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Abstract. We show that given any 3-manifold N and any non-fibered class in H 1(N;Z) there
exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain
this result by extending earlier work of ours and by combining this with recent results of Agol and
Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic
4-manifolds with a free circle action, and to determine their symplectic cones.

1. Introduction and main results

A 3-manifold pair is a pair (N, φ) where N is a compact, orientable, connected 3-mani-
fold with toroidal or empty boundary, and φ ∈ H 1(N;Z) = Hom(π1(N),Z) is a non-
trivial class. We say that a 3-manifold pair (N, φ) fibers over S1 if there exists a fibration
p : N → S1 such that the induced map p∗ : π1(N)→ π1(S

1) = Z coincides with φ. We
refer to such φ as a fibered class.

Given a 3-manifold pair (N, φ) and an epimorphism α : π1(N) → G onto a finite
group we can consider the twisted Alexander polynomial 1αN,φ ∈ Z[t±1

], whose defini-
tion is summarized in Section 2. It is well known that the twisted Alexander polynomials
of a fibered class φ ∈ H 1(N) are monic and that their degrees are determined by the
Thurston norm. In [FV11a] the authors showed that this condition is in fact sufficient to
determine fiberedness. More precisely, if a nontrivial class φ ∈ H 1(N) is not fibered, then
we proved in [FV11a] that there exists a twisted Alexander polynomial 1αN,φ that fails to
be monic or to have correct degree. We refer to Theorem 3.1 for the exact statement.

In previous work (see [FV08b]) the authors discussed how a stronger result, namely
the vanishing of some twisted Alexander polynomial 1αN,φ , would follow assuming ap-
propriate separability conditions for the fundamental group of N . In this paper, building
on the techniques of [FV08b] supplemented with ideas of Wilton–Zalesskii [WZ10], and
using new results on separability for 3-manifolds groups due to Agol and Wise we extend
the vanishing result to all 3-manifolds. More precisely, we have the following

Theorem 1.1. Let (N, φ) be a 3-manifold pair. If φ ∈ H 1(N) is nonfibered, there exists
an epimorphism α : π1(N)→ G onto a finite group G such that

1αN,φ = 0.
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In brief, the strategy to prove Theorem 1.1 is the following. The techniques of [FV08b] al-
low one to prove a vanishing result under certain subgroup separability properties for the
fundamental group of N . Recall that a group π is called locally extended residually finite
(LERF for short, or subgroup separable) if for any finitely generated subgroupA ⊂ π and
any g ∈ π\A there exists an epimorphism α : π → G to a finite groupG such that α(g) 6∈
α(A). Using work of Wilton and Zalesskii [WZ10], we will reduce the separability condi-
tion to the hyperbolic pieces ofN . It has been a longstanding conjecture that fundamental
groups of hyperbolic 3-manifolds are LERF. Recently Dani Wise has made remarkable
progress towards an affirmative answer. The following theorem combines the statements
of Corollaries 14.3 and 14.16 and Theorem 16.28 of Wise [Wi12]. (We refer to [Wi09,
Wi11, Wi12] and [AFW12] for background material, definitions and further information.)

Theorem 1.2 (Wise). If N is either a closed hyperbolic 3-manifold which admits a geo-
metrically finite surface or if N is a hyperbolic 3-manifold with nontrivial boundary, then
π1(N) is LERF.

In Section 4 we will show how this result can be used to complete the proof of The-
orem 1.1. We want to add that Agol [Ag12] has made further progress in this direc-
tion, showing that the fundamental groups of any closed hyperbolic 3-manifold is LERF.
(This implies as well, by work of Manning and Martı́nez-Pedroza [MMP10, Proposi-
tion 5.1] that the fundamental group of any hyperbolic 3-manifold with toroidal boundary
is LERF.)

We now discuss the applications of Theorem 1.1. In Section 5 we will see that the
combination of Theorem 1.1 with work of Goda and Pajitnov [GP05] implies a result on
Morse–Novikov numbers of multiples of a given knot. Furthermore, we will see that the
combination of Theorem 1.1 with work of Silver and Williams [SW09b] gives rise to a
fibering criterion in terms of the number of finite covers of the φ-cover of N . Arguably,
however, the most interesting application of Theorem 1.1 is contained in Section 6, and
regards the study of closed 4-manifolds with a free circle action which admit a symplectic
structure. The main result of Section 6 is then the proof of the ‘(1) implies (3)’ part of the
following theorem:

Theorem 1.3. LetN be a closed 3-manifold and let p : M → N be an S1-bundle overN .
Denote by p∗ : H 2(M;R)→ H 1(N;R) the map given by integration along the fiber. Let
ψ ∈ H 2(M;R). Then the following are equivalent:

(1) ψ can be represented by a symplectic structure,
(2) ψ can be represented by a symplectic structure that is S1-invariant,
(3) ψ2 > 0 and φ = p∗(ψ) ∈ H 1(N;R) lies in the open cone on a fibered face of the

Thurston norm ball of N .

