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Abstract. In our previous work [4] we proved a bound for ged(u — 1, v — 1), for S-units u, v of
a function field in characteristic zero. This generalized an analogous bound holding over number
fields, proved in [3]. As pointed out by Silverman [15], the exact analogue does not work for func-
tion fields in positive characteristic. In the present work, we investigate possible extensions in that
direction; it turns out that under suitable assumptions some of the results still hold. For instance we
prove Theorems 2 and 3 below, from which we deduce in particular a new proof of Weil’s bound
for the number of rational points on a curve over finite fields (see §4). When the genus of the curve
is large compared to the characteristic, we can even go beyond it.

What seems a new feature is the analogy with the characteristic zero case, which admitted
applications to apparently distant problems.

1. Introduction

The purpose of this work is to extend to positive characteristic certain results which we
shall soon recall. We shall also deduce several consequences, including a new proof of
Weil’s bound for the number of rational points on a curve over finite fields; in some special
cases, our estimates will go even beyond Weil’s bounds (see §4).

In the paper [4], as an analogue of a previous result in arithmetic [3], we proved the
following (Corollary 2.3 in [4]):

Theorem 1. Let k be an algebraically closed field of characteristic zero, X be a smooth
projective curve over k, u, v € k(X) non-constant multiplicatively independent rational
Sfunctions, and S C X (k) their set of zeros and poles. Then

> minfu(l —u), v(1 — v)} < 3V2(deg() deg(v)x)'/>. (1)

veX (k)\S

In the above sum, x = |S| + 2g — 2 is the Euler characteristic of the affine curve X \ S
(and g its genus); v runs over the points of the curve X \ S, viewed as places of the
function field x (X)/k; in other words v(f) denotes the multiplicity of vanishing of f at
the point v.
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Note that the left-hand side may be trivially bounded by min(deg(u), deg(v)),
whereas the theorem in particular gives for the same quantity the upper bound <,
max(deg(u), deg(v))2/3.

Theorem 1 was proved as a corollary of a more general inequality with parameters to
which we shall return. The arguments were on the same lines as the alluded arithmetic re-
sults, but in place of the difficult Subspace Theorem of Schmidt it used rather elementary
and self-contained considerations using Wronskians.

To give some alternative views of this result, let us now consider the image of X \ §
in an given by the map p — (u(p), v(p)); this is an affine curve. Then the left-hand side
in the above formula represents the multiplicity of such a curve at the origin (1, 1) of an.
Still another point of view is to interpret the left-hand side as a gcd of u — 1, v — 1, viewed
as functions on X \ S; in turn, Silverman [14] interpreted it as a height, with respect to
the exceptional divisor in a blow-up of GIZH.

Theorem 1 admits various applications, for instance to a special case of a conjecture
of Vojta concerning integral points for the complement in [P, of certain curves (see [4],
[7]) and to rational curves on projective surfaces [6].

Another application occurs when X, u, v are defined over a number field k, and we
take k = Q. If x € X(Q) is a common zero of u — 1, v — 1, all the conjugates x° of x
over k contribute to gcd(u — 1, v — 1), whence

[k(x) : k] < 33/2(deg(u) deg(v) x)'/3. 2

In turn, this was applied in [5] to obtain a new bound for the maximal order of a torsion
point on a curve in GJ,.

The inequality in Theorem 1 is often useful when u, v have few zeros and poles com-
pared to their degree. A significant and illustrative instance of this occurs when u = a”,
v = b" for fixed non-constant multiplicatively independent polynomials a(t), b(t) € k[t].
In this case, on taking X = P; and S to be exactly the set of zeros of a(#)b(t) plus
the point at infinity, we deduce from (2) that the degree over k of any common zero of
a"—1, " —11s « n?/3. Recalling that the degree of n-th roots of unity is ¢ (n) > n/logn,
we conclude that in fact

deg(ged(a” (r) — 1,0" (1) — 1)) = Oq (1),

as was proved by Ailon and Rudnick [1].

Let us now consider the case when « has positive characteristic. As proved by Silver-
man, even in the special case u = a”, v = b", the analogue of Theorem 1 does not hold,;
in fact, an immediate consequence of his Theorem 4 in [15] is that for every pair of non-
constant polynomials a(t), b(t) € Fy[t] there exists a positive constant ¢ = c(a, b) > 0
such that for infinitely many n,

deg(ged (@ (t) — 1, b"(t) — 1)) = cn. 3)

Taking into account this counter-example, we still want to explore further what can
be proved in positive characteristic, in the direction of (1). We shall see for instance that
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something remains true if the degrees involved are “small” with respect to the character-
istic: see Theorem 2 below.

