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Abstract. Extending our previous work [9], we show that the Cauchy problem for wave equations
with critical exponential nonlinearities in two space dimensions is globally well-posed for arbitrary
smooth initial data.

1. Introduction

Consider the equation

ut t −1u+ ue
u2
= 0 on R× R2. (1)

In [2] Ibrahim, Majdoub, and Masmoudi demonstrated that the initial value problem for
equation (1) is well-posed for smooth Cauchy data

(u, ut )|t=0 = (u0, u1) (2)

with initial energy

E(u(0)) =
∫
R2
e(u(0)) dx ≤ 2π, (3)

where
e(u) = 1

2 (|ut |
2
+ |∇u|2 + eu

2
− 1). (4)

Equation (1) is closely related to the critical Sobolev embedding in two space dimensions
defined by the Moser–Trudinger inequality

sup
u∈H 1

0 (�), ‖∇u‖
2
L2(�)

≤1

∫
�

eαu
2
dx ≤ C(α)|�| (5)

for any bounded domain � ⊂ R2 having 2-dimensional Lebesgue measure |�| and any
α ≤ 4π , with a constant C(α) < ∞ independent of �; see [6], [11]. For α > 4π the
above supremum is infinite. In particular, whenE(u(0)) > 2π , not even a locally uniform
spatial L1-bound is available for the term ueu

2
. In analogy with nonlinear wave equations

ut t −1u+ u|u|
p−2
= 0 on R× Rn (6)
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with p > 2n/(n− 2) in n ≥ 3 space dimensions, where the nonlinear term cannot be
bounded in the dual space of H 1 in terms of the Dirichlet energy, the Cauchy prob-
lem for equation (1) was therefore termed “supercritical” for initial data with energy
E(u(0)) > 2π . The recent results [1], [3] of Ibrahim, Jrad, Majdoub, and Masmoudi,
showing that the local solution of the Cauchy problem (1), (2) does not depend on the
initial data in a locally uniformly continuous fashion when E(u(0)) > 2π , seemed to
further justify this classification.

However, in contrast with these results, in [9] we were able to show that the Cauchy
problem (1), (2) is well-posed in the radially symmetric case, regardless of the size of the
data. Here we show that the restriction (3) is not needed in the general case either.

Theorem 1.1. For any u0, u1 ∈ C
∞(R2) there exists a unique, smooth solution u to the

Cauchy problem (1), (2), defined for all time.

The proof of Theorem 1.1 is strikingly different from the proof of the companion result
in the spherically symmetric setting. In the latter case, locally uniform pointwise bounds
for the solution away from x = 0 permit one to rule out blow-up by means of standard
multipliers. In contrast, in the present setting the usual multiplier technique only seems to
give decay of the energy in the interior of any light cone, and full control only of certain
components. In particular, we cannot rule out outgoing waves concentrating energy near
the lateral boundary of the light cone. However, in combination with a subtle improvement
of the Moser–Trudinger inequality (5), stated as Lemma 4.3 below, the partial control of
the energy that we achieve allows us to improve the bounds for the nonlinear term in
equation (1) sufficiently for ruling out blow-up. Lemma 4.3 may also be of interest in
itself.

Note that no weighted energy estimates are required in the proof, as would be expected
in a truly “supercritical” context. It thus appears that problem (1), (2) still belongs to
the realm of “critical” equations. More generally, it seems that this may be true for all
problems where smallness of the energy implies regularity, as in the present case. See [3],
[5], [8], [10] for recent results on supercritical wave equations, and [7] for background
material on nonlinear wave equations in general.

2. Basic estimates

For the proof of Theorem 1.1 we argue indirectly, as in [9]; that is, we suppose that the
local solution u to (1), (2) for certain Cauchy data u0, u1 ∈ C

∞(R2) cannot be smoothly
extended to a neighborhood of some point (T0, x0) where T0 ≥ 0. As shown in [9], we
may assume that u0, u1 are compactly supported, T0 > 0, and that u ∈ C∞([0, T0[×R2).

After translating the origin of our coordinate system to the point x0, if necessary,
we may assume that x0 = 0. Also shifting time by T0 and then reversing the arrow
of time, in the following we may assume that we have a compactly supported solution
u ∈ C∞(]0, T0] × R2) of (1) blowing up at (0, 0).

We now briefly recall some standard estimates from [9] that will also be needed for
the present approach.



The critical nonlinear wave equation 1807

2.1. Energy inequality and flux decay

Upon multiplying (1) by ut we obtain the conservation law

0 =
d

dt
e(u)− div(∇u · ut ) (7)

for the energy density e(u) and the density of momentum

m(u) = ∇u · ut .

In the following, we only will make use of equation (7) on compact regions. In order
to simplify later computations, we therefore now drop the term −1 in the definition of
e(u) above and henceforth let

e(u) = 1
2 (|ut |

2
+ |∇u|2 + eu

2
).

The original definition (4) was made to ensure that compactly supported functions u have
finite total energy.

Since clearly |m(u)| ≤ e(u), integration of (7) over a truncated light cone yields

E(u(t), BR(x0)) :=

∫
BR(x0)

e(u(t)) dx ≤ E(u(s + t), BR+|s|(x0)) (8)

for any x0 ∈ R2, R > 0, and 0 < s + t, t ≤ T0. In particular, energy will spread with
speed at most 1.

