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Abstract. We compute the essential dimension of the functors Formsn,d and Hypersurfn,d of
equivalence classes of homogeneous polynomials in n variables and hypersurfaces in Pn−1, re-
spectively, over any base field k of characteristic 0. Here two polynomials (or hypersurfaces) over a
field K/k are considered equivalent if they are related by a linear change of coordinates with co-
efficients in K . Our proof is based on a new Genericity Theorem for algebraic stacks, which is of
independent interest. As another application of the Genericity Theorem, we prove a new result on
the essential dimension of the stack of (not necessarily smooth) local complete intersection curves.
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1. Introduction

Let k be a base field of characteristic 0,K/k be a field extension, and F(x) be a homoge-
neous polynomial (which we call a form) of degree d in the n variables x = (x1, . . . , xn),
with coefficients in K . We say that F descends to an intermediate field k ⊂ K0 ⊂ K
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if there exists a linear change of coordinates g ∈ GLn(K) such that every coefficient of
F(g · x) lies in K0.

It is natural to look for a “smallest” subfield K0 to which a given form F(x) de-
scends. A minimal such field K0 with respect to inclusion may not exist, so we ask in-
stead for the minimal transcendence degree trdegk K0. This number, called the essential
dimension edk F of F , may be thought of as measuring the “complexity” of F . A major
goal of this paper is to compute the maximum of edk F , taken over all fields K/k and
all forms F(x1, . . . , xn) of degree d . This integer, usually called the essential dimension
edk Formsn,d of the functor of forms Formsn,d , depends only on n and d; it may be viewed
as a measure of complexity of all forms of degree d in n variables.

We will also be interested in a variant of this problem, where the form F(x) ∈

K[x1, . . . , xn] of degree d is replaced by the hypersurface

H := {(a1 : · · · : an) | F(a1, . . . , an) = 0} (1.1)

in Pn−1. Here we say that H descends to K0 if there exists a linear change of coordinates
g ∈ GLn(K) and a scalar c ∈ K∗ such that every coefficient of cF (g ·x) lies inK0. Once
again, the essential dimension edk H of H is defined as the minimal value of trdegk K0,
with the minimum taken over all fields K0/k such that H descends to K0. We will be
interested in the essential dimension edk Hypersurfn,d , defined as the maximal value of
edk H , where the maximum is taken over allK/k and all forms F(x) ∈ K[x1, . . . , xn] of
degree d. Here H is the zero locus of F , as in (1.1).

The study of forms played a central role in 19th century algebra. The problems of
computing edk Formsn,d and edk Hypersurfn,d are quite natural in this context. However,
to the best of our knowledge, these questions did not appear in the literature prior to the
(relatively recent) work of G. Berhuy and G. Favi, who showed that edk Hypersurf3,3 = 3;
see [BF04].

In this paper we compute edk Formsn,d and edk Hypersurfn,d for all n, d ≥ 1. Our
main result is as follows.

Theorem 1.1. Assume that n ≥ 2 and d ≥ 3 are integers and (n, d) 6= (2, 3), (2, 4) or
(3, 3). Then
(a) edk Formsn,d =

(
n+d−1
d

)
− n2

+ cd(GLn/µd)+ 1.
(b) edk Hypersurfn,d =

(
n+d−1
d

)
− n2

+ cd(GLn/µd).

The values of edk Formsn,d and edk Hypersurfn,d for n, d ≥ 1 not covered by Theorem 1.1
are computed in Section 8; the results are summarized in the following table.

n d edk Formsn,d edk Hypersurfn,d
arbitrary 1 0 0

1 ≥ 2 1 0

arbitrary 2 n n− 1

2 3 2 1

2 4 3 2

3 3 4 3
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The quantity cd(GLn/µd) which appears in the statement of Theorem 1.1 is the
canonical dimension of the algebraic group GLn/µd . For the definition and basic proper-
ties of canonical dimension we refer the reader to Section 2.2; see also [BR05, KaMe06]
for a more extensive treatment of this notion. The exact value of cd(GLn/µd) is known
in the case where e := gcd(n, d) is a prime power pj . In this case

cd(GLn/µd) =

{
pi − 1 if j > 0,
0 otherwise,

where pi is the highest power of p dividing n; see [BR05, Section 11]. More generally,
suppose e = pj1

1 . . . p
jr
r is the prime decomposition of e (with j1, . . . , jr ≥ 1) and piss is

the highest power of ps dividing n. A conjecture of J.-L. Colliot-Thélène, N. A. Karpenko,
and A. S. Merkurjev [CTKM07, (2)] implies that

cd(GLn/µd) =
r∑
s=1

(piss − 1). (1.2)

This has only been proved if e is a prime power (as above) or n = 6 [CTKM07, The-
orem 1.3]. In these two cases Theorem 1.1 gives the exact value of edk Formsn,d and
edk Hypersurfn,d . For other n and d Theorem 1.1 reduces the problems of computing
edk Formsn,d and edk Hypersurfn,d to the problem of computing the canonical dimension
cd(GLn/µd). For partial results on the latter problem, see [BR05, Section 11].

The notions of essential dimension for forms and hypersurfaces are particular cases
of Merkurjev’s general definition of essential dimension of a functor [BF03]. A special
case of this, upon which our approach is based, is the essential dimension of an algebraic
stack. For background material on this notion we refer the reader to [BRV11]. In particu-
lar, edk Formsn,d = edk [An,d/GLn] and edk Hypersurfn,d = edk [P(An,d)/GLn], where
An,d is the

(
n+d−1
d

)
-dimensional affine space of forms of degree d in n variables and

P(An,d) is the associated
(
n+d−1
d

)
−1-dimensional projective space of degree d hypersur-

faces in Pn−1. (Here, as in the rest of the paper, we will follow the classical convention of
defining the projectivization P(V ) of a vector space V over k as the projective space of
lines in V , that is, as Proj Symk V

∨. In the present context, this seems more natural than
Grothendieck’s convention of defining P(V ) as Proj Symk V .) The group GLn naturally
acts on these spaces, and [An,d/GLn] and [P(An,d)/GLn] denote the quotient stacks for
these actions; see [BRV11, Example 2.6].

The essential dimension of the “generic hypersurface” of degree d in Pn−1, i.e., of the
hypersurface Hgen cut out by the “generic form”

Fgen(x1, . . . , xn) =
∑

i1+···+in=d

ai1,...,inx
i1
1 . . . x

in
n = 0, (1.3)

where ai1,...,in are independent variables and K is the field generated by these variables
over k, was computed in [BR05, Sections 14–15]. The question of computing the essential
dimension of the generic form Fgen itself was left open in [BR05]. For n and d as in
Theorem 1.1 we will show that edk Fgen = edk Hgen + 1; see Proposition 3.4.
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The key new ingredient in the proof of Theorem 1.1 is the following “Genericity The-
orem”. Let X be a connected algebraic stack with quasi-affine diagonal that is smooth of
finite type over k, in which the automorphism groups are generically finite (for the sake of
brevity, we say that X is amenable). Then we can define the generic essential dimension
of X , denoted by gedk X , as the supremum of the essential dimensions of the dominant
points SpecK → X . If X is Deligne–Mumford, that is, if all stabilizers are finite, then
edk X = gedk X ; see [BRV11, Theorem 6.1]. This result, which we called the Genericity
Theorem for Deligne–Mumford stacks in [BRV11], is not sufficient for the applications in
the present paper. Here we prove the following stronger theorem conjectured in [BRV11,
Question 6.6].

Theorem 1.2. Let X be an amenable stack over k. Let L be a field extension of k, and ξ
be an object of X (SpecL), such that the automorphism group scheme AutL ξ is reductive.
Then

edk ξ ≤ gedk X .

In particular, if the automorphism group of any object of X defined over a field is reduc-
tive, then edk X = gedk X .

Note that Theorem 1.2 fails if the stabilizers are not required to be reductive (see [BRV11,
Example 6.5(b)]), even though a weaker statement may be true in this setting (see Conjec-
ture 5.4). We also remark that the locus of points with reductive stabilizer is constructible
but not necessarily open in X . Thus for the purpose of proving Theorem 1.2 it does not
suffice to consider the case where all stabilizers are reductive.

Theorem 1.2 implies, in particular, that if the automorphism group of a form
f (x1, . . . , xn) is reductive then edk f ≤ edk Fgen. To complete the proof of Theo-
rem 1.1(a) we supplement this inequality with additional computations, carried out in
Section 6, which show that forms f (x1, . . . , xn) whose automorphism group is not re-
ductive have low essential dimension; for a precise statement, see Theorem 6.3. The
proof of Theorem 1.1(b) is more delicate because the quotient stack [P(An,d)/GLn] is
not amenable, so the Genericity Theorem cannot be applied to it directly. We get around
this difficulty in Section 7 by relating edk [P(An,d)/GLn] to the essential dimension of
the amenable stack [P(An,d)/PGLn].

In the last section we use our Genericity Theorem 1.2 to prove a new result on the
essential dimension of the stack of (not necessarily smooth) local complete intersection
curves, strengthening [BRV11, Theorem 7.3].