Remaining in the context of Silverman’s counter-example, we also observe that if we
take an arbitrary curve X over I, a, b non-constant rational functions in F, (X) and u, v
of the form u = a?" ! then v = b9"~!, the ged in question is at least the number of
points defined over the field ;= on the curve X \ §. In fact, at any such point of the curve
both functions «, b take values in F*,,, so their ¢ — 1-th power equals 1.

On the one hand this justifies at once the lower bound (3), at least for n of the form
qg" — 1.

On the other hand, taking into account this link with rational points over finite fields,
we might ask whether some modification of the proof of the above theorem continues to
work, producing some upper bounds concerning rational points.

In fact, suppose that X is defined over a prime field F), and that its degree is small
enough with respect to p. Then it turns out that the proof method of Theorem 1 may be
suitably enriched with further arguments, producing a bound of the “correct” magnitude
for the number of rational points. In particular this applies if we start with an absolutely
irreducible curve defined over Q and consider its reduction modulo p, for p tending to
infinity. The bound then takes the shape p + O(,/p), as predicted by Weil’s Theorem.

The purpose of this paper is to detail this argument and actually to produce an ana-
logue for arbitrary finite fields. In this extension, Wronskians will be replaced by hyper-
Wronskians (which are constructed out of Hasse hyperderivatives); see §3, Theorem 3 for
the details of this extension and the formulation of an analogue of the estimates in [4].
See also §4 for the deduction from this results of the full Weil bound, namely

IXEHl—q —1| <284

Here, ¢ is an arbitrary power of a prime p, and no hypothesis on X or p is required.

We mention that other authors, like Schmidt, Stohr, Voloch, ..., have already recog-
nised the usefulness of hyperderivatives in the context of rational points over finite fields;
actually the paper [13] recovers the full Weil bound in this way. However, the present
method is definitely different in other respects, and also shows the link of this topic with
the gcd estimates, which have already allowed many different applications. We stress that
our gcd-method has its origin in characteristic zero, while Weil’s and Stepanov’s have no
known analogue in characteristic zero.

We now state a version of Theorem 1 in positive characteristic, whose corollaries
sometimes go beyond what follows from Weil’s bounds. More precisely, we have the
following

Theorem 2. Let X be a smooth projective absolutely irreducible curve over a field k
of characteristic p. Let u, v € k(X) be rational functions, multiplicatively independent
modulo k*, and with non-zero differentials; let S be the set of their zeros and poles; and
let x = |S| + 2g — 2 be the Euler characteristic of X \ S. Then

d d
min{v(l —u), v(l —v)} < max<3«3/§(degudeg w312 egu egv>'

veX@N\S p
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Observe that we recover the same bound of Theorem 1 when
32(degu deg v)? < p3)(.

Note also that the estimate is non-trivial only if max(deg u, degv) < p/12;in fact the gcd
(i.e. the left side of the displayed inequality) is in any case bounded by min(deg u, deg v).

We give some simple corollaries of this theorem; it will be clear that much more
general statements can be obtained, but we limit ourselves to simple choices just for the
sake of illustration.

Corollary 1. Let X be a curve defined over a finite field k of characteristic p. Let
X1, X2, Y1, Y2 be rational functions on X, S the set of their zeros and poles, and x the
Euler characteristic of X\ S. Let ay, az, by, by be integers. Then either xflxgz and yi’l yé’z

are multiplicatively dependent, or the number N of points 7 € X (k) such that

ar ay _ by by _
Xpxyt =y Yy =1
satisfies

N < max<3\3/§[(degxf1x§2)(deg yf'ygz))(]IB, 12

(deg x| x52)(deg yV' y5) )
p

For another corollary, let us take x» = y» = 1. Dropping the indices and denoting by w,
the set of n-th roots of unity, we obtain:

Corollary 2. Let X C (G}Izn be an absolutely irreducible plane curve of Euler character-
istic x, not the translate of a subtorus. Suppose it is defined by an equation f(x,y) =0
of bidegree (dy, d2). Then

1X O (X )| < max<3%<m1m2d1dzx)”3, 12%).

On taking further the curve X to be the line x + y = ¢, for some ¢ € F*, and m; = my =
m a divisor of p — 1, we find that the number of solutions in m-th roots of unity to the
equation x + y = ¢ is bounded by max(3~/2m?/3, 12m?/ p).

Up to a constant, the same bound was obtained by Garcia and Voloch [9] by different
methods. Also, this is essentially the case T = 1 (but our method too could handle the
case of arbitrary values of T, with similar estimates) of Lemma 5 in the paper by Heath-
Brown and Konyagin [10]. (They give the estimate only for m < p3/4, but on the other
hand, for m > p3/ 4 our bound can also be deduced from Weil’s theorem.)

