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Abstract. For a family of elliptic operators with rapidly oscillating periodic coefficients, we study
the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet
eigenfunctions. The results rely on an O(ε) estimate in H 1 for solutions with Dirichlet condition.

1. Introduction

This paper concerns the asymptotic behavior of Dirichlet eigenvalues and eigenfunctions
for a family of elliptic operators with rapidly oscillating coefficients. More precisely,
consider

Lε = − div(A(x/ε)∇) = −
∂

∂xi

[
a
αβ
ij

(
x

ε

)
∂

∂xj

]
, ε > 0 (1.1)

(the summation convention is used throughout the paper). We will assume that A(y) =
(a
αβ
ij (y)) with 1 ≤ i, j ≤ d and 1 ≤ α, β ≤ m is real and satisfies the ellipticity condition

κ|ξ |2 ≤ a
αβ
ij (y)ξ

α
i ξ

β
j ≤ κ

−1
|ξ |2 for y ∈ Rd and ξ = (ξαi ) ∈ Rdm, (1.2)

where κ ∈ (0, 1), and the periodicity condition

A(y + z) = A(y) for y ∈ Rd and z ∈ Zd . (1.3)

The symmetry condition A∗ = A, i.e., aαβij = a
βα
ji , will also be needed for our main

results. Let {λε,k} denote the sequence of Dirichlet eigenvalues in an increasing order
for Lε in a bounded domain �. We shall use {λ0,k} to denote the sequence of Dirichlet
eigenvalues in an increasing order for the homogenized (effective) operator L0 in �. It is
well known that for each k fixed, λε,k → λ0,k , as ε→ 0. We are interested in the bounds
of |λε,k−λ0,k|, which exhibit explicit dependence on ε and k. The following is one of the
main results of the paper.
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Theorem 1.1. Suppose that A satisfies conditions (1.2)–(1.3) and A∗ = A. If m ≥ 2, we
also assume that A is Hölder continuous. Let � be a bounded C1,1 domain (or convex
domain in the case m = 1) in Rd , d ≥ 2. Then

|λε,k − λ0,k| ≤ Cε(λ0,k)
3/2, (1.4)

where C is independent of ε and k.

Remark 1.2. By the mini-max principle and Weyl asymptotic formula,

λε,k ≈ λ0,k ≈ k
2/(dm). (1.5)

In view of (1.4) and (1.5) we obtain

|λε,k − λ0,k| ≤ Cεk
3/(dm), (1.6)

where C is independent of ε and k. It also follows from (1.5) that the estimate (1.4) is
trivial if ε(λ0,k)

1/2
≥ 1.

Asymptotic behavior of spectra of the operators {Lε} is an important problem in pe-
riodic homogenization; results related to the convergence of eigenvalues may be found
in [20], [21], [28], [16], [25], [24], [9], [10], [18], [27] (also see [6] for quasilinear el-
liptic equations). In particular, the estimate |λε,k − λ0,k| ≤ Ckε, which is known under
the assumptions on A and � in Theorem 1.1, may be deduced from the L2 convergence
estimate ‖uε − u0‖L2(�) ≤ Cε‖f ‖L2(�), where uε (ε ≥ 0) denotes the solution of the
Dirichlet problem Lε(uε) = f in � and uε = 0 on ∂�. Such an L2 estimate, which may
be found in [14], [18], [17], [29] for smooth domains, in fact implies that

|λε,k − λ0,k| ≤ Cελ
2
0,k, (1.7)

where C is independent of ε and k. In the case that � is a bounded Lipschitz domain, it
was proved in [18] that ‖uε − u0‖L2(�) ≤ Cσ ε(|ln ε| + 1)1/2+σ‖f ‖L2(�) for any σ > 0,
provided A satisfies (1.2)–(1.3), A∗ = A, and A is Hölder continuous. As a result we
obtain

|λε,k − λ0,k| ≤ Cσ ε(|ln(ε)| + 1)1/2+σ (λ0,k)
2,

where Cσ depends on σ , but not on ε or k.
Our estimate in Theorem 1.1 improves the estimate (1.7) by a factor of (λ0,k)

1/2. This
is achieved by utilizing the following O(ε) estimate in H 1

0 (�;R
m):∥∥∥∥uε − u0 − {8

β
ε,j − P

β
j }
∂u

β

0
∂xj

∥∥∥∥
H 1

0 (�)

≤ Cε‖f ‖L2(�), (1.8)

where C depends only on A and �. Here P βj (x) = xj (0, . . . , 1, . . . , 0) with 1 in the β th

position;8ε(x) = (8
β
ε,j (x)) denotes the so-called matrix of Dirichlet correctors, defined

by {
Lε(8βε,j ) = 0 in �,
8
β
ε,j = P

β
j on ∂�.

(1.9)

We remark that (1.8) is a special case of convergence estimates in W 1,p
0 (�) established

in [17] for 1 < p < ∞, under the assumption that A satisfies (1.2)–(1.3) and is Hölder
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continuous. We provide a direct proof, which also covers the scalar case m = 1 without
the smoothness condition, in Section 2. The proof of Theorem 1.1, which uses (1.8) and
a mini-max argument, is given in Section 3.

In this paper we also study the upper and lower bounds of the normal derivatives of the
eigenfunctions for Lε. Let φ be an eigenfunction of the Dirichlet Laplacian on a Lipschitz
domain �; i.e., φ ∈ H 1

0 (�) and −1φ = λφ in �. Assume that ‖φ‖L2(�) = 1. It follows
from the Rellich identity that ∫

∂�

∣∣∣∣∂φ∂n
∣∣∣∣2 dσ ≤ Cλ, (1.10)

where C depends only on �. The argument works equally well for second-oder elliptic
operators with Lipschitz continuous coefficients. In fact it was proved in [15] that the esti-
mate (1.10) holds if� is a general smooth compact Riemannian manifold with boundary.
Furthermore, the lower bound cλ ≤ ‖∂φ/∂n‖2

L2(∂�)
holds if � has no trapped geodesics

(see related work in [26], [30]; we were kindly informed by N. Burq that the results on
upper and lower bounds in [15] may be deduced from earlier work on the wave equations
in [5], [7]).

A very interesting problem is whether the estimate (1.10) holds for eigenfunctions
of Lε, with constant C independent of ε and λ. This problem is closely related to the
uniform boundary controllability of the wave operator ∂2/∂t2+Lε (see e.g. [23], [4], [2],
[10], [22] and their references). In the casem = d = 1, it is known that the estimate (1.10)
with constant C independent of ε and λ may fail. Counter-examples of eigenfunctions φε
with eigenvalues λε ∼ ε−2 can be constructed so that∫

∂�

∣∣∣∣∂φε∂n
∣∣∣∣2 dσ ∼ (λε)3/2 (1.11)

(see e.g. [10]). We remark that asymptotic behavior of eigenvalues and eigenfunctions
below and above the critical size (λε,k ∼ ε−2) was investigated rather extensively for
d = m = 1 in [8], [9], [10]. To the best of our knowledge, the only results for the case
d ≥ 2 were contained in [22], where an observability estimate for a wave equation with
rapidly oscillating density was established. Note that if d = 1, equations with oscillating
coefficients are equivalent to those with oscillating potentials. This, however, is not the
case in higher dimensions.

In this paper we show that the estimate (1.10) holds if ελε ≤ 1. In fact we obtain the
following.

Theorem 1.3. Suppose that A satisfies (1.2)–(1.3) and A∗ = A. Also assume that A
is Lipschitz continuous. Let � be a bounded C1,1 domain in Rd , d ≥ 2. Let φε ∈
H 1

0 (�;R
m) be a Dirichlet eigenfunction for Lε in � with the associated eigenvalue λε

and ‖φε‖L2(�) = 1. Then∫
∂�

|∇φε|
2 dσ ≤

{
Cλε(1+ ε−1) if ε2λε ≥ 1,
Cλε(1+ ελε) if ε2λε < 1,

(1.12)

where C depends only on A and �.
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If ελε is sufficiently small, we also obtain a sharp lower bound in the case of scalar
equations.

