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Abstract. Let k be a field of characteristic p. LetG be a finite group of order divisible by p and P
a p-Sylow subgroup ofG. We describe the kernel of the restriction homomorphism T (G)→ T (P ),
for T (−) the group of endotrivial representations. Our description involves functionsG→ k× that
we call weak P -homomorphisms. These are generalizations to possibly non-normal P ≤ G of the
classical homomorphisms G/P → k× appearing in the normal case.
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1. Introduction

Let k be a field of characteristic p > 0, not necessarily algebraically closed. Let G be a
finite group of order divisible by p. Although we are chiefly interested in the restriction
to the p-Sylow subgroup, we can equally well describe the case of any subgroup H ≤ G
whose index [G : H ] is invertible in k, i.e. such that H contains a p-Sylow subgroup
of G. Consider the kernel of restriction

T (G,H) := Ker(ResGH : T (G)→ T (H)),

where we denote by T (G) = Tk(G) the abelian group of endotrivial kG-modules. (See
Remark 3.2.) Equivalently, T (G,H) is the group of stable isomorphism classes of those
kG-modules whose restriction to H is isomorphic to the trivial representation k, up to
projective summands (for such modules are necessarily endotrivial).

Endotrivial modulesM are important for various reasons, the most obvious one being
that, by definition, the functorM⊗− provides an auto-equivalence on the stable category
kG-stab = kG-mod/kG-proj. But there are further reasons to study them, as well as
the larger class of so-called endopermutation modules, for instance as Green sources of
simple modules. We refer the reader to Thévenaz [16] for a survey and more motivation.
Let us simply indicate that the study of such modules has played a major role in the
development of modular representation theory over the last decades. To borrow Alperin’s
words [1], a “triumph in finite group theory” has been their complete classification over
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p-groups, by work of Carlson–Thévenaz [7, 8] for endotrivial modules and Bouc [2] for
endopermutation modules.

With this triumphant classification in mind, the natural question for a general groupG
becomes to compare T (G) to T (P ) for a p-Sylow subgroup P ≤ G. This explains the
importance of the kernel T (G, P ) in general. An extensive literature has recently flour-
ished around this question (see for instance [3, 4, 5, 6, 11, 12, 13, 15]), usually with the
objective of describing T (G, P ) for specific classes of groups in very explicit terms (e.g.
by generators and relations).

The goal of the present paper is to give a description of this kernel T (G,H), valid
for all G and H , in purely elementary terms, notably not using stable categories, nor
representations, but essentially only the action of G by conjugation on the lattice of its
p-subgroups.

In case the subgroup H C G is normal, it is well-known that T (G,H) amounts to
one-dimensional representations of the quotient G/H , that is, to group homomorphisms
G → k× which are trivial on H . (Note that these coincide with all group homomor-
phisms G→ k× if H is the Sylow subgroup, since k has no nontrivial pth root of unity.)
Our description of T (G,H) for arbitrary, not necessarily normal H ≤ G involves a gen-
eralization of these homomorphisms, which we call “weak H -homomorphisms” from G

to k× (Definition 2.2). These are functions u : G → k× which are constant on left and
rightH -cosets, which are trivial onH , and almost behave like group homomorphisms but
not entirely. In fact, the relation u(g2g1) = u(g2)u(g1) only holds for some pairs g1, g2
of elements of G. The deep reason why some of those relations are “lost” is that the
stable category of the corresponding subgroup H ∩H g1 ∩H g2g1 vanishes. This happens
exactly when that subgroup has order prime to the characteristic p. We come back to this
phenomenon in Remark 4.11.

We shall construct explicit isomorphisms, in both directions, between the kernel
T (G,H) and the group A(G,H) of weak H -homomorphisms G→ k×.

It is high time we should give some precise definitions.
Beyond this introduction, the paper is organized as follows. In Section 2, we intro-

duce weak H -homomorphisms and state the main theorems. These results are proved in
Section 4 after recalling some basic modular representation theory in Section 3. The final
Section 5 gives a couple of little corollaries of our description of T (G,H), e.g. about the
possible orders of elements in that finite abelian group.

2. Weak H -homomorphisms and T (G,H)

Fix H ≤ G a subgroup of index prime to p, for instance a p-Sylow subgroup. The
following simple definition will be important throughout the paper.

2.1. Definition. We say that an element g ∈ G is H -secant if the order |H ∩ H g
| is

divisible by p, where of course H g
= g−1Hg is the conjugate of H . In case H ≤ G is a

p-Sylow, an element g ∈ G is H -secant if and only if H ∩H g is non-trivial.

2.2. Definition. Define a weak H -homomorphism from G to k× to be a function u :
G→ k× satisfying the following three properties:
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(WH1) For every h ∈ H , we have u(h) = 1.
(WH2) For every non-H -secant g (i.e. |H ∩H g

| prime to p), we have u(g) = 1.
(WH3) For every g1, g2 ∈ G such that |H ∩H g1 ∩H g2g1 | is divisible by p, we have

u(g2g1) = u(g2) · u(g1).

We define A(G,H) to be the abelian group of weak H -homomorphisms from G to k×,
under elementwise multiplication: (u · v)(g) = u(g) · v(g) for every g ∈ G.

2.3. Examples. Here are two extreme cases where T (G,H) is already well-known.

(1) Suppose that H C G is normal. Then every g ∈ G is H -secant and every pair
g1, g2 ∈ G satisfies (WH3). Hence A(G,H) is the group Hom(G/H,k×) of group
homomorphisms from the quotient G/H to k×.

(2) Suppose that H ≤ G is “strongly p-embedded”, meaning that for every g ∈ G not
in H the subgroup H ∩ H g has order prime to p. Then A(G,H) = 1 since (WH1)
and (WH2) cover all possible g ∈ G and force u(g) = 1 everywhere.

Interestingly, the same group A(G,H) is isomorphic to T (G,H) in general, not only
in those special cases. Let us explain how weak H -homomorphisms naturally appear in
our problem. For this, it is convenient to use the following notation.

