: (0, 1) ∈ P , and
if (u, v) ∈ P then (uv, v) ∈ P and (u, vu) ∈ P . We say that ω is a standard word if
it is one half of a standard pair. Every standard word is balanced (see, e.g., [22, Propo-
sition 2.2.15]). If (u, v) is a standard pair then (u, vun) and (uvn, v) are also standard
pairs for every n ≥ 0, and it follows that every power of a standard word is a subword of
some standard word. In particular every power of a standard word is balanced, and conse-
quently every standard word is cyclically balanced. A detailed analysis of the properties
of the set P may be found in [22].

The main result of the present paper is the following theorem:

Theorem 2.3. Let A0, A1 be a pair of 2× 2 real matrices which satisfies both the tech-
nical hypotheses and the Sturmian hypothesis. Then:

(i) The function r is continuous and nondecreasing, and satisfies r(0) = 0 and
limα→∞ r(α) = 1.

(ii) For every rational number γ ∈ (0, 1), the set r−1(γ ) is a closed interval with
nonempty interior. The interval r−1(0) ∩ (0,∞) is nonempty if and only if A0 is
diagonalisable, and similarly r−1(1) is nonempty if and only if A1 is diagonalisable.
The intervals r−1(p/q) may be computed exactly by the following procedure. If A0
is diagonalisable, let P0 := limn→∞ ρ(A)

−nAn0 . Then

r−1(0) =
[

0,
ρ(A0)

ρ(P0A1)

]
.

Similarly if A1 is diagonalisable and P1 := limn→∞ ρ(A1)
−nAn1 , then

r−1(1) =
[
ρ(P1A0)

ρ(A1)
,∞

)
.

If p/q ∈ (0, 1) in least terms, then there exists a standard pair (u, v) such that
ς(uv) = p/q. Define |u| := q1 and |v| := q2, let B1 := A(u), B2 := A(v) and
A := B1B2, and let P := limn→∞ ρ(A)

−nAn be the Perron projection associated
to the positive matrix A. Then

r−1(p/q) =

[
ρ(B1P)

q

ρ(A)q1
,
ρ(A)q2

ρ(PB2)q

]
and %(α) = ρ(Aα(uv))

1/q for all α ∈ r−1(p/q).
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(iii) The Hausdorff dimension of the set r−1([0, 1) \Q) is zero. In particular, r−1(γ ) is a
singleton for any irrational γ ∈ (0, 1).

Some examples of the explicit formulae generated by Theorem 2.3(ii) are given in
Table 2.1. Note that a direct consequence of Theorem 2.3(ii) is that when all of the en-
tries of A0 and A1 are rational, then the endpoints of r−1(p/q) are algebraic numbers of
degree either 1 or 2. In the latter case both endpoints belong to the same quadratic field.

Table 2.1. Examples of explicit formulae for the intervals r−1(γ ) for the family of pairs of matrices
given by (1.1). Note that the endpoints of r−1(1/n) are asymptotically equal to e/n + o(1/n) as
n→∞, a feature which may be observed in Figure 1.

1-ratio γ Standard pair Interval r−1(γ )

1/2 (0, 1)
[

4
5
,

5
4

]

3/7 (00101, 01)
[(5+ 127

168
√

42
)7

(13+ 2
√

42)5
,
(13+ 2

√
42)2( 3

2 +
29

168
√

42
)7
]

2/5 (001, 01)
[(2+ 17

24
√

6
)5

(5+ 2
√

6)3
,
(5+ 2

√
6)2( 3

2 +
11
24
√

6
)5
]

1/3 (0, 01)
[

69− 16
√

3
72

,
1656− 384

√
3

1331

]

2/7 (0001, 001)
[( 5

2 +
41
40
√

5
)7

(9+ 4
√

5)4
,
(9+ 4

√
5)3(

2+ 31
40
√

5
)7
]

1/4 (0, 001)
[

496− 64
√

21
441

,
13671− 1764

√
21

10000

]
1/5 (0, 0001)

[
10612− 5261

√
2

8192
,

43466752− 21549056
√

2
28629151

]

1/6 (0, 00001)
[(1+ 1

3
√

5

)6
7
2 +

3
2
√

5
,

( 7
2 +

3
2
√

5
)5(

3+ 19
15
√

5
)6
]

1/7 (0, 000001)
[(1+ 1

2
√

15

)7
4+
√

15
,
(4+
√

15)6( 7
2 +

13√
15

)7
]

1
n+ 1

(0, 0n−11)
[ (

1+ 1√
n2+4n

)n+1

1+ n
2 +

1
2

√
n2 + 4n

,

(
1+ n

2 +
1
2

√
n2 + 4n

)n(
n+1

2 +
n2+3n−2
2n2+8n

√
n2 + 4n

)n+1

]

As a direct consequence of (iii) we obtain the following result:

Corollary 2.4. The function r is not Hölder continuous.
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To illustrate the behaviour of the function r we reproduce a diagram from [13]: see Fig-
ure 1 below.

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1 1.2

Fig. 1. The graph of r for α restricted to [0, 5/4] for the family of matrices given by (1.1). Using
the explicit formula for r−1(1/n) given in Table 2.1 one can show that in this case α−1r(α)→ 1/e
as α→ 0.

In the cases studied in [4, 13, 19] the continuity of the function r is established by
using the particular characteristics of the matrices A0, A1 in quite a strong fashion. In
proving part (i) of Theorem 2.3 we observe that the continuity of r is in fact a corollary
of its defining properties. T. Bousch and J. Mairesse have asserted in [4] that part (iii) of
Theorem 2.3 holds for the triangular matrices of the form (2.1), but their proof remains
unpublished. In [13] we proved for the matrices (1.1) that r−1(γ ) is a singleton if γ is
irrational and not Liouville. Theorem 2.3(iii) shows that this remains true for γ irrational
and Liouville.

In the course of proving part (iii) of Theorem 2.3 we are able to establish the following
result: if L ⊂ (0, 1) is a compact interval, then there exist constantsK > 1 and θ ∈ (0, 1)
depending on L such that the interval r−1(p/q) has diameter less than Kθq for every
p/q ∈ L, where the fraction p/q is understood to be given in least terms. Heuristically,
this result tells us not only that values of α for which r(α) is irrational are extremely
scarce, but also that values for which r(α) is a rational number with large denominator
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are still relatively scarce, at least when α lies within a given neighbourhood bounded away
from zero and infinity. This result is given as Corollary 6.6 below.

The second result of this paper is the following theorem which gives an infinite prod-
uct formula for r−1(γ ).

Theorem 2.5. Let A0, A1 be a pair of matrices which satisfy the technical hypotheses
and the Sturmian hypothesis, and let γ ∈ (0, 1)\Q. Let (an)∞n=1 ∈ NN be the sequence of
continued fraction coefficients of γ , and for each n ≥ 1 let pn/qn be the corresponding
convergent. Define a sequence (sn) of finite words inductively by setting s−1 := 1, s0 := 0,
s1 := s

a1−1
0 s−1 and sn+1 := s

an+1
n sn−1 for every n ≥ 1, and for each integer n ≥ −1

define ρn := ρ(A(sn)). Then r−1(γ ) is the singleton set whose unique element is given
by

αγ := lim
n→∞

(
ρ
qn+1
n

ρ
qn
n+1

)(−1)n

=
1

ρ(A1)

∞∏
n=0

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn
. (2.2)

In general it is not clear whether the infinite product given here will always converge
unconditionally, although we are able to prove this in special cases. For the family of
matrices defined by (1.1) we are able to give a checkable criterion for a rigorous bound
on the error in approximating αγ by partial products of the infinite product given above.
The details of these estimates are given in §8.

3. Convex analysis and continuity of the 1-ratio

In this section we give the proof of part (i) of Theorem 2.3, and introduce a concave
function S : [0, 1] → R which characterises the rate of growth of A along Sturmian
trajectories. We begin with the following simple lemma:

Lemma 3.1. Let A = {A0, A1} be a pair of matrices which satisfies the Sturmian hy-
pothesis, and let r : [0,∞)→ [0, 1] be the corresponding 1-ratio function. Define a new
pair of matrices Â := {Â0, Â1} by Â0 := A1, Â1 := A0. Then Â also satisfies the Stur-
mian hypothesis, and if r̂ denotes the 1-ratio function of Â, then r(α) = 1 − r̂(1/α) for
all α ∈ (0,∞).

Proof. Let us define Âα := {Â0, αÂ1} for each α ≥ 0 similarly to the definition of Aα ,
and let %̂(α) = %(Âα) for all α ≥ 0. Define Âα(x, n) = Â

(α)
xn · · · Â

(α)
x1 for all x ∈ 62 and

n ≥ 1, and for each x = (xi) ∈ 62 define a new sequence x by xi := 1 − xi . We have
x ∈ Xγ if and only if x ∈ X1−γ . Finally, define r̂ : [0,∞)→ [0, 1] by r̂(α) := 1−r(1/α)
for all α ∈ (0,∞), and r̂(0) := 0. Note that for all x ∈ 62, n ≥ 1 and α ∈ (0,∞) we
have the identity Âα(x, n) = α

nA1/α(x, n). As a direct consequence we obtain %̂(α) =
α%(1/α) for all α ∈ (0,∞).

We may now verify directly that Â satisfies the Sturmian hypothesis with r̂ being its
1-ratio function. The case α = 0 being trivial, let us fix α > 0. If x ∈ Xr̂(α), then
x ∈ Xr(1/α) and therefore

lim
n→∞
‖Âα(x, n)‖

1/n
= lim
n→∞
‖αnA1/α(x, n)‖

1/n
= α%(1/α) = %̂(α)
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as required. If limn→∞ ‖Âα(x, n)‖
1/n
= %̂(α) then by the same token we have

lim
n→∞
‖A1/α(x, n)‖

1/n
= %(1/α)

and therefore

lim
n→∞

1
n

#{1 ≤ xj ≤ n : xj = 1} = lim
n→∞

(
1−

1
n

#{1 ≤ xj ≤ n : xj = 1}
)

= 1− r(1/α) = r̂(α)

since Definition 2.2(iv) applies to A1/α . Finally, if u = (ui)`i=1 is a finite word which is
not cyclically balanced, then the finite word u = (ui)`i=1 defined by ui := 1−ui is clearly
also not cyclically balanced and hence

ρ(Âα(u)) = α
|u|ρ(A1/α(u)) < α|u|%(1/α)|u| = %̂(α)|u|

as required. The proof is complete. ut

The following general theorem was proved in [24]:

Theorem 3.2. Let1 be a metric space and letA0, A1 : 1→M2(R) be continuous func-
tions such thatA0(λ) 6= A1(λ) for all λ ∈ 1. Suppose that there exists a function r : 1→
[0, 1] with the following property: for every x ∈ 62 such that ‖Axn(λ) · · ·Ax1(λ)‖

1/n
→

%({A0(λ), A1(λ)}) as n → ∞, we have n−1
{1 ≤ i ≤ n : xi = 1} → r(λ). Then the

function r is continuous.