Theorem 1.4. Let m = 1 and � be a bounded C2 domain in Rd , d ≥ 2. Suppose
that A satisfies the same conditions as in Theorem 1.3. Let φε ∈ H 1

0 (�) be a Dirichlet
eigenfunction with the associated eigenvalue λε and ‖φε‖L2(�) = 1. Then there exists
δ > 0 such that if λε > 1 and ελε < δ, then∫

∂�

|∇φε|
2 dσ ≥ cλε, (1.13)

where δ > 0 and c > 0 depend only on A and �.

Remark 1.5. It follows from (1.12) that∫
∂�

|∇φε|
2 dσ ≤ C(λε)

3/2, (1.14)

where C depends only on A and �. In Section 4 we provide a direct proof of (1.14),
under the weaker assumptions that � is Lipschitz, A satisfies (1.2)–(1.3), A∗ = A, and
A is Hölder continuous. The proof uses the L2 Rellich estimates established in [19].

Let {φε,k} be an orthonormal basis of L2(�;Rm), where φε,k is a Dirichlet eigenfunc-
tion for Lε in � with eigenvalue λε,k . The spectral (cluster) projection operator Sε,λ(f )
is defined by

Sε,λ(f ) =
∑

√
λε,k∈[

√
λ,
√
λ+1)

φε,k(f ), (1.15)

where λ ≥ 1, φε,k(f )(x) = 〈φε,k, f 〉φε,k(x), and 〈 , 〉 denotes the inner product in
L2(�;Rm). Let uε = Sε,λ(f ), where f ∈ L2(�;Rm) and ‖f ‖L2(�) = 1. We will
show in Section 4 that∫

∂�

|∇uε|
2 dσ ≤

{
Cλ(1+ ε−1) if ε2λ ≥ 1,
Cλ(1+ ελ) if ε2λ < 1,

(1.16)

where C depends only on A and �. Theorem 1.3 follows if we choose f to be an eigen-
function of Lε. We point out that while the estimate in (1.16) for the case ε2λ ≥ 1, as in
the case of Laplacian [30], follows readily from the Rellich identities, the proof for the
case ε2λ < 1 is more subtle. The basic idea is to use theH 1 convergence estimate (1.8) to
approximate the eigenfunction φε with eigenvalue λε by the solution vε of the Dirichlet
problem L0(vε) = λεφε in � and vε = 0 in ∂�. The same approach, together with a
compactness argument, also leads to the sharp lower bound in Theorem 1.4, whose proof
is given in Section 5.

2. Convergence rates in H 1

Let Lε = − div(A(x/ε)∇) with A(y) = (a
αβ
ij (y)) satisfying (1.2)–(1.3). Let χ(y) =

(χ
αβ
j (y)) denote the matrix of correctors for L1 in Rd , where χβj (y) = (χ

1β
j (y), . . . ,

χ
mβ
j (y)) ∈ H 1

per(Y ;Rm) is defined by the following cell problem:
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L1(χ

β
j ) = −L1(P

β
j ) in Rd ,

χ
β
j is periodic with respect to Zd and

∫
Y

χ
β
j dy = 0,

(2.1)

for each 1 ≤ j ≤ d and 1 ≤ β ≤ m. Here Y = [0, 1)d ' Rd/Zd and P βj (y) =
yj (0, . . . , 1, . . . , 0) with 1 in the β th position. The homogenized operator is given by
L0 = − div(Â∇), where Â = (âαβij ) and

â
αβ
ij =

∫
Y

[
a
αβ
ij + a

αγ

ik

∂

∂yk
(χ
γβ

j )

]
dy. (2.2)

Let
b
αβ
ij (y) = â

αβ
ij − a

αβ
ij (y)− a

αγ

ik (y)
∂

∂yk
(χ
γβ

j ), (2.3)

where 1 ≤ α, β ≤ m and 1 ≤ i, j ≤ d .

Lemma 2.1. Suppose that A satisfies conditions (1.2)–(1.3). For 1 ≤ α, β ≤ m and
1 ≤ i, j, k ≤ d, there exists F αβkij ∈ H

1
per(Y ) such that

b
αβ
ij =

∂

∂yk
{F

αβ
kij } and F

αβ
kij = −F

αβ
ikj . (2.4)

Moreover, F = (F αβkij ) ∈ L
∞(Y ) if χ = (χαβj ) is Hölder continuous.

Proof. See Remark 2.1 in [17]. ut

By the N. Meyer estimates (see e.g. [13, p. 154]), the matrix of correctors χ is inW 1,p
per (Y )

for some p > 2. It follows that χ is Hölder continuous if d = 2. In the scalar case
(m = 1), the well known De Giorgi–Nash estimates also give the Hölder continuity of χ
for d ≥ 3. In view of Lemma 2.1 we may deduce that ‖F αβkij ‖∞ ≤ C if d = 2 and m ≥ 1,
or d ≥ 3 andm = 1, where C depends only on d and κ . If d ≥ 3 andm ≥ 2, the functions
F
αβ
kij (and ∇F αβkij ) are bounded if A is Hölder continuous.

Lemma 2.2. Suppose that A satisfies conditions (1.2)–(1.3). Let m = 1 and � be a
bounded Lipschitz domain. Then

‖8
β
ε,j − P

β
j ‖L

∞(�) ≤ Cε, (2.5)

where C depends only on A. If m ≥ 2, the estimate (2.5) holds, with C depending only
on A and�, under the additional assumptions that A is Hölder continuous and� is C1,α

for some α ∈ (0, 1).
Proof. This is proved in [17, Proposition 2.4] by considering the function uε(x) =
8
β
ε,j (x) − P

β
j (x) − εχ

β
j (x/ε). Notice that L(uε) = 0 in � and uε(x) = −εχ

β
j (x/ε)

on ∂�. In the scalar case one may use the maximum principle and boundedness of χ to
show that ‖uε‖L∞(�) ≤ ‖uε‖L∞(∂�) ≤ Cε. This implies that ‖8βε,j − P

β
j ‖L

∞(�) ≤ Cε.
If m ≥ 2, under the additional assumptions that A is Hölder continuous and � is C1,α ,
we know that χ is bounded and ‖uε‖L∞(�) ≤ C‖uε‖L∞(∂�) (see [3, p. 805, Theorem 3]).
This again gives (2.5). ut
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Lemma 2.3. Suppose that uε ∈ H 1(�;Rm), u0 ∈ H
2(�;Rm), and Lε(uε) = L0(u0)

in �. Let

wε(x) = uε(x)− u0(x)− {8
β
ε,j (x)− P

β
j (x)} ·

∂u
β

0
∂xj

. (2.6)

Then

(Lε(wε))α = ε
∂

∂xi

{
[F

αγ

jik (x/ε)]
∂2u

γ

0
∂xj∂xk

}
+

∂

∂xi

{
a
αβ
ij (x/ε)[8

βγ

ε,k(x)− xkδ
βγ
]
∂2u

γ

0
∂xj∂xk

}
+ a

αβ
ij (x/ε)

∂

∂xj
[8

βγ

ε,k(x)− xkδ
βγ
− εχ

βγ

k (x/ε)]
∂2u

γ

0
∂xi∂xk

, (2.7)

where δβγ = 1 if β = γ , and zero otherwise.

Proof. This follows from Proposition 2.2 in [17] by taking V βε,j (x) = 8
β
ε,j (x). ut

Theorem 2.4. Suppose that A satisfies (1.2)–(1.3). If m ≥ 2, assume further that A is
Hölder continuous. Let � be a C1,1 domain in Rd . For ε ≥ 0 and f ∈ L2(�;Rm), let uε
be the unique weak solution in H 1

0 (�;R
m) to the elliptic system Lε(uε) = f in �. Then∥∥∥∥uε − u0 − {8

β
ε,j − P

β
j }
∂u

β

0
∂xj

∥∥∥∥
H 1

0 (�)

≤ Cε‖f ‖L2(�), (2.8)

where C depends only on A and �.