Estimate (8) neglects the flux terms, which will be important later. Of particular inter-
est will be the case when x0 = 0. For 0 < S ≤ T ≤ T0 denote by v(y) = u(|y|, y) the
restriction of u to the lateral boundary

MT
S = {z = (t, x); S ≤ t ≤ T , |x| = t}

of the truncated forward light cone

KT
S = {z = (t, x); S ≤ t ≤ T , |x| ≤ t}

with vertex at z = (0, 0). Upon integrating (7) over KT
S we then find the identity

E(u(S), BS(0))+ Flux(u,MT
S ) = E(u(T ), BT (0)) (9)

for all 0 < S < T ≤ T0, where

Flux(u,MT
S ) :=

1
2

∫
BT (0)\BS (0)

(|∇v|2 + ev
2
) dy

is the energy flux through MT
S . Similar identities hold on any region with space-like or

null boundary, for instance, in the intersection of a truncated forward light cone with a
backward light cone, or with the complement of a backward light cone.
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By (9), in particular, limT ↓0 E(u(T ), BT (0)) exists and we deduce decay of the flux

Flux(u,MT
0 ) := sup

0<S<T
Flux(u,MT

S )→ 0 as T ↓ 0. (10)

Finally, we also have

E(u(T ), BT (0)) ≤ E(u(T0), BT0(0)) =: E0 (11)

for 0 < T < T0. Set MT
= MT

0 , KT
= KT

0 for brevity.

2.2. Blow-up criterion

The work of Ibrahim, Majdoub, and Masmoudi [2] gives rise to the following characteri-
zation of blow-up through concentration of energy.

Lemma 2.1. There exists ε0 > 0 such that

E(u(T ), BT (0)) ≥ ε0 for all 0 < T ≤ T0. (12)

The short proof of Lemma 2.1 given in [9] also works in the nonsymmetric case.

2.3. Pointwise estimates

Without any symmetry assumption we clearly cannot expect to obtain the same pointwise
estimates away from x = 0 that we were able to employ in [9]. However, we can still
obtain bounds for the spherical averages

v̄ = v̄(t) =
1

2π

∫ 2π

0
v(teiφ) dφ

of v, the trace of u on MT0 . Indeed, for 0 < t < T1 ≤ T0 by Hölder’s inequality we can
bound

|v̄(t)| ≤ |v̄(T1)| +

∫ T1

t

|v̄′(s)| ds ≤ |v̄(T1)| +

(∫ T1

t

|∇v̄|2s ds ·

∫ T1

t

ds

s

)1/2

≤ |v̄(T1)| + π
−1/2 Flux1/2(u,M

T1
t ) log1/2(T1/t).

In view of (10) we may choose 0 < T1 ≤ min{1, T0} to ensure that for all 0 < t ≤ T1,

Flux1/2(u,M
T1
t ) ≤ Flux1/2(u,MT1) ≤ 1/8.

We then fix 0 < T2 ≤ T1 so that 8|v̄(T1)| ≤ log1/2(1/t) for 0 < t ≤ T2. Also observing
that log(T1/t) ≤ log(1/t) for our choice of T1, we thus obtain the bound

4|v̄(t)| ≤ log1/2(1/t) for all 0 < t ≤ T2. (13)
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3. Partial energy decay

Introduce polar coordinates (r, φ). The conservation law (7) may then be written in the
form

∂t (re)− ∂r(rm) = r
−1∂φ(utuφ), (14)

where now

e = e(u) = 1
2 (u

2
t + u

2
r + r

−2u2
φ + e

u2
), m = m(u) = utur .

Multiplying (1) by x · ∇u we also obtain the identity

0 =
d

dt
(utx · ∇u)− div

(
∇ux · ∇u−

x

2
(|∇u|2 − |ut |

2
+ eu

2
)

)
+ |ut |

2
− eu

2
.

In polar coordinates this reads

∂t (r
2utur)−

1
2∂r(r

2(u2
t + u

2
r − e

u2
− r−2u2

φ))+ r(u
2
t − e

u2
) = ∂φ(uruφ),

that is, we have

∂t (r
2m)− ∂r(r

2(e − q))+ r(u2
t − e

u2
) = ∂φ(uruφ), (15)

where
q = q(u) = r−2u2

φ + e
u2
.

Finally, we multiply (1) by u− v̄ to obtain the equation

0 =
d

dt
(ut (u− v̄))− div(∇u(u− v̄))+ |∇u|2 − |ut |2 + ut v̄t + u(u− v̄)eu

2
,

that is,

∂t (rut (u− v̄))− ∂r(rur(u− v̄))+ r
(
|∇u|2 − |ut |

2
+ ut v̄t + u(u− v̄)e

u2)
= r−1∂φ((u− v̄)uφ). (16)

Multiplying equation (14) by r/t , we obtain

∂t

(
r2

t
e

)
− ∂r

(
r2

t
m

)
+
r2

t2
e +

r

t
m = t−1∂φ(utuφ). (17)

Likewise, upon dividing (15) and (16) by t we find the expressions

∂t

(
r2

t
m

)
− ∂r

(
r2

t
(e − q)

)
+
r

t
(u2
t − e

u2
)+

r2

t2
m = t−1∂φ(uruφ) (18)
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and

∂t

(
r

t
ut (u− v̄)

)
−∂r

(
r

t
ur(u− v̄)

)
+
r

t

(
|∇u|2−|ut |

2
+ut v̄t +ut

u− v̄

t
+u(u− v̄)eu

2
)

= ∂t

(
r

t

(
ut (u− v̄)+

|u− v̄|2

2t

))
− ∂r

(
r

t
ur(u− v̄)