2.4. Remark. Let g ∈ G and let L and K be subgroups of G such that gL ≤ K . We can
combine twisting the action and restriction to a subgroup to obtain a g-twisted restriction
functor gResKL : kK-mod→ kL-mod. It is defined by gResM = M as a k-vector space
but with L acting via ` · m := (g`)m for all ` ∈ L. On morphisms, gResKL (f ) = f as
usual. It induces a functor gResKL : kK-stab→ kL-stab on stable categories.

Here is a first relation between A(G,H) and endotrivial kG-modules.

2.5. Construction. Let M be an endotrivial kG-module such that ResGH M ' k in the
stable category kH -stab, i.e. the isomorphism class [M]' belongs to our kernel T (G,H).
Choose an isomorphism ξ : k ∼−→ ResGH M in kH -stab. Then, for everyH -secant element
g ∈ G, consider the following subgroup of H :

(2.6) H(g) := H ∩H g,

whose order is divisible by p by the assumption that g is H -secant. Consider the two
restrictions of M to H(g), namely the plain one ResGH(g)M and the g-twisted one
gResGH(g)M as in Remark 2.4. Note that m 7→ gm gives an H(g)-linear isomorphism

ResGH(g)M
∼
−→

gResGH(g)M , simply denoted “g·”. Note also that g(H(g)) ≤ H and that
gResHH(g) k = ResHH(g) k = k. Note finally that the group of automorphisms of k in
kH(g)-stab is exactly k×, via multiplication. This is where we use the assumption that g
is H -secant. Otherwise the stable category kH(g)-stab would be trivial. So, there exists
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a unique scalar, that we call u(g) ∈ k×, which makes the following diagram commute
in kH(g)-stab:

(2.7)

ResGH(g)M
g·

'
// gResGH(g)M

k

ResH
H(g)

ξ '

OO

∃! u(g) // k

gResH
H(g)

ξ'

OO

We shall see that the scalar u(g) does not depend on the choice of ξ , nor on the choice
of M in its isomorphism class. Extending u to non-H -secant g by setting u(g) = 1, we
shall see that u : G → k× is a weak H -homomorphism in the sense of Definition 2.2.
We denote this weak H -homomorphism u by υ(M).

This construction actually gives us everything:

2.8. Theorem. Construction 2.5 induces a well-defined isomorphism

υ : Ker(T (G)→ T (H))
∼
−→A(G,H).

The proof is given in Section 4. This first construction explains how weak H -homomor-
phisms enter the picture. Let us now give the announced homomorphism A(G,H) →

T (G)more concretely. That is, let us describe what is the endotrivial module correspond-
ing to a weak H -homomorphism. This will yield an inverse to υ.

For g ∈ G, we denote by [g] the class gH of g in the quotient G/H . We shall
see that every weak H -homomorphism u : G → k× is constant on H -classes, hence
u([g]) := u(g) is well-defined on G/H . See Remark 4.2(2).

2.9. Theorem. Consider the kG-module k(G/H) with usual leftG-action on its k-basis
G/H . Let u : G → k× be a weak H -homomorphism (Definition 2.2). Define a map
eu : k(G/H)→ k(G/H), depending on u, by the formula

(2.10) eu
(
[g]
)
=

1
[G : H ]

∑
d∈G/H

u(d)−1
· g · d

for every [g] ∈ G/H , extended k-linearly as always. Then we have:

(i) The homomorphism eu : k(G/H)→ k(G/H) is well-defined and kG-linear. More-
over, it is an idempotent, eu ◦ eu = eu, in the stable category kG-stab.

(ii) Since the category kG-stab is idempotent complete (Remark 3.1), there exists a
unique decomposition k(G/H) ∼= Mu⊕Nu in kG-stab such that eu is the projection
on Mu along Nu; in other words, eu becomes

(
1 0
0 0

)
on Mu ⊕Nu.

(iii) The object Mu is endotrivial and its restriction to H is trivial.
(iv) The construction u 7→ [Mu]' described above yields a well-defined group homo-

morphism A(G,H)→ T (G) which gives an isomorphism

α : A(G,H)
∼
−→Ker(T (G)→ T (H)),

inverse to the isomorphism υ of Theorem 2.8.

This theorem is proven simultaneously with Theorem 2.8, in Section 4.
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2.11. Remark. We can try to reduce the amount of information involved in describing a
weak H -homomorphism u : G → k×. Here is an alternative formulation which might
be interesting for subgroups H ≤ G with small double quotient H\G/H . First note
that g ∈ G being H -secant is a well-defined property of the class of g in G/H or even
inH\G/H . Of course, we call such classes H -secant as well. We already mentioned that
u ∈ A(G,H) is constant on left and right H -cosets (see Remark 4.2). It follows that we
could describe weak H -homomorphisms u ∈ A(G,H) as functions u : H\G/H → k×
such that u(H) = 1, u(c) = 1 if c is notH -secant and u(c3) = u(c2) ·u(c1) each time c1,
c2 and c3 are the classes of some elements g1, g2 and g2g1 for which H ∩ H g1 ∩ H g2g1

has order divisible by p. The latter condition, however, seems to depend on the choice of
gi ∈ ci for i = 1, 2. This is why we prefer formulation (WH3), to avoid confusion.

3. Basics

We recall some standard facts about modular representation theory of finite groups and
fix some notation. In this section, H ≤ G can be any subgroup, not necessarily of index
prime to p.

We denote by kG-mod the category of finitely generated left kG-modules and by
kG-stab = kG-mod/kG-proj the stable category obtained as the additive quotient of
the Frobenius abelian category kG-mod by its subcategory of projective (= injective)
modules. See Happel [10] for details. It is a triangulated category but, sadly enough, we
shall not use this fact in this paper. The usual tensor product of representations,M⊗N =
M ⊗k N with diagonal G-action, passes to the stable category kG-stab.

