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Abstract. We prove that every C1 diffeomorphism away from homoclinic tangencies is entropy
expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy
Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homo-
logy. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical
entropy vary upper semicontinuously with the map. In contrast, generic diffeomorphisms with per-
sistent tangencies are not entropy expansive.
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1. Introduction

In this paper we prove that the dynamics of any diffeomorphism away from homoclinic
tangencies admits a very precise description at the topological level. Let us begin by
introducing the set-up of our results.

For each r ≥ 1, let Diffr(M) denote the space of Cr diffeomorphisms on some com-
pact Riemannian manifold M , endowed with the Cr topology. A periodic point p of
f ∈ Diffr(M) is hyperbolic if the derivative Df κ(p), κ = per(p) has no eigenvalues
with norm 1. Then there exist Cr immersed submanifolds W s(p) and Wu(q), the stable
and unstable manifolds of p, that intersect transversely at p and satisfy

f nκ(q)→ p for all q ∈ W s(p) and f−nκ(q)→ p for all q ∈ Wu(p).

A point q ∈ W s(p) ∩Wu(p) distinct from p is a homoclinic point associated to p. The
homoclinic point q is transverse if

TqM = TqW
u(p)+ TqW

s(p).
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We say that f has a homoclinic tangency if there exists a non-transverse homoclinic point
associated to some hyperbolic periodic point. The set of Cr diffeomorphisms that have
some homoclinic tangency will be denoted HTr .

For notational simplicity, we also write Diff(M) = Diff1(M) and HT = HT1.
Our main results, that we are going to state in a while, hold for diffeomorphisms in
Diff(M) \ HT, which we call diffeomorphisms away from tangencies.

1.1. Entropy conjecture

Let m = dimM and f∗,k : Hk(M,R) → Hk(M,R), 0 ≤ k ≤ m, be the action induced
by f on the real homology groups of M . Let

sp(f∗) = max
0≤k≤m

sp(f∗,k),

where sp(f∗,k) denotes the spectral radius of f∗,k . Shub [31] has conjectured (see also
Shub and Sullivan [32]) that the logarithm of sp(f∗) is a lower bound for the topological
entropy of f :

log sp(f∗) ≤ h(f ) for every differentiable map f . (1)

We prove that the conjecture does hold for diffeomorphisms away from tangencies:

Theorem A. The entropy conjecture (1) holds for every f ∈ Diff(M) \ HT.

This is the best result to date on the entropy conjecture in finite differentiability. We will
also comment on the behavior of diffeomorphisms with tangencies. Before getting to that,
let us briefly recall the history of this problem.

The entropy conjecture is known to hold for an open and dense subset of the
space Homeo(M) of homeomorphisms. That is because the subset of homeomorphisms
with topological entropy larger than any given positive number is open and dense, by
Yano [38].

Manning [18] proved that the weaker inequality log sp(f∗,1) ≤ h(f ) always holds for
continuous maps in any dimension. Using Poincaré duality, one deduces the full statement
of the entropy conjecture for continuous maps on manifolds with dimM ≤ 3. The con-
jecture is also known to hold for continuous maps on any infra-nilmanifold, by Marzan-
towicz, Misiurewicz and Przytycki [22, 19, 20].

Weaker versions of the conjecture, where one replaces the spectral radius of f∗ by
other topological invariants, have been proved in great generality. Bowen [4] showed that
log γ1 ≤ h(f ) for every continuous map, where γ1 is the growth rate of the fundamental
group. This is a strengthening of Manning’s result mentioned previously. Ivanov [15]
proved that the asymptotic Nielsen number is also a lower bound for the topological
entropy, for every continuous map. Moreover, Misiurewicz and Przytycki [23] showed
that the topological entropy of every smooth map is bounded from below by the logarithm
of the degree. A proof can be given using the Perron–Frobenius operator (see Oliveira and
Viana [25]).

On the other hand, Shub [31] exhibited a Lipschitz (piecewise affine) counterexample
to the entropy conjecture: while the logarithm of the spectral radius is strictly positive,



Entropy conjecture away from tangencies 2045

the topological entropy vanishes. Thus, some smoothness is necessary for a general (not
just generic) statement. A major progress was the proof, by Yomdin [39], that the en-
tropy conjecture is true for every C∞ map. The main ingredient is a relation between
the topological entropy h(f ) and the growth rate v(f ) of volume under iteration of the
diffeomorphism. For C∞ maps the two numbers actually coincide (that is false in finite
differentiability). The entropy conjecture is a consequence, because log sp(f∗) ≤ v(f )

for any C1 map f .
The entropy conjecture has also been established for certain classes of systems with

hyperbolicity properties: Anosov diffeomorphisms and, more generally, Axiom A dif-
feomorphisms with no cycles (Shub and Williams [33], Ruelle and Sullivan [29]), and
partially hyperbolic systems with one-dimensional center bundle (Saghin and Xia [30]).
All of these systems are away from tangencies, of course.

1.2. Entropy expansiveness and continuity of entropy

Theorem A will be deduced from the following result:

Theorem B. Every diffeomorphism f ∈ Diff(M) \ HT is entropy expansive.

Remark 1.1. In contrast, there is a residual subset R of Diff(M) such that any f ∈
R ∩ HT is not entropy expansive. This is related to results of Downarowicz and New-
house [12]. The proof will appear in Section 3.3.

The notion of entropy expansiveness will be recalled in Section 2. It was first intro-
duced by Bowen [2], who observed that for entropy expansive maps the metric entropy
function (defined in the space of invariant probabilities)

µ 7→ hµ(f )

is upper semicontinuous. In particular, for such maps there always exists some measure
of maximum entropy. In view of these observations, Theorem B has the following direct
consequence:

Corollary C. For any f ∈ Diff(M) \ HT the entropy function µ 7→ hµ(f ) is upper
semicontinuous, and thus there is some invariant probability µ with hµ(f ) = h(f ).