)
+
r

t

(
|∇u|2 − |ut |

2
+ ut v̄t + v̄t

u− v̄

t
+
|u− v̄|2

t2
+ u(u− v̄)eu

2
)

=
1
rt
∂φ((u− v̄)uφ), (19)

respectively. Dividing both sides of (19) by 2, adding (17), and also adding (18), we then
arrive at the equation

∂t

(
r2

t

(
e +m+ ut

u− v̄

2r
+
|u− v̄|2

4rt

))
− ∂r

(
r2

t

(
e − q +m+ ur

u− v̄

2r

))
+
r

t

((
1+

r

t

)
(e +m)+

1
2
ut v̄t + v̄t

u− v̄

2t
+
|u− v̄|2

2t2
+
u(u− v̄)− 3

2
eu

2
)

= t−1∂φ

((
ur + ut +

u− v̄

2r

)
uφ

)
. (20)

Similarly, subtracting (17) from the sum of (18) and 1/2 times (19), we obtain

∂t

(
r2

t

(
m− e + ut

u− v̄

2r
+
|u− v̄|2

4rt

))
− ∂r

(
r2

t

(
e − q −m+ ur

u− v̄

2r

))
+
r

t

((
1−

r

t

)
(e −m)+

1
2
ut v̄t + v̄t

u− v̄

2t
+
|u− v̄|2

2t2
+
u(u− v̄)− 3

2
eu

2
)

= t−1∂φ

((
ur − ut +

u− v̄

2r

)
uφ

)
. (21)

In the following we repeatedly make use of Young’s inequality 2ab ≤ δa2
+ δ−1b2

for any a, b, δ > 0. The letter C will denote a generic constant independent of u, T , etc.,
unless otherwise stated. Its value may change from line to line and even within the same
line.

Lemma 3.1. For 0 < T < min{T2, e
−1
} we have

∫
KT

((
1±

r

t

)
(e ±m)+

|u− v̄|2

2t2
+

1
4
|u− v̄|2eu

2
)
dx dt

t
≤ C(1+ E0).
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Proof. For fixed 0 < T < min{T2, e
−1
} and 0 < S < T we integrate (20) over the region

where 0 < S < t < T , 0 < r < t , 0 ≤ φ < 2π corresponding to the truncated cone KT
S

to obtain

I+ :=

∫
KTS

((
1+

r

t

)
(e +m)+

|u− v̄|2

2t2
+

1
4
|u− v̄|2eu

2
)
dx dt

t

=

∫ T

S

∫ t

0

∫ 2π

0

r

t

((
1+

r

t

)
(e +m)+

|u− v̄|2

2t2
+

1
4
|u− v̄|2eu

2
)
dφ dr dt

≤ II + III + IV + V,

with II, III, and IV corresponding to the boundary terms and with ‘error’ term

V = −

∫
KTS

(
1
2
ut v̄t + v̄t

u− v̄

2t
+
u2
− v̄2
− 6

4
eu

2
)
dx dt

t
.

Recalling that e +m ≥ 0 and using Young’s inequality to estimate∣∣∣∣ut u− v̄2t

∣∣∣∣ ≤ 1
2
|ut |

2
+
|u− v̄|2

4t2
≤ e +

|u− v̄|2

4t2

for any t , we can bound the top boundary term:

II = −
∫
{T }×BT (0)

r

t

(
e +m+ ut

u− v̄

2r
+
|u− v̄|2

4rt

)
dx

= −

∫
{T }×BT (0)

(
r

T
(e +m)+ ut

u− v̄

2T
+
|u− v̄|2

4T 2

)
dx ≤

∫
{T }×BT (0)

e dx ≤ E0.

Also using Poincaré’s inequality∫
{t}×Bt (0)

|u− v̄|2

t2
dx ≤ C

∫
{t}×Bt (0)

|∇u|2 dx (22)

for any 0 < t < T , in similar fashion we can bound the term corresponding to the lower
boundary:

III =
∫
{S}×BS (0)

r

t

(
e +m+ ut

u− v̄

2r
+
|u− v̄|2

4rt

)
dx

≤

∫
{S}×BS (0)

(
r

S
(e +m)+ e +

|u− v̄|2

2S2

)
dx ≤ C

∫
{S}×BS (0)

e dx ≤ CE0.

Moreover, for the lateral boundary component we have

IV =
∫ T

S

∫ 2π

0

r2

t

(
2(e +m)− q + (ur + ut )

u− v̄

2r
+
|u− v̄|2

4rt

)
dφ dt

∣∣∣∣
r=t

=
1
√

2

∫
MT
S

(
(ur + ut )

2
+ (ur + ut )

v − v̄

2t
+
|v − v̄|2

4t2

)
do.
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But again by Poincaré’s inequality, for any 0 < t < T we can estimate∫ 2π

0

|v − v̄|2

4t2
dφ ≤ C

∫ 2π

0
t−2
|vφ |

2 dφ ≤ C

∫ 2π

0
|∇v|2 dφ, (23)

and we conclude that
IV ≤ C Flux(u,MT ) ≤ CE0.

Finally, in order to bound V , for each t we write∫
Bt (0)

ut v̄t dx =

∫
Bt (0)

((ut + ur)v̄t − ur v̄t ) dx

and note that for any 0 < δ < 1 we can bound∫
Bt (0)
|(ut + ur)v̄t | dx ≤ δ

∫
Bt (0)

(e +m) dx +
1
2δ

∫
Bt (0)
|v̄t |

2 dx.

