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Abstract. For a family of elliptic operators with rapidly oscillating periodic coefficients, we study
the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet

eigenfunctions. The results rely on an O(¢) estimate in H 1 for solutions with Dirichlet condition.

1. Introduction

This paper concerns the asymptotic behavior of Dirichlet eigenvalues and eigenfunctions
for a family of elliptic operators with rapidly oscillating coefficients. More precisely,

consider 5 5
Lo=—divA(/e)V) = ——|a? (Z) 2|, e>0 (1.1)

Bxi & ax]‘
(the summation convention is used throughout the paper). We will assume that A(y) =

(al‘.’;ﬂ (y))with1 <i, j <dand 1 < «, B < m is real and satisfies the ellipticity condition

clg? <alf ErEl <k lgP fory e RYand & = ¢ e R, (12)
where « € (0, 1), and the periodicity condition

A(y+z)=A(y) foryeR?andz e Z%. (1.3)

ap _ a‘3 ¢ will also be needed for our main

The symmetry condition A* = A, i.e., a;; P

results. Let {A. x} denote the sequence of Dirichlet eigenvalues in an increasing order
for L, in a bounded domain 2. We shall use {X¢ x} to denote the sequence of Dirichlet
eigenvalues in an increasing order for the homogenized (effective) operator Lg in €. It is
well known that for each k fixed, A x — Ao, as € = 0. We are interested in the bounds
of |A¢ k — Ao k|, which exhibit explicit dependence on ¢ and k. The following is one of the

main results of the paper.
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Theorem 1.1. Suppose that A satisfies conditions (1.2)—(1.3) and A* = A. If m > 2, we
also assume that A is Holder continuous. Let Q be a bounded C"' domain (or convex
domain in the case m = 1) in RY, d > 2. Then

Ak — hoxl < Ce(ros) ™, (1.4)
where C is independent of € and k.

Remark 1.2. By the mini-max principle and Weyl asymptotic formula,

Aok = Aok N K2/ dm) (1.5)
In view of (1.4) and (1.5) we obtain
hek — Mol < Cek¥/ @™, (1.6)

where C is independent of ¢ and k. It also follows from (1.5) that the estimate (1.4) is
trivial if £(rox) /2 > 1.

Asymptotic behavior of spectra of the operators {L.} is an important problem in pe-
riodic homogenization; results related to the convergence of eigenvalues may be found
in [20], [21], [28], [16], [25], [24], [9], [10], [18], [27] (also see [6] for quasilinear el-
liptic equations). In particular, the estimate |1, x — Ao.x| < Ckée, which is known under
the assumptions on A and €2 in Theorem 1.1, may be deduced from the L? convergence
estimate |lug — uollz2(q) < Cell fllp2q). Where ug (¢ > 0) denotes the solution of the
Dirichlet problem L, (u.) = f in Q and u, = 0 on 9<2. Such an L? estimate, which may
be found in [14], [18], [17], [29] for smooth domains, in fact implies that

ek — hokl < Cergy, (1.7)

where C is independent of ¢ and k. In the case that €2 is a bounded Lipschitz domain, it
was proved in [18] that [lue — uoll 2(q) < Coe(lIne| + 1)V/2 7| £]| 2, forany o > 0,
provided A satisfies (1.2)—(1.3), A* = A, and A is Holder continuous. As a result we
obtain
hesk — Mokl < Coe(lin(e)] + D2 (ho0)?,

where C, depends on o, but not on ¢ or k.

Our estimate in Theorem 1.1 improves the estimate (1.7) by a factor of (Ao x) 1/2 This
is achieved by utilizing the following O (¢) estimate in HO] (22; R™):

B

ou
Ug —U) — {q)f’] - P]’B}ﬁ
]

L= Cel flr2@): (1.8)
Hy ()
where C depends only on A and 2. Here Pjﬁ(x) =x;(0,...,1,...,0) with 1 in the ,B‘h
position; &, (x) = (@f j (x)) denotes the so-called matrix of Dirichlet correctors, defined
by
L.@% )=0 ing,
Gtz ne,
e =b; on 0L2.
We remark that (1.8) is a special case of convergence estimates in W(} "P(Q) established
in [17] for I < p < oo, under the assumption that A satisfies (1.2)—(1.3) and is Holder
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continuous. We provide a direct proof, which also covers the scalar case m = 1 without
the smoothness condition, in Section 2. The proof of Theorem 1.1, which uses (1.8) and
a mini-max argument, is given in Section 3.

In this paper we also study the upper and lower bounds of the normal derivatives of the
eigenfunctions for £,. Let ¢ be an eigenfunction of the Dirichlet Laplacian on a Lipschitz
domain Q;i.e., ¢ € H&(Q) and —A¢ = A¢ in Q2. Assume that ||¢||;2q) = 1. It follows
from the Rellich identity that

2

8_(;5 do < CA, (1.10)

/39 on
where C depends only on 2. The argument works equally well for second-oder elliptic
operators with Lipschitz continuous coefficients. In fact it was proved in [15] that the esti-
mate (1.10) holds if €2 is a general smooth compact Riemannian manifold with boundary.
Furthermore, the lower bound cA < ||d¢/0n ||2L2 T holds if €2 has no trapped geodesics
(see related work in [26], [30]; we were kindly informed by N. Burq that the results on
upper and lower bounds in [15] may be deduced from earlier work on the wave equations
in [5], [7]).

A very interesting problem is whether the estimate (1.10) holds for eigenfunctions
of L., with constant C independent of ¢ and A. This problem is closely related to the
uniform boundary controllability of the wave operator 92 / A2+ L, (seee.g. [23], [4], [2],
[10], [22] and their references). In the case m = d = 1, it is known that the estimate (1.10)
with constant C independent of ¢ and A may fail. Counter-examples of eigenfunctions ¢,
with eigenvalues A, ~ =2 can be constructed so that

/ dge |
02

” do ~ (As)3? (1.11)

(see e.g. [10]). We remark that asymptotic behavior of eigenvalues and eigenfunctions
below and above the critical size (Agx ~ £72) was investigated rather extensively for
d = m = 1in [8], [9], [10]. To the best of our knowledge, the only results for the case
d > 2 were contained in [22], where an observability estimate for a wave equation with
rapidly oscillating density was established. Note that if d = 1, equations with oscillating
coefficients are equivalent to those with oscillating potentials. This, however, is not the
case in higher dimensions.