Proof. Under the assumption that A satisfies (1.2)–(1.3) and is Hölder continuous, the
estimate (2.8) is a special case of the convergence estimates in W 1,p

0 (�;Rm) for 1 <

p <∞, proved in [17, Theorem 3.7]. We give a direct proof here, which covers the case
m = 1 without the smoothness condition.

Let wε be given by (2.6). We first consider the case f ∈ C∞0 (R
d
;Rm). In this case it

is easy to see that under the assumptions in the theorem,wε ∈ H 1
0 (�;R

m)∩L∞(�;Rm).
It follows from (2.7) that

κ

∫
�

|∇wε|
2 dx ≤ Cε

∫
�

|∇
2u0| |∇wε| dx

+ C

∫
�

|∇{8ε(x)− P(x)− εχ(x/ε)}| |∇
2u0| |wε| dx, (2.9)

where8ε = (8
β
ε,j ), P = (P

β
j ), and we have used the estimates ‖F αβkij ‖∞ ≤ C of Lemma

2.1 and ‖8ε − P ‖∞ ≤ Cε of Lemma 2.2. By the Cauchy inequality this implies that∫
�

|∇wε|
2 dx ≤

Cε2

δ

∫
�

|∇
2u0|

2 dx

+
δ

ε2

∫
�

|∇{8ε(x)− P(x)− εχ(x/ε)}|
2
|wε|

2 dx (2.10)
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for any δ ∈ (0, 1). We claim that∫
�

|∇{8ε(x)− P(x)− εχ(x/ε)}|
2
|wε|

2 dx ≤ C0ε
2
∫
�

|∇wε|
2 dx. (2.11)

By choosing δ > 0 so small that C0δ < 1/2, we may deduce from (2.10) and (2.11) that

‖wε‖H 1
0 (�)
≤ C‖∇wε‖L2(�) ≤ Cε‖∇

2u0‖L2(�) ≤ Cε‖f ‖L2(�).

To see (2.11), we fix 1 ≤ β0 ≤ m and 1 ≤ j0 ≤ d and let

hε(x) = 8
β0
ε,j0
(x)− P

β0
j0
(x)− εχ

β0
j0
(x/ε) in �.

Note that hε ∈ H 1(�;Rm) ∩ L∞(�;Rm) and Lε(hε) = 0 in �. It follows that

κ

∫
�

|∇hε|
2
|wε|

2 dx ≤

∫
�

a
αβ
ij (x/ε)

∂hαε

∂xi
·
∂h

β
ε

∂xj
|wε|

2 dx

= −2
∫
�

hαε · a
αβ
ij (x/ε)

∂h
β
ε

∂xj
·
∂w

γ
ε

∂xi
wγε dx. (2.12)

Hence, ∫
�

|∇hε|
2
|wε|

2 dx ≤ C

∫
�

|hε| |∇hε| |∇wε| |wε| dx, (2.13)

whereC depends only on d and κ . Estimate (2.11) now follows from (2.13) by the Cauchy
inequality and the fact that ‖hε‖∞ ≤ Cε.

Finally, suppose f ∈ L2(�;Rm). Choose a sequence {f`} of functions inC∞0 (�;R
m)

such that f`→ f in L2(�;Rm). Let wε,` be defined by (2.6), but with f replaced by f`.
Since

‖wε,j − wε,`‖H 1
0 (�)
≤ Cε‖fj − f`‖L2(�),

it follows that wε,` → w̃ in H 1
0 (�;R

m) as ` → ∞, and ‖w̃‖H 1
0 (�)
≤ Cε‖f ‖L2(�).

However, it is not hard to verify that wε,` → wε in L2(�;Rm). As a result we may
conclude that wε = w̃ ∈ H 1

0 (�;R
m) and the estimate (2.8) holds. This completes the

proof. ut

Remark 2.5. Let m = 1 and � be a bounded Lipschitz domain. An inspection of the
proof of Theorem 2.4 shows that the estimate (2.8) continues to hold as long as one has
‖∇

2u0‖L2(�) ≤ C‖f ‖L2(�) and ∇u0 ∈ L
∞(�;Rm) for f ∈ C∞0 (�;R

m). Consequently,
the estimate (2.8) holds in the scalar case if � is convex and A satisfies (1.2) and (1.3).

Remark 2.6. Since

∂

∂xi

{
uε − u0 − {8

β
ε,j − P

β
j }
∂u

β

0
∂xj

}
=
∂uε

∂xi
−

∂

∂xi
{8

β
ε,j } ·

∂u
β

0
∂xj
− {8

β
ε,j − P

β
j }

∂2u
β

0
∂xi∂xj

,



1908 Carlos E. Kenig et al.

it follows from (2.8) and (2.5) as well as the estimate ‖∇2u0‖L2(�) ≤ C‖f ‖L2(�) that∥∥∥∥∂uε∂xi
−

∂

∂xi
{8

β
ε,j } ·

∂u
β

0
∂xj

∥∥∥∥
L2(�)

≤ Cε‖f ‖L2(�). (2.14)

3. Convergence rates for eigenvalues

The goal of this section is to prove Theorem 1.1. For ε ≥ 0 and f ∈ L2(�;Rm), under
conditions (1.2) and (1.3), the elliptic system Lε(uε) = f in � has a unique (weak)
solution in H 1

0 (�;R
m), Define Tε(f ) = uε. Since ‖uε‖H 1

0 (�)
≤ C‖f ‖L2(�), where C

depends only on κ and �, the linear operator Tε is bounded, positive, and compact on
L2(�;Rm). Under the symmetry condition A∗ = A, the operator Tε is also self-adjoint.
Let

µε,1 ≥ µε,2 ≥ · · · ≥ · · · > 0 (3.1)

be the sequence of eigenvalues of Tε in decreasing order. By the mini-max principle,

µε,k = min
f1,...,fk−1
∈L2(�;Rm)

max
‖f ‖

L2(�)=1
f⊥fi

i=1,...,k−1

〈Tε(f ), f 〉, (3.2)

where 〈 , 〉 denotes the inner product in L2(�;Rm). Note that

〈Tε(f ), f 〉 = 〈uε, f 〉 =

∫
�

a
αβ
ij (x/ε)

∂uα

∂xi
·
∂uβ

∂xj
dx (3.3)

(if ε = 0, aαβij (x/ε) is replaced by âαβij ).
Let {φε,k} be an orthonormal basis of L2(�;Rm), where φε,k is an eigenfunctions

associated with µε,k . Let Vε,0 = {0} and Vε,k be the subspace of L2(�;Rm) spanned by
{φε,1, . . . , φε,k} for k ≥ 1. Then

µε,k = max
f⊥Vε,k−1
‖f ‖

L2(�)=1

〈Tε(f ), f 〉. (3.4)

Let λε,k = (µε,k)−1. Then {λε,k} is the sequence of Dirichlet eigenvalues of Lε in � in
increasing order.

Lemma 3.1. Suppose that A satisfies (1.2)–(1.3) and the symmetry condition A∗ = A.
Then

|µε,k − µ0,k| ≤ max
{

max
f⊥V0,k−1
‖f ‖

L2(�)=1

|〈(Tε − T0)f, f 〉|, max
f⊥Vε,k−1
‖f ‖

L2(�)=1

|〈(Tε − T0)f, f 〉|
}

for any ε > 0.
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Proof. It follows from (3.2) that

µε,k ≤ max
f⊥V0,k−1
‖f ‖

L2(�)=1

〈Tε(f ), f 〉 ≤ max
f⊥V0,k−1
‖f ‖

L2(�)=1

〈(Tε − T0)(f ), f 〉 + max
f⊥V0,k−1
‖f ‖

L2(�)=1

〈T0(f ), f 〉

= max
f⊥V0,k−1
‖f ‖

L2(�)=1

〈(Tε − T0)(f ), f 〉 + µ0,k,

where we have used (3.4). Hence,

µε,k − µ0,k ≤ max
f⊥V0,k−1
‖f ‖

L2(�)=1

〈(Tε − T0)(f ), f 〉. (3.5)

Similarly, one can show that

µ0,k − µε,k ≤ max
f⊥Vε,k−1
‖f ‖

L2(�)=1

〈(T0 − Tε)(f ), f 〉. (3.6)

The desired estimate follows readily from (3.5) and (3.6). ut

It follows from Lemma 3.1 that

|µε,k − µ0,k| ≤ ‖Tε − T0‖L2→L2 . (3.7)

Under the assumptions in Theorem 1.1, it is known that ‖uε − u0‖L2(�) ≤ Cε‖f ‖L2(�),
where C depends on A and �. Hence ‖Tε − T0‖L2→L2 ≤ Cε, which implies that
|µε,k − µε,0| ≤ Cε. It follows that

|λε,k − λ0,k| ≤ Cελ0,kλε,k.