Next observe that∫
Bt (0)

ur v̄t dx =

∫ 2π

0

∫ t

0
(r(u− v̄)v̄t )r dr dφ −

∫
Bt (0)

u− v̄

r
v̄t dx

=

∫
∂Bt (0)

(v − v̄)v̄t do−

∫
Bt (0)

u− v̄

r
v̄t dx,

where (23) allows us to bound∫
∂Bt (0)

|(v − v̄)v̄t | do ≤

∫
∂Bt (0)

|v − v̄|2

2t
do+

1
2

∫
∂Bt (0)

t |v̄t |
2 do

≤ Ct

∫
∂Bt (0)

|∇v|2 do+ Ct2|v̄t |
2.

Moreover, we have∫
Bt (0)

∣∣∣∣u− v̄r v̄t

∣∣∣∣ dx ≤ δ ∫
Bt (0)

|u− v̄|2

2rt
dx +

1
2δ

∫
Bt (0)

t

r
|v̄t |

2 dx,

with
1
2δ

∫
Bt (0)

t

r
|v̄t |

2 dx ≤ Cδ−1t2|v̄t |
2.

We split the remaining term∫
Bt (0)

|u− v̄|2

2rt
dx ≤

∫
Bt/2(0)

|u− v̄|2

2rt
dx +

∫
Bt (0)

|u− v̄|2

t2
dx

≤

∫
Bt/2(0)

|u− ũ|2

rt
dx + C|ũ− v̄|2 +

∫
Bt (0)

|u− v̄|2

t2
dx, (24)
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where ũ = ũ(t) is the average of u(t) on Bt/2(0). Note that we can bound

|ũ− v̄|2 ≤ C

∫
Bt (0)

|u− v̄|2

t2
dx,

while by Hölder’s inequality and a variant of the Poincaré inequality we have∫
Bt/2(0)

|u− ũ|2

2rt
dx ≤ C

(
t−2

∫
Bt/2(0)

|u− ũ|6 dx

)1/3

≤ C

∫
Bt/2(0)

|∇u|2 dx. (25)

Summarizing, we find∣∣∣∣∫
Bt (0)

ut v̄t dx

∣∣∣∣ ≤ Cδ ∫
Bt/2(0)

|∇u|2 dx + Cδ

∫
Bt (0)

(
e +m+

|u− v̄|2

t2

)
dx

+ Ct

∫
∂Bt (0)

|∇v|2 do+ Cδ−1t2|v̄t |
2.

Similarly, with the help of Young’s inequality we can bound∫
Bt (0)

∣∣∣∣v̄t u− v̄t
∣∣∣∣ dx ≤ δ ∫

Bt (0)

|u− v̄|2

t2
dx + C

1
2δ

∫
Bt (0)
|v̄t |

2 dx.

Thus we conclude that∣∣∣∣∫
KTS

(
ut v̄t + v̄t

u− v̄

t

)
dx dt

t

∣∣∣∣
≤ Cδ

∫ T

S

∫
Bt/2(0)

|∇u|2
dx dt

t
+ CδI+ + Cδ

−1 Flux(u,MT ).

Finally, we observe that by (13),

(6+ v̄2
− u2)eu

2
≤ (6+ v̄2)e6+v̄2

≤ C(6+ log(1/t))t−1

for all 0 < t < T2. Thus for 0 < T < min{T2, e
−1
} we have∫

KTS

(6+ v̄2
− u2)eu

2 dx dt

t
≤ C

∫
KT
(6+ log(1/t))

dx dt

t2
≤ C,

and we conclude that

V ≤ C(1+ δI+)+ Cδ
∫ T

S

∫
Bt/2(0)

|∇u|2
dx dt

t
+ Cδ−1 Flux(u,MT ).

Recalling that Flux(u,MT ) ≤ E0, together with our estimates for the boundary terms we
find

I+ ≤ C(1+ δI+ + δ−1E0)+ Cδ

∫ T

S

∫
Bt/2(0)

|∇u|2
dx dt

t
.
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The analogous estimate

I− :=

∫
KTS

((
1−

r

t

)
(e −m)+

|u− v̄|2

2t2
+

1
4
|u− v̄|2eu

2
)
dx dt

t

≤ C(1+ δI+ + δ−1E0)+ Cδ

∫ T

S

∫
Bt/2(0)

|∇u|2
dx dt

t

follows in the same fashion upon integrating (21) over KT
S .

Finally, we note that we can bound |∇u|2 ≤ 2e = (e +m)+ (e −m) and hence∫ T

S

∫
Bt/2(0)

|∇u|2
dx dt

t
≤ I+ + 2I−.

Thus for sufficiently small δ > 0 with a constant C independent of S > 0 we have

I+ + I− ≤ C(1+ E0).

Letting S ↓ 0, we obtain the claim. ut

4. Proof of Theorem 1.1

For given 0< ε < 1 in view of (10) and Lemma 3.1 we may fix 0< Tε <min{T2, e
−1, ε2

}

so that

Flux(u,MTε )+

∫
KTε

((
1±

r

t

)
(e±m)+

|u− v̄|2

t2
+ |u− v̄|2eu

2
)
dx dt

t
< ε. (26)

Introduce the characteristic coordinates

ξ = t + r, η = t − r.