We may now directly deduce several parts of Theorem 2.3(i).

Lemma 3.3. Let A be as in Theorem 2.3. Then the 1-ratio function r : [0,∞)→ [0, 1] is
continuous and satisfies r(0) = 0 and limα→∞ r(α) = 1.

Proof. The continuity of r follows immediately from Theorem 3.2. In the case α = 0 it
is obvious that ‖Aα(x, n)‖

1/n
→ ρ(A0) > 0 when x ∈ X0 and ‖Aα(x, n)‖

1/n
→ 0

for all other x, and it follows that r(0) = 0. In particular we have limα→0 r(α) = 0 by
continuity. Let Â and r̂ be as in Lemma 3.1; applying the preceding arguments to Â it
follows that limα→0 r̂(α) = 0, and therefore

lim
α→∞

r(α) = lim
α→∞

(1− r̂(1/α)) = lim
α→0

(1− r(α)) = 1. ut

The following proposition, which characterises r in terms of a concave function on the
unit interval, forms the cornerstone of the proof of Theorem 2.3. In the special case where
A0 andA1 are as defined by (1.1), the results of Proposition 3.4 correspond approximately
to those of [13, Proposition 6.1].

Proposition 3.4. Let A := {A0, A1} be as in Theorem 2.3. Then there exists a continuous
concave function S : [0, 1] → R with the following properties:

(i) For each γ ∈ [0, 1] we have n−1 log ‖A(x, n)‖ → S(γ ) for every x ∈ Xγ .
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(ii) For each α ∈ [0,∞) and γ ∈ [0, 1] we have eS(γ )αγ ≤ %(α) with equality if and
only if γ = r(α). Consequently, for nonzero α we have r(α) = γ if and only if
− logα is a subgradient of S at γ .

(iii) If u is a word of length kq with ς(u) = p/q, then (kq)−1 log ρ(A(u)) ≤ S(p/q),
with equality if and only if u is cyclically balanced.

Proof. We will show first that there exists a function S : [0, 1] → R such that properties
(i)–(iii) hold, and show only at the end of the proof that this function is continuous and
concave. We begin by constructing a function S which satisfies (i). Since X0 contains
only the single point 0∞ it is clear that (i) holds for γ = 0 with S(0) := log ρ(A0), and
similarly for S(1) := log ρ(A1). Let us therefore consider γ ∈ (0, 1) and x ∈ Xγ . Using
Lemma 3.3 we may choose α > 0 such that r(α) = γ . For each n ≥ 1 we have

log ‖A(x, n)‖ = log ‖Aα(x, n)‖ − #{1 ≤ j ≤ n : xj = 1} · logα

and it follows by Definition 2.2(iii) together with Theorem 2.1(iii) that

lim
n→∞

1
n

log ‖A(x, n)‖ = log %(α)− γ logα. (3.1)

Since the left hand side of this equation does not depend on the choice of α ∈ r−1(γ ) and
the right hand side does not depend on the choice of x ∈ Xγ , we conclude that the identity
(3.1) holds for all such choices. In particular if we define S(γ ) := log %(α)−γ logα then
(i) is satisfied. Now, if α ∈ (0,∞) is given, then for any γ ∈ [0, 1] we have, for all
x ∈ Xγ ,

S(γ )+ γ logα = lim
n→∞

1
n
(log ‖A(x, n)‖ + #{1 ≤ j ≤ n : xj = 1} · logα)

= lim
n→∞

1
n

log ‖Aα(x, n)‖ ≤ log %(α).

It follows from parts (iii) and (iv) of Definition 2.2 that the above inequality is an equality
if and only if γ = r(α). This proves (ii) for all cases except when α = 0, which is trivial
to verify directly.

Let us now prove (iii). Let u be as in the statement of the proposition, and define
x := u∞ ∈ 62. If u is cyclically balanced then x is Sturmian, and since ς(u) = p/q we
necessarily have x ∈ Xp/q . Using (i) together with Gelfand’s formula we may obtain

S(p/q) = lim
n→∞

1
nkq

log ‖A(x, nkq)‖ = lim
n→∞

1
nkq

log ‖A(u)n‖ =
1
kq

log ρ(A(u)).

Now suppose that u is not cyclically balanced. Using Lemma 3.3 let us choose α > 0
such that r(α) = p/q. Using Definition 2.2(v) together with part (ii) above we obtain

ρ(A(u)) · αkp = ρ(Aα(u)) < %(α)kq = ekq·S(p/q)αkp

and therefore (kq)−1 log ρ(A(u)) < S(p/q) as required to prove (iii).
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It remains to show that S is continuous and concave. As a consequence of (ii) we
have, for every γ ∈ (0, 1),

S(γ ) = inf
α∈(0,∞)

log %(α)− γ logα.

The restriction of S to (0, 1) is thus an infimum over a set of affine functions of γ , and
hence is concave. It follows from standard results in convex analysis that the restriction
of S to (0, 1) is also continuous.

Finally let us show that S is continuous on [0, 1], and hence is also concave on that
interval. We will show that S is continuous at 0, the case of continuity at 1 being similar.
Since S is concave, the limit of S at 0 exists, so it suffices to show that there exists a
single sequence (γn) of elements of (0, 1) which converges to zero and has the property
that S(γn) converges to S(0). To this end, let us choose a strictly increasing sequence of
integers (nj ) such that the sequence ‖A

nj
0 ‖
−1A

nj
0 converges to some matrix P . For each

n ≥ 0 it is not difficult to see that the word 0n1 is cyclically balanced, and therefore
S(1/(n+ 1)) = (n+ 1)−1 log ρ(An0A1) using (iii). We thus have

lim
j→∞

S(1/(nj + 1))− S(0) = lim
j→∞

1
nj + 1

log ρ(A
nj
0 A1)− log ρ(A0)

= lim
j→∞

1
nj + 1

(log ρ(A
nj
0 A1)− log ‖A

nj
0 ‖)

= lim
j→∞

1
nj + 1

log ρ(‖A
nj
0 ‖
−1A

nj
0 A1) = 0

since ρ(‖A
nj
0 ‖
−1A

nj
0 A1) converges to ρ(PA1) as j →∞. The proof is complete. ut

The following result together with Lemma 3.3 completes the proof of Theorem 2.3(i).

Corollary 3.5. The 1-ratio function r is nondecreasing.
Proof. It is an elementary fact in convex analysis that if λ1 and λ2 are subgradients of a
concave function at γ1 and γ2 respectively, and γ1 < γ2, then λ1 ≥ λ2. The result now
follows by Proposition 3.4. ut

4. Standard words

In this section we exploit some well-known features of Sturmian words to obtain a pair
of propositions dealing with the combinatorial structure of the sets Xp/q .

Let us define two maps from the set of standard pairs P to itself by 0(u, v) := (u, uv)
and 1(u, v) := (vu, v). Throughout the remainder of the paper we use the following no-
tation for continued fractions: if a1, . . . , an are positive integers, then we use the symbol
[a1, . . . , an] to denote the finite continued fraction

pn

qn
:=

1

a1 +
1

a2 + . . .+
1
an

,
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where pn and qn are coprime. Given positive integers a1, . . . , an let us write pk/qk :=
[a1, . . . , ak] for all k in the range 1 ≤ k ≤ n, and define also p0 := 0, q0 := 1, p−1 := 1,
q−1 := 0. Subject to these conventions, for each integer k with 1 ≤ k ≤ n the integers
pk, qk satisfy the recurrence relations pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.
If (ai)∞i=1 is sequence of positive integers, we use the notation γ = [a1, a2, . . .] to mean
limn→∞[a1, . . . , an] = γ .

The following proposition will be applied in the proof that r−1([0, 1] \ Q) has zero
Hausdorff dimension:

Proposition 4.1. Let γ = pn/qn = [a1, . . . , an] and pn−1/qn−1 = [a1, . . . , an−1]

where n ≥ 2 and an > 1. Then there exist x ∈ Xγ and an integer k > 1
3qn such

that d(x, T qn−1x) ≤ 2−k and q−1
n−1 log ρ(A(T kx, qn−1)) = S(pn−1/qn−1).

Proof. Let s−1 = 1, s0 = 0 and s1 := s
a1−1
0 s−1. Define sk inductively for 1 < k ≤ n by

sk := s
ak
k−1sk−2. For k = 1 we have (s0, s1) = 0a1−1((0, 1)). An easy proof by induction

shows that for odd k > 1,

(sk−1, sk) = (0
ak ◦1ak−1 ◦ · · · ◦1a2 ◦ 0a1−1)((0, 1))

and for even k,

(sk, sk−1) = (1
ak ◦ 0ak−1 ◦ · · · ◦1a2 ◦ 0a1−1)((0, 1)),

so in particular each sk is standard, and hence is cyclically balanced. Define pk/qk :=
[a1, . . . , ak] for 1 ≤ k ≤ n. We have |s1|1 = 1 = p1, |s1| = a1 = q1, and |sk|1 =
ak|sk−1|1 + |sk−2|1 and |sk| = ak|sk−1| + |sk−2| for 1 < k ≤ n. It follows by induction
that |sk|1 = pk and |sk| = qk for 1 ≤ k ≤ n. In particular ς(sn) = pn/qn = γ , and
since sn is cyclically balanced it follows that x := s∞n ∈ Xγ . The formula sn = s

an
n−1sn−2

implies that the infinite word x is prefixed by the finite word sann−1 and the infinite word

T qn−1x is prefixed by the finite word san−1
n−1 . In particular d(x, T qn−1x) ≤ 2−k where

k = (an − 1)qn−1. We have

qn = anqn−1 + qn−2 < (an + 1)qn−1 ≤ 3(an − 1)qn−1,

since an > 1, and thus k > 1
3qn as claimed. Finally, we note that T kx is prefixed by the

finite cyclically balanced word sn−1 and so by Proposition 3.4(iii) we have

q−1
n−1 log ρ(A(T kx, qn−1)) = |sn−1|

−1 log ρ(A(sn−1)) = S(pn−1/qn−1).