In this paper we show that the estimate (1.10) holds if eA; < 1. In fact we obtain the
following.

Theorem 1.3. Suppose that A satisfies (1.2)—(1.3) and A* = A. Also assume that A
is Lipschitz continuous. Let Q2 be a bounded C L1 domain in ]Rd, d > 2. Let ¢, €
HO1 (2; R™) be a Dirichlet eigenfunction for L. in Q with the associated eigenvalue .
and ||¢ellp2(q) = 1. Then

f Ve |2 do < Che(l+e7h) if 62 2 1, (1.12)
sa | Che(l4ere) if €2he <1,

where C depends only on A and Q2.
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If eA, is sufficiently small, we also obtain a sharp lower bound in the case of scalar
equations.

Theorem 1.4. Let m = 1 and Q be a bounded C? domain in RY, d > 2. Suppose
that A satisfies the same conditions as in Theorem 1.3. Let ¢, € HO1 (R2) be a Dirichlet
eigenfunction with the associated eigenvalue Le and ||¢ell;2(q) = 1. Then there exists
8 > O such thatif .o > 1 and e < 6, then

/ IVge>do > ch, (1.13)
I

where § > 0 and ¢ > 0 depend only on A and <.
Remark 1.5. It follows from (1.12) that

/ Ve |*do < C(re)?, (1.14)
Q2

where C depends only on A and 2. In Section 4 we provide a direct proof of (1.14),
under the weaker assumptions that € is Lipschitz, A satisfies (1.2)—(1.3), A* = A, and
A is Holder continuous. The proof uses the L? Rellich estimates established in [19].

Let {¢¢ x} be an orthonormal basis of LZ(Q; R™), where ¢  is a Dirichlet eigenfunc-
tion for £, in  with eigenvalue A, ;. The spectral (cluster) projection operator S; ; (f)
is defined by

Ser(f) = D pex(h) (1.15)
N rek€Wr A+
where A > 1, ¢k (f)(x) = (Pek, [)Pek(x), and (, ) denotes the inner product in
L2(Q;R™). Let uy, = Se;(f), where f € L2(;R™) and || fll;2(q) = 1. We will
show in Section 4 that

Cr(l+ely ife?a > 1,
/ VuePdo < {CETED) S (1.16)
0 Cr(1+4+er) ifed <1,

where C depends only on A and 2. Theorem 1.3 follows if we choose f to be an eigen-
function of L£.. We point out that while the estimate in (1.16) for the case g2} > 1,asin
the case of Laplacian [30], follows readily from the Rellich identities, the proof for the
case £2) < 1 is more subtle. The basic idea is to use the H' convergence estimate (1.8) to
approximate the eigenfunction ¢, with eigenvalue A, by the solution v, of the Dirichlet
problem Ly(ve) = Agpe in  and v, = 0 in 9. The same approach, together with a
compactness argument, also leads to the sharp lower bound in Theorem 1.4, whose proof
is given in Section 5.

2. Convergence rates in H!

Let L. = —div(A(x/e)V) with A(y) = (aff (y)) satisfying (1.2)-(1.3). Let x(y) =

(X;‘ﬁ(y)) denote the matrix of correctors for £; in R?, where Xf (y) = (leﬂ(y), e
X;"ﬁ y) € H;}er(Y ; R™) is defined by the following cell problem:
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Lix})=-£i(Pf) inR

5 P 2.1
X is periodic with respect to Z% and / X dy =0,
Y

foreachl < j <dand1 < B8 < m.Here Y = [0,1)? ~ R?/Z¢ and Pf(y) =
v 0,...,1,...,0) with 1 in the B position. The homogenized operator is given by

Lo = — div(AV), where A = (&f‘jﬂ) and
alf :/[ ﬂ+alk ™ —(x) )} dy. 2.2)

Y
Let

b =af —alf () —d (y)—(xy’g) 2.3)

where | <o, <mand1 <i,j <d.

Lemma 2.1. Suppose that A satisfies conditions (1.2)—(1.3). For 1 < o, < m and
1 <1, j, k <d, there exists F op € Hl (Y) such that

k;] per
bl = { M and  FY = -Fi. 2.4)
Moreover, F = (F,Z’j) eEL®Y)if x = (X ﬁ) is Holder continuous.
Proof. See Remark 2.1 in [17]. ]

By the N. Meyer estimates (see e.g. [13, p. 154]), the matrix of correctors yx is in Wple’f Y)
for some p > 2. It follows that x is Holder continuous if d = 2. In the scalar case
(m = 1), the well known De Giorgi—Nash estimates also give the Holder continuity of x
for d > 3. In view of Lemma 2.1 we may deduce that ||FO”j3 loo < Cifd =2andm > 1,

Ord > 3and m = 1, where C depends only ond and k. If d > 3 and m > 2, the functions

kl f (and VF,; op ) are bounded if A is Holder continuous.

Lemma 2.2. Suppose that A satisfies conditions (1.2)—(1.3). Let m = 1 and Q2 be a
bounded Lipschitz domain. Then

10f ;= PP~ < Ce, 2.5)

where C depends only on A. If m > 2, the estimate (2.5) holds, with C depending only
on A and Q, under the additional assumptions that A is Holder continuous and S is C'*
for some o € (0, 1).

Proof. This is proved in [17, Proposition 2.4] by considering the function ug(x) =
o (x) — PP(x) — ex! (x/e). Notice that L(us) = 0in € and us(x) = —ex/ (x/e)
on 8§2 In the scalar case one may use the maximum principle and boundedness of x to
show that ||M5||LOO(Q) < ||M5||LOO(QQ) < Ce. This implies that ”q)s,j - P] ||L00(Q) < Ce.
If m > 2, under the additional assumptions that A is Holder continuous and €2 is cle,
we know that x is bounded and |Jug || (@) < CllugllLx@pg) (see [3, p. 805, Theorem 3]).
This again gives (2.5). O
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Lemma 2.3. Suppose that u, € H'(Q; R™), ug € H*(Q2; R™), and Le(ug) = Lo(uo)
in Q. Let

B p dug
e (X) = ue (x) — uo(xX) = { P ;(x) = Pr(x)}- - (2.6)
J
Then
0 9%ul
o _ o oy 0
(Le(we)) = 83)6,‘ {[Fjik (x/8)] o, 0.0k }
3 [ ap By gy, OUp
+ B_)Ci{aij (x/s)[CDeyk(x) — X6 ]8ijXk
op LY By _ . By 0%ug
+a;; (X/E)a—xj[q’s,k(X) — xk 877 —ex (X/E)]axiaxl(, 2.7)
where Y = 1if B =y, and zero otherwise.
Proof. This follows from Proposition 2.2 in [17] by taking Vf ; x) = @f’ j(x). m]

Theorem 2.4. Suppose that A satisfies (1.2)—(1.3). If m > 2, assume further that A is
Holder continuous. Let 2 be a C1' domain in RY. For ¢ > 0 and fe L2($2; R™), let u,
be the unique weak solution in HO1 (2; R™) to the elliptic system Lo (us) = f in Q. Then

B
ou
Ue — g — {cbe —phH0

i < Cellfll 2 (2.8)

Hj ()

where C depends only on A and Q.