Then we have

t =
ξ + η

2
, r =

ξ − η

2
,

and

∂ξ =
1
2 (∂t + ∂r), ∂η =

1
2 (∂t − ∂r), ∂t = ∂ξ + ∂η, ∂r = ∂ξ − ∂η.

For any 0 < ξ1 < Tε let

0(ξ1) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ1}.

Integrating (7) over the region

{(t, x) ∈ KTε ; ξ = t + |x| ≥ ξ1},
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for any such ξ1 we obtain

2
∫
0(ξ1)

u2
η do ≤

∫
0(ξ1)

(e −m) do ≤ E(u(Tε), BTε (0)) ≤ E0 (27)

as a useful variant of the energy inequality (9).
In terms of ξ and η we can also write the first two terms in equation (20) in the form

∂t

(
r2

t

(
e +m+ ut

u− v̄

2r
+
|u− v̄|2

4rt

))
− ∂r

(
r2

t

(
e − q +m+ ur

u− v̄

2r

))
= ∂η

(
r2

t

(
2(e +m)− q + uξ

u− v̄

r
+
|u− v̄|2

4rt

))
+ ∂ξ

(
r2

t

(
q + uη

u− v̄

r
+
|u− v̄|2

4rt

))
. (28)

Observing that
2(e +m)− q = |ut + ur |2 = 4u2

ξ ,

for r/t ≥ 3/4 we have

r

t

(
2(e +m)− q + uξ

u− v̄

r
+
|u− v̄|2

4rt

)
=

(
4
r

t
− 2

)
u2
ξ + 2

(
uξ +

u− v̄

4t

)2

+
|u− v̄|2

8t2
≥ u2

ξ +
|u− v̄|2

8t2
. (29)

Fix λ0 = 3/4. Given 0 < ξ0 < 8−1Tε, we set η0 =
1−λ0
1+λ0

ξ0 = ξ0/7. For ξ1 ∈ [ξ0, 8ξ0]

we then let

00(ξ1) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ1, η = t − |x| < η0}

and we define

Q(ξ1) :=

∫
00(ξ1)

(
q +
|u− v̄|2

t2

)
do.

Note that t < Tε for any (t, x) with ξ = t + |x| ≤ 8ξ0 < Tε. Changing variables
(t, x) 7→ (ξ = t + |x|, x), we see that for any ξ1 < Tε/2, with an absolute constant C,

inf
ξ1<ξ<2ξ1

Q(ξ) ≤ ξ−1
1

∫ 2ξ1

ξ1

Q(ξ) dξ

≤ C

∫
KTε

((
1+

r

t

)
(e +m)+

|u− v̄|2

2t2

)
dx dt

t
< Cε.

Thus, we can choose numbers ξ1 ∈ [ξ0, 2ξ0] and ξ2 ∈ [4ξ0, 8ξ0] such that

Q(ξ1) ≤ 2 inf
ξ0<ξ<2ξ0

Q(ξ) < Cε, Q(ξ2) ≤ 2 inf
4ξ0<ξ<8ξ0

Q(ξ) < Cε.
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Lemma 4.1. For any 0 < ξ0 < 8−1Tε, and any ξ1 ∈ [ξ0, 2ξ0], ξ2 ∈ [4ξ0, 8ξ0] as above,

sup
2ξ0<ξ<4ξ0

Q(ξ) ≤ sup
ξ1<ξ<ξ2

Q(ξ) < C
√
ε.

Proof. Consider the set

R = R(ξ1, ξ2) = {(t, x) ∈ K
Tε ; ξ1 < ξ < ξ2, 0 < η < η0}

with boundary ∂R =
⋃4
i=1 0i , where

01 = {(t, x); ξ1 < ξ < ξ2, η = 0}, 02 = 00(ξ2),

03 = {(t, x); ξ1 < ξ < ξ2, η = η0}, 04 = 00(ξ1).

Integrating (20) over R, we find the identity

A0 + A3 = A1 − A2 + A4 + V, (30)

where

A0 =

∫
R

((
1+

r

t

)
(e +m)+

|u− v̄|2

2t2
+

1
4
|u− v̄|2eu

2
)
dx dt

t

and where the termsAi , 1 ≤ i ≤ 4, correspond to integrals over the boundary components
0i , 1 ≤ i ≤ 4. Finally, V again denotes the ‘error’ term

V = −

∫
R

(
1
2
ut v̄t + v̄t

u− v̄

2t
+
u2
− v̄2
− 6

4
eu

2
)
dx dt

t
.

By (26),
0 ≤ A0 ≤ ε.

Moreover, using (28), (29), and (23) we find

A1 =

∫
01

((
4
r

t
− 2

)
u2
ξ + 2

(
uξ +

u− v̄

4t

)2

+
|u− v̄|2

8t2

)
do

≤ C

∫
01

(
u2
ξ +
|v − v̄|2

t2

)
do ≤ C Flux(u,M8ξ0) ≤ Cε.

Using Young’s inequality to bound∣∣∣∣uη u− v̄2t

∣∣∣∣ ≤ δ

2
u2
η +
|u− v̄|2

8δt2
, (31)

and recalling that the energy inequality (27) allows us to bound

2
∫
00(ξ)

u2
η do ≤ E0 (32)
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for any ξ < 8ξ0, we also find

|A2| =

∣∣∣∣∫
00(ξ2)

(
r

t
q + uη

u− v̄

2t
+
|u− v̄|2

4t2

)
do

∣∣∣∣ ≤ (1+ δ−1)Q(ξ2)+ δE0,

and similarly for A4. Choosing δ =
√
ε, by choice of ξ1 and ξ2 we obtain

|A2| < C
√
ε, |A4| < C

√
ε.

