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Abstract. We introduce the space GBD of generalized functions of bounded deformation and study
the structure properties of these functions: the rectifiability and the slicing properties of their jump
sets, and the existence of their approximate symmetric gradients. We conclude by proving a com-
pactness results for GBD, which leads to a compactness result for the space GSBD of generalized
special functions of bounded deformation. The latter is connected to the existence of solutions to a
weak formulation of some variational problems arising in fracture mechanics in the framework of
linearized elasticity.
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1. Introduction

The space BD(2) of functions of bounded deformation was investigated in [25, 31, 32, 24,
30] to study mathematical models of small strain elasto-plasticity (see also [22, 29, 8, 7]).
If @ C R" is a bounded open set and M"*"* denotes the space of n x n-matrices, BD(2) is
the space of functions u € L! (2; R™) such that the M"*"-valued distribution Eu, defined
by (Eu);j = %(Dil/lj + Dju;), is a bounded Radon measure.

The fine structure of the functions u € BD(2) was investigated in [23, 5]. In particular
it can be proved that the jump set J,, of u is countably (H", n — 1)-rectifiable, where
"1 is the (n — 1)-dimensional Hausdorff measure, and that the measure Eu can be
written as the sum of three measures:

Eu=E% + Eu + E’u,

where E“u is absolutely continuous with respect to the Lebesgue measure £", E€u is
singular with respect to £" and satisfies |Eu|(B) = 0 for every Borel set B C Q
with H"~1(B) < oo, while E/u is concentrated on the jump set J,. Moreover, if Eu €
L' (Q; M™ ") is the density of E%u with respect to £, then for £L"-a.e x €  we have
(see [5, Theorem 4.3])

i 1 / [(w(y) —u(x) — Eulx)(y —x)) - (y — x)|
im — dy
p—0+ p" B, (x) ly _X|2

=0, (1.1)
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where B, (x) denotes the open ball with centre x and radius p, while the dot denotes the
scalar product in R”. Finally, £u and J,, can be reconstructed from the derivatives and the
jump sets of the one-dimensional slices of the function u (see [5, Theorem 4.5]).

The space SBD(2) of special functions of bounded deformation was introduced in [5]
and is defined as the space of all functions u € BD(£2) with ESu = 0. In the framework
of linearized elasticity the variational models for fracture mechanics originated by the
seminal paper [21] have a sound mathematical formulation in the space SBD(£2) (see,
e.g., [27, 10, 13, 28, 12]). The common feature of these models is that the main energy
term has the form

Fo(u) ::/QQ(Eu)dx+7-l”_l(Ju), (1.2)

where Q is a positive definite quadratic form, which gives the stored elastic energy density
as a function of the strain Eu.

To prove the existence of solutions to minimum problems related to (1.2) one can use
a compactness result proved in [9, Theorem 1.1]: if uy is a sequence in SBD(£2) such that
I |l Lo (: Ry and Fg (uy) are bounded uniformly with respect to &, then there exist a sub-
sequence, still denoted by uy, and a function ¥ € SBD(2), such that uy — u pointwise
L'-ae.on Q, Eup — Eu weakly in L1(Q; M), and H"~1(J,) < liminf H"_I(Juk).
The drawback of this result is that it is difficult to obtain a priori bounds of |[uy || L= (;r")
for a minimizing sequence, even if lower order terms are present.

A similar difficulty appears also in the study of variational models of fracture mechan-
ics in the framework of finite elasticity (see [16, 17]), whose mathematical formulation
uses the function space SBV(€2; R"), for which we refer to [6, Chapter 4]. In these mod-
els Eu is replaced by Vu e L'(; M"*"), defined for every u € SBV(Q; R") as the
density of the absolutely continuous part of the measure Du with respect to £, and the
main energy term has the form

Fy () ::/ W(Vu)dx +H" (1), (1.3)
Q

where W is polyconvex and satisfies W(A) > |A|? for every A € M""*". The basic com-
pactness theorem for SBV (see [2, 4] and [6, Theorem 4.8]) requires that [|u || o0 (Q:r")
and Fy (uy) are bounded, and an L* bound for the minimizing sequences is problematic
also in this setting.

In the antiplane case (see [20]), u is a scalar function on € and the L*° bound is
obtained by truncation, assuming that the prescribed boundary values are bounded in L.
In the vector case, the solution adopted in [16, 17] is to formulate the problems in the
larger space GSBV(£2; R"), defined as the set of all £"-measurable functions u: Q — R"
such that ¥ (1) € BVioc(2; R") for every ¥ € C'(R"; R") such that Vi has compact
support. For every u € GSBV(£2; R") one can define a unique £"-measurable function
Vu: Q — M"" such that V(w(u)) = VY (u)Vu L"-a.e. in  for every ¥ considered
above, so that the functional Fy can be defined on GSBV(Q2; R").

In this new setting one can rely on the compactness result for GSBV proved in [3]
(see also [6, Theorem 4.36]): if uy is a sequence in GSBV(2; R™) such that |juy ||L1(Q;Rn)
and Fyw (uy) are bounded uniformly with respect to k, then there exist a subsequence, still



Generalised functions of bounded deformation 1945

denoted by uy, and a function u € GSBV(L2; R"), such that uy — u pointwise L"-a.e.
on Q, Vuy — Vu weakly in L'(Q; M"*"), and H"~'(J,,) < liminfy H"~'(J,,). An L'
bound for a minimizing sequence can be easily obtained from the lower order terms that
are usually present in the minimum problems for (1.3).

One may think that the same strategy can be used to formulate and solve the mini-
mum problems for (1.2). The first difficulty in this approach comes from the fact that, if
u € SBD(R2), then, in general, the composite function ¥ (#) does not belong to SBD(2)
(it does not even belong to BD(2)), unless ¥ (y) = yo + Ay for some yo € R” and
A € R. Therefore a definition of GSBD(£2) that mimics the definition of GSBV(£2; R")
is doomed to failure, since it would not lead to a space containing SBD(£2).

In this paper we propose a different definition of the space GSBD(S2) of general-
ized special functions of bounded deformation and of the larger space GBD(2) of gen-
eralized functions of bounded deformation. The definition is given by slicing. For every
EeS! =({feR" g =1} letIIf := {y € R" : y-& = 0} be the hyperplane
orthogonal to & passing through the origin. For every set B C R” and for every y € IT¢
we define

B :={teR:y+1£ e B} (1.4)

Moreover, for every function u: B — R" we define the function ﬁf : B§ — R by
Q5(1) = u(y +18) - §.

If u: B — R" is £L"-measurable, for H"~!-a.e. y € II¢ the jump set of 125 is denoted
by J.c. Moreover we set

T =€ T 1G5 0 — @01 = 1),

where (ﬂi)_ (1) and (ity) " (¢) are the approximate left and right limits of ﬁf, atr.

The space GBD(£2) is defined (see Definition 4.1) as the space of all £"-measurable
functions u: 2 — R” such that there exists a bounded Radon measure A on 2 with the
following property: for every & € S"~! and for H"~!-a.e. y € II¢ the function ﬁi belongs

t0 BVioe(25) and
[Hg (IDaSI(BS \ T +HOBS N T)) dH"™ () < M(B) (1.5)
y y

for every Borel set B C . If we replace BV]OC(Qi) by SBV]OC(Qi), we obtain the
definition of the space GSBD(£2) (see Definition 4.2).

The inclusion BD(2) € GBD(2) follows from the structure theorem for BD func-
tions (see [5, Theorem 4.5]), while the inclusion SBD(£2) € GSBD(£2) follows from [5,
Proposition 4.7]. Example 12.3 shows that these inclusions are strict.

We prove (see Theorem 6.2) that for every u € GBD(2) the approximate jump
set J, (see Definition 2.4) is countably (H"~!, n — 1)-rectifiable according to [19, Sec-

tion 3.2.14] and can be reconstructed from the jump sets of the one-dimensional slices ﬁ%
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(see Theorem 8.1). More precisely, if [u] := u™ — u™ is the jump of u on J, (see Defini-
tion 2.4), J,f ={x e J, : [u](x)-& # 0}, and (Jf)i is its slice according to (1.4), then
(Jf)f, = Jﬁi for every & € S"~! and for H"!-ae. y € IT5.

To prove these results we first study the traces of a function u € GBD(2) on a C'!
submanifold M of 2 of dimension n — 1. In this analysis we use the fact that the direc-
tional derivative D¢ (t(u - §)) is a bounded Radon measure for every u € GBD(S2), for
every £ € S""!, and every r € C!(R) with —1/2 < 7 < 1/2and 0 < 7/ < 1 (see The-
orem 3.5). Then we can apply the result proved in [31, Lemma 1.1] on the traces on M
of functions v € L' () such that a single directional derivative Dgv is a bounded Radon
measure on 2, provided that & is transversal to M. Inverting T we find that the trace of
u - £ is well defined for a set of vectors & forming a basis of R”, and this allows us to
define the trace of u (see Theorem 5.2).

In the proof of the rectifiability of J, the measure |Eu| used in [5] is replaced by the
measure [, defined for every Borel set B C Q2 by

k

Q. (B) := sup supz 15 (By),
k i=1

where ﬂi(B) is defined as the left-hand side of (1.5) and the second supremum is over
all families &, ..., & of elements of S"=! and over all families By, ..., By of pairwise
disjoint Borel subsets of B. We first prove (see Theorem 6.1) that the set

/lu(Bp(x)) - 0}

O, = {x € Q : limsup -

p—>0+ P

is countably (#"~!, n — 1)-rectifiable, following an argument developed in [23]. Then we
prove (see Theorem 6.2) that J, C ®, and 1 (®y \ J,) = 0, using the results on the
traces of GBD functions on C! manifolds.

A crucial step in the proof of the slicing result for J, is a difficult technical result
(see Theorem 7.1) concerning the jump points of the restriction to hyperplanes of a GBD
function. The proof of this result follows the lines of the analogous result for BD functions
proved in [5, Theorem 5.1], with | Eu| replaced again by [,,.

Another result of this paper is the existence, for every u € GBD(£2), of a symmetric
approximate gradient. This is a function Eu € L'(; My ), where MY is the space of
symmetric 7 x#n matrices, such that the following variant of (1.1) holds (see Theorem 9.1
and Remark 2.2):

1 w(l(u(y)—u(x)—5u(x)(y—x))~(y—x)|>dy=0
By (x)

lim — >
p—0+ p" ly — x|

for £L"-a.e x € 2 and for every bounded increasing continuous function ¥y : R — R
with ¥ (0) = 0. Moreover we prove that Eu can be reconstructed from the approximate

gradients Vﬁi of the one-dimensional slices 123 (see Theorem 9.1): for every & € "1

and for #"!-a.e. y € I1¥ we have (Eu)é;é' &= Vﬁi L'-ae.on S2§



Generalised functions of bounded deformation 1947

In the last section we prove the following analogue of the compact embedding of
BD(R) into L'(Q; R") (see Theorem 11.1): every sequence ux in GBD() satisfying
uniform bounds for |lu|l,1q. g and for the measures ,&ik has a subsequence that con-
verges pointwise L£"-a.e. on 2. A slightly stronger bound implies that the limit function
belongs to GBD(£2) (see Corollary 11.2).

For the proof we have to modify the well-known Fréchet—-Kolmogorov compactness
criterion in L! and to find a new version, based on the behaviour of the one-dimensional
slices (see Lemma 10.7). The proof follows the lines of [1, Theorem 6.6]. The main differ-
ence is that our assumptions concern only the components u -& of u and the corresponding
slices in the same direction &.

Arguing as in the proof of [9, Theorem 1.1], we deduce from these results on GBD(£2)
the following compactness property for GSBD(£2) (see Theorem 11.3): if uy is a sequence
in GSBD($2) such that [Jug |11 (q.n), IISMkIILz(Q;ngﬁw), and A" (Ju,) are bounded uni-
formly with respect to k, then there exist a subsequence, still denoted by uy, and a func-
tion u € GSBD(S2), such that uy — u pointwise L£"-a.e. on 2, Eur — Eu weakly in
LN(; Mg, and H'1(J,) < liminfy H"~1(Jy,).

Finally, Example 12.3 shows that there exists a sequence in SBD(£2), satisfying the
hypotheses of the compactness theorem for GSBD(£2), such that the limit function, which
necessarily belongs to GSBD(£2), does not belong to BD(£2).

2. Notation and preliminary results

For every x € R" the open ball of centre x and radius p is denoted by B, (x). For every
x,y € R", we use the notation x - y for the scalar product and |x| for the norm. The
n-dimensional Lebesgue measure on R” is denoted by £”, while 7£* is the k-dimensional
Hausdorff measure. We use the standard notation S"~! := {€ € R” : |§] = 1} and
wn := L"(B1(0)), so that H*~1(S" 1) = now,.

If 1 is a Borel measure on a Borel set E C R”, its total variation is denoted by |u|. If
A C E is a Borel set, the Borel measure u L A is defined by (u_ A)(B) := u(AN B) for
every Borel set B C E. If U C R" is an open set, M(U) is the space of all Radon mea-
sures on U, Mp(U) := {u € M(U) : |u|(U) < oo} is the space of all bounded Radon
measures on U, and MZ(U) = {u € MpU) : u(B) > 0 for every Borel set B C U}
is the space of all nonnegative bounded Radon measures on U.

Definition 2.1. Let A be a subset of R”, let v: A — R be an £"-measurable function,
let x € R” be such that
. LA N B,(x))
limsuyp ———— >0,
p—>0+ :On

and let a € R™. We say that a is the approximate limit of v as y tends to x, and write

aplimv(y) = a, 2.1
y—x
if
lim L"({y € ANBy(x) : [v(y) —al > ¢&})
p—0+ p"

=0 foreverye > 0.
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Remark 2.2. Let A, v, x, and a be as in Definition 2.1 and let ¥ be a homeomorphism
between R™ and a bounded open subset of R™. It is easy to prove that (2.1) holds if and
only if

) 1

lim — [V (v(y) —¥(a)ldy = 0.

p=0+ p" JAnB, (x)

Definition 2.3. Let U be an open subset of R". For every L"-measurable function
v: U — R™ we define the approximate continuity set as the set of points x € U for
which there exists a € R™ such that

aplimv(y) =a.

y—x

The vector a is uniquely determined and is denoted by v(x). The approximate disconti-
nuity set S, is defined as the complement in U of the approximate continuity set.

Definition 2.4. Let U be an open subset of R”. For every L"-measurable function
v: U — R™ we define the approximate jump set J, as the set of points x € U for
which there exist a, b € R, witha # b, and v € S"—1 such that

aplim v(y)=a and aplim v(y) =b. 2.2)
(y—x)-v>0 (y—x)-v<0
yox y—>x

The triplet (a, b, v) is uniquely determined up to a permutation of (a, b) and a change
of sign of v, and is denoted by (vt (x), v™(x), vy(x)). The jump of v is the function
[v]: J, — R™ defined by [v](x) := v (x) — v~ (x) for every x € J,. Finally, we define

Jhi={x e Jy 1 [](0)] = 1}. (2.3)

Remark 2.5. It follows easily from the definitions that J, C S, for every £"-measurable
function v: U — R™. Moreover, L"(S,) =0and v = v L"-a.e. in U by Remark 2.2 and
by Lebesgue’s differentiation theorem.

Thanks to Remark 2.2 the next proposition follows from [6, Proposition 3.69].

Proposition 2.6. Let U be an open subset of R" and let v: U — R™ be an L"-measur-
able function. Then S, Jy, and Jv1 are Borel sets and v: U\ S,, — R™ is a Borel function.
Moreover, for every x € J, we can choose the sign of v,(x) so that v7: J, — R™,
v Jy = R”, and v,: J, — S"! are Borel functions.