By the mini-max principle and Weyl’s asymptotic, λε,k ≈ λ0,k ≈ k
2/(dm). As a result, we

obtain
|λε,k − λ0,k| ≤ Cε(λ0,k)

2
≤ Cεk4/(dm), (3.8)

where C is independent of ε and k. Note that the proof of (3.8) relies on the conver-
gence estimate in L2: ‖uε − u0‖L2(�) ≤ Cε‖f ‖L2(�). The convergence estimate in H 1

0
in Theorem 2.4 allows us to improve the estimate (3.8) by a factor of k1/(dm).

Proof of Theorem 1.1. We will use Lemma 3.1 and Theorem 2.4 to show that

|µε,k − µ0,k| ≤ Cε(µ0,k)
1/2, (3.9)

where C is independent of ε and k. Since λε,k = (µε,k)−1 for ε ≥ 0 and λε,k ≈ λ0,k , this
gives the desired estimate.

Let uε = Tε(f ) and u0 = T0(f ), where ‖f ‖L2(�) = 1 and f ⊥ V0,k−1. In view of
(3.4) for ε = 0, we have 〈u0, f 〉 ≤ µ0,k . Hence,

c‖∇u0‖
2
L2(�)

≤ 〈u0, f 〉 ≤ µ0,k,
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where c > 0 depends only on the ellipticity constant κ of A. It follows that

‖f ‖H−1(�) ≤ C‖∇u0‖L2(�) ≤ C(µ0,k)
1/2. (3.10)

Now, write

〈uε − u0, f 〉 =

〈
uε − u0 − {8

β
ε,` − P

β
` }
∂u

β

0
∂x`

, f

〉
+

〈
{8

β
ε,` − P

β
` }
∂u

β

0
∂x`

, f

〉
.

This implies that for any f ⊥ V0,k−1 with ‖f ‖L2(�) = 1,

|〈uε − u0, f 〉| ≤

∥∥∥∥uε − u0 − {8
β
ε,` − P

β
` }
∂u

β

0
∂x`

∥∥∥∥
H 1

0 (�)

‖f ‖H−1(�)

+

∥∥∥∥{8βε,` − P β` }∂uβ0∂x`

∥∥∥∥
L2(�)

‖f ‖L2(�)

≤ Cε‖f ‖L2(�)‖f ‖H−1(�) + Cε‖∇u0‖L2(�)‖f ‖L2(�)

≤ Cε‖∇u0‖L2(�) ≤ Cε(µ0,k)
1/2, (3.11)

where we have used Theorem 2.4 and the estimate ‖8βε,` − P
β
` ‖∞ ≤ Cε for the second

inequality, and (3.10) for the third and fourth.
Next we consider the case f ⊥ Vε,k−1 and ‖f ‖L2(�) = 1. In view of (3.4) we have

〈uε, f 〉 ≤ µε,k . Hence, c‖∇uε‖2L2(�)
≤ 〈uε, f 〉 ≤ µε,k . It follows that

‖f ‖H−1(�) ≤ C‖∇uε‖L2(�) ≤ C(µε,k)
1/2 (3.12)

and
‖∇u0‖L2(�) ≤ C‖f ‖H−1(�) ≤ C(µε,k)

1/2, (3.13)

where C depends only on the ellipticity constant of A. As before, this implies that for any
f ⊥ Vε,k−1 with ‖f ‖L2(�) = 1,

|〈uε − u0, f 〉| ≤

∥∥∥∥uε − u0 − {8
β
ε,` − P

β
` }
∂u

β

0
∂x`

∥∥∥∥
H 1

0 (�)

‖f ‖H−1(�)

+

∥∥∥∥{8βε,` − P β` }∂uβ0∂x`

∥∥∥∥
L2(�)

‖f ‖L2(�)

≤ Cε‖f ‖H−1(�) + Cε‖∇u0‖L2(�)

≤ Cε(µε,k)
1/2
≤ Cε(µ0,k)

1/2, (3.14)

where we have used the fact that µε,k ≈ µ0,k . In view of Lemma 3.1, the estimate (3.9)
follows from (3.11) and (3.14). ut
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4. Conormal derivatives of Dirichlet eigenfunctions

Throughout this section we assume that A satisfies conditions (1.2)–(1.3) and A∗ = A.
Let λ ≥ 1 and Sε,λ(f ) be defined by (1.15). Note that

Lε(Sε,λ(f )) = λSε,λ(f )+ Rε,λ(f ), (4.1)

where
Rε,λ(f )(x) =

∑
√
λε,k∈[

√
λ,
√
λ+1)

(λε,k − λ)φε,k(f ). (4.2)

Clearly, ‖Sε,λ(f )‖L2(�) ≤ ‖f ‖L2(�). It is also not hard to see that

‖∇Sε,λ(f )‖L2(�) ≤ C
√
λ ‖f ‖L2(�),

‖Rε,λ(f )‖L2(�) ≤ C
√
λ ‖f ‖L2(�),

‖∇Rε,λ(f )‖L2(�) ≤ Cλ ‖f ‖L2(�),

(4.3)

where C depends only on the ellipticity constant κ of A.

Lemma 4.1. Suppose that A satisfies (1.2)–(1.3) and A∗ = A. Also assume that A is
Lipschitz continuous. Let uε ∈ H 2(�;Rm) be a solution of Lε(uε) = f in � for some
f ∈ L2(�;Rm), where � is a bounded Lipschitz domain. Then∫
∂�

nkhka
αβ
ij (x/ε)

∂uαε

∂xi
·
∂u

β
ε

∂xj
dσ = 2

∫
∂�

hk

{
nk

∂

∂xi
− ni

∂

∂xk

}
uαε · a

αβ
ij (x/ε)

∂u
β
ε

∂xj
dσ

−

∫
�

div(h)aαβij (x/ε)
∂uαε

∂xi
·
∂u

β
ε

∂xj
dx

−

∫
�

hk
∂

∂xk
{a
αβ
ij (x/ε)}

∂uαε

∂xi
·
∂u

β
ε

∂xj
dx

+ 2
∫
�

∂hk

∂xi
· a
αβ
ij (x/ε)

∂uαε

∂xk
·
∂u

β
ε

∂xj
dx

− 2
∫
�

f α ·
∂uαε

∂xk
· hk dx, (4.4)

where h = (h1, . . . , hd) ∈ C
1
0(R

d
;Rd) and n denotes the unit outward normal to ∂�.

Proof. Use the divergence theorem and the assumption that A∗ = A. We refer the reader
to [12] for the case of constant coefficients. ut

Lemma 4.2. Assume that A and � satisfy the same assumptions as in Lemma 4.1. Let
uε = Sε,λ(f ) be defined by (1.15), where f ∈ L2(�;Rm) and ‖f ‖L2(�) = 1. Suppose
that uε ∈ H 2(�;Rm). Then∫

∂�

|∇uε|
2 dσ ≤ Cλ+

C

ε

∫
�ε

|∇uε|
2 dx, (4.5)

where �ε = {x ∈ � : dist(x, ∂�) < ε} and C depends only on A and �.
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Proof. We first consider the case 0 < ε < diam(�). In this case we may choose a
vector field h in C1

0(R
d
;Rd) such that nkhk ≥ c > 0 on ∂�, |h| ≤ 1, |∇h| ≤ Cε−1,

and h = 0 on {x ∈ � : dist(x, ∂�) ≥ cε}, where c = c(�) > 0 is small. Note that
Lε(uε) = λuε + Rε,λ(f ) in �. Since uε = 0 on ∂�, it follows from (4.4) that

c

∫
∂�

|∇uε|
2 dσ ≤

C

ε

∫
�ε

|∇uε|
2 dx − 2λ

∫
�

uαε ·
∂uαε

∂xk
· hk dx

− 2
∫
�

(Rε,λ(f ))
α
·
∂uαε

∂xk
· hk dx. (4.6)

Using the Cauchy inequality we may bound the third integral on the right hand side of
(4.6) by C‖Rε,λ(f )‖L2(�)‖∇uε‖L2(�), which, in view of (4.3), is dominated by Cλ.

