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Abstract. We consider a singularly perturbed elliptic equation

ε21u− V (x)u+ f (u) = 0, u(x) > 0 on RN , lim
|x|→∞

u(x) = 0,

where V (x) > 0 for any x ∈ RN . The singularly perturbed problem has corresponding limiting
problems

1U − cU + f (U) = 0, U(x) > 0 on RN , lim
|x|→∞

U(x) = 0, c > 0.

Berestycki–Lions [3] found almost necessary and sufficient conditions on the nonlinearity f for
existence of a solution of the limiting problem. There have been endeavors to construct solutions
of the singularly perturbed problem concentrating around structurally stable critical points of the
potential V under possibly general conditions on f . In this paper, we prove that under the optimal
conditions of Berestycki–Lions on f ∈ C1, there exists a solution concentrating around topo-
logically stable positive critical points of V , whose critical values are characterized by minimax
methods.

1. Introduction

During the last several decades there have been a great deal of work on the semi-classical
standing waves of nonlinear Schrödinger equations. A standing wave of a nonlinear
Schrödinger equation

i~
∂ψ

∂t
+

~2

2
1ψ − V (x)ψ + f (ψ) = 0, (t, x) ∈ R× RN , (1)

is a solution of the form ψ(x, t) = exp(−iEt/~)v(x) for some E ∈ R and a real valued
function v. Here ~ denotes the Planck constant and i the imaginary unit. We assume that
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f (exp(iθ)s) = exp(iθ)f (s) for s, θ ∈ R. Thenψ(x, t) = exp(−iEt/~)v(x) is a solution
of (1) if and only if the function v satisfies

~2

2
1v − (V (x)− E)v + f (v) = 0 in RN .

We are interested in the semi-classical state, that is, the case where ~ > 0 is sufficiently
small. Thus, replacing V − E by V for convenience, we study the equation

ε21v − V (x)v + f (v) = 0 in RN , (2)

where ε > 0 is sufficiently small. Throughout the paper, we assume that N ≥ 2 and the
potential V satisfies

(V1) V ∈ C(RN ,R) and V ≡ infRN V (x) > 0.

By a change of variables x 7→ εx, we see that the singularly perturbed problem (2) is
equivalent to

1u− V (εx)u+ f (u) = 0 in RN . (3)

We note that for each x0 ∈ RN and R > 0, Vε(x) ≡ V (εx) converges uniformly to V (x0)

on B(x0/ε, R) as ε→ 0. Thus for each x0 ∈ RN , we have a formal limiting problem

1U(x)− V (x0)U(x)+ f (U(x)) = 0, x ∈ RN . (4)

Berestycki–Lions proved in their classical paper [3] (see also [4] for case N = 2) that
there exists a positive least energy solution U ∈ H 1(RN ) of (4) if the function f ∈
C(R,R) satisfies the following conditions with V (x0) = m:

(f1) f (0) = limt→0 f (t)/t = 0;
(f2) if N ≥ 3, then there exist C > 0 and p ∈ (1, (N + 2)/(N − 2)) such that |f (t)| ≤

C(1 + tp) for all t ∈ R+; if N = 2, for any α > 0, there exists Cα > 0 such that
|f (t)| ≤ Cα exp(αt2) for all t ≥ 0;

(f3) there exists t0 > 0 such that 1
2mt

2
0 < F(t0), where F(t) =

∫ t
0 f (s) ds.

For any solution U ∈ H 1(RN ) of (4), we have the following Pohozaev’s identity:

N − 2
2

∫
RN
|∇U |2dx +N

∫
RN

[
V (x0)

U2

2
− F(U)

]
dx = 0. (5)

From this identity, we see that (f3) is a necessary condition for existence of a solution U
of (4). Condition (f2) is also necessary in the sense that if N ≥ 3 and f (t) = tp with
p ≥ (N + 2)/(N − 2), then there exist no solutions of (4) in H 1(RN ).

On the other hand, we note that for any positive solution Ux0 ∈ H 1(RN ) of (4),
{Ux0(· − x0/ε) | x0 ∈ RN } is a set of approximate solutions of (3) for small ε > 0. In
a pioneering work [20], Floer and Weinstein showed that when N = 1, V ∈ C2(RN ),
V ′(x0) = 0, V ′′(x0) 6= 0 and f (u) = u3, there exists a positive solution uε ∈ H 1(R)
of (3) such that for a maximum point xε ∈ R of uε, limε→0 εxε = x0 and uε(· + xε) con-
verges uniformly toUx0 as ε→ 0. In [20], Floer–Weinstein adopted a Lyapunov–Schmidt
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reduction method which requires a linearized nondegeneracy of a solution for a limiting
problem. The linearized nondegeneracy means that if 1φ − V (x0)φ + f

′(Ux0)φ = 0,
then φ must be of the form φ =

∑N
i=1 ai∂Ux0/∂xi for some ai ∈ R. Motivated by the

approach in [20], many authors have obtained further refined results in higher dimensions
for more general f and more general types of critical points of V (see [1, 2, 19, 27, 28, 32,
33] and references therein). When we use the Lyapunov–Schmidt finite-dimensional re-
duction method for (3), we need the linearized nondegeneracy condition, which is known
to hold only for a restricted class of f if N ≥ 2; a recent result [11] says that we need
at least the monotonicity of (V (x0)t − f

′(t)t)/(V (x0)t − f (t)) for t > t0, where t0 > 0
is the first positive zero of V (x0)t − f (t) = 0, which is much stronger than (f3). Even
though there is such a restriction on the nonlinearity when we apply the reduction method,
the Lyapunov–Schmidt reduction method is a very powerful tool when we construct very
subtle (highly unstable) solutions with continuum peaks as we can see in [19]. When
the linearized nondegeneracy condition does not hold, a refined finite-dimensional reduc-
tion method was developed by Dancer in [13] to get solutions corresponding to an iso-
lated (topologically) nondegenerate critical point of V for a singularly perturbed Dirichlet
problem on a bounded domain. But the refined finite-dimensional reduction method still
requires some type of nondegeneracy for the limiting problem.

In the other direction, a variational approach which does not require the nondegener-
acy condition for the limiting problem (4) was initiated by Rabinowitz [35] and developed
further by several authors (see [10, 14, 15, 17, 23, 26]). However the previous works still
require stronger conditions for f than (f1)–(f3). In recent papers [8], [9], we managed to
prove the existence of a solution of (2) concentrating around local minimum points of V
under the optimal conditions (f1)–(f3). It has been a challenging problem to construct a
solution of (2) concentrating around general critical points under the Berestycki–Lions
conditions (f1)–(f3).

In this paper, we resolve the problem for f ∈ C1 satisfying (f1)–(f3) by developing a
new variational approach. Our variational approach in this paper is a further development
of the approach in [8], quite different from the approaches of del Pino and Felmer in [15,
17], and we use a localized deformation argument in a neighborhood of a set of approx-
imate solutions. In the variational approach of [8], the characteristic of local minimum
points of V makes it rather easy to get a lower estimate of a local mountain pass level
and a positive lower bound, independent of ε > 0, of the gradient norm of an energy
functional in the intersection of an annular neighborhood of approximate solutions and a
level set where the energy level is less than or equal to the maximum of a good initial
path. Then, if there are no solutions in a neighborhood of approximate solutions, we get a
path through the gradient flow where the maximum energy is strictly less than the lower
estimate of the local mountain pass level; this contradicts the lower energy estimate and
proves the existence of a solution.

On the other hand, for general critical points of V, the situation is much more com-
plicated and we need totally new ideas. When we try to find a solution, a critical point of
the corresponding functional, through the variational approach, deformation arguments
play important roles. A deformation argument using the gradient flow of the energy func-
tional is the most common and powerful tool in variational methods. If we use only the
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deformation argument which comes from the gradient of an energy functional in our
problem, we need some lower estimate for the gradient norm ‖0′ε(u)‖ when the center
of mass is away from the critical points of V. Such a lower estimate was obtained by
del Pino and Felmer [17] for the gradient flow (starting from good points) on the Ne-
hari manifold, where they require quite strong conditions on the nonlinearity f and the
potential V.

In this paper, to bypass the obstacle in obtaining a lower gradient estimate for a gen-
eral type of nonlinearity f and general potential V, we devise a different kind of gradient
flow on a Sobolev space which comes from a (pseudo) gradient flow of the potential V .
Thus we use two kinds of gradient flow in this paper. Then, inspired by the Trotter product
formula, we iterate the composition of the two gradient flows for our deformation argu-
ment. More precisely, since the gradient flow of the energy functional does not preserve
concentration of functions due to its diffusing effect, we need one more continuous op-
eration on a small neighborhood of a set of approximate solutions which makes the tails
of the functions small. Then, if we compose the gradient flow of the energy functional,
the operation keeping tails small and the gradient flow of the potential V, the composite
operator I keeps the concentration property of functions. This concentration property is
one of the essential ingredients of our deformation argument in this paper.

When N = 1, there is a necessary and sufficient condition on f for existence of
a solution of (4) in H 1(R). Our argument in this paper is also valid in the case N = 1
under the necessary and sufficient condition on f and V ∈ C0,1. But, there exists a unique
solution, up to translation, and it is nondegenerate if f ∈ C1(R). This implies that the
Lyapunov–Schmidt reduction method is also valid when f ∈ C1(R) and V ∈ C1(RN ).
(For a different approach to find more general types of solutions, refer to [18].) Thus,
in this paper, we just consider the case N ≥ 2. Moreover, since it is proved in [8] that
there exists a solution concentrating around local minimum points of V, from now on, we
consider non-minimum critical points of V. Our typical result is the following.

Theorem 1. Suppose that f ∈ C1 satisfies conditions (f1)–(f3), and that the potential
V ∈ C1(RN ) satisfies (V1). Let M be an isolated saddle point or an isolated set of local
maximum points of V . Then for sufficiently small ε > 0, there exists a positive solution vε
of (2) such that for a maximum point xε of vε, there exist constants C, c > 0, independent
of small ε > 0, satisfying vε(x) ≤ C exp

(
−
c
ε
|x − xε|

)
and

lim
ε→0

dist(xε,M) = 0.

Moreover, wε(x) ≡ vε(εx + xε) converges along a subsequence uniformly to a radially
symmetric least energy solution of1w−mw+f (w) = 0, w > 0 in RN withm = V (x0)

for some x0 ∈M.

In the next section, we give a more general existence result for more general types of
critical points together with some typical examples.

This paper is organized as follows.
First in Section 2, we give a refined existence result with some examples. To prove the

refined result, we define a set of approximate solutions in Section 3. Then, in Section 4,
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we define the center of mass for elements in a neighborhood of the set of approximate
solutions. In Section 5, we define a new neighborhood of the set of approximate solutions
using the center of mass. Then, we construct a good starting surface in Section 6. In Sec-
tion 7, we get a lower estimate of the gradient norm of an energy functional for elements
which are not too close to the approximate solutions and whose center of mass stays away
from the critical points of V. In Section 8, we consider a map on the new neighborhood
which does not increase the energy and projects to a class of functions with exponential
decay away from the center of mass. Then, in Section 9, we construct a translation map
on the new neighborhood which also does not increase the energy. Lastly, in Section 10,
if there is no solution in the new neighborhood, iterating the initial surface by the gradient
flow of the associated energy functional, the map keeping tails small and the translation
map, we get a surface on which the maximal energy is strictly less than the least energy
level. Then, by an intersection lemma, we get a contradiction.

2. Statement of a refined result and some examples

For any set A ⊂ RN and d > 0, we define Ad ≡ {x ∈ RN | dist(x,A) ≤ d}.We also use
the notation

V c2
c1
= {x ∈ RN | c1 ≤ V (x) ≤ c2} for c1 < c2.

Now, we consider general types of critical values of V by a minmax argument.

(V2) For k ≥ 1, there exists a connected bounded open set O ⊂ RN with a smooth
boundary and a compact (k − 1)-dimensional manifold L0 ⊂ O without boundary
such that, if we define L(L0) to be the set of compact connected (orientable) k-
dimensional manifolds H with boundary ∂H homeomorphic to L0, and

3H ≡ {ϕ ∈ C(H,O) | ϕ|∂H : ∂H → L0 is a homeomorphism},

then L(L0) is not empty and the following strict inequality holds:

m0 ≡ max
x∈L0

V (x) < m ≡ inf
H∈L(L0), ϕ∈3H

max
x∈H

V (ϕ(x)). (6)

A rather different feature in (V2), compared with a standard minmax argument, is that we
do not restrict the domain manifolds H to be contained in RN . In case x0 is a nondegen-
erate critical point of V , the critical value m = V (x0) is characterized by the minimax
argument in (V2) (see Example 1 below).

The following condition yields the existence of a pseudo-gradient flow of V.

(V3) There exists a nonempty compact set M ⊂ {x ∈ O | V (x) = m} such that for
any d > 0 with Md

⊂ O, there exist constants α, β, µ, c1, c2 > 0, an open set �
satisfying M ⊂ � ⊂ �10β

⊂Md and a map 8 ∈ C([0, 1] ×O,O) such that

(i) for each x ∈ O, V (8(·, x)) is nonincreasing on [0, 1];
(ii) 8(t, x) = x if t = 0 or x ∈ L0;

(iii) |8(l′, x)−8(l, x)| ≤ µ|l′ − l| for l, l′ ∈ [0, 1], x ∈ O;
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(iv)

lim sup
h→0+

V (8(l + h, x)+ y)− V (8(l, x)+ y)

h
≤ −α (7)

uniformly for |y| ≤ c2, l ∈ [0, 1) and x ∈ (�10β
∪ (V

m+c1
m−c1

∩O)) \�.