Note that for every m dividing p — 1, the expected number of solutions should be
about m?/p (in fact, for a given value of x € j,,, the probability that ¢ — x belongs to i,
is m/(p — 1)). Also, taking the average over ¢ € F*, it is clear that our estimate 12m?/p
is, up to a constant, best possible.

We also note that writing p — 1 = ml this yields an upper bound for the number
of points on the Fermat curve x! + y/ = 1; when m < p3/4, this bound goes beyond
what can be deduced from Weil’s bound in the same range. (See [10] for applications to
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exponential sums.) As we have already remarked, it is peculiar that our result comes from
an analogue in zero characteristic.

Another instance occurs when the curve X is defined over F,,. In the same way as
Theorem 1 leads to (2), Theorem 2 gives a bound for the degree over IF,, of the common

zeros of u — 1, v — 1. In fact, suppose that X contains a point ({1, &) € FIZ, with & of
order m and & of order m3. Then the degree of this point over I, is the multiplicative
order of p modulo the l.c.m. m of m, my. Then, since also the conjugate points lie on X,
we obtain the bound < (m1m,)!/3 for the order of p modulo m.

This argument can in fact be carried out as in the paper [5], using Corollary 1 above.
We only sketch the idea. Let X be defined by f(x1, x2) = 0 of bidegree (di, d2). Via
geometry of numbers one constructs two multiplicatively independent monomials u =
xla'xgz, v = xi’]xi’z such that (degu)(degv) < 2md,d, and with the value 1 at (£1, &).
Then the monomials continue to take the value 1 at all the conjugate points. Thus Corol-
lary 1 yields

dyd
ord(p. mod m) = [Fp (€1, &) : F,] < max<3€/Z(md1d2X)1/3, 24u).
p

This is useless if m is “large”, but in that case one can still use the trivial estimate for the
gcd leading to the bound +/2md;d>. This shows that if we have a torsion point of prime
order / on X, then p must have a “small” multiplicative order modulo /.

For further results on torsion points on curves over finite fields, going in another
direction, see [16].

2. Review of auxiliary tools

Let« C F, be a finite field of characteristic p. Let A be an absolutely irreducible smooth
projective curve over « and denote by L = «(X) its function field. We let x, y be sepa-
rating elements generating L over k.

Let L? denote the subfield of L formed by the g-th powers in L.

Lemmal. [L: L] =g4.
Proof. This is well known. O

Lemma 2. Let z € L be a separating element; then 7 generates L over L1. Assume also
that z is a local parameter, so that L embeds into k ((z)). Then L Nk ((z9)) = L? and the
fields L and x ((z%)) are linearly disjoint over L.

Proof. The extension L/L9(z) is both separable and purely inseparable, so it has degree
one.
Put E = L Nk ((z7)). Note that E contains L9. On the other hand [« ((z)) : k((z9))]

=gq:Clearly 1, z, ..., 7971 is a basis for k ((z)) as a k ((z9))-vector space. Hence [E(z) :
E] > g. Since [L : L] = q, by the previous lemma, we obtain E = L9. Also a basis
of L over LY is again 1, z, ..., 797! and these elements are linearly independent over

k((z)). O
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Let us now recall a few elementary facts on the zeta function of a curve. We take k = I,
and the curve A" defined over I, of genus g. The zeta function ¢y (s) is defined either
by a sum over the effective divisors on X’ or by an Euler product, ranging over the prime
divisors on X, as

Cx(s) = Zq—sdegD — 1_[(1 _ q—sdegP)—l'
D P

Note that a prime divisor P is the sum of the conjugates of a single point defined over an
extension Fgr; if r is minimal, P is the sum of r points, so deg P = r.
Putting t = ¢, we can write

cx(s) =[] —e®eh)~h
P

The Riemann—Roch theorem implies that ¢y is a rational function in ¢ of the shape
Lx(@)
(I =01 —qt)’

where Ly (T) € Z[T] is a polynomial of degree 2g (actually a reciprocal polynomial).
By logarithmic differentiation with respect to ¢ one finds, after easy manipulations,

tx(s) =

!/ ( ) (0.¢]
S X EI
m=1

As a consequence, the expression for the number of points on A" over Fy» takes the form

28
X Fg)|=q"+1=) af"
i=1
for suitable complex numbers ay, ..., az,.
The Riemann hypothesis reduces to proving that |o;| < ¢
Let us observe the following fact:

172 for each i = 1, S, 2g.

Lemma 3. The following are equivalent:

() |ail < q1/2foreveryi =1,...,2g.