Proof. Under the assumption that A satisfies (1.2)—(1.3) and is Holder continuous, the
estimate (2.8) is a special case of the convergence estimates in WO1 PR for 1 <
p < oo, proved in [17, Theorem 3.7]. We give a direct proof here, which covers the case
m = 1 without the smoothness condition.

Let w, be given by (2.6). We first consider the case f € C§° (R?; R™). In this case it
is easy to see that under the assumptions in the theorem, w, € HO1 (2; R™)NL*®(2; R™).
It follows from (2.7) that

K/ |Vw, | dx be‘/ IV2uo| |[Vw,| dx
Q Q
+C/ IV{®:(x) — P(x) — ex(x/e)}] [Vuo| lwe|dx,  (2.9)
Q

where &, = (CDf’j), P = (Pjﬂ), and we have used the estimates ||F1?i§||oo < C of Lemma

2.1 and ||®; — P|loo < Ce of Lemma 2.2. By the Cauchy inequality this implies that

C 2
/ Vw2 dx < —Sf V2002 dx
Q 3 Ja

5
T2 /Q |V{®e(x) = P(x) — ex(x/e)}*|we | dx (2.10)
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for any § € (0, 1). We claim that

/Q V{®e (x) = P(x) — ex(x/e)}*|we|*dx < Coe? /Q Vwel* dx. @.11)
By choosing § > 0 so small that Cypé < 1/2, we may deduce from (2.10) and (2.11) that
lwell gt @y = CIVwell2g) < Cell VZuoll 2@y < Cell fll 20y
Tosee (2.11), wefix 1 < fp <mand 1 < jp < d and let
he(x) = O, (x) = PPy —exfP(x/e) inQ.

Note that i, € HY(Q; R™) N L®°(Q; R™) and L, (h,) = 0 in 2. It follows that

aha ah'S
/Wh Plwe] dx</
4ij 8xj
« o an? Jow!
=2 [ nafeiogs Trulde Q1)
Xj Xi
Hence,
/|th|2|wg|2dxsc/ el [Vhe| [Vwe] [we] dox., 2.13)
Q Q

where C depends only on d and k. Estimate (2.11) now follows from (2.13) by the Cauchy
inequality and the fact that ||/ ]|c0 < Ce.

Finally, suppose f € L?(£2; R™). Choose a sequence { f¢} of functions in C3o(2; R™)
such that f; — fin L2(Q; R™). Let we ¢ be defined by (2.6), but with f replaced by f;.
Since

lwe,j = we.ell g1 o) < Cellfi = fell 2y,

. ~ . l . ~
it follows that we ¢ — w in Hy(£2; R™) as £ — oo, and ||w||Hé(Q) < Cell fllL2q)-

However, it is not hard to verify that we ¢ — w, in LZ(Q; R™). As a result we may
conclude that w, = w € H(} (2; R™) and the estimate (2.8) holds. This completes the
proof. O

Remark 2.5. Let m = 1 and 2 be a bounded Lipschitz domain. An inspection of the
proof of Theorem 2.4 shows that the estimate (2.8) continues to hold as long as one has
||V2uo||Lz(Q) < Cl fll 2(q) and Vug € L*=(Q; R™) for f € C;°(€2; R™). Consequently,
the estimate (2.8) holds in the scalar case if €2 is convex and A satisfies (1.2) and (1.3).

Remark 2.6. Since

a

B

u

B B 0
a—m{“g‘“()‘{q’w‘Pf }8_)q/}

%__{ﬂ} ﬁ {cpﬂ _pﬁ}%
ox;  ox; ©J x] 77 xi0x;”



1908 Carlos E. Kenig et al.

it follows from (2.8) and (2.5) as well as the estimate ||V2u0||Lz(Q) < Cllflz2(q) that

u /3

aua { ﬁ }
ax;  ox; ©J Bx]

e

3. Convergence rates for eigenvalues

The goal of this section is to prove Theorem 1.1. For ¢ > 0 and f € Lz(Q; R™), under
conditions (1.2) and (1.3), the elliptic system L.(u;) = f in 2 has a unique (weak)
solution in HOl (2; R™), Define T, (f) = u.. Since ||u5||H01(Q) < Cl fllL2(q)> where C
depends only on « and €2, the linear operator T is bounded, positive, and compact on
L?(2; R™). Under the symmetry condition A* = A, the operator T} is also self-adjoint.
Let

el = e =+ > >0 (3.1

be the sequence of eigenvalues of 7, in decreasing order. By the mini-max principle,

yk = ax ( )’ ’ (32)
ek = ||f|IL2<9> o)
ng(Q R™) . flfl

where (, ) denotes the inner product in L2(£2; R™). Note that

“ u®  duf
1) 1) = e, £) = [ P xforg G (3:3)

ox; 0x;j

(ife =0, af}ﬁ (x/¢) is replaced by &f‘jﬂ ).

Let {¢ «} be an orthonormal basis of L%(Q; R™), where @k 1s an eigenfunctions
associated with p, . Let Ve o = {0} and V, ; be the subspace of L%(Q; R™) spanned by
{e1, ..., Pe i} fork > 1. Then

ek =  max (Te (), f)- G4

e,k—1

1120 =1

Let Aoy = (Ms,k)_l. Then {X. x} is the sequence of Dirichlet eigenvalues of L, in €2 in
increasing order.