To handle the second integral on the right hand side of (4.6), we use the integration
by parts to obtain∣∣∣∣2λ ∫

�

uαε ·
∂uαε

∂xk
· hk dx

∣∣∣∣ = ∣∣∣∣λ ∫
�

|uε|
2 div(h) dx

∣∣∣∣ ≤ Cλε
∫
�cε

|uε|
2 dx. (4.7)

Since

λ|uε|
2
− a

αβ
ij (x/ε)

∂uαε

∂xi
·
∂u

β
ε

∂xj
= (λuε − Lε(uε))αuαε −

∂

∂xi

{
uαε a

αβ
ij (x/ε)

∂u
β
ε

∂xj

}
, (4.8)

it follows that for any ϕ ∈ C1
0(R

d),

∫
�

{
λ|uε|

2
− a

αβ
ij (x/ε)

∂uαε

∂xi
·
∂u

β
ε

∂xj

}
ϕ2 dx

=

∫
�

(λuε − Lε(uε))αuαε ϕ2 dx + 2
∫
�

uαε a
αβ
ij (x/ε)

∂u
β
ε

∂xj
·
∂ϕ

∂xi
ϕ dx. (4.9)

Choose ϕ so that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 if dist(x, ∂�) ≤ cε, ϕ(x) = 0 if dist(x, ∂�) ≥
2cε, and |∇ϕ| ≤ Cε−1. In view of (4.9) we have

λ

∫
�

|uε|
2ϕ2 dx ≤ C

∫
�

|∇uε|
2ϕ2 dx+

∫
�

|Rε,λ(f )| |uε|ϕ
2 dx+C

∫
�

|uε|
2
|∇ϕ|2 dx

≤ C

∫
�

|∇uε|
2ϕ2 dx+‖Rε,λ(f )‖L2(�)‖uε‖L2(�2cε)

+
C

ε2

∫
�2cε

|uε|
2 dx

≤ C

∫
�2cε

|∇uε|
2 dx+Cελ,

where we have used the Cauchy inequality, (4.3), and the inequality∫
�2cε

|uε|
2 dx ≤ Cε2

∫
�2cε

|∇uε|
2 dx. (4.10)

This, together with (4.6) and (4.7), gives the estimate (4.5).
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Finally, if ε ≥ diam(�), we choose a vector field h ∈ C1
0(R

d
;Rd) so that hknk ≥

c > 0 on ∂�. The same argument as in (4.6) and (4.7) shows that the left hand side of
(4.5) is bounded by Cλ. ut

Theorem 4.3. Suppose that A satisfies conditions (1.2)–(1.3) and A∗ = A. Also assume
that A is Lipschitz continuous. Let � be a bounded C1,1 domain. Let uε = Sε,λ(f ) be
defined by (1.15), where f ∈ L2(�;Rm) and ‖f ‖L2(�) = 1. Then∫

∂�

|∇uε|
2 dσ ≤

{
Cλ(1+ ε−1) if ε2λ ≥ 1,
Cλ(1+ ελ) if ε2λ < 1,

(4.11)

where C depends only on A and �.

Proof. We first note that under the conditions on A and � in the theorem, uε ∈
H 2(�;Rm). This allows us to use Lemma 4.2 and reduce the problem to the estimate
of ε−1

‖∇uε‖
2
L2(�ε)

by the right hand side of (4.11). If ε2λ ≥ 1, the desired estimate

follows directly from ‖∇uε‖2L2(�)
≤ Cλ.

The proof for the case ε2λ < 1 is more subtle and uses the H 1 convergence estimate
in Theorem 2.4. Let vε be the unique solution in H 1

0 (�;R
m) to the system

L0(vε) = λuε + Rε,λ(f ) in �. (4.12)

Observe that
‖λuε + Rε,λ(f )‖L2(�) ≤ Cλ, (4.13)

Since ∂� is C1,1 and L0 is a second order elliptic operator with constant coefficients, this
implies that vε ∈ H 2(�;Rm) and

‖∇
2vε‖L2(�) ≤ Cλ. (4.14)

Also, using L0(vε) = Lε(uε) in �, we may deduce that

‖vε‖H 1
0 (�)
≤ C‖∇uε‖L2(�) ≤ C

√
λ, (4.15)

where we have used (4.3). To estimate ε−1
‖∇uε‖

2
L2(�ε)

, we use the estimate ‖∇8ε‖∞
≤ C in [3] to obtain

1
ε

∫
�ε

∣∣∣∣∂uε∂xi

∣∣∣∣2 dx ≤ Cε
∫
�ε

∣∣∣∣∂uε∂xi
−

∂

∂xi
{8

β
ε,j } ·

∂v
β
ε

∂xj

∣∣∣∣2 dx + Cε
∫
�ε

|∇vε|
2 dx

≤ Cελ2
+
C

ε

∫
�ε

|∇vε|
2 dx, (4.16)

where the last inequality follows from (2.14) and (4.13). Furthermore, we may use the
Fundamental Theorem of Calculus to obtain

1
ε

∫
�ε

|∇vε|
2 dx ≤ C

∫
∂�

|∇vε|
2 dσ + Cε

∫
�ε

|∇
2vε|

2 dx

≤ C

∫
∂�

|∇vε|
2 dσ + Cελ2,
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where we have used (4.14) for the second inequality. As a result it suffices to show that∫
∂�

|∇vε|
2 dσ ≤ Cλ(1+ ελ). (4.17)

To this end we use a Rellich identity for L0, similar to (4.4) for Lε, to deduce that∫
∂�

|∇vε|
2 dx ≤ C

∫
�

|∇vε|
2 dx + C

∣∣∣∣∫
�

{λuε + Rε,λ(f )}
α
·
∂vαε

∂xk
· hk dx

∣∣∣∣
≤ Cλ+ Cλ

∣∣∣∣∫
�

uαε ·
∂vαε

∂xk
· hk dx

∣∣∣∣
≤ Cλ+ Cλ

∣∣∣∣∫
�

vαε ·
∂uαε

∂xk
· hk dx

∣∣∣∣+ λ∣∣∣∣∫
�

uαε · v
α
ε · div(h) dx

∣∣∣∣, (4.18)

where h = (h1, . . . , hd) ∈ C
1
0(R

d
;Rd) is a vector field such that hknk ≥ c > 0 on ∂�

and |h| + |∇h| ≤ C, and we have used (4.15) and (4.3) for the second inequality and
integration by parts for the third. To estimate the third integral on the right hand side of
(4.18), we note that

‖uε‖H−1(�) = λ
−1
‖Lε(uε)− Rε,λ(f )‖H−1(�)

≤ Cλ−1
‖∇uε‖L2(�) + Cλ

−1
‖Rε,λ(f )‖L2(�) ≤ Cλ

−1/2,

where we have used (4.3). It follows that

λ

∣∣∣∣∫
�

uαε v
α
ε div(h) dx

∣∣∣∣ ≤ Cλ‖uε‖H−1(�)‖vε div(h)‖H 1
0 (�)
≤ Cλ. (4.19)

Finally, we claim that ∣∣∣∣∫
�

vαε
∂uαε

∂xk
hk dx

∣∣∣∣ ≤ C(1+ ελ). (4.20)