2. Preliminaries

2.1. Special groups

A linear algebraic group schemeG over k is said to be special if for every extensionK/k
we have H1(K,G) = {1}. Special groups were studied by Serre [CGS58, Exposé 1] and
classified by Grothendieck [CGS58, Exposé 5] (over an algebraically closed field of char-
acteristic 0). Note thatG is special if and only if edk G = 0; see [TV13, Proposition 4.3].
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The group GLn is special by Hilbert’s Theorem 90, and so is SLn. Direct products of
special groups are easily seen to be special. Moreover, in characteristic 0 the group G is
special if and only if the Levi subgroup ofG (which is isomorphic toG/RuG) is special;
see [San81, Theorem 1.13]. Here RuG denotes the unipotent radical of G. We record the
following fact for future reference.

Let A be a non-zero nilpotent n× n-matrix with entries in k and GA be the image of
the map Ga → GLn given by t 7→ exp(tA). Note that this map is algebraic, since only
finitely many terms in the power series expansion of exp(tA) are non-zero.

Lemma 2.1.

(a) The centralizer C of A (or equivalently, of GA) in GLn is special.
(b) The normalizer N of GA in GLn is special.

Proof. (a) By [Jan04, Propositions 3.10 and 3.8.1], C is a semidirect product U o H ,
where U G C is unipotent and H is the direct product of general linear groups GLr for
various r ≥ 0; cf. also [McN06, Section 2]. Thus H = Levi subgroup of C is special, and
part (a) follows.

(b) The normalizer N acts on GA ' Ga by conjugation. This gives rise to a homo-
morphism π : N → Gm = Autk Ga whose kernel is the centralizer C = CGLn(A). We
claim that π is surjective, i.e., the sequence

1→ C → N
π
−→ Gm → 1

is exact. If this claim is established, the long non-abelian cohomology sequence associated
with this short exact sequence shows that H1(K,N) = {1} for every field K/k, i.e., N is
special, as desired.

Now observe that our claim is equivalent to the assertion that for every t ∈ k there
exists a B ∈ Mn(k) such that B−1AB = tA. To prove this assertion, we may assume that
A is a single Jordan block

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 . . . 0 1
0 0 . . . 0 0

 .

In this case we can take B to be the diagonal matrix B = diag(1, t, t2, . . . ). This com-
pletes the proof of the claim and the lemma. ut

2.2. Canonical dimension

Let K be a field and X be either a geometrically integral smooth complete K-scheme of
finite type or a G-torsor for some connected linear algebraic K-group G. The canonical
dimension cdX of X is the minimal value of dimY , where Y ranges over all integral
closedK-subschemes ofX admitting a rational mapX 99K Y defined overK . Equivalent



2004 Zinovy Reichstein, Angelo Vistoli

definitions via generic splitting fields and determination functions can be found in [BR05,
KaMe06].

If we fix a base field k and an algebraic k-group G, the maximal value of cdX as K
ranges over all field extensions K/k and X → SpecK ranges over all GK -torsors, is
denoted by cdG. Moreover, cdG = cdXver, where Xver → SpecKver is a versal G-
torsor. In particular, we can construct a versal G-torsor by starting with a generically
free linear representation V of G defined over k and setting Kver := k(V )G. Then V
has a G-invariant open subset U which is the total space of a G-torsor U → B, where
k(B) = k(V )G. Restricting to the generic point η of B, we obtain a versal torsor Xver :=

Uη → SpecKver. For details of this construction we refer the reader to [Ser03, I.5].

Lemma 2.2.

(a) Let X1 and X2 be Brauer-equivalent Brauer–Severi varieties over a field K/k. Then

cdX1 = cdX2.

In other words, the canonical dimension cdα of a Brauer class α ∈ H2(K,Gm) is
well defined.

(b) Let G = GLn or SLn and let C be a central subgroup scheme of G. Then for any
field K/k and any (G/C)-torsor X → SpecK we have cdX = cdα, where α
is the image of the class of X under the coboundary map ∂K : H1(K,G/C) →

H2(L,C) ⊆ H2(K,Gm) induced by the exact sequence 1→ C → G→ G/C → 1.
(c) LetK/k be a field extension and α ∈ H2(K,Gm) be a Brauer class of index dividing

n and exponent dividing d . Then cdα ≤ cd(GLn/µd).

Proof. (a) follows from the fact that X1 and X2 have the same splitting fields L/K;
see [BR05, Section 10] or [KaMe06, Section 2].

(b) By Hilbert’s Theorem 90, G is special, i.e., H1(L,G) = {1} for any field L.
Hence, the coboundary map ∂L : H1(L,G/C)→ H2(L,C) has trivial kernel for any L.
In other words, X and α have the same splitting fields, and part (b) follows (cf. [BR05,
Lemma 10.2]).

(c) By our assumption, α lies in the image of the coboundary map

∂K : H1(K,GLn/µd)→ H2(K,C);

cf., e.g., [BR05, Lemma 2.6]. Part (c) now follows from part (b). ut

The following result will be used repeatedly.

Proposition 2.3.

(a) Let X → SpecK be a Gm-gerbe over a field K . Denote the class of this gerbe in
H2(K,Gm) by α. Then edK X = cdα.

(b) Let e ≥ 2 be an integer and X → SpecK be a µe-gerbe over a field K . Denote the
class of this gerbe in H2(K,µe) by β. Then edK X = cdβ + 1.

Proof. See [BRV11, Theorem 4.1]. ut
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2.3. Gerbes and Brauer classes

Let φ : X → X be a Gm-gerbe over a stack X . If L is a field and ξ ∈ X (L) then,
pulling back X to SpecL we obtain a Gm-gerbe Xξ over L. We will denote by ind(Xξ )
and exp(Xξ ) the index and exponent of the Brauer class of Xξ . The following lower
semicontinuity properties of ind and exp (as functions of ξ ) will be used in the proof of
Theorem 1.1(b).

Lemma 2.4. Let φ : X → X be a Gm-gerbe over an integral regular algebraic
stack X , as above. Assume further that X is generically a scheme, with generic point
η : SpecK → X . Then for any field L/k and any ξ ∈ X (L),

(a) ind(Xξ ) divides ind(Xη), and
(b) exp(Xξ ) divides exp(Xη).

Proof. (a) The key fact we will use is that if B is a Brauer–Severi variety over a field L
then ind(B) divides d if and only if B has a linear subspace of dimension d − 1 defined
over L; see [Art82, Proposition 3.4].

By [LMB00a, Theorem 6.3] there exists a smooth map T → X such that ξ lifts to a
point SpecL → T . We may assume that T is affine, regular and integral. The index of
the pullback of Xη to the function field k(T ) divides ind(Xη); hence we can replace X
with T , and assume that X = T is an affine regular integral variety. The étale cohomol-
ogy group H2(T ,Gm) is torsion, because T is regular; hence, by a well known result of
O. Gabber [Gab81] the class of X is represented by a Brauer–Severi scheme P → T .

Let d be the index ind(X η) := ind(Pη) and Gr(P, d − 1)→ T be the Grassmannian
bundle of linear subspaces of dimension d − 1 in P . The generic fiber Gr(P, n − 1)η
has a K-rational point; this gives rise to a section U → Gr(P, n − 1) over some open
subscheme U of T . Let Y be the complement of U in T . If our point ξ : SpecL → X
lands in U , then the pullback Pξ has a linear subspace of dimension d−1 defined over L,
and we are done. Thus we may assume that ξ ∈ Y (L). The morphism ξ : SpecL → T

extends to a morphism SpecR → T , where R is a DVR with residue field L, such that
the generic point of SpecR lands in U . The pullback Gr(P, d − 1)R of Gr(P, d − 1) to
SpecR then has a section over the generic point. By the valuative criterion of properness
this section extends to a section SpecR→ Gr(P, d − 1). Specializing to the closed point
of SpecR, we obtain a desired section SpecL → Gr(P, d − 1). This shows that Pξ has
degree dividing d , as claimed.

(b) Set e := exp(Xξ ) and apply part (a) to the eth power Y of the gerbe X . Since Yη
is trivial (i.e., has index 1), so is Yξ . But Yξ is the eth power of the class of Xξ , and we
are done.

An alternative proof of part (b) is based on the fact that a Brauer–Severi variety B →
SpecL over a field L has index dividing e if and only if P contains a hypersurface of
degree e defined over L; see [Art82, (5.2)]. We may thus proceed exactly as in the proof
of part (a), with the same T and P → T , but using the Hilbert scheme H(P, e)→ T of
hypersurfaces of degree e in P instead of the Grassmannian. ut
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Remark 2.5. It was pointed out to us by the referee that after reducing to the case where
X = T is an affine regular integral variety, an alternative proof can be given by using the
theory of twisted sheaves.

3. Amenable stacks and generic essential dimension

Definition 3.1. Let X be an algebraic stack over k. We say that X is amenable if the
following conditions hold:

(a) X is integral with quasi-affine diagonal.
(b) X is smooth (and in particular, is locally of finite type) over k.
(c) There exists a non-empty open substack of X that is a Deligne–Mumford stack.