(i) ||X(qu)| —qg" - 1| < 2gq™"? for everym > 1.
(iii) There exists a positive integer r such that |X (Fgrm)| = ¢"™" + O(qr’"/z) asm — oQ.
Proof. Itis clear that (i)=>(ii)=>(iii). Let us now assume (iii), which amounts to | ) ; ozir i
= 0(g"™/?). There are several ways to deduce from this asymptotic estimate that Jo;;| <

g'/? foreach j =1, ...,2g. We shall give the following argument.
We shall prove more generally that if ci,..., ¢; are non-zero complex numbers,
B1, ..., B are distinct complex numbers and | Zﬁzl cip"| = O(p™), then max; |B;| < p.

For this we can argue by induction on /, the assertion being clear for / = 1. Suppose
[ > 1 and write f(m) = Zle c,-,Bim. Then | f(m+1) — 81 f(m)| = O(p™). On the other

hand, f(m + 1) — B1f(m) = 2522 ci(Bi — B1)B}". By induction we easily conclude.
O
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3. GCD-estimates in arbitrary characteristic

Let k C Iy, and let L be a 1-dimensional function field over . Let x, y be separating
elementsin L. Let f(x, y) = 0 be the minimal relation bewteen x and y, with coefficients
in k, where f(X,Y) € «[X, Y] is supposed to be absolutely irreducible. Let C be a
smooth projective model of the function field L and let S C C be a finite set containing
all the zeros and poles of x, y; we denote by x the Euler characteristic of C \ S. Let
a =degy fand b =degy f.

Theorem 3. Let h, k be positive integers with
ah + bk < q. (€]

Put u = xz9 and v = yw? for some S-units z, w € L*. Then at least one of the two
alternatives holds: either

o a<kandb <h, or ik
° Zmin(v(l —u),v(l —v)) < il

k qg—1
deg(v) + — deg(u) + TX'
ves q

Proof. Let h, k be positive integers as in the statement. Suppose that the first alternative
of the theorem does not hold, so that eitherk <a —1lorh <b — 1.
Definen = hk+h+k,andputu = xz4, v = yw?, p = (1—u)/(1—v). Let us define

the functions fi, ..., f, asfollows: fori = 1,...,kput f; = ui_lp, while fiy1,..., fu
are the functions u”v® forr =0, ..., k,s =0,...,h — 1.
Proposition 1. The functions f1, ..., fu € L are linearly independent over L1.

Proof. Any dependence relation leads to an identity
Pr)(d —u) + Py(u,v)(1 —v) =0 &)

for some polynomials Py € LI[U], P, € L1[U, V] notboth zero and with deg P; < k—1,
deg; P> < kanddegy, P, <h — 1.

Let us define the polynomial P(X,Y) € L9[X,Y] by setting P(X,Y) =
Pi(Xz9)(1 — Xz9) 4+ Pr(Xz4, Yw?)(1 — Yw?). Then degy P < k,degy P < h.

Observe that P(X, Y) is not identically zero: otherwise in the first place P; would
be identically zero (since P;(Xz?)(1 — Xz?) would be divisible by the polynomial 1 —
Y w4, which is non-constant in Y) and in turn P>, would also have to vanish, which is a
contradiction.

Replacing u = xz%, v = yw? in (5) we find P(x, y) = 0. Let R(Y) € L[Y] be the
resultant with respect to X between f(X, Y) and P(X, Y).

Suppose first that R(Y) vanishes identically. Observe that f (X, Y) is absolutely ir-
reducible, so it is irreducible viewed as a polynomial in LY[X, Y] and a fortiori is ir-
reducible as a polynomial in X over the field L9(Y). Therefore f must divide P in
L9(Y)[X], because f and P, as polynomials in X, must have a common root in an alge-
braic closure of L9. By Gauss’ Lemma, f divides P in LY[X, Y]. Therefore in particular
k > a, h > b, which is excluded.
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Hence R(Y) # 0.

Note that by the standard expression of the resultant as a determinant (see e.g. [12,
Chap. 1V, §8]) we find deg R < ah + bk.

On the other hand the polynomials f (X, y) and P(X, y) have the common root x
and hence R(y) = 0. In particular, we find [L9(y) : LY] < degR < ah + bk < q. By
Lemma 2, L9(y) = L, but [L : L?] = g and we have a contradiction. O

Now the proof will proceed by taking suitable hyper-Wronskians. We follow the treatment
of Garcia—Voloch [8] and Hsia—Wang [11]. For a separating element ¢ € L, we define as
in §1 of [8] a sequence of differential operators D, ; = D,, forn =0, 1,2, ..., with the
following properties: Dy is the identity operator on L and

o Di(zw) = Z};o Dj(z)Di—j(w) forall z, w € L;
o DioDj=(7')Dis;.