The proof is complete. ut

The following proposition will be used in the proof that r−1(p/q) is an interval:

Proposition 4.2. Let p/q ∈ (0, 1) with p and q coprime. Then there exists a standard
pair (u, v) such that ς(uv) = p/q. If (u, v) is such a pair then |uv|1 = p, |uv| = q,
|u| · |v|1 − |u|1 · |v| = 1, the words (uv)nu and (vu)nv are cyclically balanced for all
n ≥ 0, and the word u2v2 is not cyclically balanced.
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Proof. Let us write p/q = [a1, . . . , an] with an > 1. If n = 1 then define (u, v) :=
0an−2(0, 1). For odd n > 1, define

(u, v) := (0an−1
◦1an−1 ◦ · · · ◦1a2 ◦ 0a1−1)((0, 1)),

and for even n define

(u, v) := (1an−1
◦ 0an−1 ◦ · · · ◦1a2 ◦ 0a1−1)((0, 1)).

A proof by induction on n similar to that in the previous proposition shows that |uv|1 = p
and |uv| = q, and hence there exists a standard pair (u, v) such that ς(uv) = p/q.

For the rest of the proof we let (u, v) be such a standard pair. Since (u, v) is standard,
it follows by definition that the pairs (1n ◦0)(u, v) = ((uv)nu, uv) and (0n ◦1)(u, v) =
(vu, (vu)nv) are standard pairs for all n ≥ 0. In particular, the words (uv)nu and (vu)nv
are standard for all n ≥ 0, and hence these words are cyclically balanced. It is easy to
see that the set of all standard pairs (a, b) with the property that |a| · |b|1 − |a|1 · |b| = 1
contains the pair (0, 1) and is closed under the action of 0 and 1, and it follows that
every standard pair has this property. In particular, |u| · |v|1 − |u|1 · |v| = 1 as claimed.
Furthermore, since (u, uv) is a standard pair we have |u|(|uv|1)− |u|1(|uv|) = 1 so that
|uv| is coprime to |uv|1, and so any standard pair (u, v) which satisfies ς(uv) = p/q

necessarily has |uv|1 = p, |uv| = q as claimed.
Finally, an easy inductive proof starting with the pair (0, 1) shows that for every

standard pair (a, b) there is a (possibly empty) finite word p such that ab = p01 and
ba = p10 (see [22, p. 57]). Since (u, v) is a standard pair we have uv2u = p01p10 for
some finite word p, and hence in particular u2v2 is cyclically equivalent to a word of the
form 0p01p1. Since |1p1|1 = 2 + |0p0|1 the word 0p01p1 is not balanced, and hence
u2v2 is not cyclically balanced. ut

Remark 4.3. It is worth noting that if we put p1 = |u|1, q1 = |u| and p2 = |v|1,
q2 = |v|, then p1/q1 and p2/q2 are the Farey parents of p/q, that is, they are the unique
fractions such that p1/q1 < p/q < p2/q2, 0 < q1, q2 < q, q1+q2 = q and p1+p2 = p.
In fact one can show that the pair (u, v) specified by Proposition 4.2 is unique, but this is
not required for our argument.

Example 4.4. Let p/q = 3/7; then u = 00101, v = 01. In particular, we have u2v2
=

00101001010101, which contains the subwords 0010100 and 1010101 and thus is not
balanced (let alone cyclically balanced).

5. Preimages of rational points

In this section we give the proofs of the various clauses of part (ii) of Theorem 2.3.
Since S : [0, 1] → R is concave it follows from elementary convex analysis that the left
derivative S′`(γ ) and the right derivative S′r(γ ) both exist and are finite for every γ ∈
(0, 1), the right derivative S′r(0) at 0 either exists or equals +∞, and the left derivative
S′`(1) at 1 either exists or equals −∞. Furthermore, the set of all subderivatives of S at
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γ ∈ (0, 1) is precisely [S′`(γ ), S
′
r(γ )], the set of subderivatives of S at 0 is precisely

(−∞, S′r(0)], and the set of subderivatives of S at 1 is precisely [S′`(1),∞). Note that the
last two intervals are empty if the respective right or left derivative is infinite. For proofs
of these statements in a general context we direct the reader to [27].

In Proposition 3.4 we showed that α ∈ (0,∞) belongs to r−1(γ ) if and only if− logα
is a subgradient of S at γ . Since r is nondecreasing and r(0) = 0, it follows from this result
together with the preceding analysis that

r−1(0) = [0, e−S
′
r (0)], r−1(1) = [e−S

′
`(1),∞),

r−1(γ ) = [e−S
′
`(γ ), e−S

′
r (γ )] for each γ ∈ (0, 1),

where e−∞ is understood as zero and e+∞ is understood as+∞. Our task in this section,
then, is to compute these left and right derivatives explicitly in the case of rational γ
(showing in the process that they are finite at 0 and 1 if and only if the appropriate matrix
is diagonalisable) and then show that for γ ∈ (0, 1)∩Q the left and right derivatives of S
at γ cannot be equal to one another.

To begin the proof we treat those statements concerned with r−1(0) and r−1(1). Let
us suppose first that A0 is diagonalisable. Since A0 is nonnegative it has an eigenvalue
equal to its spectral radius (see e.g. [15, Theorem 8.3.1]), and since by Definition 2.2 its
trace is positive, the remaining eigenvalue lies in the interval (−ρ(A0), ρ(A0)]. It follows
easily that the limit P0 := limn→∞ ρ(A0)

−nAn0 exists. Using Proposition 3.4(iii) together
with the fact that the word 0n1 is cyclically balanced, we may now calculate the right
derivative of S at 0 as:

S′r(0) = lim
n→∞

S(1/(n+ 1))− S(0)
1/(n+ 1)

= lim
n→∞

(n+ 1)
(

1
n+ 1

log ρ(An0A1)− log ρ(A0)

)
= lim
n→∞

log ρ(An0A1)− (n+ 1) log ρ(A0)

= lim
n→∞

log ρ
(

1
ρ(A0)n+1A

n
0A1

)
= log

(
ρ(P0A1)

ρ(A0)

)
.

It follows that r−1(0) = [0, ρ(A0)/ρ(P0A1)] as claimed in the statement of Theo-
rem 2.3(ii). Let us now suppose instead that A0 is not diagonalisable. In this case A0
has a repeated eigenvalue equal to its spectral radius and has nontrivial Jordan form. It
follows that limn→∞ ‖ρ(A0)

−nAn0‖ = +∞. Let δ > 0 be the smallest entry of the matrix
A0A1, which is positive by Definition 2.2(ii), and for each n ≥ 2 let mn be the largest
entry of the nonnegative matrix ρ(A0)

−n−1An−1
0 . Clearly we have limn→∞mn = +∞.

Since An−1
0 and A0A1 are both nonnegative matrices it follows easily that

2ρ(ρ(A0)
−n−1An0A1) ≥ tr(ρ(A0)

−n−1An0A1) ≥ δmn

for each n ≥ 2, and hence

S′r(0) = lim
n→∞

S(1/(n+ 1))− S(0)
1/(n+ 1)

= lim
n→∞

log ρ
(

1
ρ(A0)n+1A

n
0A1

)
= +∞.
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In this case we therefore have r−1(0) = {0} as claimed. The proof of the statement con-
cerning r−1(1) and the matrix A1 is almost identical, and we omit it for brevity.

Let us now move on to the case of γ ∈ (0, 1)∩Q. Fix p/q ∈ (0, 1) for the remainder
of the proof, and let (u, v) be a standard pair such that ς(uv) = p/q, which exists by
Proposition 4.2. Define B1 := A(u), B2 := A(v), and A := B1B2. By Definition 2.2(ii)
the matrix A is positive, and hence by the Perron–Frobenius theorem A has two distinct
eigenvalues. It follows that the limit

P := lim
n→∞

ρ(A)−nAn

exists, and is the matrix corresponding to the unique projection whose image is the leading
eigenspace of A and whose kernel is the nonleading eigenspace of A. In particular, P is
of rank one.

By Proposition 4.2 the word uvuv is cyclically balanced and the word u2v2 is not:
since both words have slope p/q and length 2q, it follows from Proposition 3.4(iii) that

ρ(B1B2)
2
= ρ(A(uvuv)) = e2qS(p/q) > ρ(A(u2v2)) = ρ(B2

1B
2
2 ). (5.1)

Using Proposition 3.4(ii) we in particular have %(α) = eS(p/q)αp/q = ρ(Aα(uv))
1/q for

every α ∈ r−1(p/q) as claimed in Theorem 2.3(ii). Let p1 := |u|1, p2 := |v|1, q1 := |u|,
q2 := |v|. Using Proposition 3.4(iii) together with the fact that the words (uv)nv and
u(uv)n are cyclically balanced, we have, for each n ≥ 1,

S

(
np + p1

nq + q1

)
=

1
nq + q1

log ρ(A(u(uv)n)) =
1

nq + q1
log ρ(B1A

n),

S

(
np + p2

nq + q2

)
=

1
nq + q2

log ρ(A((uv)nv)) =
1

nq + q2
log ρ(AnB2).

Since |u| · |v|1−|u|1 · |v| = 1 we have ς(u) < ς(v), and therefore ς((uv)nu) < ς(uv) <

ς((vu)nv) for all n ≥ 0. We may therefore compute the left derivative of S at p/q as

S′`

(
p

q

)
= lim
n→∞

S
(p
q

)
− S

(np+p1
nq+q1

)
p
q
−

np+p1
nq+q1

= lim
n→∞

1
q

log ρ(A)− 1
nq+q1

log ρ(B1A
n)

p
q
−

np+p1
nq+q1

= lim
n→∞

(nq + q1) log ρ(A)− q log ρ(B1A
n)

pq1 − p1q
= − log

(
ρ(B1P)

q

ρ(A)q1

)
,

where we have used the identity

pq1 − p1q = (|u|1 + |v|1)|u| − |u|1(|u| + |v|) = |u| · |v|1 − |u|1 · |v| = 1.

A similar calculation for the right derivative yields

S′r

(
p

q

)
= log

(
ρ(PB2)

q

ρ(A)q2

)
.



A devil’s staircase from joint spectral radii 1763

Combining this with the observations at the start of this section we obtain the explicit
formula

r−1
(
p

q

)
= [e−S

′
`(p/q), e−S

′
r (p/q)] =

[
ρ(B1P)

q

ρ(A)q1
,
ρ(A)q2

ρ(PB2)q

]
(5.2)

asserted by Theorem 2.3.