(See Section 6 for details on the other implications.)
The implication ‘(1) implies (3)’ was already shown to hold in the following cases:

(1) for reducible 3-manifolds by McCarthy [McC01],
(2) if N has vanishing Thurston norm by Bowden [Bow09] and [FV08c], or if N is a

graph manifold, [FV08c],
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(3) if the canonical class of the symplectic structure is trivial, [FV11c],
(4) if M is the trivial S1-bundle over N , i.e. the case that M = S1

× N , see [FV11a] for
details.

Remark. (1) This paper can be viewed as the (presumably) last paper in a long sequence
of papers [FV08a, FV08b, FV08c, FV11a, FV11b, FV11c] by the authors on twisted
Alexander polynomials, fibered 3-manifolds and symplectic structures.

(2) Some steps in the proof of Theorem 1.3 (notably Propositions 6.2 and 6.3) already
appeared in an unpublished manuscript by the authors (see [FV08c]).

(3) Bowden [Bow12] used Theorem 1.3 to determine which 4-manifolds with a fixed
point free circle action are symplectic.

Convention. Unless it says specifically otherwise, all groups are assumed to be finitely
generated, all manifolds are assumed to be orientable, connected and compact, and all
3-manifolds are assumed to have empty or toroidal boundary.

2. Definition of twisted Alexander polynomials

In this section we quickly recall the definition of twisted Alexander polynomials. This
invariant was initially introduced by Lin [Li01], Wada [Wa94] and Kirk–Livingston
[KL99]. We refer to [FV10a] for a detailed presentation.

LetX be a finite CW complex, let φ ∈ H 1(X;Z) = Hom(π1(X),Z) and let α : π1(X)

→ GL(n, R) be a representation over a Noetherian unique factorization domain R. In our
applications we will take R = Z or R = Q. We can now define a left Z[π1(X)]-module
structure on Rn ⊗Z Z[t±1

] =: Rn[t±1
] as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (tφ(g)p),

where g ∈ π1(X) and v ⊗ p ∈ Rn ⊗Z Z[t±1
] = Rn[t±1

]. Put differently, we get a
representation α ⊗ φ : π1(X)→ GL(n, R[t±1

]).
Denote by X̃ the universal cover of X. Letting π = π1(X), we use the representation

α ⊗ φ to regard Rn[t±1
] as a left Z[π ]-module. The chain complex C∗(X̃) is also a left

Z[π ]-module via deck transformations. Using the natural involution g 7→ g−1 on the
group ring Z[π ] we can view C∗(X̃) as a right Z[π ]-module. We can therefore consider
the tensor products

C
φ⊗α
∗ (X;Rn[t±1

]) := C∗(X̃)⊗Z[π1(X)] R
n
[t±1
],

which form a complex of R[t±1
]-modules. We then consider the R[t±1

]-modules

H
φ⊗α
∗ (X;Rn[t±1

]) := H∗(C
φ⊗α
∗ (X;Rn[t±1

])).

If α and φ are understood we will drop them from the notation. Since X is compact and
since R[t±1

] is Noetherian these modules are finitely presented over R[t±1
]. We now

define the twisted Alexander polynomial of (X, φ, α) to be the order of H1(X;R
n
[t±1
])
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(see [FV10a] and [Tu01, Section 4] for details). We will denote it as1αX,φ ∈ R[t
±1
]. Note

that 1αX,φ ∈ Z[t±1
] is well defined up to multiplication by a unit in R[t±1

]. We adopt the
convention that we drop α from the notation if α is the trivial representation to GL(1,Z).

If α : π1(N) → G is a homomorphism to a finite group G, then we get the regular
representation π1(N)→ G→ AutZ(Z[G]), where the second map is given by left multi-
plication. We can identify AutZ(Z[G]) with GL(|G|,Z) and we obtain the corresponding
twisted Alexander polynomial1αN,φ . We will sometimes writeH∗(X;Z[G][t±1

]) instead
of H∗(X;Z|G|[t±1

]).
The following lemma is well known (see e.g. [Tu01, Remark 4.5]).