In view of (4.18) and (4.19), this would give the estimate (4.17). To see (4.20) we use
integration by parts to obtain∣∣∣∣∫

�

vαε
∂uαε

∂xk
hk dx

∣∣∣∣ ≤ ∣∣∣∣∫
�

(uαε − v
α
ε )
∂uαε

∂xk
hk dx

∣∣∣∣+ 1
2

∣∣∣∣∫
�

|uε|
2 div(h) dx

∣∣∣∣
≤

∣∣∣∣∫
�

{
uαε − v

α
ε − {8

αβ
ε,j − xj δ

αβ
}
∂v
β
ε

∂xj

}
∂uαε

∂xk
hk dx

∣∣∣∣
+

∣∣∣∣∫
�

{8
αβ
ε,j − xj δ

αβ
}
∂v
β
ε

∂xj
·
∂uαε

∂xk
hk dx

∣∣∣∣+ C
≤ C‖(∇uε)h‖H−1(�)

∥∥∥∥uε − vε − {8βε,j − P βj }∂vβε∂xj
∥∥∥∥
H 1

0 (�)

+ Cε‖∇uε‖L2(�)‖∇vε‖L2(�) + C

≤ C + Cελ,
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where we have used Theorem 2.4 as well as the estimate ‖∇uε‖L2(�) + ‖∇vε‖L2(�) ≤

Cλ1/2 for the last inequality. This completes the proof. ut

Note that the right hand side of (4.11) is bounded by Cλ3/2 in both cases. We give a direct
proof of this weaker estimate under some weaker assumptions.

Theorem 4.4. Assume that A satisfies (1.2)–(1.3), A∗ = A, and A is Hölder continuous.
Let � be a bounded Lipschitz domain. Let uε = Sε,λ(f ) be defined as in (1.15). Then∫

∂�

|∇uε|
2 dσ ≤ Cλ3/2

∫
�

|f |2 dx, (4.21)

where C depends only on � and A.

Remark 4.5. Recall from (1.11) that the upper bound (4.21) is sharp when d = 1 and �
is an interval.

The proof of Theorem 4.4 relies on the Rellich estimate in the following lemma.

Lemma 4.6. Assume that A and � satisfy the same conditions as in Theorem 4.4. Sup-
pose that uε ∈ H 1(�;Rm) and Lε(uε) = f in � for some f ∈ L2(�;Rm). Further
assume that uε ∈ H 1(∂�;Rm). Then∫

∂�

|∇uε|
2 dσ ≤ C

∫
∂�

|∇tanuε|
2 dσ + C

∫
∂�

|uε|
2 dσ + C

∫
�

|f |2 dx, (4.22)

where ∇tanuε denotes the tangential gradient of uε on ∂� and C depends only on A
and �.

Proof. We first point out that in the case f = 0, the estimate (4.22) was proved in [19]
for Lipschitz domains with connected boundaries. If ∂� is not connected, the estimate

‖∇uε‖L2(∂�) ≤ C‖uε‖H 1(∂�) (4.23)

follows from the case of connected boundary by a localization argument.
If f = (f 1, . . . , fm) 6= 0, we define wε = (w1

ε (x), . . . , w
m
ε (x)) by

wαε (x) =

∫
�

0αβε (x, y)f
β(y) dy,

where 0ε(x, y) is the matrix of fundamental solutions for Lε in Rd , with pole at y. Then
wε ∈ H

1(�;Rm) and Lε(wε) = f in �. We claim that∫
∂�

|∇wε|
2 dσ +

∫
∂�

|wε|
2 dσ ≤ C

∫
�

|f |2 dx. (4.24)
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Assume the claim (4.24) for a moment. Note that uε − wε ∈ H 1(�), Lε(uε − wε) = 0
in �, and uε − wε ∈ H 1(∂�). In view of estimate (4.23) for the case f = 0, we obtain
‖∇(uε − wε)‖L2(∂�) ≤ C‖uε − wε‖H 1(∂�). This, together with (4.24), yields

‖∇uε‖L2(∂�) ≤ C‖uε − wε‖H 1(∂�) + ‖∇wε‖L2(∂�)

≤ C‖∇tanuε‖L2(∂�) + C‖uε‖L2(∂�) + C‖∇wε‖L2(∂�) + C‖wε‖L2(∂�)

≤ C‖∇tanuε‖L2(∂�) + C‖uε‖L2(∂�) + C‖f ‖L2(�).

It remains to prove (4.24). We will assume that f ∈ C1
0(�;R

m); the general case
follows by a limiting argument. Let g = (g1, . . . , gm) ∈ L2(∂�;Rm). It follows from
Fubini’s theorem as well as the Cauchy inequality that∣∣∣∣∫

∂�

∂wαε

∂xi
gα dσ

∣∣∣∣ = ∣∣∣∣∫
�

f β(y)

{∫
∂�

∂

∂xi
{0αβε (x, y)}g

α(x) dσ (x)

}
dy

∣∣∣∣
≤ ‖f ‖L2(�)‖vε‖L2(�), (4.25)

where vε = (v1
ε , . . . , v

m
ε ) and

vβε (y) =

∫
∂�

∂

∂xi
{0αβε (x, y)}g

α(x) dσ (x).

By [19, Theorem 3.5], we have

‖vε‖L2(�) ≤ C‖(vε)
∗
‖L2(∂�) ≤ C‖g‖L2(∂�),

where (vε)∗ denotes the nontangential maximal function of vε. In view of (4.25), this, by
duality, implies that ‖∇wε‖L2(∂�) ≤ C‖f ‖L2(�).

Finally, we note that since |0ε(x, y)| ≤ C|x − y|2−d (see [3]),

|wε(x)| ≤ C

∫
�

|f (y)|

|x − y|d−2 dy ≤ C

{∫
�

|f (y)|2

|x − y|d−2 dy

}1/2

.

This yields the estimate ‖wε‖L2(∂�) ≤ C‖f ‖L2(�). ut

Proof of Theorem 4.4. We may assume that ‖f ‖L2(�) = 1. Consider the function

wε(x, t) = uε(x) cosh(
√
λ t) in �T , (4.26)

where �T = �× (0, T ) and T = diam(�). Note that �T is a bounded Lipschitz domain
in Rd+1 and wε ∈ H 1(�T ). Since Lε(uε) = λuε + Rε,λ(f ) in �, it follows that{

Lε −
∂2

∂t2

}
wε = Rε,λ(f ) cosh(

√
λ t) in �T .

In view of Lemma 4.6 we obtain∫
∂�T

|∇x,tw|
2 dσ(x, t)≤C

∫
∂�T

|∇tanw|
2 dσ(x, t)+C

∫
�T

|Rε,λ(f ) cosh(
√
λ t)|2 dx dt.
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This implies that

∫ T

0
|cosh(

√
λ t)|2 dt

∫
∂�

|∇uε|
2 dσ

≤ Cλ|cosh(
√
λ T )|2 + Cλ

∫ T

0
|cosh(

√
λ t)|2 dt, (4.27)

where we have used the fact that wε = 0 on ∂� × (0, T ) as well as the estimates of
‖∇uε‖L2(�) and ‖Rε,λ(f )‖L2(�) in (4.3). Finally, since∫ T

0
|cosh(

√
λ t)|2 dt ∼

1
√
λ
e2
√
λ T
∼

1
√
λ
|cosh(

√
λ T )|2,

we may deduce from (4.27) that∫
∂�

|∇uε|
2 dσ ≤ Cλ3/2.

This finishes the proof. ut

5. Lower bounds

In this section we give the proof of Theorem 1.4. Throughout this section we will assume
that m = 1 and � is a bounded C2 domain in Rd , d ≥ 2. We will also assume that A
satisfies (1.2)–(1.3), A∗ = A, and A is Lipschitz continuous.

Recall that 8ε(x) = (8ε,i(x))1≤i≤d denotes the Dirichlet correctors for Lε in �.

Lemma 5.1. Let J (8ε) denote the absolute value of the determinant of the d × d matrix
(∂8ε,i/∂xj ). Then there exist constants ε0 > 0 and c > 0, depending only on A and �,
such that for 0 < ε < ε0,

J (8ε)(x) ≥ c if x ∈ � and dist(x, ∂�) ≤ cε.