The first examples of Cr diffeomorphisms without measures of maximum entropy were
given by Misiurewicz [21], for each 1 ≤ r < ∞. He also introduced a weaker condi-
tion, called asymptotic entropy expansiveness, that suffices for upper semicontinuity of
the metric entropy function. In addition, Misiurewicz [21] gave examples of Cr diffeo-
morphisms, 1 ≤ r < ∞, where the topological entropy function f 7→ h(f ) fails to be
upper semicontinuous. For C∞ diffeomorphisms, Newhouse [24] proved that the metric
entropy function is always upper semicontinuous, and Yomdin [39] proved upper semi-
continuity of the topological entropy function. Newhouse’s result has been improved by
Buzzi [8], who showed that every C∞ diffeomorphism is asymptotically entropy expan-
sive. Yomdin’s semicontinuity result also extends to every C1 diffeomorphism away from
tangencies:
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Theorem D. The topological entropy is upper semicontinuous on Diff(M) \ HT.

We may further ask whether the topological entropy is a continuous function on
Diff(M) \ HT.

Closing this section, let us observe that the metric entropy function is usually not
lower semicontinuous. Indeed, by the ergodic closing lemma of Mañé [17], there is a
residual subset R1 of Diff(M) such that for every f ∈ R1 every ergodic invariant measure
can be approximated by invariant measures supported on periodic orbits. Thus, for every
f ∈ R1, either h(f ) = 0 or the metric entropy function fails to be lower semicontinuous.
For maps on compact surfaces without boundary, it follows from Katok [16] that the
topological entropy function is lower semicontinuous on Diffr(M), for all r > 1. By
Gromov [13], this does not extend to surfaces with boundary.

1.3. Symbolic extensions

A symbolic extension of a map f : M → M is a subshift σ : Y → Y over a finite
alphabet, together with a continuous surjective map π : Y → M such that f ◦ π =
π ◦ σ . Markov partitions for uniformly hyperbolic systems (Bowen [3]) are the classi-
cal prototype. In general, a symbolic extension may carry a lot more dynamics than the
original map f . We call a symbolic extension principal if it is minimal in this regard:
hµ(f ) = h

π
ext(µ), where hπext(µ) is the supremum of the entropy hν(σ ) of the shift σ over

all invariant probabilities ν such that π∗ν = µ.

Corollary E. Any f ∈ Diff(M) \ HT admits a principal symbolic extension.

This follows directly from Theorem B together with the observation by Boyle, Fiebig and
Fiebig [6] that every asymptotically entropy expansive diffeomorphism admits a principal
symbolic extension.

Let us also point out that Dı́az, Fisher, Pacifico and Vieitez [11, 26] have recently
constructed principal symbolic extensions for partially hyperbolic diffeomorphisms ad-
mitting an invariant splitting into one-dimensional subbundles. Indeed, they prove that
such maps are entropy expansive. This is in contrast with previous work of Downarow-
icz and Newhouse [12], based on the theory developed by Boyle and Downarowicz [5],
where it is shown that nonexistence of symbolic extensions is typical on the closure of the
set of area preserving diffeomorphisms with homoclinic tangencies. Also very recently,
Catalan and Tahzibi [9] proved non-existence of symbolic extensions for generic sym-
plectic diffeomorphisms outside the Anosov domain. In this setting, they also find lower
bounds for the topological entropy in terms of the eigenvalues at periodic points.

2. Entropy theory

Here we recall some basic facts about entropy. See Bowen [2] and Walters [34] for more
information. Moreover, we propose an alternative definition of entropy expansiveness, in
terms of invariant measures (almost entropy expansiveness), that will be useful later.
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2.1. Definitions and statements

Throughout, f : M → M is a continuous map on a compact metric space M . Let K
be a subset of M . For each ε > 0 and n ≥ 1, we consider the following objects. The
dynamical ball of radius ε > 0 and length n around x ∈ M is the set

Bn(x, ε) = {y ∈ M : d(f
j (x), f j (y)) ≤ ε for every 0 ≤ j < n}.

A set E ⊂ M is (n, ε)-spanning for K if for any x ∈ K there is y ∈ E such that
d(f ix, f iy) ≤ ε for all 0 ≤ i < n. In other words, the dynamical balls Bn(y, ε), y ∈ E,
cover K . Let rn(K, ε) denote the smallest cardinality of any (n, ε)-spanning set, and

r(K, ε) = lim sup
n→∞

1
n

log rn(K, ε).

A set F ⊂ K is (n, ε)-separated if for any distinct points x and y in F there is 0 ≤
i < n such that d(f ix, f iy) > ε. That is, no element of F belongs to the dynamical
ballBn(y, ε) of another. Let sn(K, ε) denote the largest cardinality of any (n, ε)-separated
set, and

s(K, ε) = lim sup
n→∞

1
n

log sn(K, ε).

The topological entropy of f on K is defined by

h(f,K) = lim
ε→0

s(K, ε) = lim
ε→0

r(K, ε).

The topological entropy of f is defined by h(f ) = h(f,M). Given any finite open cover β
of M , let

h(f, β) = lim
n→∞

1
n

log |βn| = inf
n≥1

1
n

log |βn|, (2)

where βn = {A0 ∩ f
−1A1 ∩ · · · ∩ f

−n+1An−1) : Ai ∈ β for 0 ≤ i ≤ n− 1} and |βn| is
the smallest cardinality of a subcover of βn. The topological entropy h(f ) coincides with
the supremum of h(f, β) over all finite open covers.