3.1. Remark. An additive category is idempotent complete (also known as karoubian or
pseudo-abelian) if every idempotent endomorphism e = e2

: A→ A yields a decompo-
sition A = im(e)⊕ ker(e), that is, a decomposition under which e becomes

(
1 0
0 0

)
. Such

a decomposition is unique up to unique isomorphism.
The stable category kG-stab is idempotent complete. This fact is folklore, e.g. since

kG-stab coincides with the thick subcategory of compact objects in the big stable cat-
egory kG-Stab of all, not necessarily finitely generated, kG-modules modulo projec-
tives and since kG-Stab has infinite coproducts, hence is idempotent complete (use [14,
Prop. 1.6.8]).

Alternatively, one can sketch a direct proof as follows. Let M be a finitely gener-
ated kG-module that we can assume without projective summand. The latter assumption
implies that any endomorphism ofM which vanishes in kG-stab is nilpotent (using nilpo-
tence of the Jacobson radical). Hence, if e : M → M is an endomorphism in kG-mod
such that e2

= e in kG-stab, then h = e2
− e is nilpotent in kG-mod. The usual lifting

of idempotents modulo nilpotents yields a correction ẽ of e such that ẽ2
= ẽ in kG-mod

already, with the same ẽ = e in kG-stab. (By induction, reduce to the case h2
= 0 and

verify that ẽ = e + h − 2eh will do in that case; note that eh = he.) Then we have
M = im(ẽ)⊕ ker(ẽ) in kG-mod, inducing the wanted decomposition in kG-stab.

3.2. Remark. Recall that a kG-moduleM is endotrivial ifM is⊗-invertibleM⊗M∗'1
in the stable category kG-stab, or, in eponymic terms, if its module of endomorphisms
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is the trivial kG-module, up to projective: Endk(M) ' k⊕ (proj). Being endotrivial can
be tested on the elementary abelian p-subgroups of G by Chouinard’s Theorem [9]. In
particular, it suffices that ResGP M be endotrivial on the p-Sylow P ≤ G or any subgroup
in between, P ≤ H ≤ G. (See also Remark 3.4.)

3.3. Notation. For a subgroup H ≤ G, we denote the class gH ∈ G/H by [g]H or just
[g] when H is obvious from the context. Here, k(G/H) will always be a left kG-module
via g · [x] = [gx]. We have the usual restriction-induction adjunction

ResGH : kG-stab� kH -stab : IndGH = kG⊗kH −

whose unit ηM : M → kG⊗kH M is given by m 7→
∑
[g]∈G/H g ⊗ g−1m.

3.4. Remark. Assume that a subgroup H ≤ G has index [G : H ] prime to p. Then
the above unit η : Id → IndGH ResGH has a retraction π : IndGH ResGH → Id, namely
πM : kG ⊗kH M → M defined by g ⊗ m 7→ 1

[G:H ]
gm. It follows that the functor

ResGH : kG-stab → kH -stab is faithful. Indeed, if Res(f ) = 0 then f = π ◦ η ◦ f =

π ◦ Ind Res(f ) ◦ η = 0 by naturality of η. (Of course, Res is usually not full.) Then
ResGH : kG-stab → kH -stab detects vanishing of objects. Applying this property with
the cone (cokernel) of the obvious morphism k→ Endk(M) ∼= M ⊗M∗, we see that if
ResGH M is ⊗-invertible then so is M . Hence the functor ResGH detects endotriviality, as
already mentioned. More generally, applying faithfulness to the cone of any morphism in
kG-stab shows that ResGH detects isomorphisms.

3.5. Remark (Mackey formulas). LetK,L ≤ H be two subgroups of the same groupH .
We shall use a couple of Mackey bijections between some left K-sets and some Mackey
isomorphisms between left kK-modules. We therefore recall them together beforehand.
Let T ⊂ H be a set of representatives ofK\H/L. For every t ∈ T , consider the morphism
of left H -sets

mackt : H/tL→ H/L defined by mackt ([h]tL) = [ht]L.

One instance of the Mackey formula tells us that the map obtained by restricting these
maps to the subsets K/(K ∩ tL) of H/tL and taking their coproduct over t ∈ T yields a
bijection of left K-sets:

(3.6) mack :
∐
t∈T

K/(K ∩ tL)
∼
−→H/L, [k]K∩tL 7→ mackt ([k]) = [kt]L.

Similarly, for every kL-module N , there is a Mackey isomorphism of kK-modules,⊕
t∈T IndK

K∩tL
t−1

ResL
K∩tL

N
∼
−→ResHK IndHL N , still denoted mack and given by

(3.7) mack :
⊕
t∈T

kK ⊗k(K∩tL) N
'
−→ kH ⊗kL N, x ⊗ y 7→ xt ⊗ y.

Recall from Remark 2.4 that by definition of the twisted restriction t−1
ResL

K∩tL
N , each

subgroup K ∩ tL acts on the corresponding factor N appearing on the left-hand side
of (3.7) via k · n = ktn, observing that kt ∈ L for every k ∈ K ∩ tL.
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Let H be a finite group, let X be a left H -set and let x ∈ X. Then we denote by
Hx = {h ∈ H | hx = x} the stabilizer of x in H . The following result will be essential
for our computations in stable categories.

3.8. Lemma. LetH be a finite group and letX, Y be two finite leftH -sets. Let f : kX→
kY be a kH -linear homomorphism. It is given by scalars ax,y ∈ k indexed by x ∈ X and
y ∈ Y such that f (x) =

∑
y∈Y ax,yy for every x ∈ X.

If ax,y = 0 for every x ∈ X and y ∈ Y such that p divides |Hx ∩ Hy | then the
morphism f is zero in kH -stab, i.e. it factors via a projective kH -module.

Proof. The kH -linearity of f gives us for every h ∈ H , x ∈ X and y ∈ Y that

(3.9) ahx,hy = ax,y .