Example 5.1. Let A0, A1 be as in (1.1) and let p/q = 1/2; here u = 0, v = 1, whence
p1 = 0, q1 = 1, p2 = 1, q2 = 1. Therefore,

B1 =

(
1 1
0 1

)
, B2 =

(
1 0
1 1

)
, A =

(
2 1
1 1

)
, P =

(
5+
√

5
10

√
5

5
√

5
5

5−
√

5
10

)
,

whence by (5.2), r−1(1/2) = [4/5, 5/4]. This result was previously derived in [30] by a
different, geometric method. (See also Table 2.1 and Figure 1.)

To finish the proof of Theorem 2.3(ii) we need to show that the interior of r−1(p/q)

is nonempty for any p, q. Suppose it is empty; then

ρ(B1P)
qρ(PB2)

q
= ρ(A)q1+q2 = ρ(A)q . (5.3)

For the remainder of the proof we shall assume that this relation holds, and thereby derive
a contradiction.

So, suppose ρ(B1P)ρ(PB2) = ρ(A). It follows from the definition of P that ρ(A) =
ρ(PAP). Since the spectral radius of a product of matrices is invariant under cyclic per-
mutations of that product, we have ρ(PB1) = ρ(B1P) and ρ(PB2) = ρ(B2P), and it
follows that ρ(PB1)ρ(B2P) = ρ(A) = ρ(PAP). Since A is invertible it has nonzero
spectral radius, and therefore ρ(PB1) and ρ(B2P) are positive. It follows from the defi-
nition of P that P is a nonnegative matrix, and hence PB1, B2P and PAP are all non-
negative. In particular, each of these three matrices has an eigenvalue equal to its spectral
radius. On the other hand since P has rank one, each of the matrices PB1, B2P and
PAP has determinant zero, and hence has one eigenvalue equal to zero. We conclude
that (trPB1)(trB2P) = trPAP .

Since the two-dimensional matrix PB1 has one positive eigenvalue and one eigen-
value equal to zero, it is diagonalisable. Define λ1 := ρ(PB1) and λ2 := ρ(B2P), and
choose an invertible matrix U such that

UPB1U
−1
=

(
λ1 0
0 0

)
, UB2PU

−1
=

(
a b

c d

)
where a, b, c and d are real numbers. We have λ2 = trB2P = trUB2PU

−1
= a + d

and λ1λ2 = (trPB1)(trB2P) = trPAP = trPB1B2P = trUPB1U
−1UB2PU

−1
=

λ1a. It follows that d = 0 and a = λ2. On the other hand, since detP = 0 we have
detUB2PU

−1
= 0 and therefore ad − bc = 0. We deduce that bc = 0, and therefore at

least one of b and c is zero.
We claim that there exists a nonzero vector ω ∈ R2 which is an eigenvector of both

B1 and B2. We consider separately the case b = 0 and the case c = 0.
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If b = 0, put ω = U−1(0, 1)T , and note that

PB1 = U
−1
(
λ1 0
0 0

)
U,

whence

PB1ω = U
−1
(
λ1 0
0 0

)(
0
1

)
=

(
0
0

)
,

B2Pω = U
−1
(
λ2 0
c 0

)(
0
1

)
=

(
0
0

)
,

i.e., PB1ω = B2Pω = 0. We claim that ω is an eigenvector of B1 and of B2. Since B2
is invertible we deduce from the relation B2Pω = 0 that ω belongs to the kernel of P .
Since B1 is invertible and PB1 = 0, we deduce that B1ω also lies in the kernel of P ,
and therefore ω is an eigenvector of B1. Finally, since by definition the kernel of P is one
of the eigenspaces of A = B1B2, the vector ω is also an eigenvector of B1B2, and since
B−1

1 ω is proportional to ω we conclude that B2ω is proportional to ω as required.
The case c = 0 is similar. Defineω := U−1(1, 0)T so that PB1ω = λ1ω andB2Pω =

λ2ω. Since ω = λ−1
1 PB1ω the vector ω belongs to the image of P , and is therefore fixed

by P since P is a projection. It follows from this and the relation B2Pω = λ2ω that
B2ω = λ2ω, so that ω is an eigenvector of B2. On the other hand, the image of P is an
eigenspace of A and therefore ω is an eigenvector of A = B1B2. Since B2ω = λ2ω we
deduce from this that ω is also an eigenvector of B1 as required. This proves the claim.

We may now derive the desired contradiction. Let ω be a common eigenvector of the
matricesB1 andB2, and let us writeBiω = ξiω for i = 1, 2. We haveB2

1B
2
2ω = ξ

2
1 ξ

2
2ω =

(B1B2)
2ω so that ξ2

1 ξ
2
2 is an eigenvalue of both B2

1B
2
2 and (B1B2)

2. It follows immedi-
ately that ρ(B2

1B
2
2 ) = max{|ξ2

1 ξ
2
2 |, |(detB1B2)

2ξ−2
1 ξ−2

2 |} = ρ(B1B2)
2, contradicting

(5.1). We conclude that the relation (5.3) cannot hold, and the proof of Theorem 2.3(ii) is
complete.

Corollary 5.2. The function S : [0, 1] → R is strictly concave.

Proof. We know that S is concave; if it were not strictly concave, there would be an in-
terval J = (γ1, γ2) such that S|J would be affine, i.e., S′|J would exist (and be constant).
This contradicts the fact that S′(γ ) does not exist for any rational γ . ut

Remark 5.3. One can show that for the matrices B1 and B2 we have

ρ(B1B2) > ρ(B1)ρ(B2),

which is essentially equivalent to Corollary 5.2. We leave this as an exercise for the inter-
ested reader.
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6. Preimages of irrational points: preliminaries

In this section we apply a dynamical estimate to prove an inequality dealing with the
subgradients of the function S. We begin with the following lemma, which allows us to
choose a family of norms on R2 which is adapted to the study of the family Aα . The proof
is identical to that of [13, Lemma 3.3]. Note that the proof requires that A0 and A1 do not
have a common invariant subspace, as was stipulated in Definition 2.2(i).

Lemma 6.1. There exists a family of norms {‖·‖α : α ∈ (0,∞)} on R2 with the following
properties. For every v ∈ R2, α ∈ (0,∞) and i = 0, 1 we have ‖A(α)i v‖α ≤ %(α)‖v‖α .
If K ⊂ (0,∞) is compact, then there is a constant C > 1 depending on K such that
‖v‖ ≤ C‖v‖α ≤ C

2
‖v‖ for all v ∈ R2 and α ∈ K .

For the remainder of this section we fix a family of norms ‖·‖α with the above properties.
We also make use of the following elementary result:

Lemma 6.2. Let B be a 2× 2 invertible real matrix, and let ‖ · ‖ be the Euclidean norm.
Then there exists a rank one matrix Q such that ‖B −Q‖ = |detB|/‖B‖.

Proof. We apply the existence of a singular value decomposition for B. Let us choose
unitary matrices U,V and a nonnegative diagonal matrixD such that B = UDV T . Since
U and V are isometries with respect to the Euclidean norm we have ‖D‖ = ‖B‖, and
since |detU | = |detV | = 1 we have |detD| = |detB|. It follows that the nonzero entries
of D are ‖B‖ and |detB|/‖B‖. If P is a matrix which has the entry ‖B‖ in the same
position as for D, with all of its other entries being zero, then clearly P has rank one and
‖D − P ‖ = |detB|/‖B‖. Now let Q := UPV T . ut

We now require a dynamical result which describes the dependence of the eigenvectors
of certain products Aα(u) on the structure of the words u. The following result is similar
in spirit to [23, Theorem 2.2], but has the additional property that the modulus of conti-
nuity of the vector-valued function depends on α in a controllable manner. The restriction
to rational γ serves only to simplify the proof: by working instead with two-sided Stur-
mian sequences indexed over Z, this condition could be removed. The rational case being
sufficient for our argument, we ignore the more general statement.

Proposition 6.3. Let L ⊂ (0, 1) be compact, and let γ = r(α) ∈ L∩Q. Then there exist
constants θ ∈ (0, 1) and K > 1 depending only on L and a function v : Xγ → R2 such
that the following properties hold. For each x ∈ Xγ , v(x) is nonnegative and satisfies
‖v(x)‖α = 1 and Aα(x, n)v(x) = %(α)nv(T nx) for all n ≥ 1. If x, y ∈ Xγ with
d(x, y) ≤ 2−k , then ‖v(T kx)− v(T ky)‖α ≤ Kθ

k .

Proof. Let us write γ = p/q in least terms. Consider any x ∈ Xγ : since 0 < p/q < 1 the
matrix Aα(x, q) is a mixed product of A0 and A1, and so is positive by Definition 2.2(ii).
By the Perron–Frobenius theorem it follows that Aα(x, q) has a unique positive eigen-
vector with associated eigenvalue equal to ρ(Aα(x, q)) = limk→∞ ‖Aα(x, kq)‖

1/k
=

%(α)q . Let v(x) be a positive vector belonging to this eigenspace such that ‖v(x)‖α = 1.
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Let us fix x ∈ Xγ and show that Aα(x, n)v(x) = %(α)
nv(T nx) for all n ≥ 1. If n ≥ q

then

Aα(x, n)v(x) = Aα(T
qx, n− q)Aα(x, q)v(x) = %(α)

qAα(T
qx, n− q)v(x)

= %(α)qAα(x, n− q)v(x),

and by iterating this identity we may reduce to the case where 1 ≤ n < q. In this case

%(α)q = ‖Aα(x, q)v(x)‖α = ‖Aα(T
nx, q − n)Aα(x, n)v(x)‖α

≤ ‖Aα(T
nx, q − n)‖α‖Aα(x, n)v(x)‖α

≤ %(α)q−n‖Aα(x, n)v(x)‖α ≤ %(α)
q

and it follows that ‖Aα(x, n)v(x)‖α = %(α)
n. Moreover

Aα(T
nx, q)Aα(x, n)v(x) = Aα(T

qx, n)Aα(x, q)v(x)

= %(α)qAα(T
qx, n)v(x) = %(α)qAα(x, n)v(x).

Thus Aα(x, n)v(x) is a positive eigenvector of Aα(T
nx, q) with corresponding eigen-

value %(α)q and with norm equal to %(α)n. Using the uniqueness of the leading eigen-
space in the Perron–Frobenius theorem we conclude that %(α)−nAα(x, n)v(x) = v(T nx)
as claimed.