If U ¢ R" is an open set and v € LIIOC(U ), the gradient Dv of v in the sense of distribu-

tions is the R"-valued distribution defined by Dv = (Djv, ..., D,v). For every £ € R"
the directional derivative D¢ v is the distribution Dzv := Dv - & = ), & D;v. The space
BV (U) of functions of bounded variation is defined as the space of functions v € L' (U)
such that D;jv € Mp(U) fori = 1,...,n, while BV, (U) is the space of functions
v e Ll (U)suchthat Djv e M(U) fori =1, ..., n. For the properties of BV functions

loc

we refer to [18] and [6].
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3. Slicing of directional derivatives

For every & € R" \ {0}, for every y € R”, and every set B C R” and we define
B :={teR:y+1£ e B}

Moreover, for every function v: B — R™ we define the function vi : Bf — R™ by

vf,(t) =v(y +1§).
When m = n, we also consider the function ﬁf : BE — R defined by
05(1) == v(y +18) - £ = v5(1) - &.

The hyperplane orthogonal to & passing through the origin is denoted by ITé := {y € R" :

y - £ = 0} and the orthogonal projection from R” onto IT¢ is denoted by 7% : R* — TI¢.
Throughout the paper, €2 is a fixed bounded open subset of R”. The following propo-

sition is proved in [6, Corollary 2.29 and Theorems 3.103 and 3.107] (see also [26]).

Proposition 3.1. Let v € L' (Q) and let £ € R" \ {0}. The following conditions are
equivalent:

(@) Degv e Mp(Q2);
(b) For H" '-a.e. y € I the function vf, belongs to BV(Qéy:) and

/ |DV§|(25) dH" ' (y) < o0. 3.1)
ré
If these conditions are satisfied, then for every Borel function g: Q — R the function

V> /Qs g5 d|Dvj| (3.2)
J

is H"~'-measurable on T1¥ and

/gd|ng|=/ </ g’;'d|Dv§,|)dH"—1(y). (3.3)
Q s \Job ’

y

Given an open set U C R, let E C U be £!-measurable with £!(U \ E) = 0, and let
v: E — R™ be an integrable function. As v is defined £'-a.e. in U, it can be consid-
ered as a distribution on U, whose derivative is denoted by Dv. The pointwise variation
(Vv)(I) of v on an open interval I C U is defined by

k
Vo)) == supiz () — v(tion)| fo <t < --- <1y, t; € EN 1}. (3.4)
i=1

We observe that Vv, unlike Dv, is sensitive to changes of v (or of the domain of v) on sets
of Lebesgue measure zero. If (Vv)([) is finite, then Dv can be represented by a bounded
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measure on I/ with |Dv|(I) < (Vv)(I). Moreover, if (Vv)(I) < oo for every open
interval I C U, then Vv can be extended to a nonnegative Radon measure, still denoted
by Vv, defined on all Borel subsets of U. Indeed, if A C U is open, we define (Vv)(A) as
the sum of (Vv) (1) over all connected components / of A. Then A — (Vv)(A), defined
now for all open subsets of U, is increasing, inner regular, subadditive and additive on
disjoint open sets. Therefore the set function defined for every Borel set B C U by

(Vv)(B) :=1inf{(Vv)(A) : Aopen, B C A C U}

is a Radon measure on U, which coincides with (3.4) on all open intervals I C U (see,
e.g., [15, Theorem 14.23]).

Letv: 2 — R be £"-measurable. By Definition 2.3 for every § € R" \ {0} and every
y € TI¢ the function 175 is defined on Qi \ (Su)i.

Proposition 3.2. Let v € L'(Q) and let &€ € R" \ {0}. Assume that Dgv € My (S2). Then
the following conditions are satisfied for H" '-a.e y € T1¢:

(a) f)i is defined and coincides with viﬁl -a.e. on Qi
(b) v5 € BV(Q) and | DV5|(B) = (VT5)(B) for every Borel set B C 5.

Proof. 1t is enough to repeat the proof of [5, Proposition 3.2]. O

We now investigate the behaviour of truncations of scalar functions, and the combined
effect of truncation and slicing. The following definition introduces the relevant truncation
functions.

Definition 3.3. Let 7 be the set of all functions T € C'(R) with —1/2 < 7 < 1/2 and
0<7t <1

The following proposition deals with the one-dimensional case. It provides a bound on
the distributional derivative of a function starting from a uniform bound of its truncations.

Proposition 3.4. Let U be a bounded open subset of R, letv: U — R be L'-measurable,
and let ) € MZ(U). Suppose that for every T € T we have t(v) € BV(U) and

|ID(t(v))|(B) < A(B) forevery Borel set B C U. 3.5)
Then v € BV (U) and
|Dv|(B\ J) +H°(BNJ)) < A(B) forevery Borel set B C U. (3.6)

If U has a finite number of connected components, then v € BV(U).

Proof. 1t is enough to prove the result when U is a bounded open interval. In this case
we have to prove that v € BV(U) and that (3.6) holds. Let us fix tp € T with ‘L’é(t) >0
and to(—t) = —1o(¢) for every ¢t € R. Then the function vy := 79(v) belongs to BV(U).
Since ro_l is continuous, we have J, = Jy,.
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For every a > 0 let o, be the truncation function defined by o,(¢) = —a fort < —a,
o4() =t for—a <t <a,and 0,(t) = a fort > a. Let us fix an integer m > 0 and let
U := o, (v). We claim that v,, € BV(U) and

|Dum|(B\ L) +HO (BN L) < A(B) 3.7)
for every Borel set B C U. Indeed, since v9 € BV(U), v, = am(ro_l(vo)), and
om(Ty 1) =1 1(r,o(m)) is Lipschitz continuous on R, we deduce that v,, € BV(U).

By (3.5) and by Vol’pert’s chain rule in BV (see [33] and [6, Theorem 3.96]) for every
7 € T and every Borel set B C U we have

/B\J ' (Om) d|Dvm| = |D(u)I(B\ Jy,) < ID@)I(B\ Jy,)
< MB\ Jy,), (3-8)

where v, is the precise representative introduced in Definition 2.3. Note that v,,(¢) is
defined for every t € U \ J,, by well known properties of BV functions in dimension
one.

For every integer k there exists a function 7z € 7T such that 74 () = ¢t — k/2 for
k/2—1/4 <t <k/2+ 1/4. Thus (3.8) gives

| Dvpm|(Bi) < A(Bg),

where By :={t € B\ J,,, : k/2 —1/4 < v,(t) < k/2 + 1/4}. Summing over k we
obtain
[Dvp|(B\ Jy,,) = A(B\ Jy,). (3.9)

Letusfixt € J,,, C Jy. By (3.5) for every T € T we have
[T@* () =TT O] < A(1)).

Iftr e Jy, \ Jvlm, there exists T € 7 such that |[v,](2)] = |t (v} (1) — T(v, @) <
[Tt () — t (v~ (¢))|. This implies |[v,,](£)| < A({t}), hence

|Dvy, |({t}) < A({t}) foreveryt e Jy, \ Jvlm. (3.10)

Ifr e Jvlm, for every ¢ > 0 there exists T € 7 suchthat 1 —e < |r(v;g(t)) —17(v, ()| <
[Tt () — z(v™(¢))|, which gives

1<t} foreverytelJ, . (3.11)
Inequality (3.7) follows now from (3.9)-(3.11).
Let J,/% := {t € Jy, : |[vn](®)] > 1/2}. By (3.10) and (3.11) we have H0(J,/%) <

ZA(J,},,{Z) < 2X(U) < oo. Since JU1 is contained in the union of the increasing se-

quence Jvlm/z, we obtain ’HO(JUI) < 2A(U) < oo. Using (3.7) we obtain

|Dvp|(U) < A(U) +/l [om]l dH" < 2(U) +/1 [l dH° < oc. (3.12)
m Jl/

JU
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Letusfixto e U\ J, C U\ Jy,. Since U is an interval, we have
[Um (D] = [0 (1) = Um (t0)| + [Um (t0)| < [Dvm|(U) + [V(20)]
for every m and everyt € U \ J, C U \ J,,,. By (3.12) this inequality implies
lvmllLe@) = A(U) + /1 [l dH° + [5(t)| < o0.
JU
Since the right-hand side does not depend on m, there exists mg such that ||vy, || L)

< my. This implies that v = v,,,, hence v € BV(U) and (3.6) follows from (3.7). ]

The following theorem is the main result of this section. It connects a uniform estimate
on the directional derivatives of the truncations with an estimate on the one-dimensional
slices. The equivalence proved in the theorem will be used in the definition of the space
GBD(£2).

Theorem 3.5. Let v: Q2 — R be L"-measurable, let ¢ € R" \ {0}, and let ) € M;(Q).
The following conditions are equivalent:

(a) for every v € T the partial derivative Dg(t(v)) belongs to My () and its total
variation satisfies

|De(t(v))|(B) < A(B) for every Borel set B C ; (3.13)

() for H" '-a.e. y € TI¢ the function vi belongs to BV]OC(Qi) and
fns(|1)v§|(35 \ ng) +HO(BS N JUIE)) dH"'(y) < A(B) (3.14)
y y

for every Borel set B C Q.
The following lemma justifies the integral in (3.14).

Lemma 3.6. Let v: Q — R be L"*-measurable and let £ € R" \ {0}. Assume that for
H' -a.e. y € TI¢ the function vi belongs to BVlgc(Qi). Then for every Borel set B C 2
the function

y > | DV§|(BS \ Jvli) +HO(BS N Jvli) (3.15)

is H"V-measurable on TI.

Proof. By modifying v on a set of Lebesgue measure zero, we may assume that v is a

Borel function on 2 and that vf, € BVloC(Qi) for every y € I¢. For every x € Q2 we

define

1 [° 10
vi(x) = limsup—/ v(x +s&)ds and vi(x) = limsup—/ v(x 4+ s&)ds.
p—0+ P Jo p—=0+ P J—p
(3.16)
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By Fubini’s theorem vi and v* are Borel functions on §. Therefore F := {x e Q:

|vi(x) — vi(x)| > 1} is a Borel set. For every y € [1¥ we have (vi)i = (vg_)i = vi
L'-ae. in Qi thanks to Lebesgue’s differentiation theorem. By elementary properties of

BV functions in dimension one, this implies J, = Ff for every y € I1¢. Therefore
vy
1 0 1 0
DB \ )+ HOBE NI = 1DIBE\ FY) +HO(B] 0 F)

for every Borel set B C  and every y € I15. The measurability of (3.15) follows now
from (3.2) and from the measurable projection theorem (see, e.g., [14, Proposition 8.4.4]).
O

Definition 3.7. If condition (b) of Theorem 3.5 is satisfied, for %" !-a.e. y € 1 we can
define a measure ui € M;(Qi) by setting

15(B) = |Dv5|(B \ Jvlg) +HBN ng) for every Borel set B C Q5. (3.17)
: y y
Moreover, by Lemma 3.6 and (3.14) we can define a measure ué M;(Q) by setting
uf(B) := / 1 (BS)dH" " (y)  for every Borel set B C Q. (3.18)
Ié

It follows from condition (b) of Theorem 3.5 that

uf(B) < A(B) forevery Borel set B C Q. (3.19)

Proof of Theorem 3.5. Assume (a). Let 7 be a countable subset of 7~ such that for every
7 € T there exists a sequence 7 in T converging to T pointwise on R. Let us fix 7 € T
and let w := t(v) and @ := 7% (1), where 7¢ is the orthogonal projection onto Mé. Let N
be a Borel subset of IT¢, with 4"~ ! (N) = 0, such that the singular part of & with respect
to H"~! L I1¢ is concentrated on N, and let g: TT¥ — R be the density of the absolutely
continuous part of @ with respect to H”~! L T1¢. By the disintegration theorem (see, e.g.,
[6, Theorem 2.28]) there exists a Borel measurable family (Xi)yens of Radon measures,

with )\i € Mj(Qi), such that
A(B) = / 35(BS)dw(y)  for every Borel set B C Q. (3.20)
Ié
By (a) and Proposition 3.1 the function wi belongs to BV(Qi) for H" '-ae.y e IT5.
Given a Borel set A C I1¢ and an interval I C R, by (3.3), (3.13), and (3.20), applied to
theset{y +t£:ye€ A, t € IﬂQi},wehave

/ |Dw3 | (I N Q5 dH" ™ (y) =/ |Dws|(1 N Q5)dH" ! (v)
A A\N

< [ Kunahemano.
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It follows that for H"~!-ae. y € Hi we have

|Dw$|(B) < g(y)A5(B)  for every Borel set B C Q5. (3.21)
Since wi = t(vf,), from (3.21) we deduce that
ID(t(v5))[(B) < g(y)A5(B) for every Borel set B C 5, (3.22)
hence
/ . T Dy dt < g(y)A(supp ) (3.23)
o

for every ¢ € Ccl(Qi) with |¢| < 1 on Qi Since 7 is countable, for H"!-a.e. y € Hi
inequality (3.23) holds for all T € 7. From the density property of 7 we conclude that for
H' lae. y e l'[f, inequality (3.23), and hence (3.22), holds for every t € 7. Therefore
Proposition 3.4 implies that v§ € BVIOC(Qi) and

IDUSI(B\ J ) +HO(B N T L) < g(1)A5(B) (3.24)

for H"~!-a.e. y € IT¢ and every Borel set B C Qf
Integrating (3.24) over IT¢ we obtain

& 3 1 0, pé& 1 n—1
[ (D0 I+ 1O 0 ) e )

< /H SOPEBH AN 0) < AB),

where we have used (3.20) in the last line. This concludes the proof of (3.14) and of the
implication (a) = (b).

Assume now (b) and let /L'i and % be the measures introduced in Definition 3.7. We
fix T € 7 and we set w := 7(v). Then for H"!-a.e. y € TI the function wi belongs to
BV(Qi). Since 0 < 7/ < 1 we have |Dw§|(B) < |Dv§|(B) for every Borel set B C Qi
Since |r((v§)+) - l'((vf))_)| < 1 we have also |Dw§|(B) < HO(B) for every Borel set
B C Jvi' Using (3.17) we obtain

IDwSI(B\Je) < [DUSI(B N\ J ) = i3 (B\ J o),

|DwS|(B N Jvli) <H’BN Jvls) = u5(B N Jvli)

for every Borel set B C Qi It follows that |Dw§|(B) < /Li(B) < oo for H" l-ae.
y € I1¢ and for every Borel set B C Q§ By Proposition 3.1 and by (3.18) and (3.19) we
have Dew € M () and |Dgw|(B) < ué(B) < A(B) for every Borel set B C Q. This
proves (3.13) and concludes the proof of the implication (b)=>(a). m]

The following theorem shows that the measure 1%, which was defined by slicing, can also
be obtained from the measures Dg (t(v)) with t € 7.
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Theorem 3.8. Let v: Q — R be L"-measurable and let £ € R" \ {0}. Assume that
conditions (a) and (b) of Theorem 3.5 are satisfied, and let ,udE be the measure introduced
in Definition 3.7. Then for every open set U C Q we have

k
uEU) = supsup Y _ | Dg (i (0)|(Un), (3.25)
k i=1
where the second supremum is over all families t1, . .., Ty of elements of T and all fami-
lies Uy, ..., Uy of pairwise disjoint open subsets of U. In other words, ¥ coincides with

the smallest measure A such that (3.13) holds for every t € T.

Proof. In the proof of the implication (b) = (a) in Theorem 3.5 we have already shown
that | Dg (t(v))|[(B) < ué (B) for every Borel set B C 2. This implies that the right-hand
side of (3.25) is less than or equal to y,é ).

