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Abstract. We prove the optimal upper bound
∑
f ‖f ‖

4
4 � qε where f runs over an orthonormal

basis of Maaß cusp forms of prime level q and bounded spectral parameter.
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1. Introduction

Bounding Lp-norms of functions on a Riemannian surface (for 2 < p ≤ ∞) can be
regarded as a weak type of equidistribution statement. The situation is particularly inter-
esting for manifolds with additional symmetries, such as a commutative algebra of Hecke
operators commuting with the Laplacian, among other things because one can consider
joint eigenfunctions which may rule out high multiplicity of eigenspaces. Often the un-
derlying manifold is kept fixed, and one searches for bounds in terms of the Laplacian
eigenvalue λ as λ→∞. Here the first breakthrough for an arithmetic hyperbolic surface
in the case p = ∞ has been obtained by Iwaniec and Sarnak [IS].

In this article we change the point of view and keep the spectral data fixed, but study
instead the dependence on the manifold. We are interested in the 4-norm of a Maaß form
on a hyperbolic surface X0(q) := 00(q)\H where q is a large prime. Equipped with the
inner product

〈f, g〉 =

∫
X0(q)

f (z)ḡ(z)
dx dy

y2 , (1.1)

the space X0(q) has volume

V (q) := vol(X0(q)) =
π

3
(q + 1). (1.2)

The 4-norm is a particularly interesting object because it is connected to triple product
L-functions; by Watson’s formula one has an equality roughly of the type

‖f ‖44 ≈
1
q2

∑
tg�1

L(1/2, f × f̄ × g) (1.3)
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where the sum runs over an orthonormal basis of Hecke eigenforms g of level q with
bounded spectral parameter tg (see (2.1) below). By Weyl’s law, the sum on the right
hand side of (1.3) has O(q) terms, so the Lindelöf hypothesis for the L-functions on the
right hand side of (1.3) would imply ‖f ‖4 � q−1/4+ε, and this is best possible by (1.2).

The same type of period formula is also the starting point for bounding the 4-norm
in the eigenvalue aspect, and in this case Sarnak and Watson have announced a complete
solution (possibly under the Ramanujan conjecture). Often in the theory of automorphic
forms the archimedean and non-archimedean parameters behave, at least on a large scale,
similarly. In the context of bounding 4-norms, however, the spectral, weight and level
aspects behave very differently: in spectral t aspect, Watson’s formula produces a sum of
length t2 of central L-values of conductor t8, while in the weight k aspect, one obtains a
sum of length k and conductor k6, which is much harder to treat. The level aspect, which
we focus on here, is also more difficult than the spectral aspect: the conductor of the L-
functions in (1.3) is q5, so again there is little hope to establish a Lindelöf-type bound
unconditionally with present technology. The aim of this article is to confirm this bound
on average over Maaß forms f of level q:

Theorem 1. Fix any real number T > 1 and any ε > 0. Then∑
tf≤T

‖f ‖44 �T ,ε q
ε (1.4)

where the sum runs over an orthonormal basis of Maaß cusp forms of prime level q and
spectral parameter tf ≤ T .

Up to the power qε, Theorem 1 is best possible. For an individual form f , we have the
trivial bound ‖f ‖4 ≤ ‖f ‖

1/2
2 ‖f ‖

1/2
∞ . Non-trivial estimates for ‖f ‖∞ have been obtained

first in [BH], and the strongest result [HT] implies

‖f ‖4 ≤ q
−1/12+ε

for an L2-normalized Maaß form. It seems hard to improve this on the basis of (1.3).
Theorem 1 implies immediately the best possible bound ‖f ‖4 � q−1/4+ε for almost
all f :

Corollary 1. For any δ > 0 the bound ‖f ‖4 � q−1/4+δ holds for all but O(q1−4δ+ε) of
all Maaß forms f occurring in the sum in (1.4).

Remark. Since we are implicitly comparing different spaces X0(q), it may be more
elegant to express everything in terms of the probability measure

〈f, g〉prob :=
3

π(q + 1)

∫
X0(q)

f (z)ḡ(z)
dx dy

y2 .

With this normalization our results state that ‖f ‖4 � qε on average over f (or for almost
all f ) satisfying 〈f, f 〉prob = 1. However, most of the quoted literature uses the inner
product (1.1), and it is therefore more convenient to keep the traditional normalization.
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The bound of Theorem 1 holds also for holomorphic cusp forms f ∈ Sk(q) of any
(fixed) weight k ≥ 2 and large prime level q. If k is sufficiently large, one can use the
Petersson formula instead of the Kuznetsov formula. For small k, one can isometrically
embed the holomorphic spectrum of weight k into the Maaß spectrum of weight k and
use an appropriate weight k Kuznetsov formula (see [DFI]).

We remark by the way that the proof of Theorem 1 depends on moderately strong
bounds towards the Ramanujan conjecture. Any bound |<µπ (q, i)| ≤ 1/2 − δ for the
Langlands parameters associated to a cuspidal representation on π on GL2 at the (un-
ramified) place v = q, as well as the archimedean bound |<µπ (∞, i)| ≤ 1/2 − δ for
π on GL2 and GL6 suffices. Alternatively, if one prefers to stay entirely in GL2, then
|<µπ (∞, i)| ≤ 1/6−δ for π on GL2 suffices. In addition, we use several deep facts such
as the automorphy of GL2×GL3 L-functions [KSh], non-negativity of central values
[La], and of course Watson’s formula [Wa].

It follows from the period formula (1.3) that the sum on the left hand side of Theo-
rem 1 is roughly given by

q−2
∑

tf ,tg�1

L(1/2, f × f̄ × g). (1.5)

The (seemingly) similar average
∑
f,g L(1/2, f ×g×h) for f, g, h ∈ S2(q) holomorphic

forms of weight 2 and level q has been studied in [FW], also on the basis of triple product
identities, but using entirely different techniques.

There is another period formula in which the triple product L-functions in (1.5) occur,
namely as restrictions of certain Yoshida lifts. Given two holomorphic cuspidal Hecke
forms1 h1, h2 ∈ S2(q), one can define the (second) Yoshida lift Y (2)(h1, h2) which is a
Siegel modular form of degree 2 and weight 2. When restricted to the diagonal

(
z1
z2

)
, it

is a modular form of weight 2 both in z1 and z2, and hence

Y (2)(h1, h2)
(
z1
z2

)
=

∑
f1,f2∈S2(q)

c(f1, f2)f1(z1)f2(z2),

c(f1, f2) =

∫
X0(q)

∫
X0(q)

Y (2)(h1, h2)
(
z1
z2

)
f (z1)f (z2)

dx1 dy1

y2
1

dx2 dy2

y2
2

.

A special case of a beautiful formula of Böcherer, Furusawa and Schulze-Pillot [BFSP,
Corollary 2.7b] shows that for h1 = h2 = h and f1 = f2 = f the coefficient c(f, f ) is
proportional to the central L-value L(1/2, f × f × h). The quantity estimated in Theo-
rem 1 can then be interpreted as the trace of the matrix (c(f1, f2)), averaged over cusp
forms h.

The paper is organized as follows: Sections 2–4 and 7 contain auxiliary material on
automorphic forms, L-functions, character sums and integrals of Bessel functions. In par-
ticular we provide computations with oldforms, newforms and Eisenstein series, a special
type of approximate functional equation for the L-functions in question, and bounds for
certain complete exponential sums and oscillating integrals that occur later in the anal-
ysis. Considerable difficulty comes from the fact that we are summing over a family

1 More general assumptions on levels and weights are possible, but the holomorphy assumption
cannot easily be dropped.
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of L-functions with oscillating root number. Section 5 contains the main transformation
from the average of 4-norms into smooth sums over products of Kloosterman sums that
are estimated in Section 8.

2. Fourier expansions

The spectrum of L2(X0(q)) consists of the constant function, Maaß forms, and Eisenstein
series E∞(·, 1/2 + it), E0(·, 1/2 + it) for t ∈ R, corresponding to the two (00(q)-
equivalence classes of) cusps a = ∞, 0. For any Maaß form g we denote by

tg =
√
λg − 1/4 ∈ T := R ∪ (−1/2, 1/2)i (2.1)

its spectral parameter.
Let Bq be an orthonormal basis of cuspidal Hecke–Maaß newforms for 00(q). Let B1

be a basis of Hecke–Maaß cusp forms for SL2(Z) that is orthonormal with respect to the
inner product (1.1). In particular, for g ∈ B1 one has trivially

‖g‖∞ �tg q
−1/2 (2.2)

by (1.2). The implied constant depends polynomially on tg , for instance (1 + |tg|)1/4 is
admissible.