Now, consider the diagonal action ofH onX×Y and note that the property that |Hx∩Hy |
is prime to p is constant on the H -orbit of (x, y) ∈ X × Y . Let S ⊂ X × Y be a set of
representatives of only thoseH -orbits inX×Y on which |Hx∩Hy | is prime to p. Consider
the free kH -module IndH1 ResH1 (kY ) = kH ⊗k kY (that is, with H -action only on the
left factor) and the morphisms f1 and f2 as follows:

x ∈ X_

��

kX
f

''

f1

��∑
h∈H

∑
(x0,y0)∈S
x=hx0

|Hx0 ∩Hy0 |
−1ax0,y0 · h⊗ y0 kH ⊗k kY

f2

// kY

h⊗ y
� // hy

The kH -linearity of f2 is immediate and that of f1 is easy by a standard change of vari-
ables on the summation index h ∈ H . It now suffices to check that f2 ◦ f1 = f . Let
x ∈ X and let bx,y ∈ k for all y ∈ Y be such that f2 ◦f1(x) =

∑
y∈Y bx,yy. By the above

construction, we have

bx,y =
∑
h∈H

∑
(x0,y0)∈S

x=hx0 and y=hy0

|Hx0 ∩Hy0 |
−1ax0,y0 .

We want to prove that bx,y = ax,y for all y ∈ Y . If p divides |Hx ∩ Hy |, there is no
(x0, y0) ∈ S with (x, y) = (hx0, hy0) by choice of S, hence the above summation is
empty in that case and we get bx,y = 0 which coincides with ax,y by hypothesis. Now,
suppose that |Hx ∩ Hy | is prime to p, then the index (x0, y0) ∈ S of the above sum
is unique. However, there are many h ∈ H with the property that (hx0, hy0) = (x, y),
namely there are |Hx0 ∩Hy0 | of them. In that case, we obtain bx,y = ax0,y0 but the latter
is also equal to ax,y by (3.9) since (x, y) = (hx0, hy0). ut
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4. Proof of the theorems

As in Section 2, H ≤ G is a subgroup of index prime to p. Let us denote this index
by n := [G :H ] for short. So, 1/n exists in our field k. Recall that g ∈ G is H -secant if
p divides the order of H(g) := H ∩H g .

It might be reassuring to start with the following.

4.1. Example. Let u ≡ 1 be the trivial weak H -homomorphism from G to k×. Then,
under the identification k(G/H) ∼= IndGH ResGH k = kG ⊗kH k, given by [g] 7→ g ⊗ 1,
the endomorphism eu of k(G/H) (see (2.10)) coincides with the idempotent ηk ◦ πk of
Ind Resk (see Remark 3.4). Indeed, for every g ∈ G, we have

e1([g]) =
1
n

∑
d∈G/H

gd =
1
n

∑
d ′∈G/H

d ′ = ηk

(
1
n

)
= ηk(πk([g])).

So this idempotent corresponds to the trivial module k appearing as a direct summand of
k(G/H) via ηk.

4.2. Remarks. Let u : G→ k× be a weakH -homomorphism (Definition 2.2). We shall
repeatedly use the following facts, often without mention.

(1) We have u(g−1) = u(g)−1 for every g ∈ G. Indeed, by (WH2), we can assume that
g, or equivalently g−1, isH -secant. Then 1 = u(1) = u(g−1)u(g) follows by (WH1)
and (WH3) since p divides |H ∩H g

∩H 1
|.

(2) For every g ∈ G and h ∈ H , we have u(hg) = u(g) = u(gh). To see this, note that
g, hg and gh are simultaneously H -secant. By (WH2), we can assume that they are
allH -secant. In that case, the groupsH ∩H g

∩H hg
= H ∩H g andH ∩H h

∩H gh
=

H ∩H gh have order divisible by p, and the relations follow from (WH3) and the fact
that u(h) = 1 by (WH1).

4.3. Proposition. Let u : G → k× be a weak H -homomorphism (Definition 2.2). Then
the endomorphism eu : k(G/H) → k(G/H) given in (2.10) is well-defined and kG-
linear.

Proof. Let g ∈ G and consider the well-defined element

eu(g) =
1
n

∑
d∈G/H

u(d)−1
· g · d

in k(G/H), as in (2.10). We want to show that eu(g) = eu(gh) for every h ∈ H :

eu(gh) =
1
n

∑
d∈G/H

u(d)−1ghd =
1
n

∑
d ′∈G/H

u(d ′)−1gd ′ = eu(g)

using the change of variables d ′ = hd on G/H which preserves the value of the scalar
u(d ′) = u(hd) = u(d) by Remark 4.2(2). Hence, eu(g) only depends on [g]H ∈ G/H ,
which means that eu is well-defined. It is clearly kG-linear by definition of the action
of G on G/H , which appears on the left of g (and of course commutes with the scalar
u(d)−1

∈ k). ut
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4.4. Main Lemma. Let u ∈ A(G,H) and u : ResGH (k(G/H)) → k its k-linear exten-
sion, i.e. mapping every basis element c ∈ G/H to u(c). This u is kH -linear. Consider
the kH -linear homomorphism w : k→ ResGH (k(G/H)) given by

(4.5) w(1) =
1
n

∑
d∈G/H

u(d)−1
· d.

Then u ◦ w = idk and w ◦ u = ResGH (eu) in kH -stab.

Proof. It is easy to verify that both u and w are indeed kH -linear (see Remark 4.2(2) if
necessary). Let us also observe right away that u ◦ w = idk:

u(w(1)) =
1
n

∑
d∈G/H

u(d)−1
· u(d) =

|G/H |

n
= 1.

So, let us prove that w ◦ u = eu in kH -stab. We are going to use Lemma 3.8 for the left
H -set X = Y = G/H = ResGH (G/H) and the morphism f = w ◦ u − eu : kX → kY ,
which we claim is zero in kH -stab. For every x ∈ G/H , we have

w ◦ u(x) =
1
n

∑
y∈Y

u(x)u(y)−1
· y.