If V ∈ C1(RN ) and M is an isolated set of critical points, or V ∈ CN (RN ), we can
construct the required flow 8 (see Remark 1 below). Here we note that in (7) of (V3), we
need (one-side) Lipschitz continuity of V along the flow 8 in (�10β

∪ V
m+c1
m−c1

) \�. Our
main result is

Theorem 2. Suppose that f ∈ C1 satisfies conditions (f1)–(f3). Assume that (V1)–(V3)
hold. Then for sufficiently small ε > 0, there exists a positive solution vε of (2) such that
for a maximum point xε of vε, there exist constants C, c > 0, independent of small ε > 0,
satisfying vε(x) ≤ C exp

(
−
c
ε
|x − xε|

)
and

lim
ε→0

dist(xε,M) = 0.

Moreover, wε(x) ≡ vε(εx + xε) converges along a subsequence uniformly to a radially
symmetric least energy solution of 1w −mw + f (w) = 0, w > 0 in RN .

Example 1 (standard types of critical points). Condition (V2) holds for standard criti-
cal points, that is, nondegenerate critical points, (possibly degenerate) critical points of
local mountain pass type and local maxima. For such critical points, there exists a k-
dimensional manifold L ⊂ O with L0 ≡ ∂L ⊂ O such that the critical value m can be
characterized as

m = inf
ϕ∈3L

max
x∈L

V (ϕ(x)), (8)

where 3L = {ϕ ∈ C(L,O) | ϕ(x) = x for x ∈ L0}. We claim that for a critical point z0,
there exists a continuous map π : O → L such that

π(x) = x for x ∈ L

and
V (x) ≥ m if π(x) = z0,

that is, π−1(z0) ⊂ {x ∈ O | V (x) ≥ m}. Existence of such a map π implies condition
(V2). In fact, for any H ∈ L(L0) and ϕ ∈ 3H , we consider the mod 2 degree of the map
π ◦ ϕ, deg2(π ◦ ϕ,H, z), which is well defined even for a nonorientable manifold (see
[24]). Then it is standard to show that deg2(π ◦ ϕ,H, z) = 1 since ϕ|∂H : ∂H → L0
is a homeomorphism. This implies that maxx∈H V (ϕ(x)) ≥ m. Since H , ϕ are arbitrary,
recalling (8), we have m = infH∈L(L0), ϕ∈3H maxx∈H V (ϕ(x)). For the existence of π ,
we argue separately.

(i) Suppose x = 0 is a nondegenerate critical point of V ∈ C2(RN ). Then there is
a new coordinate system {y1, . . . , yN } in a small ball B(0, r) such that for some k ∈
{0, . . . , N}, V (y1, . . . , yN ) = V (0)− y2

1 − · · · − y
2
k + y

2
k+1 + · · · + y

2
N . Then we take

L ≡ {(y1, . . . , yk, 0, . . . , 0) ∈ RN | y2
1 + · · · + y

2
k ≤ (r/2)

2
},
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L0 = ∂L and O = B(0, r). Let π : O → L be the projection map defined by

π(x1, . . . , xN ) =


(x1, . . . , xk, 0, . . . , 0) for x2

1 + · · · + x
2
k ≤ (r/2)

2,

r(x1, . . . , xk, 0, . . . , 0)
2|(x1, . . . , xk, 0, . . . , 0)|

for x2
1 + · · · + x

2
k > (r/2)2.

Then π−1(0) ⊂ {x ∈ O | V (x) ≥ V (0)}. Thus, (V2) is satisfied for any nondegenerate
critical point of V .

(ii) Suppose that V (x) has a local maximum point. Let M be a compact set which
consists of local maximum points and suppose that there exists a connected neighborhood
O of M such that ∂O is smooth and V (x) = V (y) > V (z) for any x, y ∈ M and
z ∈ O \M. Then, definingOδ

≡ {x ∈ O | dist(x, ∂O) ≥ δ}, we see that for small δ > 0,
∂(Oδ) is a retract ofO \Oδ, that is, there is a continuous map π̃ : O \Oδ

→ ∂(Oδ) such
that π̃(x) = x for any x ∈ ∂(Oδ).We define L = Oδ. Then a projection map π : O → L

is defined by π(x) = x for x ∈ Oδ and π(x) = π̃(x) for x ∈ O \ Oδ. We take a point
z ∈M. Then, obviously, π−1(z) ⊂ {x ∈ O | V (x) ≥ V (z)}; thus, (V2) is satisfied for
any local maximum points of V .

(iii) Suppose that V (x) has a critical point of local mountain pass type. Let m be
the local mountain pass critical value and suppose that there exist an open set O and
e0, e1 ∈ O such that V (e0), V (e1) < m = infγ∈0 maxt∈[−1,1] V (γ (t)), where 0 = {γ ∈
C([−1, 1],O) | γ (−1) = e0, γ (1) = e1}. Since V (x) has mountain pass geometry,
V −1((−∞, m)) ∩ O has at least two connected components; denote by W0 the one to
which e0 belongs. We note e1 6∈ W0. We define a signed distance function from ∂W0 by

d(x) =


−

dist(x, ∂W0)

dist(e0, ∂W0)
if x ∈ W0,

dist(x, ∂W0)

dist(e1, ∂W0)
if x 6∈ W0.

We fix γ0 ∈ 0 such that V (γ0(0)) = m and set π(x) = γ0(ψ(d(x))), where ψ ∈ C(R)
is such that ψ(s) = 1 for s ∈ [1,∞), ψ(s) = s for s ∈ [−1, 1], ψ(s) = −1 for
s ∈ (−∞,−1). Then π(x) satisfies π(e0) = e0, π(e1) = e1 and for z0 = γ0(0) we have
π−1(z0) = ∂W0 ⊂ {x | V (x) = m}.

Example 2 (standard types of linking). Condition (V2) holds in the setting of the classi-
cal linking theorem in RN (see [36, Section II, 8] and [34]). For example, for 0 < ρ <

ρ1, ρ2 we set

Q = {(x1, . . . , xk, 0, . . . , 0) ∈ RN | x2
1 + · · · + x

2
k−1 ≤ ρ

2
2 , 0 ≤ xk ≤ ρ1},

S = {(0, . . . , 0, xk, . . . , xN ) ∈ RN | x2
k + · · · + x

2
N = ρ

2
}.

We denote by L0 ≡ ∂Q the relative boundary ofQ and assume B(0, ρ1+ρ2) ⊂ O. Then
under the assumption

m0 ≡ max
x∈L0

V (x) < min
x∈S

V (x),
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(V2) holds. In fact, Q is an element of L(L0) and m defined in (6) satisfies

m0 < min
x∈S

V (x) ≤ m,

which follows from the fact that

ϕ(H) ∩ S 6= ∅ for all H ∈ L(L0) and ϕ ∈ 3H .

The intersection property can be proved using the degree for the composition of a projec-
tion map and ϕ. We remark that m defined in (6) satisfies

m ≤ inf
ϕ∈3Q

max
x∈Q

V (ϕ(x)),

where 3Q = {γ ∈ C(Q,O) | γ (x) = x for x ∈ L0}.

Example 3 (nonsmooth potential). For a typical example of V which may not be in C1

and satisfies (V1)–(V3), we consider a Lipschitz continuous function θ : SN−1
→ (0, 1)

and a continuous function r : [0,∞)→ [0, 1] satisfying r(0) = 0 and r(t)−r(s) ≥ t−s
for 0 ≤ s ≤ t ≤ 1. Then we define V (x) = 2−r(|x|)θ(x/|x|). In this case, we take M =
{0} ⊂ RN , O = B(0, 1) and L0 = B(0, 1/2). Then, defining 8(t, x) = x + t (1− |x|)x
for x ∈ O = B(0, 1), we see that conditions (V1)–(V3) are satisfied with m = 2.

Remark 1 (existence of pseudo-gradient flow 8). For V ∈ C1, we let M ≡ {x ∈ O |

∇V (x) = 0, V (x) = m} and assume that M is a nonempty compact subset of O and

∇V (x) 6∈ {λn(x) | λ ≤ 0} for all x ∈ ∂O with V (x) = m, (9)

where n(x) is the unit outward normal vector at x ∈ ∂O. Then (V3) holds if eitherm is an
isolated critical value of V (x), or V (x) is of class CN . In fact, if m is an isolated critical
value, for � =Md/2 with small d > 0, we have

inf
x∈∂�
|∇V (x)| > 0.

If V (x) is of class CN , we see that the set of critical values of V (x) has Lebesgue mea-
sure 0 in R by Sard’s theorem. For the fixed d > 0, we can find a small δ > 0 such
that

∇V (x) 6= 0 for x ∈ ∂Md/2 with V (x) ∈ [m− δ,m+ δ].

We remark that by Sard’s theorem there exist regular values b1 ∈ (m − δ,m) and b2 ∈

(m,m+ δ) of V . We set � =Md/2
∩ V

b2
b1

. Then

M ⊂ � and ∇V (x) 6= 0 on ∂�.

We refer to [17] for a related argument.
Thus in both cases there exists a neighborhood � such that M ⊂ � ⊂ Md and

∇V (x) 6= 0 on ∂�. For sufficiently small β > 0, we have

�10β
⊂Md and inf

x∈�10β\�
|∇V (x)| > 0. (10)
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Since we assume (9), by the definition of M, we can find a small c1 > 0 such that

inf
x∈(O∩V

m+2c1
m−2c1

)\�

|∇V (x)| > 0. (11)

Now, since (9) holds, for each x ∈ ∂O ∩ V m+2c1
m−2c1

, we can find a vector W(x) satisfying

∇V (x) ·W(x) > 0 and n(x) ·W(x) > 0. (12)

Then, through a partition of unity, we can define a pseudo-gradient vector field W̃ : O \
{x | ∇V (x) = 0} → RN for V such that ∇V (x) · W̃ (x) > 0 if |∇V (x)| 6= 0, and
n(x) · W̃ (x) > 0 for x ∈ ∂O ∩ V m+2c1

m−2c1
. We find a function ϕ̃ ∈ C∞0 (O) such that

ϕ̃(x) = 1 for x ∈ (O ∩ V m+c1
m−c1

) \� and ϕ̃ vanishes in a small neighborhood of M and
O \ V

m+2c1
m−2c1

. Then, we can find a solution 8 : [0,∞)×O → O of

∂8(t, x)

∂t
= −ϕ̃(8(t, x))W̃ (8(t, x)), 8(0, x) = x.

Obviously, (i)–(iii) in (V3) are satisfied for the solution 8. The property (7) follows from
(10)–(12) and C1 smoothness of V .

Remark 2 (minimax value for smooth potentials). Suppose that V ∈ C1 and m is a
minimax value given in (V2). If V satisfies (9), it is not difficult to see that m is a critical
value and the corresponding critical point lies in O. Moreover we can show that (V3)
implies (9), thus if V ∈ C1(RN ) satisfies (V2)–(V3), then

∅ 6= {x ∈ O | ∇V (x) = 0, V (x) = m} ⊂M,

∇V (x) /∈ {λn(x) | λ ≤ 0} for all x ∈ ∂O with V (x) = m.

3. Preliminaries

We will consider the following problem equivalent to (2):

1u− Vε(x)u+ f (u) = 0, u > 0, lim
|x|→∞

u(x) = 0, (13)

where Vε(x) = V (εx). From now on, we assume that f (t) = 0 for t ≤ 0. Then it is easy
to see from the maximum principle that any nontrivial solution of (13) is positive. Let Hε
be the completion of C∞0 (R

N ) with respect to the norm

‖u‖ε =

(∫
RN
[|∇u|2 + Vεu

2
] dx

)1/2

.

We also denote by ‖ · ‖∗ε the corresponding dual norm on H ∗ε , that is,

‖f ‖∗ε = sup
‖ϕ‖ε≤1, ϕ∈Hε

|〈f, ϕ〉| for f ∈ H ∗ε ,
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where 〈f, ϕ〉 is the duality product betweenH ∗ε andHε. We define a norm ‖·‖ onH 1(RN )
by

‖u‖ =

(∫
RN
[|∇u|2 +mu2

] dx

)1/2

.

We clearly have Hε ⊂ H 1(RN ). From now on, for any set B ⊂ RN and ε > 0, we define
Bε ≡ {x ∈ RN | εx ∈ B}. For u ∈ Hε, let

0ε(u) =
1
2

∫
RN
[|∇u|2 + Vεu

2
] dx −

∫
RN
F(u) dx.

It is standard to see that 0ε ∈ C1(Hε) and a critical point of 0ε corresponds to a solution
of (2). Later, we will modify the nonlinearity f so that the functional 0ε with the modified
nonlinearity is of class C2 on Hε, and a critical point near a certain approximating solu-
tions set of the modified energy functional is also one of the original energy functional.
For any set A ⊂ Hε, u ∈ Hε and δ > 0, we define

distε(u,A) ≡ inf
w∈A
‖u− w‖ε and Nδ(A) ≡ {u ∈ Hε | distε(u,A) ≤ δ}. (14)

For any c, d ∈ R, we define

(0ε)
c
≡ {u ∈ Hε | 0ε(u) ≤ c}, (0ε)d ≡ {u ∈ Hε | 0ε(u) ≥ d}.