Remark 2.1. If diam(β) < ε then rn(M, ε) ≤ sn(M, ε) ≤ |β
n
| for every n. Hence,

r(M, ε) ≤ s(M, ε) ≤ h(f, β).

Lemma 2.2 (Bowen [2]). Let 0 = t0 < t1 < · · · < tr−1 < tr = n and, for 0 ≤ i < r ,
let Ei be a (ti+1 − ti, ε)-spanning set for f ti (F ). Then

rn(F, 2ε) ≤
∏

0≤i<r

#(Ei).

Now let µ be an f -invariant probability measure and ξ = {A1, . . . , Ak} be a finite parti-
tion of M into measurable sets. The entropy of ξ with respect to µ is

Hµ(f, ξ) = −

k∑
i=1

µ(Ai) logµ(Ai).
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The entropy of f with respect to ξ and µ is given by

hµ(f, ξ) = lim
n→∞

1
n

logHµ(f, ξn).

Finally, the entropy of f with respect to µ is given by

hµ(f ) = sup
ξ

hµ(f, ξ),

where ξ ranges over all finite measurable partitions of M .
For each x ∈ M and ε > 0, let B∞(x, ε) = {y : d(f n(x), f n(y)) ≤ ε for n ≥ 0}.

The map f is entropy expansive if there exists ε > 0 such that

sup
x∈M

h(f, B∞(x, ε)) = 0.

Then we say that f is ε-entropy expansive. When f is a homeomorphism, one may re-
place B∞(x, ε) by B±∞(x, ε) = {y : d(f

n(x), f n(y)) ≤ ε for n ∈ Z}: indeed, Bowen [2,
Corollary 2.3] gives that supx h(f, B∞(x, ε)) = supx h(f, B

±
∞(x, ε)) for every ε > 0.

Lemma 2.3. Let W ⊂ Homeo(M) and ε > 0 be such that every f ∈ W is ε-entropy
expansive. Then the topological entropy f 7→ h(f ) is upper semicontinuous on W .

Proof. Bowen [2, Theorem 2.4] asserts that h(f ) = r(M, ε) if f is ε-entropy expansive.
Then, by Remark 2.1, we have h(f ) = h(f, β) for every f ∈ W and every open cov-
ering β of M with diamβ < ε. Let β be fixed. It is easy to see from the definition (2)
that the map f 7→ h(f, β) is upper semicontinuous (because it is an infimum of upper
semicontinuous functions). This gives the claim. ut

Let f be a homeomorphism and µ be any f -invariant probability measure. Given ε > 0,
we say that f is (µ, ε)-entropy expansive if

h(f, B±∞(x, ε)) = 0 for µ-almost every x ∈ M . (3)

We say that f is ε-almost entropy expansive if it is (µ, ε)-entropy expansive for any
invariant probability measure µ. It is clear that ε-entropy expansiveness implies ε-almost
entropy expansiveness. The converse is important for our purposes:

Proposition 2.4. If f is ε-almost entropy expansive then f is ε-entropy expansive.

This follows from a stronger result, Proposition 2.5, that we present in the next sec-
tion. The notion of almost entropy expansiveness extends to non-invertible maps, with
B∞(x, ε) instead of B±∞(x, ε) in the definition (3). Proposition 2.5 remains true, with the
same change in the hypothesis, and so Proposition 2.4 also extends to the non-invertible
case.
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2.2. Entropy expansiveness from almost entropy expansiveness

Let f be a homeomorphism. We denote B±n (x, ε) = {z ∈ M : d(f
j (x), f j (z)) ≤ δ for

|j | < n}, for each x ∈ M and ε > 0. Proposition 2.4 is the particular case a = 0 of

Proposition 2.5. Given a ≥ 0, if h(f, B±∞(x, ε)) ≤ a for µ-almost every x ∈ M and
every f -invariant probability µ, then h(f, B∞(x, ε)) ≤ a for every x ∈ M .

Proof. Suppose that h(f, B∞(x0, ε)) > a for some x0 ∈ M . Fix constants a1 and a2 such
that h(f, B∞(x0, ε)) > a1 > a2 > a. Then there exists δ > 0, arbitrarily small, and a
subsequence (mi)i →∞ such that

rmi (B∞(x0, ε), δ) > ea1mi for every i. (4)

Write µmi = (1/mi)
∑mi−1
j=0 δf j (x0)

. By compactness, (µmi )i may be taken to converge,
in the weak∗ topology, to some invariant measure µ. For each n ≥ 1, denote

0n = {x ∈ M : rm(B
±
∞(x, ε), δ/4) < ea2m for any m ≥ n}.

These sets form an increasing sequence and, as long as δ is sufficiently small, the hypoth-
esis implies that

⋃
n 0n has full µ-measure. So, we may choose an increasing sequence

of compact sets 3n ⊂ 0n such that µ(
⋃
n3n) = 1. For each n ≥ 1 and y ∈ 3n, let

En(y) be an (n, δ/4)-spanning set for B±∞(y, ε) with #En(y) < ea2n. Then

Un(y) =
⋃

z∈En(y)

Bn(z, δ/2)

is a neighborhood of the compact set B±∞(y, ε). So, we may choose N = Nn(y) and an
open neighborhood Vn(y) of y ∈ 3n such that B±N (u, ε) ⊂ Un(y) for every u ∈ Vn(y).
Choose y1, . . . , ys ∈ 3n such that the Vn(yi), i = 1, . . . , s, cover the compact set 3n.
Then let Wn =

⋃
1≤i≤s Vn(yi) and L(n) = max{n,Nn(y1), . . . , Nn(ys)}. The fact that

Wn is an open neighborhood of 3n ensures that

lim
i→∞

µmi (Wn) ≥ µ(Wn) ≥ µ(3n). (5)

Consider the sequence of integers 0 = t0 < t1 < · · · < tr = mi defined as follows. Let
j ≥ 0 and suppose that t0, . . . , tj have been defined. Then take

tj+1 =

{
tj + n if f tj (x0) ∈ Wn and L(n) ≤ tj < mi − L(n),

tj + 1 otherwise.