Lemma 3.1. Suppose that A satisfies (1.2)—(1.3) and the symmetry condition A* = A.
Then

— < ma ma ((Te — T ma ((Ty — T }
ex = poxl smax| max (T =T f P max (T = To)f, f)
11112 q)=1 111 2q)=1

forany ¢ > 0.
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Proof. Tt follows from (3.2) that

Mok < / max (Te(f). f) < max ((Tg—To)(f),f)-i-fLH‘l/aX (To(f). f)

0,k—1 SLVo k-1 0,k—1
1712 =1 171l 2(g) =1 17112 =1
= max ((Te — To)(f), ) + roks
fLVo k-1
171 2g)=1

where we have used (3.4). Hence,

Mek — M0k < fﬂif_] (T — To)(f), ). (3.5)

171,20, =1

Similarly, one can show that

Hok — ek < max ((To — Te)(f), f). (3.6)
fLVe k-1
1£1,2)=!
The desired estimate follows readily from (3.5) and (3.6). ]

It follows from Lemma 3.1 that

e,k — okl < 1Te — Toll L2, 2. 3.7

Under the assumptions in Theorem 1.1, it is known that [lus — uoll2(q) < Cell fll 2(q)»
where C depends on A and 2. Hence ||T; — Toll;2_,;2 < Ce, which implies that
|tex — He0l < Ce. It follows that

[Ae e — Aokl < Cerokhe k-

By the mini-max principle and Weyl’s asymptotic, ¢ x & Ao x & k¥ @™ As a result, we
obtain

hek — Aokl < Ce(hop)? < Cek/ @™, (3.8)
where C is independent of ¢ and k. Note that the proof of (3.8) relies on the conver-
gence estimate in L2 ue — uollp2@) < Cellfllp2q)- The convergence estimate in HO1
in Theorem 2.4 allows us to improve the estimate (3.8) by a factor of k!/@™

Proof of Theorem 1.1. We will use Lemma 3.1 and Theorem 2.4 to show that

ek — toxl < Ce(uor)'/?, (3.9

where C is independent of ¢ and k. Since A, x = (ug,k)_1 for e > 0 and A¢ x & Ao, this
gives the desired estimate.

Letu, = T.(f) and ug = To(f), where | fll;2q) = 1 and f L Vpx—1. In view of
(3.4) for ¢ = 0, we have (uo, f) < po.x. Hence,

cllVuolyaig < (o, f) < o,
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where ¢ > 0 depends only on the ellipticity constant « of A. It follows that

£l g-1(@) < ClIVuoll 2 < Cron)'/>. (3.10)

Now, write

(e — ug, f) = <us—uo—{®ﬂ —Pﬂ}— f> <{d>’3 —Pﬁ}— f>

This implies that for any f L Vo x—1 with || fll 2 = 1,

u ﬂ
s =, )1 < e —uo = (@, — P/) 50 PR
H{‘Dﬁ i N
dxy (%)
< CE”f”LZ(Q)”f”H*l(Q) + C8||VMO||L2(§2)”f”L2(Q)
< Ce|[Vuoll12(g) < Celpon)'?, 3.11)

where we have used Theorem 2.4 and the estimate ||CI>£ .= Pzﬁ [loo < Ce for the second
inequality, and (3.10) for the third and fourth.

Next we consider the case f L Ve -1 and || fll 2(q) = 1. In view of (3.4) we have
(ue, f) < pe k. Hence, || Vug |2 < (ug, ) < pex. It follows that

LY(Q) —
£l -1 < ClIVUel 2y < Cluen)'? (3.12)
and
IVuoll 2y < Cllfllg-10) < Clues)'’?, (3.13)

where C depends only on the ellipticity constant of A. As before, this implies that for any
f L Ver—iwith [ fll2 =1,

oul
ug—uo—{fbﬂ i

[{ue —uo, f) <
0xy¢

£l -1
1 Q)

B /3_
|{c1> P}Be

= Cellfllg-1@) + CellVuollL2(q)
< Ceper)'? < Ce(pon)'?, (3.14)

I f 2@
Q)

where we have used the fact that e ¢ & o k. In view of Lemma 3.1, the estimate (3.9)
follows from (3.11) and (3.14). m]
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4. Conormal derivatives of Dirichlet eigenfunctions

Throughout this section we assume that A satisfies conditions (1.2)—(1.3) and A* = A.
Let A > 1 and S, (f) be defined by (1.15). Note that

Le(Sep () = ASe 0 (f) + Rep(f), 4.1
where
Re i (f)(x) = Z (Aek — Ve k (f). 4.2)
)Ls,ke[\/x,\/x'Fl)

Clearly, [|Se.x(f)llL2¢q) < I1fllL2(q)- It is also not hard to see that

IVSes (Dl < CVEIFll2 @)
IR (2@ < CVAIfll 20 4.3)
IV R, (Nl 2) < CA I Nl 120
where C depends only on the ellipticity constant « of A.

Lemma 4.1. Suppose that A satisfies (1.2)—(1.3) and A* = A. Also assume that A is
Lipschitz continuous. Let u, € H2(Q; R™) be a solution of Le(ug) = f in Q for some
f € L*(; R™), where Q is a bounded Lipschitz domain. Then

wu®  uf 9 9 auf
/ nkhkagﬁ(x/e)% . kdo = 2/ hk{nk— —ni—}ug ~a;xjﬂ(x/8) te do
a0 Xi 3)6] a0 8)6,' axk 3Xj
u®  oub
_ / div(h)af (xfe) 22 - T8
Q * 8xi 8xj
B
0 op oul  dug
— | hy—/a;; £. d
/Q g i IO G
B
oh ou? 9
+2/ hadd -aft.ﬂ(x/s)ﬁ- te dx
Q ox; Y oxr  0x;
a o
—2/ o ey dx, (4.4)
Q 0xk
where h = (hy, ..., hg) € Cé (R?; R?) and n denotes the unit outward normal to 9.

Proof. Use the divergence theorem and the assumption that A* = A. We refer the reader
to [12] for the case of constant coefficients. O

Lemma 4.2. Assume that A and Q2 satisfy the same assumptions as in Lemma 4.1. Let
ug = Se(f) be defined by (1.15), where [ € L*(Q2; R™) and I fllz2@) = 1. Suppose
that ug € H*(2; R™). Then

C
/ |Vug|>do < Ch + —/ [Vug|? dx, (4.5)
00 € JQ,

where Q¢ = {x € Q : dist(x, 9Q) < &} and C depends only on A and Q.