For the β > 0 and the open set O in conditions (V2) and (V3), we take a large
D > max{1, 10β} so that O ⊂ B(0,D), and define

ω ≡ max
|x|≤10D

V (x)/ min
|x|≤10D

V (x) > 1. (15)

Note that there exist positive constants m1, m2 with m1 < m < m2 such that (f3) is
satisfied for any s ∈ [m1, m2] replacing m in (f3). As already mentioned, the following
equations for s > 0 are limiting equations of (13):

1u− su+ f (u) = 0, u > 0, u ∈ H 1(RN ). (16)

We define an energy functional for the limiting problem (16) by

Ls(u) =
1
2

∫
RN
[|∇u|2 + su2

] dx −

∫
RN
F(u) dx, u ∈ H 1(RN ). (17)

In the classical paper [3], the authors proved that for any s ∈ [m1, m2], there exists a least
energy solution of (16) if (f1)–(f3) are satisfied. Also they showed that each solution U
of (16) satisfies Pohozaev’s identity

Gs(U) ≡
N − 2

2

∫
RN
|∇U |2 dx +N

∫
RN

[
s
U2

2
− F(U)

]
dx = 0. (18)

This implies that

Ls(U) =
1
N

∫
RN
|∇U |2 dx. (19)
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For s ∈ [m1, m2], let Ss be the set of least energy solutions U of (16) satisfying U(0) =
maxx∈RN U(x) and denote by Es the least energy level:

Es =
1
2

∫
RN
[|∇U |2 + sU2

] dx −

∫
RN
F(U) dx, U ∈ Ss .

It is known from [25] and [7, Proposition 2.1] that for s ∈ [m1, m2],

Es = inf{Ls(u) | Gs(u) = 0, u ∈ H 1(RN ) \ {0}}

and Es is attained by u ∈ Ss and strictly increasing and continuous with respect to s ∈
[m1, m2].

For s ∈ [m1, m], we define Sms to be the set of solutions U of (16) satisfying U(0) =
maxx∈RN U(x) and Es ≤ Ls(U) ≤ Em. For s ∈ [m,m2], we define Sms = Ss . Since
f ∈ C1, it follows from the symmetry result in [21] that any solution of (16) is radially
symmetric and decreasing with respect to |x|.

Proposition 1. For each m′ ∈ [m1, m] and m′′ ∈ [m,m2], the set
⋃
s∈[m′,m′′] S

m
s is

compact. Moreover, there exist constants C, c > 0 such that for any U ∈
⋃
s∈[m1,m2]

Sms ,

U(x)+ |∇U(x)| ≤ C exp(−c|x|) for all x ∈ RN .

Proof. By the identity (19), we see that
⋃
s∈[m′,m′′] S

m
s is bounded in H 1(RN ). Then,

by the same argument as in [8],
⋃
s∈[m′,m′′] S

m
s is compact, and lim|x|→∞ U(x) = 0

uniformly for U ∈
⋃
s∈[m′,m′′] S

m
s . Then the decay property comes from the comparison

principles. ut

Proposition 2. For any a ∈ (m1, m2),

lim
s→a

sup
U∈Sms

inf
Ũ∈Sma

‖U − Ũ‖ = 0.

Proof. Suppose that the claim does not hold. Then there exist sequences {sl}∞l=1 with
liml→∞ sl = a and {ul}∞l=1 with ul ∈ Smsl such that {ul}∞l=1 is bounded away from Sma .

From Proposition 1, ul converges strongly up to a subsequence to some u ∈
⋃
s∈[a,m2]

Sms

in H 1(RN ) as l → ∞. Note that Es is continuous with respect to s ∈ [m1, m2]. Since
liml→∞ sl = a, it follows that u ∈ Sma . This is a contradiction and proves the claim. ut

We recall that Ad = {x ∈ RN | dist(x,A) ≤ d} for A ⊂ RN and d > 0. For a positive
constant d < dist(M, ∂O), we denote

m(d) ≡ inf{V (x) | x ∈Md
} and m(d) ≡ sup{V (x) | x ∈Md

}.

We note that limd→0m(d) = limd→0m(d) = m. From now on, we select a sufficiently
small d > 0 so that

m1 ≤ m(d) < m < m(d) ≤ m2,

and we define
S ≡

⋃
s∈[m(d),m(d)]

Sms .
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We find a smooth radially symmetric function φε ∈ C∞0 (R
N ) such that φε(x) = 1 for

|x| ≤ 1/2ε1/3, φε(x) = 0 for |x| ≥ 1/ε1/3 and |∇φε| ≤ 3ε1/3. Now we define

Z10β
ε = {φε(· − x/ε)U(· − x/ε) | x ∈ �

10β , U ∈ S}.

Since �10β
⊂Md , the set Z10β

ε is well defined. By Proposition 1, it is compact in Hε.
For δ > 0, we define

Nδ(Z10β
ε ) ≡ {u ∈ Hε | distε(u,Z10β

ε ) ≤ δ}.

Here we use notation (14).
For some δ > 0, we will show that there exists a solution uε of (3) in N2δ(Z10β

ε ) if
ε > 0 is sufficiently small. Then, for N ≥ 3, it is standard to see from elliptic estimates
(see [5, Proposition 3.5]) that there exists a large constant K > t0 + 1 such that

‖uε‖L∞ ≤ K for all small ε > 0. (20)

The constant K depends only on the coefficient C of (f2) and p,N (see [5, Proposition
3.5]). Next for N ≥ 3, we can find f̃ ∈ C1(R) such that f̃ (t) = f (t) for t ≤ 2K,
f̃ (t) = Ctp for t ≥ 3K and f̃ satisfies conditions (f1)–(f3) with the same constants.

For N = 2, from the Moser–Trudinger inequality and condition (f2), for any q > 1,
r0 > 0 and x0 ∈ RN , we find a constant K̃(q, r0) > 0 such that

‖f (uε)‖Lq (B(x0,2r0)) ≤ K̃(q, r0).

Then, from the elliptic estimate in Theorem 8.17 of [22] and the fact uε ∈ N2δ(Z10β
ε ),

we see that for q > 1,

‖uε‖L∞(B(x0,r0)) ≤ C(r0‖uε‖L2(B(x0,2r0)) + K̃(q, r0)),

where C = C(q). Since uε ∈ N2δ(Z10β
ε ), there exists a constant G > 0 such that

‖uε‖L2(B(x0,2r0)) ≤ G for any x0 ∈ RN and r0 > 0. Consequently, (20) holds for large
K > t0 + 1. Next, for a sufficiently small α0 > 0, we can find f̃ ∈ C1(R) and some
constant C′α0

> 0 such that f̃ (t) = f (t) for t ≤ 2K, f̃ (t) = C′α0
t4 for t ≥ 3K and that

f̃ (t) ≤ Cα0 exp(α0t
2), t ≥ 0.

Thus for small ε > 0, any solution uε ∈ Nδ(Z10β
ε ) of (2) with f̃ replacing f satisfies

the original equation (2). From now on, we can assume without loss of generality that the
nonlinear function f satisfies further

|f ′(t)t | ≤ C(1+ tp), t ≥ 0,

where p > 1 is given in (f2) for N ≥ 3 and p = 4 for N = 2. ut
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4. A center of mass for elements in N2δ(Z10β
ε )

For z ∈ �10β
ε ≡ (1/ε)�10β , we define

S(z) ≡ {(φεU)(· − z) | U ∈ S}.

Then Z10β
ε =

⋃
z∈�

10β
ε
S(z). We can find ξ > 0 such that for small ε > 0 and u ∈ Z10β

ε ,

‖u‖ε ≥ ξ.

From the uniform decay property in Proposition 1, there exists R0 > 0 such that for any
z1, z2 ∈ �

10β
ε with |z1 − z2| ≥ R0,

inf
u1∈S(z1), u2∈S(z2)

‖u1 − u2‖ε ≥ ξ/2 if ε > 0 is sufficiently small. (21)

We take a small δ > 0 satisfying
20δ ≤ ξ. (22)

We pick σ ∈ C∞0 (R, [0, 1]) such that σ(x) = 1 for |x| ≤ 2δ and σ(x) = 0 for |x| ≥ 3δ.
Then, for u ∈ N2δ(Z10β

ε ), we define the center of mass ϒε(u) of u by

ϒε(u) ≡

∫
�

10β
ε
σ(distε(u, S(z)))z dz∫

�
10β
ε
σ(distε(u, S(z))) dz

, (23)

where we use notation (14).
Then we have the following property.

Proposition 3. For u ∈ N2δ(Z10β
ε ), write u = φε(·−y)U(·−y)+w withU ∈ S(y), y ∈

�
10β
ε and ‖w‖ε ≤ 2δ. Then

|ϒε(u)− y| ≤ R0.

Proof. Let u = φε(·−y)U(·−y)+w with ‖w‖ε ≤ 2δ.When |z−y| ≥ R0 and v ∈ S(z),
it follows from (21) and (22) that

‖v − u‖ε ≥ ‖v − φε(· − y)U(· − y)‖ε − 2δ ≥ 10δ − 2δ ≥ 3δ.

This implies that σ(distε(u, S(z))) = 0 if |z − y| ≥ R0. Now the definition (23) of ϒε
yields

|ϒε(u)− y| =

∣∣∣∣
∫
�10β σ(distε(u, S(z)))(z− y) dz∫

�10β σ(distε(u, S(z))) dz

∣∣∣∣ ≤ R0. ut

Proposition 4. For any c ∈ (0, 2], there exists R1 > R0 such that for u ∈ Ncδ(Z10β
ε ),∫

{x∈RN | |x−ϒε(u)|≥R1}
[|∇u|2 + Vεu

2
] dx ≤ (2cδ)2.

Proof. Let u = φε(· − y)U(· − y) + w with ‖w‖ε ≤ cδ. From Proposition 3 and the
decay property in Proposition 1, we see that

lim
l→∞

∫
{x∈RN | |x−ϒε(u)|≥l}

[|∇(φε(· − y)U(· − y))|
2
+ Vε(φε(· − y)U(· − y))

2
] dx = 0

uniformly for y ∈ �10β and U ∈ S. Then the claim follows from the fact ‖w‖ε ≤ cδ. ut
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5. A new neighborhood Gδ(Z10β
ε ) of Z10β

ε

For u ∈ N2δ(Z10β
ε ) and v ∈ Hε, we define

|v|ε,u ≡

∫
|x−ϒε(u)|≤1/

√
ε

[|∇v|2 + Vεv
2
] dx.

For r ∈ (0, 2δ], we define

Gr(Z10β
ε ) ≡

{
u ∈ N2δ(Z10β

ε )

∣∣∣∣ |u− vz|ε,u ≤ r2/2 for some z ∈ �10β
ε , vz ∈ S(z)

and
∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
− 2F(u)] dx ≤ r2/2

}
.

Proposition 5. There exists a constant q = q(δ) > 0 such that limδ→0 q(δ) = 0, and
for small ε > 0 and u ∈ N2δ(Z10β

ε ),

(1− q)
∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
] dx

≤

∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
− 2F(u)] dx (24)

and

(1+ q)
∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
] dx

≥

∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
− 2F(u)] dx. (25)

Proof. Note that for any small c > 0, there exists C > 0 such that |F(t)| ≤ ct2 +Ctp+1

for some p ∈
(
1, N+2

N−2

)
when N ≥ 3 and for p = 4 when N = 2. Thus,∫

|x−ϒε(u)|≥1/
√
ε

|F(u)| dx ≤

∫
|x−ϒε(u)|≥1/

√
ε

[cu2
+ C|u|p+1

] dx.

From the Sobolev embedding theorem, there exists C′ > 0, independent of small ε > 0,
such that∫

|x−ϒε(u)|≥1/
√
ε

|u|p+1 dx ≤ C′
(∫
|x−ϒε(u)|≥1/

√
ε}

[|∇u|2 + Vεu
2
] dx

)(p+1)/2

.

Then, for small ε > 0, the inequalities (24) and (25) follow from Proposition 4. ut

Proposition 6. Let c, c′ ∈ (0, 1]. Assume that δ > 0 is so small that the constant q =
q(δ) > 0 in Proposition 5 satisfies q <

√
2− 1. Then, for small ε > 0,

G(1−q)cδ(Z10β
ε ) ⊂ Ncδ(Z10β

ε ) and Nc′δ(Z10β
ε ) ⊂ G

(1+q)
√

2 c′δ(Z
10β
ε ). (26)
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Proof. If u ∈ G(1−q)cδ(Z10β
ε ), it follows from (24) that∫

|x−ϒε(u)|≥1/
√
ε

[|∇u|2 + Vεu
2
] dx ≤ (1− q)(cδ)2/2.

Note that for some z ∈ �10β
ε and vz ∈ S(z),∫

|x−ϒε(u)|≤1/
√
ε

[|∇(u− vz)|
2
+ Vε(u− vz)

2
] dx ≤ ((1− q)cδ)2/2.

From (21), (22) and Proposition 3, we see that |ϒε(u) − z| is bounded for small ε > 0.
Then, from the decay property of vz ∈ S(z) in Proposition 1, we see that

lim
ε→0

∫
|x−ϒε(u)|≥1/

√
ε

[|∇vz|
2
+ Vε(vz)

2
] dx = 0.

It follows that for small ε > 0,

‖u− vz‖
2
ε =

∫
|x−ϒε(u)|≤1/

√
ε

[|∇(u− vz)|
2
+ Vε(u− vz)

2
] dx

+

∫
|x−ϒε(u)|≥1/

√
ε

[|∇(u− vz)|
2
+ Vε(u− vz)

2
] dx

≤ (cδ)2/2+ (cδ)2/2 = (cδ)2.

This proves the first inclusion in (26).
If u ∈ Nc′δ(Z

10β
ε ), it follows that

‖u− φε(· − z)U(· − z)‖
2
ε ≤ (c

′δ)2 for some z ∈ �10β
ε , U ∈ S.

From Proposition 3 and the decay property of U in Proposition 1, we see that

lim
ε→0

∫
|x−ϒε(u)|≥1/

√
ε

[|∇(φε(· − z)U(· − z))|
2
+ Vε(φε(· − z)U(· − z))

2
] dx = 0.