Lemma 2.1. Let (N, φ) be a 3-manifold pair and let α : π1(N) → G be a homomor-
phism to a finite group. Then1αN,φ 6= 0 if and only ifH1(N;Z[G][t±1

]) is Z[t±1
]-torsion.

Later, we will need the following well known lemma.

Lemma 2.2. Let (N, φ) be a 3-manifold pair. Let α : π1(N)→ G and β : π1(N)→ H

be homomorphisms to finite groups such that Ker(α) ⊂ Ker(β). Then there exists p in
Q[t±1

] such that
1αN,φ = 1

β
N,φ · p ∈ Q[t±1

].

In particular, if 1βN,φ = 0, then 1αN,φ = 0.

Proof. We denote by α also the regular representation π1(N)→ AutQ(Q[G]), and sim-
ilarly we denote by β the regular representation π1(N) → AutQ(Q[H ]). Note that the
assumption Ker(α) ⊂ Ker(β) implies there exists an epimorphism γ : G→ H such that
β = γ ◦ α. Note that γ endows Q[H ] with the structure of a left Q[G]-module. It fol-
lows from Maschke’s theorem (see [La02, Theorem XVIII.1.2]) that there exists a left
Q[G]-module P and an isomorphism of left Q[G]-modules

Q[G] ∼= Q[H ] ⊕ P.

We now denote by ρ the representation π1(N)
α
−→ G → Aut(P ) ∼= GL(dim(P ),Q). It

now follows from the definitions that

1αN,φ = 1
β
N,φ ·1

ρ
N,φ . ut

3. Twisted Alexander polynomials and fibered 3-manifolds

Let (N, φ) be a 3-manifold pair. We denote by ‖φ‖T the Thurston norm of a class φ ∈
H 1(N;Z); we refer to [Th86] for details. We say that p(t) ∈ Z[t±1

] is monic if its
top coefficient equals ±1, and given a nonzero polynomial p(t) ∈ Z[t±1

] with p =∑l
i=k ai t

i , ak 6= 0, al 6= 0, we define deg(p) = l − k.
It is known that twisted Alexander polynomials give complete fibering obstructions.

In fact the following theorem holds:
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Theorem 3.1. Let (N, φ) be a 3-manifold pair where N 6= S1
× S2, S1

× D2. Then
(N, φ) is fibered if and only if for any epimorphism α : π1(N) → G onto a finite group
the twisted Alexander polynomial 1αN,φ ∈ Z[t±1

] is monic and

deg(1αN,φ) = |G| · ‖φ‖T + (1+ b3(N)) divφα,

where φα denotes the restriction of φ : π1(N) → Z to Ker(α), and where we denote by
divφα ∈ N the divisibility of φα , i.e.

divφα = max{n ∈ N | φα = nψ for some ψ : Ker(α)→ Z}.

The ‘only if’ direction has been shown at various levels of generality by Cha [Ch03],
Kitano and Morifuji [KM05], Goda, Kitano and Morifuji [GKM05], Pajitnov [Pa07],
Kitayama [Kiy07], [FK06] and [FV10a, Theorem 6.2]. The ‘if’ direction is the main
result of [FV11a]. We also refer to [FV11b] for a more leisurely approach to the proof of
the ‘if’ direction.

4. The proof of Theorem 1.1

In this section we will prove Theorem 1.1. The approach we follow is the one we used in
[FV08b] to cover the case of a 3-manifold with certain subgroup separability properties,
adding as new ingredient the work of Wilton and Zalesskii [WZ10] (which builds in turn
on work of Hamilton [Ham01]), to cover the case where the 3-manifold has a nontriv-
ial Jaco–Shalen–Johannson (JSJ) decomposition (see the original work of Jaco–Shalen
[JS79] or Johannson [Jo79] or also [AFW12] for details). We start with the following.

Lemma 4.1. Let N be an irreducible 3-manifold with JSJ pieces Nv , v ∈ V . Let
αv : π1(Nv) → Gv , v ∈ V , be homomorphisms to finite groups. Then there exists an
epimorphism β : π1(N)→ G to a finite group such that Ker(β)∩π1(Nv) ⊂ Ker(αv) for
all v ∈ V .