In order to proceed, observe that by (29) we have

A3 ≥

∫
03

(
u2
ξ +
|u− v̄|2

8t2

)
do.

The error term V can then be bounded as in the proof of Lemma 3.1, on noting that we
can express∫

R

ur v̄t
dx dt

t
=

∫
R

(r(u− v̄)v̄t )r
dr dφ dt

t
−

∫
R

u− v̄

r
v̄t
dx dt

t

with∣∣∣∣∫
R

(r(u− v̄)v̄t )r
dr dφ dt

t

∣∣∣∣ ≤ ∫
∂R

|(u− v̄)v̄t |
do

t
≤ δ

∫
∂R

|u− v̄|2

8t2
do+

2
δ

∫
∂R

|v̄t |
2 do

≤ δ(A3+Q(ξ1)+Q(ξ2))+Cδ
−1 Flux(u,M4ξ0)

≤ δA3+Cε+Cδ
−1ε (33)

for any 0 < δ < 1, in view of (23), (26), and our bounds for Q(ξ1) and Q(ξ2). Also note
that in view of the fact that r/t ≥ λ0 = 3/4 on R we do not need to perform step (24);
instead, we can easily estimate∫
R

|u− v̄|

r
|v̄t |

dx dt

t
≤ 2

∫
R

|u− v̄|

t
|v̄t |

dx dt

t
≤

∫
R

|u− v̄|2

2t2
dx dt

t
+ 2

∫
R

|v̄t |
2 dx dt

t

≤ A0 + C Flux(u,M4ξ0) ≤ Cε.

Finally, recalling that Tε < 1, in view of (13) we can estimate

(6+ v̄2
− u2)eu

2
≤ (6+ v̄2)e6+v̄2

≤ C(6+ log(1/t))t−1/2

for all 0 < t < Tε. Hence we have∫
R

(6+ v̄2
− u2)eu

2 dx dt

t
≤ C

∫
K8ξ0

(6+ log(1/t))
dx dt

t3/2
≤ C

√
ξ0 ≤ Cε.

Together with (33), when choosing δ = 1/2, we thus obtain the bound

V ≤ 1
2A3 + Cε.
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From (30) we then conclude that

0 ≤ A3 ≤ C
√
ε.

Thus for any ξ1 < ξ < ξ2, when integrating (20) over R(ξ1, ξ), from the analogue of
(30) and choosing a sufficiently small number δ > 0 in (33) we now find that

A2(ξ) :=

∫
00(ξ)

(
r

t
q + uη

u− v̄

t
+
|u− v̄|2

4t2

)
do ≤ C

√
ε + 1

2Q(ξ). (34)

This estimate implies the desired bound for Q(ξ) once we control the middle term. But
by Hölder’s inequality, for any ξ1 < ξ < ξ2 we have

|(u− v̄)(ξ)|2 ≤

(
|(u− v̄)(ξ1)| +

∫ ξ2

ξ1

|uξ − v̄ξ | dξ

)2

≤ 2|(u− v̄)(ξ1)|
2
+ 2(ξ2 − ξ1)

∫ ξ2

ξ1

|uξ − v̄ξ |
2 dξ.

Integrating over 00(ξ), observing that the surface measure do may be expressed as
r dη dφ, where r = (ξ − η)/2, and noting that throughoutR we have 0 ≤ η ≤ η0 = ξ0/7,
ξ0 ≤ ξ ≤ 2t ≤ 16ξ0, we obtain∫

00(ξ)

|u− v̄|2

t2
do ≤ C

∫
00(ξ1)

|u− v̄|2

t2
do+ C

∫
R

(|uξ |
2
+ |v̄t |

2)
dx dt

t

≤ Cε + CA0 + C Flux(u,M8ξ0) ≤ Cε (35)

for any ξ1 < ξ < ξ2. By (31) and (32), again choosing δ =
√
ε, we can estimate

A2(ξ) =

∫
00(ξ)

(
r

t
q + (ut − ur)

u− v̄

2t
+
|u− v̄|2

4t2

)
do

≥ λ0Q(ξ)−

(
λ0 +

1
8δ

)∫
00(ξ)

|u− v̄|2

t2
do−

δ

2

∫
00(ξ)

u2
η do ≥

3
4
Q(ξ)− C

√
ε.

Together with (34) it follows that

sup
ξ1<ξ<ξ2

Q(ξ) < C
√
ε,

as claimed. ut

Combining Lemmas 3.1 and 4.1 we can bound the nonlinear term in equation (1) in any
Lp-norm. A key role is played by the following improvement of the Moser–Trudinger
inequality (5).
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Lemma 4.2. For any E > 0 and p <∞ there exists a number ε = 4π2/(p2E) > 0 and
a constant C > 0 such that for any ξ0 > 0 and v ∈ H 1

0 ([0, 1]2) with∫ 1

0

∫ 1

0
(ξ0|vy |

2
+ ξ−1

0 |vx |
2) dx dy ≤ E,

∫ 1

0

∫ 1

0
ξ−1

0 |vx |
2 dx dy ≤ ε

we have ∫ 1

0

∫ 1

0
epv

2
dx dy ≤ C.