Since r is continuous and monotone with r(0) = 0 and limα→∞ r(α) = 1, the set
r−1(L) is a closed subset of (0,∞)which is bounded away from 0 and∞, hence compact.
For every α ∈ r−1(L) we have max{ρ(A0), ρ(αA1)} < %(α) by Definition 2.2(v), since
r(α) /∈ {0, 1}. Let us define

θ := sup
α∈r−1(L)

max
{
|detA0|

%(α)2
,
|det(αA1)|

%(α)2

}
≤ sup
α∈r−1(L)

max{ρ(A0)
2, ρ(αA1)

2
}

%(α)2
< 1,

and let x, y ∈ Xγ with d(x, y) ≤ 2−k . We will show that ‖v(T kx)−v(T ky)‖α ≤ 6C6θk ,
where C > 1 is the constant provided by Lemma 6.1 for to the compact set r−1(L).
If 3C6θk ≥ 1 then clearly ‖v(x) − v(y)‖α ≤ 2 ≤ 6C6θk , so we shall assume for the
remainder of the proof that 3C6θk < 1. Since

|det(%(α)−kAα(x, k))|

‖%(α)−kAα(x, k)‖
≤

C2θk

‖%(α)−kAα(x, k)‖α
= C2θk,

it follows from Lemma 6.2 that there exists a rank one matrix Q ∈ M2(R) such that
‖%(α)−kAα(x, k)−Q‖ ≤ C

2θk . Since d(x, y) ≤ 2−k we have Aα(x, k) = Aα(y, k) and
therefore also ‖%(α)−kAα(y, k)−Q‖ ≤ C

2θk . Clearly,

‖%(α)−kAα(x, k)v(x)−Qv(x)‖α ≤ C
4θk <

1
3C2 <

1
3
,

and therefore in particular |1 − ‖Qv(x)‖α| < 1/3 so that 2/3 < ‖Qv(x)‖α < 4/3.
By identical reasoning we have 2/3 < ‖Qv(y)‖α < 4/3. Now, since the image of Q
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is one-dimensional, there exists λ ∈ R such that Qv(x) = λQv(y). We have |λ| =
‖Qv(x)‖α/‖Qv(y)‖α < 2 and therefore

‖v(T kx)− λv(T ky)‖α = ‖%(α)
−kAα(x, k)v(x)− λ%(α)

−kAα(y, k)v(y)‖α

≤ ‖%(α)−kAα(x, k)v(x)−Qv(x)‖α

+ ‖λQv(y)− λ%(α)−kAα(y, k)v(y)‖α

≤ (1+ |λ|)C4θk < 3C4θk.

We now claim that the real number λ is positive. Suppose that it is negative; since
v(T kx) and v(T ky) are nonnegative, we must have ‖v(T kx) − λv(T ky)‖ ≥ ‖v(T kx)‖
and therefore

‖v(T kx)− λv(T kx)‖α ≥ C
−1
‖v(T kx)− λv(T ky)‖

≥ C−1
‖v(T kx)‖ ≥ C−2

‖v(T kx)‖α = C
−2,

which contradicts our assumption that 3C6θk < 1. We conclude that λ must be positive,
and therefore

|1− λ| =
∣∣‖v(T kx)‖α − ‖λv(T ky)‖α∣∣ ≤ ‖v(T kx)− λv(T ky)‖α < 3C4θk.

It follows easily that ‖v(T kx)− v(T ky)‖α < 6C4θk < 6C6θk . The proof of the proposi-
tion is complete. ut

Finally, we make use of the following simple result from matrix analysis, which we adapt
from [9, Lemma 2].

Lemma 6.4. Let |||·||| be a norm on R2, letB be a 2×2 matrix with |||B||| ≤ 1, and suppose
that v ∈ R2 with |||v||| = 1. Let C > 1 be any constant such that C−1

‖u‖ ≤ |||u||| ≤ C‖u‖

for all u ∈ R2. Then 1− 2C2√
|||Bv − v||| ≤ ρ(B) ≤ 1.

Proof. If M1 and M2 are a pair of 2 × 2 real matrices, µ is an eigenvalue of M2, and
λ1, λ2 are the eigenvalues of M1, then the bound

min{|λ1 − µ|, |λ2 − µ|} ≤
√
(‖M1‖ + ‖M2‖)(‖M1 −M2‖)

is well-known (see for example [2, §VIII]). Define M1 := B and M2 := B + ‖v‖
−2(v −

Bv)vT ; we may then estimate

‖M1 −M2‖ = ‖v‖
−2
‖(v − Bv)vT ‖ ≤ ‖v‖−1

‖Bv − v‖ ≤ C2
|||Bv − v|||

and

‖M1‖ + ‖M2‖ ≤ 2‖M1‖ + ‖M1 −M2‖ ≤ 2C2
|||B||| + C2

|||Bv − v||| ≤ 4C2.

Since M2v = v, 1 is an eigenvalue of M2, and it follows that B has an eigenvalue λ such
that |λ − 1| ≤ 2C2√

|||Bv − v|||. The result follows in view of the elementary inequality
|λ| ≤ ρ(B) ≤ |||B||| = 1. ut

The following key estimate forms the core of the proof of Theorem 2.3(iii):
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Lemma 6.5. Let L ⊂ (0, 1) be a compact interval, let γ = pn/qn = [a1, . . . , an] ∈ L

where n, an > 1, and choose any α ∈ (0,∞) such that r(α) = γ . Let pn−1/qn−1 =

[a1, . . . , an−1]. Then

0 ≤ (−1)n+1
(
S(γ )− S(pn−1/qn−1)

γ − pn−1/qn−1
+ logα

)
≤ Kqnθ

qn ,

where K > 1 and θ ∈ (0, 1) are constants depending only on L.

Proof. From the classical theory of continued fractions we have γ < pn−1/qn−1 if n is
even, and the reverse inequality holds if n is odd. By Proposition 3.4 we know that S is
concave and − logα is a subgradient of S at γ . Since the average gradient of a concave
function on a closed interval is bounded below by every subgradient at the right endpoint,
and bounded above by any subgradient at the left endpoint, we immediately deduce the
inequality

0 ≤ (−1)n+1
(
S(γ )− S(pn−1/qn−1)

γ − pn−1/qn−1
+ logα

)
.

In proving the remainder of the lemma we will assume that qn ≥ m for some constant
m ≥ 1 to be determined below. Indeed, given any such m it is clear that L contains only
finitely many rational numbers pn/qn with denominator less than m, and so by adjusting
the constant K > 1 if necessary, the full strength of the lemma follows from this special
case. Since the hypotheses of Proposition 4.1 are satisfied, we may fix an integer k > 1

3qn

and a point x ∈ Xγ such that d(x, T qn−1x) ≤ 2−k and q−1
n−1 log ρ(A(T kx, qn−1)) =

S(pn−1/qn−1). Let y := T kx. By Proposition 6.3 we have

‖%(α)−qn−1Aα(y, qn−1)v(y)− v(y)‖α = ‖v(T
qn−1y)− v(y)‖α ≤ Kθ

k

for some constantsK>1 and θ ∈ (0, 1) depending onL. Combining this with Lemma 6.4
we obtain

1− 2C2
√
K θ

1
6 qn ≤ %(α)−qn−1ρ(Aα(y, qn−1)) ≤ 1,

where C > 1 is the constant assigned by Lemma 6.1 to the compact set r−1(L) ⊂ (0,∞).
Since r(α) = γ we have %(α) = eS(γ )αγ , and therefore

1− 2C2
√
K θ

1
6 qn ≤ (e−qn−1S(γ )α−qn−1γ )(eS(pn−1/qn−1)αpn−1) ≤ 1.

Let m be an integer which is large enough that 1− 2C2
√
K θm/6 > e−1. By considering

only those cases where qn ≥ m, we may by taking logarithms obtain

−2C2
√
K θ

1
6 qn ≤ qn−1S(pn−1/qn−1)− qn−1S(γ )+ (pn−1 − qn−1γ ) logα ≤ 0,

and by a slight rearrangement,

0 ≤ S(γ )− S(pn−1/qn−1)+

(
γ −

pn−1

qn−1

)
logα ≤

2C2
√
K

qn−1
θ

1
6 qn .
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Now, since

(−1)n+1
(
γ −

pn−1

qn−1

)
=
(−1)n+1

qn−1qn
(pnqn−1 − qnpn−1) =

1
qn−1qn

> 0

we may derive the inequality

0 ≤ (−1)n+1
(
S(γ )− S(pn−1/qn−1)

γ − pn−1/qn−1
+ logα

)
≤ 2qnC2

√
K θ

1
6 qn ,

which completes the proof. ut

The following interesting result may be derived from Lemma 6.5:

Corollary 6.6. Let L ⊂ (0, 1) be compact. Then there exist constants C > 1 and θ ∈
(0, 1) depending on L such that for all p/q ∈ L with p and q coprime, the length of the
interval r−1(p/q) is bounded by Cqθq .

Proof. By enlarging the constant C if necessary it is sufficient to consider rationals p/q
which are not of the form 1/k for an integer k ≥ 1, since L can contain only finitely many
rationals of this form. Let p/q ∈ L with p and q coprime and p > 1. These assumptions
allow us to find an integer n ≥ 2 and integers a1, . . . , an with an > 1 such that p/q =
[a1, . . . , an]. If α1 and α2 are the endpoints of the closed interval r−1(p/q), then we may
apply Lemma 6.5 twice with α = α1, α2 to see that |logα2 − logα1| ≤ 2Kqθq . The
result follows. ut

Recall that if γ = [a1, a2, . . .] ∈ (0, 1) \Q and the sequence (an) is bounded, then there
exists a constant δ > 0 such that |γ − p/q| > δq−2 for all q ∈ N and p ∈ Z (see for
example [18]). In particular, for all sufficiently large k the relation |γ − p/q| ≤ 1/qk

is impossible for integers p ∈ Z and q ≥ 2. The proof of the following lemma is thus
identical to the proof of [13, Lemma 8.3]:

Lemma 6.7. Let γ = [a1, a2, . . .] ∈ (0, 1) \ Q, and suppose that an = 1 for all suffi-
ciently large n. Then r−1(γ ) is a singleton set.