To prove the opposite inequality we fix an open set U C 2. By modifying v on a
set of Lebesgue measure zero, we may assume that v is a Borel function on 2 and that
v;":, € BVloc(Qi) forevery y € I€. Let vi and vi be the Borel functions defined by (3.16)
and let £ := {x € Q: v (x) #v°(x)}and F := {x € E : [v.(x) — v° (x)| > 1}. For
every y € I1¢ we have (vi)é = (vi)i = vi Ll-ae. in Q"’; by Lebesgue’s differentiation
theorem. By elementary properties of BV functions in dimension one, for every y € IT¢
this implies

1 t+p £ £
p_l)thr Z - |vy (s) — (v+)y(t)| ds =0, (3.26)
WH ) = 50 and 570 = D50) (3:27)

forevery t € Qi \ Ef This implies that ng = E§ and JvlE = F§ for every y € I15.

For every 0 < ¢ < 1 we can find three sequences of pairwise disjoint Borel sets A;,
B;, C; and six sequences of real numbers ail, al.z, bl.l, biz, cl.l, cl.2 such that

U\NE=|JA. UnE\F=JB. UnF=JG (3.28)
i i i
ai1 < vi(x) < aiz for every x € A;, (3.29)
bl-1 < min{vi(x), vi(x)} < max{vi(x), vg_(x)} < bl-2 for every x € B;, (3.30)
min{v (x), 15 (0)} < ¢! < & < max{v} (x),v5 (x)} foreveryx € C;,  (331)

al <a? <a' +1, b <b}<bl+1, c+1<ct+e (3.32)

i

By (3.28) we have

pEW) =Y uE(A) + Y uF (B + Y 1 (Ch).
i=1 i=1 i=1
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Let us fix a constant o < yﬁ (U). Then there exists an integer k > 0 such that
k k k
o <Y uEA) + Y uE(B) + ) u(C).
i=1 i=1 i=1

By standard approximation properties there exist pairwise disjoint compact sets A, ...,
Ak, B1,..., By, Cy,...,Cy,with A; C A;, B C B;, and C; C C;, such that

k k k
o« <y wEA)+ Y uE B+ uE (G, (3.33)
i=1 i=1 i=1
Liet Al: et Aku 1§1, oo Bk, ~C~'1, e, ék be pairwise disjoint open subsets of U with

A; CA;, B C B;,and C; C C;.

By (3.32) for every i there exists p; € 7 such that ,ol.’ (s) = 1 forevery s € [ail, aiz].
Since A,- C A; and (A,-)i N Jv; = ¢, from (3.17) and (3.29) we obtain, using Vol’pert’s
chain rule in BV (see [6, Theor}em 3.96]) and (3.26),

15 ((AD%) = IDVI((A)F) = /( o pH(W5)5) dIDVE| = |D(p; (W5 ((A))

iy

for every i and every y € I1%. Integrating over I1¢ and using Proposition 3.1 and (3.18)
we obtain

18 (A;) = |Dg (pi (W)I(A;) < |Dg(pi (V)I(A). (3.34)

By (3.32) for every i there exists o; € T such that |o;(s2) — 0;(s1)| = |s2 — s1] for
every s1, 52 € [b!, b?]. Since B; C B; and (B;)}, C J e\ J, from (3.17) and (3.30) we
y U_V

1

obtain, using Vol’pert’s chain rule in BV and (3.27),

15 ((B)S) = /( i )T = )7 1dH° = / o (@) = o (I dH

i)y (’y

= |D(oi W{)I((B)3)

for every i and every y € IT¢. Integrating over I1¢ and using Proposition 3.1 and (3.18)
we obtain
1 (Bi) = |Dg (0; )|(Bi) < |De (07 (v)|(By). (3.35)
By (3.32) for every i there exists 7; € T such that 7;(s2) — 7;(s1) > 1 — ¢ for every
Sp < cl.1 < cl.2 < 53. Since C; C C; and (Ci)i C J., from (3.17) and (3.31) we obtain,
Uy

using Vol’pert’s chain rule in BV and (3.27),
(1= e)us(CH5) = (1 —a)H(CDY)

< / @D = w(@H DA = ID@E)IENT)

i)y
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for every i and every y € I1¢. Integrating over I1¢ and using Proposition 3.1 and (3.18)
we obtain

(1 — &) (C;) = |De (; W)(Cy) < |Dg (z (w)|(Co). (3.36)
By (3.33) and (3.34)—(3.36) we obtain

k k k
(1= &) < > D (pi W)I(A) + Y D (i (wDI(Bi) + Y IDe (ri(w)I(Ci).
i=1 i=1 i=1

This concludes the proof of (3.28), since @ < ué(U) and 0 < & < 1 are arbitrary. m]

4. Definition and first properties

In this section we define the space GBD(£2) of generalised functions of bounded defor-
mation and the space GSBD(£2) of generalised special functions of bounded deformation.

Definition 4.1. The space GBD(2) of generalised functions of bounded deformation is

the space of all £"*-measurable functions u: 2 — R" with the following property: there

exists A € MZ(Q) such that the following equivalent (see Theorem 3.5) conditions hold

for every £ € "I

(a) for every v € 7T the partial derivative Dg (7 (u - £)) belongs to M, (2) and its total
variation satisfies

|De(t(u - €))|(B) < A(B) forevery Borel set B C Q; 4.1

(b) for H" l-a.e. y € I¢ the function ﬁ§ = ui - £ belongs to BVloc(Qi) and
/ (IDa5|(BS \ L) + HO(BS N T L)) dH" ' (y) < M(B) 4.2)
é uy iy

for every Borel set B C .

Definition 4.2. The space GSBD(2) of generalised special functions of bounded defor-
mation is the set of all functions u € GBD(S2) such that for every & S"=1 and for
H' e, y € I1¢ the function ﬁi = uf - & belongs to SBVIOC(Q‘i) (see [6, Section 4.1]
for the definition of this space).

Remark 4.3. Arguing as in the proof of Proposition 3.4 we can prove that condition (b)
of Definition 4.1 is equivalent to

(b') for H" '-ae. y € I the function ﬁi = ui - £ belongs to GBV(Q?) and

/H (ID@@DIBIN T )+ HOUBENT | ) dH () < 4(B)

Oa (ﬁi)
for every Borel set B C €2 and every a > 0,

where o, be the truncation function defined by o,(t) = —a fort < —a, o,(t) = t for
—a <t < a,and o,(t) = a for t > a. For the same reason, Definition 4.2 does not
change if i}, € SBVioc(R)) is replaced by i € GSBV(K}) (see [6, Section 4.5] for the
definition of this space).
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Remark 4.4. When n =1 the space GBD(£2) reduces to {# € BV}oc(2) : |Du|(2) < oo}
and GSBD(£2) reduces to {u € SBV|oc(2) : |Du|(2) < oo}. In the case n > 1, using
the slicing theory for BV functions developed in [6, Section 3.11], we can prove that if
u € [GBV(2)]" (see [6, Definition 4.26]) and u satisfies the natural estimate considered
in [6, Theorem 4.40], then u € GBD(2). A similar result holds for [GSBV(£2)]" and
GSBD(£2).

Remark 4.5. Let u € BD(2). By the structure theorem for BD functions (see [5, Theo-
rem 4.5]) for every £ € S"! and for H"!-a.e. y € IT¢ we have ﬁé; € BV(Qi) and

fm(|Dﬁ§|<B_€ \ i) +HOBS N L)) dH' () < |Eul(B),
y y

where Eu is the matrix-valued Radon measure defined by (Eu);; := %(D,‘u./ + Dju;).
It follows that BD(2) € GBD(£2). Using [5, Proposition 4.7] we can also prove that
SBD(£2) € GSBD(£2). These inclusions are strict, as shown in Example 12.3.

Remark 4.6. Let 0: R — R be the truncation function defined by o (s) := min{|s|, 1}.
Since

DI = [ pagiant
) Bﬂ]ﬁ;

for every Borel set B C Qi, inequality (4.2) is equivalent to

/ <|Dﬁ§|(B§\JA€)+ / a([ﬁi])dW)dH”‘(y)suB)
mé ’ "y By ¢

for every Borel set B C . Using the fact that | Di}|({r}) = 0 for every € Qf \ Joe, we
can write the previous inequality as “

/H s(|Dﬁ§|<B§\J§,y)+ /B . a([ﬁi])d%o> dH"'(y) <M(B),  (43)
vy VEy

where J¢ y is an arbitrary countable set containing Jﬁ% and [ﬁi](r) := 0 for every t €
5\ L. ‘

Sinc)e o(s+1) <o(s)+o(t) and o (ps) < max{|p|, l}o(s) foreverys,t, p € R, we
deduce from condition (b) of Definition 4.1 and from (4.3) that GBD(£2) and GSBD(£2)
are vector subspaces of the vector space of all £L"-measurable functions from 2 to R”.

Remark 4.7. Forevery B C ,every p € R, and every & € R"\ {0} we have ,oBf,’ b= Bg.
Moreover, for every u: Q@ — R”" and every t € Qﬁé we have ﬁf,g(t) = pﬁi(,ot). It

follows that, if u € GBD(R) and & € R" \ {0}, then u} € BVioo(2}) for H"'-ae.
y € TI¢ and the left-hand side of (4.2) is finite.
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Definition 4.8. Let u € GBD(Q), let £ € §"!, and let y € R" with &} € BV(Q5),
|D12§|(SZ§,) < 00, and ’HO(J}E) < 00. The measure ,&i € M;(Qi) is defined by
) i

A5(B) == |Dif|(B \ Jﬁ‘g) +H'BN Jﬁ‘%.) for every Borel set B C Q5. (4.4)
- y y

Remark 4.9. By condition (b) of Definition 4.1 the measure ﬁi is defined for H"~!-

a.e. y € 5. More in general, an easy change of variables shows that ,&i is defined for
H''-ae.y e 1" forevery n € S"~! withn - £ # 0.

Definition 4.10. Let 1 € GBD(S2) and let & € S*~!. The measure 4f € M;‘(Q) is
defined by

045 (B) := / fi5,(B5)dH" " (y)  for every Borel set B C Q. (4.5)
1é

We use the notation (/lu)i and /lﬁ when we want to underline the dependence on u.

Remark 4.11. If € S""! and 5 - £ # 0, an obvious change of variables shows that
25(B) = |n - §|/ ﬂi(Bf.) dH"'(y) for every Borel set B C .
I

Remark 4.12. The measures /li and /i corresponding to u € GBD(R) coincide with

the measures ui and pf introduced in Definition 3.7 for the scalar function v := u - &.
By (4.2), (4.4), and (4.5) we have

[Ls (B) < A(B) forevery Borel set B C €. 4.6)
Remark 4.13. Let u € BD(R2). By [5, Theorem 4.5] and by the area formula (see, e.g.,
[6, Theorem 2.71]) for every & € S"~! and every Borel set B C 2 we have

A5(B) = |[Euk - (B \ Ju) +/l; ) o(lul - &)|v, - &|dH"™" < |Eu& - £|(B)
NJy
where o is the function introduced in Remark 4.6.

Remark 4.14. Let u € GBD(Q2). For every t € T, every open set U C £, and every
peC Cl (€2) the function

én—)/ t(u-&)Ve-Edx
U
is continuous on S"~!. Since

De(z(u-ENIU) = sup /r(u-swwx, @.7)
pecl@) /U
lpl<1

the function & > [Dg(t(u - £))|(U) is lower semicontinuous on sr1 By Theorem 3.8
and Remark 4.12 it follows that £ — {15 (U) is lower semicontinuous on "',
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Remark 4.15. By standard properties of bounded measures, it is enough to check the
inequalities in (4.1) and (4.2) when B € B, where B is a base for the topology of Q2
and B is stable under finite unions and intersections. By the lower semicontinuity of
& > |Dg(t(u - §))|(U) when U is open (Remark 4.14), it is enough to check (4.1)
for every £ in a dense subset E of S"~!. Since conditions (a) and (b) of Definition 4.1 are
equivalent for every £ by Theorem 3.5, it is enough that one of them is satisfied for every
B € Bandevery £ € E.

Definition 4.16. For every u € GBD(R2) let 11, € ./\/l; (£2) be the measure defined by
setting, for every Borel set B C €2,

k
fuu(B) 1= sup sup Y _ jiyl (By), (4.8)
k i=1
where the second supremum is over all families &1, ..., & of elements of S"1 and over
all families By, ..., By of pairwise disjoint Borel subsets of B.

By (4.4) and (4.5) for every u € GBD(2) the measure [, is the smallest measure A
that satisfies condition (b) of Definition 4.1.

Proposition 4.17. Let u € GBD(2) and let 1 € MZ{(Q) be the measure considered in
Definition 4.1. Then for every Borel set B C Q2 we have

fiu(B) < M(B). (4.9)

Moreover, if H" ' (78(B)) = 0 for H" -a.e. £ € S"™!, where n¢ is the orthogonal
projection onto 1%, then ji,(B) = 0.

Proof. Inequality (4.9) follows from (4.6). To prove the second statement, we fix a Borel
set By C 2. We consider the set Sy := {& € "~ : H"~ (7% (By)) = 0} and we assume
that H"~1(S*~1 \ So) = 0. Let i, be the measure defined as in (4.8), with the constraint
that &, ..., & are now elements of Sy. By (4.6) we have

1y (B) < A(B) forevery Borel set B C 2. (4.10)

Let A be the absolutely continuous part of A with respect to fi,. From (4.10) we
deduce that (1, (B) < A(B) for every Borel set B C 2. Therefore the definition of [i,
gives ,ui(U) < A(U) for every & € Sp and every open set U C €2. Since & +— ﬁ,i(U)
is lower semicontinuous on S"~! by Remark 4.14 and Sy is dense in S"~1. we conclude
that ,ui(U ) < A(U) for every £ € S"~! and every open set U C . It follows that
,ui(B) < A(B) for every & € S"~! and every Borel set B C , which implies

L (B) < A(B) for every Borel set B C Q. 4.11)

Since by (4.5),
A5 (B) :=f A5 (B aH"™ (),
75 (B)
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we have [ﬁ (Bp) = 0 for every & € Sp. It fgllows that fi,(Bg) = 0. As X is absolutely
continuous with respect to fi,, we have also A(Bg) = 0. By (4.11) this gives i, (By) = 0,
which concludes the proof. O

In the proof of the rectifiability of J, we need the following semicontinuity result.

Lemma 4.18. Let uy be a sequence in GBD(2) converging in L"-measure to a function
u € GBD(R2). Then

as(U) < liminf 25 (U) (4.12)
k—o00 k

for every & € "1 and every open set U C Q.
Proof. For every ¢ € CC1 (£2) the function

ur—)/ t(u-&)Ve-Edx
U

is lower semicontinuous with respect to convergence in £"-measure. By (4.7) the func-
tion u > |Dg(t(u - §))|(U) is lower semicontinuous. The conclusion follows now from
Theorem 3.8 and Remark 4.12. ]

The following theorem concerns k-dimensional slices. For every linear subspace V of R"
of dimension k > 0 and for every bounded open set 2y in the relative topology of V, the
space GBD(R2y) is defined as in Definition 4.1, with 2 replaced by Qy, R” replaced by
V,S"~! replaced by SI{,_I = §""' NV, ¢ replaced by H%, :=T1¢ NV, L" replaced by
H* LV, and H"~! replaced by H*~!.

Theorem 4.19. Let V be a linear subspace of R" of dimension k > 0, let V+ be its
orthogonal subspace, and let Ty be the orthogonal projection from R" onto V. Given
a function u € GBD(Q), for every y € V= let Qy={zeV:y+ze Q})and let
uy: 2y — V be the function defined by uy(z) := mwy(u(y + z)). Then u, € GBD(L2y)
for H" *-a.e.y e VL.