For any such Hecke–Maaß cusp form g in Bq or B1 we write λg(n) for the n-th Hecke
eigenvalue, and we put δg = 0 if g is even and δg = 1 if g is odd.

Newforms g ∈ Bq have two properties that we need later: they are eigenfunctions of
the Fricke involution z 7→ −1/(qz), and one has

λg(q) = ±q
−1/2. (2.3)

By Weyl’s law we have

#{g ∈ B1 | tg ≤ T } � T 2, #{g ∈ Bq | tg ≤ T } � qT 2. (2.4)

For g ∈ B1 define

gq(z) :=

(
1−

qλ2
g(q)

(q + 1)2

)−1/2(
g(qz)−

λg(q)q
1/2

q + 1
g(z)

)
.

By [ILS, Proposition 2.6], g and gq have the same norm and are orthogonal to each other.
We conclude that

B := Bq ∪ B1 ∪ B∗1, B∗1 := {gq | g ∈ B1},

is an orthonormal basis (with respect to (1.1)) of the non-trivial cuspidal spectrum of
L2(X0(q)).

Let
g(z) = ρg(1)

∑
n 6=0

λg(n)
√
y Kitg (2π |n|y)e(nx) (2.5)
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be the Fourier expansion of some g in B1 or Bq where λg(−n) = ±λg(n) depending on
whether g is even or odd. We have the Rankin–Selberg bound∑

n≤x

|λg(n)|
2
� x(q(1+ |tg|)x)ε (2.6)

and the individual bound
λg(n)� n1/2−δ (2.7)

for some δ > 0. Since ress=1 E∞(z, s) = V (q)
−1, we can compute

1 = ‖g‖22 = V (q) res
s=1

∫
X0(q)
|g(z)|2E∞(z, s)

dx dy

y2

= |ρg(1)|2V (q) res
s=1

∑
n6=0

|λg(n)|
2

|n|s

∫
∞

0
Kitg (2πy)

2ys
dy

y

= |ρg(1)|2V (q)2L(1,Ad2g)
π

8 cosh(πtg)

{
ζ (q)(2)−1, g ∈ Bq ,
ζ(2)−1, g ∈ B1.

(2.8)

We conclude

|ρg(1)| =
(

2 cosh(πtg)

L(1,Ad2g)

)1/2

×

{
(q + 1)−1/2, g ∈ B1,

(q ′)−1/2, g ∈ Bq ,
(2.9)

where

q ′ :=
q2

q − 1
� q. (2.10)

Let g ∈ B1 and let us define

λ∗g(n) :=

(
1−

qλ2
g(q)

(q + 1)2

)−1/2(
q1/2λg

(
n

q

)
−
λg(q)q

1/2

q + 1
λg(n)

)
with the convention λg(x) = 0 for x ∈ Q \ Z. Then each g ∈ B∗1 has a Fourier expansion
of type (2.5) with λ∗g(n) in place of λg(n). For g ∈ B1 and q - nm it follows that

λg(n)λ̄g(m)+ λ
∗
g(n)λ̄

∗
g(m) = c1(g, q)λg(n)λ̄g(m),

c1(g, q) =

(
1−

λg(q)
2q

(q + 1)2

)−1

� 1
(2.11)

by (2.7) and

q1/2(λg(qn)λ̄g(m)+ λ∗g(qn)λ̄∗g(m)) = c2(g, q)λg(n)λ̄g(m),

c2(g, q) = q
1/2λg(q)

(
1−

q

q + 1

(
1−

λ2
g(q)

q + 1

)(
1−

qλg(q)
2

(q + 1)2

)−1)
� q−1/2

|λg(q)| � 1.

(2.12)

The main point here is that even though for g ∈ B1 the formula (2.3) does not hold, an
appropriate analogue is true if one combines the Fourier coefficients of g and gq .
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Similar Fourier expansions hold for the Eisenstein series Ea(z, s). Let

η(n, t) :=
∑
ad=|n|

(a/d)it .

Then

Ea(z, 1/2+ it) = δa=∞y1/2+it
+ φa(1/2+ it)y1/2−it

+ ρa(1, t)
∑
n6=0

ηa(n, t)
√
y Kit (2π |n|y)e(nx)

where φa(s) is a meromorphic function that we do not need to specify, and (see [CI,
(3.25)])

|ρa(1, t)| =
(

4 cosh(πt)
q|ζ (q)(1+ 2it)|

)1/2

,

η∞(n, t) =
η(n, t)

q1/2+it − q
1/2η(n/q, t), η0(n, t) = η(n, t)− q

−itη(n/q, t)

(2.13)

with the above convention that η(x, t) = 0 for x ∈ Q \ Z. For q - mn it follows that

η∞(n, t)η∞(m,−t)+ η0(n, t)η0(m,−t) =

(
1+

1
q

)
η(n, t)η(m,−t) (2.14)

and

q1/2(η∞(qn, t)η∞(m,−t)+ η0(qn, t)η0(m,−t)
)
=
η(q, t)

q1/2 η(n, t)η(m,−t). (2.15)

One of the most important tools is the Kuznetsov formula. Let n,m ∈ Z be coprime
to q (in particular non-zero), and let h be an even holomorphic function in |=t | < 3/4
such that h(t)� (1+ |t |)−3. Then the Kuznetsov formula [IK, p. 409] together with the
previous calculations (2.9), (2.13), (2.11) and (2.14) implies that

2
∑
g∈B1

c1(g, q)λg(n)λ̄g(m)

(q + 1)L(1,Ad2g)
h(tg)+ 2

∑
g∈Bq

λg(n)λ̄g(m)

q ′L(1,Ad2g)
h(tg)

+

∫
R

η(n, t)η(m,−t)

q ′′|ζ (q)(1+ 2it)|2
h(t)

dt

π

= δn,m

∫
∞

0
h(t)

d∗t

π2 +
∑
q|c

1
c
S(n,m, c)

∫
∞

0
J ±

(√
|nm|

c
, t

)
h(t)

d∗t

π
(2.16)

where ± = sgn(mn), d∗t = t tanh(πt)dt , q ′ = q2/(q − 1) as in (2.10), q ′′ = q2/(q + 1)
and

J ±(x, t) =


2i

sinh(πt)
(J2it (4πx)− J−2it (4πx)),

2i
sinh(πt)

(I2it (4πx)− I−2it (4πx)) =
4
π
K2it (4πx) cosh(πt).
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Similarly, for q - nm we obtain by (2.12) and (2.15) instead of (2.11) and (2.14) that

2
∑
g∈B1

c2(g, q)λg(n)λ̄g(m)

(q + 1)L(1,Ad2g)
h(tg)+ 2q1/2

∑
g∈Bq

λg(qn)λ̄g(m)

q ′L(1,Ad2g)
h(tg)

+

∫
R

η(qn, t)η(m,−t)

q3/2|ζ (q)(1+ 2it)|2
h(t)

dt

π

= q1/2
∑
q|c

1
c
S(qn,m, c)

∫
∞

0
J ±

(√
|qnm|

c
, t

)
h(t)

d∗t

π
. (2.17)

Let
J 0(x, t) := 1

2

(
J +(x, t)+ J −(x, t)

)
.

Adding the Kuznetsov formula for nm > 0 and nm < 0, we can single out even Maaß
forms:

2
∑
g∈B1
g even

c1(g, q)λg(n)λ̄g(m)

(q + 1)L(1,Ad2g)
h(tg)+ 2

∑
g∈Bq
g even

λg(n)λ̄g(m)

q ′L(1,Ad2g)
h(tg)

+

∑
a

∫
R

η(n; t)η(m;−t)

q ′′|ζ (q)(1+ 2it)|2
h(t)

dt

π

= δn,m

∫
∞

0
h(t)

d∗t

2π2 +
∑
q|c

1
c
S(n,m, c)

∫
∞

0
J 0
(√

nm

c
, t

)
h(t)

d∗t

π
(2.18)

for m, n ∈ N, q - nm, as well as

2
∑
g∈B1
g even

c2(g, q)λg(n)λ̄g(m)

(q + 1)L(1,Ad2g)
h(tg)+ 2q1/2

∑
g∈Bq
g even

λg(qn)λ̄g(m)

q ′L(1,Ad2g)
h(tg)

+

∫
R

η(qn, t)η(m,−t)

q3/2|ζ (q)(1+ 2it)|2
h(t)

dt

π

= q1/2
∑
q|c

1
c
S(qn,m, c)

∫
∞

0
J ±

(√
qnm

c
, t

)
h(t)

d∗t

π
. (2.19)

We will need all four versions (2.16)–(2.19) in Section 5.