7. Preimages of irrational points: proof of Theorem

Let us define Z := r−1((0, 1) \ Q), and partition Z into two subsets as follows. We de-
fine Z1 to be the set of all α ∈ Z such that the infinite continued fraction expansion
[a1, a2, . . .] of the irrational number r(α) ∈ (0, 1) satisfies ak = 1 for all but finitely
many k. If γ = [a1, a2, . . .] is an irrational number of this type, then by Lemma 6.7 the
set r−1(γ ) is a singleton set. It follows that Z1 is countable, and hence has zero Hausdorff
dimension. Let us now define Z0 := Z \ Z1. Since the Hausdorff dimension of a count-
able union of sets is equal to the supremum of their individual Hausdorff dimensions, to
prove that dimH(Z) = 0 as claimed it is sufficient (and indeed necessary) to show that
dimH(Z0) = 0. Moreover, it is sufficient to show that for some sequence of sets Lk whose
union covers (0, 1), each of the sets Z0∩ r

−1(Lk) has Hausdorff dimension equal to zero.
For the remainder of the proof, we fix a set L of the form [1/k, 1− 1/k] with the aim of
showing that the set r−1(L) ∩ Z0 has Hausdorff dimension zero.
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Given natural numbers n, a1, . . . , an, let 0(a1,...,an) denote the half-open interval with
endpoints [a1, . . . , an] and [a1, . . . , 1 + an] which excludes the former endpoint but in-
cludes the latter. This interval consists precisely of those elements of (0, 1) which admit a
continued fraction expansion whose first n entries are a1, . . . , an respectively, and whose
length is at least n+ 1. Given natural numbers n ≥ 1 and a1, . . . , an, let us define

I(a1,...,an) := r−1(L ∩ 0(a1,...,an)).

Note that by our choice of L, if n ≥ 2 then the set I(a1,...,an) is either empty or is equal to
all of r−1(0(a1,...,an)). For each N ≥ 2 let us define UN to be the set of all I(a1,...,an) such
that an > 1, n ≥ N , and ak = 1 for all k such that N ≤ k < n. The reader may easily
verify that 0(a1,...,an) ∩ 0(b1,...,bm) = ∅ when the vectors (a1, . . . , an) and (b1, . . . , bm)

are distinct, and furthermore,

r−1(L) ∩ Z0 ⊆
⋃

(a1,...,an)∈UN
I(a1,...,an) (7.1)

for every N ≥ 2. We make the following key claim: if n ≥ 2 is an integer, then for each
n-tuple of natural numbers (a1, . . . , an) ∈ Nn such that an > 1 we have the inequality

diam I(a1,...,an) ≤ Kqnθ
qn , (7.2)

where pn/qn := [a1, . . . , an] in least terms, and K > 1 and θ ∈ (0, 1) are constants
depending only on L.

Let us prove this claim. Fix an integer n ≥ 2 and suppose that I(a1,...,an) is nonempty
with an > 1. Let α1 and α2 be respectively the infimum and the supremum of I(a1,...,an),
and let γi = r(αi) for i = 1, 2. If n is odd then γ1 = [a1, . . . , 1 + an] and γ2 =

[a1, . . . , an], and if n is even then γ1 = [a1, . . . , an] and γ2 = [a1, . . . , 1 + an]. Define
also pn−1/qn−1 := [a1, . . . , an−1] = limi→∞[a1, . . . , an−1, i]. Our objective is to bound
the difference α2 − α1.

We consider first the case where n is odd, in which case pn−1/qn−1 < γ1. Recall that
for a concave function defined on an interval [a, b], the average gradient in the interval is
greater than the value of any subgradient at b, and less than the value of any subgradient
at a. Since − logα2 is a subgradient of S at γ2, and − logα1 is a subgradient of S at γ1, it
follows that

S(γ2)− S(γ1) ≥ (γ2 − γ1)(− logα2),

S(γ1)− S(pn−1/qn−1) ≥ (γ1 − pn−1/qn−1)(− logα1).

Adding these two inequalities together, we obtain

(γ2 − γ1)(− logα2)+ (γ1 − pn−1/qn−1)(− logα1) ≤ S(γ2)− S(pn−1/qn−1)

and therefore

(γ1 − pn−1/qn−1)(logα2 − logα1) ≤ S(γ2)− S(pn−1/qn−1)

+ (γ2 − pn−1/qn−1) logα2.
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Since L is a compact subinterval of (0, 1), r−1(L) is a compact subinterval of (0,∞), so
there is a constant C > 0 depending on L such that |log x − log y| ≥ C−1

|x − y| for
every x, y ∈ L. Hence

C−1(α2 − α1) ≤ logα2 − logα1

≤

(
γ2 − pn−1/qn−1

γ1 − pn−1/qn−1

)(
S(γ2)− S(pn−1/qn−1)

γ2 − pn−1/qn−1
+ logα2

)
.

Let pn−2/qn−2 = [a1, . . . , an−2] in least terms. Since

γ1 =
(1+ an)pn−1 + pn−2

(1+ an)qn−1 + qn−2
, γ2 =

anpn−1 + pn−2

anqn−1 + qn−2
,

and qn−1pn−2 − qn−2pn−1 = 1 it follows that

γ2 − pn−1/qn−1

γ1 − pn−1/qn−1
=

1/(anq2
n−1 + qn−1qn−2)

1/((1+ an)q2
n−1 + qn−1qn−2)

=

1+ an +
qn−2
qn−1

an +
qn−2
qn−1

≤
2+ an
an

≤ 3.

Applying Lemma 6.5, we obtain

α2 − α1 ≤ 3C(−1)n+1
(
S(γ2)− S(pn−1/qn−1)

γ2 − pn−1/qn−1
+ logα2

)
≤ 3CKqnθqn

as required, which completes the proof of the claim in the case where n is odd.
We now consider the case in which n is even. In this case we have pn−1/qn−1 > γ2.

By comparing subgradients in a similar manner to the odd case we arrive at the inequali-
ties

S(γ2)− S(γ1) ≤ (γ2 − γ1)(− logα1),

S(pn−1/qn−1)− S(γ2) ≤ (pn−1/qn−1 − γ2)(− logα2).

Adding these two inequalities yields

S(pn−1/qn−1)− S(γ1) ≤ (pn−1/qn−1 − γ2)(− logα2)+ (γ2 − γ1)(− logα1)

and therefore

S(pn−1/qn−1)−S(γ1)+ (pn−1/qn−1−γ1) logα1 ≤ (γ2−pn−1/qn−1)(logα2− logα1).

Dividing by the negative real number γ2 − pn−1/qn−1 we obtain

logα2 − logα1 ≤ −

(
γ1 − pn−1/qn−1

γ2 − pn−1/qn−1

)(
S(γ1)− S(pn−1/qn−1)

γ1 − pn−1/qn−1
+ logα1

)
≤ 3(−1)n+1

(
S(γ1)− S(pn−1/qn−1)

γ1 − pn−1/qn−1
+ logα1

)
,

and it follows using Lemma 6.5 that α2 − α1 ≤ 3CKqnθqn as before. This completes the
proof of the claim.



1772 Ian D. Morris, Nikita Sidorov

We may now show directly that r−1(L) ∩ Z0 has Hausdorff dimension zero. We re-
call the definition of the Hausdorff dimension of a set Y ⊆ R. For each λ ≥ 0, the
λ-dimensional Hausdorff outer measure of the set Y is defined to be the quantity

lim sup
δ→0

inf
{∑
U∈U

(diamU)λ : Y ⊆
⋃
U∈U

U and sup
U∈U

diamU ≤ δ
}
,

where each U is a collection of subsets of R. The Hausdorff dimension of the set Y is then
defined to be the infimum of the set of all λ ≥ 0 such that the λ-dimensional Hausdorff
outer measure of Y is zero, or equivalently the infimum of the set of all λ ≥ 0 for which
this value is finite.

Let λ ∈ (0, 1], and choose any δ > 0. We saw in (7.1) that the union of the elements
of UN contains r−1(L) ∩ Z0 for every N ≥ 2. It follows from (7.2) that if N is large
enough then every element of UN has diameter less than δ. For any such N we have∑

(a1,...,an)∈UN
(diam I(a1,...,an))

λ
≤

∑
(a1,...,an)∈UN

(Kqnθ
qn)λ

<
∑

p/q∈Q∩(0,1)
(Kqθq)λ =

∞∑
q=2

q−1∑
p=1

Kλqλθλq

< K

∞∑
q=1

q2θλq =
Kθλ(1+ θλ)
(1− θλ)3

,

and since this bound is independent of δ, we conclude that the λ-dimensional Hausdorff
measure of r−1(L)∩Z0 is finite. Since λmay be chosen arbitrarily close to 0, we conclude
that dimH(r

−1(L) ∩ Z0) = 0 as required. The proof of Theorem 2.3(iii) is complete.

8. Explicit formulae

In this section we prove Theorem 2.5 and present some bounds which can be used for
practical computation of r−1(γ ) in the special case of the matrices defined by (1.1) when
γ is not too well approximated by rationals. In [13] we proved the following result (the
indexing of the sequences in the statement of Theorem 8.1 has been adjusted so as to
agree with the conventions used elsewhere in this section):

Theorem 8.1. Let (τn)∞n=0 denote the sequence of integers defined by τ−2 := 1, τ−1, τ0
:= 2, and

τn+1 := τnτn−1 − τn−2 for all n ≥ 0, (8.1)

and let (Fn)∞n=0 denote the sequence of Fibonacci numbers, defined by F0 := 1, F1 := 1
and Fn+1 := Fn + Fn−1 for all n ≥ 1. For each α ≥ 0 let Aα be the pair of matrices
defined by (1.1), and define a real number α∗ ∈ (0, 1] by

α∗ := lim
n→∞

(
τ
Fn+1
n

τ
Fn
n+1

)(−1)n

=

∞∏
n=0

(
1−

τn−2

τn−1τn

)(−1)n+1Fn

. (8.2)
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Then this infinite product converges unconditionally, and Aα∗ does not have the finiteness
property. The numerical value of the constant α∗ is

α∗ ' 0.74932654633036755794396194809 . . . .

Here α∗ is in fact the unique positive real number such that r(α∗) = (3 −
√

5)/2. This
particular constant was studied because γ∗ := (3 −

√
5)/2 has a particularly simple

continued fraction expansion: we have γ∗ = [2, 1, 1, 1, 1, . . . ], which is the simplest
possible expansion of an element of (0, 1/2) \Q.