Proof. By Fubini’s theorem the function uy: Q, — V is H*-measurable on Q, for
H"k.ae.y € VL. Let us prove that for H" *-a.e. y € V1 there exists )ALy € M;(Qy)
such that u,, satisfies condition (b) of Definition 4.1 on 2, C V forevery & € V.

We begin by observing that, if £ € V, then the hyperplane I1¢ is the sum of the
orthogonal subspaces V1 and H%, := [1¥ NV, of dimension n — k and k — 1, respectively.
Since & € V, we have u-& = y (u)-£. This implies that i ., = ()3 on Q. = (2}
for every y € V4 and every z € H%,.

For every Borel set B C Q and every y € V- we define By :={z€V:y+z € B},s0
that B€+Z = (By)§ for every z € V. Let w = my (1), let N be a Borel subset of V-, with
Hk (N ) = 0, such that the singular part of @ with respect to H" % L V* is concentrated
on N, and let g: V!t — RT be the density of the absolutely continuous part of @ with
respect to HR v, By the disintegration theorem (see, e.g., [6, Theorem 2.28]) there
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exists a Borel measurable family (A,) yevil of Radon measures, with A, € M;(Qy), such
that

A(B) = / Ay(By)dw(y) forevery Borel set B C €. (4.13)

VL
Let us fix a countable dense subset E of Sk L= s-1ny. By condition (b) of
Definition 4.1 and by Fubini’s theorem for H"~ k—a e.y € V the functions u (uy)g

belong to BVloc(Qyﬂ) = BVIOC((Qy)Z) for every £ € B and for H1ae z € I'IV.

Let B be a countable base for the topology of V such that Uy N U, € B for every
Ui, U, € B. By Remark 4.15 to conclude the proof it is enough to show that for #"*-
ae. y € V1 the function uy satisfies the analogue of (4.2) in V, with A replaced by

Ay = g(MAy.

Given a Borel set A C V= and a open set U € B, we consider the Borel set B C
definedby B :={y+z:y €A, zeUﬂQ}LetA_A\NandB {yv+z: yeA
z € U N Qy}. By Fubini’s theorem and by (4.4)—(4.6) and (4.13) we have

/ ( [ s 0@ ant 1(z)> A ()
a\Jr,

-/ ( /H A, (U8 rw(szy)i)dﬂ"—l(z)) aH K (y)

A 14

_ /H RSB AR () = 1B < 1)
_ /A A (U N 2y) dar(y) = fA A (U 1 2500 HF ().

Since this inequality holds for every Borel set A C V- we conclude that for every U € B
we have

/H 542 (UE 025 dH ' (2) < g(A, (U N Q) (4.14)
Vv

for H"*-a.e. y € V=,. Since B is countable, we conclude that for H" *-ae. y € V+
inequality (4.14) holds for every U € B. This shows that for H"*-ae. y € V< the
function u, satisfies condition (b) of Definition 4.1 on V for every § € E and every
B = U € B, hence u, € GBD(Qy) by Remark 4.15. O

5. Traces on regular submanifolds and on the boundary

The following theorem summarizes the known results on the traces of functions v €
LY () satisfying Dgv € M(S2) for some vector £ € S"~ 1.

Theorem 5.1. Let U and V be open subsets of R" of the form

={y+t§:yeB,a<t<y(y)} and V:={y+t§é:yeB,a<t<b}, 51
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where £ € S""1, B is a relatively open ball in T, a, b € R, witha < b, and : B —
(a, b) is Lipschitz continuous. Let v € LY(Q) with Dev € Mp(R2), let

M :={y+¢¥(é§:ye B} (5.2)

and let v be the outer unit normal to M. Then there exists a function vy € L;-L’H (M)
such that

/ngwder/ wd(ng)zf ooy E-vdH ! (5.3)
U U M

forevery ¢ € CCl (V). Moreover

1
lim — [v(z) —vy(x)|dz=0 5.4
=0+ p" J B, (x)nU

for H' '-a.e. x € M. Finally, for H" '-a.e. y € TI¢ we have

vm(y + ¥ (»)E) = aplim v§(). (5.5)
=y (y)—

Proof. The existence of vy € L;{,H (M) satisfying (5.3) follows from [31, Lemma 1.1].
The proof of (5.4) can be obtained by slight modifications of the arguments of [18, The-

orem 5.3.2], where the use of the coarea formula can be avoided. Equality (5.5) can be
easily deduced from [31, formula (1.17)]. ]

We are now in a position to prove the main result about traces of functions u € GBD(£2)
on a regular submanifold.

Theorem 5.2. Letu € GBD(Q) and let M C Q2 be a C' submanifold of dimension n — 1
with unit normal v. Then for H""'-a.e. x € M there exist uL(x), uy (x) € R" such that

aplim  u(y) = ui (x). (5.6)
+(y—x)-v(x)>0
y—)X

Moreover for every & € S"~ and for H" '-a.e. y € TI¢ we have

uﬁ(y +1&)-& = aplim ﬁi(s) for everyt € M&, 5.7
ol (1) (s—1)>0
s—>t
where 0: M — {—1, 1} is defined by o(x) := sign(§ - v(x)). Finally, the functions
uﬁ: M — R" are H"~'-measurable.

Proof. Tt is enough to prove (5.6) in a neighbourhood of each point. For every xo € M
there exist an open neighbourhood A of xg, a vector & € S"~! and a constant 0 < ¢ < 1
such that for every £ € "~ with |€ — &| < & we can represent M N A as a Lipschitz
graph in the direction determined by &:

MNnAC{y+v(&§:yeB}CM,
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where ¥, B, a, and b are as in Theorem 5.1. We may also assume that the set V defined
by (5.1) is contained in €2 and that v(x) - & > O for every x € M N V. We set

AT:=ANU and AT :=A\(MUA"),

where U is defined in (5.1).

Givent € T with 7/(¢) > Oforevery t € R, we define v := t(u -£). By condition (a)
of Definition 4.1 and by Theorem 5.1 for #"~'-a.e. x € M N A there exist two real
numbers vz',[(x) and v, (x) such that (5.4) holds with vy (x) replaced by vifl (x) and U
replaced by A*. This implies that

aplim  t(u(y) - &) = vy, (x). (5.8)
+(y—x)v(x)>0
y—>x

Moreover, by Theorem 5.1 the functions vif[: M N A — R are H"!-measurable.
By (5.5) for H"!-a.e. y € I and for every r € Mﬁ N Ai we have

vE(y +18) = ap lim v (s) = r(apliin ﬁi(s)), (5.9)

s—>1 s—>1

where the existence of the approximate limit of ﬁf follows from the fact that I/Al% €

BVloc(Qi) by condition (b) of Definition 4.1. By (5.9) we have vljf,l (x) € T(R) for H"~1-
a.e. x € M N A. By inverting the function 7 we deduce from (5.8) that for H"'-a.e.
X € M N A there exist two real numbers ug' () and ug 1 (x) such that

aplim  u(y) - & = ug ,(x). (5.10)
+(y—x)v(x)>0
y—)x

Moreover, the functions uét y:MNA— Rare H"~!_measurable. Since there exists a

basis of R” composed of vectors & € S*~! with |§ — & < ¢, equality (5.10) implies that
for H" !-a.e. x € M N A there exist two vectors ux,l(x), uy, (x) € R" satisfying (5.6) and
such that the functions uﬂi,l M NA— R" are H" !-measurable.

Let us prove (5.7) for an arbitrary & € S"~!. Since H" ! (7% ({x € M : £-v(x) = 0}))
= 0 by the area formula (see, e.g., [6, Theorem 2.91]), by localization we may assume
that M can be represented as in (5.2) and that & - v(x) > O for every x € M. Let t be as in
the first part of the proof and let U* := {y+t£: ye B, a <t < b, £(t — ¥ (y)) > 0}.
By (5.6) we have

aplim T (u(y) - £) = (3, (x) - §)

yeUi
y—>Xx

for H"~!-a.e. x € M. Since 7(u - £) is bounded, this implies that

1
lim — T(y) - §) = Ty () - §)|dy = 0.
o=0+ p" JB,(xynu*
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By Theorem 5.1, applied to v := 7 (u - &), for " !-a.e. y € 1€ we have
r(uf,l(y + &) - €) = aplim t(ﬁi(s)) for every t € Mf
i )

s—>1
By inverting the function  we conclude that (5.7) holds for H"~!-a.e. x € M. O

Definition 5.3. Let u € GBD() and let M C Q be a C' submanifold of dimension
n — 1 with normal v. The R"-valued H"~!-measurable functions u‘At, and u ), defined
H"!-ae. on M and satisfying (5.6), are called the traces of u on the two sides of M.

Remark 5.4. Let u € GBD(RQ) and let M C Q be a C! manifold of dimension n — 1
with normal v. By (5.6) we have {x € M : u},(x) # ujy;(x)} C J, N M and

H N T N M\ {x € M :ul,(x) # uy(x)}) = 0.
Moreover
@ (), u™ (x), v () = i (), upy (x), v(x)) or = (U (x), ul,(x), —v(x))
for H" l-ae.x € J,N M.
When 2 has a Lipschitz boundary we can also consider traces on the boundary.

Theorem 5.5. Assume that Q has a Lipschitz boundary and let v be the outward unit
normal. Then for every u € GBD(2) and for H" '-a.e. x € 9 there exist uyn(x) € R”
such that

aplimu(y) = uyq(x). (5.11)

y—>x
yeQ

Moreover for every & € S"~ and for H" '-a.e. y € TI¢ we have

up(y +1€)-& = aplim ﬁé’;(s) foreveryt € (3Q2)8, (5.12)
o8 (1) (s—1)>0
S—>t
where o: 02 — {—1,1} is given by o(x) := sign(¢ - v(x)). Finally, the function
usg: 92 — R is H" L-measurable.

Proof. The proof is similar to the proof of Theorem 5.2, and therefore is omitted. O

Definition 5.6. Assume that 2 has a Lipschitz boundary. For every u € GBD(R2)
the R”-valued H"~!-measurable function usq, defined H"~'-a.e. on 32 and satisfying
(5.11), is called the trace of u on 0L2.

6. Rectifiability of the jump set

In this section we prove that for every u € GBD(f2) the jump set J, introduced in Def-
inition 2.4 is countably (7—["’1, n — 1)-rectifiable according to [19, Section 3.2.14]. We
recall that, by [19, Theorem 3.2.29], a set E C R” is countably (H"!, n — 1)-rectifiable
if and only if "~ !-almost all of E is contained in the union of a countable family of
(n — 1)-dimensional submanifolds of R” of class C'.
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To prove the rectifiability of J,,, for every u € GBD(£2) we consider the set

Ru(Bo(@)) >o}, 6.1)

O, = {x € Q : limsup ——

p—>0+ Y
where [i, is the measure introduced in Definition 4.16.

Proposition 6.1. Let u € GBD(R2). Then ®,, is a countably (H"~', n — 1)-rectifiable
Borel set.

Proof. The proof is a variant of the proof of [23, Part II, Theorem 4.18]. By Fatou’s
lemma for every p > 0 the function x — [i,(B,(x) N Q) is lower semicontinuous
on 2. Since the limsup can be computed by considering only rational numbers p > 0, we
deduce that ®,, is a Borel set.

To prove the rectifiability, for every ¢ > 0 we consider the Borel set

(1, (B

O = {er:limsupr(lx))>s}. 6.2)
p—>0+ o=

It is enough to show that ®¢ is countably (H"~!,n — 1)-rectifiable. By [19, Theo-

rem 2.10.19] we have

e H" Y (B) < wnfiu(B) (6.3)

for every Borel set B C ©,. In particular H! (®%) < oo and we can apply Federer’s
structure theorem [19, Theorems 3.3.13 and 2.10.15] to obtain a countably H L, n=1)-
rectifiable Borel set R C ©, such that

H' T @S (@E\R) =0 for H" l-ae &S

By Proposition 4.17 we have [1,,(®% \ R) = 0. Choosing B = ©% \ R in (6.3) we
obtain ’H”’](G)i \ R) = 0. This proves that ®, is countably (H" ', n — 1)-rectifiable
and concludes the proof of the proposition. O

We are now in a position to prove that the jump set of a function of GBD(£2) is countably
(H"~!, n — 1)-rectifiable.

Theorem 6.2. Let u € GBD(), let J,, be the jump set introduced in Definition 2.4, and
let ©, be the set defined in (6.1). Then J,, is countably (H n— 1)-rectifiable, J, C O,
and "1 (O, \ J,) =0.

Proof. To prove that J, C ©,, let us fix xo € J,. Up to a translation, we may assume
that xo = 0 and that ¥~ (0) = 0. By Definition 2.4 there exist a € R”", with a # 0, and
v € S*~! such that

aplimu(x) =a and aplimu(x)=0. (6.4)
x-v>0 x-v<0
x—0 x—0
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Let r > 0 be such that B, (0) C Q. For every 0 < p < r we define u,: B;(0) — R”"
by setting u,(y) := u(py) for every y € B1(0). By a change of variables is easy to see
that u, € GBD(B1(0)) and that

[15(B,(0))

A (Bi(0) = e 6.5)
for every £ € S"~! and for every 0 < p < r. By (6.4), u, — up in L"-measure on By (0),
where ug(x) = a forx - v > 0and ug(x) = 0 forx - v < 0. Let us fix £ € S*~! such that
v-£ #0and 0 < |a - &| < 1. By Remark 4.13 we have ﬁ,io(Bl ) =wp—1lv-&|l|a-&|.
Therefore (4.8) and (6.5), together with Lemma 4.18, give that

minf fu (B, (0)) _

~nE
fuu(Bp(O)) <1i
n— p—0+ pn—l

0<wp—1|v-&|la-&| <limin
p—0+ 1

This implies that 0 € ®,, by (6.1), and concludes the proof of the inclusion J, C ®,,.
Since ®, is countably (H"~!, n — 1)-rectifiable by Proposition 6.1, the rectifiability
of J, follows from the inclusion J, C ®,.
Let us prove that H"~1(®, \ J,) = 0. It suffices to show that 7—["_1(®,i \Jy) =0
for every ¢ > 0, where ©?, is the set defined in (6.2). By (6.3) it is enough to prove that
Ay (®8 \ J,) = 0, and by (4.8) we have to show that

5O\ J,) =0 forevery £ e S" 1. (6.6)

Let us fix £ € S"~!. Since ©? is countably (H"~!, n — 1)-rectifiable, we can write

]

©\ J, = NoU U N;, 6.7)

i=1

with H"~1'(Np) = 0 and N; C M; for every i > 1, where each M; is a C' manifold of
dimension n — 1 with normal unit vector v;. We define

ME:i={xeM:+& v(x)>0} and M) :={xeM;:&-v;(x)=0}. (6.8)

Therefore N; = N;" U N, U N°, where N := N; N M* and N? := N; N M?. Since
H"1(Ng) = 0 we have H" ! (7% (Ng)) = 0. By the area formula (see, e.g., [6, Theo-
rem 2.91]) and by (6.8) we have H (7t (Nio)) = 0 for every i. Therefore (4.5) implies

that [Li (Ng) = 0 and ;li (NZ.O) = 0 for every i. It follows from (6.7) that
o0 o
A5O5\ J) < Y ASIN) 4+ af (v, (6.9)
i=1 i=1
To prove (6.6) it is enough to show that for every i we have

A5(N)=0 and A5(N;7) =0. (6.10)
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Let us fix i and let uf and u; be the traces of u on M;, oriented by v;. Splitting MiJr into a
countable number of pieces, we may assume that there exist an open set A in the relative
topology of ITé and a function ¥ € C!(A) such that Ml-+ ={y+v()E:y e A}. By
(6.8) we have & - v;(x) > O for every x € Ml.+. By Theorem 5.2 for H"'-ae. y € A we
have

up (v + Y (&) - € = aplim a5(t) and uf (y + Y (y)€) - & = aplim a5(). (6.11)
=9 (y) =9 (y)
t<y(y) 1>y (y)

Since Nl.+ NJ, = ¥, we have u?'(x) = u; (x) forevery x € Nl.+ by Remark 5.4. By (6.11)
we have
aplim 45 (1) = aplim 25 (1)

= (y) =¥ (y)
1<y (y) 1>y (y)

for H"l-ae.y € B := nE(Nl."'), hence ¥ (y) ¢ J,f,g for H"'-a.e. y € B. Since

N =y + ¥ ()& : y € B} we have (N} = {¥/(3)} for y € B and (N;})} = @ for
y € é \ B. Therefore (4.4) and (4.5) give

A = [ 1DaS I mm ar o) = o

since ¥ (y) ¢ J.¢ for H"'-ae. y € B. A similar argument shows that /li (N7) =0.
y
This proves (6.10) and concludes the proof of the equality H"~1(®, \ J,) = 0. O

7. The jump points of the restriction to hyperplanes

In this section we prove a technical result that will play a crucial role in the proof of the
slicing theorem for the jump set of a GBD function u: all jump points of the restriction of
the function 7" (u) to the hyperplane xo + I1"7 belong to the set ®, introduced in (6.1),
provided that 1"~ (S, N (xo + [17)) = 0.