Any irreducible algebraic stack has a generic gerbe, the residual gerbe at any dom-
inant point SpecK → X [LMB00a, §11]. For amenable stacks, there is an alternative
description. Let X be an amenable stack over k, and U a non-empty open substack which
is Deligne–Mumford. After shrinking U , we may assume that the inertia stack IU is finite
over U . Let U be the moduli space of U , whose existence is proved in [KeMo97], and let
k(X) be its residue field. The generic gerbe Xk(X) → Spec k(X) is then the fiber prod-
uct Spec k(X) ×U U . The dimension dimX is the dimension of U , or, equivalently, the
dimension of U.

Example 3.2. Consider the action of a linear algebraic group defined over k on a smooth
integral k-scheme X, locally of finite type. Then the quotient stack [X/G] is amenable if
and only if the stabilizer StabG(x) of a general point x ∈ X is finite.

Of particular interest to us will be the GLn-actions on An,d , the
(
n+d−1
d

)
-dimen-

sional affine space of forms of degree d in n variables, and P(An,d), the
(
n+d−1
d

)
− 1-

dimensional projective space of degree d hypersurfaces in Pn−1, as well as the PGLn-
action on P(An,d).

Since the center of GLn acts trivially on P(An,d), the stack [P(An,d)/GLn] is not
amenable. On the other hand, it is classically known that the stabilizer StabPGLn(h) of any
smooth hypersurface h ⊂ Pn−1 of degree d ≥ 3 is finite; see, e.g., [OS78, Theorem 2.1]
or [MM64]. From this we deduce that the stacks [P(An,d)/PGLn] and [An,d/GLn] are
both amenable for any n ≥ 2 and d ≥ 3.

Moreover, if n ≥ 2, d ≥ 3 and (n, d) 6= (2, 3), (2, 4) or (3, 3) then the stabilizer of
a general hypersurface in Pn−1 of degree d is trivial; see [MM64]. For these values of n
and d the quotient stack [P(An,d)/PGLn] is generically a scheme of dimension

dimP(An,d)− dim PGLn =
(
n+ d − 1

d

)
− n2.

Definition 3.3. The generic essential dimension of an amenable stack X is

gedk X := edk(X) Xk(X) + dimX .
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Alternatively, gedk X is the supremum of the essential dimension of ζ ∈ X (K), taken
over all field extensions K/k and all dominant ζ : SpecK → X . By the Genericity
Theorem for Deligne–Mumford stacks [BRV11, Theorem 6.1], we see that gedk X is the
essential dimension of any open substack of X that is a Deligne–Mumford stack.

We will now compute the generic essential dimension of the quotient stacks
[An,d/GLn] and [P(An,d)/GLn] for n and d as in the statement of Theorem 1.1. Re-
call that gedk [An,d/GLn] = edk Fgen and gedk [P(An,d)/GLn] = edk Hgen, where Fgen
is the generic form of degree d in n variables and Hgen is the generic hypersurface, as
in (1.3).

Proposition 3.4. Let n ≥ 2 and d ≥ 3 be integers. Assume further that (n, d) 6= (2, 3),
(2, 4) or (3, 3). Then

(a) gedk [P(An,d)/GLn] =
(
n+d−1
d

)
− n2

+ cd(GLn/µd).
(b) gedk [An,d/GLn] =

(
n+d−1
d

)
− n2

+ cd(GLn/µd)+ 1.

Part (a) was previously known; see [BR05, Theorem 15.1]. Part (b) answers an open
question from [BR05, Remark 14.8].
Proof. Let X = [P(An,d)/GLn], Y = [An,d r {0}/GLn], and X = [P(An,d)/PGLn].
Consider the diagram

Yη

��

µd -gerbe

		

Y

��

µd -gerbe

		

Xη

Gm-gerbe

��

X

Gm-gerbe
��

η // X

For n and d as in the statement of the proposition, [P(An,d)/PGLn] is generically a
scheme (see Example 3.2). Denote the generic point of this scheme by η and its func-
tion field by k(η). The pullbacks Yk(η) and Xk(η) are, respectively, a µd -gerbe and a
Gm-gerbe over k(η); these two gerbes give rise to the same class α ∈ H2(k(η), µd) ⊂

H2(k(η),Gm). By Proposition 2.3,

edk(η) Xk(η) = cdα and edk(η) Yk(η) = cdα + 1.

Since

trdegk k(η) =
(
n+ d − 1

d

)
− n2,

it remains to show that
cdα = cd(GLn/µd). (3.1)

The action of G = GLn/µd on An,d is linear and generically free. Thus it gives rise to
a versal G-torsor t ∈ H1(k(η),G), and α is the image of t under the natural cobound-
ary map H1(k(η),G) → H2(k(η), µd) associated with the exact sequence 1 → µd →

GLn→ G→ 1. As explained in Section 2.2, cd t = cd(GLn/µd). On the other hand, by
Lemma 2.2(b), cdα = cd t , and (3.1) follows. ut
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4. Gerbe-like stacks

The purpose of the next two sections is to prove the Genericity Theorem 1.2. The proof
of the genericity theorem for Deligne–Mumford stacks in [BRV11] relied on a stronger
form of genericity for gerbes; see [BRV11, Theorem 5.13]. Our proof of Theorem 1.2
will follow a similar pattern, except that instead of working with gerbes we will need to
work in the more general setting of gerbe-like stacks, defined below. The main result of
this section, Theorem 4.6, is a strong form of genericity for gerbe-like stacks.

Definition 4.1. A Deligne–Mumford stack X is gerbe-like if its inertia stack IX is étale
over X .

If X is an algebraic stack, the gerbe-like part X 0 of X is the largest open substack
of X that is Deligne–Mumford and gerbe-like.

Remark 4.2. If an algebraic stack X is Deligne–Mumford, then the inertia stack
IX → X is unramified. Hence, if X is also reduced then by generic flatness the gerbe-like
part X 0 of X is dense in X .

Lemma 4.3. Let X be a reduced Deligne–Mumford stack. Suppose that the inertia stack
IX is finite and étale over X . Then X is a proper étale gerbe over an algebraic space.

Remark 4.4. The condition that X be reduced can be eliminated. However, it makes the
proof marginally simpler, and will be satisfied in all cases of interest to us in this paper.

Proof. Let X be the moduli space of X ; we claim that X is a proper étale gerbe over X.
This is a local problem in the étale topology of X. Hence, after passing to an étale covering
of X, we may assume that X is a connected scheme, and there exists a finite reduced
connected scheme U , with a finite group G acting on U , such that X = [U/G]. The
pullback of IX to U is the closed subscheme ofG×U defined as representing the functor
of pairs (g, u) with gu = u. The fact that this pullback is étale over U translates into the
condition that the order of the stabilizer of a geometric point is locally constant on U (and
hence, constant, since U is connected). That is, that every geometric point of U lies in
the same number of closed subschemes Ug = {u | gu = u}, where g ∈ G(k). This is
only possible if for every g ∈ G(k), Ug = ∅ or Ug = U . In other words, there exists a
subgroupH ofG that acts trivially on U (this subgroup is necessarily normal and defined
over k), and the induced action of G/H on U is free. Then U/(G/H) = X; hence U is
étale over X, and X = [U/G] is a gerbe banded by H over X. ut

Lemma 4.5. Suppose that X is a gerbe-like Deligne–Mumford stack, and Y → X a
representable unramified morphism. Then Y is also gerbe-like.

Proof. The inertia stack IX of a stack X is the fiber product X ×X×X X . We have a
diagram
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Y ×X Y ×X IX //

((

��

Y ×X Y

ww

��

IX
��

// X
��

X // X × X

Y ×X Y

66

// Y × Y

gg

in which all the squares are cartesian. This implies the equality

Y ×X Y ×X IX = (Y ×X Y)×X (Y ×X Y),

which in turn tells us that (Y×XY)×X (Y×XY) is étale over Y×XY . The hypotheses on
Y → X imply that the diagonal Y → Y ×X Y is an open embedding. Thus IY = YY×Y
is an open substack of (Y ×X Y) ×X (Y ×X Y), so it is étale over Y ×X Y , hence it is
étale over Y , as claimed. ut

From this and the results in [BRV11], it is easy to deduce the following. Given a field
L/k and ξ ∈ X (SpecL), we denote by codimX ξ the codimension of the closure of the
image of the corresponding morphism SpecL→ X .

Theorem 4.6. Let X be an integral gerbe-like Deligne–Mumford stack which is smooth
of finite type over a field k. Let L be an extension of k and ξ ∈ X (SpecL). Then

edX ξ ≤ edk(X) Xk(X) + dim X− codimX ξ.