We choose once and for all a separating element ¢ € L, which is moreover a local param-
eter at some point; also, for every place v of L/k, we choose a local parameter #, at v. It
follows from Remark 1 of [8] that for integers i > j > 0,

v(Dig, (t)) = j —i.

We now continue with the proof of Theorem 3. Since the first alternative does not
hold, i.e. either 1 < b or k < a, by Proposition 1 the functions fi, ..., f, are linearly
independent over L?. Hence, by Lemma 2, they are linearly independent over « ((¢)). In
turn, by Theorem 1 of [8], there exist integers 0 = €] < --- < €, < ¢ such that the
corresponding hyper-Wronskian with respect to #,

w = Wt(f]a U] fl’l) = det(DG/,tf‘l)lfl,]Snv

does not vanish. We take the minimal such € (in the lexicographic order), called the orders
(see [8, p. 461]).

Observe that the inequality n < ¢ is indeed implied directly. In fact, ah 4+ bk < g by
assumption. Moreover, if for instance k < a — 1 (the other case being similar) we have
n=hk+1)+k<ah+k<ah+bk <gq.

Here and in what follows the sequence of ¢; is fixed, so the reference to the ¢; is
omitted.

We also denote by w, = W; (fi, ..., fn) the local hyper-Wronskian at v.

By Proposition 2.1 in [11], for two local parameters ¢, u, we have a formula

du\"
Dy, = <E> D, , + linear combination of D; ,, [ < m.

Using this formula and taking into account that (¢g, . .., €,) is a minimal sequence with
linearly independent rows, the residual terms in the formula do not matter in the determi-

nant, leading to the identity
dr \°
= — P 6
wy ( dtv> 1) ©6)
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where

o=Y¢. @
J

We go on by estimating v(w, ) and for this we shall distinguish several cases, as in [4].

Case (i):v € S,v(p) < 0. Asin[4] we first make a simple observation: Suppose that two
functions f;, fj, i # j, have a pole at v of the same order > 0. Then by subtracting from
the i-th column a constant multiple of the j-th column, we may suppose in calculating the
hyper-Wronskian that f; has a pole of smaller order than f; at v. Therefore, by repeating
this procedure we may assume that the functions f; which have a pole at v have in fact
poles of pairwise distinct orders, not exceeding the original maximal order.

In the present Case (i) the only functions which (may) have a pole at v are f1, ..., fi,
because v ¢ S, so the remaining f;’s are units at v by assumption. Hence, the only poles
we shall possibly find in @, will come from the first £ columns. However by the above

observation we may change the actual f;’s,i = 1,...,k, to assume that the negative
ones among v( f1), ..., v(fx) are all distinct and > v(p). Suppose that after such column
operations and a suitable renumbering, only fi, ..., f, have a pole at v and v(f1) <

- < v(fr) < 0. Plainly we will have v(p) < v(f1) and r < k, so r < min(k, —v(p)).
Also, observe that the hyper-derivation D with respect to #, increases the order of a pole
by at most s and leaves regular a regular function at v.

In conclusion, by looking at the individual terms obtained in the expansion of the
determinant (after having performed the column operations), a simple inspection shows
that

v(wy) > V(fl) +---+ v(fr) —€p —€p—1 — T €p—r41.
Also, we are assuming the v( f;) to be distinct and all > v(p); then lettinge = ¢, < g —1
denote the maximum of the €;, we have €, + €, 1 + -+ €41 < re — (;) Then we
obtain

v(wy) > rv(p) + (;) —re+ <;> — () +r(r—1—e).

Using —r > v(p) we have r(r — 1 —€) > —v(p)(e + 1 — r), whence

v(wy) = v(p)e+1) = v(p)-q. ()

Case (ii): v € S, v(p) = 0. Now every element of the local Wronskian matrix is v-
integral, so the same holds for the determinant, i.e., v(w,) > 0 in this case.

Case (iii): v € S, v(v) > 0. This case contains the crucial point. As in [4], we consider
the identity ' ' ‘
wp—uwQ=—wyd+v+- - +0" N =uvhp. )

This will be useful to approximate u/p with a polynomial in u, v, at the places under
consideration.