On the other hand, let us choose g1 ∈ G such that x = [g−1
1 ]H . Then we have

eu(x) =
1
n

∑
d∈G/H

u(d)−1
· g−1

1 · d =
1
n

∑
y∈Y

u(g1y)
−1
· y

using the change of variables d = g1y on Y = G/H . By Lemma 3.8, in the above
expressions for w ◦ u(x) and eu(x), it suffices to identify the coefficients of only those
y ∈ Y such that p divides |Hx ∩ Hy |. But here the stabilizers are Hx = H ∩ xH and
Hy = H ∩ yH . So we can assume that y ∈ Y is such that p divides |H ∩ xH ∩ yH |.
Choose g2 ∈ G such that [g−1

2 ]H = g1y. Note that then [(g2g1)
−1
]H = y. Since p

divides |H∩xH∩yH | = |H∩H g1∩H g2g1 |, property (WH3) of u together with Remark 4.2
gives us

u(y)−1
= u(g2g1) = u(g2)u(g1) = u(g1y)

−1u(x)−1,

hence the wanted u(x)u(y)−1
= u(g1y)

−1. ut

4.6. Proposition. For every weak H -homomorphism u : G→ k×, we have an idempo-
tent eu ◦ eu = eu on the object k(G/H) of kG-stab. Moreover, the corresponding direct
summand Mu of k(G/H) restricts to k on kH -stab, that is, ResGH Mu ' k. Finally, Mu

is an endotrivial kG-module.
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Proof. Since the functor ResGH : kG-stab→ kH -stab is faithful (Remark 3.4), it suffices
to verify (Res(eu))2 = Res(eu) in kH -stab, where it follows directly from our Main
Lemma 4.4 since Res(eu) = w ◦ u and u ◦ w = idk in kH -stab:

k �
�

w
//u◦w=id 88 k(G/H)

u
xxxx

w◦u=eubb

The direct summand of the object ResGH (k(G/H)) = k(G/H) of kH -stab correspond-
ing to the idempotent w ◦ u is simply k. This proves the second claim (see Remark 3.1).
Finally, ResGH being faithful, it detects endotriviality by Remark 3.4 (or Chouinard’s The-
orem [9]). So, Mu is an endotrivial kG-module. ut

4.7. Remark. Here is another approach to the idempotent eu. By (WH2), the value u(g)
is only interesting when g ∈ G is H -secant. Similarly, the only g1, g2 satisfying the
hypothesis of (WH3) must be H -secant, and so must be g2g1 (easy exercise). Continuing
in this vein, we can use Lemma 3.8 and Remark 3.4 to show that the endomorphism eu of
k(G/H) is equal in kG-stab to

[g]H 7→
1

[G : H ]

∑
d∈G/H
H -secant

u(d)−1
· g · d.

This formula makes it apparent that only the values u(d) for H -secant d are relevant.

We now turn to the other side of the game, namely the construction of the homomor-
phism υ : T (G,H)→ A(G,H).

4.8. Remark. For g ∈ G and subgroups K,L ≤ G such that gL ≤ K , recall the twisted
restriction gResKL : kK-stab→ kL-stab as in Remark 2.4. When g1L ≤ K and g2K ≤ H

then g2g1L ≤ H and it is easy to check that we have an equality of functors g2g1ResHL =
g1ResKL ◦

g2ResHK . (Watch the order of the gi!) The latter equality will often be used tacitly
in what follows.

Recall Construction 2.5, which associates a function u : G → k× to every kG-
module M coming with an isomorphism ξ : k ∼−→ ResGH M in kH -stab. For convenience,
we repeat diagram (2.7) whose commutativity defines u(g) for every H -secant g ∈ G
(recall that H(g) stands for H ∩H g):

(4.9)

ResGH(g)M
g ·

'
// gResGH(g)M

k

ResH
H(g)

ξ '

OO

u(g) // k

gResH
H(g)

ξ'

OO

For non-H -secant g ∈ G, we defined u(g) = 1. Note however that (4.9) also trivially
commutes in that case since kH(g)-stab = 0 for non-H -secant g.



Modular representations with trivial restriction to Sylow subgroups 2071

4.10. Lemma. The scalar u(g) as in (4.9) does not depend on the choice of the isomor-
phism ξ . Moreover, u : G→ k× is a weak H -homomorphism.

Proof. For the first part, we can assume that g is H -secant, for otherwise u(g) = 1
anyway. Let ξ ′ : k ∼−→ ResGH M be another isomorphism and u′(g) the associated scalar,
i.e. u′(g) = (gRes(ξ ′))−1

◦ (g ·) ◦Res(ξ ′). Then ξ−1ξ ′ : k ∼−→ k is an automorphism of k
in kH -stab, hence it is given by an invertible scalar v ∈ k×. So, we have ξ ′ = v ·ξ = ξ ·v.
Hence v and v−1 cancel out in u′(g), giving u′(g) = u(g).

Let us now check that u is a weak H -homomorphism as in Definition 2.2. To
check (WH1), it suffices to use that ξ is H -linear and that k has trivial action. Indeed,
for every h ∈ H (necessarily H -secant) we have a commutative square

ResGH(h)M
h ·

'
// HResGH(h)M

k

ResH
H(h)

ξ '

OO

h ·

=id
// k

hResH
H(h)

ξ'

OO

This proves u(h) = 1. Property (WH2) holds by construction. Let us verify (WH3).
Suppose that g1 and g2 are such that the subgroup L := H ∩ H g1 ∩ H g2g1 has order
divisible by p. This means that kL-stab is not the zero category and endomorphisms of
k in that category identify with k (under multiplication, as usual). Consider the following
commutative diagram in kL-stab:

ResGL M
g1 ·

'
//

(g2g1) ·

'

��
g1ResGL M

g2 ·

'
// g2g1ResGL M

k

ResHL ξ '

OO

u(g1)

' //

u(g2g1)

'

OOk

g1 ResHL ξ '

OO

u(g2)

' // k

g2g1 ResHL ξ'

OO

The left-hand central square commutes by (4.9) for g1, restricted to L. The right-hand one
commutes by (4.9) for g2 after applying g1ResH(g2)

L to it, using that g1L ≤ H ∩ H g2 =

H(g2) and the relation g2g1ResHL =
g1ResH(g2)

L ◦
g2ResHH(g2)

already seen in Remark 4.8.
The outside square commutes by (4.9) again but now for g2g1. Hence the lower “triangle”
gives us u(g2g1) = u(g2)u(g1) as wanted. ut

4.11. Remark. In the above proof, it is essential that L = H ∩ H g1 ∩ H g2g1 has order
divisible by p to deduce from the relation u(g2g1) = u(g2)u(g1) in EndkL-stab(k) that the
same relation holds in k. When L has order prime to p, this stable endomorphism ring is
trivial and k→ EndkL-stab(k) is not injective. This is why the “homomorphism property
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of u”, u(g2g1) = u(g2)u(g1), does not hold for general g1 and g2 and why we are left
with weak homomorphisms as in Definition 2.2 (WH3).