A key tool in the proof is the following parallelogram identity, which holds for every
function v: Q — R":

v(x +hE) - (E+n) —vix—hn) - (E+n)
+v(x+hn)-E+n) —vix—hE- - E+n)
+v(x+h§)-(E—n) —vix+hn) - E—n)
+v(x —hn)-(E —n) —vix—h§)-E—n)
=2v(x +h&) - & —2v(x —hE) - &£+ 2v(x +hn)-n—2v(x —hn) -7y (7.1

for every x € @, every &£, n € R", and every & > O such that x + h&, x = hn € Q.
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Theorem 7.1. Let u € GBD(), let xo € 2, and let n € S"~!. Assume that
H'1(S, N (xg + T17)) = 0. (7.2)

Let v: (—xg + Q) N IT" — T17 be the function defined by v(y) := ' (i(xo + y)) for
H' Lae y € (—xo+Q)NTI". Suppose that there exist v € S""'NI1" and b*, b~ e 1"
such that
i H' 1 ({y € B,(O)NTI" : £y -v > 0, [v(y) — b¥E| > &})
m
pgo pnfl

=0. (73

If b* £ b, then xo € O,.
Proof. 1t is not restrictive to consider only the case xo = 0. We assume, by contradiction,
that b+ # b~ and 0 ¢ ®,, and we fix & € S*~! N I1" such that

b —b7) & = 3IbT —b7| and v-& > 0. (7.4)

Let S be the set of all s € RT such that y 4+ s ¢ S, and y — s ¢ S, for H" l-ae.
y € I1". Then 0 € S and £'(R* \ §) = 0 by Fubini’s theorem, since £"(S,) = 0 by
Remark 2.5.

For every p > O we set B, := B, (0), Bg = B,NII", Bgi ={y € Bg cEy-v > 0},
and A, := B?p = B, N7, with 0 < ¢ < v - & < 1.1t follows that

pE+ A, C Bg:; and —pé+A,C ng—. (7.5)
Since 0 ¢ ®,, by (6.1) we have

2, (B
lim Fu(Bo) _ (7.6)
p—0+ P

Let us fix ¢ > 0 such that 3¢ < %|bJr — b7 |. By (7.4) for every p > 0 and every
y € A, we have
3¢ < |(bT —b7) - £
<[t E—v(y+ pE) - El+ |(W(y + pE) — v(y — p€)) - & + |v(y — p&) - & —b™ - &
< |bT —v(y + p&)| + (v (y + p&) — v(y — p&)) - & + [v(y — p&) — b |.
It follows that
H' Ay <H' Ay € Ayt IbT —v(y + pE)| > &))
+H" T (v € Ay |y + pE) — v(y — pE)) - £] > })
+H"{y € Ay [u(y — p&) —b7| > ¢}). (7.1

To conclude the proof of the theorem it is enough to show that

H'(A) = 0(p" ) (7.8)
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along a sequence converging to zero. Indeed, the definition of A, gives H(A o) =
wp_1c" ! p”_l, which contradicts (7.8) and shows that the relations b+ # b~ and 0 ¢ ©,,
cannot be true simultaneously.

To estimate the first term of the right-hand side of (7.7), we use (7.5) and we obtain

H' 7 (y € Ap i DT —v(y+ p8)| > &) = H" ' ({x € p& + Ay : BT —v(x)| > ))
<H" '({x € ng St —v(x)| > e)).
By (7.3) the last term is o(p"~!), so that
H' (y € Ap 16T —v(y + p5)| > ) = 0(p" D). (7.9)
In the same way we prove that
H' ™ ({y € Ay vy — pE) = b7 | > &) = 0(p" 7). (7.10)
It remains to estimate H"~'({y € Ay (W + pE) —v(y — p§)) - &] > €}). Since
£ € I1", we have v(y) - € = ii(y) - € for H"1-a.e. y € T1", hence
H' ™ ({y € Ap 100 + p8) — v(y — pE)) - §| > &)
=H""(ly € Ay : [((y + p&) —ii(y — pE)) - &] > £}).  (7.11)
By the parallelogram identity (7.1) we have
H' (€ Ap 2 1y + p8) — a(y — p§)) - €| > €))
<H'"'({y € Ap:laly +pom) -n =iy — pn) - nl > &/5})
+H T (y € Ap c iy + p&) - (6 +n) — ii(y — pn) - (€ + )| > 2¢/5})
+H T ({y € Ap iy + om) - (€ +n) — @y — p€) - (€ + )| > 2¢/5})
+H T ({y € Ayt iy + pE) - (€ — ) — @y + pn) - (€ — n)| > 2¢/5})
+H" " ({y € Ayt la(y — pn) - (€ — ) —@(y — p&) - (€ — )| > 2¢/5)).  (7.12)

To estimate the first term on the right-hand side we fix r € C!(R) with —1/2 <
T(t) < 1/2,0 < /() < 1, and t(—t) = —71(¢) for every t € R. Since  is increasing,
we have

H' " ({y € Ayt li(y + pn) - — @y — pn) - nl > /5})
=H" ({y € Ap: [t(@ +pm) -n—a(y — pm) - 1)| > 1(e/9)}).  (7.13)
Let r: R" — R”" be the reflection in I17:
r(x) :=x—2(x-nn
for every x € R". Let = QNr(Q) and let NS L>®(2) be the function defined by

@) = t(u(x) -7 —u(r(x))-n).
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Ifx € 2\ S, and r(x) ¢ Sy, then x ¢ S, and
@) =(a(x) - n—u(rx))-n). (7.14)
For every y € I17 we have
ol =@) —ul) ongl, (7.15)

where i1} (1) := iy (—t) = u(y — tn) - 1.

By condition (b) of Definition 4.1 we have QZ € BV]OC(SAZZ) and ﬁ;’ € BV]OC(Qg) for
H"lae. y e I". By (7.15) this implies that <p;7, € BVloc(QZ) for H" l-ae. y e II".
Since 0 < v/ < 1and —1/2 < 7 < 1/2, arguing as in the proof of Proposition 3.4 we
deduce from Vol’pert’s chain rule in BV (see [6, Theorem 3.96]) that

IDGIB\ Jyp) < IDALNB N\ Jg) + Dl (B \ Jzp).
IDGIIB N ) < IDAYIB N Jn \ Jan) +HO(B O gy
+IDAYI(B N Ty \ ) +HO(B O Tjy)
Y y y

for H"'-a.e. y € I1" and for every Borel set B C fzz By an easy change of variables
we obtain from the previous inequalities and from (4.4)

|D@|(B) < | Dall|(B\ Jﬁl;) +HO(B N Jyn)
+ DAY (=B)\ Jj) +H(=B) N Jy) < 2u}(BU(=B)).  (7.16)

Integrating on I17 we get
/ DI dH" " (y) <2 / u Q) dH" ! (y) = 2u"(Q) < o0,
I I

so that Dy, € Myp(Q) by Proposition 3.1.

Letus fix p € § with By, C Q. Since y ¢ S, and y = pn ¢ S, for H' e y e TT7,
while y £ pn € By, C Q forevery y € A,, wehave y € SAZ\S(p andy + pn € Q\S¢
for H'l-ae.y e A,. Moreover ¢(y) = 0 for H' -ae. y € QN II7 by (7.14). We can
now apply Proposition 3.2 to obtain

oy + pml =19y + pn) — @] = (Ve (0, p]) = |De]I([0, p1)

for H" l-ae.y e A,. Therefore (7.16) yields

19(y + om| < 2ui([—p, pD). (7.17)
Integrating over A, we get
fA 15(y + pm)| dH" " (y) <2 /A wi(—p. pD) dH" ' (y). (7.18)
P P
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Since y +tn € By, forevery y € A, and every t € [—p, p], by (4.5) we get

/ WI(—p. p) dH" " () < W (Bay). (7.19)

Ap

From (4.8), (7.18), and (7.19) we deduce that

/ 5y + pm)l dH" ™" () < 21" (Bap) < 2414 (Bay). (7.20)

Ap

Since y £ pn € Q\ S, for H" l-ae. y € A,, by (7.14) we have r(ﬁ(y +pon)-n—
u(y — pn) - 77) = @(y + pn) for H L ae. y € A,. Therefore (7.13), (7.20), and Cheby-
shev’s inequality give

H' ({y € Ayt iy + pn) -1 — i@y — pn) - 1l > €/5})

=H'"'{y €A, 160y + pn)| > T(e/5)

1
~ d n—1
75) /A,, @y + om|dH"™ (y) <

=<

2
(¢/5) wu(B2p).

(e
By (7.6) this implies that
H' " ({y € Ay li(y + pn) - n —ii(y — pn) - n| > /5}) = 0(p"~") forpeS.

To estimate the second term on the right-hand side of (7.12) we set w := (£ + 1)/ V2
and we replace the reflection r by the involution

g(x) i=x = 2¥2(x - o — V2 pw =x = 2(x - n)(E + 1) — p(E +1),

which leaves the hyperplane —%n + I1" fixed and moves all points in the direction deter-
mined by w. We now define Q:=Qn qg(R)and ¥ € L°°(§2) by

V) =t(ux) - (€ +n) —ulg®)-E+n).
Ifx € Q\ S, and g(x) ¢ Sy, then x ¢ Sy and

Y (x) = t(i(x) - & +n) —ii(g(x) - & +n)). (7.21)
For every y € —4n + IT" we have Y@ = 7(v/24% — ~/24i%) on Q¥, where i9(1) :=
ﬁ‘;(—r) =u(y —tw) - o.

Arguing as in the previous step we now obtain

IDY2I(B) < 232 u(B U (~B)) (7.22)
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for H' l-ae. y € —5n + 1" and for every Borel set B C Qg‘,’ Integrating on I1* and
—%n + IT"7 we obtain, thanks to Remark 4.11,

fn DY I(QY) dH" ™ (y) = IDYL1QY) dH" ()

1
V2 — &+

s2f @ a0 =2Vt @ < oo,
—%77-5-1_['7

which gives D,y € M, () thanks to Proposition 3.1.
Let us fix p € S with p/2 € S and By, C Q. For every y € I1"7 we define a(y) :=
y+ 5E —n) € —=5n+ 117, so that

Y+ pE=aly)+2E+n) =aly) + o,

2 V2
y—pn=a(y)—£($+n) =a(y)—iw.
2 V2

Since y + p& ¢ Su, vy — pn ¢ S,, and a(y) ¢ S, for H"l-ae. y € I17, while y + p& €
By, C Q,y—pn € By C Q, and a(y) € By, C Q forevery y € A,, we have
v+ pE € Q\ Sy,y—pn € Q\ Sy,and a(y) € Q\ Sy for H" l-ae.y e A,. Moreover
V(a(y)) = 0 for H" l-ae. y € A, by (7.21), since g(a(y)) = a(y) for every y € I1".
We can now apply Proposition 3.2 to obtain

V(v + pE)| = ‘&(a(y) + iw) — Y ay))| = (VEE,)0. p/v2])

V2
= |Dy¥,) 110, p/~/2])

for H" l-ae.ye A - Therefore (7.22) yields

W (y + pE)| < 2v2 s, ([—p /N2, p/V2]). (7.23)

Integrating over A, we get
/A W@y + pENIdH" ™ (v) <22 /A 1oy (=P /N2, p/N2D dH" (). (7.24)

Since a(y) + tw € By, for every y € A, and for every t € [—p/v/2, p/~/2], by
Remark 4.11 we get

/A 18y ([=p/V2. p/N2DdH' ™ (y) < V2" (Bap). (7.25)
From (4.8), (7.24), and (7.25) we deduce that

f V(v + pE) dH" ™' (y) < 4u”(Bay) < 411, (Bap). (7.26)

Ap
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Since y 4+ p& € Q\ Sy and g(y + p&) =y — pn € Q\ S, for H"'-ae. y € A,, by

(7.21) we have 7 (@(y + p§) - (§ +n) —a(y — pn) - (6 +m) = ¥ (y + p§) for H"'-ae.
y € A,. Therefore (7.26) and Chebyshev’s inequality give

H' " ({y € Ayt iy + p&) - (E +n) —i(y — pn) - (€ +n)| > 2¢/5})
=H'"({y e Ay : [t(@y+p&) - G +m) =iy — pn) - ¢ + )| > T(2¢/5)})
=H"""({y € Ap i [F(y + p&)| > T(2¢/5)})

—1 Iy n—1 4
=< 72e/5) AP [V (Qy+ p&)dH" (y) < —1(8/5) i (Bap).

By (7.6) this implies that
H' (v € Ayt li(y + p&) - (€ +n) —ii(y — pn) - (E + )| > &/5}) = o(p" ")

for p € S with p/2 € §S.
The other terms on the right-hand side of (7.12) can be estimated in a similar way.
This proves (7.8) and concludes the proof of the theorem. m]

8. Slicing of the jump set

In this section we prove that for every u € GBD(2) the jump set J, introduced in Defi-

nition 2.4 can be reconstructed from the jump sets of the one-dimensional slices ﬁi

Theorem 8.1. Let u € GBD(RQ), let & € S" !, and let
JEi={x e J, : [ul(x)-& #0}. (8.1)
Then for H" '-a.e. y € TI¢ we have
i)y = Jge. (8.2)
wE(y +18) & = @)EW)  foreveryt € (1)), (83)
where the normals to J,, and Juf are oriented so that & - v, > 0 and Vae = 1.
Proof. Let us prove that for H"~!-a.e. y € IT¢ we have
(ﬁﬁcha (8.4)

Since J,, is countably (H"~!, n — 1)-rectifiable by Theorem 6.2, we can write

o0
Ju=NoU| N, (8.5)

i=1
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with H*~Y(Ny) = 0 and N; C M; for every i > 1, where each M, is a C! manifold of
dimension n — 1 with normal unit vector v;. By Remark 5.4 we have v, = %v; H -l
a.e. on N; for every i > 1. Removing an H"~!-negligible set, we may assume that these
equalities hold everywhere on N;. Splitting, if needed, each N; into two parts, we may
also assume that the sign is constant in each N;, and we may reorient the manifold M; so
that v, = v; on N; foreveryi > 1.