Proof. We write Kv := Ker(αv), v ∈ V . Evidently there exists an n ∈ N with the
following property: for each v ∈ V and each boundary torus T of Nv we have

n · π1(T ) ⊂ π1(T ) ∩Kv.

(Here n · π1(T ) denotes the unique subgroup of π1(T ) ∼= Z2 of index n2.) By [WZ10,
Theorem 3.2] (which relies strongly on Lemmas 5 and 6 of [Ham01]) there exists an
m ∈ N and finite index normal subgroups Lv ⊂ π1(Nv), v ∈ V , such that for each v ∈ V
and each boundary torus T of Nv we have

nm · π1(T ) = π1(T ) ∩ Lv.

We now define Mv = Kv ∩ Lv , v ∈ V . Note that for each JSJ torus T and two adjacent
JSJ pieces the intersection of the corresponding M-groups is nm · π1(T ). It now follows
from a standard argument (see e.g. [WZ10, Proof of Theorem 3.7]) that there exists a
finite index normal subgroup M of π1(N) such that M ∩ π1(Nv) ⊂ Mv for any v ∈ V .
Clearly the epimorphism π1(N)→ π1(N)/M has the desired properties. ut

For the reader’s convenience we recall the statement of Theorem 1.1.
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Theorem 4.2. Let (N, φ) be a 3-manifold pair. Then if φ ∈ H 1(N) is nonfibered, there
exists an epimorphism α : π1(N)→ G onto a finite group G such that

1αN,φ = 0.

Remark. As mentioned above, a proof of this theorem appears in [FV08b] for a 3-mani-
fold N in the following two cases:

(1) if the subgroups carried by Thurston norm minimizing surfaces are separable, or
(2) if N is a graph manifold.

Recent work of Przytycki and Wise [PW11, Theorem 1.1] shows that the separability
condition (1) is in fact satisfied for all graph manifolds, which gives an alternative proof
for (2).

Proof of Theorem 4.2. If N is reducible, the statement is proven to hold in [FV11a,
Lemma 7.1]. Hence we restrict ourselves to the case where N is irreducible. We denote
by {Nv}v∈V the set of JSJ components of N and by {Te}e∈E the set of JSJ tori in the JSJ
decomposition of N . Let φ ∈ H 1(N;Z) be a nonfibered class. If the restriction of φ to
one of the JSJ tori is trivial, then it follows from [FV08b, Theorem 5.2] that there exists
an epimorphism α : π1(N) → G onto a finite group G such that 1αN,φ = 0. We will
henceforth assume that the restriction of φ to all JSJ tori is nontrivial.

Given v ∈ V we denote by φv the restriction of φ to Nv . Since φ is nonfibered it
follows from [EN85, Theorem 4.2] that there exists a w ∈ V such that (Nw, φw) is not
fibered. If Nw = N is hyperbolic and closed (i.e. the JSJ decomposition is trivial), as we
assume that (N, φ) is not fibered, N admits an incompressible surface 6 which does not
lift to a fiber in any finite cover. By a result of Bonahon and Thurston (see [Bon86]) the
surface 6 is a geometrically finite surface. It then follows from Theorem 1.2 that π1(N)

is LERF. If Nw is hyperbolic and has nontrivial boundary, Theorem 1.2 guarantees again
that π1(Nw) is LERF. The same holds if Nw is Seifert fibered, by Scott’s theorem (see
[Sc78]).

By [FV08b, Theorem 4.2] there exists in either case an epimorphism αw : π1(Nw)→

Gw onto a finite groupGw such that1αwNw,φw = 0. By Lemma 4.1 above there exists a ho-
momorphism β : π1(N)→ G to a finite group such that Ker(β)∩ π1(Nw) = Ker(βw) ⊂
Ker(αw). (Here, given v ∈ V we denote by βv the restriction of β to Nv .) By Lemma 2.2
we also have 1βwNw,φw = 0.

Now, there exists a Mayer–Vietoris type long exact sequence of twisted homology
groups:

· · · →

⊕
e∈E

Hi(Te;Z[G][t±1
])→

⊕
v∈V

Hi(Nv;Z[G][t±1
])→ Hi(N;Z[G][t±1

])→ ·· · .