4.12. Proposition. The assignment M 7→ u as in Construction 2.5 yields a well-defined
group homomorphism υ : T (G,H)→ A(G,H).

Proof. Suppose that M ′ is isomorphic to M in kG-stab and let u = υ(M) and u′ =
υ(M ′). For g non-H -secant, we have u(g) = 1 = u′(g) by definition. So, let g ∈ G
be H -secant. There exists a kG-linear morphism f : M → M ′ such that f is an iso-
morphism in kG-stab, hence also in kH -stab after restriction. We can then create the
following commutative cube in kH(g)-stab:

ResGH(g)M
g ·

'
//

Res(f )=f
'

''

gResGH(g)M
gRes(f )=f
'

((
ResGH(g)M

′
g ·

'
// gResGH(g)M

′

k

ResH
H(g)

ξ '

OO

u(g) // k

gResH
H(g)

ξ'

OO

k

ResH
H(g)

ξ ′'

OO

u′(g)

// k

gResH
H(g)

ξ ′'

OO

whose back and front squares are (4.9) for M and M ′ respectively. To compute u′(g), we
choose ξ ′ : k ∼−→ ResGH M

′ in kH -stab to be Res(f )◦ξ , which is allowed by Lemma 4.10.
This makes the side squares commute. The top square commutes by kG-linearity of f .
Hence the bottom square commutes, which shows that u is independent of the choice
of M in its isomorphism class in kG-stab.

Finally, for i = 1, 2, let Mi be a kG-module, let ξi : k
∼
−→ ResGH Mi be an iso-

morphism in kH -stab and let ui := υ(Mi). To compute υ(M1 ⊗ M2), we can use the
isomorphism ξ1 ⊗ ξ2 : k

∼
−→ ResGH (M1 ⊗M2) in kH -stab. Again, we can assume that

g ∈ G is H -secant. Tensoring the two commutative squares (4.9) defining u1(g) and
u2(g), we get the following commutative diagram in kH(g)-stab:

ResGH(g)M1 ⊗M2
(g ·)⊗(g ·)

'
// gResGH(g)M1 ⊗M2

k

ResH
H(g)

(ξ1⊗ξ2) '

OO

u1(g)·u2(g) // k

gResH
H(g)

(ξ1⊗ξ2)'

OO

Now observe that the multiplication g · on the kG-module M1 ⊗ M2 → M1 ⊗ M2 is
precisely given by m1 ⊗ m2 7→ (gm1)⊗ (gm2). So, it coincides with the top morphism
in the above square. Hence u1(g) ·u2(g)must be equal to υ(M1⊗M2)(g) by (4.9) again,
but this time applied to M1 ⊗M2. ut
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We now need a small result, which palliates the lack of multiplicativity of weak H -
homomorphisms.

4.13. Lemma. Let u : G → k× be a weak H -homomorphism. Let g ∈ G be H -secant
and let s ∈ G. Let us abbreviate H(g, s) := H ∩H g

∩
sH . Then, in k,

[H(g) : H(g, s)] · u(gs) = [H(g) : H(g, s)] · u(g) · u(s).

Proof. The result is trivial if p divides the number [H(g) : H(g, s)] which appears on
both sides. So, we can assume that p does not divide that index. But since g is H -secant,
p divides |H(g)|. These two facts force p to divide |H(g, s)| = |H ∩ H g

∩ H s−1
| =

|H s
∩H gs

∩H |. Hence, by (WH3), for g2 = g and g1 = s, we have u(gs) = u(g) · u(s)
and the result also holds in that case. ut

4.14. Proposition. Let u : G→ k× be a weakH -homomorphism andMu the associated
endotrivial kG-module, as in Proposition 4.6. Then υ(Mu) = u.

Proof. By construction of Mu, there exist a kG-module Nu and a kG-linear homomor-
phism f : Mu ⊕ Nu → k(G/H) which is an isomorphism in kG-stab and such that the
idempotent eu on k(G/H) becomes

(
1 0
0 0

)
onMu⊕Nu, again in kG-stab. After restriction

to H , we also know that the idempotent eu corresponds to the direct summand k embed-
ding in Res(k(G/H)) via w : k → k(G/H), as in (4.5). Since such a decomposition is
unique (Remark 3.1), we can choose an isomorphism ξ : k ∼−→ ResGH Mu in kH -stab such
that the following diagram commutes:

k
ξ

'
//

w

��

ResGH Mu

�� (
1
0

)
��

ResGH (k(G/H)) ResGH Mu ⊕ ResGH Nu
Res f
'
oo

in kH -stab. For every H -secant g ∈ G, consider the following commutative diagram
in kH(g)-stab:

ResGH(g) k(G/H)
g ·

'
// gResGH(g) k(G/H)

ResGH(g)(Mu ⊕Nu)
g ·

'
//

Res f '

OO

gResGH(g)(Mu ⊕Nu)

gRes f '

OO

ResGH(g)Mu

g ·

'
//

(
1
0

) OO
gResGH(g)Mu

(
1
0

) OO

k

ResH
H(g)

ξ

OO

ResH
H(g)

w

;;

(υ(Mu))(g) // k

gResH
H(g)

ξ

OO

gResH
H(g)

w

cc
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where the unit (υ(Mu))(g) at the bottom is the one of Construction 2.5 associated to Mu,
which makes the lower square commute. The middle and upper squares commute by
kG-linearity of the decomposition k(G/H) ' Mu ⊕ Nu. Finally, the two lateral pieces
commute by the above discussion. By Lemma 4.4, the morphism w on the very right is
retracted by u : k(G/H)→ k. So, in order to check that υ(Mu)(g) is indeed our u(g), it
suffices to establish the following equality in k:

gResHH(g)(u) ◦ (g ·) ◦ ResHH(g)(w)(1) = u(g).