Write {t0, t1, . . . , tr} as a disjoint union A ∪ B, where tj ∈ A if f tj (x0) ∈ Wn and
L(n) ≤ tj < mi − L(n), and tj ∈ B otherwise. For tj ∈ A, choose sj ∈ {1, . . . , s} such
that f tj (x0) ∈ Vn(ysj ). Then

f tj (Bmi (x0, ε)) ⊂ B
±

L(n)(f
tj (x0), ε) ⊂ Un(ysj )
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and so f tj (Bmi (x0, ε)) is (n, δ/2)-spanned by E(ysj ). Fix any δ/2-dense subset E∗ of the
ambient space M . Then f tj (Bmi (x0, ε)) is (1, δ/2)-spanned by E∗ for any tj ∈ B. So,
Lemma 2.2 applies to give

rmi (Bmi (x0, ε), δ) ≤
∏
tj∈A

#E(ysj ) · (#E∗)
#B
≤ ea2n#A

· κ#B ,

where κ = #E∗. The definitions also imply that n#A ≤ mi and

#B ≤ #{0 ≤ j < mi : f
j (x0) /∈ Wn} + 2L(n) = (1− µmi (Wn))mi + 2L(n).

Inserting this in the previous inequality, we find that

rmi (Bmi (x0, ε), δ) ≤ e
a2mi · κ(1−µmi (Wn))mi+2L(n)

= exp
(
mi

(
a2 + (1− µmi (Wn)) log κ +

2L(n)
mi

log κ
))
.

Fix n large enough so that 1−µ(3n) < (a1−a2)/(2 log κ). Then, using (5), takemi to be
large enough so that 1−µmi (Wn) and 2L(n)/mi are both smaller than (a1−a2)/(2 log κ).
Then the previous inequality yields

rmi (B∞(x0, ε), δ) ≤ rmi (Bmi (x0, ε), δ) < ea1mi ,

contradicting (4). This contradiction completes the proof of the proposition. ut

3. Almost entropy expansiveness

Here we prove that every diffeomorphism away from tangencies is robustly almost en-
tropy expansive:

Theorem 3.1. Every diffeomorphism away from tangencies admits a C1 neighborhood
U and some constant ε > 0 such that h(g, B±∞(x, ε)) = 0 for every g ∈ U , every g-
invariant probability µ, and µ-almost every x ∈ M .

In view of Proposition 2.4, this implies that every such diffeomorphism is robustly entropy
expansive, with locally uniform expansiveness constant:

Corollary 3.2. Every diffeomorphism away from tangencies admits a C1 neighborhood
U and some constant ε > 0 such that every g ∈ U is ε-entropy expansive.

3.1. Preparatory remarks

Let3 ⊂ M be a compact set invariant under f . Let T3M = E1
⊕ · · ·⊕Ek be a splitting

of the tangent bundle over 3 into Df -invariant subbundles (some of the Ej may reduce
to {0}). Given an integer L ≥ 1, the splitting is called L-dominated if for every i < j ,
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every x ∈ 3, and every pair of non-zero vectors u ∈ Eix and v ∈ Ejx , one has

‖Df Lx (u)‖

‖u‖
<

1
2
‖Df Lx (v)‖

‖v‖
.

Below we focus on the case of dominated splittings T3M = E1
⊕ E2

⊕ E3 into
three subbundles. Write Eij = Ei ⊕ Ej for i 6= j . Given a foliation F and a point y in
the domain, we denote by F(y) the leaf through y and by F(y, ρ) the neighborhood of
radius ρ > 0 around y inside the leaf. Following Burns and Wilkinson [7] we avoid as-
suming dynamical coherence by using locally invariant (“fake”) foliations, a construction
that goes back to Hirsch, Pugh and Shub [14]. For any L-dominated splitting over any in-
variant set of a diffeomorphism in some small neighborhood of f , the angles between the
invariant subbundles are bounded away from zero by a constant that depends only on L.
This simple observation allows us to get the Hirsch–Pugh–Shub statement in a somewhat
more global form:

Lemma 3.3. For any f ∈ Diff(M), L ≥ 1, and ζ > 0 there is a C1 neighborhood
Uf of f and real numbers ρ > r0 > 0 with the following properties. For any g ∈ Uf
let 3g be a g-invariant compact set such that the tangent space over 3g admits an L-
dominated splitting T3gM = E1

g ⊕ E
2
g ⊕ E

3
g . Then the neighborhood B(x, ρ) of every

x ∈ 3g admits foliations F1
g,x , F2

g,x , F3
g,x , F12

g,x , F23
g,x such that for every y ∈ B(x, r0)

and ∗ ∈ {1, 2, 3, 12, 23}:
(1) the leaf F∗g,x(y) is C1 and Ty

(
F∗g,x(y)

)
lies in a cone of width ζ about E∗x ;

(2) g(F∗g,x(y, r0)) ⊂ F∗g,x(g(y)) and g−1(F∗g,x(y, r0)) ⊂ F∗g,x(g−1(y));
(3) F1

g,x and F2
g,x subfoliate F12

g,x , and F2
g,x and F3

g,x subfoliate F23
g,x .