Recall that we assumed that the restriction of φ to Te is nontrivial for each e. It follows
from a straightforward calculation (see e.g. [KL99, p. 644]) that Hi(Te;Z[G][t±1

]) is
Z[t±1

]-torsion for each i and each e ∈ E. As 1βvNw,φw = 0, Lemma 2.1 implies that
H1(Nw;Z[G][t±1

]) is not Z[t±1
]-torsion. But then it follows from the above exact se-

quence that H1(N;Z[G][t±1
]) is not Z[t±1

]-torsion either, i.e. 1βN,φ = 0. ut
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5. Applications to 3-manifold topology

Let K ⊂ S3 be a knot. We denote by XK := S3
\ νK the exterior of K . A regular Morse

function on XK is a function f : XK → S1 such that all singularities are nondegenerate
and which restricts on the boundary of XK to a fibration with connected fiber. Given a
Morse map f we denote by mi(f ) the number of critical points of index i. A regular
Morse function f : XK → S1 is called minimal if mi(f ) ≤ mi(g) for any regular Morse
map g and any i. It is shown by Pajitnov, Rudolph and Weber [PRW02] that any knot
admits a minimal regular Morse function. Its number of critical points is called the Morse–
Novikov number of K and denoted by MN (K). Note that K is fibered if and only if
MN (K) = 0. It is known that MN (K1 #K2) ≤MN (K1)+MN (K2) (see [PRW02,
Proposition 6.2]), but it is not known whether equality holds. It is not even known whether
MN (n · K) = n ·MN (K). The following theorem can be viewed as evidence to an
affirmative answer for the latter question.

Theorem 5.1. Let K ⊂ S3 be a nonfibered knot. Then there exists a λ > 0 such that

MN (n ·K) ≥ n · λ.
This theorem is an immediate consequence of Theorem 1.1 and results of Goda and Pajit-
nov [GP05, Theorem 4.2 and Corollary 4.6]. The statement is similar in spirit to a result
by Pajitnov (see [Pa10, Proposition 4.2]) on the tunnel number of multiples of a given
knot.

Now let (N, φ) be a fibered 3-manifold pair. In that case Ker(φ : π1(N) → Z) is
the fundamental group of a surface, in particular it is a finitely generated group, and it
follows that the φ-cover ofN admits only countably many finite covers. The next theorem,
which follows by combining Theorem 1.1 with work of Silver and Williams (see [SW09a,
SW09b]), says that the converse to the above statement holds true.

Theorem 5.2. Let N be a 3-manifold and let φ ∈ H 1(N) = Hom(π1(N),Z). If (N, φ)
does not fiber over S1, then the φ-cover of N admits uncountably many finite covers.

For knot exteriors this result is an immediate consequence of Theorem 1.1 and a result of
Silver and Williams [SW09b, Theorem 3.4] for knots (see also [SW09a]). It is straight-
forward to verify that the argument by Silver and Williams carries over to the general
case.

Note that Theorem 5.2 can be viewed as a significant strengthening of Stallings’ fiber-
ing theorem (see [St62]), which says that a class φ ∈ H 1(N) = Hom(π1(N),Z) is fibered
if and only if Ker(φ) is finitely generated.

6. Symplectic 4-manifolds with a free circle action

In this section we will prove Theorem 1.3.

6.1. Preliminaries

We start by recalling some elementary facts about the algebraic topology of a
4-manifold M that carries a free circle action. The free circle action renders M the to-
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tal space of a circle bundle p : M → N over the orbit space, with Euler class e ∈ H 2(N).
For the purpose of proving Theorem 1.3, we will see that we can limit the discussion to
the case where the Euler class is nontorsion, so we will make this assumption for the rest
of the subsection. The Gysin sequence reads

H 0(N)

∼=

��

∪e // H 2(N)

∼=

��

p∗ // H 2(M)

∼=

��

p∗ // H 1(N)

∼=

��

∪e // H 3(N)

∼=

��
H3(N)

∩ e // H1(N) // H2(M)
p∗ // H2(N)

∩ e // H0(N)

where p∗ : H 2(M)→ H 1(N) denotes integration along the fiber. In particular we have

0→ 〈e〉 → H 2(N)
p∗

−→ H 2(M)
p∗
−→ ker(· e)→ 0,

where 〈e〉 is the cyclic subgroup ofH 2(N) generated by the Euler class and where ker(· e)
denotes the subgroup of elements in H 1(N) whose pairing with the Euler class vanishes.
As e is nontorsion, it follows that b2(M) = 2b1(N) − 2. It is not difficult to verify that
sign(M) = 0, hence b+2 (M) = b1(N)− 1.