Proof. If the inertia stack IX is finite over X , then, by Lemma 4.3, X is an étale proper
gerbe over a smooth k-scheme, and the statement reduces to [BRV11, Theorem 5.13].
In the general case, from [BRV11, Lemma 6.4] we deduce the existence of an étale rep-
resentable morphism Y → X such that Y is an integral Deligne–Mumford stack with
finite inertia, and the morphism SpecL→ Y factors through Y . By Lemmas 4.3 and 4.5,
the stack Y is a proper étale gerbe over a smooth algebraic space, hence [BRV11, Theo-
rem 5.13] can be applied to it. Let η ∈ SpecY be a point in Y(L) mapping to ξ . Then

edX η ≤ edk(Y) Yk(Y) + dim Y− codimY η (4.1)

and

edk η ≥ edk ξ, edk(X ) Xk(X) ≥ edk(Y) Yk(Y) and codimX ξ = codimY η,

and the inequality of Theorem 4.6 follows from (4.1). ut

5. The genericity theorem

We now proceed with the proof of Theorem 1.2. We will assume throughout that L is a
field extension of k and ξ : SpecL→ X is an object of X (L). We will denote by Y the
closure of the image of the morphism ξ , with its reduced stack structure. The stack Y is
integral, and since char k = 0, Y is generically smooth. Let π :M→ A1

k be deformation
to the normal bundle of Y inside X . Recall that π−1(A1

k r {0}) = X ×Spec k (A1
k r {0}),

while π−1(0) is isomorphic to the normal bundle N of Y in X .
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Denote by M0 the substack of M whose geometric points have stabilizers of minimal
order. Note that M0 is well-defined and open in M becauseX is amenable (and so is M).

Lemma 5.1. M0
∩N 6= ∅.

Theorem 1.2 follows from Lemma 5.1 and Theorem 4.6 by the same argument as
in [BRV11, Theorem 6.1]. This argument is quite short, and we reproduce it here for
the sake of completeness.

Set N 0
:= M0

∩ N . Then the fiber product SpecL ×Y N is a vector bundle over
SpecL, and SpecL ×X N 0 is a non-empty open subscheme. Hence ξ : SpecL → Y
can be lifted to N 0; this gives an object η of N 0(SpecL) mapping to ξ in Y . Clearly
the essential dimension of ξ as an object of X is the same as its essential dimension
as an object of Y , and edk ξ ≤ edk η. Let us apply Theorem 4.6 to the gerbe M0. The
function field of the moduli space M of M is k(X)(t), and its generic gerbe is Xk(X)(t);
by [BRV11, Proposition 2.8], we have edk(X)(t) Xk(X)(t) ≤ edk(X) Xk(X). The composite
SpecL→ N 0

⊆M0 has codimension at least 1, hence we obtain

edk ξ < edk(X)(t) Xk(X)(t) + dimM = edk(X) Xk(X) + dimX + 1.

This concludes the proof.
The rest of this section will be devoted to the proof of Lemma 5.1. Our proof is quite

complicated, so we will split it into several steps.
We will begin with some easy preliminary reductions. For the purpose of proving

Lemma 5.1, we may base-change to the algebraic closure of k, i.e., assume that k is alge-
braically closed. By deleting the singular locus of Y , we may assume that Y is smooth.
Moreover, after passing to dense open substacks, we may assume that the inertia stack IY
is flat over Y , and that all geometric fibers are reductive, and have the same numbers of
connected components.

5.1. The linear case

Let us suppose that X is a finite-dimensional representation of a linearly reductive al-
gebraic group G and Y ⊆ X is a subrepresentation. (Here we identify X with the affine
space Spec(Sym•k X

∨) and similarly for Y .) SinceG is reductive, we have aG-equivariant
splitting X ' Y ⊕ Y ′. Set X := [X/G] and Y := [Y/G]. Assume that the generic sta-
bilizer of the action of G on X is finite. Then X is amenable, and Y ⊆ X is a closed
integral substack.

It is easy to see that the deformation to the normal bundle M of Y in X is G-
equivariantly isomorphic to X ×k A1

k (where the group G acts trivially on A1
k); the pro-

jection
Y × Y ′ ×k A1

k = X ×k A
1
k ' M → X ×k A1

k

is given by the formula (y, y′, t) 7→ (ty, y′, t). The deformation to the normal bundle
M of Y is [M/G] = [X/G] ×k A1

k; hence M0
= X 0

×k A1
k , and it is obvious that

M0
∩N 6= ∅.

The proof in the general case will be reduced to this by a formal slice argument.
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5.2. Formal linearization

Let y0 : Spec k→ Y be a general rational point. The next step is to show that near y0 the
stack X has formally the structure of a quotient of a finite-dimensional representation.

The residual gerbe Gy0 → Spec k [LMB00a, §11] admits a section Spec k → Gy0 ,
since k is algebraically closed. Thus if G := Autk y0 is the automorphism group scheme
of y0, we have Gy0 ' BkG. The embedding of stacks BkG → Y is of finite type. By
Zariski’s Main Theorem for stacks [LMB00a, Théorème 16.5] it is a locally closed em-
bedding.

Let U → X be a smooth morphism, where U is a scheme, together with a lifting
u0 : Spec k → U of y0. Denote by Xn the nth infinitesimal neighborhood of BkG inside
X : in other words, if U is an open substack of X containing BkG as a closed substack,
and we denote by I the sheaf of ideals of BkG inside U , then Xn is the closed substack of
X defined by the sheaf of ideals In+1. In particular, X0 = BkG.

Lemma 5.2. There exists a finite-dimensional representation X of G with finite generic
stabilizers and a trivial subrepresentation Y ⊆ X, with the following property. If we
denote by Xn and Yn the nth infinitesimal neighborhoods of the origin, there is a se-
quence of isomorphisms Xn ' [Xn/G], compatible with the embeddings Xn ⊆ Xn+1 and
[Xn/G] ⊆ [Xn+1/G], that induce isomorphisms of Yn with [Yn/G].

Furthermore, denote by X̂ the spectrum of the completion of the local ring of X at
the origin. Then there exists a smooth morphism U → X with a closed point u0 ∈ U

mapping to y0 in Y , and an isomorphism of X̂ with the spectrum Û of the completion of
the local ring of U at u0, such that

(a) the sequence of composites Xn → [Xn/G] ' Xn ⊆ X is obtained by restriction
from the composite morphism X̂ ' Û → U → X , and

(b) the inverse image of Y in X̂ corresponds to the inverse image of Y in Û .

Proof. By [Alp09, Propositions 5.1 and 5.2] the tautological G-torsor P0 := Spec k →
BkG extends to a G-torsor Pn → Xn in such a way that the restriction of Pn+1 to
Xn ⊆ Xn+1 is isomorphic to Pn. Each of the stacks Pn is a scheme, because its reduced
substack is; in fact, Pn must be the spectrum of a local artinian k-algebra Rn. Clearly,
Xn = [Pn/G].

If we denote by V the maximal ideal of R1, then R1 = k ⊕ V ; the action of G
on R1 induces a linear action of G on V . The space V is isomorphic to I/I 2, which is a
coherent sheaf on BkG, i.e., a representation of G. In turn, I/I 2 is the cotangent space
of deformations of Spec k → X , that is, the dual to the space of isomorphism classes of
liftings Spec k[ε] → X of Spec k → X . Here, as usual, k[ε] denotes the ring of dual
numbers k[x]/(x2).

The homomorphism Rn+1 → Rn induced by the embedding Pn ' Pn+1|Xn ⊆ Pn+1
is surjective; its kernel is the ideal InRn+1. Denote by R the projective limit lim

←−n
Rn.

(Note that, G acts, by definition, on each of Rn. In general, this does not induce an al-
gebraic group action of G on R, unless G is finite. If we had a G-action on R, this
would make the proof conceptually much simpler.) If x1, . . . , xn is a set of elements of
R that project to a basis for V in R1, the ring R is a quotient of the power series ring
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k[[x1, . . . , xn]] by an ideal J contained in m2
R . We claim that J = 0, i.e., R is a power

series ring. For this, it is enough to check that R is formally smooth over k, or, in other
words, that if A is a local artinian k-algebra with residue field k and B is a quotient of
A, any homomorphism of k-algebras R → B lifts to a homomorphism R → A. Take
n� 0; then R→ B factors through Rn. Consider the composite

SpecB → SpecRn→ Xn ⊆ X ;

since X is smooth, deformations are unobstructed, i.e., this morphism extends to SpecA
→ X . If n � 0, this factors as SpecA → Xn ⊆ X ; and since SpecRn is smooth over
Xn, as it is a G-torsor, the section SpecB → SpecRn of SpecB → Xn lifts to a section
SpecA→ SpecRn, giving the desired extension R→ Rn→ A.

Suppose that U → X a smooth morphism, where U is a scheme, with a lifting
u0 : Spec k → U of y0. Let us assume that U is minimal at u0, or, in other words, that
the tangent space of U at u0 maps isomorphically onto the deformation space of X at y0.
Since U is smooth over X , the morphisms SpecRn → X lift to a compatible system of
morphisms SpecRn→ U , sending Spec k into u0; these yield a morphism SpecR→ U ,
inducing a homomorphism of k-algebras ÔU,u0 → SpecR. This is a homomorphism
of power series algebras over k which induces an isomorphism of tangent spaces. By
Nakayama’s lemma, it is an isomorphism. This shows that the morphisms SpecRn→ X
patch to a flat morphism SpecR→ X .