For simplicity, let us drop the reference to g in the notations for the invariant subbundles
and foliations. Lemma 3.3 allows us to define product structures on the r-neighborhood
of every point x ∈ 3g , as follows. For y, z ∈ B(x, ρ), write
• [y, z]1,2 = a if z ∈ F12

x (y) and F1
x (y) intersects F2

x (z) at a ∈ B(x, ρ);
• [y, z]12,3 = a if F12

x (y) intersects F3
x (z) at a ∈ B(x, ρ).

Analogously, one defines [y, z]2,3 and [y, z]1,23. By transversality (Lemma 3.3(1)), in
each case the intersection point a is unique when it exists. Moreover, one can find r1 ∈
(0, r0], independent of g, 3g , and x, such that [y, z]∗ is well defined whenever y and z
belong to B(x, r1). Moreover, for any y ∈ B(x, r1) there are points y∗ ∈ F∗x (x), for each
∗ ∈ {1, 3, 12, 23}, such that

[y3, y12]12,3 = y = [y23, y1]1,23. (6)

Part (1) of Lemma 3.3 ensures (for sufficiently small ζ ) that the locally invariant foliations
F∗x are transverse, with angles uniformly bounded from below. Thus, there exists l > 0,
independent of g, 3g , and x, such that

y∗ ∈ F∗x (x, lr) for all ∗ ∈ {1, 3, 12, 23}, (7){
y1 = x ⇒ y = y23 ∈ F23

x (x, lr)

y3 = x ⇒ y = y12 ∈ F12
x (x, lr)

}
⇒ y ∈ F12

x (x, lr) ∩ F23
x (x, lr) = F2

x (x, lr) (8)
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for any y ∈ B±(x, r) with lr < r1. Moreover, y ∈ B∞(x, r) implies

(f j (y))∗ ∈ F∗
f j (x)

(f j (x), lr) and f j (y∗) = (f
j (y))∗ (9)

for all j ∈ Z and ∗ ∈ {1, 3, 12, 23} (by local invariance of the foliations).
The next proposition improves on a main result of Yang [36, 37] (see also Cro-

visier [10]), and is the key step for Theorem 3.1. The proof is given in Section 4.

Proposition 3.4. Let f : M → M be a diffeomorphism away from tangencies. Then
there exist λ0 > 0, L0 ≥ 1, and a C1 neighborhood U0 of f , such that, given any g ∈
U0, the support of any ergodic g-invariant measure µ admits an L0-dominated splitting
TsuppµM = E

1
⊕ E2

⊕ E3 with dim(E2) ≤ 1 and, for µ-almost every point x,

lim
n→∞

1
n

n∑
i=1

log ‖DgL0 | E1
g−iL0 (x)

‖ ≤ −λ0,

lim
n→∞

1
n

n∑
i=1

log ‖Dg−L0 | E3
giL0 (x)

‖ ≤ −λ0.

(10)

3.2. Proof of Theorem 3.1

Let λ0, L0, and U0 be as in Proposition 3.4. Fix δ > 0 with 2δ < λ0 and then let ζ > 0
and r∗ > 0 be sufficiently small so that, for any g ∈ U0, we have

e−δ ≤
‖DgL0(x)u‖

‖DgL0(y)v‖
≤ eδ and e−δ ≤

‖Dg−L0(x)u‖

‖Dg−L0(y)v‖
≤ eδ (11)

whenever d(x, y) ≤ r∗ and ∠(u, v) ≤ ζ (begin by choosing some local trivialization of
the tangent bundle). Let Uf , r1, and l be as in Lemma 3.3 and the comments following it.
Take U = U0 ∩Uf and ε = min{r1/l, r∗/l}. We are going to prove that the conclusion of
Theorem 3.1 holds for these choices.

By ergodic decomposition, it is no restriction to suppose that the measureµ is ergodic.
Given x ∈ M , denote xi = giL0(x) for each i ∈ Z. Let 0 be the set of points x ∈ suppµ
such that

lim
n→∞

1
n

n∑
i=1

log ‖DgL0 | E1
x−i
‖ ≤ −λ0 and lim

n→∞

1
n

n∑
i=1

log ‖Dg−L0 | E3
xi
‖ ≤ −λ0.

Proposition 3.4 asserts that µ(0) = 1. Take x ∈ 0 and y ∈ B(x, ε), and then let y∗ ∈ F∗x ,
∗ ∈ {1, 3, 12, 23}, be as in (6). We claim that

y1 = x = y3 for every y ∈ B±∞(x, ε). (12)

If E3
= {0} the leaf F3

x (x) reduces to {x} and there is nothing to prove. So, let us assume
that E3 is non-trivial.
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Lemma 3.5 (Pliss [28]). Given a∗ ≤ c2 < c1 there exists θ = (c1 − c2)/(c1 − a∗) such
that, given any real numbers a1, . . . , aN with

N∑
i=1

ai ≤ c2N and ai ≥ a∗ for every i,

there exist l > Nθ and 1 ≤ n1 < · · · < nl ≤ N such that

nj∑
i=n+1

ai ≤ c1(nj − n) for all 0 ≤ n < nj and j = 1, . . . , l.

Take a∗ = min{log ‖Dg−L0(x)‖ : g ∈ U and x ∈ M} and note that a∗ ≤ −λ0. Let
−λ0 < c2 < c1 = −λ0 + δ. Applying Lemma 3.5 to ai = log ‖Dg−L0 | E3

xi
‖ and large

values of N , we find an infinite sequence 1 ≤ n1 < n2 < · · · such that

nj∑
t=n+1

log ‖Dg−L0 | E3
xi
‖ ≤ (−λ0 + δ)(nj − n) for every 0 ≤ n < nj .

By Lemma 3.3, the relation (11), and our choice of ε,

e−δ ≤
‖Dg−L0 | TzF3

xi
(xi)‖

‖Dg−L0 | TxF3
xi
(xi)
‖ ≤ eδ for every z ∈ F1

x (xi, lε) and i ∈ Z.