Let α : π1(N)→ G be a homomorphism to a finite group. We denote by π : NG→ N

the regular G-cover of N . It is well known that b1(NG) ≥ b1(N). If π : M → N is a
circle bundle with Euler class e ∈ H 2(N) then α determines a regular G-cover of M that
we will denote (with slight abuse of notation) π : MG → M . These covers are related by
the commutative diagram

MG
π //

��

M

��
NG

π // N

(1)

where the circle bundle pG : MG → NG has Euler class eG = π∗e ∈ H 2(NG) that is
nontorsion as e is.

6.2. Seiberg–Witten theory for symplectic manifolds with a circle action

In this section we will apply, for the class of manifolds we are studying, Taubes’ nonva-
nishing theorem for Seiberg–Witten invariants of symplectic manifold to get a restriction
on the class of orbit spaces of a free circle action over a symplectic 4-manifold. In order
to do so, we need to understand the Seiberg–Witten invariants of M . Again, we will limit
the discussion here to the case where the Euler class e ∈ H 2(N) is not torsion. (The
torsion case will be treated as a corollary of [FV11a].) The essential ingredient is the fact
that the Seiberg–Witten invariants of M are related to the Alexander polynomial of N .
Baldridge proved the following result, that combines Corollaries 25 and 27 of [Ba03] (cf.
also [Ba01]), to which we refer the reader for definitions and results for Seiberg–Witten
theory in this set-up:
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Theorem 6.1 (Baldridge). Let M be a 4-manifold admitting a free circle action with
nontorsion Euler class e ∈ H 2(N), where N is the orbit space. Then the Seiberg–Witten
invariant SWM(κ) of a class κ = p∗ξ ∈ p∗H 2(N) ⊂ H 2(M) is given by the formula

SWM(κ) =
∑
l∈Z

SWN (ξ + le) ∈ Z, (2)

in particular when b+2 (M) = 1 it is independent of the chamber in which it was calcu-
lated. Moreover, if b+2 (M) > 1, these are the only basic classes.

As H 2(N) acts freely and transitively on spinc(N) (and similarly for M), we use the ex-
istence of a product spinc structure on N (respectively M) to henceforth identify the set
of spinc structures with H 2(N) (respectively H 2(M)). Observe that, with this identifica-
tion, the first Chern class of a spinc structure on N satisfies c1(ξ) = 2ξ ∈ H 2(N) (and
similarly on M).

The Seiberg–Witten invariants of N determine, via [MT96], the Alexander polyno-
mial of N . Assuming that a manifold M as above is symplectic, we will use Taubes’
constraints on its Seiberg–Witten invariants and Baldridge’s formula to get a constraint
on the twisted Alexander polynomials of N . We start with a technical lemma.

Lemma 6.2. Let (M,ω) be a symplectic manifold admitting a free circle action with
nontorsion Euler class e ∈ H 2(N), where N is the orbit space. Then the canonical class
K ∈ H 2(M) of the symplectic structure is the pull-back of a class ζ ∈ H 2(N), where ζ
is well defined up to the addition of a multiple of e.

Proof. If b+2 (M) > 1 this is a straightforward consequence of Theorem 6.1, as the canon-
ical class by [Ta94] is a basic class ofM , hence must be the pull-back of a class ofH 2(N).
The case of b+2 (M) = 1 can be similarly obtained by a careful analysis of the chamber
structure of the Seiberg–Witten invariants for classes that are not pulled back from N , but
it is possible to use a quicker argument. First, observe that as the 2-torsion of H 2(M) is
contained in p∗H 2(N), a spinc structure on M is pull-back if and only if its first Chern
class is pull-back. Next, starting from a closed curve in N representing a suitable element
of H1(N), we can identify a torus T ⊂ M of self–intersection zero, representing the
generator of a cyclic subgroup in the image of the map H1(N)→ H2(M) in the homol-
ogy Gysin sequence, that satisfies ω · [T ] > 0. Second we can assume, by [Liu96], that
K · ω ≥ 0. (Otherwise M would be a rational or ruled surface; using classical invariants,
the only possibility would be M = S2

× T 2, but then e = 0.) Also, as both signature
and Euler characteristic of M vanish, K2