3. Triple product L-functions

Let f, g ∈ Bq . Then we can define the triple product L-function

L(s, f × f̄ × g) = L(s,Ad2f × g)L(s, g).
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The local factors, root number and conductor have been computed in [Wa, Section 3.1].
Let 0R(s) := 0(s/2)π−s/2. Then

L∞(s, g) :=
∏
±

0R(s ± itg),

3(s, g) = L(s, g)L∞(s, g) = (−1)δg (−λg(q)q1/2)q1/2−s3(1− s, g).

Similarly,

L∞(s,Ad2f × g) =
∏
±

1∏
ν=−1

0R(s + 2iνtf ± itg),

3(s,Ad2f × g) = L(s,Ad2f × g)L∞(s,Ad2f × g)

= (−1)δg (q4)1/2−s3(1− s,Ad2f × g).

By [LR, Theorem 1], the central value L(1/2, g) is non-negative. Moreover, by [JS] the
self-dual lift Ad2f (= sym2f ) is orthogonal (its symmetric square L-function has a pole
at s = 1), hence by [La, Theorem 1.1], the central value 3(1/2,Ad2f × g) is non-
negative too, and an inspection of the archimedean L-factors shows that the same holds
for L(1/2,Ad2f × g), hence also for L(1/2, f × f̄ × g). We note that L(s,Ad2f × g)

and hence L(s, f × f̄ × g) vanishes at s = 1/2 if g is odd.
The adjoint square lift of f is a self-dual automorphic form on GL3 with Fourier coef-

ficients A(m, k) satisfying A(m, 1) =
∑
ab2=m λf (a

2) for q - m. Using Hecke relations,
we can express allA(m, k) in terms of the Hecke eigenvalues of λf as follows: by Möbius
inversion and [Go, Theorem 6.4.11] we have

A(m, k) =
∑
d|(m,k)

µ(d)A

(
m

d
, 1
)
A

(
1,
k

d

)

whenever q - mk. Hence

L(q)(s,Ad2f × g) =
∑
q-mk

A(m, k)λg(m)

msk2s =

∑
q-dabmk

µ(d)λf (m
2)λf (k

2)λg(dma
2)

msa2sk2sb4sd3s .

(3.1)
Using the explicit shape of the Euler factor at q (see [Wa]), we find

L(s,Ad2f × g) =

(
1−

λg(q)

qs

)−1(
1−

λg(q)

qs+1

)−1

L(q)(s,Ad2f × g)

=:

∑
m

λAd2f×g(m)

ms
, (3.2)

say. Note that by (2.3) the coefficients divisible by q are small. Since these are purely
formal computations with local Euler factors, (3.1) holds also for f and/or g in B1, and
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analogous formulas hold for Eisenstein series:

|L(q)(s + it,Ad2f )|2 =
∑

q-dabnm

µ(d)λf (m
2)λf (k

2)η(dma2, t)

msa2sk2sb4sd3s ,

|L(q)(s + it, g)|2L(q)(s, g) =
∑

q-dabmk

µ(d)η(m2, t)η(k2, t)λg(dma
2)

msa2sk2sb4sd3s .

We have already seen that L(s, f × f̄ × g) has conductor q5 for f, g ∈ Bq . If one of the
factors has level one or is an Eisenstein series, the conductor drops; more precisely, all
the L-functions

L(s, f × f̄ × g), |L(s + it, f × f̄ )|2, f ∈ Bq , g ∈ B1,

L(s, f × f̄ × g), |L(s + it, g)|2L(s, g)2, f ∈ B1, g ∈ Bq ,

have conductor q4. We will use this observation in Sections 5 and 6.
It is a deep result [KSh] that Ad2f × g corresponds to an automorphic form on GL6.

Hence the Rankin–Selberg L-function L(s, (Ad2f ×g)× (Ad2f ×g)) has the properties
of [Li, Theorem 2], and we have the upper bound∑

m≤x

|λAd2f×g(m)|
2
� x(q(1+ |tg| + |tf |)x)ε. (3.3)

We need a somewhat sophisticated and carefully designed approximate functional
equation and borrow some ideas from [Bl2]. Let A1, A2 ≥ 10 be integers and define

G(u) =

(
cos

πu

4A1

)−100A1

, G1(u, t) :=
∏
±

∏
±

A2∏
`=0

(
1/2± u± it

2
+ `

)
and

G2(u, t1, t2) :=
∏
±

∏
±

1∏
ν=−1

3A2∏
`=0

(
1/2± u± it1 + 2iνt2

2
+ `

)
.

Clearly G1 and G2 are holomorphic and even in all variables, and G is even and holo-
morphic in |<u| < 2A1. Moreover, for t, t1, t2 ∈ T we have

G1(0, t),G2(0, t1, t2)� 1. (3.4)

For this lower bound we either need that |=t1|, |=t2| ≤ 1/6− δ, or any non-trivial bound
towards the Ramanujan conjecture for the infinite place of the GL6 automorphic form
Ad2f × g. Both results are known [KS, LRS]. Let

V1(y; t) =
1

2πi

∫
(2)
G(u)G1(u, t)

∏
±

0R(1/2+ u± it)
0R(1/2± it)

y−u
du

u
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and

V2(y; t1, t2) =
1

2πi

∫
(2)
G(u)G2(u, t1, t2)

∏
±

1∏
ν=−1

0R(1/2+ u± it1 ± 2iνt2)
0R(1/2± it1 ± 2iνt2)

y−u
du

u
.

The weight functions V1, V2 have the following properties:

Lemma 1. (a) The function V1(y; t) is smooth for y > 0 and holomorphic in |=t | ≤ 2A2
and satisfies the uniform bound

yjV
(j)

1 (y; t)� (1+ |t |)4(A2+1)
(

1+
y

1+ |t |

)−A1

� (1+ |t |)A1+4(A2+1)(1+ y)−A1

in this region for fixed j ∈ N0. Its Mellin transform with respect to the first variable,
V̂1(u; t), is holomorphic in <u ≥ ε whenever t ∈ T . In this region it satisfies the
uniform bound

V̂1(u; t)�<u,ε e
−=|u|(1+ |t |)4(A2+1)+<u.

Moreover,
V̂1(1/2± it, t) = 0. (3.5)

(b) The function V2(y, t1, t2) is smooth in y > 0 and holomorphic in |=t1|, |=t2| ≤ 2A2
and satisfies the uniform bound

yjV
(j)

2 (y; t)� (1+ |t1| + |t2|)12(3A2+1)
(

1+
y

(1+ |t1| + |t |2)3

)−A1

� (1+ |t1| + |t2|)3A1+12(3A2+1)(1+ y)−A1

in this region for fixed j ∈ N0. Its Mellin transform with respect to the first variable,
V̂2(u; t1, t2), is holomorphic in <u ≥ ε whenever t1, t2 ∈ T . In this region it satisfies
the uniform bound

V̂2(u; t1, t2)�<u,ε e
−=|u|(1+ |t1| + |t2|)12(3A2+1)+3<u.

Proof. This follows easily from the definition of G, G1, G2 with appropriate contour
shifts.

Let g ∈ Bq be even. Then the usual technique (e.g. [IK, p. 98] or [Bl2, Section 2])
shows

G1(0, tg)L(1/2, g) = (1− λg(q)q1/2)
∑
n

λg(n)

n1/2 V1

(
n

q1/2 ; tg

)
(3.6)

and

G2(0, tg, tf )L(1/2,Ad2f × g) = 2
∑
m

λAd2f×g(m)

m1/2 V2

(
m

q2 ; tg, tf

)
. (3.7)
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4. Character sums

For future reference we state some useful results for character sums. We quote from [Bl1,
Section 3]. For a positive or negative discriminantD of a quadratic number field let χD =(
D
.

)
be the associated Dirichlet character. Define εc = 1 if c > 0 and εc = i if c < 0. If

c = c1c
2
2 is odd and positive with µ(c1)

2
= 1 let c∗ := χ−4(c1)c1. We need to evaluate

the sum

G(d, h; q) :=
∑
x (q)

e

(
dx2
+ hx

q

)
for integers d ∈ Z \ {0}, h ∈ Z, q ∈ N. Clearly

G(d, h; q) = δ(d,q)|hG(d/(d, q), h/(d, q); q/(d, q)),

so it suffices to compute the sum for (d, q) = 1. We write q = s2α with s odd. Then we
have ([Bl1, Lemma 2])

G(d, h; q)

=



√
q εq∗χq∗(d)e

(
−4dh2

q

)
, α = 0,

√
2q εs∗χs∗(2d)e

(
−8dh2

s

)
, α = 1, h odd,

√
q εs∗χs∗(d)e

(
−d̄(h′)2

q

)
(1+ iχ−4(sd)), α ≥ 2 even, h = 2h′ even,

√
q εs∗χ8s∗(d)e

(
−d̄(h′)2

q

)
(1+ iχ−4(sd)), α ≥ 3 odd, h = 2h′ even,

0, otherwise,

(4.1)

whenever (d, q) = 1. If ψ is a real character of conductor s, q = ss1s2 with s1 | s∞ and
(s, s2) = 1, and 1 ∈ Z, then we have ([Bl1, (3.2)])∣∣∣∣∑∗

d (q)

ψ(d)e

(
d1

q

)∣∣∣∣ = ∣∣∣∣δs1|1ψ(s21s1
)
s1rs2(1)

√
s εs∗

∣∣∣∣ ≤ √qs1s2 (4.2)

where rq(1) is the Ramanujan sum.
For a Schwartz class function W we denote by W̌ its Fourier transform.