Then it follows that for small ε > 0, |u− φε(· − z)U(· − z)|ε,u ≤ (c′δ)2 and∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
] dx ≤ (1+ q)(c′δ)2.

From (25), we see that∫
|x−ϒε(u)|≥1/

√
ε

[|∇u|2 + Vεu
2
− 2F(u)] dx ≤ ((1+ q)c′δ)2.

This implies that u ∈ G
(1+q)

√
2 c′δ(Z

10β
ε ), and proves the second inclusion in (26). ut
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6. A starting surface and its energy estimate

From condition (V2), we can find a manifold Lε ∈ L(L0) and a map γε ∈ 3Lε ⊂

C(Lε,O) such that V (γε(z)) ≤ m + ε for any z ∈ Lε. We may assume that ∂Lε = L0
and γε(z) = z for z ∈ L0. We choose any positive number α < (m − m0)/2. Then, if
ε > 0 is sufficiently small, by condition (V3), there exist α0 ∈ (0, α) and a continuous
map 8 : [0, 1] ×O → O such that for small ε > 0,

8(1, γε(z)) = 8(1, z) = z for z ∈ L0,

V (8(1, γε(z))) ≤ m− α0 for 8(1, γε(z)) /∈ �β , (27)
V (8(1, γε(z))) ≤ m+ ε for any z ∈ Lε. (28)

We define a starting surface 2ε(z) ≡ 8(1, γε(z)), z ∈ Lε. We note that 2ε(z) = z for
z ∈ L0. Now, forN ≥ 3, taking a solution U ∈ Sm,we define a mapAε : (0,∞)×Lε →
Hε by

Aε(t, z)(x) = φε(x/t −2ε(z)/tε)U(x/t −2ε(z)/tε).

We can find a large T > 1 such that 0ε(Aε(T , z)) < −1 for small ε > 0 and any z ∈ Lε.
We define Aε(0, z) = 0. Then we see that Aε : [0, T ] × Lε → Hε is continuous.

For N = 2, we need to take more involved operations on φεU as in [9]. We recall
some facts from [9]. For a fixed U ∈ Sm, we define g(θ, s) : (0,∞)× (0,∞)→ R by

g(θ, s) = Lm(θU(·/s)) =
θ2

2
‖∇U‖2

L2 + s
2
∫
R2

[ 1
2 (θU)

2
− F(θU)

]
dx.

For any small ι > 0 and θ0 ∈ (0, 1), s0 ∈ (0, 1−ι), let ζ(t) = (θ(t), s(t)) : [0,∞)→ R2

be a piecewise linear curve joining

(0, s0)→ (1− θ0, s0)→ (1− θ0, 1− ι)→ (1, 1− ι)→ (1, 1)→ (1, 1+ ι)
→ (1+ θ0, 1+ ι)→ (1+ θ0,∞).

Let 0 ≡ t0 < t1 < · · · < t6 < t7 ≡ ∞ be such that for each i = 0, . . . , 7, ζ(ti) is an end
point of a linear segment of the piecewise linear curve ζ. We set

Ut (x) = θ(t)U(x/s(t)).

Then, for any small ι > 0, there exist θ0 ∈ (0, 1) and s0 ∈ (0, 1−ι) such that for any small
ι > 0, the function t 7→ Lm(Ut ) = g(ζ(t)) is strictly increasing on (t0, t3), constant on
(t3, t5), strictly decreasing on (t5, t7) and limt→∞ Lm(Ut ) = −∞. Then we define a map
Aε : (0,∞)× Lε → Hε by

Aε(t, z)(x) = φε
(
x/s(t)−2ε(z)/s(t)ε

)
θ(t)U

(
x/s(t)−2ε(z)/s(t)ε

)
.
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Proposition 7. We have

lim
ε→0

max
t∈[0,T ],z∈Lε

0ε(Aε(t, z)) ≤ Em.

Moreover, for any small υ ∈ (0, 1), taking ι ∈ (0, υ/2) if N = 2, we see that

lim sup
ε→0

max{0ε(Aε(t, z)) | t ∈ [0, T ] \ (1− υ, 1+ υ), z ∈ Lε} < Em,

and
lim sup
ε→0

max{0ε(Aε(t, z)) | t ∈ [0, T ], z ∈ Lε, 2ε(z) /∈ �β} < Em.

Proof. First we consider the case N ≥ 3. Then

0ε(Aε(t, z))

=
1
2

∫
RN
[tN−2

|∇(φεU)|
2
+ tNV (εtx +2ε(z))(φεU)

2
] dx −

∫
RN
tNF(φεU) dx.

Then, from (28) and the exponential decay of U in Proposition 1,

0ε(Aε(t, z)) =
1
2

∫
RN
[tN−2

|∇U |2 + tNV (2ε(z))U
2
] dx −

∫
RN
tNF(U) dx + o(1)

≤
1
2

∫
RN
[tN−2

|∇U |2 + tNmU2
] dx −

∫
RN
tNF(U) dx + o(1)

uniformly for z ∈ Lε as ε→ 0. We see from the Pohozaev identity (18) that the function

g(t) ≡
1
2

∫
RN
[tN−2

|∇U |2 + tNmU2
] dx −

∫
RN
tNF(U) dx

satisfies

g(t) ≤ g(1) for t ∈ [0, T ],
g′(t)(t − 1) < 0 for t ∈ (0, T ) \ {0}.

Thus, we get the first and second estimates.
For the third estimate, we note from (27), (28) and the above estimates that when

2ε /∈ �
β ,

0ε(Aε(t, z)) =
1
2

∫
RN
[tN−2

|∇U |2 + tNV (2ε(z))U
2
] dx −

∫
RN
tNF(U) dx + o(1)

≤
1
2

∫
RN
[tN−2

|∇U |2 + tN (m− α0)U
2
] dx −

∫
RN
tNF(U) dx + o(1)

= g(t)−
tNα0

2

∫
RN
U2 dx + o(1).
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It is easy to see that

g(t)−
tnα0

2

∫
RN
U2 dx ≤ max

{
g(1/2), g(1)−

α0

2N+1

∫
RN
U2 dx

}
.

This proves the third estimate, and completes the proof for N ≥ 3.
For N = 2, we see that

0ε(Aε(t, z))

=
1
2

∫
RN
[(θ(t))2|∇U |2 + (s(t))2V (2ε(z))(θ(t)U)

2
] dx

−

∫
RN
(s(t))2F(θ(t)U) dx + o(1)

≤
1
2

∫
RN
[(θ(t))2|∇U |2 + (s(t))2m(θ(t)U)2] dx −

∫
RN
(s(t))2F(θ(t)U) dx + o(1)

= Lm(Ut )+ o(1)

uniformly for z ∈ Lε as ε → 0. Now the claim follows from the construction Ut for
N = 2. ut

7. Gradient estimate

Now we define
Cε = max

t∈[0,T ], z∈Lε
0ε(Aε(t, z)). (29)

Proposition 8. For sufficiently small δ > 0 and any δ′ ∈ (0, δ), there exists µ =
µ(δ, δ′) > 0, independent of small ε > 0, such that

inf{‖0′ε(u)‖
∗
ε | u ∈ 0

Cε
ε ∩ (G2δ(Z10β

ε ) \Gδ′(Z10β
ε )), ϒε(u) ∈ �

9β
ε } ≥ µ(δ, δ

′).

Proof. To the contrary, suppose that for some δ′ ∈ (0, δ), there exists an element uε ∈
0
Cε
ε ∩ (G2δ(Z10β

ε ) \ Gδ′(Z
10β
ε )) with ϒε(u) ∈ �

9β
ε such that 0′ε(uε) converges to 0,

up to a subsequence, as ε → 0. Since uε ∈ 0
Cε
ε ∩ G2δ(Z10β

ε ) and ϒε(uε) ∈ �
9β
ε ,

from Proposition 3 there exists xε ∈ RN with dist(xε, �9β) ≤ εR0 such that uε =
φε(· − xε/ε)Uε(· − xε/ε)+ wε for some Uε ∈ S and some wε ∈ Hε with ‖wε‖ε ≤ 2δ.

Suppose there exist yε ∈ B(xε/ε, 2/ε1/3) \ B(xε/ε, 1/4ε1/3) and R > 0 satisfying
lim infε→0

∫
B(yε,R)

u2
ε dy > 0. Taking a subsequence, we can assume that as ε → 0, εyε

converges to some x0 in the closure of �9β and uε(· + yε)→ W̃ weakly in H 1(RN ) for
some W̃ ∈ H 1(RN ) \ {0}. Then W̃ satisfies

1W̃(y)− V (x0)W̃ (y)+ f (W̃ (y)) = 0 for y ∈ RN .

By definition, LV (x0)(W̃ ) ≥ EV (x0). Also, for large R > 0,

lim inf
ε→0

∫
B(yε,R)

|∇uε|
2 dy ≥

1
2

∫
RN
|∇W̃ |2 dy. (30)
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Since V (x0) ≥ m(d), we see from (19) and (30) that

lim inf
ε→0

∫
B(xε,R)

|∇uε|
2 dy ≥

N

2
LV (x0)(W̃ ) ≥

N

2
Em(d) > 0.

Then, taking δ ∈ (0,
√
(N/4)Em(d)), we get a contradiction. Since there does not exist

such a sequence {yε}ε ∈ B(xε/ε, 2/ε1/3) \ B(xε/ε, 1/4ε1/3) and

supp(∇φε(· − xε/ε)) = B(xε/ε, 1/ε1/3) \ B(xε/ε, 1/2ε1/3),

we deduce from a result of P.-L. Lions (see [29, Lemma I.1]) that for N ≥ 3,

lim inf
ε→0

∫
supp(|∇φε(·−xε/ε)|)

|uε|
p+1 dy = 0. (31)

For N = 2, we see from [9, Lemma 1] that limε→∞

∫
supp(|∇φε(·−xε/ε)|)G(uε) dx = 0 for

any G ∈ C(R,R) satisfying (i) limt→0G(t)/t
2
= 0 and (ii) for any α > 0 there exists

Cα > 0 such that |G(t)| ≤ Cαeαt
2

for all t ∈ R. As a consequence, we can derive using
(f1), (f2) and boundedness of {‖uε‖L2}ε that for ûε ≡ (1− φε(· − xε/ε))2uε,

lim
ε→0

∫
RN
(f (uε)ûε − f (ûε)ûε) dy = 0.

Note that

0′ε(uε)ûε =

∫
RN
[|∇ûε|

2
− u2

ε |∇φε(· − xε/ε)|
2
+ Vεû

2
ε − f (uε)ûε] dy.

Since |∇φε(· − xε/ε)| ≤ 3ε1/3, we see that

0 = lim
ε→0

0′ε(uε)ûε = lim
ε→0

∫
RN
[|∇ûε|

2
+ Vεû

2
ε − f (ûε)ûε] dy. (32)

We note that ‖ûε‖ε ≤ 3δ for small ε > 0. Then, for N ≥ 3, it follows from Sobolev’s
inequality that for some C, c > 0,∫

RN
[|∇ûε|

2
+ Vεû

2
ε − f (ûε)ûε] dy ≥ ‖ûε‖

2
ε −

V0

2

∫
RN
û2
ε dy − C

∫
RN
(ûε)

2N/(N−2)dy

≥
1
2‖ûε‖

2
ε − Cc‖ûε‖

2N/(N−2)
ε

≥ ‖ûε‖
2
ε

( 1
2 − Cc(3δ)

4/(N−2)). (33)

Taking δ > 0 small enough, we see from (32) and (33) that

lim
ε→0
‖ûε‖ε = 0. (34)

For N = 2, recalling f (t) = C′α0
t4 for t ≥ 3K , we can argue in a similar way.

We define vε(x) ≡ uε(x + xε/ε). Then vε converges weakly to some W in H 1 as
ε→ 0 after extracting a subsequence.
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We may assume that xε converges to a point x0 ∈ �
10β as ε→ 0. Then

1W − V (x0)W + f (W) = 0 in RN .

Just as before, for zε ∈ RN satisfying limε→0 |zε − xε/ε| = ∞, and R > 0,

lim
ε→0

∫
B(zε,R)

u2
ε dx = 0.

This and (34) imply that

lim
ε→0

∫
RN
f (uε)uε dx =

∫
RN
f (W)W dx, lim

ε→0

∫
RN
F(uε) dx =

∫
RN
F(W) dx.

Thus we see that

lim
ε→0

∫
RN
[|∇uε|

2
+ Vεu

2
ε] dx =

∫
RN
[|∇W |2 + V (x0)W

2
] dx,

and LV (x0)(W) ≤ Em; it follows that for some y0 ∈ RN ,

W̃ ≡ W(· + y0) ∈ S.

Note that limε→0 V (εx) = V (x0) uniformly on B(xε/ε, 1/ε1/3). Now, we see from (34)
that

lim
ε→0
‖uε − (φεW̃ )(· − y0 − xε/ε)‖ε = 0.

This implies that for small ε > 0, uε ∈ Gδ′(Z
10β
ε ) for small ε > 0. This is a contradiction,

and completes the proof. ut

8. An energy decreasing deformation for tails

For u ∈ Hε, we suppose that∫
RN\B(y,R)

[|∇u|2 + Vεu
2
] dx ≤ b2/2. (35)

We consider the following minimization problem:

IRy,b(u) ≡ inf
{∫

RN\B(y,R)

[ 1
2 (|∇v|

2
+ Vεv

2)− F(v)
]
dx

∣∣∣∣ v ∈ HR
y,b(u)

}
,

where

HR
y,b(u) ≡

{
v ∈ Hε

∣∣∣∣ ∫
RN\B(y,R)

[|∇v|2 + Vεv
2
] dx ≤ b2, v = u on B(y,R)

}
.
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Proposition 9. Assume (35) holds with sufficiently small b > 0. Then there exists a
unique minimizer v of IRy,b(u) in HR

y,b(u) which satisfies
∫
RN\B(y,R)(|∇v|

2
+ Vεv

2) dx

< b2, and

1v − Vεv + f (v) = 0 in RN \ B(0, R), v = u in B(y,R). (36)

Moreover, there exist c, C > 0, independent of small ε > 0, such that

v(x) ≤ C exp(−c(|x − y| − R − 1)) for |x − y| ≥ R + 1.