Let Ml.i and Mlp be the sets defined in (6.8). Since £ - v; =& - v, > 0 on N;, we have
N; = Nf UN?, where N;" := N; N1 M;" and N? := N; N M?. Since H"1(Np) = 0
we have H" ! (7 (Ny)) = 0. By the area formula (see, e.g., [6, Theorem 2.91]) and by
(6.8) we have ’H,”_l(ng(Nio)) = 0 for every i. Let Eg be the union of the sets 7% (Np)
and ng(N,.O) fori > 1. Then %" ~!(Ey) = 0 and it is enough to prove (8.4) for H"'-a.e.
y € ITé \ Ej.

To obtain this result it suffices to show that for every i > 1 we have

(NS N UDS C e (8.6)

for H" l-ae. y € . Let us fix i > 1 and let ul+ and u; be the traces of u on M;,
oriented by v;. Splitting Ml.+ into a countable number of pieces, we may assume that
there exist an open set A in the relative topology of IT¢ and a function ¥ € C'(A) such
that Ml-+ ={y+ v ()& :y e A}. By (6.8) we have & - v;(x) > 0 for every x € Mf. By
Theorem 5.2 for H"~!-a.e. y € A we have
uy (y+ v (»E) £ = aplim a5(1) and uf (y+ ¥ ())& = aplima5@). (8.7
=Yy 1=y (y)
1<y (y) 1>y (y)
By Remark 5.4 we have uf(x) E=ut(x) - EAu(x)-E= u; (x) - & for H lae.
X € Ni+ N J,f . This inequality, together with (8.7), gives
ap lim ﬁi(t) # aplim ﬁi(t) for " '-ae. y € B = 71*’%(NI.Jr N J,f),

=>4 (y) =>4 (y)
1<y (y) 1>y (y)

hence ¥/ (y) € Je for H"~!-a.e. y € B. Since Nl.+ N J,f ={y+v(E& :y € B} we
5
have (N)5 N (J5)5 = {w ()} for y € B and (N;)§ N (J5)5 = @ for y € T \ B.
Therefore we have (Nf)é; N (Jf)i C Jue for #"'-a.e. y € I¢. This proves (8.6) and
5
concludes the proof of (8.4). Moreover (8.7), together with the equality ui+(x) =ut(x)
and u; (x) = u~ (x) for H'lae x € N,.Jr (see Remark 5.4), proves (8.3) for H"!-a.e.
y € II¢.
Let us prove that

Je € (J)§  forH' '-ae. y e IT5. (8.8)

This inclusion is trivial for n = 1. We prove it by induction on the dimension n. By
changing u on a set of Lebesgue measure zero, we may assume that u is a Borel function
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and that ﬁi € BVlOC(Qi) for every y € I¢. Since H* 1 (©, \ J,) =0 by Theorem 6.2,
to prove (8.8) it is enough to show that

Te C(0,); forH" 'ae yell. (8.9)
y

Let n > 2 and assume that (8.8) is true in dimension n — 1. We fix n € S*~! with
n-& =0.Forevery s € R and forevery B C Qlet By :={z € [1" : z 4+ sn € B} and let
ug: Qg — II7 be the function defined by u;(z) := n"(u(z + sn)). Then (s, ) — us(z)
is a Borel function on the open set Q.= {(s,2):s€R, ze Q;} CRxII.

Let F:={(s,2):s€R, zeJ, ) CQandlet F:={z+sn:seR, z€J,} =
{z+sn:(s,2) € F} C €, so that

Ju, = Fy:={zell":z+sn € F}. (8.10)

Arguing as in the proof of [6, Proposition 3.69] and using Remark 2.2 we find that Fisa
Borel subset of €2, hence F is a Borel subset of €2.
Let IT" := 1" N TI¢. Since n - £ = 0, we have

M ={a+sn:aecl™, secR} (8.11)
and
B§+xn = (Bs)i (8]2)

for every a € ", every s € R, and every B C Q2. Since u - £ = 7' (u) - £, we have

sy = )5 on Q5 = (25 (8.13)
for every a € I17 and every s € R.
For every x € Q2 we can define

1 (° 10
ﬁi(x) = limsup—f u(x+s€)-Eds and ﬁi(x) = limsup—/ u(x+s&)-&ds.
p—0+ 0 p—0+ P J—p

Since we are assuming that # is a Borel function, by Fubini’s theorem ﬁi and ﬁs_ are
Borel functions on 2. Therefore E := {x € Q : i (x) # ﬁi (x)} is a Borel set. For every
y € II¢ we have (ﬁi)g, = (ﬁs_)i = ﬁg; Llae. in Qi thanks to Lebesgue’s differentiation
theorem. By elementary properties of BV functions in dimension one, this implies that
_ it 3
Juf = Ej foreveryy € IT°. (8.14)
By Theorem 4.19 there exists a Borel set Ny C R, with £1(N 1) = 0, such that for
every s € R\ Nj the function u; belongs to GBD(£2;). Moreover, since £"(S,) = 0 and
u =u L"-a.e.in by Remark 2.5, using Fubini’s theorem we find a Borel set N C R,
with £1(N>) = 0, such that for every s € R\ N, we have H"~1(S, N (sn + I17)) = 0
and u = i H" '-a.e.in sy + I1". Let N := Nj U N».
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By the inductive hypothesis for every s € R \ Nog we have j(f)é - (Jus)i for H"2-
a.e.a € IT" := [1" N T15. By (8.10) and (8.12)—(8.14) we have

H
Ea+sn = ‘If,

= Jgy; € Uu)f = (R = Fiy

£
a+sn
for every s € R\ Ny and for H"2-a.e. a € I1"%. By (8.11) and Fubini’s theorem there
exists a Borel set N C T1¢, with H"~! (N) = 0, such that for every y € é \ N we have
E§ CFf,andy~77¢No.

Letusfixy e [I¥\ N andlett € J.¢. Theny = a+snwitha € "¢ and s € R\ Np.
Therefore '

= (Fy)5 = (Ju,)}

_ §
Jie = E§ C Fypyy

by (8.10), (8.12), and (8.14), so that ¢ € (Jus)i, hence a +t§ € J,,,. Letxg :=y + 1§ =
a+sn+t&.Since xg + I1" = sy +I1" and s ¢ N, we have H"* 1 (S, N (sn +T17)) =0
and u = i H" '-a.e. in sy + I1". Therefore the function v considered in Theorem 7.1
satisfies v(z) = us(z + a + t€) for H" '-a.e. z € I1". Since a + t& € Ju,, hypothesis
(7.3) is satisfied with bT # b~. Therefore Theorem 7.1 implies that xg € ®,. Since
xo:=y+t& wehavet € (@u)é;. This proves (8.9) and concludes the proof of (8.8).

Let us prove that for 7"~ !-a.e. y € 15 we have

Jie C 5. (8.15)
By (8.3) and (8.8) for H' ae. y € I1¢ and for every t € Jﬁg we have y 4+ t& € J, and
y

Wb (y+18) —u™(y +18)) - & = [431() #0,

hence y + t£ € Jf by (8.1). This proves (8.15) and concludes the proof of the theorem.
O

9. Approximate symmetric differentiability
In this section we prove that every u € GBD(S2) has an approximate symmetric gradient

L"-a.e. in . This means that for £"-a.e. x € 2 there exists a symmetric matrix, denoted
by £u(x), such that

_ & _ (v —

aplim (u(y) —u(x) M(X)(2y x)) - (y —x) _o ©.1)
y—=x ly — x|

We also prove that the function x + Eu(x), defined L"-a.e. in 2, belongs to

L'($; M), where M is the space of symmetric nxn matrices. We also show that

the one-dimensional slices of £u are related with the density Vﬁi of the absolutely con-

tinuous part D“ﬁi of the measure Dz)i with respect to £
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Theorem 9.1. Let u € GBD(2). Then there exists a function Eu € L'(Q; M;’yﬁ’) such
that (9.1) holds for L"-a.e. x € Q. Moreover for every £ € R" \ {0} and for H" '-a.e.
y € IT¢ we have

Ewg-£=Vi5, L'-ae onQf. 9.2)

Proof. Since the problem is local, we may assume that # has compact support in 2. Let
us fix £ € R" \ {0}. By modifying « on a set of Lebesgue measure zero, we may assume
that u is a Borel function on €2 and ﬁ§ € BVlOC(Qi) for every y € I1é. For every x € Q
we define
1 [P
45 (x) ;= limsup — | wu(x + s&) - £ ds, 9.3)
p—0+ 20 J-p

1 /P 0 (x 4 s&) — i (x)
ds.
0

et (x) := limsup —
o—0+ P N

94
Then uf and €% are Borel functions and have compact support on . By an easy change
of variables we can prove that
€% (x) = p%ef(x) forevery p > 0 and every x € Q. 9.5)
By the Lebesgue differentiation theorem for every y € I1é we have
@), =a5 L'aeinQj. 9.6)

Since ft% € BV(Qi) and (ﬁg)i is a good representative of ﬁi by (9.3), using well known

properties of BV functions in dimension one (see, e.g., [6, Section 3.2]) we deduce that

@50 +9) = @50) _
N

(Vi) (@) = lim ()3 0) O

for every y € I1¢ and for L'-ae. 1 € Qi
Let g: R — [0, 1) be an even continuous function, with g(0) = 0, such that g is
strictly increasing and concave on RT. It is easy to prove that g satisfies the triangle
inequality
gls+1) <g(s)+g() foreverys,teR. 9.8)

By (9.6) and (9.7) we have

nE s
lim l/pg<M—(e$)§(t)>ds=0
0

p—>0+ p

for every y € I1¢ and for L!-ae. 1t € Qi By Fubini’s theorem this implies that

1/"’g<u(x+s§)-€—u(x)-§ B
0

N

¢ (x)) ds =0 9.9)
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for £"-a.e. x € Q. Integrating over €2 and exchanging the order of integration we obtain

lim l/p[/ g(mﬂs)'é_”(x)'s —es(x)>dx}ds:0 (9.10)
=04+ 0 Jo Q S

for every & € R" \ {0}. We define E(x)=0 for & = 0. Note that (9.10) holds also in this
case.

Let us fix n € R". By the triangle inequality (9.8) for every s > 0 small enough we
have

Q

N

/g(u(eranrSé)-S—u(ersn)-S
Q

N

<

—éf (x + sn)) dx

+/ g€ (x +sn) — €5 (x)) dx
Q

=/g<u(X+SS)-S—u(X)-$ —eg(x)>dx
Q

S
+/ g(e5 (x +sm) — €5 (x)) dx, 9.11)
Q

where, in the last equality, we have used the fact that u and e have compact support in €.
Let us prove that

1im+ g(ef (x +sn) — € (x))dx = 0. 9.12)
Q

s—0

Let us fix T € T with 7/(¢) > O for every t € R. By the continuity of translations in
L'(€2) we have

lim / I7(ef (x 4+ s1)) — 7(e* (x))| dx = 0.
s—=>0+ J@

This implies that for every sequence sy — 0 there exists a subsequence si; such that
T(ef (x + Sk;m) — 7(ef (x)) for LM"-ae. x € . Since 7 is invertible and the inverse
function is continuous, we deduce that ¢ (x + Sk_,-'?) — € (x) for L"-ae. x € Q. This
implies that

lim g(eé (x + s;m) — et (x))dx =0,
Q

j—o0
by the Dominated Convergence Theorem. Since the sequence sy — 0 is arbitrary, we
obtain (9.12). That equality, together with (9.10) and (9.11), gives

lim l/p[/ g(u(x+s77+S€) cE—u(x +sn) £ —eg(x)>dxi| ds=0. (9.13)
o LJe

p—>0+ 0 N

Letus fix &£, n € R". We want to prove that the following parallelogram identity holds:

E(x) +ef(x) = 265 (x) + 265 (x)  for L-ae. x € Q. (9.14)
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By the parallelogram identity (7.1), the homogeneity condition (9.5), and the triangle
inequality (9.10), for every s > 0 small enough we have

g(265(x) + 2657 (x) — 4ef (x) — 4ef (x))
< g<eg+,,(x) Cux+sE) - E+m) —ulx—sn) ¢+ n)>

N

+gGan_uu+wm«s+m—u@—saws+m>

N

L) — u(x+s$)-(-§—n)—u(x+sn)~($—n)>

N

. _u(x—sn)-(é—n)—u(x—SE)-(E—n))

(
( :
(
(

_u(x +58) - (28) —ulx —s§) - (2$)>
N

_ulx+sm) - 2n) —ulx —sn) - (2n)>
N

Using (9.13) we obtain

0
lim ! / |:/ g(2e‘§+'7(x) + 26571 (x) — 4€f (x) — 4éf (x)) dx] ds =0,
=0+ p Jo L/

which implies
/ g(25(x) + 2657 (x) — 4ef (x) — 4e® (x)) dx = 0.
Q

Since g(s) = 0 if and only if s = 0, we obtain (9.14).
Let Q be the field of rational numbers. By (9.14) there exists a Borel set N C €2, with
L"(N) = 0, such that for every x € 2\ N the parallelogram identity

ETN(x) + €57 (x) = 265 (x) + 265 (x) 9.15)

holds for every &, n € Q". Since ¢ (x) is also positively homogeneous of degree 2 by
(9.5), arguing as in the proof of [15, Proposition 11.9] we deduce that for every x € Q\ N
there exists a symmetric Q-bilinear form B, : Q" xQ" — R such that

¢ (x) = By(£,8)

for every & € QQ". This implies that for every x € 2 \ N there exists a symmetric matrix
Eu(x) € M" X" such that

sym

E(x)=CEux)E-& 9.16)

for every & € Q".
Let us fix & € R". We want to prove that (9.16) holds for & = &y and for £L"-a.e.
x € Q. Let E be the vector subspace over (Q generated by Q" U {&p}. Since E is countable,
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there exists a Borel set Nyo C R”", with Ng D N and £"(Ny) = 0, such that (9.15) holds
for every x € Q2 \ Ny and for every &, n € E. Arguing as before we prove that for every
x € Q\ Ny there exists a symmetric matrix A(x) € Mfyﬁ’ such that

() =AW)E-& (9.17)

for every & € E. Since Q" C E and N C Ny, equalities (9.16) and (9.17) hold for every
x € Q\ Ng and for every & € Q. This implies that A(x) = Eu(x) for every x € Q\ Np.
Since (9.17) holds for every x € Q \ Ny and for every £ € E, we deduce that the same
is true for (9.16). Since &y € E, we conclude that (9.16) holds for £ = &y and for every
x € Q\ M.

Since & is arbitrary, we have shown that for every & € R” we have
E(x)=Eux)E-& L'-ae. in Q. (9.18)
By Fubini’s theorem, (9.18) gives
(€)5(0) = Ewj &€
for every & € R" \ {0}, for H" '-ae. y € TI¢, and for L'-ae. 1 € Qi Together with
(9.7), this property implies (9.2) for every & € R” \ {0} and for H" '-a.e. y € IT5.
By (9.9) and (9.18) for every £ € S"~! and for £"-a.e. x €  we have

1 /p <M(X+S§)~(S§)—M(x)~(S§)—5u(x) (s§) - (s8) ) _
g ds =0.
0

52

This implies
e L[ (u(x +58) - (s8) —u(x) - (s§) — Eu(x) (s§) - (58) ) 1 gy =
m L ¢ s ds = 0.

p—0+ p" Jo 52

Integrating over "~ ! and using the formula for polar coordinates we obtain

1 ux+y)-y—u@)-y—Eu(x)y-y
0= lim — g 3 dy =

p—0+ p" Jp,0) |yl

. ((u(y)—u(X)—gu(X) vV =x)-(y—x) )
= lim — g 5 dy,
p—0+ p" B, (x) |y — x|
which implies (9.1) by Chebyshev’s inequality and by the properties of g.
It remains to prove that u € LY(Q; M) Let /lf, and /i° be the measures intro-

duced in Definitions 4.8 and 4.10. By (9.2) we have

§ — D% 0
/QE (Ew)y & - &l dr = D a51(R5) < A3(R5)
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for every & € $"! and for #"'-a.e. y € II¢. Integrating over IT¢ and using Fubini’s
theorem and (4.6) for every & € S"~! we obtain

/ IEuk -&ldx < i5(Q) < [1,(Q) < 0,
Q

where [i, is the measure introduced in Definition 4.16. This implies that u €

LY(Q; M) and concludes the proof of the theorem. O

Remark 9.2. By the structure theorem for BD functions (see [5, Theorem 4.5]) and by
Theorem 9.1, for every u € BD(f2) the function £u coincides with the density of the
absolutely continuous part of Eu with respect to L”.