From these two relations one gets

g(n−nj )L0(F3
xnj
(xnj , lε)) ⊂ F3

xn
(xn, e

(nj−n)(−λ0+2δ)lε)

for every 0 ≤ n < nj and, in particular,

g−njL0(F3
xnj
(xnj , lε)) ⊂ F3

x (x, e
nj (−λ0+2δ)lε). (13)

Let y ∈ B±∞(x, ε). By (9) and our choice of ε, the point giL0(y3) = (giL0(y))3
belongs to F3(xi, lε) for every i. In particular, y3 belongs to the intersection of all
g−njL0(F3

xnj
(xnj , lε)) over all j . By (13), this intersection reduces to {x}. So, y3 = x

as claimed in (12). The proof that y1 = x is entirely analogous, and so the proof of the
claim is complete. Together with the relations (8) and (9), this gives

gj (B±∞(x, ε)) ⊂ F2
gj (x)

(gj (x), r1) for any j ∈ Z.

Observe that the F2
gj (x)

(gj (x), r1) are curves length bounded by some uniform constantC

if dimE2
= 1, and they reduce to points if dimE2

= 0. In the first case one can easily
see that rn(B±∞(x, ε), β) ≤ Cn/β for every n ≥ 1 and β > 0, whereas in the second case
rn(B

±
∞(x, ε), β) = 1. So, in either case, r(B±∞(x, ε), β) = 0 for every β > 0. In this way,

we have reduced the proof of Theorem 3.1 to proving Proposition 3.4.
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3.3. Proof of the main results

We are in a position to deduce all our main results. As mentioned before, Corollary E
follows from Theorem B and a result in [6]. Theorem D is a direct consequence of
Lemma 2.3 and Corollary 3.2. Corollary C follows immediately from Theorem B, as
we also observed before. Theorem B is a corollary of Proposition 2.4 and Corollary 3.2.
Finally, to prove Theorem A one can argue as follows. Given any f ∈ Diff(M) \ HT, let
(fn)n be a sequence of C∞ diffeomorphisms converging to f in the C1 topology. We may
assume that every fn belongs to the isotopy class of f , so that sp((fn)∗) = sp(f∗). Then,
by upper semicontinuity of the topological entropy (Theorem D) and the main result in
Yomdin [39],

h(f ) ≥ lim sup
n→∞

h(fn) ≥ lim sup
n→∞

log sp((fn)∗) = log sp(f∗).

Therefore, f satisfies the entropy conjecture, as stated. This completes the proof.
Closing this section, we prove Remark 1.1. If HT has empty interior (in the C1 topol-

ogy) then we may take R = Diff(M) \ HT, and there is nothing to prove. From now
on, assume that int(HT) is non-empty. For each k ≥ 1, define Rk to be the set of diffeo-
morphisms which either are away from tangencies, or admit a hyperbolic set of the form

3 ∪ f (3) ∪ · · · ∪ fm−1(3) (14)

for some m ≥ 1, with fm(3) = 3 and diam(f j (3)) < 1/k for every j . Since hy-
perbolic sets are stable under small perturbations of the diffeomorphism, and the diam-
eter remains essentially unchanged, Rk is a C1 open set. Moreover, Rk is C1 dense in
Diff(M). Indeed, consider any g ∈ Diff(M). If g is away from tangencies then, by def-
inition, it belongs to Rk . So, we may suppose that g ∈ HT. It follows from homoclinic
bifurcation theory (see, for instance, [27, Chapter 6]) that, given any ε > 0, there ex-
ist diffeomorphisms f arbitrarily close to g such that f admits a hyperbolic set of the
form (14) with maxj diam(f j (3)) < ε. This proves that Rk is indeed dense, for every k.
Then R =

⋂
kRk is a C1 generic subset. One can easily verify that each diffeomorphism

f ∈ R ∩ HT has a sequence of periodic horseshoes with periodic diameters converging
to 0. This implies that f is not entropy expansive, as claimed.

4. Proof of Proposition 3.4

Let f : M → M be any diffeomorphism away from tangencies. We denote by τ(p, f )
the smallest period of a periodic point p. The logarithms of the norms of eigenvalues of
Df τ(p,f )(p) are called exponents of f at the periodic point p.

Proposition 4.1 (Wen [35]). There are constants λ1, γ1 > 0, L1 ≥ 1, and a neighbor-
hood U1 of f such that, for any periodic point p of any diffeomorphism g ∈ U1:

(1) there is at most one exponent in [−γ1, γ1]; if such an exponent does exist, the corre-
sponding eigenvalue is real and of multiplicity 1;
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(2) there is an L1-dominated splitting TOrb(p,g)M = E
cs
⊕Ec⊕Ecu over the orbit of p,

where Ecs , Ec, Ecu correspond to the sums of the eigenspaces of Dgτ(p,g)p whose
exponents fall in (−∞,−γ1) and [−γ1, γ1] and (γ1,+∞);

(3) if τ(p, g) ≥ L1, then

1
[τ(p, g)/L1]

[τ(p,g)/L1]−1∑
i=0

log ‖DgL1 | Ecs
giL1 (p)

‖ < −λ1,

1
[τ(p, g)/L1]

[τ(p,g)/L1]−1∑
i=0

log ‖Dg−L1 | Ecu
g−iL1 (p)

‖ < −λ1.