Proof. Since f ′(0) = 0 and the growth condition (f2) holds, it is rather standard to show
that if b > 0 is sufficiently small, then∫

RN\B(y,R)

[ 1
2 (|∇u|

2
+ Vεu

2)− F(u)
]
dx < 3b2/8, (37)

and for v ∈ HR
y,δ(u) with

∫
RN\B(y,R)(|∇v|

2
+ Vεv

2) dx = b2,∫
RN\B(y,R)

[ 1
2 (|∇v|

2
+ Vεv

2)− F(v)
]
dx > 3b2/8. (38)

Then, as in [12] and [6], we see that there exists a unique minimizer v(u, y, R) of IRy,b(u)
with

∫
RN\B(y,R)(|∇vε|

2
+ Vε(vε)

2) dx < b2. For details, see Proposition 5.7 of [12] and
Proposition 2.3 of [6]. ut

In what follows, we denote the unique minimizer of IRy,b(u) in HR
y,b(u) by v(u, y, R).

From Proposition 3, we see that for any u ∈ G2δ(Z10β
ε ), there exists y ∈ RN satisfy-

ing |y − ϒε(u)| ≤ R0 and ‖u− φε(· − y)U(· − y)‖ε ≤ 2δ. Then, for small ε > 0,

supp(φε(· − y)U(· − y)) ⊂ B(ϒε(u), 1/
√
ε).

Thus, it follows that for any u ∈ G2δ(Z10β
ε ),∫

RN\B(ϒε(u),1/
√
ε)

(|∇u|2 + Vεu
2) dx ≤ (2δ)2.

We take a small δ > 0 so that Proposition 9 holds for b = 2
√

2 δ. Then it is important
to see from the definition of the new neighborhood G2δ(Z10β

ε ) that v(u,ϒε(u), 1/
√
ε) ∈

G2δ(Z10β
ε ) for u ∈ G2δ(Z10β

ε ). We define

τε(u) ≡ v(u,ϒε(u), 1/
√
ε) for u ∈ G2δ(Z10β

ε ).

From the uniqueness of a minimizer of IR
ϒε(u),2

√
2 δ
(u), we see that τε is continuous on

G2δ(Z10β
ε ). We also see from the definition τε(u) that for any c ∈ (0, 1],

τε(u) ∈ Gc2δ(Z10β
ε ) for u ∈ Gc2δ(Z10β

ε ). (39)

It is important to note that for any u ∈ G2δ(Z10β
ε ),

0ε(τε(u)) ≤ 0ε(u). (40)

Now we prove the following result.
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Proposition 10.

|ϒε(τε(u))− ϒε(u)| < 2R0 for any u ∈ G2δ(Z10β
ε ).

Proof. By Proposition 3 there exist U ∈ S and y ∈ �10β such that |y−ϒε(u)| ≤ R0 and
‖u− φε(· − y)U(· − y)‖ε ≤ 2δ. Then Proposition 9 implies that for small ε > 0,

‖τε(u)− φε(· − y)U(· − y)‖
2
ε

=

∫
B(ϒε(u),1/

√
ε)

[|∇(u− φε(· − y)U(· − y))|
2
+ Vε(u− φε(· − y)U(· − y))

2
] dx

+

∫
RN\B(ϒε(u),1/

√
ε)

[|∇τε(u)|
2
+ Vετε(u)

2
] dx

≤ (2δ)2 + (2
√

2 δ)2 ≤ (4δ)2.

Note that for |z− ϒε(u)| ≥ 2R0,

|y − z| ≥ |z− ϒε(u)| − |y − ϒε(u)| ≥ R0.

Thus, for |z− ϒε(u)| ≥ 2R0, it follows from (21) and (22) that

‖τε(u)− φε(· − z)U(· − z)‖ε

≥ ‖φε(· − y)U(· − y)− φε(· − z)U(· − z)‖ε − ‖τε(u)− φε(· − y)U(· − y)‖ε

≥ ξ/2− 4δ ≥ 6δ.

Hence σ(distε(τε(u), S(z))) = 0 if |z − ϒε(u)| ≥ 2R0. This implies that ϒε(τε(u)) ∈
B(ϒε(u), 2R0). ut

Note that for z ∈ Lε and t ∈ [0, T ],

Aε(t, z)(x) = φε
(
x/t −2ε(z)/tε

)
U
(
x/t −2ε(z)/tε

)
and

supp(A(t, z)) ⊂ B(2ε(z)/ε, 1/ε1/3).

Now, since {Aε(t, z) | t ∈ [0, T ], z ∈ Lε} is compact, we can extend the center of mass
ϒε on G2δ(Z10β

ε ) to a function ϒ̃ε on

G2δ(Z10β
ε ) ∪ {Aε(t, z) | t ∈ [0, T ], z ∈ Lε} (41)

so that for any t ∈ [0, T ] and z ∈ �10β
ε with Aε(t, z) /∈ G2δ(Z10β

ε ),

|ϒ̃ε(Aε(t, z))−2ε(z)/ε| ≤ 3R0 (42)

and
ϒ̃ε(Aε(t, z)) = 2ε(z)/ε in a neighborhood N of ∂([0, T ] × Lε). (43)

Then we see that if |x − ϒ̃ε(Aε(t, z))| = 1/
√
ε, then Aε(t, z)(x) = 0 for small ε > 0.

Thus we can also extend τε continuously ontoG2δ(Z10β
ε )∪{Aε(t, z) | t ∈ [0, T ], z ∈ Lε}

so that for ε > 0 is sufficiently small,

τε(Aε(t, z)) = Aε(t, z) if Aε(t, z) /∈ G2δ(Z10β
ε ). (44)
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9. Energy decreasing deformation through a flow 8

We take a large D > max{1, 10β} so that O ⊂ B(0,D), and define

ω ≡ max
|x|≤10D

V (x)/ min
|x|≤10D

V (x) > 1. (45)

Then we find ψε ∈ C∞0 (R
N , [0, 1]) such that ψε(x) = 0 for |x| ≥ 8D/ε, ψε(x) = 1

for |x| ≤ 7D/ε and |∇ψε| ≤ ε. We pick ϕ1 ∈ C
∞

0 (R
N , [0, 1]) such that ϕ1(x) = 1

for x ∈ �6β
\ �3β , and ϕ1(x) = 0 for x ∈ �2β

∪ (RN \ �7β). We also select ϕ2 ∈

C2(G2δ(Z10β
ε ), [0, 1]) such that ϕ2(u) = 1 for u ∈ Gδ/6ω(Z10β) and ϕ2(u) = 0 for

u /∈ Gδ/4ω(Z10β). Then we define a function 9 : [0,∞)× RN ×Hε → RN by

9(l, x, u) ≡ 8(ϕ1(x)ϕ2(u)l, x).

We fix lp ∈ (0, 1) so that

|8(l, x)− x| ≤ β/10 for any l ∈ [0, lp] and x ∈ �8β . (46)

Then we define Pε : [0, lp] ×G2δ(Z10β
ε )→ Hε by

Pε(l, u)(x) ≡ (1− ψε(x))u(x)+ (ψεu)
(
x −

9(l, εϒε(u), u)

ε
+ ϒε(u)

)
. (47)

We note that Pε(l, u) = u for any l ∈ [0, lp] if ϒε(u) ∈ �
2β
ε ∪ (RN \ �7β

ε ) or u /∈

Gδ/4ω(Z10β
ε ). We take a small δ > 0 so that q = q(δ) given in Proposition 5 satisfies

1 − q > 1/
√

2. Through the deformation Pε, the center of mass ϒε moves roughly like
the deformation 9, as we see in the following proposition.

Proposition 11. For u ∈ G2δ(Z10β
ε ),

|ϒε(Pε(l, u))−9(l, εϒε(u), u)/ε| ≤ 2R0.

Proof. Since9(l, εϒε(u), u)= εϒε(u) and Pε(l, u)= u if u∈G2δ(Z10β
ε )\Gδ/4ω(Z10β

ε )

or ϒε(u) /∈ �
7β
ε , we may assume u ∈ Gδ/4ω(Z10β

ε ) and ϒε(u) ∈ �
7β
ε . Then, from

Proposition 3, it suffices to show

‖Pε(l, u)− φε(· − y)U(· − y)‖ε ≤ 2δ

for some U ∈ S and y ∈ RN with |y − 9(l, εϒε(u), u)/ε| ≤ R0. From Proposition 3,
we take U ∈ S and z ∈ RN with |z− ϒε(u)| ≤ R0 such that

‖u− φε(· − z)U(· − z)‖ε ≤ δ/4ω.

Then
∫
|x|≥7D/ε(|∇u|

2
+ Vεu

2) dx ≤ δ2/16ω2 since supp(φεU)(· − z) ⊂ B(0, 7D/ε).
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Denoting dε(l, u) ≡ 9(l, εϒε(u), u)/ε − ϒε(u), we deduce that for small ε > 0,

‖Pε(l, u)− (φεU)(· − z− dε(l, u))‖ε

≤ ‖(1− ψε)u‖ε + ‖(ψεu)(· − dε(l, u))− (φεU)(· − z− dε(l, u))‖ε
≤ δ/4ω +O(ε)+

√
ω ‖ψεu− (φεU)(· − z)‖ε

≤ δ/4ω +O(ε)+
√
ω ‖u− (φεU)(· − z)‖ε +

√
ω ‖(1− ψε)u‖ε

≤ δ/2+O(ε)+ δ/4
√
ω ≤ δ.

Since |z+ dε(l, u)−9(l, εϒε(u), u)/ε| = |z− ϒε(u)| ≤ R0, this proves the claim. �

Proposition 12. If u ∈ Gδ/4ω(Z10β
ε ) and ϒε(u) ∈ �

7β
ε , then Pε(l, τε(u)) ∈ Gδ/2(Z10β

ε )

for l ∈ [0, lp]; thus Pε(l, τε(u)) ∈ G2δ(Z10β
ε ) for all l ∈ [0, lp] and u ∈ G2δ(Z10β

ε ).

Proof. From Proposition 10, we see that |εϒ(τε(u)) − εϒε(u)| ≤ 2εR0 for any u ∈
G2δ(Z10β

ε ). Thus it follows from (46) that for small ε > 0,

ϒε(Pε(l, τε(u))) ∈ �
8β
ε when l ∈ [0, lp].

We recall that for u ∈ N2δ(Z10β
ε ) and v ∈ Hε,

|v|ε,u ≡

∫
|x−ϒε(u)|≤1/

√
ε

[|∇v|2 + Vεv
2
] dx.

Since u ∈ Gδ/4ω(Z10β
ε ), it follows that τε(u) ∈ Gδ/4ω(Z10β

ε ) ⊂ Nδ/4ω(1−q)(Z10β
ε ) and∫

|y−ϒε(τε(u))|≥1/
√
ε

[|∇τε(u)|
2
+ Vε(τε(u))

2
− 2F(τε(u))] dy ≤ (δ/4ω)2/2.

Since τε(u) ∈ Nδ/4ω(1−q)(Z10β
ε ) and ϒε(τε(u)) ∈ �

8β
ε for small ε > 0, it follows that

for some z ∈ �9β and U ∈ S,

‖τε(u)− φε(· − z/ε)U(· − z/ε)‖ε ≤ δ/4ω(1− q). (48)

Then, denoting

dε(l, u) ≡
9(l, εϒε(τε(u)), τε(u))

ε
− ϒε(τε(u)), gε(l, u) ≡ ϒε(Pε(l, τε(u))),

we see from a change of variables that for small ε > 0 and l ∈ (0, lp),

|Pε(l, τε(u))(·)− φε(· − z/ε − dε(l, u))U(· − z/ε − dε(l, u))|ε,Pε(l,τε(u))

=

∫
|y−gε(l,u)+dε(l,u)|≤1/

√
ε

|∇(τε(u)(y))−∇(φε(y − z/ε)U(y − z/ε))|
2 dy

+

∫
|y−gε(l,u)+dε(l,u)|≤1/

√
ε

Vε(y + dε(l, u))
(
τε(u)(y)− φε(y − z/ε)U(y − z/ε)

)2
dy.
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Here, we have used the fact that

Pε(l, τε(u))(y) = τε(u)(y − dε(l, u)) for |y − gε(l, e)+ dε(l, u)| ≤ 1/
√
ε.

Note that if |y − gε(l, u)+ dε(l, u)| ≤ 1/
√
ε, then |εy + εdε(l, u)| ≤ 2D, |εy| ≤ 3D for

small ε > 0 since εgε(l, u) ∈ �9β
⊂ B(0,D) for l ∈ [0, lp] and small ε > 0. It follows

from the definition of ω in (45) that if |y − gε(l, u)+ dε(l, u)| ≤ 1/
√
ε,

V (εy + εdε(l, u)) ≤ ωV (εy).