Lemma 2. Let γ ∈ N, α ∈ Z, and let W be a Schwartz class function. Then∑
n∈Z

S(n, α, γ )W(n) =
∑
h1∈Z

(h1,γ )=1

e

(
−
αh̄1

γ

)
W̌

(
h1

γ

)
.

Proof. This is a direct consequence of the Poisson summation formula.
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Lemma 3. Let c, r ∈ N, β, κ, h ∈ Z. Write r = r1r
2
2 with µ(r1)2 = 1 and write f =

(c, r), c = f c̃, r = f r̃ with (r̃, c̃) = 1. Then∣∣∣∣ ∑
m(qc̃r̃f )

e

(
mβ

qc

)
S(m2, κ, qr)e

(
mh

qc̃r̃f

)∣∣∣∣
{
≤ 2qrr2c̃ if βr̃ ≡ −h (c̃),
= 0 otherwise.

Proof. Opening the Kloosterman sum, the exponential sum in question equals∑
∗

x (qr)

e

(
κx̄

qr

)
G(xc̃, h+ βr̃, qc̃r̃f ) = c̃δc̃|h+βr̃

∑
∗

x (qr)

e

(
κx̄

qr

)
G(x, (h+ βr̃)/c̃, qr).

For notational simplicity let us write γ := (h + βr̃)/c̃. We evaluate the Gauß sum using
(4.1). To this end, we write qr = s2a with s odd and also recall r = r1r2

2 withµ(r1)2 = 1.
We distinguish several very similar cases. If a = 0, we obtain

√
qr ε(qr)∗ c̃δc̃|h+βr̃

∑
∗

x (qr)

e

(
κx̄

qr

)
χ(qr)∗(x)e

(
−4xγ 2

qr

)
,

and the desired bound (without the factor 2) follows directly from (4.2). If a = 1, we
obtain √

2qr εs∗ c̃δc̃|h+βr̃δ2-γ
∑
∗

x (qr)

e

(
κx̄

qr

)
χs∗(2x)e

(
−8xγ 2

s

)
.

The x-sum equals in absolute value∣∣∣∣∑∗

x (s)

e

(
κ2x
s

)
χs∗(2x)e

(
−8xγ 2

s

)∣∣∣∣ ≤ √s r2 = r2√qr/2,
and the lemma follows again (without the factor 2). If a ≥ 2 is even, we have

√
qr εs∗ c̃δc̃|h+βr̃δ2|γ

∑
∗

x (qr)

e

(
κx̄

qr

)
χs∗(x)e

(
−x̄(γ /2)2

qr

)
(1+ iχ−4(sx)),

and the lemma follows from (4.2). The case a ≥ 3 odd is identical.

Lemma 4. Let c, r ∈ N and let β, κ ∈ Z. Write r = r1r
2
2 with µ(r1)2 = 1 and write

f = (c, r), c = f c̃, r = f r̃ with (r̃, c̃) = 1. Let W be a Schwartz class function. Then∑
m∈Z

e

(
mβ

qc

)
S(m2, κ, qr)W(m)� r2

∑
h2∈Z

h2≡−βr̃ (c̃)

∣∣∣∣W̌( h2

qc̃r̃f

)∣∣∣∣.
Proof. This is a direct consequence of the Poisson summation formula and Lemma 3.

Finally we recall Weil’s bound for Kloosterman sums,

|S(a, b, c)| ≤ (a, b, c)1/2c1/2τ(c). (4.3)

By twisted multiplicativity we see

S(qa, b, qc) = −S(a, bq̄, c) (4.4)

whenever q - bc.
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5. The main transformation

In this section we use Watson’s formula and the Kuznetsov formula to transform the
quantity of interest,

∑
f ‖f ‖

4
4, into character sums.

Let f ∈ Bq be an L2-normalized cuspidal Hecke–Maaß newform of level q with
spectral parameter tf ≤ T . We begin with Parseval’s identity

‖f ‖44 = 〈|f |
2, |f |2〉 = V (q)−1

|〈|f |2, 1〉|2

+

∑
g∈B
|〈|f |2, g〉|2 +

∑
a

∫
R
|〈|f |2, Ea(·, 1/2+ it)〉|2

dt

4π
.

We study the various terms on the right hand side.
The constant function contributes V (q)−1

= O(1/q).
Since the Laplace operator is symmetric, we find

|〈|f |2, g〉| = |(1/4+ t2g )
−a
〈1a|f |2, g〉| ≤ |1/4+ t2g |

−a
‖1a|f |2‖2

� q|1/4+ t2g |
−a
‖1a|f |2‖∞

for any a ∈ N. We recall that |f |2 is invariant under the group 0∗0(q), generated by 00(q)

and the Fricke involution, and a fundamental domain for 0∗0(q) is contained in the Siegel
set {z ∈ H | y ≥ 1/(2q), |x| ≤ 1/2}. Since 1 is SL2(R)-invariant, we conclude that

‖1a|f |2‖∞ = sup
y≥1/(2q)

|1a|f |2(z)|.

Inserting the Fourier expansion (2.5), we have

1a|f |2(z) = |ρf (1)|2
∑
n,m6=0

λf (n)λf (m)1
a
(
yKitf (2π |n|y)Kitf (2π |m|y)e((n−m)x)

)
.

Since
da

dya
cosh(πt/2)Kit (y)�t,a e

−y(1+ y−a−|=t ||log y|)

for t ∈ T , we conclude from (2.9) and (2.1) that

|ρf (1)|21a
(
yKitf (2π |n|y)Kitf (2π |m|y)e((n−m)x)

)
�a,tf

e−(|n|+|m|)y

q|nm|1/2
,

which together with (2.6) implies ‖1a|f |2‖∞ �a,T ,ε q
ε. In particular, the oldforms

contribute∑
g∈B\Bq

|〈|f |2, g〉|2 =
∑

g∈B\Bq
tg≤q

ε

|〈|f |2, g〉|2 +
∑

g∈B\Bq
tg>q

ε

|〈|f |2, g〉|2

�ε,T

∑
g∈B\Bq
tg≤q

ε

‖g‖2∞ + q
1+ε

∑
g∈B\Bq
tg>q

ε

(1+ |tg|)−3−2/ε
� qε−1

by (2.4) and (2.2).
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By Watson’s formula [Wa, Theorem 4.1] and positivity, the newforms contribute

�
1
q2

∑
g∈Bq
g even

3(1/2, f × f̄ × g)

3(1,Ad2f )23(1,Ad2g)

�ε,T

1
q2−ε

∑
g∈Bq
g even

L(1/2, f × f̄ × g)

L(1,Ad2f )L(1,Ad2g)
e−

3
2π |tg |.

Here we used a lower bound [HL] on L(1,Ad2f ). Since f is an eigenfunction of the
Fricke involution which is the scaling matrix for the cusp a = 0, the contribution of the
two cusps is the same. By the unfolding technique we find, as in (2.8),

〈|f |2, E∞(·, s)〉 = |ρf (1)|2
2L(s, f × f̄ )

ζ(2s)
0R(s)0R(s − 2itf )0R(s + 2itf )

22+s0R(1+ s)
.

From (2.9) we conclude that the Eisenstein contribution is

�ε,T

1
q2−ε

∫
R

|L(1/2+ it, f × f̄ )|2

|ζ(1+ 2it)|2
e−

3
2π |t | dt � qε−1

by the convexity bound for L(1/2+ it, f × f̄ ). Combining the above estimates we find

‖f ‖44 �
1

q2−εL(1,Ad2f )

∑
g∈Bq
g even

L(1/2, f × f̄ × g)

L(1,Ad2g)
e−

3
2π |tg | + qε−1.

We insert artificially the factor G1(0, tg)G2(0, tg, tf ) by positivity and (3.4) and also
change the weight function e−(3/2)π |t | to the function

h(t) := cosh
(

t

2A2

)−3πA2 A2∏
ν=0

(
t2 +

(
1
2
+ ν

)2)
.