In fact, we may use the identity to replace, via suitable column operations, the func-
tion f;, fori = 1,..., k, with the left side of (9), with j = i — 1, which by (9) equals
u'~1v" p. Observe that this corresponds to subtracting from f; a certain «-linear combi-
nation of fx41, ..., fu, and thus the value of w, is unchanged.
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Denoting g; = u_lvhp, we have v(g;) = (i — l)v(u) + hv(v) + v(p).
Since v(Dq, f) = v(f) — €, we easily find, on looking again at the individual terms
in the determinant expansion, that

von) = v ko) kv + Y v - o

i=k+1
Case (iv): v € S, v(v) < 0. We now argue directly with the terms in the determinant
expansion (that is, we do not perform any column operation). Since v(f;) = (i — 1)v(u)
+v(p) fori =1, ..., k, we find as in the previous case that

v(wy) = @vwﬂrkv(pﬂr Y v —o.

i=k+1

Summing over all places v of L/k, taking into account the estimates obtained in the
four cases, and recalling that ) _qv(u) = Y ¢v(v) = > cgv(fi) = 0fori > k,
because u, v are S-units, we thus get

Yov@)z= Y qup+hk Y v +kY v(p)—olSl.  (10)

v veS, v(p)<0 ves, v(v)>0 vesS
Now, } 5. v)=0 V(W) = Zu(v)>0 v(v), because v is an S-unit; also, Zv(v)>0 v(v)

= Zv(v)<0 V(U) = deg(v)
Moreover, (6) shows that v(w,) = ov(dt/dt,)+v(w). On summing over v this yields

D v =0 Zv(j—:) +) v(w) =02g—2).

the last equality holding because of the product formula (since @ does not vanish) and
because 2g —2 is the degree of any canonical divisor (recall that 7 is a separating element).
Comparing with the above yields

ox— Y. qv(p) = hkdeg(v) +k Y v(p). (11)

veS, v(p)<0 ves
Finally, — ZveS v(p) < H(p) < deg(u) + deg(v), whence
ox +qHs(p) = (hk — k) deg(v) — k deg(v). (12)

Now note that by definition,

HS<1_M> - Z min(v(l —v) —v(l — u)). (13)

I—v VS, v(l—v)>v(l—u)
In turn the right side may be replaced by

> @ = v) — min(v(l — 1), v(I — v)). (14)

vegS
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Now Zugs v(l —v) < H(1 — v) = deg(v) whence

Hs(p) < deg(v) — ) min(v(l — ), (1 = v)). (15)
veS

Now, putting all together and using that o < g(q — 1)/2, we obtain
k — hk
> min((l — ), v(1 — vy < LTI

k qg—1
deg(v) + —deg(u) + ——x.  (16)
VS q 2

O

4. Deduction of Weil’s bound

We start by deducing from Theorem 3 an upper bound for the number of rational points
on the non-singular model C of the curve defined by f(x, y) = 0. We recall that we put
a = degy f, b = degy f and S is the set formed by the zeros and the poles of x and y
onC.

Corollary 3. The number N := |C(F 2)| satisfies the inequality

q2 -1 qg—1
[a+(b+ab+a)(a—1)]+TX+ISI. a7
Proof. The estimate is trivial if f(X, Y) is linear in some variable, so we may suppose
forinstance b > a > 2. We may also suppose that g > a+b(a—1). Welet L =F,(C) =
F,(x, y) be the function field generated by x, y over IF,. Take z = x ™9, w = y~¢ and
k = a — 1 in Theorem 3. We take for & the largest integer such that (4) holds; by our
assumption, 2 > 1.

Then, by construction, the first alternative in Theorem 3 is not satisfied, so the second
one holds. The left side of the inequality in Theorem 3 is at least N — |S|. Also deg(v) =
(q> — 1a and deg(u) = (¢> — 1)b. So

+@a—-D({1-=nh a—1 —1
N < s+ 4 q)( )<q2—1)a+7<q2—1>b+q7x.

N<g®—1+

Now, g+(a—1)(1—h) = (g—ah)+(a—1)+h; also from (4) we have ¢ —ah < a+b(a—1)
anda —1+h <(a—1)(b/a)+h =k(b/a)+ h < q/a. Inserting these estimates in the
above inequality we obtain the corollary. O

Note that for ¢ — oo the inequality (17) is of the shape |C(F2)| < 9>+ 0(q).