Let d be the codimension of Y in X at the point y0. After a base change in
R = k[[x1, . . . , xn]], we may assume that the inverse image of the ideal of Y in X is
(x1, . . . , xd). Denote by X the scheme corresponding to the dual of the vector space
V = 〈x1, . . . , xn〉. That is, X := Spec Sym•k V . Let Y the linear subscheme defined by
the ideal (x1, . . . , xd). Then X̂ = SpecR; the representation X has all the required prop-
erties, except that we have not yet proved that the action of G on X has finite generic
stabilizers, and the representation Y is trivial.

To do this, let us denote by I the pullback of the inertia stack of [X/G] to X. In
other words, I is the subscheme of G ×Spec k X defined by the equation gx = x. We
need to show that I is generically finite over X. Since I is a group scheme over X, it
has equidimensional fibers, hence it is enough to show that there is an étale neighborhood
I ′→ I of the pair (1, u0) in I which is generically finite overX. The inverse image of Xn
in U is the nth infinitesimal neighborhood Un of u0 in U . Denote by J the pullback of the
inertia stack of X to U ; we have isomorphisms Xn ' Un, and compatible isomorphisms
of the pullbacks of I and J to Xn and Un respectively. These induce an isomorphism of
the completions of I and J at (1, x0) and (1, u0) respectively; by Artin approximation,
the morphisms I → X and J → U are étale-locally equivalent at (1, x0) and (1, u0).
Since J is generically finite over U it follows that the action of G on X has generically
finite stabilizers. Also, this implies that the stabilizer of a general closed point of Y is
isomorphic to the isomorphism group scheme of a general point of Spec k → Y . This
stabilizer has the same dimension and the same number of connected components as G.
Hence it equals G, i.e., the action of G on Y is trivial, as claimed. ut
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5.3. The formal structure of the deformation to the normal bundle

Here we use the result on the formal structure of X around y0 to conclude that M has the
desired formal structure around the fiber of M over y0. The difficulty is that deformation
to the normal cone does not commute with non-flat pullbacks, and Mn (defined below) is
not obtained directly from Yn ⊆ Xn. We will get around this point with a formal scheme
argument, which relies on the following fact.

Suppose that X is a noetherian scheme, and Y ⊆ X a closed subscheme. Let X̃ be the
completion of X along Y . By construction, there is a morphism of locally ringed spaces
X̃→ X. It is easy to check that it is flat, by reducing to the affine case X = SpecA, and
using the standard fact that the completion A along the ideal of Y is flat over A.

Denote by Mn the inverse image of Xn×Spec kA1
k in M, and byMn the inverse image

of Xn ×Spec k A1
k in M .

Lemma 5.3. There is a sequence of isomorphisms Mn ' [Mn/G] compatible with the
isomorphisms Xn ' [Xn/G], and with the identity on A1

k .

Proof. Set

R := U ×X U,

Rn := Un ×Xn Un,

S := X ×[X/G] X = G×Spec k X,

Sn := Xn ×[Xn/G] Xn = G×Spec k Xn.

The compatible isomorphisms φn : Xn ' Un and Xn ' [Xn/G] yield isomorphisms of
schemes in groupoids of Rn⇒ Un with Sn⇒Xn, for each n ≥ 0.

Denote by IU the sheaf of ideals of the inverse image of Y×{0} ⊆ X ×A1 in U×A1,
and by IR the sheaf of ideals of its inverse image in R×A1. Also denote by JU the sheaf
of ideals of Y×{0} ⊆ X ×{0} in U×{0}, pushed forward to U×A1, and by JR the sheaf
of ideals of its inverse image in R × {0}, pushed forward to R × A1. There are natural
surjections IU � JU and IR � JR . Set

U ′ := ProjU×A1

( ∞⊕
m=0

ImU

)
, R′ := ProjR×A1

( ∞⊕
m=0

ImR

)
,

U ′′ := ProjU×A1

( ∞⊕
m=0

JmU

)
, R′′ := ProjR×A1

( ∞⊕
m=0

JmR

)
.

Then R′ ⇒ U ′ is a scheme in groupoids, R′′ ⇒ U ′′ is a closed subgroupoid, and the
difference groupoid R′rR′′⇒U ′rU ′′ gives a smooth presentation of M. Let us denote
by U ′n and U ′′n the inverse images of Un in U ′ and U ′′, and by R′n and R′′n the inverse
images of Un×Un in R′ and R′′. Then the groupoid R′nrR′′n⇒U ′nrU ′′n gives a smooth
presentation of Mn; furthermore, we have

U ′n = ProjUn×A1

( ∞⊕
m=0

ImU ⊗O
U×A1 OUn×A1

)
,

R′n = ProjRn×A1

( ∞⊕
m=0

ImR ⊗O
U×A1 ORn×A1

)
,
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U ′′n = ProjUn×A1

( ∞⊕
m=0

JmU ⊗O
R×A1 OUn×A1

)
,

R′′n = ProjRn×A1

( ∞⊕
m=0

JmR ⊗O
R×A1 ORn×A1

)
.

In a completely analogous manner, denote by IX the sheaf of ideals of Y × {0} in
U × A1, and by IS the sheaf of ideals of its inverse image in S × A1. Also denote by JX
the sheaf of ideals of Y × {0} in X× {0}, pushed forward to X×A1, and by JS the sheaf
of ideals of its inverse image in S × {0}, pushed forward to S × A1. Set

X′n := ProjXn×A1

( ∞⊕
m=0

ImX ⊗O
X×A1 OXn×A1

)
,

S′n := ProjSn×A1

( ∞⊕
m=0

ImS ⊗O
S×A1 OSn×A1

)
,

X′′n := ProjU×A1

( ∞⊕
m=0

JmU ⊗O
R×A1 ORn×A1

)
,

S′′n := ProjR×A1

( ∞⊕
m=0

JmR ⊗O
R×A1 ORn×A1

)
.

By the same argument as before, we see that [Mn/G] has a smooth presentation S′nrS′′n⇒
X′nrX′′n; hence, to complete the proof we need to establish the existence of isomorphisms
U ′n ' X′n and R′n ' S′n, compatible with the groupoid structures, the isomorphisms
φn : Un ' Xn and ψn : Rn ' Sn, and the embeddings Un→ Un+1, Xn→ Xn+1, etc.

Let us denote by R̃ and Ũ the formal schemes obtained by completingR×A1 andU×
A1 respectively along the inverse images of u0 ∈ U , and by S̃ and X̃ the formal schemes
obtained by completing S × A1 and X × A1 respectively along the inverse images of the
origin in X. The structure maps of the schemes in groupoids Rn⇒Un and Sn⇒Xn pass
to the limit, yielding formal schemes in groupoids R̃⇒ Ũ and S̃⇒ X̃. The isomorphisms
φn : Un ' Xn and ψn : Rn ' Sn give isomorphisms of formal schemes φ̃ : Ũ ' X̃ and
ψ̃ : R̃ ' S̃, yielding an isomorphism of formal schemes in groupoids of R̃ ⇒ Ũ with
S̃⇒ X̃.

Denote by IŨ and IR̃ the sheaves of ideals of the inverse images of Y×{0} ⊆ X ×A1

in Ũ and R̃ respectively, and by JŨ and JR̃ the pushforwards to U and R̃ of the sheaves
of ideals of the pullbacks of the inverse images of Y × {0} in the inverse images of
X × {0}. Analogously, denote by IX̃ and IS̃ the sheaves of ideals of the inverse images of
[Y/G]× {0} ⊆ [X/G]×A1 in X̃ and S̃ respectively, and by JX̃ and JS̃ the pushforwards
to X̃ and S̃ of the sheaves of ideals of the pullbacks of the inverse images of [Y/G] × {0}
in the inverse images of [X/G] × {0}.

The natural morphisms ũ : Ũ → U × A1, r̃ : R̃ → R × A1, x̃ : X̃ → X × A1 and
s̃ : S̃ → S × A1 are flat. Furthermore, the inverse images of Y × {0} ⊆ X × A1 and of
X × {0} ⊆ X × A1 in Ũ and R̃ and the inverse images of [Y/G] × {0} ⊆ [X/G] × A1
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and of [X/G] × {0} ⊆ [X/G] × A1 in Ũ and R̃ correspond under φ̃ and ψ̃ ; hence for
each m ≥ 0 we obtain canonical isomorphisms of coherent sheaves

ũ∗ImU ' φ̃
∗x̃∗ImX , r̃∗ImR ' ψ̃

∗S̃∗ImS ,

ũ∗JmU ' φ̃
∗x̃∗JmX , r̃∗JmR ' ψ̃

∗S̃∗JmS .

By restricting to Un and Rn we obtain isomorphism of coherent sheaves

ImU ⊗O
U×A1 OUn×A1 ' φ

∗
n(I

m
X ⊗O

X×A1 OXn×A1),

ImR ⊗O
R×A1 ORn×A1 ' φ

∗
n(I

m
S ⊗O

X×A1 OSn×A1),

JmU ⊗O
U×A1 OUn×A1 ' φ

∗
n(J

m
X ⊗O

X×A1 OXn×A1),

JmR ⊗O
R×A1 ORn×A1 ' φ

∗
n(J

m
S ⊗O

X×A1 OSn×A1).