Proof. Using dilation and the standard C1,α estimate for L1, it is easy to see that

|∇8ε(x)−∇8ε(y)| ≤ Cε
−α
|x − y|α

for x, y ∈ � with |x − y| ≤ ε, where 0 < α < 1 and C depends only on α, A,
and �. This, together with the fact that ‖∇8ε‖∞ ≤ C, shows that it suffices to prove
J (8ε)(x) ≥ c > 0 for x ∈ ∂�.

Next, we fix P ∈ ∂�. By translation and rotation we may assume that P = 0 and

� ∩ {(x′, xd) : |x
′
| < r0 and |xd | < r0}

= {(x′, xd) : |x
′
| < r0 and ψ(x′) < xd < r0},
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where ψ : Rd−1
→ R is a C2 function such that ψ(0) = |∇ψ(0)| = 0 and ‖∇2ψ‖∞

≤ M0. Define

U(r) = {(x′, xd) ∈ Rd : |x′| < r and ψ(x′) < xd < r}. (5.1)

Since 8ε(x) = x on ∂�, we see that

J (8ε)(0) =
∣∣∣∣∂8ε,d∂xd

(0)
∣∣∣∣.

Also recall that |8ε,d(x)− xd | ≤ C0ε, where C0 depends only on A.
Let s0 > 4C0 be a large constant to be determined. For 0 < ε < r0/s0, let uε be the

solution of Lε(uε) = 0 in U(s0ε) with the Dirichlet data g on ∂U(s0ε) given by

g(x) =


M0|x

′
|
2 if xd = ψ(x′) and |x′| < s0ε,

M0(s0ε)
2
+ C0ε if |x′| = s0ε and ψ(x′) < xd < s0ε,

0 if xd = s0ε.
(5.2)

Since 0 ≤ g ≤ M0(s0ε)
2
+ C0ε, it follows from the maximum principle that

0 ≤ uε ≤ M0(s0ε)
2
+ C0ε in U(s0ε).

By the boundary Lipschitz estimate in [3, Lemma 20], we then obtain

|∇uε(0)| ≤ C
{
s0ε + (s0ε)

−1 max
U(s0ε)

|uε|
}
≤ C1{s0ε + C0s

−1
0 }, (5.3)

where C1 depends only onM0 and A. Using8ε,d(x) ≥ xd −C0ε in � and8ε,d(x) = xd
on ∂�, it is easy to verify that 8ε,d + g ≥ 0 on ∂U(s0ε). As a result, by the maximum
principle, we also obtain 8ε,d + uε ≥ 0 on U(s0ε).

Let 4C0 ≤ t0 < s0. We consider the function

w(x) = 8ε,d(t0εx/2)+ uε(t0εx/2) in B = B(Q, 1),

where Q = (0, . . . , 0, 1) and 0 < ε < s−1
0 min(r0, (2M0)

−1). Note that

L2t−1
0
(w) = 0 in B and min

B
w = w(0) = 0.

Thus, by the Hopf maximum principle (see e.g. [11, p. 330]), we obtain

∂w

∂xd
(0) ≥ c0w(Q),

where c0 > 0 depends only on t0 and A. It follows that

∂8ε,d

∂xd
(0) ≥

2c0

t0ε
8ε,d(0, . . . , 0, t0ε/2)−

∂uε

∂xd
(0)

≥
2c0

t0ε
8ε,d(0, . . . , 0, t0ε/2)− C1{s0ε + C0s

−1
0 }, (5.4)

where we used the estimate (5.3) as well as the fact that uε ≥ 0.
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Finally, note that if t0 = 4C0,

8ε,d(0, . . . , 0, t0ε/2) ≥ t0ε/2− C0ε = t0ε/4.

This, together with (5.4) and the choice of s0 = 4C1C0/c0, yields

∂8ε,d

∂xd
(0) ≥

c0

2
− C1s0ε − C1C0s

−1
0 ≥

c0

8

for 0 < ε < ε0, where ε0 > 0 depends only on A and �. The proof is complete. ut

Since ‖∇8ε‖∞ ≤ C, it follows from Lemma 5.1 that if x ∈ � and dist(x, ∂�) ≤ cε,
then the d × d matrix ∇8ε is invertible at x and

c|w| ≤ |(∇8ε(x))w| (5.5)

for any vector w in Rd .

Lemma 5.2. Let uε be a Dirichlet eigenfunction for Lε in � with the associated eigen-
value λ and ‖uε‖L2(�) = 1. Then, if 0 < ε < ε0,

1
ε

∫
�cε

|∇uε|
2 dx ≥ cλ− Cελ2, (5.6)

where c > 0 and C > 0 depend only on A and �.

Proof. Let vε be the unique solution in H 1
0 (�) to the equation L0(vε) = λεuε in �.

As in the proof of Theorem 4.3, we have ‖∇vε‖L2(�) ≤ C
√
λ and ‖∇2vε‖L2(�) ≤ Cλ.

Moreover, it follows from (2.14) that

‖∇uε − (∇8ε)∇vε‖L2(�) ≤ Cελ. (5.7)

Hence,

1
ε

∫
�cε

|∇uε|
2 dx ≥

1
2ε

∫
�cε

|(∇8ε)∇vε|
2 dx − Cελ2

≥
c

ε

∫
�cε

|∇vε|
2 dx − Cελ2,

(5.8)
where we have used (5.5) for the second inequality. Using∫

∂�

|∇vε|
2 dσ ≤

C

ε

∫
�cε

|∇vε|
2 dx + Cε

∫
�cε

|∇
2vε|

2 dx

and ‖∇2vε‖L2(�) ≤ Cλ, we further obtain

1
ε

∫
�cε

|∇uε|
2 dx ≥ c

∫
∂�

|∇vε|
2 dσ − Cελ2. (5.9)

We will show that
λ ≤ C

∫
∂�

|∇vε|
2 dσ + Cελ2, (5.10)

which, together with (5.9), yields the estimate (5.6).
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To see (5.10), we may assume, without loss of generality, that 0 ∈ �. It follows by
taking h(x) = x in a Rellich identity for L0, similar to (4.4) that∫

∂�

〈x, n〉âij
∂vε

∂xj
·
∂vε

∂xi
dσ = (2− d)

∫
�

âij
∂vε

∂xj
·
∂vε

∂xi
dx − 2λ

∫
�

uε
∂vε

∂xk
xk dx

= (2− d)λ
∫
�

uεvε dx − 2λ
∫
�

uε
∂vε

∂xk
xk dx.

This, together with

2
∫
�

uε
∂vε

∂xk
xk dx = −2

∫
�

∂uε

∂xk
vεxk dx − 2d

∫
�

uεvε dx

= d − 2
∫
�

∂uε

∂xk
(vε − uε)xk dx − 2d

∫
�

uεvε dx,

obtained by integration by parts, gives∫
∂�

〈x, n〉âij
∂vε

∂xj
·
∂vε

∂xi
dσ

= 2λ+ (d + 2)λ
∫
�

uε(vε − uε) dx + 2λ
∫
�

∂uε

∂xk
(vε − uε)xk dx.