Note that this function is holomorphic in |=t | < πA2 and has zeros at the zeros of
cosh(πt) in this region. Moreover, h(t) � exp(− 3

2π |t |) for t ∈ T . Using (3.6)–(3.7),
we write

‖f ‖44 �
qε

q ′L(1,Ad2f )

(
1+

∑
g∈Bq
g even

2h(tg)

q ′L(1,Ad2g)
(1− λg(q)q1/2)S

)

where

S =
∑
n,m

λg(n)λAd2f×g(m)

(nm)1/2
V1

(
n

q1/2 ; tg

)
V2

(
m

q2 ; tg, tf

)
and q ′ was defined in (2.10). Hence by (2.2) and (2.4),



On the 4-norm of an automorphic form 1839∑
tf≤T

‖f ‖44

�T ,ε q
ε
+ qε

∑
f∈Bq

2h(tf )

q ′L(1,Ad2f )

∑
g∈Bq
g even

2h(tg)

q ′L(1,Ad2g)
(1− λg(q)q1/2)S. (5.1)

(Here we used (2.4) and L(1,Ad2f ) �T q
−ε for the first term on the right hand side.)

It is convenient to remove the terms with q | nm in S. By the rapid decay of V1 the terms
q | n are negligible. Combining (2.3) and (3.2) with (2.4), (2.6), (3.3) and the rapid decay
of V2, we see by trivial estimates that the contribution of the terms q |m in S contributes
at most O(qε−1/4) to (5.1). Hence by (3.2) we are left with estimating

6(q, q) := 61(q, q)−62(q, q),

say, where

61(q, q) :=
∑
f∈Bq

2h(tf )

q ′L(1,Ad2f )

∑
g∈Bq
g even

2h(tg)

q ′L(1,Ad2g)

∑
q-abdk

µ(d)

ab2kd3/2

×

∑
q-nm

λf (k
2)λg(n)λf (m

2)λg(a
2dm)

(nm)1/2
V1

(
n

q1/2 ; tg

)
V2

(
a2b4k2d3m

q2 ; tg, tf

)
and

62(q, q) := q
1/2

∑
f∈Bq

2h(tf )

q ′L(1,Ad2f )

∑
g∈Bq
g even

2h(tg)

q ′L(1,Ad2g)

∑
q-abdk

µ(d)

ab2kd3/2

×

∑
q-nm

λf (k
2)λg(qn)λf (m

2)λg(a
2dm)

(nm)1/2
V1

(
n

q1/2 ; tg

)
V2

(
a2b4k2d3m

q2 ; tg, tf

)
.

We would like to apply the Kuznetsov formula to the spectral sums over f and g. More
precisely, we use (2.16) for the sum over f and (2.18) for the sum over even Maaß
forms g; in 62 we use (2.17) for the f -sum and (2.19) for the g-sum. However, this
requires some preparation, as the f - and g-sums run only over cuspidal newforms, and
both the oldforms of level 1 as well as the Eisenstein series are missing. Therefore we
artificially add and subtract the missing terms and define, in analogy with 6(q, q) =
61(q, q) − 62(q, q), eight other quantities 6(∗, ∗) = 61(∗, ∗) − 62(∗, ∗) where ∗ ∈
{q, 1, E} in an obvious way in order to complete the spectral side of the Kuznetsov for-
mula for the f - and g-sum respectively. For instance, we write

61(1, E) :=
∑
f∈B1

2h(tf )

(q + 1)L(1,Ad2f )

∫
R

h(t)

q ′′|ζ (q)(1+ 2it)|2
∑
q-abdk

µ(d)

ab2kd3/2

×

∑
q-nm

c1(f, q)λf (k
2)η(n, t)λf (m

2)η(a2dm,−t)

(nm)1/2

× V1

(
n

q1/2 ; t

)
V2

(
a2b4k2d3m

q2 ; t, tf

)
dt

π
,
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and

62(1, E) :=
∑
f∈B1

2h(tf )

(q + 1)L(1,Ad2f )

∫
R

h(t)

q3/2|ζ (q)(1+ 2it)|2
∑
q-abdk

µ(d)

ab2kd3/2

×

∑
q-nm

c2(f, q)λf (k
2)η(n,−t)λ∗f (m

2)η(a2dm,−t)

(nm)1/2

× V1

(
n

q1/2 ; t

)
V2

(
a2b4k2d3m

q2 ; t, tf

)
dt

π
,

and similarly for all other combinations. We now apply the Kuznetsov formula to the
completed expressions

∑
(∗,∗)

61(∗, ∗) and
∑
(∗,∗)

62(∗, ∗), obtaining

6(q, q) = −
∑

(∗,∗)∈{q,1,E}2
(∗,∗) 6=(q,q)

(61(∗, ∗)−62(∗, ∗))

+

∑
q-abdknm

µ(d)

(nm)1/2ab2kd3/2

∑
α,β,γ∈{1,2}

Mβ,γ
α (5.2)

where

M
1,1
1 = δn,a2dmδk,mW1,1

(
n

q1/2 ,
a2b4k2d3m

q2

)
,

W1,1(x, y) =

∫
∞

0

∫
∞

0
V1(x; t2)V2(y; t2, t1)h(t1)h(t2)

d∗t1 d
∗t2

2π4 ;

M
1,2
1 = δk,m

∑
q|c

1
c
S(n, a2dm, c)W1,2

(
n

q1/2 ,
a2b4k2d3m

q2 ;

√
a2dmn

c

)
,

W1,2(x, y; η) =

∫
∞

0

∫
∞

0
V1(x; t2)V2(y; t2, t1)h(t1)h(t2)J 0(η, t2)

d∗t1 d
∗t2

π3 ;

M
2,1
1 = δn,a2dm

∑
q|r

1
r
S(m2, k2, r)W2,1

(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

r

)
,

W2,1(x, y; ξ) =

∫
∞

0

∫
∞

0
V1(x; t2)V2(y; t2, t1)h(t1)h(t2)J +(ξ, t1)

d∗t1 d
∗t2

2π3 ;

M
2,2
1
=

∑
q|c

∑
q|r

1
cr
S(n, a2dm, c)S(m2, k2, r)W2,2

(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

r
,

√
a2dmn

c

)
,

W2,2(x, y; ξ, η)

=

∫
∞

0

∫
∞

0
V1(x; t2)V2(y; t2, t1)h(t1)h(t2)J +(ξ, t1)J 0(η, t2)

d∗t1 d
∗t2

π2 .

Similarly,

M
1,1
2 = M

2,1
2 = 0,
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M
1,2
2 = q

1/2δk,m
∑
q|c

1
c
S(qn, a2dm, c)W1,2

(
n

q1/2 ,
a2b4k2d3m

q2 ;

√
a2dmnq

c

)
,

M
2,2
2 = q

1/2
∑
q|c

∑
q|r

1
cr
S(qn, a2dm, c)S(m2, k2, r)

×W2,2
(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

r
,

√
a2dmnq

c

)
.

In the rest of the paper we show that the 8+8+6 = 22 (potentially) non-vanishing terms
on the right hand side of (5.2) are all O(qε). This will complete the proof.

6. The contribution of the oldforms and Eisenstein series

This section is devoted to bounding the terms 61(∗, ∗) and 62(∗, ∗) on the right hand
side of (5.2). All terms with (∗, ∗) ∈ {1, E}2 can easily be bounded trivially: using only
the Rankin–Selberg bounds (2.6), (3.3) and the rapid decay of V1 and V2, we deduce∑

(∗,∗)∈{1,E}2
(|61(∗, ∗)| + |62(∗, ∗)|)� q−3/4+ε.

We proceed to bound the remaining terms 61,2(q, ∗) and 61,2(∗, q) for ∗ 6= q.
The method for all these terms is identical, and we show as a typical example the case
61(q, E). By an inverse Mellin transform we have

61(q, E) =
∑
f∈Bq

2h(tf )

(q + 1)L(1,Ad2f )

∫
R

h(t)

q ′′|ζ (q)(1+ 2it)|2

×

∫
(2)

∫
(2)

∏
±

(
L(q)(1/2+ u± it,Ad2f × g)ζ (q)(1/2+ v ± it)

)
× V̂1(v; t)V̂2(u; t, tf )q

2u+v/2 du dv

(2πi)2
dt

π
.

We shift both contours to <u = <v = ε and use the convexity bound L(s,Ad2f × g)

� q1+ε in <s > 1/2 (note that the poles of the zeta-function at v = 1/2 ± it do not
contribute by (3.5)). This yields the desired bound 61(q, E)� qε. The other three terms
require only notational changes.