1912 Carlos E. Kenig et al.

Proof. We first consider the case 0 < ¢ < diam(£2). In this case we may choose a
vector field 7 in C}(R?; R?) such that nghx > ¢ > 0on 3L, |h| < 1, |Vh| < Ce™!,
and 7 = Oon {x € Q : dist(x, 92) > ce}, where ¢ = ¢(2) > 0 is small. Note that
Le(ug) = Aug + Re 5 (f) in Q. Since u, = 0 on 9€2, it follows from (4.4) that

2 C 2 o Oug
c |Vug|“do < — [Vug|“dx —2A1 | uj - ~hpdx
F]9) e Ja, Q 0xk

o

£ . hydx. (4.6)
0X

ou

- 2f (R (f))* -
Q

Using the Cauchy inequality we may bound the third integral on the right hand side of
(4.6) by CllRe 5. (/) L2 I Ve ll 2(q)» Which, in view of (4.3), is dominated by CA.

To handle the second integral on the right hand side of (4.6), we use the integration
by parts to obtain

‘2)\] u‘;-a"g Chpdx| = ‘A[ lug|? div(h) dx| < Q/ gl dx. 4.7
Q oxy Q € JQe
Since
u  ul 9 A
Mue —af}ﬁ(x/s)a—;- 3xj = (htte — Le(ue)u® — B—Xi{ug‘a;ﬁ(x/s)a—};}, 4.8)

it follows that for any ¢ € Cé (RY),

8
u® ou
A 2 qfs [ & 2 d
/Q { P —aff <o) S [
5
aul 9
:/(Aua —Es(ug))“ug‘gozdx—l-Z/ uta (x/e) 8”8 2 pdx. (49
Q Q Xj 8xi

Choose ¢ sothat 0 < ¢ < 1, p(x) = 1 if dist(x, Q) < ce, p(x) = 0 if dist(x, 9R2) >
2ce, and |[Vg| < Ce~!. In view of (4.9) we have

Af |us|2<p2dxscf |Vus|2<p2dx+/ |Rs,k<f>||ug|¢2dx+0f |ue || V|* dx
Q Q Q Q

C
<C /Q |ws|2<p2dx+||Rg,x<f)||Lz(m||ue||Lz(QM)+S—2 / lug | dx

2ce

< c/ [Vue|? dx+Ceh,
Q¢
where we have used the Cauchy inequality, (4.3), and the inequality

/ lue|*dx < C82/ |Vue|? dx. (4.10)
Qoce Qoce

This, together with (4.6) and (4.7), gives the estimate (4.5).
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Finally, if ¢ > diam(€2), we choose a vector field h € Cé (R4; RY) so that hgng >
¢ > 0 on dL2. The same argument as in (4.6) and (4.7) shows that the left hand side of
(4.5) is bounded by CA. m]

Theorem 4.3. Suppose that A satisfies conditions (1.2)—(1.3) and A* = A. Also assume
that A is Lipschitz continuous. Let Q be a bounded C LY domain. Let u, = Sea(f) be
defined by (1.15), where f € L*(2; R™) and I /2 = 1. Then

AMl+e b ifeta>1
/ VuoPdo < ] EHE T ’.f‘92 = b @.11)
90 Cr(1+¢er) ifer<l,

where C depends only on A and Q.

Proof. We first note that under the conditions on A and €2 in the theorem, u, €
H?(Q; R™). This allows us to use Lemma 4.2 and reduce the problem to the estimate

of ¢! ”V”8”2LZ(QS) by the right hand side of (4.11). If £2A > 1, the desired estimate

follows directly from ||Vu8||iz(9) < CA.

The proof for the case e2A < 1 is more subtle and uses the H' convergence estimate
in Theorem 2.4. Let v, be the unique solution in HO1 (£2; R™) to the system

Lo(ve) = Mg + Rep(f)  in Q. 4.12)

Observe that
htte + Re s ()l 120y < Ch, 4.13)

Since 32 is C!:! and £ is a second order elliptic operator with constant coefficients, this
implies that v, € H%(Q; R™) and

IV2vell 2y < CA. (4.14)
Also, using Lo(ve) = L (ue) in 2, we may deduce that
Ivell g ) = CllVitell 20y < CVA, (4.15)
where we have used (4.3). To estimate &~ ||Vu£||i2(Q ) We use the estimate |V®,|
< C in [3] to obtain
1 [ |ou, | c (|9 9 af 2 C
-/ Helar <= | |2 ol 3 2 dv 4= [ [VuPdx
& JQ, 8xl~ & JQ, Bx,- 3xi ’ axj' & JQ,
C
<Cer?+ —/ |Vve|? dx, (4.16)
& Q.

where the last inequality follows from (2.14) and (4.13). Furthermore, we may use the
Fundamental Theorem of Calculus to obtain

1
-/ |Vv8|2dx§C/ |va|2d0’—‘rC8/ V20, |* dx
& Qe Q2 Qe

< c/ Vv, |>do + CeA?,
Q2
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where we have used (4.14) for the second inequality. As a result it suffices to show that
/ |V |>do < CA(1 + &)). 4.17)
Elo)

To this end we use a Rellich identity for Ly, similar to (4.4) for L, to deduce that

o

0
/ tte + Rep (N - = - hyedx
Q 0xg

/ |va|2dx§C/ |Vv.[>dx + C
0Q Q

8 o
/u‘;- Ve ~hidx
Q

<CA+Chr

0Xy
o au? o o :
<CL+Cx Vg - — -hpdx| 4+ A uy - vy -div(h)dx|, (4.18)
Q dxk Q
where h = (hy, ..., hg) € Cé(Rd; R?) is a vector field such that figng > ¢ > 0 on I

and |k| + |Vh| < C, and we have used (4.15) and (4.3) for the second inequality and
integration by parts for the third. To estimate the third integral on the right hand side of
(4.18), we note that

”M&‘”H*I(Q) = )M_l | Le(ue) — R&‘,)L(f)HH*I(Q)
< CA M Vel 2y + CAT IR a ()l 12y < CA7'2,

where we have used (4.3). It follows that

k‘/ udvd div(h)dx| < Chllugll g-1g)llve diV(h)HH(;(Q) < CAa. 4.19)
Q

Finally, we claim that

<C+eh). (4.20)

a o
/ vy 6 g dx
Q ~ 0x
In view of (4.18) and (4.19), this would give the estimate (4.17). To see (4.20) we use
integration by parts to obtain

/v“augh dx| < f( a oy e, g +1/| P div(h) d
an)Ckkx_ng 63)Ckkx 29145 .
B a
o o af  caB 31)8 aua
< /Q{Ms Vg {cbs,j X.IB }ij}axkhkdx
B a
v ou
& _ y.soepr 278 ey 4 C
+ /Q{ e Y }axj 0xk kax)+
8vf

< Cll(Vug)hll g-1(q)

Ug — Vg _{Qf’j - Pjﬂ}&)C'
J

Hy(Q)
+ Ce||Vuell 2@y IVUell p2() + €
<C+H Cex,
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where we have used Theorem 2.4 as well as the estimate [|Vugll 2y + Vel 2q) <
CA1/2 for the last inequality. This completes the proof. O

Note that the right hand side of (4.11) is bounded by CA3/? in both cases. We give a direct
proof of this weaker estimate under some weaker assumptions.