= 2χ(M) + 3σ(M) = 0. Omitting the case
ofK torsion, where the statement is immediate, we deduce that bothK and (the Poincaré
dual of) [T ] lie in the closure of the forward positive cone inH 2(M,R) determined by ω.
The light-cone lemma (see e.g. [Liu96]) asserts at this point that K · [T ] ≥ 0. On the
other hand, the adjunction inequality of Li and Liu (see [LL95]) gives K · [T ] ≤ 0, hence
K · [T ] = 0. It now follows that K is a multiple of PD([T ]), in particular the pull-back
of a class on N . ut

Let then (M,ω) be a symplectic manifold admitting a free circle action with orbit spaceN
and nontorsion Euler class e ∈ H 2(N). As [ω]2 > 0 it follows from Section 6.1 that
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[ω] /∈ p∗(H 2(N,R)), and in particular p∗[ω] 6= 0 ∈ H 1(N;R). Using openness of the
symplectic condition, we can assume that [ω] ∈ H 2(M;R) lies in the rational lattice
(identified with) H 2(M;Q). After suitably scaling ω by a rational number if needed, the
class p∗[ω] is then (the image of) a primitive (in particular, nonzero) class in H 1(N;Z)
that we denote by φ.

We are in a position now to use equation (2) to obtain the following.

Proposition 6.3. Let (M,ω) be a symplectic manifold admitting a free circle action with
nontorsion Euler class such that φ = p∗[ω] ∈ H

1(N) is an integral class on the or-
bit space N . Then for all epimorphisms α : π1(N) → G to a finite group the twisted
Alexander polynomial 1αN,φ ∈ Z[t±1

] is monic of Laurent degree

deg1αN,φ = |G|ζ · φ + 2 divφG.

Here, ζ ∈ H 2(N) is a class whose pull-back to M gives the canonical class of M . Fur-
thermore φG denotes the restriction of φ : π1(N) → Z to Ker(α) and divφG stands for
the divisibility of φG.

Proof. The proof follows by application of Taubes’ results ([Ta94, Ta95]) on the Seiberg–
Witten invariants of finite covers of M to impose constraints on the twisted Alexander
polynomials ofN . We will first analyze the constraints on the ordinary 1-variable Alexan-
der polynomial 1N,φ . By [FV08a, Theorem 3.5] we can write this polynomial as

1N,φ = (t
divφ
− 1)2 ·

∑
g∈H

agt
φ(g)
∈ Z[t±1

], (3)

where H is the maximal free abelian quotient of π1(N) and 1N =
∑
g∈H ag · g ∈ Z[H ]

is the ordinary multivariable Alexander polynomial of N . By Meng and Taubes [MT96]
the latter is related to the Seiberg–Witten invariants of N via the formula∑

g∈H

ag · g = ±
∑

ξ∈H 2(N)

SWN (ξ) · f (ξ) ∈ Z[H ], (4)

where f denotes the composition of Poincaré duality with the quotient map f : H 2(N) ∼=

H1(N)→ H . Using this formula, we can write

1N,φ = ±(t
divφ
− 1)2

∑
ξ∈H 2(N)

SWN (ξ)t
φ·ξ . (5)

We will now use (2) to write 1N,φ in terms of the 4-dimensional Seiberg–Witten in-
variants of M . In order to do so, observe that for all classes ξ ∈ H 2(N) we can write
ξ · φ = ξ · p∗ω = p

∗ξ · ω = κ · ω where κ = p∗ξ . Grouping together the contributions
of the 3-dimensional basic classes in terms of their image in H 2(M), and using the fact
that (ξ + le) · φ = ξ · φ and (2) we get

1N,φ = ±(t
divφ
− 1)2

∑
κ∈p∗H 2(N)

∑
l

SWN (ξ + le)t
φ·ξ

= ±(tdivφ
− 1)2

∑
κ∈p∗H 2(N)

SWM(κ)t
κ·ω.
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Taubes’ constraints, applied to the symplectic manifold (M,ω), assert that the canon-
ical spinc structure κω, with first Chern class c1(κω) = −K = −p

∗ζ ∈ H 2(M), satisfies
SWM(κω) = 1. Moreover, for all spinc structure κ with SWM(κ) 6= 0, we have

κω · ω ≤ κ · ω, (6)

with equality possible only for κ = κω. (When b+2 (M) = 1, this statement applies to the
Seiberg–Witten invariants evaluated in Taubes’ chamber, but as remarked in Theorem 6.1
this specification is not a concern in our situation.) It now follows that 1N,φ is a monic
polynomial, and remembering the symmetry of SWN (or 1N,φ), we see that its Laurent
degree is d = −2κω · ω + 2 divφ = K · ω + 2 divφ = ζ · φ + 2 divφ.