7. The weight functions

In this technical section we provide useful bounds for the weight functions W occurring
in the definition of the quantitiesMβ,γ

α . We start by collecting standard bounds for Bessel
functions. The power series expansion implies

e−π |t |J2it (x), e
−π |t |I2it (x)�=t (1+ |t |)−1/2+2=tx−2=t , x ≤ 1, t ∈ C. (7.1)
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The asymptotic expansion implies

J +(x, t) =
1
√
x
e

(
x

2π

)
v+(x)+

1
√
x
e

(
−
x

2π

)
v−(x), t ∈ R, x ≥ (1+ |t |)3,

(7.2)

where v± are smooth functions (depending on t) that satisfy v(j)± (x) �j x
−j uniformly

in t . For j ∈ N0 we have the general uniform upper bounds

∂j

∂xj
J +(x, t)�j (1+ |t |)2(1+ x−j )x−1/2, x > 0, t ∈ R,

∂j

∂xj
J −(x, t)�j,ε (1+ x−j )×

{
x−ε, x < 1+ 10|t |, t ∈ R,
e−x/2, x > 1+ 10|t |, t ∈ R.

(7.3)

These bounds are not optimal, but suffice for our application.
Our first simple result shows that W is rapidly decreasing near ∞ in the first two

variables and rapidly decreasing near 0 in the other variables.

Lemma 5. The following uniform bounds hold for fixed i, j ∈ N0:

W1,1(x, y)� (1+ x)−A1(1+ y)−A1 ,

W1,2(x, y; ξ)� (1+ x)−A1(1+ y)−A1 min(ξ−1/2, ξ4A2),

W2,1(x, y; η)� (1+ x)−A1(1+ y)−A1 min(η−1/2, η4A2),

W2,2(x, y; ξ, η)� (1+ x)−A1(1+ y)−A1 min(ξ−1/2, ξ4A2)min(η−1/2, η4A2).

Proof. This follows directly by inserting the bounds from Lemma 1. If ξ and/or η are
greater than 1, we use (7.3); if ξ and/or η are less than 1, we write the corresponding
t-integral by symmetry as an integral over the whole real line, shift the contour down to
=t = −2A2 (not crossing any poles) and use (7.1).

We will also need the following more technical result.

Lemma 6. Let N,M,Q,X ≥ 1/2, and let B ∈ N and ε > 0 be fixed (but arbitrary).
Let ρ1, ρ2, α1, α2 > 0 and α3 ∈ R be real numbers and let z, z1, z2 ∈ R. Let w1, w2 be
two fixed smooth weight functions with support in [1, 2]. Then we have uniform bounds

∫
R
w1

(
x

N

)
W1,2(ρ1x, y;

√
xα1)e(−xz) dx �B N(

√
Nα1)

−1/2
(

1+Q2 |z|
√
N

α1

)−B
(7.4)

whenever α1
√
N ≥ 1/Q and y > 0, and2

2 Here the term 1/|α3| should be left out if α3 = 0, or one applies the convention min(x,∞) = x.
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∫
R

∫
R
w1

(
x

N

)
w2

(
y

M

)
W2,2(ρ1x, ρ2y;α1y, α2

√
yx)e(−xz1)e(α3y)e(−yz2) dx dy

�B,ε

XN1/2

α
1/2
1 α2

(
1+Q2 |z1|

√
N

α2
√
M

)−B(
1+Q2

|z2|min
(

1
α1
,

1
|α3|

,

√
M

α2
√
N

))−B
+MNX−B (7.5)

whenever
min(α1M,α2

√
NM) ≥ 1/Q, X ≥ 10+ (α2

√
NM)ε, (7.6)

and ∫
R
w2

(
y

M

)
W2,2(x, ρ2y;α1y, α2

√
y)e(−yz) dy

�B,ε


M1/4

(α1α2)1/2

(
1+Q2

|z|min
(

1
α1
,

√
M

α2

))−B
, |z| ≤ α1,

X

α
1/2
1 α2

(
1+Q2

|z|min
(

1
α1
,

√
M

α2

))−B
+MX−B , |z| ≥ α1.

(7.7)

whenever
min(α1M,α2

√
M) ≥ 1/Q, X ≥ 10+ (α2

√
M)ε

and x > 0.

Remark. We will later apply this with Q = X = qε, so as a first approximation the
reader can ignore the terms Q2 and MNX−B .

Proof. All three bounds depend on partial integration. We will always integrate the expo-
nential factor containing z, z1, z2 respectively, and differentiate all other factors.

In order to prove (7.4), we estimate trivially using (7.3), or we integrate by parts B
times and then estimate trivially using (7.3). Note that each integration by parts introduces
an additional factor

1
|z|

(
1
N
+

α1
√
N

)(
1+

1

α1
√
N

)
≤

1
|z|

(
(Q+ 1)

α1
√
N

)
(1+Q)� Q2 α1

|z|
√
N
.

The same strategy in the situation of (7.5) yields

N3/4M1/4

(α1α2)1/2

(
1+Q2 |z1|

√
N

α2
√
M

)−B(
1+Q2

|z2|min
(

1
α1
,

1
|α3|

,

√
M

α2
√
N

))−B
. (7.8)

This bound suffices if (α2
√
NM)1/2 ≤ X. Let us now assume that

T := (α2
√
NM)1/2/X ≥ 1.

Then T ε ≤ X1/2 by (7.6). If

Q2 |z1|
√
N

α2
√
M
≥ T ε/B or Q2

|z2|min
(

1
α1
,

1
|α3|

,

√
M

α2
√
N

)
≥ T ε/B , (7.9)
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then we can replace B by B+B/ε in (7.8), arriving at (7.5). Let us now assume that (7.9)
does not hold. Then(

1+Q2 |z1|
√
N

α2
√
M

)−B(
1+Q2

|z2|min
(

1
α1
,

1
|α3|

,

√
M

α2
√
N

))−B
≥ T −2ε

≥ X−1,

hence we only need to prove the upper bound N1/2/(α2α
1/2
1 )+MNX−B for the double

integral in (7.5). Compared to the trivial estimate in (7.8) with B = 0 we need to save
a factor (α2

√
NM)1/2. This comes from a standard stationary phase type argument. For

convenience, we give precise details. We split the t2-integral in the definition of W2,2 into
two pieces: |t2| ≤ X2/3 and |t2| ≥ X2/3. For large t2, we estimate the t1, t2-integrals, as
well as the above x, y-integral, trivially using the rapid decay of the weight function h.
This contributes the second term on the right hand side of (7.5). For small t2, we split
J 0
=

1
2 (J

+
+J −). By (7.3) we can bound the second term trivially due to the exponen-

tial decay of the Bessel K-function getting again a contribution that is easily majorized
by �B MNX−B . For J + we insert the asymptotic formula (7.2). The x-integral then
becomes (for y � M)∫

∞

0
w1

(
x

N

)
V1(ρ1x; t2)

v±(α2
√
xy)√

α2
√
xy

e

(
±
α2
√
xy

2π
− xz1

)
dx

=
N3/4√
α2
√
y

∫
∞

0
W(x)e(±β1

√
x − β2x) dx,

say, where W(x) = w1(x)V1(ρ1Nx; t2)v±(α2
√
xNy)x−1/2 is a function with support

on [1, 2] and bounded derivatives (uniformly in all parameters except t2), and β1 =

α2
√
Ny/(2π), β2 = Nz1. If |β2/β1| 6∈ [10−3, 103

], we integrate by parts sufficiently
often, each time saving at least a factor α2

√
Ny � X2, and we obtain the trivial bound

O(MNX−B). If |β1| � |β2|, then another change of variables yields

N3/4√
α2
√
y

β2
1

β2
2

∫
∞

0
W

(
x
β2

1

β2
2

)
e

(
β2

1
|β2|

(±
√
x − sgn(β2)x)

)
dx �

√
N√

α2β1
√
y
�

N1/2

α2M1/2

by a standard stationary phase argument (e.g. [St, p. 334]). Integrating trivially over y
produces another factor (M/α1)

1/2, and the proof of (7.5) is complete in all cases.
The proof of (7.7) is almost identical, so we highlight only the key points. Integrating

by parts and using (7.3) yields a preliminary bound

M1/4

(α1α2)1/2

(
1+Q2

|z|min
(

1
α1
,

√
M

α2

))−B
.

This is acceptable if X ≥ (α2
√
M)1/2 or if |z| ≤ α1. In the other case, we argue as above,

and hence we only need to show the upper bound (α1/2
1 α2)

−1
+MX−B for the integral in

(7.7). We cut the t1, t2-integral in the definition of W2,2 according to whether |t1| and/or
|t2| are greater than or less than X2/3. By the rapid decay of the test function h, we can
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assume that both t1, t2 are small. In this range we can also replace J 0 by J + because of
the rapid decay of the Bessel-K-function. For the function J + we insert the asymptotic
expansion (7.2), and are left with the y-integral∫
∞

0
w2

(
y

M

)
V1(x; t2)V2(ρ1y; t1, t2)

v±(α1y)
√
α1y

v±(α2
√
y)√

α2
√
y
e

(
±
α1y

2π
±
α2
√
y

2π
− yz

)
dy.