Theorem 4.4. Assume that A satisfies (1.2)—(1.3), A* = A, and A is Holder continuous.
Let Q be a bounded Lipschitz domain. Let ug = S . (f) be defined as in (1.15). Then

fg |Vue|> do < CWZ/Q |fI1?dx, 4.21)
d

where C depends only on Q2 and A.

Remark 4.5. Recall from (1.11) that the upper bound (4.21) is sharp when d = 1 and
is an interval.

The proof of Theorem 4.4 relies on the Rellich estimate in the following lemma.
Lemma 4.6. Assume that A and Q2 satisfy the same conditions as in Theorem 4.4. Sup-

pose that u, € H' (S5 R™) and Lo(ug) = f in Q for some f € L*(S; R™). Further
assume that u, € HY (92 R™). Then

/ |Vup|? do < C/ |Vtanu8|2dU+C/ |u5|2d0+C/ | fI?dx, (4.22)
a2 a2 02 Q

where Vinu, denotes the tangential gradient of u, on 02 and C depends only on A
and Q.

Proof. We first point out that in the case f = 0, the estimate (4.22) was proved in [19]
for Lipschitz domains with connected boundaries. If 9€2 is not connected, the estimate

Vuell 20y < Clluell gipo) (4.23)

follows from the case of connected boundary by a localization argument.
If f=(fL ..., f™) #0, we define w, = (w}(x), ..., w(x)) by

W (x) = /Q re8 (v, y) Ay dy,

where ' (x, y) is the matrix of fundamental solutions for £, in R4, with pole at y. Then
w, € H'(Q; R™) and L, (w) = f in Q. We claim that

/ |Vw8|2do~|—/ lwe|>do < cf |f1*dx. (4.24)
Q2 Q2 Q
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Assume the claim (4.24) for a moment. Note that u, — w, € HY (), Le(ue — we) =0
in Q, and u; — w, € H' (). In view of estimate (4.23) for the case f = 0, we obtain
V(e — we)llp29q) < Cllue — well g1yg)- This, together with (4.24), yields
IVuellr2q) < Cllue — wellgigo) + 1IVwell 290
< ClVantell 1290y + Cllucllp2o) + CliVwel 290y + Cllwell 250
< CliVuantellr250) + Cllucll 20y + Cllf ll2(q)-
It remains to prove (4.24). We will assume that f € Cé (2; R™); the general case

follows by a limiting argument. Let g = (g', ..., g™) € L2(dQ; R™). It follows from
Fubini’s theorem as well as the Cauchy inequality that

8 o
f wS g(x dU
I 0x;

where v, = (vsl, ..., v and

=‘/ f%){/ B—{F“ﬁ‘(x y)ig* (x)da(x)}dy‘
Q 2

= ||f||L2(Q)||Ua ”LZ(Q)a 4.25)

0
vy = f B—{Fzﬁ(x,yng“(x)do(x).
aQ 90X
By [19, Theorem 3.5], we have

lvellL2@) < CllWe) 200y < Cliglli2p0),

where (vg)* denotes the nontangential maximal function of v,. In view of (4.25), this, by
duahty, lmphes that ”VWg ||L2(8S2) < C”f”LZ(Q)
Finally, we note that since |I'z(x, y)| < C|x — y|2_d (see [3]),

£ Lf () 12
|ws(x)| = / | |d b <C{Amdy} .

This yields the estimate ||we |l ;2¢50) < Cllf I 12()- ]

Proof of Theorem 4.4. We may assume that || /| ;2(q) = 1. Consider the function

we (x, 1) = ug(x) cosh(v/A1) in Q7, (4.26)

where Q7 = Q2 x (0, T) and T = diam(£2). Note that Q7 is a bounded Lipschitz domain
in R+ and w, € H'(Qr). Since L (ue) = Aug + Re5(f) in K, it follows that

2
{Le gz}ws_RM(f)cosh(x/_t) in Q7.

In view of Lemma 4.6 we obtain

/ |vx,,w|2do(x,z)§cf |V[anw|2do(x,t)+Cf |Re.1.(f) cosh(v/A1)|* dx di.
QT QT Qr



Eigenvalue estimates in periodic homogenization 1917

This implies that

T
/ |cosh(ﬁr)|2dt/ |Vue|> do
1Y

0 T
< Cilcosh(vA T)|? + cx/ lcosh(VAn) > dt,  (4.27)
0

where we have used the fact that w, = 0 on 92 x (0, T') as well as the estimates of
Vuell12(q) and | Re, ()l 2(g) in (4.3). Finally, since

r 1 1
lcosh(WA )2 dt ~ —e**T ~ —|cosh(v/A T)|2,
/0 N VA

we may deduce from (4.27) that
/ |Vug > do < CA3/2.
Fle}

This finishes the proof. O

5. Lower bounds

In this section we give the proof of Theorem 1.4. Throughout this section we will assume
that m = 1 and € is a bounded C? domain in RY, d > 2. We will also assume that A
satisfies (1.2)—(1.3), A* = A, and A is Lipschitz continuous.

Recall that &, (x) = (P, ;i (x))1<i<q denotes the Dirichlet correctors for L, in €2.

Lemma 5.1. Let J(®.) denote the absolute value of the determinant of the d x d matrix
(0®¢,;/0x;). Then there exist constants &y > 0 and ¢ > 0, depending only on A and L,
such that for 0 < & < &y,

J(®P)(x) > ¢ if x € Qand dist(x, Q) < ce.