It follows that

2λ ≤ C
∫
∂�

|∇vε|
2 dσ + Cλ‖uε − vε‖L2(�) + 2λ

∣∣∣∣∫
�

∂uε

∂xk
(uε − vε)xk dx

∣∣∣∣. (5.11)

Finally, note that ‖uε − vε‖L2(�) ≤ Cελ. Also, the last term on the right hand side of
(5.11) is bounded by

2λ
∣∣∣∣∫
�

∂uε

∂xk

[
uε − vε − (8ε,j − xj )

∂vε

∂xj

]
xk dx

∣∣∣∣+ Cλε‖∇uε‖L2(�)‖∇vε‖L2(�)

≤ Cλ

∥∥∥∥∂uε∂xk
xk

∥∥∥∥
H−1(�)

∥∥∥∥uε − vε − (8ε,j − xj )∂vε∂xj
∥∥∥∥
H 1

0 (�)

+ Cελ2

≤ Cελ2,

where we have used Theorem 2.4. This completes the proof of (5.10). ut

Let ψ : Rd−1
→ R be a C2 function with ψ(0) = |∇ψ(0)| = 0. Define

Zr = Z(ψ, r) = {x = (x
′, xd) ∈ Rd : |x′| < r and ψ(x′) < xd < r + ψ(x′)},

Ir = I (ψ, r) = {x = (x
′, xd) ∈ Rd : |x′| < r and xd = ψ(x′)}.
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Lemma 5.3. Let u ∈ H 1(Z2). Suppose that − div(A∇u) + Eu = 0 in Z2 and u = 0 in
I2 for some E ∈ R. Also assume that |E| + ‖∇A‖∞ + ‖∇2ψ‖∞ ≤ C0 and∫

Z1

|∇u|2 dx ≥ c0

∫
Z2

|∇u|2 dx (5.12)

for some C0 > 0, c0 > 0. Then∫
I1

|∇u|2 dσ ≥ c

∫
Z2

|∇u|2 dx, (5.13)

where c > 0 depends only on the ellipticity constant κ of A, c0, and C0.

Proof. The lemma is proved by a compactness argument. Suppose that there exist se-
quences {ψk} in C2(Rd−1), {uk} inH 1(Z(ψk, 2)), {Ek} ⊂ R, and {Ak(x)}with ellipticity
constant κ , such that ψk(0) = |∇ψk(0)| = 0,

− div(Ak∇uk)+ Ekuk = 0 in Z(ψk, 2), uk = 0 on I (ψk, 2), (5.14)

|Ek| + ‖∇A
k
‖∞ + ‖∇

2ψk‖∞ ≤ C0, (5.15)∫
Z(ψk,2)

|∇uk|
2 dx = 1,

∫
Z(ψk,1)

|∇uk|
2 dx ≥ c0, (5.16)

and ∫
I (ψk,1)

|∇uk|
2 dσ → 0 as k→∞. (5.17)

By passing to a subsequence we may assume that ψk → ψ in C1,α(|x′| < 4). By the
boundary C1,α estimate we see that the norm of uk in C1,α(Z(ψk, 3/2)) is uniformly
bounded. As a result, by passing to a subsequence, we may assume that vk → v in
C1(Z(0, 3/2)), where vk(x′, xd) = uk(x′, xd−ψk(x′)) andZ(0, r) = {(x′, xd) : |x′| < r

and 0 < xd < r}.
We now let u(x′, xd) = v(x′, xd + ψ(x′)). Clearly, by passing to subsequences, we

may also assume that Ek → E in R and Ak → A in Cα(B(0, R0)). It follows that
|E| + ‖∇A‖L∞(B(0,R0)) ≤ C0,

− div(A∇u)+ Eu = 0 in Z(ψ, 1) and u = 0 on I (ψ, 1). (5.18)

In view of (5.17) we also obtain ∇u = 0 in I (ψ, 1). By the unique continuation property
of solutions of second-order elliptic equations with Lipschitz continuous coefficients (e.g.
see [1]), it follows that u = 0 in Z(ψ, 1). However, by taking limit in the inequality of
(5.16), ∫

Z(ψ,1)
|∇u|2 dx ≥ c0 > 0. (5.19)

This gives us a contradiction and finishes the proof. ut
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Remark 5.4. Suppose that Lε(uε) = λuε in Z(ψ, 2ε) and uε = 0 in I (ψ, 2ε) for some
λ > 1. Assume that ε2λ+ ‖∇A‖∞ + ‖∇

2ψ‖∞ ≤ C0 and∫
Z(ψ,ε)

|∇uε|
2 dx ≥ c0

∫
Z(ψ,2ε)

|∇uε|
2 dx (5.20)

for some c0, C0 > 0. Then∫
I (ψ,ε)

|∇uε|
2 dσ ≥

c

ε

∫
Z(ψ,2ε)

|∇uε|
2 dx, (5.21)

where c > 0 depends only on the ellipticity constant of A, c0, and C0. This is a simple
consequence of Lemma 5.3. Indeed, let w(x) = uε(εx) and ψε(x′) = ε−1ψ(εx′). Then
L1(w) = ε

2λw in Z(ψε, 2) and∫
Z(ψε,1)

|∇w|2 dx ≥ c0

∫
Z(ψε,2)

|∇w|2 dx.

Since ε2λ+ ‖∇A‖∞ + ‖∇
2ψε‖∞ ≤ C0, it follows from Lemma 5.3 that∫

I (ψε,1)
|∇w|2 dσ ≥ c

∫
Z(ψε,2)

|∇w|2 dx, (5.22)

which gives (5.21). Note that the periodicity assumption of A is not needed here.

Proof of Theorem 1.4. For each P ∈ ∂�, there exists a new coordinate system of Rd ,
obtained from the standard Euclidean coordinate system through translation and rotation,
so that P = (0, 0) and

� ∩ B(P, r0) = {(x
′, xd) ∈ Rd : xd > ψ(x′)} ∩ B(P, r0),

where ψ(0)= |∇ψ(0)| = 0 and ‖∇2ψ‖∞ ≤M . For 0< r < cr0, let (1(P, r),D(P, r))
denote the pair obtained from (I (ψ, r), Z(ψ, r)) by this change of the coordinate system.
If 0 < ε < cr0, we may construct a finite sequence of pairs {(1(Pi, ε),Di(Pi, ε))} such
that

∂� =
⋃
i

1(Pi, ε)

and ∑
i

χD(Pi ,2ε) ≤ C and �cε ⊂
⋃
i

D(Pi, ε). (5.23)

Let 1i(r) = 1(Pi, r) and Di(r) = Di(P, r).
Suppose now that uε ∈ H 1

0 (�), Lε(uε) = λuε in �, and ‖uε‖L2(�) = 1. Assume that
λ > 1 and ελ ≤ δ, where δ = δ(A,�) > 0 is sufficiently small. It follows from Lemma
5.2 and (4.16)–(4.17) in the proof of Theorem 4.3 that

cλ ≤
1
ε

∫
�cε

|∇uε|
2 dx ≤

1
ε

∫
�2ε

|∇uε|
2 dx ≤ Cλ. (5.24)
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To estimate
∫
∂�
|∇uε|

2 dσ from below, we divide {Di(ε)} into two groups. Say i ∈ J if∫
Di (2ε)

|∇uε|
2 dx ≤ N

∫
Di (ε)

|∇uε|
2 dx (5.25)

with a large constant N = N(A,�) to be determined. Note that if i ∈ J , by Remark 5.4,∫
1i (ε)

|∇uε|
2 dσ ≥

γ

ε

∫
Di (ε)

|∇uε|
2 dx,

where γ > 0 depends only on A, �, and N . It follows by summation that∫
∂�

|∇uε|
2 dσ ≥

cγ

ε

∫
⋃
i∈J Di (ε)

|∇uε|
2 dx

≥
cγ

ε

{∫
�cε

|∇uε|
2 dx −

∫
⋃
i /∈J Di (ε)

|∇uε|
2 dx

}
≥
cγ

ε

{
cελ−

∫
⋃
i /∈J Di (ε)

|∇uε|
2 dx

}
, (5.26)

where we have used the fact that �cε ⊂
⋃
i Di(ε) and estimate (5.24).

Finally, we note that by the definition of J as well as the estimate (5.24),∫
⋃
i /∈J Di (ε)

|∇uε|
2 dx ≤

C

N

∫
⋃
i /∈J Di (2ε)

|∇uε|
2 dx ≤

C

N

∫
�2ε

|∇uε|
2 dx ≤

Cελ

N
,

where we have used the fact that
⋃
i Di(2ε) ⊂ �2ε. This, together with (5.26), yields∫

∂�

|∇uε|
2 dσ ≥ cγ λ{c − CN−1

} ≥ cλ, (5.27)

if N = N(A,�) is sufficiently large. The proof is complete. ut
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