By summing up over allmwe obtain an isomorphism of the corresponding Rees algebras,
which yield the desired isomorphisms U ′n ' X

′
n and R′n ' S

′
n. ut

5.4. Conclusion of the proof

Now we are ready to finish the proof of Lemma 5.1.
Consider the complement F of (M r N )0 in M r N . Since N is a divisor on M,

the closure of F in M will not contain N . Hence, a general k-rational point of N has a
neighborhood U such that the inertia stack IM is étale over U r N . Thus it is enough
to show that IM is étale over M at a general point of N . For this it suffices to show that
the locus of points of the inverse image IN of N in IM at which IM is étale over M
surjects onto Y .

Denote by N the normal bundle of Y in X, and by M the deformation to the normal
bundle. If n0 is a general closed point of N , then the pullback IM of the inertia stack of
[M/G] to M is étale at n0. Notice that IM is étale at a general closed point of the fiber
of N over any y0 ∈ Y (k), since the action of G on Y is trivial. Hence, translation by any
closed point of Y is G-equivariant.

We know that I[M/G] is étale over M at a general k-rational point of I[M/G] lying
over the image of the origin in [N/G] ⊆ [M/G]; let v ∈ IM(k) be a general k-rational
point lying over N , and let us show that IM → M is étale at v. For this we use the
infinitesimal criterion for étaleness. Let A be a finite k-algebra with residue field equal to
k, let I be a proper ideal in A, and consider a commutative diagram

Spec(A/I) //

��

IM

��

SpecA //

99

M

in which the composite Spec k ⊆ SpecA→ IM is isomorphic to v; we need to show that
we can fill in the dashed arrow in a unique way. For n� 0, the morphism SpecA→M
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factors through Mn. Since IMn
= Mn ×M IM, the square above factors through a

square
Spec(A/I) //

��

IMn

��

SpecA //

99

Mn

in which again we have to show the existence and uniqueness of the lifting. However, the
isomorphism Mn ' [Mn/G] induces an isomorphism of the morphism IMn

→ Mn

with I[Mn/G] → [Mn/G]; we know that I[Mn/G] = [Mn/G] ×[M/G] I[M/G] is étale at
the point corresponding to v. Hence the lifting exists and is unique.

This completes the proof of Lemma 5.1 and thus of Theorem 1.2.

5.5. A conjectural generalization

On the basis of examples, the following generalization of Theorem 1.2 seems plausible.

Conjecture 5.4. Let X be an amenable stack over k. Let L be an extension of k, and let
ξ be an object of X (SpecL). Then

edk ξ ≤ gedk X + dim Ru(AutL ξ).

Here RuG denotes the unipotent radical of G, as in Section 2.1. Unfortunately, the ap-
proach used in this section breaks down in the more general setting of the above conjec-
ture: if the stabilizer is not reductive, the slice theorem does not apply.

6. Essential dimension of GLn-quotients

Suppose that G is a special affine algebraic group over k acting on a scheme X locally of
finite type over k. For each field L/k we have an equivalence between [X/G](L) and the
quotient category for the action of the discrete group G(L) on the set X(L); hence the
essential dimension of [X/G] equals the essential dimension of the functor of orbits

OrbG,X : Field/k→ Set

from the category Field/k of extensions of k to the category of sets, sending L to the set
of orbits OrbG,X(L) := X(L)/G(L); see [BRV11, Example 2.6].

For the rest of this section we will assume that X is an integral scheme, locally of
finite type and smooth over k, and GLn acts on X with generically finite stabilizers. Then
the quotient stack [X/GLn] is amenable; however the Genericity Theorem 1.2 does not
tell us that edk [X/GLn] = gedk [X/GLn] because we are not assuming that the stabilizer
of every point of X is reductive. Nevertheless, in some cases one can still establish this
equality by estimating edk ξ from above and proving, in an ad-hoc fashion, that edk(ξ) ≤
gedk [X/GLn] for every ξ ∈ [X/GLn](L) whose automorphism group is not reductive.
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The rest of this section will be devoted to such estimates. These estimates will ultimately
allow us to deduce Theorem 1.1 from Proposition 3.4.

For each positive integer λ, denote by Jλ the λ × λ Jordan block with eigenvalue 0,
that is, the λ × λ matrix of the linear transformation kλ → kλ defined by e1 7→ 0 and
ei 7→ ei−1 for i = 2, . . . , λ, where e1, . . . , eλ is the canonical basis of kλ. Let λ be a
partition of n; that is, λ = (λ1, . . . , λr) is a non-increasing sequence of positive integers
with λ1 + · · · + λr = n. We denote by Aλ the n× n nilpotent matrix which is written in
block form as

Aλ :=


Jλ1 0 . . . 0
0 Jλ2 . . . 0
...

...
. . .

...

0 0 . . . Jλr


Every nilpotent n × n matrix is conjugate to a unique Aλ. Consider the 1-parameter
subgroup ωλ : Ga → GLn defined by ωλ(t) = exp(tAλ). We will usually assume that
λ 6= (1n); under this assumption ωλ is injective. Denote by Nλ the normalizer of the
image of ωλ; the group Nλ acts on the fixed point locus Xωλ .

Lemma 6.1. Let L be a field extension of k, and ξ be an object of [X/GLn](L) whose
automorphism group scheme AutL ξ is not reductive. Then

edk ξ ≤ max
λ

edk [Xωλ/Nλ],

where the maximum is taken over all partitions λ of n different from (1n).

Proof. Suppose ξ corresponds to the GLn-orbit of a point p ∈ X(L). The automorphism
group scheme AutL ξ is isomorphic to the stabilizer Gp of p in GLn. Since we are as-
suming that this group is not reductive, Gp will contain a copy of Ga, which is conjugate
to the image of ωλ for some λ 6= (1n). After changing p to a suitable GLn-translate, we
may assume that the image of ωλ is contained in Gp; hence p ∈ Xωλ . The composite
Xωλ ↪→ X → [X/GLn] factors through [Xωλ/Nλ]; hence ξ is in the essential image of
[Xωλ/Nλ](L) in [X/GLn](L), and edk ξ ≤ edk [Xωλ/Nλ]. ut

Lemma 6.2. edk [Xωλ/Nλ] ≤ dimXωλ for any λ 6= (1n).

Proof. By Lemma 2.1, Nλ is special. Hence,

edk [Xωλ/Nλ] = edk OrbNλ,Xωλ ≤ dimXωλ ,

as claimed. ut

We now further specialize X to the affine space An,d of forms of degree d in the n vari-
ables x = (x1, . . . , xn) over k. The general linear group GLn acts on An,d in the usual
way, via (Af )(x) := f (x · A−1) for any A ∈ GLn. We are now ready for the main result
of this section.
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Theorem 6.3. LetL be a field extension of k, and ξ be an object of [An,d/GLn](L)whose
automorphism group scheme AutL ξ is not reductive. Assume that either d ≥ 4 and n ≥ 2
or d = 3 and n ≥ 3. Then edk ξ ≤

(
n+d−1
d

)
− n2.

Proof. By Lemma 6.1 it suffices to show that

edk [Xωλ/Nλ] ≤
(
n+ d − 1

d

)
− n2 (6.1)

for any λ 6= (1n). The space A
ωλ
n,d consists of the forms f (x) such that

f (x exp(−tAλx)) = f (x).

By differentiating and applying the chain rule, this is equivalent to

∇f (x) · Aλ = 0, (6.2)

where ∇f = (∂f/∂x1, . . . , ∂f/∂xn) is the gradient of f . We now proceed with the proof
of (6.1) in three steps.

Case 1: d ≥ 4. By Lemma 6.2 it suffices to show that

dimA
ωλ
n,d ≤

(
n+ d − 1

d

)
− n2 (6.3)

for any λ 6= (1n). For λ 6= (1n) formula (6.2) tells us that ∂f/∂x1 is identically zero. In
other words, f (x) is a form in x2, . . . , xn. Such forms lie in an affine subspace of An,d
isomorphic to An−1,d . Hence,

dimA
ωλ
n,d ≤ dimAn−1,d =

(
n+ d − 2

d

)
,

and it suffices to prove the inequality(
n+ d − 1

d

)
−

(
n+ d − 2

d

)
≥ n2,

or equivalently, (
n+ d − 2
d − 1

)
≥ n2. (6.4)

Since
(
n+d−2
d−1

)
=
(
n+d−2
n−1

)
is an increasing function of d for any given n ≥ 1, it suffices to

prove (6.4) for d = 4. In this case(
n+ d − 2
d − 1

)
− n2

=

(
n+ 2

3

)
− n2

=
n(n− 1)(n− 2)

6
≥ 0

for any n ≥ 2, as desired.

Case 2: d = 3 and λ 6= (1n) or (2, 1n−1). Once again, it suffices to prove (6.3). If
λ 6= (1n) or (2, 1n−1) then (6.2) shows that for every f (x) in A

ωλ
n,d at least two of the
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partial derivatives, ∂f/∂x1 and ∂f/∂xi , are identically zero. For notational simplicity we
will assume that i = 2. Then f (x) is a form in the variables x3, . . . , xn. Hence,

dimA
ωλ
n,3 ≤ dimAn−2,3 =

(
n

3

)
=

(
n+ 2

3

)
− n2,

as desired.