Proof. Using dilation and the standard C1¢ estimate for £, it is easy to see that
V@ (x) = VO, (y)] < Ce™%|x — y|*

for x,y € Q with |[x — y| < ¢, where 0 < « < 1 and C depends only on «, A,
and . This, together with the fact that |[V®,| < C, shows that it suffices to prove
J(@)(x) >c > 0forx € 0Q2.

Next, we fix P € 0€2. By translation and rotation we may assume that P = 0 and

QN{(, xg) : |x'| < roand |xg| < ro}
={(x', xq) : |x"| < roand ¥ (x") < x4 < ro},
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where ¢ : RY~1 — R is a C? function such that ¥ (0) = |V¥(0)| = 0 and || V¥ ||0o
< M. Define

Ur) ={(x',xa) e R : |x'| < rand ¢ (x') < x4 < r}. (5.1
Since ®.(x) = x on 92, we see that

acbs,d
0xy

J(®:)(0) = ‘ (0)‘-
Also recall that |®, 4(x) — x4| < Cpe, where C depends only on A.

Let s9o > 4Cy be a large constant to be determined. For 0 < ¢ < ry/so, let u, be the
solution of L. (u,) = 0 in U (soe) with the Dirichlet data g on dU (spe) given by

My|x'|? if x4 = ¥ (x’) and |x'| < so¢,
g(x) = { Mo(spe)? + Coe  if |x'| = spe and ¥ (x) < xg < soé, (5.2)
0 if Xd = So€.

Since 0 < g < Mo(soe)? + Coge, it follows from the maximum principle that
0 < u, < Mo(soe)> + Coe  in U(sp€).
By the boundary Lipschitz estimate in [3, Lemma 20], we then obtain

VueO)] = Csor + soe) ™ max el | < Crlsoe + Cosg ). 53)
S0€

where C; depends only on M and A. Using ®, 4(x) > x4 — Coe in 2 and P 4(x) = x4
on 0€2, it is easy to verify that &, 4 + g > 0 on dU (sp¢). As a result, by the maximum
principle, we also obtain ®, 4 + u, > 0 on U (s¢€).

Let 4Cy < 1ty < sg. We consider the function

w(x) = g 4(toex/2) + ue(toex/2) in B = B(Q, 1),
where Q = (0,...,0,1)and 0 < ¢ < sa] min(rg, 2Mp)~1). Note that
L,-1(w)=0 inB and minw = w(0) =0.
0 B

Thus, by the Hopf maximum principle (see e.g. [11, p. 330]), we obtain
ow
—(0) = cow(Q),
0xg

where ¢y > 0 depends only on #p and A. It follows that

od 2 0
240y > 0%, 40, ..., 0. 108/2) — £ (0)
0x4 o€ 0x4
200 . —1
> 040, 0.105/2) = Cilsoe + Cos ). (5.4)
0

where we used the estimate (5.3) as well as the fact that u, > 0.
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Finally, note that if #yp = 4Cy,
D, 4(0,...,0,1¢&/2) > the/2 — Coe = tpe /4.
This, together with (5.4) and the choice of so = 4C1Co/co, yields

0P, 4
0x4

0) > %0 — C1s0€ — Clcoso_l > %O

for 0 < & < &g, where gy > 0 depends only on A and 2. The proof is complete. O

Since [V, | < C, it follows from Lemma 5.1 that if x € Q and dist(x, 9R2) < ce,

then the d x d matrix V®, is invertible at x and
clw] = [(V&g(x))w (5.5)
for any vector w in R¥.

Lemma 5.2. Let u, be a Dirichlet eigenfunction for L¢ in Q with the associated eigen-
value ) and |lugl| 2y = 1. Then, if 0 < & < &,

1 2 2
- i |Vue|“dx > ch — Cer”, (5.6)

where ¢ > 0 and C > 0 depend only on A and 2.

Proof. Let v, be the unique solution in H(}(Q) to the equation Lo(ve) = Agu, in Q.

As in the proof of Theorem 4.3, we have ||Vv8||Lz(Q) < C+/A and ||V2vg||Lz(Q) < CA.
Moreover, it follows from (2.14) that

IVue — (V) Vel 121y < Cel. (5.7)
Hence,
1 1
-/ |Vue|* dx > —/ (VD) Vv, |>dx — Cer? > f/ Vv, |>dx — CeA?,
€ Ja,. 2e Jo, & Ja.
(5.8)

where we have used (5.5) for the second inequality. Using

c
/ Vv | do < —/ |Vv£|2dx+C8/ V20, dx
aQ & Qe Qe

and || V2v, 2@y < CA, we further obtain

1
-/ |Vue|? dx > c/ Vv |>do — Cel. (5.9)
& JQue £l

‘We will show that
A< c/ |Vve|>do + Cel?, (5.10)
aIQ

which, together with (5.9), yields the estimate (5.6).
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To see (5.10), we may assume, without loss of generality, that 0 € . It follows by
taking (x) = x in a Rellich identity for L, similar to (4.4) that

. 8v8 E)vg ovg dug 0vg
(x, n)a;; do =2 —-4d) a,J . dx — 20 | ug—=xpdx
I 8)6]' 8x, 0x; Q 0

0
= (2—d)k/ UgVg dX —ZA/ ugﬁxkdx.
Q Q Bx

This, together with

ad ad
2/ Me&Xk dx = -2 ﬁvgxk dx — Zd/ UgVg dX
Q 0x Q 0xg Q

oug
=d—-2 | — (e —ug)xpdx —2d | ugvedx,
Q a)Ck Q

obtained by integration by parts, gives

el 0
/ (x,n)&ij&-&da
A0 8xj 3)6,‘

du
:2x+(d+2)x/ e (Vg —ug)dx+2k/ Mo e — ug)xp dox.
Q Q Bx

It follows that

—ve)xpdx|. (5.11)

ou
2% < C/ |Vvel* do + Chllue — vell 2 +2,\’/ £
0 Q 0xg

Finally, note that |Jus — ve |l ;2(q) < CéeA. Also, the last term on the right hand side of
(5.11) is bounded by

RIS v,
2) o I ug — ve — (P _xf)a_x, X dx| + Crel|Vuell 200 I VVell L2
oy 2
<CAx Xk ug — v — (Pg —x]) + Ce
Xk H-1(Q) H ()
< C8A2,
where we have used Theorem 2.4. This completes the proof of (5.10). m]

Let ¥ : R~ — R be a C? function with ¥ (0) = |V (0)| = 0. Define

Z,=ZW,r)={x=u"xg) eRY: x| <rand v (x') < xg <1+ ¥ ()},
L=I1W,r)={x=0x"x e RY |x'| < randx; =¥ (x)).
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Lemma 5.3. Letu € HY(Z,). Suppose that —div(AVu) + Eu = 0in Zy andu = 0 in
I for some E € R. Also assume that |E| + |V Alloo + [|V?¥ lleo < Co and

[Vu|>dx > co/ |Vu|? dx (5.12)
VA Zy
for some Co > 0, co > 0. Then
[Vul*do >c | |Vu|*dx, (5.13)
I Zy

where ¢ > 0 depends only on the ellipticity constant k of A, co, and Cy.