Unfolding the definition of w from (4.5), the above left-hand side becomes

u(g · w(1)) =
1
n

∑
d∈G/H

u(d)−1u(gd).

Let us use a Mackey formula. Let S ⊂ G be a set of representatives of H(g)\G/H and
recall the Mackey bijection (3.6) of left H(g)-sets

(4.15)
∐
s∈S

H(g)/H(g, s)
∼
−→ G/H

given by [x]H(g,s) 7→ [xs]H where H(g, s) := H(g) ∩ sH = H ∩ H g
∩
sH . Using this

change of variables d = [xs]H in the above sum, we get

u
(
g · w(1)) =

1
n

∑
s∈S

∑
[x]∈H(g)/H(g,s)

u(s)−1
· u(gxs) since x ∈ H

=
1
n

∑
s∈S

u(s)−1
·

∑
[x]∈H(g)/H(g,s)

u(gs) for gxs = gxgs and gx ∈ H

=
1
n

∑
s∈S

u(s)−1
· [H(g) : H(g, s)] · u(gs)

=
1
n

∑
s∈S

[H(g) : H(g, s)] · u(g) by Lemma 4.13

=
1
n
· |G/H | · u(g) = u(g).

The penultimate equality uses again the same Mackey bijection (4.15). ut

4.16. Proposition. LetM be an endotrivial kG-module in T (G,H). Suppose that υ(M)
= 1 in A(G,H). Then M ' k in kG-stab.

Proof. Let ξ : k → ResGH M be a kH -linear homomorphism which is an isomorphism
in kH -stab. The assumption about υ(M) = 1 implies that for every H -secant element
g ∈ G, the following diagram commutes in kH(g)-stab:

(4.17)

ResGH(g)M
g ·

'
// gResGH(g)M

k
ResH

H(g)
ξ

'

bb

gResH
H(g)

ξ

'

;;
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On the other hand, if g is not H -secant, the same diagram trivially commutes in
kH(g)-stab = 0. Therefore, diagram (4.17) commutes in kH(g)-stab for all g ∈ G.
Let us now define a kG-linear homomorphism ξ̂ : k→ M by the composition

k
ηk

//

ξ̂ :=πM◦IndGH (ξ)◦ηk

��
IndGH k

IndGH (ξ)

' // IndGH ResGH M πM
// M

where η : Id → Ind Res is the unit of the adjunction and π : Ind Res → Id is the
retraction of η described in Remark 3.4. We claim that ξ̂ is an isomorphism in kG-stab. By
Remark 3.4, it suffices to see that its restriction ResGH (ξ̂ ) is an isomorphism in kH -stab.
We claim more precisely that ResGH (ξ̂ ) = ξ in kH -stab. This is not a mere property of the
adjunction but will require (4.17) above. Applying ResGH to the last diagram, we get the
upper part of the following commutative diagram in kH -stab:

k
Res ηk

//

Res(ξ̂ )

��

η′

''

ResGH IndGH k
Res Ind(ξ)
' // ResGH IndGH ResGH M Res(πM )

// ResM

⊕
t∈T

IndH
H∩tH

k

'mack

OO

⊕t Ind t
−1

Res(ξ)
'

// ⊕
t∈T

IndH
H∩tH

t−1
ResG

H∩tH
M

'mack

OO

in which the lower part is constructed as follows. The vertical isomorphisms mack :⊕
t∈T IndH

H∩tH
t−1

ResH
H∩tH

→ ResGH IndGH are Mackey isomorphisms (3.7), for any
choice of a set T ⊂ G of representatives of H\G/H . Explicitly, the component
mack : kH ⊗k(H∩tH) N → kG ⊗kH N is given by mack(x ⊗ y) = (xt) ⊗ y. They
are applied to the kH -modules N = k and N = ResGH M respectively. Finally, η′ : k→⊕

t∈T IndH
H∩tH

k =
⊕

t∈T kH ⊗k(H∩tH) k is defined by 1 7→
∑
t∈T

∑
x∈H/(H∩tH) x⊗ 1,

that is, η′ = mack−1
◦Res(ηk). Hence the left-hand triangle commutes.

In each term of the bottom morphism, we can use (4.17) and replace every t−1
Res(ξ)

by (t−1
·) ◦ Res(ξ), since that relation holds in k(H ∩ tH)-stab and can then be induced

to H . Therefore, in kH -stab, the morphism Res(ξ̂ ) is equal to

Res(πM) ◦mack ◦
(
⊕t Ind((t−1

·) ◦ Res(ξ))
)
◦ η′.

We claim that the latter composition is simply ξ in kH -mod already. We compute the
image of 1 ∈ k under this morphism and get in M the equalities
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Res(πM) ◦mack ◦
(
⊕t Ind((t−1

·) ◦ Res(ξ))
)
◦ η′(1)

=
1
n

∑
t∈T

∑
[x]∈H/(H∩tH)

xt · t−1
· ξ(1) unfolding the definitions

=
1
n

∑
t∈T

∑
[x]∈H/(H∩tH)

ξ(x · 1) by H -linearity of ξ

=
1
n

∑
t∈T

∑
[x]∈H/(H∩tH)

ξ(1) for the module k is trivial

=
1
n

(∑
t∈T

|H/(H ∩ tH)|
)
· ξ(1) =

|G/H |

n
ξ(1) = ξ(1).