Consider now any symplectic 4-manifold M satisfying the hypothesis of the state-
ment. Take an epimorphism α : π1(N) → G and denote, as in Section 6.1, by NG
and MG the associated G-covers of N and M respectively. We will bootstrap the con-
straint on the ordinary Alexander polynomials to the twisted Alexander polynomials as-
sociated to α : π1(N) → G. As (M,ω) is symplectic, MG inherits a symplectic form
ωG := π∗ω with canonical class KG := π∗K , that is easily shown to satisfy the con-
dition φG := (pG)∗[ωG] = π∗φ ∈ H 1(NG). We can therefore apply the results of the
previous paragraph to the pair (NG, φG) to get a constraint for 1NG,φG . This, together
with the relation 1αN,φ = 1NG,φG proven in [FV08a, Lemma 3.3] and some straightfor-
ward calculations, shows that 1αN,φ is monic of the degree stated. ut

Note that the adjunction inequality implies that ζ ·φ ≤ ‖φ‖T . If we had a way to show that
this is an equality, then all twisted Alexander polynomials would have maximal degree.
Theorem 3.1 would then suffice to show that φ ∈ H 1(N) is fibered. However (except in
the case of S1

× N where we can use Kronheimer’s theorem, see [Kr99] and [FV08a])
we are not aware of any direct way to show that ζ · φ = ‖φ‖T , which compels us to use
the stronger Theorem 1.1.

6.3. Proof of Theorem 1.3

For the reader’s convenience we recall the statement of Theorem 1.3.

Theorem 6.4. Let N be a closed 3-manifold and let p : M → N be an S1-bundle over
N . Denote by p∗ : H 2(M;R)→ H 1(N;R) the map which is given by integration along
the fiber. Let ψ ∈ H 2(M;R).The following are equivalent:

(1) ψ can be represented by a symplectic structure,
(2) ψ can be represented by a symplectic structure which is S1-invariant,
(3) ψ2 > 0 and φ = p∗(ψ) ∈ H 1(N;R) lies in the open cone on a fibered face of the

Thurston norm ball of N .

Proof. The statement ‘(2) implies (1)’ is trivial and the statement ‘(3) implies (2)’ is
proved in [FV10b], generalizing earlier work of Thurston [Th76], Bouyakoub [Bo88]
and Fernández, Gray and Morgan [FGM91].

We now turn to the proof of ‘(1) implies (3)’. If ψ ∈ H 2(M;R) can be represented by
a symplectic structure then it follows from the definition of being symplectic that ψ2 > 0.
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Note that by [Th86, Theorem 5] a class φ ∈ H 1(N;R) lies in the open cone on a
fibered face of the Thurston norm ball of N if and only if φ can be represented by a non-
degenerate closed 1-form. It now follows from [FV10b, Proposition 3.1] that it suffices to
prove ‘(1) implies (3)’ for classes ψ such that p∗([ω]) is an integral class.

We first assume that the Euler class of the S1-bundle is nontorsion. Suppose that
we have ψ ∈ H 2(M;R) which can be represented by a symplectic structure such that
p∗ψ ∈ H 1(N) is an integral class. It follows immediately from Proposition 6.3 that
1αN,p∗(ψ)

is nonzero for any epimorphism α : π1(N)→ G onto a finite group. Therefore,
as a consequence of Theorem 1.1 it follows that p∗(ψ) is a fibered class.

We now assume that the Euler class of the S1-bundle is trivial, i.e.M = S1
×N . This

case has been completely solved in [FV11a]. (More in the spirit of the present paper one
can follow the argument for the case of nontorsion Euler class, replacing Proposition 6.3
by [FV08a, Proposition 4.4].)

Finally, if the Euler class of the S1-bundle is torsion, then it is well known that there
exists a finite cover ofN such that the pull-back S1-bundle has trivial Euler class. We refer
to [Bow09, Proposition 3] and [FV11c, Theorem 2.2] for details. Note that it is a conse-
quence of Stallings’ fibering theorem (see [St62]) that an integral class φ ∈ H 1(N;Z) is
fibered if and only if the pull back to a finite cover is fibered. The case of torsion Euler
class now follows easily from this observation and from the product case. We leave the
details to the reader. ut
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