Consequently,

|Pε(l, τε(u))− φε(· − z/ε − dε(l, u))U(· − z/ε − dε(l, u))|ε,Pε(l,τε(u))

≤ ω‖τε(u)− φε(· − z/ε)U(· − z/ε)‖
2
ε

≤ ω(δ/4ω(1− q))2 =
(
δ

2

)2 1
4ω(1− q)2

<
1
2

(
δ

2

)2

. (49)

We recall that for l ∈ (0, lp),

Pε(l, τε(u))(x) = (1− ψε(x))τε(u)(x)

+ (ψετε(u))

(
x −

9(l, εϒε(τε(u)), τε(u))

ε
+ ϒε(τε(u))

)
and

gε(l, u)− dε(l, u)− ϒε(τε(u)) = ϒε(Pε(l, τε(u)))−
9(l, εϒε(τε(u)), τε(u))

ε
.

It is easy to see from Proposition 9 that for some C, c > 0,∫
RN\B(0,5D/ε)

[|∇((1− ψε)τε(u))|2 + Vε((1− ψε)τε(u))2] dx ≤ C exp(−cε).

From (48) and Proposition 3, we see that

|ϒε(τε(u))− z/ε| ≤ R0 and |ϒε(ψετε(u))− z/ε| ≤ R0 + o(ε).

From (46), we deduce that |dε| ≤ β/ε. Then (45) implies that for small ε > 0,

‖(ψετε(u))(· − dε(l, u))− (φεU)(· − z/ε − dε(l, u))‖
2
ε

≤ ω‖ψετε(u)− (φεU)(· − z/ε)‖
2
ε ≤ ω(δ/4ω(1− q))

2
+ o(1).

Now, it follows from Proposition 3 that for small ε > 0,

|ϒε((ψετε(u))(· − dε(l, u)))− z/ε − dε(l, u)| ≤ R0.
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This implies that for l ∈ [0, lp],

|gε(l, u)− dε(l, u)− ϒε(τε(u))|

≤ |gε(l, u)− dε(l, u)− z/ε| + |z/ε − ϒε(τε(u))| ≤ 2R0 + o(1) (50)

when ε > 0 is small. It follows from Proposition 9 that for small ε > 0,∫
|x−ϒε(τε(u))|≥1/

√
ε

[|∇τε(u)|
2
+ Vε(x)(τε(u))

2
] dx ≤ (δ/4ω(1− q))2 + o(1).

Moreover, it follows from (25) that for l ∈ [0, lp],∫
|x−gε(l,u)|≥1/

√
ε

[|∇Pε(l, τε(u))|
2
+ Vε(x)(Pε(l, τε(u)))

2
− 2F(Pε(l, τε(u)))] dx

≤ (1+ q)
∫
|x−gε(l,u)|≥1/

√
ε

[|∇Pε(l, τε(u))|
2
+ Vε(x)(Pε(l, τε(u)))

2
] dx.

We see from (50) that for small ε > 0 and l ∈ [0, lp],∫
|x−gε(l,u)|≥1/

√
ε

[|∇Pε(l, τε(u))|
2
+ Vε(x)(Pε(l, τε(u)))

2
] dx

≤

∫
|x−gε(l,u)+dε(l,u)|≥1/

√
ε

[|∇(ψετε(u))|
2
+ Vε(x + dε(u))(ψετε(u))

2
] dx + o(ε)

≤ ω

∫
|x−gε(l,u)+dε(l,u)|≥1/

√
ε,|x|≤10D/ε

[|∇τε(u)|
2
+ Vε(x)(τε(u))

2
] dx + o(ε)

≤ ω‖τε(u)− φε(· − z/ε)U(· − z/ε)‖
2
ε + o(ε) ≤ ω(δ/4ω(1− q))

2
+ o(ε).

Thus, for l ∈ [0, lp] and small ε > 0,∫
|x−gε(l,u)|≥1/

√
ε

[|∇Pε(l, τε(u))|
2
+ Vε(x)(Pε(l, τε(u)))

2
− 2F(Pε(l, τε(u)))] dx

≤ ω(1+ q)(δ/4ω(1− q))2 + o(ε).

Now, taking sufficiently small δ > 0, we see that for small ε > 0 and l ∈ (0, lp),∫
|x−gε(l,u))|≥1/

√
ε

[|∇Pε(l, τε(u))|
2
+Vε(Pε(l, τε(u)))

2
−2F(Pε(l, τε(u)))] dx≤

1
2

(
δ

2

)2

,

and

|Pε(l, τε(u))− φε(· − z/ε − dε(u))U(· − z/ε − dε(u))|ε,Pε(l,τε(u)) ≤
1
2

(
δ

2

)2

.

This proves the first claim.
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If τε(u) ∈ Gδ/4ω(�10β) and ϒε(τε(u)) ∈ �
7β
ε for u ∈ G2δ(�

10β), it follows from
the first claim that Pε(l, τε(u)) ∈ G2δ(�

10β) for l ∈ [0, lp]. If τε(u) /∈ Gδ/4ω(�10β) and
ϒε(τε(u)) ∈ �

7β
ε for u ∈ G2δ(�

10β), we see from the fact supp(ϕ2) ⊂ Gδ/4ω(�
10β) that

Pε(l, τε(u)) = τε(u). If ϒε(τε(u)) /∈ �
7β
ε for some u ∈ G2δ(�

10β) it follows from the
facts supp(ϕ1) ⊂ �

7β
\�2β that Pε(l, τε(u)) = τε(u). Since τε is a map fromG2δ(�

10β)

to itself, the second claim follows. ut

Proposition 13. For u ∈ G2δ(Z10β
ε ) with ϒε(u) ∈ �

8β
ε and small ε > 0, the en-

ergy functional 0ε(Pε(l, τε(u))) is nonincreasing with respect to l ∈ [0, lp]. If u ∈
Gδ/10ω(Z10β) and ϒε(u) ∈ �

5β
ε \ �

4β
ε , there exists a constant µ0 > 0, independent

of small ε > 0, such that

0ε(Pε(lp, τε(u)))− 0ε(Pε(0, τε(u))) ≤ −µ0.

Proof. We see from a change of variables that for 0 ≤ l < l + l′ ≤ lp,

0ε(Pε(l + l
′, τε(u)))− 0ε(Pε(l, τε(u)))

=

∫
RN
∇
(
((1− ψε)τε(u))(x)

)
· ∇
(
(ψετε(u))(x − dε(l + l

′, u))
)
dx

−

∫
RN
∇
(
((1− ψε)τε(u))(x)

)
· ∇
(
(ψετε(u))(x − dε(l, u))

)
dx

+

∫
RN
Vε((1− ψε)τε(u))(x)(ψετε(u))(x − dε(l + l′, u)) dx

−

∫
RN
Vε((1− ψε)τε(u))(x)(ψετε(u))(x − dε(l, u)) dx

−

∫
RN
[F(Pε(l + l

′, τε(u))− F(Pε(l, τε(u))] dx

+
1
2

∫
RN
Ṽε[(ψετε(u))(x + xε)]

2 dx

≡ TI − TII + TIII − TIV − TV + TVI,

where xε ≡ ϒε(τε(u)) and

Ṽε(x) ≡ V (εx +9(l + l
′, εxε, τε(u)))− V (εx +9(l, εxε, τε(u))).

If ϕ1(εxε)ϕ2(τε(u)) = 0, it follows that 9(l, εxε, u) = xε and thus

Pε(l + l
′, τε(u)) = Pε(l, τε(u)) = τε(u);

hence the monotonicity property holds. From now on we assume that ϕ1(εxε)ϕ2(τε(u))

> 0 and denote
h ≡ ϕ1(εxε)ϕ2(τε(u))l

′.

In this case, εxε ∈ �7β
\�2β . Now, we see that

1
h
[0ε(Pε(l + l

′, τε(u)))− 0ε(Pε(l, τε(u)))] =
TI − TII

h
+

TIII − TIV
h

−
TV
h
+

TVI
h
.
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From the decay property of τε(u) in Proposition 9, elliptic estimates and Lipschitz conti-
nuity of 8 in condition (V3), we deduce that for small ε > 0,∣∣∣∣TI − TII

h

∣∣∣∣+∣∣∣∣TIII − TIV
h

∣∣∣∣ ≤ o(ε).
For an estimate of TV, we see from a change of variables and (46) that

TV =
∫
RN
F
(
((1− ψε)τε(u))(x + dε(l + l′, u))+ (ψετε(u))(x)

)
dx

−

∫
RN
F
(
((1− ψε)τε(u))(x + dε(l, u))+ (ψετε(u))(x)

)
dx

=

∫
RN\B(0,6D/ε)

F
(
((1− ψε)τε(u))(x + dε(l + l′, u))+ (ψετε(u))(x)

)
dx

−

∫
RN\B(0,6D/ε)

F
(
((1− ψε)τε(u))(x + dε(l, u))+ (ψετε(u))(x)

)
dx

=

∫
RN\B(0,6D/ε)

f̃ (ε, l, l′, x)g(ε, l, l′, u) dx,

where

g(ε, l, l′, u) ≡ ((1− ψε)τε(u))(x + dε(l + l′, u))− ((1− ψε)τε(u))(x + dε(l, u)),

f̃ (ε, l, l′, x) ≡
F
(
((1− ψε)τε(u))(x + dε(l + l′, u))+ (ψετε(u))(x)

)
g(ε, l, l′, u)

−
F
(
((1− ψε)τε(u))(x + dε(l, u))+ (ψετε(u))(x)

)
g(ε, l, l′, u)

.

Then, from the decay property of τε(u) in Proposition 9, elliptic estimates and Lipschitz
continuity of 8 in condition (V3), we deduce that for small ε > 0,∣∣∣∣TV

h

∣∣∣∣ ≤ o(1).
To estimate TVI/h, we note that for the constant c2 in condition (V3),

TVI
h
=

1
2

∫
RN

Ṽε

h
[(ψετε(u))(x + xε)]

2 dx

=
1
2

∫
|x|≤c2/ε

Ṽε

h
[(ψετε(u))(x + xε)]

2 dx +
1
2

∫
|x|≥c2/ε

Ṽε

h
[(ψετε(u))(x + xε)]

2 dx

≡ A+ B.
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We see that

B =
1

2h

∫
|x−9(l+l′,εxε,τε(u))/ε|≥

c2
ε

V (εx)

[
(ψετε(u))

(
x −

9(l + l′, εxε, τε(u))

ε
+ xε

)]2

dx

−
1

2h

∫
|x−9(l,εxε,τε(u))/ε|≥

c2
ε

V (εx)

[
(ψετε(u))

(
x −

9(l, εxε, τε(u))

ε
+ xε

)]2

dx.

Then, denoting

Dε ≡

{
x ∈ RN

∣∣∣∣ ∣∣∣∣x − 9ε(l + l′, εxε, τε(u))ε

∣∣∣∣ ≥ c2

ε
,

∣∣∣∣x − 9(l, εxε, τε(u))ε

∣∣∣∣ ≤ c2

ε

}
,

D̃ε ≡

{
x ∈ RN

∣∣∣∣ ∣∣∣∣x − 9ε(l, εxε, τε(u))ε

∣∣∣∣ ≥ c2

ε
,

∣∣∣∣x − 9(l + l′, εxε, τε(u))ε

∣∣∣∣ ≤ c2

ε

}
,

Eε ≡

[
(ψετε(u))

(
x −

9ε(l + l
′, εxε, τε(u))

ε
+ xε

)]2

−

[
(ψετε(u))

(
x −

9(l, εxε, τε(u))

ε
+ xε

)]2

,

we see that

|B| ≤
1

2h

∫
Dε

V (εx)[(ψετε(u))(x −9(l + l
′, εxε, τε(u))/ε + xε)]

2 dx

+
1

2h

∫
D̃ε

V (εx)[(ψετε(u))(x −9(l + l
′, εxε, τε(u))/ε + xε)]

2 dx

+
1

2h

∫
|x−8(l,εxε,τε(u))/ε|≥c2/ε

V (εx)|Eε| dx

≡ B1 + B2 + B3.

It is easy to see that for some constant M, depending only on N ,

|Dε| + |D̃ε| ≤
M

εN−1

∣∣∣∣9(l + l′, εxε, τε(u))ε
−
9(l, εxε, τε(u))

ε

∣∣∣∣
when l′ > 0 is small. From the Lipschitz continuity of8 in condition (V3), it follows that∣∣∣∣9(l + l′, εxε, τε(u))ε

−
9(l, εxε, τε(u))

ε

∣∣∣∣
=

1
ε
|8(ϕ1(εxε)ϕ2(τε(u))(l + l

′), εxε)−8(ϕ1(εxε)ϕ2(τε(u))l, εxε)| ≤
µh

ε
. (51)

Thus, we see that
|Dε| + |D̃ε| ≤ Mµh/ε

N .
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For small h > l′ > 0, we see from (51) that for x ∈ D̃ε,∣∣∣∣9(l + l′, εxε, τε(u))ε
− x

∣∣∣∣
≥

∣∣∣∣x − 9(l, εxε, τε(u))ε

∣∣∣∣− ∣∣∣∣9(l + l′, εxε, τε(u))ε
−
9(l, εxε, τε(u))

ε

∣∣∣∣
≥
c2

ε
−
µh

ε
≥
c2

2ε
.

This implies that if l′ > 0 is small,∣∣∣∣x − 9(l, εxε, τε(u))ε

∣∣∣∣ ≥ c2

2ε

for any x ∈ Dε ∪ D̃ε. The decay property of τε(u) implies that for some C, c > 0,

|B1| + |B2| ≤ C exp(−c/
√
ε).

Denoting x̃ ≡ x − 9(l, εxε, τε(u))/ε + xε, we see from the decay property of τε(u) =
v(u,ϒε(u), 1/

√
ε) in Proposition 9, standard C2-estimates [22] for the solution of (36)

and the Lipschitz continuity of 8 in condition (V3) that for some C, c > 0,

lim sup
l′→0

|B3| ≤
µ

ε

∫
|x−9(l,εxε,τε(u))/ε|≥c2/ε

V (εx)(ψετε(u))(x̃)|∇(ψετε(u))(x̃)| dx

≤ C exp(−c/
√
ε).