By our present assumption |z| ≥ α1 there is no phase cancellation in (z±α1/(2π))y, and
the same stationary phase argument for the y-integral followed by trivial estimates in the
other integrals gives the bound (7.7) as before.

8. Estimating character sums

The scene has now been prepared to estimate the six potentially non-vanishing terms
M
β,γ
α on the right hand side of (5.2). This is the heart of the proof of Theorem 1 and the

most technical part.
The bound ∑

q-abdknm

1
(nm)1/2ab2kd3/2 (|M

1,1
1 | + |M

1,2
1 | + |M

2,1
1 |)� qε

follows easily by trivial estimations using (4.3) and the bounds from Lemma 5. The other
three terms need a more careful reasoning.

8.1. The term M
1,2
2

Recall that we need to estimate∑
q-abdnm

µ(d)M
1,2
2

n1/2ab2m3/2d3/2

= q1/2
∑

q-abmdn

∑
q|c

µ(d)S(qn, a2dm, c)

n1/2ab2m3/2d3/2c
W1,2

(
n

q1/2 ,
a2b4d3m3

q2 ;
a
√
dmnq

c

)
.

By the decay properties of W1,2 given in Lemma 5 we can assume a
√
dmnq ≤ q7/4+ε,

hence q2 - c. Replacing c by cq with q - c, we obtain by (4.4) (up to a negligible error)

−q−1/2
∑

q-abmdnc

µ(d)S(n, a2dmq̄, c)

n1/2ab2m3/2d3/2c
W1,2

(
n

q1/2 ,
a2b4d3m3

q2 ;
a
√
dmn

cq1/2

)
.

A trivial estimate gives only O(q1/4+ε). To improve this, we can apply Poisson summa-
tion either in a or in n, the latter being slightly easier. We can add the terms q | n with
a negligible error, and we insert a smooth weight w1(n/N)w2(a/A)w3(c/C)(n/N)

1/2

(using a smooth partition of unity) that localizes N ≤ n ≤ 2N , A ≤ a ≤ 2A and
C ≤ c ≤ 2C. Again by Lemma 5 we can assume

A ≤
q1+ε

b2(dm)3/2
, C ≤

A
√
dmN

q1/2−ε . (8.1)
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Thus we need to bound

1
q1/2N1/2

∑
q-abmdc

w2(a/A)w3(c/C)

ab2m3/2d3/2c

×

∣∣∣∣∑
n

S(n, a2dmq̄, c)w1

(
n

N

)
W1,2

(
n

q1/2 ,
a2b4d3m3

q2 ;
a
√
dmn

cq1/2

)∣∣∣∣. (8.2)

By Lemma 2 with α = a2dmq̄ and γ = c, the n-sum is

≤

∑
h6=0

∣∣∣∣∫ ∞
0

w1

(
x

N

)
W1,2

(
x

q1/2 ,
a2b4d3m3

q2 ;
a
√
dmx

cq1/2

)
e

(
−
xh

c

)
dx

∣∣∣∣. (8.3)

The estimate (7.4) with

ρ1 =
1
q1/2 , α1 =

a
√
dm

cq1/2 , Q = qε

(and y = a2b4d3m3/q2) is applicable by (8.1) if a � A and c � C, and bounds (8.3) by

qε
∑
h6=0

N

(
a
√
dmN

cq1/2

)−1/2(
1+ |h|

√
N

q1/2

a
√
dm

)−10

� qεN

(
a
√
dmN

cq1/2

)−1/2(√
N

q1/2

a
√
dm

)−1

=
N1/4c1/2a1/2(dm)1/4

q1/4−ε .

We substitute this back into (8.2) getting the final bound

1
q3/4−εN1/4

∑
abmdc

w2(a/A)w3(c/C)

(ac)1/2b2(md)5/4
� qε

by (8.1).

8.2. The term M
2,2
1

Here we need to bound

1
q2

∑
q-abdknm

∑
c,r

µ(d)S(n, a2dm, qc)S(m2, k2, qr)

(nm)1/2ab2kd3/2cr

×W2,2
(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,

√
a2dmn

qc

)
.

The key variables are then n,m, c, r , and the reader can safely think of the other variables
as 1. We re-include the terms q |m. By the decay properties of W2,2, (4.3), (4.4) and



On the 4-norm of an automorphic form 1847

trivial estimates, these contribute O(q−9/8+ε). We can also include the terms q | n at a
negligible cost. It is convenient to include smooth weights

w1(n/N)w2(m/M)w3(c/C)w4(r/R)
(nm)1/2cr

(NM)1/2CR

where all wj have support in [1, 2], and the parameters N,M,R,C ≥ 1/2 satisfy (cf.
Lemma 5)

N ≤ q1/2+ε, M ≤
q2+ε

a2b4k2d3 , R ≤
kM

q1−ε , C ≤
a
√
dMN

q1−ε . (8.4)

The idea is now to apply Poisson summation in the n and m variables. Since the m-sum
is very long, the second application is certainly advantageous. The benefit of the first
application is not immediately obvious, since it makes the n-sum (which is generically of
length q1/2) longer (the new h1-sum is generically of length q3/4). The point here is that
the n-sum is a linear exponential sum, and hence the resulting complete double sum after
both applications of Poisson simplifies a lot, which compensates the loss in length.

More formally, we now apply Lemma 2 with α = a2dm and γ = qc to the n-sum,
and then apply Lemma 4 with β = −a2dh̄1 and κ = k2 to the m-sum. Unfortunately this
introduces a zoo of new variables. As in Lemma 4 we decompose r = f r̃, c = f c̃ with
f = (r, c). Moreover, we decompose f = f1f

2
2 , r̃ = r̃1r̃2

2 with µ(f1)
2
= µ(r̃1)

2
= 1,

so that

c = c̃f1f
2
2 ,

r = r̃1r̃
2
2f1f

2
2 =

f1r̃1

(f1, r̃1)2
× (f1, r̃1)

2f 2
2 r̃

2
2 , µ

(
f1r̃1

(f1, r̃1)2

)2

= 1.
(8.5)

In this way we obtain the upper bound

1
q2

∑
q-abdk

∑
f1f2c̃r̃1 r̃2

(f1, r̃1)f2r̃2

ab2kd3/2(NM)1/2CR
w3

(
f1f

2
2 c̃

C

)
w4

(
f1f

2
2 r̃1r̃

2
2

R

)

×

∑∑
h1,h2∈Z

(h1,qf1f
2
2 c̃)=1

h1h2≡a
2dr̃1 r̃

2
2 (c̃)

∣∣∣∣∫
R

∫
R
W2,2

(
x

q1/2 ,
a2b4k2d3y

q2 ;
ky

qf1f
2
2 r̃1r̃

2
2
,

√
a2dxy

qf1f
2
2 c̃

)

× w1

(
x

N

)
w2

(
y

M

)
e

(
−

xh1

qf1f
2
2 c̃

)
e

(
−

yh2

qc̃r̃1r̃
2
2f1f

2
2

)
dx dy

∣∣∣∣.
The bound (7.5) with

ρ1 =
1
q1/2 , ρ2 =

a2b4k2d3

q2 , α1 =
k

qf1f
2
2 r̃1r̃

2
2
, α2 =

a
√
d

qf1f
2
2 c̃
, α3 = 0,

z1 =
h1

qf1f
2
2 c̃
, z2 =

h2

qc̃r̃1r̃
2
2f1f

2
2
, Q = X = qε
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is applicable by (8.4) if f1f
2
2 c̃ � C and f1f

2
2 r̃1r̃

2
2 � R and implies that the double

integral is at most

� qε
N1/2q3/2CR1/2

a(dk)1/2

(
1+
|h1|
√
N

a
√
dM

)−10(
1+ |h2|min

(
1
kc̃
,

√
MC

ac̃R
√
dN

))−10

+ q−100.

We can ignore the second term, and we sum the first term over h1, h2 getting the upper
bound

� qε
N1/2q3/2CR1/2

a(dk)1/2
a
√
dM
√
N

(
k +

aR
√
dN

√
MC

)
.