Remark 9.3. Let 0: R — R be the truncation function defined by o (s) := min{|s]|, 1}.
By Theorems 8.1 and 9.1 for every u € GBD(£2) we have

D |(BE) +/
e BiNJ¢

y

o@a§han’ = [ iEwse-lar+ [ oo dn
B B

a0

for every & € S"~!, for H"'-a.e. y € 1%, and for every Borel set B C Q. By the area
formula (see, e.g., [6, Theorem 2.71]) and by Fubini’s theorem it follows that for every

u € GSBD(£2) the measure /fci defined by (4.5) satisfies

i) = [ teus-sldx+ [ oquomelan < [ juderni @)
B BNJ, B

for every £ € S*~! and for every Borel set B C . Therefore for every u € GSBD(Q)

the measure /i, introduced in Definition 4.16 satisfies the estimate

iy (B) < / |Euldx +H""Y (BN J,) forevery Borel set B C Q. 9.19)
B

10. Compactness and slicing

In this section we prove some extensions of the well-known Fréchet—Kolmogorov com-
pactness criterion in L', In particular we are interested in some conditions that imply
sequential compactness with respect to £"-a.e. pointwise convergence. The main result is
obtained by assuming suitable properties of the one-dimensional slices.

To simplify the exposition, in this section every function u defined on € is always
extended to R" by setting u(x) = 0 for every x € R” \ Q. These results are based on the
notion of modulus of continuity, made precise by the following definition.

Definition 10.1. A modulus of continuity is an increasing continuous function o :
R+t — R such that w(0) = 0.

The first lemma provides a compactness result with respect to pointwise £"-a.e. con-
vergence. Note that the usual L! bound is replaced by (10.3).
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Lemma 10.2. Let U be a set of L"-measurable functions from 2 into R", let
g: Rt — R be a nondecreasing continuous function satisfying

g(0)=0 and lir_n)(i)l_g g > 0, (10.1)

and let Yyro: RY — RY be an increasing continuous function with

lim o(s) = oo. (10.2)
§—>00
Assume that there exist a constant M € RY and a modulus of continuity o such that
/ Yo(lu)dx < M, (10.3)
Q
/ g(lux + h&) —u()) dx < w(h) (10.4)
]Rn

for every u € U, every & € S, and every 0 < h < 1. Then every sequence in U
has a subsequence that converges pointwise L"-a.e. on 2 to an L"-measurable function
u: Q — R”,
Proof. By (10.1) there exist a,r > 0 such that as < g(s) forevery 0 < s < 2r. Let
¢: R" — B,(0) be the homeomorphism defined by

rz

(@) = /77—
NS

There exists ¢ € R such that |p(z2) — ¢(z1)] < clza — z1| for every z1,2, € R".
Therefore

%fR lou(x + h&)) —(u(x))dx < A%ng(lw(u(wrhé)) —@ux))])dx

(10.5)

< / g(cluCx + hE) — u(x))) dx < w(ch)
R’l

for every u € U, every £ € S"~!, and every 0 < h < 1. By the Fréchet-Kolmogorov
compactness criterion every sequence uy in U4 has a subsequence, not relabelled, such that
vr 1= @(ug) converges strongly in L' (Q; R") to a function v: & — B, (0). Passing to a
further subsequence we may assume that vy converges to v pointwise £"-a.e. on 2.

Let us prove that |[v(x)| < r for L"-a.e. x € Q. Let A :=={x € Q : |[v(x)| = r}. By

(10.5) we have
7k
r2 — v,%

so that |ug(x)| — oo for L"-a.e. x € A. By (10.2) this implies ¥o(Jux(x)|) — oo for
L"-ae. x € A. By (10.3) and by Fatou’s lemma we conclude that £"(A) = 0, hence
lv(x)| < r for L*-a.e. x € Q. By (10.6) we deduce that u; converges pointwise L"-a.e.
on 2 to the function o

u= .
2 _ 2

This concludes the proof. O
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The next lemma shows that in the Fréchet—Kolmogorov condition it is enough to consider
only the components of a vector function along the translation vectors.

Lemma 10.3. Let U be a set of L"-measurable functions from 2 into R", let
g: RT™ — RT be a nondecreasing continuous function such that

g0)=0 and g(s+1) =g(s)+g) 10.7)

for every s, t € R, and let yo: RT — R be an increasing continuous function satis-
fying (10.2). Assume that there exist a constant M € R* and two moduli of continuity w
and @ such that (10.3) holds and

/Rn g(lu(x +h&) - & —ulx) - &) dx < w(h), (10.8)
g(hs) < @(h) Yo(s) (10.9)

for everyu € U, every & € S""!, every 0 < h < 1, and every s € RY. Then there exists
a modulus of continuity @ such that

/ g(u(x +hé§) —u(x)) dx < o(h) (10.10)
Rll
foreveryu € U, every & € S""!, and every 0 < h < 1.
Proof. Letusfix& € S" 'and0 < h < 1/2. There exist n', ..., n"~! € S"~! such that
g,n', ..., 7" ! form an orthonormal basis. Then

n—1

|ux +hE) —u)| < lu(x+h)-& —ux)-E|+ Y lulx+h&)-n' —u@x)-n|  (10.11)

i=1
for every x € R". By the triangle inequality we have
u(x +hE) -0 —ux) 'l
<luCx+h&) 0 —ux +Vhu) -yl + luGe + V') -n' —ux) -y’ (10.12)
Let

m, = vk n - " £
b St R2 N/EY
so that _ _ ' _ _
il =1, heé—~hn' = —spnh,  Inh —n'l < V2, (10.13)

with s;, := vh + hZ2. By the triangle inequality and (10.13) we have
u(x +h€) -0’ —ux +~vhn') 7'l
< Jux +hE)| In' = nj,| + lu(x + hE) - mj, — u(x + Vhn') - |
+ e+ N ) — ')
< |uCx +~hn' —spn) - nfy —uCx + o) -
+ u(x + hE) V2R 4 lu(x + VR k) |V 2Vh. (10.14)
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From (10.7), (10.8), (10.11), (10.12), and (10.14) for every u € U we obtain
A; g(lu(x + h§) —u(x)])dx

n—1
s/R g(|u<x+h$)~s—u(x)-é|)dx+Z/R g(ux — simp,) - mj — u(x) - m|) dx
n l:l n

n—1
w201 [ eueoW2Vmds+ Y [ gttt Vin) o —ut ol dx
Rn — Jre

<wh) + @ -1 o h+h?)+20m— 1)/ g(u()|V2vVh) dx + (n — D) w(Vh).
Rl‘l
By (10.3) and (10.9) we have

/ g(lu()|V2vh) dx < &(v2vh) / Yo(Ju(x))) dx < Md(~2vh),
R R

which, together with the previous inequality, gives

[ stutx 1)~ ucon dx

<wh) + @ - Do&h+h2) + 200 — HYMOKW2Vh) + (n — Do (Vh).

forevery 0 < h < 1/2. By the triangle inequality (10.7) this implies that (10.10) holds for
every0 < h < 1 with@(h) := 20 (h/2)+2(n— D)o (~/2h + h2/2)+4(n — l)Md)(\/f_l)+
2n — D) w(Vh/V?2). O

Remark 10.4. Inequality (10.9) is satisfied if
g(s) =vo(s) and  Yo(hs) < w(h)Pols) (10.15)

for every s € RY and every 0 < h < 1. Note that the second inequality in (10.15)
holds when ¥(s) := s? with p > 0. In particular, Lemma 10.3 can be applied with
g(s) = Yo(s) = s forevery s € RT.

Remark 10.5. Inequality (10.9) is satisfied if

Yo(0) >0 and 51_1)120 IZO((SS)) =00 (10.16)
Indeed, (10.9) is equivalent to
h
lim sup S0 _ (10.17)

h—=0+ ser+ Yo (s)

By (10.16) the supremum is attained at a point s;,. Let /; be a sequence in R converging
to 0. If Sh; is bounded, then g(h jshj) / 1//()(Shj) <gh jshj) /¥0(0) — O since g is continu-
ous and g(0) = 0 by (10.7). If sp; — oo, then g(h;sn;)/Vo(sn;) < g(sn;)/Yolsn) — 0
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by (10.16). Since every sequence s, has either a bounded subsequence or a subsequence
diverging to oo, we obtain (10.17). Since (10.7) gives g(s) < 2sg(1) for every s > 1,
(10.16) is always satisfied if ¥9(0) > 0 and Yo(s)/s — oo as s — o0.

Remark 10.6. When 2 has a Lipschitz boundary, Lemma 10.3 provides a quick proof of
the compactness of the embedding of BD(2) into L!(2; R"). For every u € C P (R"; RY),
every £ € S"~!, and every & > 0 we have

h h
IM(X+h§)~$—M(x)-SIS/O IDM(X+IE)€~EIdt=/O |Eu(x +16)& - §| dt

where (Eu);j = %(Diu./ + Dju;). It follows that

h
/ lu(x+h&)-&—u(x)-&|dx 5/ (f |Eu(x+t$)é§-f;‘|dx> dt gh/ |Eu(x)|dx.
R” 0 R® R®

If u € BD(R2), we can approximate by convolutions its extension, which belongs to
BD(R") by the regularity of the boundary, and we get

/ x4 hE) - & — u(x) - £ dx < h|Eu|(®").

If U is a bounded subset of BD(£2), we can apply Lemma 10.3 with g(s) = vYo(s) = s
(see Remark 10.4) and we find that there exists a modulus of continuity @ such that

/ lu(x + h&) —u(x)|dx < w(h)
Rn

forevery u € U and every 0 < h < 1. By the Fréchet-Kolmogorov compactness criterion
U is relatively compact in L' (Q2; R").

In the next lemma we obtain the relative compactness with respect to pointwise £ -
a.e. convergence from the behaviour of the one-dimensional slices. The proof follows the
lines of [1, Theorem 6.6]. The main difference is that our assumptions concern only the
components u - £ of u and the corresponding slices in the same direction £. Moreover we
cannot assume L°° bounds in view of the application to Theorem 11.1. This makes the
statement of the lemma quite involved.

Lemma 10.7. Let U be a set of L™-measurable functions from Q into R", let g: RT —
RT be a nondecreasing continuous function satisfying (10.1), (10.7), and

g(s) <s foreverys e RT, (10.18)

and let yo: RT — RT be an increasing continuous function satisfying (10.2). Assume
that there exist M € R such that (10.3) holds for every u € U and a modulus of conti-
nuity @ such that (10.9) holds for every 0 < h < 1 and every s € R™. Assume also that
for every 8§ > 0 we can find a modulus of continuity ws such that for every € € S"~! there
exists a set V§ of L"-measurable functions from Q2 into R with the following properties:
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(a) for every u € U there exists v € V§ with
/R g(u(x) - & —v(x)Ddx < 8; (10.19)
(b) foreveryv e V§ and for " '-a.e. y € TI¢ we have
/ W5 (¢ +h) — o5 ()| dt < ws(h)  foreveryd <h < 1. (10.20)
R

Then every sequence in U has a subsequence that converges pointwise L"-a.e. on S to
an L"-measurable function u: Q — R". If, in addition, g(s) = s for every s € RT,
thenU C L' (Q; R") and every sequence in U has a subsequence that converges strongly
in LY(Q; R™).

Note that the modulus of continuity in (10.20) does not depend on y or &.

Proof of Lemma 10.7. Letus fixu e 4,8 > 0,and & € S"~!. Then there exists v € V§
satisfying (10.19). By (10.7), (10.18), and (10.20), for every 0 < & < 1 we have

/ g(lu(x +h&)-& —u(x)-&))dx <28 +/ [v(x + hE) —v(x)|dx
R~ R
=28+ /E (/ W5 (e + k) — v§ (1) dt) dH" ' (y) <28 4 cqws(h),  (10.21)
76() \JR

where ¢q = w,_1 diam(2)" 1. Let

w(h) = gng(za + cqws(h)).

By (10.21) we have (10.8) for every u € U, every £ € S*~!, and every 0 < h < 1. Since
w(h) — 0as h — 0+, by Lemma 10.3 there exists a modulus of continuity @ such that
(10.10) holds. The main conclusion follows now from Lemma 10.2.

If g(s) = s, then s < &(1)Yo(s) for every s € R* by (10.9). Therefore (10.3)
implies that U C LY(2; R") and U is bounded in L1 ($2; R"). The relative compactness
in L1(2; R") follows now from the Fréchet—Kolmogorov criterion. ]

In the proof of the compactness theorem for GBD(£2) we need the following estimate of
the modulus of continuity in L' of the translations of BV functions of one real variable.

Lemma 10.8. Ler z € BV(R). Assume that there exist constants a, b > 0 such that
IDz|(R\ JH) +H(IY <a and |zllpeow) < b. (10.22)

Then
/ |z(t +h) — z(t)|dt < (a + 2ab)h  for every h > 0. (10.23)
R
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Proof. By (10.22), H%(J!) < a < oo and for every t € J! we have |Dz|({t}) = |[z](?)]
< 2b, so that IDZI(JZl) < 2ab. Using (10.22) again, we obtain |Dz|(R) < a + 2ab.
Regularizing z by convolutions, we find a sequence zx in C*°(R) N BV(R) such that

Zx — z strongly in L'(R) and / |lz;|dt < a+2ab forevery k. (10.24)
R

For every t € R and every 4 > 0 we have

h
lzk (t + h) — zx ()] 5/ |2, (t + 5)| ds.
0

By (10.24), integrating over R and interchanging the order of integration we get

h
/|zk(r+h)—zk(r>|drsf(/ |z,;<t+s)|ds>d¢
R R 0

h
=/ (f |z,g(z+s)|dt)ds=h/ |2}.(t)| dt < (a + 2ab)h.
0 R R

Passing to the limit as k — oo and using (10.24) we obtain (10.23). m]

11. Two compactness results

In this section we prove the following analogue of the compact embedding of BD(£2)
into L' (2; R"): every subset of GBD(L) satisfying uniform bounds for the measures ﬁi
and for suitable integrals involving u has a subsequence that converges pointwise L£"-
a.e. on 2. This allows us to obtain a compactness result for GSBD(£2), following the
proof of the analogous result for SBD(£2) developed in [9]. As in the previous section,
every function u defined on Q2 is always extended to R” by setting u(x) = 0 for every
x € R"\ Q.