Proof. The lemma is proved by a compactness argument. Suppose that there exist se-
quences {y} in CZ(RI™Y), {uz} in HY(Z Yy, 2)), {Ex} C R, and {AF(x)} with ellipticity
constant «, such that ¥ (0) = [Vy (0)| = 0,

— diV(AkVuk) + Exur =0 in Z(Yy, 2), ur =0 only,?2), (5.14)
|Ek| + VA loo + IV ¥kl < Co. (5.15)
/ |Vup|>dx =1, / [Vug|*>dx > co, (5.16)
Z(Vk,2) Z(Y, 1)
and
/ |Vup|>do — 0 ask — oo. (5.17)
I (Y, 1)

By passing to a subsequence we may assume that ¥ — ¥ in C1¥(|x'| < 4). By the
boundary C L estimate we see that the norm of uy in C1%(Z Yk, 3/2)) is uniformly
bounded. As a result, by passing to a subsequence, we may assume that vy — v in
CY(Z(0,3/2)), where vg (x', xq) = ur (x', xg— Y (x")) and Z(0, r) = {(x', xq) : |x'| <r
and 0 < x4 < r}.

We now let u(x’, xg) = v(x’, x4 + ¥ (x)). Clearly, by passing to subsequences, we
may also assume that £y — E in R and A¥ — A in C¥(B(0, Rp)). It follows that
|E| + IVAl LeB(0,Ry)) < Co,

—div(AVu) + Eu=0 inZ(,1) and u=0 onl(y,1). (5.18)

In view of (5.17) we also obtain Vu = 0 in I (¥, 1). By the unique continuation property
of solutions of second-order elliptic equations with Lipschitz continuous coefficients (e.g.
see [1]), it follows that u = 0 in Z (¥, 1). However, by taking limit in the inequality of
(5.16),

/ |Vu|>dx > ¢y > 0. (5.19)
Zy,

This gives us a contradiction and finishes the proof. O
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Remark 5.4. Suppose that L. (u.) = lug in Z(y, 2¢) and u, = 0in I (y, 2¢) for some
A > 1. Assume that £2A + |VAllsc + |VZ¥ |leo < Co and

/ |Vue|? dx > co/ |Vue|® dx (5.20)
Z(Y,e) Z(Y,2¢)

for some ¢, Co > 0. Then

/ Vue|?do > 5/ Vi, |? dx, (5.21)
1G0e) & Jz(y,2)

where ¢ > 0 depends only on the ellipticity constant of A, cg, and Cy. This is a simple
consequence of Lemma 5.3. Indeed, let w(x) = u.(ex) and ¥ (x") = g~ ¥(ex). Then
L1(w) = &2 w in Z(Ye, 2) and

/ [Vw|?dx > Co/ |[Vwl|? dx.
Z(Ye.1) Z(Ye.2)

Since &2\ + IVA]lso + ||V21ﬂ5 [loo < Co, it follows from Lemma 5.3 that

/ IVw|?do > c/ IVw|? dx, (5.22)
1. 1) Z(Ye.2)

which gives (5.21). Note that the periodicity assumption of A is not needed here.

Proof of Theorem 1.4. For each P € 0%, there exists a new coordinate system of R,
obtained from the standard Euclidean coordinate system through translation and rotation,
so that P = (0, 0) and

QN B(P,ro) = {(x', xq) € R? : x4 > ¥ (x)} N B(P, ro),

where ¥ (0) = |V (0)| =0 and || V2V |leo < M. For 0 < r < crg, let (A(P,r), D(P,r))
denote the pair obtained from (I (¥, r), Z (¥, r)) by this change of the coordinate system.
If 0 < ¢ < crg, we may construct a finite sequence of pairs {(A(F;, €), D;(P;, €))} such
that

=Jawr. 9o

and
Y xpp2 =C and Qe CJD(P o). (5.23)
i i

Let A;j(r) = A(P;,r) and D;(r) = D; (P, r).

Suppose now that u, € H&(Q), Le(ug) = Aug in Q, and ||ug||Lz(Q) = 1. Assume that
A > 1and el < §, where § = §(A, ) > 0 is sufficiently small. It follows from Lemma
5.2 and (4.16)—(4.17) in the proof of Theorem 4.3 that

1 1
ch < -/ |Vug|>dx < -/ |Vue|>dx < Ch. (5.24)
€ ch € 925
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To estimate fasz |Vug|?> do from below, we divide {D; (¢)} into two groups. Say i € J if
f [Vug|>dx < N |Vue|® dx (5.25)
D;(2¢) Di(¢)

with a large constant N = N (A, Q2) to be determined. Note that if i € J, by Remark 5.4,

/ |Vus|2dazzf Vue P dx,
Ai(e) € JDi(e)

where y > 0 depends only on A, 2, and N. It follows by summation that

/ V> do > L Vit 2 dx
a2

€ JUie, Dite)

ZU |Vug|2dx—/ |Vug|2dx}

€ Qe Uié./ D;(e)

ﬂ{cex —/ |Vu8|2dx}, (5.26)
2 Uigs Di(e)

where we have used the fact that Q.. C Ui D; (¢) and estimate (5.24).
Finally, we note that by the definition of J as well as the estimate (5.24),

v

v

C C Ceh
/ VuePdx < & Viel? dx < —/ Ve P dx < X
Uigs Dife) N JUiqs Di2e) N Jo, N

where we have used the fact that Ui D;(2¢) C 2. This, together with (5.26), yields
f |Vug|?do > eyrfc — CN~'} > ea, (5.27)
aQ

if N = N(A, Q) is sufficiently large. The proof is complete. O
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