Now that Theorem 2.3 has been proved, the proof of Theorem 2.5 may be obtained in
a manner essentially similar to the proof of Theorem 8.1:

Proof of Theorem 2.5. Let γ , (qn), (sn) and (ρn) be as in the statement of the theo-
rem, and let r be as in Definition 2.2. An inductive argument as used in §4 shows that
|sn|1 = pn and |sn| = qn for every n ≥ 1. In particular, ς(sn) = pn/qn for all n ≥ 1 and
therefore q−1

n log ρn = S(pn/qn) for every positive integer n by Proposition 3.4. By The-
orem 2.3(i) the function r is continuous, nondecreasing, and satisfies r((0,∞)) ⊇ (0, 1).
In particular, r−1(γ ) is nonempty, and is either a point or a closed interval. A conse-
quence of Theorem 2.3(iii) is that r−1(γ ) has empty interior, and we conclude that there
is a unique point αγ ∈ (0,∞) which satisfies r(αγ ) = γ . It follows via Proposition 3.4
that − logαγ ∈ R is the unique subderivative of S at γ , and hence S is differentiable at γ
with S′(γ ) = − logαγ . We may therefore calculate

S′(γ ) = lim
n→∞

S
(pn+1
qn+1

)
− S

(pn
qn

)
pn+1
qn+1
−

pn
qn

= lim
n→∞

1
qn+1

log ρn+1 −
1
qn

log ρn
pn+1
qn+1
−

pn
qn

= lim
n→∞

qn log ρn+1 − qn+1 log ρn
qnpn+1 − qn+1pn

= lim
n→∞

(−1)n(qn log ρn+1 − qn+1 log ρn),

the existence of all of these limits being guaranteed by the differentiability of S at γ . By
rearranging we obtain

αγ = r−1(γ ) = e−S
′(γ )
= lim
n→∞

(
ρ
qn+1
n

ρ
qn
n+1

)(−1)n

as claimed. To derive the product expression for αγ let us define

αn :=

(
ρ
qn+1
n

ρ
qn
n+1

)(−1)n

for each n ≥ −1, and observe that

αn

αn−1
=

(
ρ
qn+1
n ρ

qn
n−1

ρ
qn
n+1ρ

qn−1
n

)(−1)n

=

(
ρ
an+1qn
n ρ

qn
n−1

ρ
qn
n+1

)(−1)n

=

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn

for each n ≥ 0, where we have used the relation qn+1 = an+1qn + qn−1. We also have

α−1 =
ρ
q−1
0

ρ
q0
−1
=
ρ(A0)

0

ρ(A1)1
=

1
ρ(A1)

.
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Hence

αγ = lim
N→∞

αN = lim
N→∞

α−1

N∏
n=0

αn

αn−1
= lim
N→∞

1
ρ(A1)

N∏
n=0

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn

=
1

ρ(A1)

∞∏
n=0

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn

as claimed. The proof is complete. ut

For the remainder of the section we let {Aα : α ≥ 0} be the specific family of matrices
defined by (1.1). In this case we have ρ(A1) = 1, which means that the term 1/ρ(A1)

may be removed from the infinite product formula in Theorem 2.5. Let γ ∈ (0, 1) with
infinite continued fraction expansion given by γ = [a1, a2, a3, . . . ], and let pn/qn be the
nth convergent of γ . In view of the identity AT0 = A1, by replacing γ with 1 − γ and
α with 1/α if necessary, we will assume without loss of generality that α ∈ (0, 1) and
γ ∈ (0, 1/2), which is equivalent to a1 ≥ 2.

Let us consider the sequence of words specified by γ given by s−1 = 1, s0 = 0,
s1 := s

a1−1
0 s−1 and sn+1 = s

an+1
n sn−1 for all n ≥ 1. Since sn prefixes sn+1 for every n,

it follows that sn prefixes sk for every k ≥ n. Since furthermore the lengths |sn| = qn
tend to infinity, it follows that there is a unique infinite word s∞ ∈ 62 which is prefixed
by every sn. In particular, this word is balanced, and it is recurrent: for each n ≥ 0 the
prefix sn−1 occurs in at least two distinct locations in the prefix sn+1, hence in at least
four distinct locations in the prefix sn+3, and so forth, so that every subword of s∞ recurs
in infinitely many positions.

Since ς(sn) = pn/qn, we have ς(sn) → γ as n → ∞ and using Theorem 2.1 it
follows that s∞ ∈ Xγ . For γ = γ∗ the word s∞ is none other than the Fibonacci word
010010101001 . . . , which is the fixed point of the substitution 0→ 01, 1→ 0 (see [10,
22]).

Define Bn = A(sn) for each n ≥ −1. We have B−1 = A1, B0 = A0, B1 = A
a1−1
0 A1,

and
Bn+1 = B

an+1
n Bn−1, n ≥ 1. (8.3)

Put τn = trBn and ρn = ρ(Bn) as before. Note that since detBn ≡ 1 we have τn =
ρn + ρ

−1
n and conversely ρn = 1

2 (τn +
√
τ 2
n − 4). In particular, τn ∼ ρn as n → ∞.

Subject to the above hypotheses we will prove the following rigorous estimate for the
error in approximating αγ by a partial product:

Proposition 8.2. Suppose there exists a constant L > 0 and an integer n0 ≥ 3 such that

qn ≤ Lρn−1 for all n > n0. (8.4)

Then for every N ≥ n0,∣∣∣∣logαγ − log
( N∏
n=0

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn)∣∣∣∣ ≤ 2LC0

ρN
, (8.5)

where C0 := 16(a1 + 1)(a1 + 2)+ 1.
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Remark 8.3. The assumption (8.4) is very weak. In particular, it holds for any non-
Liouville γ—see Lemma 8.7 below.

In the special case where the continued fraction coefficients of γ are bounded, Propo-
sition 8.2 lends itself to particularly easy verification. We have:

Corollary 8.4. Suppose there exist integers K ≥ 2 and n0 ≥ 3 and a constant L > 0
such that the inequalities qn0+1 ≤ Lρn0 and sup{ak : k ≥ 2+ n0} ≤ K − 1 are satisfied
and the matrix Bn0−1 − K · I is nonnegative, where I denotes the identity. Then (8.5)
holds for every N ≥ n0.

Since the spectral radii ρn grow superexponentially as a function of n (see Lemma 8.5
below), this allows very exact estimates to be made using relatively few terms. In order
to prove the proposition and its corollary we require two lemmas. The following result is
the technical core of the proof:

Lemma 8.5. The inequality ∣∣∣∣1− ρn+1

ρ
an+1
n ρn−1

∣∣∣∣ ≤ C0

ρ2
n−1

(8.6)

holds for all n ≥ 1, where C0 is as in Proposition 8.2. In particular, ρn+1 ∼ ρ
an+1
n ρn−1

as n→∞.

Proof. We first construct an auxiliary continued fraction as follows:

β = [d1, 1, d2, 1, d3, 1, . . . ],

where d1 = a1 − 1 and dk is the number of zeros between the kth and (k + 1)st unities
in s∞ for k ≥ 2. For instance, for a1 = 2 and ak ≡ 1 for k ≥ 2 (i.e., the Fibonacci word
s∞) we have β = [1, 1, 2, 1, 1, 1, 2, . . . ]. We denote

β = [b1, b2, . . . ].

Note that since the number of consecutive zeros in s∞ is bounded by a1 (see, e.g., [22]),
we have bk ≤ a1 for all k.

Let u0 = 1, and for each n ≥ 1 let un denote the length of the word constructed from
sn by replacing every string of consecutive zeros with a single zero. That is, s1 = 0a1−11,
whence u1 = 2; s2 = (0a1−11)a20, whence u2 = 2a2 + 1, etc. Define also

Pk

Qk

= [b1, . . . , bk].

Recall the following well known relation between matrix products involving powers of
A0, A1, and continued fractions:

A
am
1 A

am−1
0 · · ·A

a1
1 =

(
1 0
am 1

)(
1 am−1
0 1

)
· · ·

(
1 0
a1 1

)
=

(
pm pm−1
qm qm−1

)
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if m is odd, and

A
am
1 A

am−1
0 · · ·A

a1
1 =

(
1 am
0 1

)(
1 0

am−1 1

)
· · ·

(
1 0
a1 1

)
=

(
pm−1 pm
qm−1 qm

)
if m is even (see, e.g., [11]). Hence

Bn =



(
Pun Pun−1

Qun Qun−1

)
, un is odd,(

Pun−1 Pun

Qun−1 Qun

)
, un is even.

(8.7)

Let us compute the eigenvectors for Bn of the first type:(
Pun Pun−1
Qun Qun−1

)(
ξn
1

)
= λn

(
ξn
1

)
, (8.8)

where λn = ρn or ρ−1
n . Solving this system, we get a quadratic equation:

Qunξ
2
n + (Qun−1 − Pun)ξn − Pun−1 = 0.

Dividing it by Qun , we obtain

ξ2
n +

(
Qun−1

Qun

−
Pun

Qun

)
ξn −

Pun−1

Qun−1
·
Qun−1

Qun

= 0, (8.9)

whence(
ξn +

Qun−1

Qun

)
(ξn − β) = ξn

(
Pun

Qun

− β

)
+
Qun−1

Qun

(
Pun−1

Qun−1

− β

)
. (8.10)

Let from here on ξn stand for the positive root of (8.9). From (8.8) it follows thatQunξn+

Qun−1 = ρn < τn = Pun +Qun−1, whence ξn < Pun/Qun < 1.
Since the bk are bounded, we have

Qk

Qk−1
= bk +

1
bk+1 + . . .

≤ bk + 1 ≤ a1 + 1. (8.11)

Hence from (8.10),

|ξn − β| ≤ (a1 + 1) ·
(∣∣∣∣ PunQun

− β

∣∣∣∣+ ∣∣∣∣ Pun−1

Qun−1
− β

∣∣∣∣).
By (8.11), we have∣∣∣∣β − Pun

Qun

∣∣∣∣ ≤ 1
QunQun+1

≤
1
Q2
un

,

∣∣∣∣β − Pun−1

Qun−1

∣∣∣∣ ≤ 1
QunQun−1

≤
a1 + 1
Q2
un

. (8.12)
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Hence

|β − ξn| ≤
(a1 + 1)(a1 + 2)

Q2
un

.

Since ρn < τn = Pun +Qun−1, we have ρn < 2Qun , whence

|β − ξn| ≤
C1

ρ2
n

, (8.13)

where
C1 = 4(a1 + 1)(a1 + 2).

(In the case of even un, we have τn = Pun−1 +Qun < 2Qun , so (8.13) holds as well.)
Let ξ ′n < 0 denote the other solution of (8.9). Put

Dn =

(
ξn ξ

′
n

1 1

)
.