It is well known that this estimate is itself sufficient to derive Riemann’s hypothesis
from other more elementary properties of the zeta function of the curve. This was first
shown in Bombieri’s elementary proof [2], in which among other things the upper bound
was shown to imply a corresponding lower bound. Here we could invoke this procedure,
but we prefer to carry out explicitly the arguments, which are particularly simple in this
case due to the shape of our Theorem 3.
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We shall use Theorem 3 in the form of the following

Corollary 4. Let X be a smooth complete absolutely irreducible curve over Iy of
genus g, x,y € Fy (X) be non-constant rational functions, and o be an automorphism
of Fy(X)/F,. There exists a number ¢ = c1(g, degx, degy) such that for all integers
n > 1 the number N, (o) of points & € X(Fq) such that

X&) =x@®1", ¥ =yE)” (18)
satisfies the upper bound

Nu(0) < [Fy(X) : Fy(x, M1-¢*" +c1q”. (19)

Proof. The proof'is very similar to that of Corollary 3. Let L =F,(X) D, (x, y, x, y7).
We let f(x, y) = 0 be a minimal algebraic relation between x and y, of bidegree (a, b),
where we suppose that b > a. If @ = 1 then x is a rational function of y, and (18) reduces
to the right equality y°(§) = y(& )qzn. Now, the rational function y° — yqzn satisfies
deg(y® — yqzn) = ¢*" degy + O(1) and this bounds the number of its zeros over Fq,
proving (19) in a sharpened form. So let us assume a > 2. We apply Theorem 3, with
q" in place of ¢, taking the functions x? (resp. y?) in place of x (resp. y) and taking
z=x"4" w= y_qn.

We have 4 = x°x~4" and v = y"y’qzn, so, as n — 00, deg(u) = ¢*"H(x) +
O(1) = bg?[L : Fy(x, y)I+ O(1), deg(v) = ¢*" H(y) + O(1) = ag™[L : F¢(x, y)] +
o(1).

As in Corollary 3, with the same choices for 4, k (i.e. k = a — 1, h the largest integer
such that ah + bk < ") we obtain the inequality (19). O

Deduction of the Riemann Hypothesis. Let C be a smooth complete irreducible algebraic
curve over a finite field « of characteristic p. Let f(x, y) = 0 be the equation for a plane
model of C, with x separating.

Let X — IP; be the Galois closure of x : C — Pj: X is the smooth model of
the function field obtained as Galois closure of the extension « (C)/k (x). We may assume
that X is absolutely irreducible and « is a finite field IF; so that the morphism x : C — Py,
the Galois closure X — Py of C — P; and its Galois group I" are all defined over F,.

Let L = F,(X) so that by our choice of ¢, L/IF,;(x) is a regular Galois extension with
Galois group I'.

Let Q C I be a system of representatives for the left cosets of the subgroup of I’
fixing C. Observe that the y° for 0 € Q are the conjugates of y over IF,;(x) and in
particular |2] = [F,(x,y) : Fy(x)]. Hence, for each § € X with x(§) € ]Fan, the

value y(&) must satisfy one relation of the form y(& )’12'1 = y? (&) for some o € L, since
x(£)7" = x(£). Then

{E € X : x(&) eFyull =) Nu(o) + O(D).

oeQ
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On the other hand, the left-hand side satisfies
& € X x(§) € Foau}l = ¢™'[L 1 Fy(0)] = ¢™"[L : Fy(x, )] - 191,

Let us denote by E, (o) the error term N, (o) — qz” [y (X) : Fy(x, y)]. By the above
identity we have

Y Ex(0) = 0(1),

oeQ

whereas by Corollary 4 we have, for every o,
Nu(0) = [Fg(X) : Fg(x, )] - ¢*" + 0(g").
Therefore for each o € 2,
Ey(00) = —(IQ] = Deig” + 0 (D).
In particular, denoting by 1 the identity of the Galois group I', we have
Na(1) = [Fg(X) : Fy(x, )] - 4™ + 0(q").
Now, Ny (1) = [Fg(X) : Fg(x, )1 ICEF,20)| + O(1), s0

IC(F 20| = ¢*" + O(q").

This is known to be equivalent to Riemann’s hypothesis (see Lemma 3 for the details on
this last deduction).

5. On Theorem 2 and its corollaries

The aim of this section is to prove Theorem 2.
We start with an intermediate statement with parameters, which is the analogue in
positive characteristic of Proposition 2.2 in [4].

Proposition 2. Let X be a smooth projective curve over a finite field of characteristic p.
Let u,v € k(X) be rational functions, multiplicatively independent modulo constants,
and let S be the set of their zeros and poles. Suppose that k(X) = «(u,v) and put
a = deg(v) and b = deg(u). Let h, k be integers > 0 such that

ah + bk < p. (20)

Finally, denote by x = |S| + 2g — 2 the Euler characteristic of the curve X \ S. Then
either
a<k, b<h, 21
or
k hk +h+k—1

h+ 2k
> mi 1. vw—1)) < + b+ L @2
Uex\smm{”(” R Ty Ny v 2 X @22
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Note that both inequalities (21) and (22) coincide with those in Proposition 2.2 of [4]. As
explained in [4], the assumption that « (1, v) = «(X) is not restrictive, but in the general
case the right-hand sides of (21) should be multiplied by [« (X) : « (u, v)].