Proof. Given v ∈ H 1
0 ([0, 1]2) as above, set α = (ξ2

0 ε/E)
1/4 > 0 and let

vα(x, y) = v(x/α, αy) ∈ H
1
0 ([0, α] × [0, 1/α]),

satisfying ∫ α

0

∫ 1/α

0
|∇vα|

2 dx dy =

∫ 1

0

∫ 1

0
(α−2
|vx |

2
+ α2
|vy |

2) dx dy

≤ εξ0α
−2
+ α2E/ξ0 = 2(εE)1/2 = 4π/p (36)

by our choice of ε. Note that the map (x, y) 7→ (x/α, αy) is measure-preserving; in
particular, for any s ≥ 0,

|{(x, y); v2
α(x, y) ≥ s}| = |{(x, y); v

2(x, y) ≥ s}|,

and ∫ 1

0

∫ 1

0
epv

2
dx dy =

∫ α

0

∫ 1/α

0
epv

2
α dx dy.

But by (36), with the constant C(4π) in (5), we have∫ α

0

∫ 1/α

0
epv

2
α dx dy ≤ C(4π),

and our claim follows. ut

Lemma 4.3. There exists ε > 0 and a constant C < ∞ such that for any 0 < T <

4−1Tε, ∫
KT
e4u2

dx dt ≤ CT .

Proof. Given 0 < ξ0 < 8−1Tε, let η0 =
1−λ0
1+λ0

ξ0, where λ0 = 3/4 as before. For ξ0 <

ξ4 ≤ 8ξ0 recall the definitions

0(ξ4) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ4}

00(ξ4) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ4, η = t − |x| < η0}
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from the beginning of this section. Also let

01(ξ4) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ4, η = t − |x| ≥ 3η0/4},

02(ξ4) = {(t, x) ∈ K
Tε ; ξ = t + |x| = ξ4, η = t − |x| ≥ η0/2}.

With the help of Lemma 4.2 and (38) below, respectively, for any fixed 0 < ξ0 < 8−1Tε

as above and any 2ξ0 ≤ ξ ≤ 4ξ0 we now bound the integral of e4u2
over 0(ξ), uniformly

in ξ . Note that for each such ξ we have 0(ξ) ⊂ 00(ξ) ∪ 01(ξ).
First consider 01(ξ) ⊂ 02(ξ). Note that we have r/t ≤ 1− ν0 < 1 throughout 02(ξ)

for any ξ0 ≤ ξ ≤ 8ξ0, with a uniform constant ν0 > 0 determined by our choice of λ0.
By Fubini’s theorem and in view of (26) for each 0 < ξ0 < 8−1Tε there is ξ4 ∈ [4ξ0, 8ξ0]

such that∫
02(ξ4)

(
ν0(e −m)+

|u− v̄|2

2t2

)
do

≤

∫
02(ξ4)

((
1−

r

t

)
(e −m)+

|u− v̄|2

2t2

)
do

≤ 2 inf
4ξ0<ξ<8ξ0

∫
02(ξ)

((
1−

r

t

)
(e −m)+

|u− v̄|2

2t2

)
do

≤ C

∫
KTε

((
1−

r

t

)
(e −m)+

|u− v̄|2

2t2

)
dx dt

t
≤ Cε. (37)

In particular, we have ∫
02(ξ4)

(e −m) do ≤ Cε.

Upon integrating the conservation law (7) over the region

{(t, x) ∈ KTε ; ξ3 ≤ ξ = t + |x| ≤ ξ4, η = t − |x| ≥ η0/2}

for any ξ3 ∈ [2ξ0, 4ξ0], we then also obtain

sup
2ξ0<ξ<4ξ0

∫
02(ξ)

(e −m) do ≤ Cε.

Estimating as in (35), from (26) and (37) for any 2ξ0 < ξ < 4ξ0 we likewise find the
estimate∫

02(ξ)

|u− v̄|2

t2
do ≤ C

∫
02(ξ4)

|u− v̄|2

t2
do+ C

∫
KTε

(|uξ |
2
+ |v̄t |

2)
dx dt

t

≤ Cε + C Flux(u,Mξ0) ≤ Cε.

Hence we obtain the uniform bound

sup
2ξ0<ξ<4ξ0

∫
02(ξ)

(
(e −m)+

|u− v̄|2

t2

)
do ≤ Cε. (38)
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Fix a smooth cut-off function 0 ≤ ϕ1 ≤ 1 on R such that ϕ1(η) = 1 for η ≥ 3η0/4
and ϕ1(η) = 0 for η ≤ η0/2, with |ϕ′1| ≤ 8/η0 ≤ C/ξ0, and set u1 = ϕ1(η)(u − v̄). For
a point z ∈ 0(ξ) write z = (t, y) = (ξ − |y|, y) with y = reiφ ∈ Bξ/2(0). Note that
η = t − r = ξ − 2|y|. Letting v1(y) = u1(ξ − |y|, y) ∈ H

1
0 (Bξ/2(0)), for sufficiently

small ε > 0 by (38) we have∫
Bξ/2(0)

|∇v1|
2 dy =

∫
02(ξ)

(4|∂ηu1|
2
+ r−2

|∂φu1|
2) do

≤ C

∫
02(ξ)

(
(e −m)+

|u− v̄|2

t2

)
do ≤ Cε ≤ π/4,

uniformly in 2ξ0 < ξ < 4ξ0. In view of (5) it follows that∫
01(ξ)

e16|u−v̄|2 dx ≤

∫
02(ξ)

e16u2
1 do ≤ C

∫
Bξ/2(0)

e16v2
1 dy ≤ C,

uniformly in 2ξ0 < ξ < 4ξ0, with absolute constants C > 0.
Also let 0 ≤ ϕ2 = ϕ2(η) ≤ 1 be a smooth cut-off function such that ϕ2(η) = 1 for