To estimate A = 1
2

∫
|x|≤c2/ε

Ṽε
h
[(ψετε(u))(x + xε)]

2 dx, we denote

H ≡ ϕ1(εxε)ϕ2(τε(u))l.

Then we see from condition (V3) that if εxε ∈ �7β
\�2β , then

lim sup
h→0

Ṽε

h
= lim sup

h→0

V (εx +9(l + l′, εxε, τε(u)))− V (εx +9(l, εxε, τε(u)))

h

= lim sup
h→0

V (εx +8(H + h, εxε))− V (εx +8(H, εxε))

h
≤ −α

uniformly for |x| ≤ c2/ε. Thus, for small ε > 0,

lim sup
l′→0

A ≤ −αζε/4,

where

ζε ≡ inf
u∈G2δ(Z10β

ε )

∫
|xε−x|≤c2/ε

u2 dx > 0.
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Since |xε − ϒε(u)| = |ϒε(τε(u)) − ϒε(u)| ≤ 2R0, taking a small δ > 0, we see that
ζ0 ≡ lim infε→0 ζε > 0. Thus, combining the estimates for TI,TII,TIII,TIV,TV and
TVI, we conclude that for sufficiently small l′, ε > 0,

1
h
[0ε(Pε(l + l

′, τε(u)))− 0ε(Pε(l, τε(u)))] ≤ −αζ0/8.

This proves that 0ε(Pε(l, τε(u))) is decreasing with respect to l ∈ [0, lp].
If u ∈ Gδ/10ω(Z10β) and ϒε(u) ∈ �

5β
ε \ �

4β
ε , we see from Proposition 10

that τε(u) ∈ Gδ/10ω(Z10β), ϒε(τε(u)) ∈ �
6β
ε \ �

3β
ε for small ε > 0. Then h =

ϕ1(εϒε(τε(u))ϕ2(τε(u))l
′
= l′. Thus, the last claim follows. ut

10. Proof of the main theorem

We will show that for any small ν, δ > 0, there exists a critical point of 0ε in

�(ε, ν, δ) ≡ (0Cεε \ 0
Em−ν
ε ) ∩G2δ(Z10β

ε )

when ε > 0 is sufficiently small. We take a small δ > 0 so that q = q(δ) < 1/1000.
Then we see from (26) that

Gδ/3(Z10β
ε ) ⊂ Nδ/2(Z10β

ε ) ⊂ G4δ/5(Z10β
ε ) ⊂ Nδ(Z10β

ε ).

To the contrary, we assume that for some small ε > 0, there exist no critical points of
0ε in�(ε, ν, δ). We note that Aε(1, z) ∈ Z10β

ε . From Proposition 7, we can take ν, δ > 0
so that for small ε > 0,

0ε(Aε(t, z)) ≤ Em − ν if Aε(t, z) /∈ Gδ/40ω(Z10β
ε ) or ϒε(Aε(t, z)) /∈ �2β

ε . (52)

We take a smooth function χν on R such that χν(l) = 1 when |l − Em| ≤ ν/2 and
χν(l) = 0 for |l−Em| ≥ ν.We also find a smooth function κδε onHε such that κδε (u) = 1
for u ∈ Gδ(Z10β

ε ) and κδε (u) = 0 for u /∈ G2δ(Z10β
ε ). Then we consider the following

flow equation:

dηε(s, u)

ds
= −χν(0ε(ηε))κ

δ
ε (ηε)0

′
ε(ηε)/‖0

′
ε(ηε)‖

∗
ε , ηε(0) = u ∈ Hε.

There is a unique solution ηε = ηε(s, u) for s ∈ [0,∞). Note that if u ∈ (0Cεε \0
Em−ν
ε )∩

G2δ(Z10β
ε ), then

ηε(s, u) ∈ (0
Cε
ε \ 0

Em−ν
ε ) ∩G2δ(Z10β

ε ) for all s ∈ [0,∞).

Proposition 14. Let u ∈ G2δ(Z10β
ε ) and ϒε(u) ∈ Z9β

ε . Suppose that for 0 ≤ s1 =

s1(ε) < s2 = s2(ε) and some constant c > 0, independent of small ε > 0,

|ϒε(ηε(s1, u))− ϒε(ηε(s2, u))| ≥ c/ε.

Then
lim
ε→0
|s2(ε)− s1(ε)| = ∞.
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Proof. We consider the function ϒε(ηε(s, u)), s ∈ [s1, s2]. We can take a partition s1 =
s0 < s1 < · · · < sk−1 < sk = s2 of [s1, s2] such that |ϒε(ηε(si, u))−ϒε(ηε(si−1, u))| ≥

c/kε for i = 1, . . . , k. From Proposition 3, for each i = 0, . . . , k, there exist zi ∈ �
10β
ε

and Wi ∈ S(zi) satisfying

‖ηε(s
i, u)−Wi‖ε ≤ 2δ, |ϒε(ηε(s

i, u))− zi | ≤ R0.

Then, for small ε > 0, it follows from (21) and (22) that

‖ηε(s
i+1, u)− ηε(s

i, u)‖ε

≥ ‖Wi −Wi+1‖ε − ‖ηε(s
i, u)−Wi‖ε − ‖ηε(s

i+1, u)−Wi+1‖ε

≥ ξ/2− 4δ ≥ 10δ − 4δ = 6δ.

Note that ‖∂ηε(s, u)/∂s‖∗ε ≤ 1. Then, it is standard to see that for some A > 0, indepen-
dent of i = 1, . . . , k and small ε > 0, |si − si−1

| ≥ A. This implies that for any k ≥ 1,
|s1 − s2| ≥ kA if ε > 0 is sufficiently small. This proves the claim. ut

We take a sufficiently small δ > 0 so that for q = q(δ),

1
√

2(1+ q)
−

1
2(1− q)

>
1
8
,

1

10
√

2(1+ q)ω
−

1
30(1− q)ω

>
1

60ω
. (53)

We remark that since

1
√

2
−

1
2
>

1
8

and
1

10
√

2
−

1
30
>

1
60
,

and limδ→0 q(δ) = 0, there exists a small δ so that (53) holds.
Then, for ν > 0 defined in (52), we may assume

ν <
δ

60ω
µ

(
δ,

δ

30ω

)
,

where µ(δ, δ′) is defined in Proposition 8.

Proposition 15. Suppose that ηε(l, uε) ∈ Gδ/2(Z10β
ε )\Gδ/10ω(Z10β

ε ) and ϒε(ηε(l, uε))
∈ �

8β
ε for some l ∈ [0, δ/30ω] and uε ∈ G2δ(Z10β

ε ). If lim supε→0 0ε(uε) ≤ Em, then

0ε

(
ηε

(
δ

30ω
, u

))
≤ Em − ν/2

for sufficiently small ε > 0.

Proof. We note from Proposition 6 that for c ≤ d,

G(1−q)cδ(Z10β
ε ) ⊂ Ncδ(Z10β

ε ) ⊂ Ndδ(Z10β
ε ) ⊂ G√2(1+q)dδ(Z

10β
ε ). (54)
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In particular,

Gδ/2(Z10β
ε ) \Gδ/10ω(Z10β

ε ) ⊂ Nδ/2(1−q)(Z10β
ε ) \N

δ/10
√

2(1+q)ω(Z
10β
ε ),

N
δ/
√

2(1+q)(Z
10β
ε ) \Nδ/30(1−q)ω(Z10β

ε ) ⊂ Gδ(Z10β
ε ) \Gδ/30ω(Z10β

ε ).

First, we suppose that for some l ∈ [δ/60ω, δ/30ω] and uε ∈ G2δ(Z10β
ε ), ηε(l, uε) ∈

Gδ/2(Z10β
ε ) \ Gδ/10ω(Z10β

ε ) and ϒε(ηε(l, uε)) ∈ �
8β
ε . Then, since ‖dηε/ds‖ε ≤ 1, we

see from Proposition 14 that ηε(s, uε) ∈ Gδ(Z10β
ε ) \Gδ/30ω(Z10β

ε ) and ϒε(ηε(l, uε)) ∈
Z9β
ε for s ∈ [l − δ/60ω, l] and small ε > 0 . Then, if 0ε(ηε(s, uε)) ≥ Em − ν/2 for any

s ∈ [l − δ/60ω, l], it follows that for small ε > 0, dηε/dt = −0′ε(ηε)/‖0
′
ε(ηε)‖

∗
ε . Note

that 0ε is decreasing along the flow ηε. Hence for small ε > 0,

0ε(ηε(l, u))− Em − o(1)≤ 0ε(ηε(l, uε))− 0ε(ηε(l − δ/60ω, uε))

=

∫ l

l−δ/60ω
0′ε(ηε(s, uε))

dηε(s, uε)

ds
ds =−

∫ l

l−δ/60ω
‖0′ε‖

∗
ε ds

≤−
δ

60ω
µ

(
δ,

δ

30ω

)
≤−ν.

This contradicts the assumption that 0ε(ηε(s, uε)) ≥ Em−ν/2 for any s ∈ [l−δ/60ω, l].
Since 0ε is decreasing along the flow ηε, we conclude that for small ε > 0,
0ε(ηε(δ/30ω, uε)) ≤ Em − ν/2.

Second, we suppose that for some l ∈ [0, δ/60ω] and uε ∈ G2δ(Z10β
ε ), ηε(l, uε) ∈

Gδ/2(Z10β
ε ) \Gδ/10ω(Z10β

ε ) and ϒε(ηε(l, uε)) ∈ �
8β
ε . If 0ε(ηε(s, uε)) ≥ Em − ν/2 for

any s ∈ [l, l + δ/60ω], we get a contradiction by the same procedure as in the first case.
Since l+ δ/60ω ≤ δ/30ω, we conclude again that for small ε > 0, 0ε(ηε(δ/30ω, uε)) ≤
Em − ν/2. This completes the proof. ut

10.1. Iteration through a gradient flow and a translation

We define
lg ≡

δ

30ω
, I (u) ≡ Pε(lp, ·) ◦ τε ◦ ηε(lg, u)

and I i the i-fold composition of I. As before, we denote

�(ε, ν, δ) ≡ (0Cεε \ 0
Em−ν
ε ) ∩G2δ(Z10β

ε ).

Since we assume that there exist no solutions of (13) in �(ε, ν, δ) for small ε > 0, there
exists k(ε) > 0 such that

|0′ε(u)| ≥ k(ε) for any u ∈ �(ε, ν, δ). (55)

We take an integer
jε ≥

ν

k(ε)lg
.

Now, we prove the following proposition.
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Proposition 16.

0ε(I
jε (Aε(t, z))) ≤ Em −min{ν/2, µ0/2} for any t ∈ [0, T ], z ∈ Lε,

where µ0 > 0 is given in Proposition 13.

Proof. By (52), we recall that if 0ε(A(t, z)) ≥ Em − ν, then A(t, z) ∈ Gδ/40ω(Z10β
ε )

and ϒε(A(t, z)) ∈ �
2β
ε . Thus, from now on in this proof, it suffices to consider just the

cases A(t, z) ∈ Gδ/40ω(Z10β
ε ) and ϒε(A(t, z)) ∈ �

2β
ε . Hence, we consider a sequence of

continuous paths
{ηε(l, I

i(Aε(t, z))) | l ∈ [0, lg]}i=0,1,...,jε−1.

Note that 0ε is nonincreasing along the processes ηε, τε, Pε. Further we recall the follow-
ing:

(i) The definition of τε implies

τε(Gcδ(Z10β
ε )) ⊂ Gcδ(Z10β

ε ) for each c ∈ (0, 2].

(ii) Proposition 10 implies

|ϒε(τε(u))− ϒε(u)| ≤ 2R0 for u ∈ G2δ(Z10β
ε ). (56)

(iii) Proposition 11 implies

|ϒε(Pε(l, u))−9(l, εϒε(u), u)/ε| ≤ 2R0.

(iv) Proposition 14 implies

|ϒε(ηε(lg, u))− ϒε(u)| ≤ o(1)/ε as ε→ 0;

thus for small ε > 0,

{ϒε(ηε(l, u)) | l ∈ [0, δ/30ω]} ⊂ �(d+1/10)β
ε if ϒε(u) ∈ �dβε , d ∈ [1, 9].

(v) Proposition 12 implies

Pε(l, τε(u)) ∈ G2δ(Z10β
ε ) for all l ∈ [0, lp] and u ∈ G2δ(Z10β

ε ).

(vi) From the definition of the gradient flow ηε,

{ηε(s, u) | s ∈ [0,∞)} ⊂ G2δ(Z10β
ε ) for u ∈ G2δ(Z10β

ε ).

Hence, for small ε > 0 and each i = 0, 1, . . . , jε − 1,

|ϒε(ηε(lg, I
i(Aε(t, z))))− ϒε(I

i+1(Aε(t, z)))| ≤ 4R0 + β/10ε (57)

and
|ϒε(ηε(lg, I

i(Aε(t, z))))− ϒε(I
i(Aε(t, z)))| ≤ β/10ε. (58)
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Thus, we deduce that at least one of the following three cases holds:

Case A:
ηε(l, I

i(Aε(t, z))) ∈ Gδ/10ω(Z10β
ε ) ∩ {u | ϒε(u) ∈ �

5β
ε }

for all i = 0, 1, . . . , jε − 1, l ∈ [0, lg].

Case B:

{ηε(l, I
i(Aε(t, z))) | l ∈ [0, lg]} ⊂ Gδ/10ω(Z10β

ε ) ∩ {u | ϒε(u) ∈ �
5β−β/10
ε \�4β+β/10

ε }

for some i = 0, 1, . . . , jε − 1.