Proof. We follow the proof of Proposition 2.2 in [4] and of Theorem 3 in the present
paper. We let n = hk + h + k and define rational functions fi, ..., f,, regular outside S.
Fori=1,...,k, weput f; = Wt — 1)/(v — 1) while fiy1, ..., f are the functions
uvS,0<r <k, 0 <s < h,in some order.

These functions are linearly independent over « (X)?, by Proposition 1 (applied in the
case z = w = 1). The proof now proceeds by taking the usual Wronskian of fi,..., f,
and using the fact that x (X)? is the constant field with respect to a non-trivial derivation.
Now hyperderivatives do not appear at all, so the sequence €1, ..., €, appearing in the
proof of Theorem 3 will now be simply 0, 1,...,n — 1. The same estimates as in the
proof of Proposition 2.2 in [4] give the result. O

Theorem 4. Let X be a smooth projective absolutely irreducible curve over a finite
field k of characteristic p. Let u, v € k(X) be separating rational functions, multiplica-
tively independent modulo k, and let S be the set of their zeros and poles. Let x be the
Euler characteristic of X \ S. Let t > 0 be a real number. Suppose that

1
(deg(u) deg(v))* < o3 (P +degu +deg v)’x.

Then

4 12
E min{v(l —u),v(l —v)} < (—+—)(degudegvx)l/3.
~ t 2
veX (®)\S

The minimum in 7 of the factor 4/ + t2/2 appearing on the right is attained at t = /4.
However, it may be convenient to increase this factor by other choices of 7, in order to
weaken the assumptions.

Proof of Theorem 4. By symmetry, we can and will suppose that deg(u) > deg(v). For
consistency with the previous notation we put b = deg(u) and a = deg(v), so b > a (note
that if f(u, v) = O is the irreducible equation relating u, v over «, then degu = degy f
and degv = degy f).

If x < 0, the result is trivial since u, v will be necessarily multiplicatively dependent
modulo constants, so we suppose from now on that x > 1. Let us denote by G the left-
hand side term in (22):

G:= Y minfv—1),v(— 1)}

veX\S

Note the trivial bound
G < min{deg(u), deg(v)} = a.

We have to prove that

2
G < <§+%).(abx)1/3. (23)
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Let us choose the parameters #, k in order to apply Proposition 2. Put

p2/3 a2/3
R R 7

where [-] denotes the integral part. Note that # > k.
Suppose first that k < 1. Then 13a%/(byx) < 8,s0a’> < (8/t3)aby, and the trivial
inequality G < a implies

2
G < ;(abx)m,

which is stronger than (23). So (23) is proved in this case.

From now on we shall suppose 4 > k > 1.

We proceed to verify the inequality (20). We have

(ab)2/3
(lh~|—bk SZtW —a—b.

This in turn implies (20) provided 8t3a®b* < (p + a + b)>x, which we are assuming.

We can now apply Proposition 2, which guarantees the validity of either the inequali-
ties (21) or the inequality (22).

Suppose first that the inequalities (21) both hold. Then in particular b < h, so

b2
P <h+1)> <P,
ax

so (aby) < £3. Since a < b and x > 1 we deduce a? < 13 and from the trivial inequality
G < a it follows that G < 3/2. Since degu degvy > 1, the sought-for result will follow
if we prove that (4/t + t>/2) > t3/2 for all positive 7. This can be easily checked by
standard calculations.

Let us now suppose that the second alternative (22) holds. Since 2 > k, we have

h+ 2k 3 k 1
< and < ,
hk+h+k ~ k+2 hk+h+k = h+2
and inequality (22) gives
3 1 (h+Dk+1)-2
G <
12 T2 2 X
Now
2/3 p2/3
k+2>t————, h+2>t—-+,
TR TR
while
2(ab)1/3
(h+Dk+1) <t 9
X
Then

301 1?
G < (; + ;)(abx)”3 + 5 (ab)'”,

and we obtain the desired inequality (23).
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Proof of Theorem 2. We distinguish two cases, according to the value of the quotient
Q = p>x/(degu degv)?. In case Q > 4, the choice t = 4 satisfies the assumption of
Theorem 4. The estimate for the gcd coincides with the first upper bound in Theorem 2.
In the case Q < 4, we choose t = Ql/ 3 < /4. In this case it is immediately checked
that4/141%/2 < 6/t. Again, substituting, Theorem 4 yields the bound 12(deg u deg v)/ p.
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