Case 3: d = 3 and λ = (2, 1n−1). Set ω := ω(2,1n−1) and N := N(2,1n−1). By
Lemma 2.1(b), N is a special group. Hence, we may identify the set of isomorphism
classes in [Aωn,3/N ](K) with the set of N(K)-orbits in Aωn,3(K), for every field K/k.

By (6.2), Aωn,d consists of degree d forms f (x1, . . . , xn) such that ∂f/∂x1 = 0. That
is, f (x1, . . . , xn) ∈ A

ω
n,d if and only if f is a form in the variables x2, . . . , xn. Thus Aωn,d

is an affine subspace of An,d isomorphic to An−1,d . Our goal is to show that

edk f ≤
(
n+ 2

3

)
− n2 (6.5)

for any f (x) ∈ Aωn,d(K).
The normalizer N contains a subgroup

0 ' GLn−2 nGn−2
a

consisting of all matrices of the form
1 0 0 . . . 0
0 1 0 . . . 0
0 a3
...

... A

0 an


where (a3, . . . , an) ∈ Gn−2

a and A ∈ GLn−2. We may assume without loss of generality
that the stabilizer of f in 0 does not contain a non-trivial unipotent subgroup. Indeed, if
it does then f is a 0-translate of an element of A

ωλ
n,3 for some λ 6= (1n) or (2, 1n−1). For

such f the inequality (6.5) was established in Case 2.
Since both 0 andN are special, it is obvious that the essential dimension of f , viewed

as an element of [Aωn,3/N ](K) = OrbN,Aω
n,3
(K), is no greater than the essential dimension

of f , viewed as an element of [Aωn,3/0](K) = Orb0,Aω
n,3
(K). Since we are assuming

that the stabilizer of f in 0 does not contain any non-trivial unipotent subgroups, the
Genericity Theorem 1.2 tells us that

edk f ≤ gedk [A
ω
n,3/0].

By Lemma 6.4 below for n ≥ 4 the action of 0 ⊂ GLn−1 on the space An−1,3 of forms
of degree 3 in the n − 1 indeterminates x2, . . . , xn is generically free. Thus [An,3/0] is
an amenable stack and is generically a scheme. Consequently,

gedk [A
ω
n,3/0n−2] = dimAn−1,3 − dim0n−2 =

(
n+ 1

3

)
− (n− 2)2 − (n− 2).
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A simple computation shows that(
n+ 1

3

)
− (n− 2)2 − (n− 2) ≤

(
n+ 2

3

)
− n2

for any n ≥ 4; indeed,(
n+ 2

3

)
− n2

−

((
n+ 1

3

)
− (n− 2)2 − (n− 2)

)
=
(n− 2)(n− 3)

2
− 1 ≥ 0. ut

Lemma 6.4.

(a) Assume that the base field k is algebraically closed and G is a connected linear
algebraic k-group such that N ∩ Z(G) 6= {1} for every closed normal subgroup
{1} 6= N GG. Here Z(G) denotes the center of G. (For example, G could be almost
simple or GLn.) Let H1, H2 be closed subgroups of G such that H1 is finite and H2
contains no non-trivial central elements ofG. Then for g ∈ G(k) in general position,
H1 ∩ gH2g

−1
= {1}.

(b) Assume d ≥ 3 and n ≥ 1. Let GLn−1 be the subgroup of GLn acting on the variables
x2, . . . , xn. Then for f ∈ An,d in general position, StabGLn−1(f ) = {1}.

Proof. (a) Assume the contrary. Consider the natural (translation) action of H1 on the
homogeneous space G/H2. By our assumption this action is not generically free. Since
H1 is finite, we conclude that this action is not faithful, i.e., some 1 6= h ∈ H1 acts
trivially on G/H2. Then h lies in N =

⋂
g∈G gH2g

−1. Consequently, N is a non-trivial
normal subgroup ofG. By our assumptionN (and henceH2) contains a non-trivial central
element of G, a contradiction.

(b) We may assume that k is algebraically closed. By [Ric72, Theorem A], there
exists a subgroup Sn,d ⊂ GLn and a dense open subset U ⊂ An,d such that StabGLn(f )

is conjugate to S for every f ∈ U . Moreover, for d ≥ 3 (and any n ≥ 1) Sn,d is a finite
group; see Example 3.2.

Write f (x1, . . . , xn) =
∑d
i=0 x

d−i
1 fi(x2, . . . , xn), where fi is a form of degree i in

x2, . . . , xn. Clearly g ∈ GLn−1 stabilizes f if and only if it stabilizes f1, f2, . . . , fd . In
other words,

StabGLn−1(f ) =

d⋂
i=1

StabGLn−1(fi).

Moreover, each StabGLn−1(fi) is a conjugate of Sn−1,i in GLn−1. Thus it suffices to show
that for g1, . . . , gd in general position in GLn−1,

g1Sn−1,1g
−1
1 ∩ · · · ∩ gdSn−1,dg

−1
d = {1}. (6.6)

This is a consequence of part (a), with G = GLn, H1 = Sn−1,1 and H2 = Sn−1,d . ut

Remark 6.5. We note that if d ≥ 4 and n ≥ 3 or d = 3 and n ≥ 5 then (6.6) is
immediate, since Sn−1,d = {1}; see Example 3.2. However, this argument does not cover
the cases where d = 3 and n = 3 or 4, which are needed for the proof of Theorem 6.3
above.
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7. Proof of Theorem 1.1

Theorem 1.1(a) is an immediate consequence of what we have done so far. Indeed, by
Proposition 3.4(a),

gedk [An,d/GLn] =
(
n+ d − 1

d

)
− n2

+ 1+ cd(GLn/µd).

Thus it suffices to show that for any field extension K/k and any K-point ζ of
[An,d/GLn](K), we have

edk ζ ≤ gedk [An,d/GLn] .

If the automorphism group scheme AutK(ζ ) is reductive, this is a direct consequence of
Theorem 1.2, and if AutK(ζ ) is not reductive, then Theorem 6.3 tells us that

edk ζ ≤
(
n+ d − 1

d

)
− n2 < gedk [An,d/GLn].

This completes the proof of Theorem 1.1(a).
The rest of this section will be devoted to proving Theorem 1.1(b). The main compli-

cation here is that the stack [P(An,d)/GLn] is not amenable (see Example 3.2) and thus
our Genericity Theorem 1.2 does not apply. We will get around this difficulty by relating
[P(An,d)/GLn] to the amenable stack [P(An,d)/PGLn].

Proposition 7.1. Let X = [P(An,d)/GLn] and X := [P(An,d)/PGLn], with the natural
projection φ : X → X . Then for any extension L/k and any L-point ξ : SpecL→ X ,

edk ξ ≤ edk φ(ξ)+ cd(GLn/µd).

Proof. Note that X is a gerbe banded by Gm over X .
By the definition of edk φ(ξ) there exists an intermediate field k ⊂ K ⊂ L such that

φ(ξ) descends to SpecK and trdegk K = edk φ(ξ). Moreover, ξ : SpecL→ XK factors
through a point ξ0 : SpecL→ XK , as in the diagram below.

XK //

��

X

φ

��

ξ : SpecL

ξ0

99

// SpecK // X

Note that XK is a Gm-gerbe over K . So ξ0 (and hence ξ ) descends to some intermediate
subfield of K ⊂ K0 ⊂ L such that trdegK K0 ≤ edk(XK) = cd(XK), where the last
equality follows from Proposition 2.3(a). Let η be the generic point of X . We know that
the Brauer class of Xη has index dividing n and exponent dividing d; see the proof of
Proposition 3.4. By Lemma 2.4 the same is true of the Brauer class of XK . Therefore, by
Lemma 2.2(c), cd(XK) ≤ cd(GLn/µd). In summary,

edk ξ ≤ trdegk K0 = trdegk K + trdegK K0 ≤ edk φ(ξ)+ cd(XK)
≤ edk φ(ξ)+ cd(GLn/µd),

as claimed. ut
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Proof of Theorem 1.1(b). Let X := [P(An,d)/GLn], X := [P(An,d)/PGLn], and Y :=
[An,d r {0}/GLn], and consider the following diagram of natural maps:

Y

xx

ψ, a µd -gerbe

��

X

φ, a Gm-gerbe
��

X

In view of Proposition 7.1, it suffices to show that for every field extension L/k and every
L-point ξ : SpecL→ X ,

edk φ(ξ) ≤
(
n+ d − 1

d

)
− n2. (7.1)

Recall from Example 3.2 that under our assumptions on n and d, we know that X =
[P(An,d)/PGLn] is amenable and is generically a scheme of dimension

dimP(An,d)− dim PGLn =
(
n+ d − 1

d

)
− n2.

If the automorphism group scheme AutL(φ(ζ )) is reductive then (7.1) holds by the Gener-
icity Theorem 1.2 applied to X .