We have

D−1
n BnDn =

(
ρn 0
0 ρ−1

n

)
.

We want to apply the change of coordinates given by Dn to the equation (8.3) and then
obtain a relation for the traces. Since tr(D−1

n Bn+1Dn) = trBn+1 = τn+1 = ρn+1+ρ
−1
n+1,

we will be only concerned with estimating tr(D−1
n Bn−1Dn).

Assume that un−1 is even; then

Bn−1 =

(
Pun−1−1 Pun−1

Qun−1−1 Qun−1

)
.

(The case of odd un−1 is completely analogous.) We have

D−1
n Bn−1Dn =

1
ξn − ξ ′n

(
1 −ξ ′n
−1 ξn

)(
Pun−1−1 Pun−1

Qun−1−1 Qun−1

)(
ξn ξ ′n
1 1

)
=

(
ρn−1 − rn−1 . . .

. . . rn−1

)
,

where
rn−1 = ξ

′
n(ξnQun−1−1 − Pun−1−1)+ ξnQun−1 − Pun−1 . (8.14)

By (8.12) and (8.13),

|ξnQun−1 − Pun−1 | ≤ |ξn − β|Qun−1 + |βQun−1 − Pun−1 | ≤
C1 ·Qun−1

ρ2
n

+
1

Qun−1+1

≤
C1ρn−1

ρ2
n

+
2

ρn−1
≤

2C1

ρn−1
,
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in view of C1 > 2, ρn > ρn−1. Since |βQun−1−1 − Pun−1−1| ≤ Q
−1
un−1

, we have the same
bound for |ξnQun−1−1 − Pun−1−1|, whence from (8.14), in view of |ξ ′n| < 1,

rn−1 ≤
4C1

ρn−1
. (8.15)

By our construction,

D−1
n B

an+1
n Dn =

(
ρ
an+1
n 0
0 ρ

−an+1
n

)
,

whence

D−1
n Bn+1Dn =

(
ρ
an+1
n 0
0 ρ

−an+1
n

)(
ρn−1 − rn−1 . . .

. . . rn−1

)
.

Taking the traces yields

τn+1 = ρ
an+1
n (τn−1 − rn−1)+ ρ

−an+1
n rn−1.

Using τn = ρn + ρ−1
n , we obtain

ρn+1 + ρ
−1
n+1 = ρ

an+1
n (ρn−1 + ρ

−1
n−1 − rn−1)+ ρ

−an+1
n rn−1.

Therefore,

1−
ρn+1

ρ
an+1
n ρn−1

=
rn−1

ρn−1
+

1
ρn+1ρ

an+1
n ρn−1

−
1

ρ2
n−1
−

rn−1

ρ
2an+1
n ρn−1

,

whence
1−

ρn+1

ρ
an+1
n ρn−1

≥ −
1

ρ2
n−1
−

rn−1

ρ
2an+1
n ρn−1

≥ −
C0

ρ2
n−1

(in view of rn−1/ρ
2an+1
n < 1 and C0 > 2), and

1−
ρn+1

ρ
an+1
n ρn−1

≤
rn−1

ρn−1
+

1
ρn+1ρ

an+1
n ρn−1

<
4C1

ρ2
n−1
+

1

ρ3
n−1

<
4C1 + 1
ρ2
n−1

=
C0

ρ2
n−1

. ut

We also require the following lower estimate on the growth of the sequence (ρn).

Lemma 8.6. If n ≥ 1 and K ≥ 1 are integers such that the matrix Bn−1 − K · I is
nonnegative, then ρn+1 ≥ Kρn. In particular, ρn+1 ≥ 2ρn for all n ≥ 3.

Proof. Given a pair of matrices A and B we will use the notation A ≥ B to mean that
the difference A − B is a nonnegative matrix. If A ≥ B then obviously also trA ≥ trB,
and AC ≥ BC and CA ≥ CB for any nonnegative matrix C. Note in particular that
A0, A1 ≥ I , and hence if C is any product of powers of A0 and A1 then C ≥ I . It follows
that Bn+1 ≥ Bn for all n ≥ 0.

If n,K ≥ 1 and Bn−1 ≥ K · I , then Bn+1 = B
an+1
n Bn−1 ≥ KB

an+1
n ≥ KBn and

therefore τn+1 ≥ Kτn. It follows that

ρn+1 =
1
2

(
τn+1 +

√
τ 2
n+1 − 4

)
≥
K

2

(
τn +

√
τ 2
n −

4
K2

)
≥ Kρn
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as required. Since a1 ≥ 2, we may estimate

B2 = B
a2
1 B0 = (B

a1−1
0 B−1)

a2B0 = (A
a1−1
0 A1)

a2A0 ≥ A0A1A0 =

(
2 3
1 2

)
≥ 2I,

and as Bn−1 ≥ B2 for all n ≥ 3 it follows that ρn+1 ≥ 2ρn for all n ≥ 3 as claimed. ut

We now give the proofs of Proposition 8.2 and Corollary 8.4.

Proof of Proposition 8.2. Let N ≥ n0 and define

αN :=

N∏
n=0

(
ρ
an+1
n ρn−1

ρn+1

)(−1)nqn
.

Using (8.6) together with the second clause of Lemma 8.6, we obtain

|logαγ − logαN | =
∣∣∣∣ ∞∑
n=N+1

(−1)nqn log
(
ρ
an+1
n ρn−1

ρn+1

)∣∣∣∣ ≤ ∞∑
n=N+1

qn

∣∣∣∣log
(

ρn+1

ρ
an+1
n ρn−1

)∣∣∣∣
≤

∞∑
n=N+1

qn

∣∣∣∣1− ρn+1

ρ
an+1
n ρn−1

∣∣∣∣ ≤ C0

∞∑
n=N+1

qn

ρ2
n−1
≤ LC0

∞∑
n=N+1

1
ρn−1

≤ LC0

∞∑
n=N+1

1
2N+1−nρN

=
2LC0

ρN

as required. ut

Proof of Corollary 8.4. For each j ≥ 1 we have

qn0+1+j = an0+1+jqn0+j + qn0+j−1 ≤ Kqn0+j ,

and it follows that qn0+1+j ≤ K
jqn0+1 for all j ≥ 0. On the other hand since Bn0−1 −

KI is nonnegative, Bn0+j−2 is nonnegative for every j ≥ 1, and using Lemma 8.6 we
deduce that ρn0+j ≥ Kρn0+j−1 for all such j . We therefore have qn0+1+j ≤ K

jqn0+1 ≤

KjLρn0 ≤ Lρn0+j for all j ≥ 0 and we may apply Proposition 8.2. ut

Let us show that the hypothesis qn = O(ρn−1) is valid for “typical” γ in a suitable sense:

Lemma 8.7. If γ is not Liouville, then qn ≤ ρn−1 for all sufficiently large n.

Proof. Since γ is not Liouville, there exists δ > 0 such that∣∣∣∣γ − pnqn
∣∣∣∣ ≥ 1

qδ+1
n

.

Since ∣∣∣∣γ − pnqn
∣∣∣∣ ≤ 1

qnqn+1
,

we have qn+1 ≤ qδn. Thus, it suffices to show that qδn ≤ ρn for n large enough. By
Lemma 8.5, ρn ∼ ρ

an
n−1ρn−2, whence log ρn ∼ an log ρn−1 + log ρn−2. Consequently,
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log ρn ≥ const · qn (since qn = anqn−1+ qn−2). Now the claim follows from the fact that
the qn grow at least exponentially fast, whence log qn � qn. ut

In fact the upper bound qn = O(ρn−1) holds for “most” Liouville numbers as well.
Effectively, if this inequality fails, this means that an > Aan−1 infinitely often for some
constant A > 1, which is an exceptionally strong condition.

Remark 8.8. It is natural to ask whether a formula like (8.2)—with traces instead of
spectral radii—holds in a more general case of irrational γ (instead of (2.2), where the
multipliers are irrational). The answer is yes—provided, for example, the condition qn =
O(ρn−1) holds. Indeed, this condition implies(

1+
1
ρ2
n

)qn+1

→ 0, n→∞,

whence we can replace the spectral radii with the corresponding traces so as to obtain

αγ = lim
n→∞

(
τ
qn+1
n

τ
qn
n+1

)(−1)n

=

∞∏
n=0

(
τ
an+1
n τn−1

τn+1

)(−1)nqn
. (8.16)

Note that if the an grow extremely fast (for instance, if an = qn−1), then (8.16) is false;
one can show that if it were true, then r−1(γ ) would be an interval, contradicting Theo-
rem 2.3(iii).

For γ = (3−
√

5)/2 the formula (8.16) is exactly (8.2), in view of the recurrence
relation (8.1). Indeed, we have qn = Fn and

∞∏
n=0

(
τnτn−1

τn+1

)(−1)nFn
=

∞∏
n=0

(
1−

τn−2

τn−1τn

)(−1)n+1Fn

.

Remark 8.9. Despite having such a fast convergent infinite product for αγ , we still can-
not use it to claim that αγ is irrational if γ is irrational. Such a result would show that the
family (1.1) does not contain a counterexample to the rational finiteness conjecture (see
[17] for more detail).

Remark 8.10. Another natural question is whether there exists a recurrence relation—or
rather a sequence of such relations—for the τn in the case of a general irrational γ . It can
be shown that if an and an+1 are fixed, then there will be the same recurrence relation for
τn+1, irrespective of the rest of ak . However, even in the simple case an = an+1 = 2, for
instance, we have the relatively unstraightforward identity

τn+1 = τ
2
n τn−1 −

τ 2
n

τn−1
−
τnτn−2

τn−1
− τn−1.

And for larger an and an+1, it becomes messier, though the two most significant terms
are always τ an+1

n τn−1− τ
an+1
n /τn−1, provided the an do not grow too fast. The authors are

grateful to Kevin Hare for helping them with these computations.
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The following examples yield new explicit parameters α such that the system
{A0, αA1} does not possess the finiteness property:

Example 8.11. Put γ =
√

5 − 2. It is algebraic, and therefore not Liouville. Here α =
0.4596704785 . . . .

Example 8.12. Put γ =
3√2 − 1 = [3, 1, 5, 1, 1, 4, 1, 1, 8, 1, . . . ]. Here α =

0.5587336687 . . . .

Example 8.13. As is well known, e − 2 = [1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ], which im-
plies that e is not Liouville. Put

γ =
e − 2
e − 1

= 0.4180232931 . . . = [2, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].

Here α = 0.7904851693 . . . .
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