Case C:

ηε(l, I
i(Aε(t, z))) ∈ (Gδ/2(Z10β

ε ) \Gδ/10ω(Z10β
ε )) ∩ {u | ϒε(u) ∈ �

8β
ε }

for some i = 0, 1, . . . , jε − 1, l ∈ [0, lg].

In fact, if Case C does not occur,

ηε(l, I
i(Aε(t, z))) /∈ (Gδ/2(Z10β

ε ) \Gδ/10ω(Z10β
ε )) ∩ {u | ϒε(u) ∈ �

8β
ε }

for any i = 0, 1, . . . , jε − 1 and l ∈ [0, lg]. Since τε(Gcδ(Z10β
ε )) ⊂ Gcδ(Z10β

ε ) for
c ∈ (0, 2] and Pε(l, u) = u for l ∈ [0, lp] and u ∈ G2δ(Z10β

ε ) \Gδ/4ω(Z10β
ε ), we see that

ηε(l, I
i(Aε(t, z))) ∈ Gδ/10ω(Z10β

ε ) ∩ {u | ϒε(u) ∈ �
8β
ε }

for any i = 0, 1, . . . , jε − 1 and l ∈ [0, lg]. Then, it is obvious from (57) and (58) that
Case A or Case B occurs. This proves the claim.

Suppose that Case C occurs. Then Proposition 15 implies that for small ε > 0,

0ε(I
jε (Aε(t, z))) ≤ 0ε(ηε(lg, I

m(Aε(t, z)))) ≤ Em − ν/2.

Next we suppose that Case B occurs. Then we see from (56) and Proposition 13 that
for small ε > 0,

0ε
(
Pε(lp, τε(ηε(lg, I

m(Aε(t, z)))))
)
≤ Em + o(1)− µ0 ≤ Em − µ0/2.

Finally, suppose that Case A occurs. We may assume that

0ε(ηε(l, I
m(Aε(t, z)))) ≥ Em − ν/2

for any m ∈ {1, . . . , jε − 1} and any l ∈ [0, lg]. Note that

0ε(I
jε (Aε(t, z)))− 0ε(Aε(t, z)) =

jε∑
j=1

[0ε(I
j (Aε(t, z)))− 0ε(I

j−1(Aε(t, z)))]

≤

jε∑
j=1

[0ε(ηε(lg, I
j−1(Aε(t, z))))− 0ε(I

j−1(Aε(t, z)))].
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When

0ε(ηε(l, I
j (Aε(t, z)))) ≥ Em − ν/2, ϒε(ηε(l, I

j (Aε(t, z)))) ∈ �
5β
ε

for any j ∈ {1, . . . , jε − 1} and any l ∈ [0, lg], we have

dηε(l, u)

dl
= −0′ε(ηε)/‖0

′
ε(ηε)‖

∗
ε .

This implies that

0ε(ηε(lg, I
j−1(Aε(t, z))))− 0ε(I

j−1(Aε(t, z))) ≤ −lgk(ε).

Therefore
0ε(I

jε (Aε(t, z)))− 0ε(Aε(t, z)) ≤ −jεlgk(ε) ≤ −ν;

thus for small ε > 0,
0ε(I

jε (Aε(t, z))) ≤ Em − ν/2.

Since

0ε(I
jε (Aε(t, z))) ≤ 0ε(I

jε−1(Aε(t, z))) ≤ · · · ≤ 0ε(I (Aε(t, z))) ≤ 0ε(Aε(t, z)),

it follows that if ϒε(ηε(l, Im(Aε(t, z)))) ∈ �
5β
ε for any m ∈ {1, . . . , jε − 1} and any

l ∈ [0, lg], then
0ε(I

jε (Aε(t, z))) ≤ Em − ν/2.

As a result, we conclude that for small ε > 0,

0ε(I
jε (Aε(t, z))) ≤ Em −min{ν/2, µ0/2} for any t ∈ [0, T ], z ∈ Lε. ut

We define
Bε(t, z) ≡ τε(I

jε (Aε(t, z))).

From (44) and the invariance of ∂G2δ(Z10β
ε ) under the flows ηε and Pε we see that Bε :

[0, T ] × Lε → Hε is continuous. Proposition 16 implies that if ε > 0 is small, for any
t ∈ [0, T ] and z ∈ Lε,

0ε(Bε(t, z)) ≤ 0ε(Aε(t, z)) ≤ Em −min{ν/2, µ0/2}. (59)

We note that Bε(t, z) = Aε(t, z) for Bε(t, z) /∈ G2δ(Z10β
ε ). Moreover, we see from

Propositions 3 and 9 that for small ε > 0,

0ε(Bε(t, z)) =
1
2

∫
RN
[|∇Bε(t, z)|

2
+ V (εϒ̃ε(Bε(t, z)))(Bε(t, z))

2
] dx

−

∫
RN
F(Bε(t, z)) dx + o(1), (60)
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where limε→0 o(1) = 0 uniformly for (t, z) ∈ [0, T ] × Lε. We can take sufficiently
small δ, T0 > 0 so that Bε(t, z) /∈ N2δ(Z10β

ε ) for (t, z) ∈ ∂([T0, T ]×Lε). It follows from
(43) that for any t ∈ [0, T ],

εϒ̃ε(Bε(t, z)) = 2ε(z) for z in a neighborhood N of ∂Lε. (61)

We define

Qε(t, z)(u) ≡
N − 2

2

∫
RN
|∇u|2 dx +N

∫
RN

[ 1
2V (εϒ̃ε(Bε(t, z)))|u|

2
− F(u)

]
dx

and

Jε(t, z)(u) ≡
1
2

∫
RN
[|∇u|2 dx + V (εϒ̃ε(Bε(t, z)))|u|

2
] dx −

∫
RN
F(u) dx.

For N ≥ 3, it is shown in [7] and [25] that if there exists h = h(z, t) > 0 satisfying

V (εϒ̃ε(Bε(t, z)))h
2
− 2F(h) < 0,

then there exists a minimizer W = W(t, z) of Jε(t, z) over the Pohozaev manifold {u ∈
H 1(RN ) \ {0} | Qε(t, z)(u) = 0} which is a least energy solution of

1W − V (εϒ̃ε(Bε(t, z)))W + f (W) = 0, W > 0 on RN .

For N = 2, it is shown in [4] that there exists a minimizer W = W(t, z) of Jε(t, z) over
the Pohozaev manifold, and that for some constant λ = λ(t, z) > 0, the scaled function
Ŵ (x) = W(λx) is a least energy solution of

1Ŵ − V (εϒ̃ε(Bε(t, z)))Ŵ + f (Ŵ ) = 0, W > 0 on RN .

Since Qε(t, z)(W) = 0, we see that

Jε(t, z)(W) = Jε(t, z)(Ŵ ).

We note that for any z ∈ Lε,

Qε(T0, z)(Bε(T0, z)) > 0, Qε(T , z)(Bε(T , z)) < 0 (62)

if T0 > 0 is sufficiently small, and that 2ε(z) = z for z ∈ L0. Thus, defining Dε(t, z) ≡
Qε(t, z)(Bε(t, z)), we see from (61) that for z in a neighborhood N of L0 in Lε,

Dε(t, z) ≡ Qε(t, z)(Bε(t, z))

=
(N − 2)tN−2

2

∫
RN
|∇(φεU)|

2 dx +NtN
∫
RN
[V (2ε(z))(φεU)

2
− F(φεU)] dx.

This implies that for z ∈ N ⊂ Lε, Dε(t, z) is a strictly decreasing function with respect
to t ∈ [T0, T ] if ε > 0 is small. Hence, for any z ∈ N , there exists a unique t (z) ∈ (T0, T )

such that Dε(t (z), z) = 0. Then, it is easy to see that

∂Dε

∂t
(t (z), z) 6= 0, z ∈ N . (63)
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We note that for s ∈ [T0, T ] and z ∈ L0 = ∂Lε,

εϒ̃ε(Bε(t, z)) = 2ε(z) = z.

We will show in the following section that for small ε > 0, there exists (tε, zε) ∈
(0, T )× Lε satisfying

Dε(tε, zε) = 0 and V (εϒ̃ε(Bε(tε, zε))) = m. (64)

10.2. Intersection results

Proposition 17. Let H be a compact connected k-dimensional manifold in (T0, T )×Lε
such that

∅ 6= ∂H ⊂ (T0, T )× L0.

Assume that for the natural projection map πε : (T0, T ) × Lε → Lε, the restricted
map πε|∂H : ∂H → πε(∂H) ⊂ L0 is a homeomorphism. Then πε(H) = Lε and
πε(∂H) = L0.

Proof. For the natural projection map πε, we have πε : H → Lε with πε(∂H) ⊂
∂Lε = L0. Then, for any y ∈ Lε \ L0, the mod 2 degree deg2(πε, H, y) is well de-
fined. Since πε : ∂H → πε(∂H) is a homeomorphism, we see that deg2(πε, H, y) = 1
for any y close to ∂Lε = L0. Since Lε is connected and πε(∂H) ⊂ L0, we see that
deg2(πε, H, y) is independent of y ∈ Lε \ L0. This implies that πε(H) = Lε. Since
πε : ∂H → πε(∂H) is a homeomorphism, it follows that πε(∂H) = ∂Lε = L0. ut

Proposition 18. For small ε > 0, there exists (tε, zε) ∈ (T0, T )× Lε satisfying

Dε(tε, zε) = 0 and V (εϒ̃ε(Bε(tε, zε))) = m.

Proof. We can approximate Dε in C0([T0, T ] × Lε) by {Dlε}
∞

l=1 ⊂ C
N+1((T0, T )× Lε)

so that
Dlε(t, z) = Dε(t, z) for (t, z) ∈ (T0, T )× L0.

Then, by Sard’s theorem, we can find {bli}
∞

i=1 ⊂ R with limi→∞ b
l
i = 0 and bli is a

regular value of Dlε. We can take a sequence {l(i)}∞i=1 such that limi→∞ l(i) = ∞ and
limi→∞ b

l(i)
i = 0. Then, for each i = 1, 2, . . . , (Dl(i)ε )−1(b

l(i)
i ) is a union of finitely

many k-dimensional compact connected submanifolds of (T0, T )× Lε.
Let H i be a connected component of (Dl(i)ε )−1(b

l(i)
i ) which intersects (T0, T ) × L0.

Let πε : (T0, T ) × Lε → Lε be the natural projection map. Then, from (63), we see
that πε : ∂H i

→ πε(∂H
i) ⊂ L0 is a homeomorphism. Hence, by Proposition 17,

H i
∈ L(L0). If L(L0) is the class of orientable manifolds, then the {H i

}i are orientable
since there is a nonvanishing normal vector field on H i in the orientable manifold Lε ×
[T0, T ]. Thus, if L(L0) is the class of orientable manifolds, we also have H i

∈ L(L0).

Then, from the definition of m in (V2), we see that max(t,z)∈H i V (εϒ̃ε(Bε(t, z))) ≥ m.

Since Bε(t, z) = Aε(t, z) in a neighborhood of ∂((T0, T )×Lε), there exists some ρ > 0,
independent of small ε > 0, such that V (εϒ̃ε(Bε(t, z))) < m − ρ for (t, z) ∈ ∂H i, and
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|D
l(i)
ε (T0, z)| ≥ ρ, |D

l(i)
ε (T , z)| ≥ ρ for z ∈ Lε and i = 1, 2, . . . . Thus there exists

(t i, zi) ∈ (T0, T )× (Lε \ L0) such that

V (εϒ̃ε(Bε(t
i, zi))) = m and Dl(i)ε (t i, zi) = b

l(i)
i .

Let (tε, zε) be a limit point of {(t i, zi)}i . Then (tε, zε) is an interior point of [T0, T ] ×Lε
since V (εϒ̃ε(Bε(t, z))) < m on ∂[T0, T ] × Lε. Hence,

Dε(t0, z0) = 0 and V (εϒ̃ε(Bε(t0, z0))) = m. ut

Completion of the proof of Theorem 2. We have shown that for small ε > 0, there exists
(tε, zε) ∈ (T0, T )× Lε satisfying

Qε(tε, zε) = 0 and V (εϒ̃ε(Bε(tε, zε))) = m.

Note from [7, Proposition 2.1] and [25] that

Em =

inf
{
Lm(u)

∣∣∣∣ N − 2
2

∫
RN
|∇u|2 dx+N

∫
RN

[
m
u2

2
−F(u)

]
dx = 0, u ∈ H 1(RN )\{0}

}
.

Then we see that

Jε(tε, zε)(Bε(tε, zε)) ≥ EV (εϒ̃ε(Bε(tε,zε)))
= Em (65)

since
Qε(t0, z0)(Bε(tε, zε)) = 0.

This contradicts (59) and (60).
Thus we conclude that for any d > 0, there exists ε0(d) > 0 such that for ε ∈

(0, ε0(d)), there exists a solution uε ∈ G2δ(Z10β
ε ) of (13) with 0ε(uε) ≤ Cε and

ϒε(uε) ∈ �
10β
ε ⊂ (Md)ε. This implies that for small ε > 0, there exists a solution uε

of (13) such that limε→0 dist(εϒ(uε),M) = 0 and lim supε→0 0ε(uε) ≤ Em. Let xε be
a maximum point of uε. Then we see from Proposition 3 that limε→0 dist(εxε,M) = 0.
Since lim supε→0 0ε(uε) ≤ Em, we deduce that uε(· + xε) converges, up to a subse-
quence, to a least energy solution U ∈ S of (4) with V (x0) = m as ε → 0. Thus, the
conclusion of Theorem 2 follows. ut
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