We substitute this back and sum over f1, f2, r̃1, r̃2, c̃ to obtain a total contribution of

1
q2−ε

∑
abdk

1
ab2kd3/2(NM)1/2

N1/2q3/2CR1/2

a(dk)1/2
a
√
dM
√
N

(
k +

aR
√
dN

√
M C

)
=

1
q1/2−ε

∑
abdk

(
CR1/2

ab2d3/2k1/2N1/2 +
R3/2

b2dk3/2M1/2

)
.

We insert the upper bound forC andR from (8.4), then the upper bound forM , and obtain
the desired bound qε.

8.3. The term M
2,2
2

We argue similarly to the previous subsection and consider the term

1
q3/2

∑
q-abdknm

∑
c,r

µ(d)S(qn, a2dm, qc)S(m2, k2, qr)

(nm)1/2ab2kd3/2cr

×W2,2
(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,
a
√
dmn
√
q c

)
.

First we observe that by the decay properties of W2,2 from Lemma 5 we can assume that
a
√
dmn/q ≤ q3/4+ε, hence q - c. We rewrite the previous display using (4.4) (up to a

negligible error and up to sign) as

q−3/2
∑

q-abdknmc

∑
r

µ(d)S(n, a2dmq̄, c)S(m2, k2, qr)

(nm)1/2ab2kd3/2cr

×W2,2
(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,
a
√
dmn
√
q c

)
.

Again the key players are the variables n,m, r, c. We re-introduce the terms q |m which
by (4.3) and trivial estimates brings about an error of O(q−3/8+ε). The terms q | n can be
included with a negligible error. Next we introduce smooth weights

w1(n/N)w2(m/M)w3(c/C)w4(r/R)
(nm)1/2cr

(NM)1/2CR
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where all wj have support in [1, 2], and the parameters N,M,R,C ≥ 1/2 satisfy (cf.
Lemma 5)

N ≤ q1/2+ε, M ≤
q2+ε

a2b4k2b3 , R ≤
kM

q1−ε , C ≤
a
√
dMN

q1/2−ε . (8.6)

There is one special case that we need to treat separately: if c = 1, then the Kloosterman
sum S(n, a2dmq̄, c) degenerates. We will postpone this case for the moment and assume
C > 1, so that automatically c 6= 1. Now we apply Lemma 2 with γ = c, α = a2dmq̄,
getting

1
q3/2

∑
q-abdkc

∑
m,r

∑
(h1,c)=1

µ(d)w2(m/M)w3(c/C)w4(r/R)

(NM)1/2ab2kd3/2CR
e

(
−
a2dmqh1

c

)
S(m2, k2, qr)

×

∫
R
w1

(
x

N

)
W2,2

(
x

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,
a
√
dmx
√
q c

)
e

(
−
xh1

c

)
dx.

Since c 6= 1, we have h1 6= 0. Hence we can use the reciprocity formula

e

(
−
a2dmqh1

c

)
= e

(
a2dmc̄

qh1

)
e

(
−
a2dm

cqh1

)
.

In order to display the similarities to the computation in the previous subsection, we
switch the roles of c and h1, obtaining

1
q3/2

∑
q-abdk

∑
m,r

c∈Z\{0}

∑
(h1,qc)=1

µ(d)w2(m/M)w3(h1/C)w4(r/R)

(NM)1/2ab2kd3/2CR
e

(
a2dmh1

qc

)
S(m2, k2, qr)

× e

(
−
a2dm

cqh1

)∫
R
W2,2

(
x

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,
a
√
dmx
√
qh1

)
w1

(
x

N

)
e

(
xc

h1

)
dx.

Having done this, we now apply Lemma 4 with κ = k2, β = a2dh̄1 and use the same
parametrization (8.5) as in the previous estimation. Thus we arrive at the upper bound

1
q3/2

∑
q-abdk

∑
r̃1,r̃2,f1,f2
c̃∈Z\{0}

(f1, r̃1)f2r̃2

(NM)1/2ab2kd3/2CR

∑∑
h1∈N,h2∈Z

(h1,qf1f
2
2 c̃)=1

h1h2≡a
2dr̃1 r̃

2
2 (c̃)

w3

(
h1

C

)
w4

(
r̃1r̃

2
2f1f

2
2

R

)

×

∣∣∣∣∫
R

∫
R
W2,2

(
x

q1/2 ,
a2b4k2d3y

q2 ;
ky

qf1f
2
2 r̃1r̃

2
2
,
a
√
dyx
√
qh1

)
w1

(
x

N

)
w2

(
y

M

)
× e

(
−
xf1f

2
2 c̃

h1

)
e

(
−

a2dy

c̃f1f
2
2 qh1

)
e

(
−

yh2

qc̃r̃1r̃
2
2f1f

2
2

)
dx dy

∣∣∣∣.
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The bound (7.5) with

ρ1 =
1
q1/2 , ρ2 =

a2b4k2d3

q2 ,

α1 =
k

qf1f
2
2 r̃1r̃

2
2
, α2 =

a
√
d

√
q h1

, α3 = −
a2d

c̃f1f
2
2 qh1

,

z1 =
f1f

2
2 c̃

h1
, z2 =

h2

qc̃r̃1r̃
2
2f1f

2
2
, Q = X = qε

is applicable by (8.6) and implies that the double integral is at most

qε
N1/2qCR1/2

a(dk)1/2

(
1+ f1f

2
2 |c̃|

√
qN

a
√
dM

)−10

×

(
1+ |h2|min

(
1
k|c̃|

,
C
√
M

a
√
dNq R|c̃|

,
Cf1f

2
2

a2dR

))−10

,

up to a negligible term q−100. Now it is just a matter of book-keeping. The sum over h2
is at most

� k +
a
√
dNqR

C
√
M
+

a2dR

C|c̃|f1f
2
2
.

We sum this over c̃ and then over h1 and r̃1r̃2
2f1f

2
2 to get

CR

(
a
√
dM
√
qN

(
k +

a
√
dNqR

C
√
M

)
+
a2dR

C

)
,

so that the total contribution is given by

1
q3/2−ε

∑
adbk

N1/2qCR1/2

(NM)1/2(abd)2k3/2

(
a
√
dM
√
qN

(
k +

a
√
dNqR

C
√
M

)
+
a2dR

C

)
=

∑
adbk

(
CR1/2

ab2d3/2k1/2qN1/2 +
R3/2

b2dk3/2(qM)1/2

)
.

The desired bound qε follows now easily from (8.6).
It remains to treat the case c = 1, that is,

∑
q-abdk

∑
m,n,r

w1(n/N)w2(m/M)w4(r/R)

q3/2(MN)1/2R

µ(d)S(m2, k2, qr)

ab2kd3/2

×W2,2
(
n

q1/2 ,
a2b4k2d3m

q2 ;
km

qr
,
a
√
dmn
√
q

)
.

where M,N,R are subject to (8.6), and we may also assume a
√
dMN/q ≥ q−ε. The

argument in this special case is not much different from the general case above, and a
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little easier. We apply Lemma 4 with c = 1, β = 0 and κ = k2. Writing r = r1r2
2 with

µ(r1)
2
= 1, we obtain the upper bound

∑
q-abdk

∑
n,r1,r2
h∈Z

w1(n/N)w4(r1r
2
2/R)r2

q3/2(MN)1/2Rab2kd3/2

×

∫
∞

0
w2

(
y

M

)
W2,2

(
n

q1/2 ,
a2b4k2d3y

q2 ;
ky

qr1r
2
2
,
a
√
dyn
√
q

)
e

(
−

yh

qr1r
2
2

)
dy.

We apply (7.7) with

ρ2 =
a2b4k2d3

q2 , α1 =
k

qr1r
2
2
, α2 =

a
√
dn
√
q
, z =

h

qr1r
2
2
, Q = X = qε,

getting (up to a negligible error)

qε
∑
abdk

∑
n,r1,r2

w1(n/N)w4(r1r
2
2/R)r2

q3/2(MN)1/2Rab2kd3/2

×

(∑
|h|≤k

M1/4q3/4R1/2

(ak)1/2(dN)1/4
+

∑
|h|≥k

qR1/2

a(dk)1/2N1/2

(
1+|h|min

(
1
k
,

√
M

aR
√
dNq

))−10)
.

The contribution from |h| ≤ k is

� qε
∑
abdk

R1/2N1/4

q3/4M1/4a3/2k1/2b2d7/4 � qε−9/8
∑

k≤q1+ε

M1/4
� qε−1/8

by (8.6). The contribution |h| ≥ k is

� qε
∑
abdk

N1/2

q3/2M1/2ab2kd3/2

(
qR1/2k

a(dk)1/2N1/2 +
q3/2R3/2

M1/2k1/2

)
= qε

∑
abdk

(
R1/2

q1/2M1/2(abd)2k1/2 +
N1/2R3/2

Mab2(kd)3/2

)
� qε.

by (8.6). This completes the proof.
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