Fix λ1, γ1, L1, and the neighborhood U1 once and for all. Moreover, denote K1 =

max{| log ‖Dgm(x)‖ | : g ∈ U1 and x ∈ M and |m| ≤ L1}. Let g ∈ U1 and µ be
any ergodic g-invariant probability measure. We are going to use Mañé’s ergodic clos-
ing lemma:

Proposition 4.2 (Mañé [17]). Let µ be an ergodic measure of a diffeomorphism g. Then
there exist diffeomorphisms gn, n ≥ 1, and probability measures µn, n ≥ 1, where each
µn is gn-invariant and supported on a periodic orbit Orb(pn, gn), such that (gn)n → g

in the C1 topology and (µn)n→ µ in the weak∗ topology.

Of course, we may assume that gn ∈ U1 for all n. Then, by Proposition 4.1, the orbit
of each pn admits an L1-dominated splitting TOrb(pn,gn)M = E1

n ⊕ E
2
n ⊕ E

3
n such that

dim(E2
n) ≤ 1. Restricting to a subsequence if necessary, we may assume that the di-

mensions of the subbundles Ein are independent of n. The fact that (µn)n converges to µ
in the weak∗ topology implies that any Hausdorff limit of the sequence (Orb(pn, gn))n
contains the support of µ. It follows that the support admits an L1-dominated splitting
TsuppµM = E

1
⊕E2

⊕E3 with dim(E2) ≤ 1 (see remark at the end of page 288 in [1]).
This gives the first claim in Proposition 3.4. For the proof of (10) it is convenient to
distinguish two cases.

4.1. Measures with large support

Take λ0 ∈ (0, λ1) and U0 = U1 and L0 to be an appropriately large multiple of L1
(to be chosen along the way). We are going to prove that (10) holds for every ergodic
invariant probability measure µ whose support contains at least L1 points. Let (gn)n and
(µn)n be as in the ergodic closing lemma. The assumption # suppµ ≥ L1 implies that
τ(pn, gn) ≥ L1 for arbitrarily large n. Then, restricting to a subsequence if necessary, we
may assume that τ(pn, gn) ≥ L1 for every n. Thus, we can use part (3) of Proposition 4.1.

Lemma 4.3. There exists θ0 > 0, and for any n ≥ 1 there exists3n ⊂ Orb(pn, gn), such
that µn(3n) ≥ θ0 and

1
k

k∑
i=1

log ‖Dg−L1 | E
3,n

g
iL1
n (q)
‖ ≤ −λ0 for every q ∈ 3n and k ≥ 1.
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Proof. We are going to apply Lemma 3.5 to ai = log ‖Dg−L1 | E
3,n
g(i−1)L1 (pn)

‖ for i =
1, . . . , N , where N ≥ 1 is some large integer (precise conditions are stated along the
way). Take a∗ = −K1 and c2 = −λ1 and c1 = −λ0 and θ = (λ1 − λ0)/(K1 − λ0).
The assumption of the lemma is a direct consequence of part (3) of Proposition 4.1, as
long as we choose N to be a multiple [τ(pn, g)/L1]. The conclusion of the lemma yields
1 ≤ n1 < · · · < nl ≤ N with l > θN such that, for every j = 1, . . . , l,

nj−1∑
i=m

log ‖Dg−L1 | E
3,n

g
−iL1
n (q)

‖ ≤ −(nj −m)λ0 for all 0 ≤ m < nj .

Denoting qn,j = g−njL1(pn), this may be rewritten as

k∑
i=1

log ‖Dg−L1 | E
3,n

g
iL1
n (qn,j )

‖ ≤ −kλ0 for all 1 ≤ k ≤ nj . (15)

Assume that nj ≥ τ(pn, g). Observing that gτ(pn,g)L1(qn,j ) = qn,j , one easily deduces
that (15) holds for every 1 ≤ k <∞. This means that the conclusion of the lemma holds
for every point q in

3n = {g
−njL1(pn) : τ(pn, g) ≤ nj < N}.

Observe that #{j : τ(pn, g) ≤ nj < N} > θN − τ(pn, g), but different values of nj may
yield the same point in 3n. Take N to be some large multiple κτ(pn, g) of the period.
ThenN is also a multiple of the smallest period τ(pn, gL1)=τ(pn, g)/gcd(L1, τ (pn, g))

of pn relative to the iterate gL1 . Hence,

#3n ≥
θN − τ(pn, g)

N/τ(pn, gL1)
=

θκ − 1
κ gcd(L1, τ (pn, g))

τ (pn, g)

≥
θκ − 1
κL1

τ(pn, g) ≥
θ

2L1
τ(pn, g),

as long as κ is large enough. Then µn(3n) = #3n/τ(pn, g) ≥ θ/(2L1). The proof of the
lemma is complete. ut

Let us proceed with the proof of (10) in the case # suppµ ≥ L1. Restricting to a sub-
sequence if necessary, we may assume that (3n)n converges to some compact set 3 in
the Hausdorff topology. Since (µn)n converges to µ in the weak∗ topology, we see that
µ(3) ≥ θ0. Moreover,

1
k

k∑
i=1

log ‖Dg−L1 | E3
giL1 (y)

‖ ≤ −λ0 for every k ≥ 1 and y ∈ 3. (16)

By ergodicity, for µ-almost every x, there exists n(x) ≥ 1 such that gn(x)(x) ∈ 3. Take
L0 = κL1 for some large κ ≥ 1 and denote j0 = [n(x)/L0]. Clearly

j0∑
j=1

log ‖Dg−L0 | E3
gjL0 (x)

‖ ≤ j0κK1. (17)
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Let j1 = [(n(x)− j0L0)/L1] and l1 = n(x)− j0L0 − j1L1. By construction, j1 ∈ [0, κ)
and l1 ∈ [0, L1). Let us write g−L0 = g−l1 ◦

(
g−L1

)κ
◦ gl1 . Then, for every j > j0, the

expression log ‖Dg−L0 | E3
gjL0 (x)