Theorem 11.1. Let U be a subset of GBD(S2). Suppose that there exist a constant M €
R™ and an increasing continuous function yo: Rt — R, with

lim Yo (s) = oo, (1L.1)

such that for every u € U and for every & € S"~! we have

/ vo(ul)dx <M and [i5(Q) < M, (11.2)
Q

where ﬁ,i is the measure introduced in Definition 4.10. Then every sequence in U has

a subsequence that converges pointwise L"-a.e. on Q to an L"-measurable function
u: 2 — R". If, in addition

lim Y29 _ o (11.3)

s—>00 §

thenU C L' (Q; R"™) and every sequence inU has a subsequence that converges strongly
in LY(Q; R™).
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Proof. Tt is enough to prove the result for every relatively compact open subset of 2.
Therefore it is not restrictive to assume that €2 is the union of a finite number of open

rectangles. This implies, in particular, that 7—[0(8(9%;)) < oo forevery & € S"~! and every

y € II%, so that for every u € U the slice ﬁi belongs to BV(Qi) (see Proposition 3.4),
and hence to BV(R).

To prove the main assertion, it is enough to show that U/ satisfies the hypotheses of
Lemma 10.7. Foreveryu e U, § € S"~! and a > 0 we define

AL =y eI : 2 e BV(R), |Dif|(R\ Jﬁli) + HO(Jﬁli) <al. (11.4)
Moreover we set B3 := IT5 \ A5“ and we define
A= (xeQ:nf(x) € A5} and BEY:={xeQ:7f(x) e BSY).  (11.5)
Since for H"l-ae. y € B5* we have ﬁéy- € BV(R) and
| D (25 \ J;i) +H@ N T+ H(0(2)) > @,

by Chebyshev’s inequality and by (4.4), (4.5), and (11.2) we have

n—1
H”_l(éf’“) < M+ H (89),
a
hence by Fubini’s theorem

M+ H"1OQ

L' (B < MAHT G diam(S2). (11.6)
a

For every b > 0 let o}, be the truncation function defined by o} (¢) = —b fort < —b,

op(t) =t for —b <t < b, and 05(¢t) = b for t > b. We define viz e L1(Q) by setting

{obm -£) in ALY,

§a . _
v,y =

11.7
0 in B,f’“. ( )

Let g be a function satisfying all assumptions of Lemma 10.7 and such that

, Yo(s)
m =0
s=>00 g(s)

For every § > O there exists bs > 0 such that g(s) < A&wo(s) for every s > bs. By
(11.6) there exists ag > 0 such that g(b)ﬁ"(B,f’a) < §/2. Therefore (11.2) gives

f g(lu & — v 1) do =/sag(lu~€ —%(u-s)|>dx+/“g<|u-s|>dx
Q AS B

u

<2 f g(lul) dx + g(b)L" (BE)
{lu-&|>b}

8

< W/Q%(Iul)dX+g(b)£"(BE’a) <s. (118)

Then we define Vg = {vi’Zi : u € U}, so that condition (a) of Lemma 10.7 is satisfied.
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As for condition (b), we observe that, if v = vizg € V§, then by (11.7) the slices v§

satisfy v5 = op, (45) for every y € Ay, and v§ = 0 for every y € By ™. Since, by defi-
nition, ﬁf € BV(R) forevery y € Ai’a, it follows that vf € BV(R) and ||vy lLoer) < bs
for every y € I1¢. Moreover, |Dv§|(B) < |Duy|(B) for every Borel set B C R,
J & C Je,and |[v§]| < |[ﬁ§]| on J ¢, hence Jl‘;’r C J}s~ Therefore (11.4) implies that
vy uy vy vy uy
DU IR\ J ) + HOU ) = DU R\ Je) + DU \ ) +HO o)
< |Du5|(R\JAE) +H°(JlE \J E) +H0(J )
<as foreveryy e AE’“‘S.

Since |Dvy|(R \ Jlg) + ”HO(JI ) =0 forevery y € 15’S % using Lemma 10.8 we obtain

(10.20) with ws(h) = (as + 2a5 bs)h. Therefore condition (b) of Lemma 10.7 is satisfied
and the proof of the main assertion is complete.

If (11.3) holds, then U4 C L'(2: R") by (11.2) and we can take g(s) = s in the proof,
thanks to Remark 10.5. The convergence in L'(€2; R") follows now from the last part of
Lemma 10.7. O

The following corollary is an easy consequence of Theorem 11.1 and of the arguments
used in the proof of Lemma 4.18.

Corollary 11.2. Let uy be a sequence in GBD(R2). Suppose that there exist an increasing
continuous function ¥y : RT — RT satisfying (11.1) and a constant M € RT such that

/ Vo(lug)dx <M and 1, () =M (11.9)
Q

for every k, where [i, is the measure introduced in Definition 4.16. Then there exist
a subsequence, still denoted by uy, and a function u € GBD(R2), such that uy — u
pointwise L™-a.e. on Q. If, in addition, (11.3) holds, then uj € L! (2; R™) for every k,
u € LY(; R"), and the subsequence converges strongly in L' ($2; R™).

Proof. Since /fcf,k < fiy, for every & € S"~! and every k, by Theorem 11.1 there exist a
subsequence, still denoted by ug, and an £"-measurable function u: 2 — R”, such that
uy — u pointwise L"-a.e. on Q. We want to prove that u € GBD().

By (11.9) there exist a subsequence, still denoted by fi,, , and a measure A € MZ (),
such that f,, — A weakly* in Mp(2). By Theorem 3.5 and Definitions 4.8, 4.10,
and 4.16 for every T € T, every & € S*=! and every ¢ € CCI(Q) with [¢p| < 1in 2, we
have

/r(uk-E)W-EdXS/ 191 d|De (z (uy - £) 5/ gl dit, sf 91
Q Q Q Q

Passing to the limit as k — oo we get

/r(u-@w-sdxs/wmx.
Q Q
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This implies that for every & € S"~! and every T € T the partial derivative De(t(u - £))
belongs to My, (€2) and its total variation satisfies |Dg(z(u - §))[(B) < A(B) for every
Borel set B C Q. Therefore u satisfies condition (a) of Definition 4.1 for every & € §*~1,
hence u € GBD(S2).

If (11.3) holds, then uy € L'(2; R") for every k by (11.9). The other assertions follow
from the last part of Theorem 11.1. O

We are now in a position to prove the compactness result for GSBD(£2).

Theorem 11.3. Let uy be a sequence in GSBD(L2). Suppose that there exist a constant
M < RY and two increasing continuous functions yo: Rt — RT and ¥ : Rt — RT,

with
lim Yo(s) =00 and lim 1//1—(S) = 00, (11.10)
§—> 00 §—>00 S
such that
/ Yo (lukl) dx +/ Yi(Eukl) dx +H ' (Ju) < M (11.11)
Q Q

for every k. Then there exist a subsequence, still denoted by uy, and a function u €
GSBD(L2), such that

Uy — u pointwise L"-a.e. on Q, (11.12)
Eup — Eu  weakly in L' (Q; ML), (11.13)
H(J) < l}(m inf 1"~ (J). (11.14)

—00

If. in addition, (11.3) holds, then uy, € L'(S2; R") for every k, u € L'(S; R"), and the
subsequence converges strongly in L' ($2; R™).

Proof. By (11.10) and (11.11) there exists a constant M1 € R such that
/ |Eugldx +H"™ (Jy) < M,
Q

for every k. Therefore (9.19) implies that (1, (2) < M; for every k. By Corollary 11.2
there exist a subsequence, still denoted by uy, and a function u € GBD(£2), such that
uy — u pointwise L"-a.e. on 2.

Taking into account Remark 4.3, to prove that u € GSBD(£2) it is enough to show
that for 4"~ !-a.e. y € II¢ the function ﬁé; = uf - & belongs to GSBV(Q?). This property,
as well as (11.12)—(11.14), can be obtained as in the proof of [9, Theorem 1.1]. We have
just to redefine the function Il ¢ (u) introduced on page 342 of that paper by

M) i= [ oo,

and to modify the proof accordingly. In particular we cannot use the boundedness in
BD(£2) and we apply the compactness theorem for GSBV(Q?) (see [6, Theorem 4.36])
to the one-dimensional slices in order to obtain (2.13) and the formula after (2.18) of [9].

If (11.3) holds, the assertions at the end of the theorem follow from the last part of
Corollary 11.2. O
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12. Two examples

In this section we give two examples that show that the compactness result for GSBD(£2)
(Theorem 11.3) cannot be easily improved. The first example shows that we cannot ex-
pect convergence in L' (R2; R") if we remove (11.3). More precisely, we show that, if we
take Yo(s) = s for every s € RT, then, in general, we have only pointwise £"-a.e. con-
vergence. Note that in this case (11.11) gives that uy is bounded in L'(€2; R") and that
the pointwise limit u belongs to L' (Q; R") by the Fatou lemma.

Example 12.1. Let xo € Q, let £ € S"!, and, for every k, let uy € SBV(Q; R") be
defined by uy(x) = k"€ for |[x — xo| < 1/k and uy(x) = 0 for |[x — xo| > 1/k. Then
Eur =0L"-ae.onQ, ’H"’I(Juk) = nw, /K", and fQ |ux| dx = w, for k large enough.
Therefore the hypotheses of Theorem 11.3 are satisfied with ¥ (s) := s and ¥ (s) := 52
for every s € R*. The sequence u; converges to 0 pointwise £"-a.e. on €, but u; does
not converge to 0 in L' (Q; R™).

In the rest of this section we construct a sequence u; in SBD(S2) that satisfies all
hypotheses of the compactness result for GSBD(£2) (Theorem 11.3), but the limit function
u does not belong to BD(L2). Since u € GSBD(£2), this shows also that GSBD(2) #
SBD(£2) and GBD(2) # BD(2). For the construction we need the elementary result
contained in the following lemma.

Lemma 12.2. Let p; be a sequence in R™ such that
[e¢)
Z Py < 0. (12.1)
k=1

Then there exists a sequence xi in R" converging to 0 such that the balls B, (xi) are
pairwise disjoint.

Proof. 1t is not restrictive to assume that 0 < pg+1 < px < 1/2 for every k. For every
integer i > 1 let k; be the smallest index k such that p;y < 2-i=1 Then k; = 1 and for
every k; < k < kj+1 we have

27 <2 <270, (12.2)

which, together with (12.1), gives

o0

Z(k,-+1 — k)27 < 0. (12.3)

i=1
Since px > 0 for every k, we have

lim k; = oo. (12.4)

i—00

Let a; be the largest integer such that (k; 1 — k; + 1)27" < 2774 By definition we have

a; <i and 27" < (kg — ki 4+ D27 < 27 (12.5)
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By (12.3) and (12.5) we have
o0
Zz—”“f‘ < oo. (12.6)
i=1

Let
x
Bj = Zz—"“t‘. 12.7)
i=j

By (12.6) the sequence B; is decreasing and tends to 0 as j — oo. Let jy be the largest
integer such that 8; < 270, For every integer j > jo let m; be the smallest integer i
such that 8; <27 . Then m;, = 1 and for every m; <i < mj| we have

27T < B <27, (12.8)

Since B; > O for every i, we have

lim m; = oo. (12.9)
j—o0
Moreover by (12.7) and (12.8)
Z 27 < B, <27 (12.10)

mj§i<mj+1
If i > mj, by (12.7) we have
27 < By < Py <27, (12.11)

so that by (12.5),
j<a <Ii. (12.12)

Let Q = [0,1)" and let Q; := 27/ Q. By (12.12) for m; < i < mj4; the set
Qj—1\ Qj is the union of disjoint cubes of the form z + Q;, where z € 277" and Z is
the set of integers. We start with i = m; and observe that (k; — k; )27 < 27" <
27 < 27nU=h 27 = £7(Q;_1 \ Q)) by (12.5) and (12.11). Therefore we can
find a family Qi’mj , ki ;= k < ky, i+l of pairwise disjoint cubes of the form described
above and contained in Q1 \ Q;. Suppose now thati = m; + 1 < m;41 and let A be
the union (with respect to k) of the cubes Qi’mj s kmj <k < kmj+1. By (12.5) we have
LM(A) < 27", so that L7((Qj—1 \ @j) \ A) > 27 (2" — 1) — 27" > 27n4i py
(12.10). Since the set (Q;—1 \ Q;) \ A is the union of disjoint cubes of the form z + Q;,
where z € 271Z" and i = m; + 1, there exists a family Q1" k; < k < k;41, of pairwise
disjoint cubes of this form and contained in (Q;—1 \ Q;) \ A . Continuing in the same
way for every m; < i < mjy1, we construct a family Q,J(’l, ki <k < ki1, of pairwise
disjoint cubes of side 2~ and contained in Qj-1\ Qj, such that the cubes of two different
families have empty intersection.
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Let x,{’i,j > jo.mj <i <mjy1, ki <k < kiy1,be the centres of the cubes Q,{’i. By
(12.2) we have

By (x'h) c 0] (12.13)

Let x; be the sequence defined by x; := x;"* for k; < k < kip1, mj <i < mj4, and

Jj > jo- By (12.4) and (12.9) we have x; — 0. Since the cubes Q7" are pairwise disjoint,
the balls By, (x) are pairwise disjoint by (12.13). ]

The following example shows that GSBD(£2) #= SBD(£2) and GBD(2) # BD(£2). More-
over it shows that, if a sequence in SBD(£2) satisfies the assumptions of Theorem 11.3,
but does not satisfy the assumptions of [9, Theorem 1.1], then the limit of a subsequence
may not belong to SBD(£2).

Example 12.3. Assume that n > 2. Let p > 1 and let p; be a sequence of positive real
numbers such that

o0 o
Y o' <oo and Zp,’j*‘”“’ = o0, (12.14)
k=1 k=1

for instance p; := k~1/"~1=1/P) By Lemma 12.2 there exist a sequence x; and a point

xo € 2 such that the balls By := B,, (x;) are pairwise disjoint and xy — xo as k — oo.
Let Ax be a sequence of antisymmetric n xn matrices such that

Akl =p V7 (12.15)

for every k. From (12.14) and (12.15) we obtain

o0

o0
D 1A ™ <00 and Y |Aglpf = oc. (12.16)
k=1 k=1

For every k let w; be the function defined by wr(x) = Ap(x — xx) if x € By and
wi(x) =0if x € 2\ Bg. Finally, let

J 00
uj = Zwk and u = Zwk.
k=1 k=1

For every j the function u; belongs to SBV(£2; R") € SBD(2) C GSBD(£2). Moreover
uj € L>(2; R") and £u; = 0 L"-a.e. in 2, since each matrix Ay is antisymmetric. As
|wi| < |Ak| ok, using the inequalities in (12.14) and (12.16) we find a constant M € R
such that (11.11) holds with ¥o(s) = 1 (s) := sP. The inequality in (12.16) implies also
that u € LP(2; R") and u; — u strongly in L”(2; R") as j — oo. By Theorem 11.3
we have u € GSBD(£2). This follows also from condition (b) of Definition 4.1, using the
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fact that for every Borel set B C Q, every £ € S*!, and H" !-ae. y € II¢¥ we have
|Di5|(B5 \ Jz¢) =0 and

/Hg(lDﬁi'(Bi n J;,fv\Jﬁli) +HO(BS N ]ﬁli)) A" (y)
o
< /E’HO(BE N Jﬁs)dHn—l(y) < ZfEHO(Bé n (aBk)i)d"H"_l(y)
T y ~—Jn )

o
<> H" N (BNIBY) = M(B) < oo,
k=1

where the last inequality follows from (12.14).
Let Eu be the matrix-valued Radon measure considered in Remark 4.5. For every
& > 0 we have

1 ke ke
|EM|(Q\BS(X0))Z—Z/ |Ak(x = x) 1 dH" ™ (x) = o D Aklpf,  (12.17)
ﬁk:l By k=1

where k; is the largest index such that By N B.(xg) = @ for every k < k., and ¢, is a
constant depending only on the dimension n. If u € BD(2), then |Eu|(2 \ B:(x9)) <
|[Eu|(2) < oo for every ¢ > 0. By (12.17) this contradicts the equality in (12.16).
Therefore u ¢ BD(S2).
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