The penultimate equality uses again the same Mackey bijection (3.6). ut

Everything is now in place to wrap it up:

Proof of Theorems 2.8 and 2.9. We have the well-defined maps α : A(G,H)→ T (G, P )

of Proposition 4.6 and υ : T (G, P )→ A(G,H) of Proposition 4.12, where we also saw
that υ is a group homomorphism. Proposition 4.14 tells us that υ ◦α is the identity, hence
υ is surjective. Proposition 4.16 shows that υ is injective. ut

4.18. Remark. It follows that α is a group homomorphism, which was not obvious from
its definition.

We also have naturality with respect to restriction to subgroups:

4.19. Proposition. Let H ≤ G′ ≤ G be an intermediate subgroup. Then every weak
H -homomorphism from G to k× restricts to a weak H -homomorphism from G′ to k×.
The induced homomorphism A(G,H) → A(G′, H) is compatible with the restriction
ResG

G′
: T (G,H)→ T (G′, H), via the isomorphisms υ and α.

Proof. The properties that p divides |H ∩ H g
| or |H ∩ H g1 ∩ H g2g1 | are unchanged if

we consider elements g, g1, g2 ∈ G
′ as elements of G. Consequently, the restriction of

u : G → k× to G′ will satisfy conditions (WH1–3) for G′. So, ResG
G′
: A(G,H) →

A(G′, H) is well-defined. It is easy to check that the following diagram commutes

T (G,H)
υ //

ResG
G′

��

A(G,H)

ResG
G′

��
T (G′, H)

υ // A(G′, H)

since we can use the same isomorphism ξ : k ∼−→ ResGH M = ResG
′

H M ′ in kH -stab, for
M and for M ′ := ResG

G′
M . It follows that α = υ−1 is also compatible with restriction,

although this was maybe less obvious a priori. ut

Let us finish with the two extreme cases of Example 2.3.
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4.20. Example. Suppose that H C G is a normal subgroup. Then every element g ∈ G
is H -secant and we observed in Example 2.3(1) that A(G,H) ∼= Hom(G/H,k×). Given
ρ ∈ Hom(G/H,k×), let us write kρ for the one-dimensional representation g · x =
ρ([g])x of G. It clearly belongs to T (G,H). The associated weak H -homomorphism
u = υ(kρ) of Construction 2.5 is characterized by diagram (2.7) for M = k and ξ = id,
from which it follows that u(g) = ρ(g). In other words, υ(kρ) = ρ, as one would of
course expect. It also follows that α(ρ) = kρ , i.e. Mρ is isomorphic to kρ in the stable
category kG-stab. This last fact is less evident but can also be checked directly from the
definition of Mρ with the idempotent eρ .

4.21. Example. Suppose that H ≤ G is strongly p-embedded, as in Example 2.3(2),
where we saw that A(G,H) = 1. Then T (G,H) = 1. This is a well-known fact,
which trivially follows from the underlying property that the restriction functor ResGH :
kG-stab

∼
−→ kH -stab is an equivalence of tensor categories in that case.

5. Some corollaries

The following corollary is known in case Op(G) 6= 1, by [13, Lemma 2.6].

5.1. Corollary. Let H ≤ G be a subgroup of index prime to p. Suppose that H con-
tains some subgroup K C G, normal in G and of order divisible by p. Then the kernel
Ker(T (G) → T (H)) consists only of one-dimensional representations, i.e. it is isomor-
phic to {ρ ∈ Homgps(G,k×) | ρ(H) = 1}.
Proof. For all g1, g2 ∈ G, the subgroup H ∩ H g1 ∩ H g2g1 contains K , hence (WH3)
holds. So every weak H -homomorphism u : G→ k× is a group homomorphism. ut

5.2. Remark. It is well-known that the abelian group T (G,H) is finite. Indeed, every
M ∈ T (G,H) appears as a direct summand of k(G/H) (see Theorem 2.9) and finiteness
follows by the Krull–Schmidt Theorem. This gives an upper bound |T (G,H)| ≤ [G : H ].
So, T (G,H) is a torsion abelian group and we can discuss the order of its elements.
The following observation can be deduced from combining [13, Lemma 2.6] and [4,
Prop. 2.6]. Our proof is direct.

5.3. Corollary. LetH ≤ G be a subgroup of index prime to p. Then there is no p-torsion
in Ker(T (G) → T (H)). That is, if M is a kG-module such that M⊗p ' k in kG-stab
and ResGH M ' k in kH -stab then M ' k in kG-stab already.

Proof. Let u : G→ k× be a weak H -homomorphism such that up = 1. Since the field
k has characteristic p, the relation u(g)p = 1 forces u(g) = 1 for all g ∈ G. ut

5.4. Remark. Actually, the orders of elements of T (G,H) are related to the coefficient
field k. So, let us write Tk(G,H) and Ak(G,H) when we want to emphasize the choice
of k. As in Proposition 4.19, we can show that υ : Tk(G,H) → Ak(G,H) and α :
Ak(G,H)→ Tk(G,H) are natural in k.

Interestingly, for a p-group P , the group Tk(P ) almost never depends on the field k,
except sometimes in characteristic 2, with quaternion groups. See [16, §2]. As we shall
now see, the kernel Tk(G, P ) does depend on k, although in a nice way.
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5.5. Corollary. Let H ≤ G be a subgroup of index prime to p.

(a) For every field extension k′/k, the homomorphism Tk(G,H)→ Tk′(G,H) is injec-
tive. Moreover, an element M ∈ Tk′(G,H) of order d belongs to the image of this
homomorphism (i.e. is defined over k) if and only if k admits a primitive d th root of
unity.

(b) Let k′/k be a field extension and suppose that for every d ≤ [G : H ], every d th root
of unity in k′ already belongs to k, e.g. if k and k′ are both algebraically closed.
Then Tk(G,H) = Tk′(G,H).

(c) Let q be a power of p and let k be a field containing the finite field Fq . An element
M ∈ Tk(G,H) of order d is defined over Fq if and only if d divides q − 1.

Proof. All these properties are easy to verify for Ak(G,H), hence can be transported to
Tk(G,H). Indeed, a weak H -homomorphism u ∈ Ak(G,H) has order d if and only if
every u(g) is a d th root of unity and some u(g) is a primitive one. Details are left to the
reader. ut

5.6. Example. Let H ≤ G be a subgroup of odd index and F2 the field with two ele-
ments. Then restriction TF2(G)→ TF2(H) is injective. Indeed (F2)

×
= 1.
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