η ≤ 3η0/4 and ϕ2(η) = 0 for η ≥ η0, with |ϕ′2| ≤ 8/η0 ≤ C/ξ0. Finally, fix a smooth
cut-off function 0 ≤ χ = χ(φ) ≤ 1 satisfying χ(φ) = 1 for |φ| ≤ π/8 and χ(φ) = 0
for |φ| ≥ π/4. Set u2 = ϕ2(η)(u − v̄). After extending u2(ξ, η, φ) = u2(ξ,−η, φ) for
η < 0 for fixed ξ , also let u2k = u2k(ξ, η, φ) = χ(φ − kπ/4)u2, 1 ≤ k ≤ 8. Note that
u2k(ξ, ·, ·) ∈ H

1
0 ([−η0, η0] × [(k − 1)π/4, (k + 1)π/4]), 1 ≤ k ≤ 8, and we have∫ η0

−η0

∫ (k+1)π/4

(k−1)π/4
(|∂ηu2k|

2
+ r−2

|∂φu2k|
2)r dφ dη

≤ C

∫
00(ξ)

(
(e −m)+

|u− v̄|2

t2

)
do ≤ CE0,

whereas Lemma 4.1 yields the bound∫ η0

−η0

∫ (k+1)π/4

(k−1)π/4
(r−2
|∂φu2k|

2)r dφ dη

≤ C

∫
00(ξ)

(
q +
|u− v̄|2

t2

)
do = CQ(ξ) ≤ C

√
ε,

uniformly in 1 ≤ k ≤ 8 and 2ξ0 < ξ < 4ξ0. Also observe that

ξ0λ0

1+ λ0
=
ξ0 − η0

2
≤ r =

ξ − η

2
≤ 2ξ0 + η0/2 ≤ 3ξ0

for 2ξ0 < ξ < 4ξ0 and |η| ≤ η0. Thus by Lemma 4.2 for sufficiently small ε > 0 with an
absolute constant C > 0 we find that

sup
2ξ0<ξ<4ξ0

∫
00(ξ)

e16u2
2k dx ≤ C

uniformly in 1 ≤ k ≤ 8.
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Now observe that |u| ≤ |u − v̄| + |v̄| ≤ 2 max{|u − v̄|, |v̄|}. Thus, by choice of ϕ1,
ϕ2, and χ , and in view of (11), we can bound∫

0(ξ)

e4u2
do ≤

∫
0(ξ)

e16|u−v̄|2 do+

∫
0(ξ)

e16|v̄|2 do

≤

∫
01(ξ)

e16u2
1 do+

∑
1≤k≤8

∫
00(ξ)

e16u2
2k do+

∫
0(ξ)

t−1 do ≤ C,

uniformly in 2ξ0 < ξ < 4ξ0. Hence for any 0 < ξ0 < 8−1Tε with a constant C indepen-
dent of ξ0 we find ∫ 4ξ0

2ξ0

∫
0(ξ)

e4u2
do dξ ≤ Cξ0.

Note that the collection (0(ξ))0<ξ<4ξ0 covers the cone K2ξ0 . Replacing ξ0 by 2−kξ0
and adding the resulting estimates, after the change of variables (t, x) 7→ (ξ = t+|x|, x)

we then obtain∫
K2ξ0

e4u2
dx dt ≤

∑
k∈N0

∫ 22−kξ0

21−kξ0

∫
0(ξ)

e4u2
do dξ ≤ C

∑
k∈N0

2−kξ0 ≤ Cξ0,

as desired. ut

Proof of Theorem 1.1. Fix ε > 0, 0 < T ≤ 4−1Tε as in Lemma 4.3 and let u(0) be the
solution to the homogeneous wave equation u(0)tt − 1u(0) = 0 in KT with initial data
u(0)(T ) = u(T ), u(0)t (T ) = ut (T ). Multiplying the equation

(u− u(0))t t −1(u− u
(0))+ ueu

2
= 0

with (u− u(0))t and integrating over KT
S , we obtain the estimate

1
2

∫
BS (0)
|D(u− u(0))(S)|2 dx ≤

∫
KTS (0)

|(u− u(0))t | |u|e
u2
dx dt

≤

(
sup
S≤t≤T

∫
Bt (0)
|D(u− u(0))(t)|2 dx

)1/2(
T

∫
KTS (0)

u2e2u2
dx dt

)1/2

,

where D = (∂t ,∇). Replacing S by a suitable t ∈ [S, T ], we arrive at

sup
S≤t≤T

∫
Bt (0)
|D(u− u(0))(t)|2 dx ≤ 4T

∫
KTS (0)

u2e2u2
dx dt ≤ 4T

∫
KT (0)

e4u2
dx dt.

But choosing T > 0 sufficiently small, in view of Lemma 4.3 we can achieve that

4T
∫
KT (z0)

e4u2
dx dt < ε0,
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where ε0 > 0 is the constant defined in Lemma 2.1. Since

lim
t↓0

∫
Bt (0)
|Du(0)(t)|2 dx = 0

and since by Lemma 3.1 we also have

lim inf
t↓0

∫
Bt (0)

eu(t)
2
dx = 0,

we then find that
lim inf
t↓0

E(u(t), Bt (0)) < ε0,

contradicting Lemma 2.1. The proof is complete. ut
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