We may therefore assume that AutL(φ(ζ )) is not reductive. Lift ξ to some ζ : SpecL
→ Y . (This can be done because Y → X is a Gm-torsor.) Since the automorphism group
scheme AutL(ζ ) is contained in the preimage of AutL(φ(ζ )) under the natural projection
map GLn → PGLn, we see that AutL ζ is not reductive. Now edk φ(ξ) ≤ edk ζ and in
view of Theorem 6.3

edk ζ ≤
(
n+ d − 1

d

)
− n2.

This completes the proof of (7.1) and thus of Theorem 1.1(b). ut

8. Small n and d

In this section we compute edk Formsn,d and edk Hypersurfn,d in the cases not covered
by Theorem 1.1, building on the results of [BF03] and [BR05, Section 16].

To handle the case where n = 2, we need the following variant of [BR05, Lemma
16.1]. The proof is similar; we reproduce it here, with the necessary modifications, for
the sake of completeness.

Lemma 8.1. edk Forms2,d ≤ d − 1 and edk Hypersurf2,d ≤ d − 2 for any d ≥ 3.
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Proof. Let f (x1, x2) = a0x
d
1 + a1x

d−1
1 x2 + · · · + adx

d
2 be a non-zero binary form of

degree d over a field K/k. We claim that f is equivalent (up to linear coordinate changes
by elements of GL2(K)) to a binary form with (i) a0 = 0 or a1 = 0 and (ii) ad−1 = 0 or
ad−1 = ad . In each case f descends to the field k(a0, . . . , ad), and the hypersurface in P1

cut out by f descends to the field k(ai/aj | aj 6= 0). If (i) and (ii) are satisfied then the
transcendence degrees of these fields over k are clearly ≤ d − 1 and d − 2, respectively.
So, the lemma follows from the claim.

To prove the claim, we first reduce f to a form satisfying (i). If a0 = 0, we are done.
If a0 6= 0, then performing the Tschirnhaus substitution

x1 7→ x1 −
a1

da0
x2, x2 7→ x2

we reduce f to a binary form with a1 = 0.
Now assume that f satisfies (i). We want to further reduce it to a form satisfying both

(i) and (ii). If ad−1 = 0, we are done. If ad−1 6= 0, rescale x1 as follows:

x1 7→
ad

ad−1
x1, x2 7→ x2,

to reduce f to a form satisfying (i) and ad−1 = ad . This completes the proof of the claim
and the lemma. ut

Proposition 8.2. For any n ≥ 1 and d ≥ 2 we have

(a) edk Formsn,1 = edk Hypersurfn,1 = 0,
(b) edk Forms1,d = 1 and edk Hypersurf1,d = 0,
(c) edk Formsn,2 = n and edk Hypersurfn,2 = n− 1,
(d) edk Forms2,3 = 2 and edk Hypersurf2,3 = 1,
(e) edk Forms2,4 = 3 and edk Hypersurf2,4 = 2,
(f) edk Forms3,3 = 4 and edk Hypersurf3,3 = 3.

Proof. First we note that

edk Formsn,d ≤ edk Hypersurfn,d +1. (8.1)

This is easy to see directly from the definition or, alternatively, as a special case of the
Fiber Dimension Theorem [BRV11, Theorem 3.2(b)], applied to the representable mor-
phism of quotient stacks [An,d r {0}/GLn] → [P(An,d)/GLn] of relative dimension 1.

(a) Any non-zero linear form F(x1, . . . , xn) over any field K/k is equivalent to x1.
(b) Degree d forms f1(x) = ax

d and f2(x) = bx
d over a field K/k are equivalent if

and only if b = acd for some c ∈ K∗ = GL1(K). The assertions of part (b) follow easily
from this.

(c) Any quadratic form F(x1, . . . , xn) over K/k can be diagonalized, and hence is
defined over an intermediate field k ⊂ K0 ⊂ K such that trdegk K0 ≤ n. This implies
that edk Formsn,2 ≤ n and edk Hypersurfn,2 ≤ n − 1. The opposite inequalities follow
from [BR05, Proposition 16.2(b)].
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(d) By Lemma 8.1, edk Forms2,3 ≤ 2 and edk Hypersurf2,3 ≤ 1, respectively. On the
other hand, by [BR05, Proposition 16.2(c)], for the generic binary form Fgen of degree 3
(as in (1.3)) and the hypersurface Hgen it cuts out in P1, we have edk Fgen = 2 and
edk Hgen = 1.

Part (e) is proved in a similar manner, by combining Lemma 8.1 with [BR05, Propo-
sition 16.2(d)].

(f) The identity edk Hypersurf3,3 = 3 is the main result of [BF03]. By (8.1),
edk Forms3,3 ≤ 4.

In order to show that equality holds, it suffices to prove that the essential dimension
gedk [X3,3/GL3] of the generic form Fgen of degree 3 in three variables is at least 4.
For the purpose of proving this inequality we may replace k by its algebraic closure
k̄ and thus assume without loss of generality that k is algebraically closed. By [Ric72,
Theorem A] the GL3-action onX3,3 has a stabilizer in general position. Denote it by S3,3,
as in the proof of Lemma 6.4. As we mentioned there (and in Example 3.2), S3,3 is a finite
subgroup of GL3. Since the dimension of [X3,3/GL3] is 1, by [BR05, Lemma 14.5(a)
and Proposition 5.5(c)], edk Fgen ≥ edk S3,3 + 1, where edk S3,3 denotes the essential
dimension of the finite group S3,3 over k. (Note that in [BR05] the symbol φ3,3 was used
in place of Fgen.) Thus it suffices to show that edk S3,3 ≥ 3.

To get a better idea about the structure of S3,3, note that a k-point of X3,3 in gen-
eral position is represented by a scalar multiple of x3

1 + x
3
2 + x

3
3 + 3ax1x2x3 for some

a ∈ k. (Here we use the fact that k is algebraically closed.) Hence, S3,3 contains a non-
abelian subgroup H of order 27, generated by diagonal matrices diag(ζ1, ζ2, ζ3), where
ζ1, ζ2 and ζ3 are cube roots of unity satisfying ζ1ζ2ζ3 = 1, and the permutation matrices
cyclically permuting x1, x2 and x3. Now

edk S3,3 ≥ edk H ≥ 3, (8.2)

where the second inequality is a consequence of the Karpenko–Merkurjev theorem;
see [MR10, Theorem 1.3]. This completes the proof of part (f). ut

Remark 8.3. (i) Since S is a finite subgroup of GL3, it has a natural faithful 3-dimen-
sional representation. Hence, edk S3,3 ≤ 3, and both inequalities in (8.2) are actually
equalities.

(ii) The proof of part (e) shows that edk Fgen = 4, where Fgen is the generic form of
degree 3 in three variables, as in (1.3). This answers an open question posed after the
statement of Proposition 16.2 in [BR05].

9. Essential dimension of singular curves

In this section we use our new Genericity Theorem 1.2 to strengthen [BRV11, Theo-
rem 7.3] on the essential dimension of the stack on (not necessarily smooth) local com-
plete intersection curves with finite automorphism group. Let us recall the set-up. Denote
by Mg,n the stack of all reduced n-pointed local complete intersection curves of genus g,
that is, the algebraic stack over Spec k whose objects over a k-scheme T are finitely pre-
sented proper flat morphisms π : C → T , together with n sections s1, . . . , sn : T → C.
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Here C is an algebraic space, the geometric fibers of π are connected reduced local com-
plete intersection curves of genus g, and the image of each si is contained in the smooth
locus of C → T . (We do not require the images of the sections to be disjoint.)

The stack Mg,n contains the stack Mg,n of smooth n-pointed curves of genus g as
an open substack (here the sections are supposed to be disjoint). By standard results in
deformation theory, every reduced local complete intersection curve is unobstructed, and
is a limit of smooth curves. Furthermore there is no obstruction to extending the sections,
since these map into the smooth locus. Therefore Mg,n is smooth and connected, and
Mg,n is dense in Mg,n. However, the stack Mg,n is very large (it is certainly not of finite
type), and in fact it is very easy to see that its essential dimension is infinite. Assume that
we are in the stable range, i.e., 2g−2+n > 0: then in [BRV11] we show that the essential
dimension of the open substack Mfin

g,n of Mg,n of curves with finite automorphism group
equals the essential dimension of Mg,n.

Let C be an object of Mg,n defined over an algebraically closed field K . We say that
C is reductive if the automorphism group scheme AutK C is reductive. The marked curve
C is not reductive if and only if the smooth part Csm ⊆ C contains a component that is
isomorphic to A1

K and contains no marked points. A reductive object of Mg,n is an object
C → S whose geometric fibers over S are reductive. It is not hard to see that the reductive
objects form an open substack Mred

g,n of Mg,n. Then our new genericity theorem applies,
and allows one to conclude that the essential dimensions of Mred

g,n and of Mg,n are the
same. From [BRV11, Theorem 1.2] we obtain the following.

Theorem 9.1. If 2g − 2+ n > 0 and the characteristic of k is 0, then

edkMred
g,n =


2 if (g, n) = (1, 1),
5 if (g, n) = (2, 0),
3g − 3+ n otherwise.
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