‖ is bounded by

κ∑
i=1

log ‖Dg−L1 | E3
g(j−1)L0+l1+iL1 (x)

‖ + 2K1

=

i=(j−1−j0)κ+(κ−j1)∑
i=(j−1−j0)κ+(1−j1)

log ‖Dg−L1 | E3
giL1 (y)

‖ + 2K1, (18)

where y = gn(x)(x). Adding (17) to the sum of (18) over j = j0 + 1, . . . , n, we find that∑n
j=1 log ‖Dg−L2 | E3

gjL2 (x)
‖ is bounded by

j0κK1 +

(n−j0)κ+(κ−j1)∑
i=(1−j1)

log ‖Dg−L1 | E3
giL1 (y)

‖ + 2K1n

≤
(
j0κ + j1)K1 +

(n−j0)κ−j1∑
i=1

log ‖Dg−L1 | E3
giL1 (y)

‖ + 2K1n.

Consequently,

lim sup
n→∞

1
n

n∑
j=1

log ‖Dg−L2 | E3
gjL2 (x)

‖

≤ κ lim sup
k→∞

1
k

k∑
i=1

log ‖Dg−L1 | E3
giL1 (y)

‖ + 2K1.

According to (16), the right hand side is bounded by −κλ0 + 2K1 ≤ −λ0, as long as we
choose κ sufficiently large. This completes the proof of (10) in this case.

4.2. Measures with small support

Finally, we extend the claims in (10) to ergodic measures supported on periodic orbits
with period smaller than L1. We need slightly more precise choices of λ0, L0, and U0
than in the previous section. These are made precise along the way. Let Per(f, L1) be the
(compact) set of periodic points p of f such that τ(p, f ) < L1.

Lemma 4.4. There is a positive integer m > 0 such that for any p ∈ Per(f, L1) there
exist m±(p) ∈ {1, . . . , m} satisfying

log ‖Dfm+(p)τ(p,f ) | E1
p‖ < 0 and log ‖Df−m−(p)τ(p,f ) | E3

p‖ < 0.
Proof. We explain how to find m+ satisfying the first claim; the argument for the second
claim is analogous. Suppose that for every m ≥ 1 there is pm ∈ Per(f, L1) such that
log ‖Df nτ(pm,f ) | E1

pm
‖ ≥ 0 for all 1 ≤ n ≤ m. Restricting to a subsequence if necessary,

we may suppose that the L1-dominated splittings TOrb(pm,f )M = E
1
m⊕E

2
m⊕E

3
m are such

that the dimensions of the subbundles Ejm are independent of m. Analogously, we may
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suppose that the periods τ(pm, f ) are independent of m and (pm)n converges to some
p ∈ M . Then p is periodic, with τ(p, f ) = τ(pm, f ), and there is an L1-dominated
splitting TOrb(p,f )M = E1

⊕ E2
⊕ E3 with dimEj = dimE

j
m. On the one hand, by

continuity,
log ‖Df nL1 | E1

p‖ ≥ 0 for any n ≥ 1. (19)

On the other hand, all the exponents of Df τ(pm,f ) | E1
pm

are bounded above by −γ1 and
so the same is true for the exponents of Df τ(p,f ) | E1

p. It follows that

lim
n→∞

log ‖Df nτ(p,f ) | E1
p‖ = −∞,

which contradicts (19). This contradiction proves the claim. ut

Lemma 4.4 implies that if L0 ≥ 1 is chosen to be a multiple of m!L1! then

log ‖Df L0 | E1
x‖ < 0 and log ‖Df−L0 | E3

x‖ < 0

for every x ∈ Per(f, L1). Define

λ∗ = −max{log ‖Df L0 | E1
x‖, log ‖Df−L0 | E3

x‖ : p ∈ Per(f, L1)}.

Notice that λ∗ > 0, since Per(f, L1) is compact. Moreover, by definition

log ‖Df L0 | E1
x‖ ≤ −λ∗ and log ‖Df−L0 | E3

x‖ ≤ −λ∗ (20)

for all x ∈ Per(f, L1). Clearly, the map g 7→ Per(g, L1) is upper semicontinuous: for any
neighborhood U0 of Per(f, L1), we have Per(g, L1) ⊂ U0 for every g in a neighborhood
of f . Reducing U0 if necessary, we may assume that this holds for every g ∈ U0. Choose
λ0 ∈ (0, λ∗). Taking some small δ > 0 and shrinking U0 and U0 if necessary,
(a) for any g ∈ U0 and x, y ∈ M with d(x, y) < δ, we have

| log ‖Df L0 | E1
x‖ − log ‖DgL0 | E1

y‖| < λ∗ − λ0,

| log ‖Df−L0 | E3
x‖ − log ‖Dg−L0 | E3

y‖| < λ∗ − λ0;

(b) for any g ∈ U0 and y ∈ U0, there exists x ∈ Per(f, L1) such that

d(f jL0(x), gjL0(y)) < δ for all |j | ≤ L1!.

Fix g ∈ U and q ∈ Per(g, L1) ⊂ U0. By (b), there exists p ∈ Per(f, L1) such that

d(f jL0(p), gjL0(q)) < ε whenever |j | ≤ L1!.

The periods τ(p, f ) and τ(q, g) need not be the same. Combining (a)–(b) with (20), we
get

1
n

n∑
i=1

log ‖Df L0 | E1
f−iL0 (q)

‖ ≤ −λ0 (21)

for any 1 ≤ n ≤ L1!. Since τ(q, g) < L1!, it follows that (21) holds for every n ≥ 1.
The proof of the claim about log ‖Df L0 | E3

‖ is analogous. This finishes the proof of
Proposition 3.4.
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