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Abstract. Given a bounded open set � in Rn (or in a Riemannian manifold) and a partition of �
into k open sets Dj , we consider the quantity maxj λ(Dj ) where λ(Dj ) is the ground state energy
of the Dirichlet realization of the Laplacian in Dj . If we denote by Lk(�) the infimum over all
the k-partitions of maxj λ(Dj ), a minimal k-partition is then a partition which realizes the infimum.
When k = 2, we find the two nodal domains of a second eigenfunction, but the analysis of higher k’s
is non-trivial and quite interesting. In this paper, we give the proof of one conjecture formulated in
[5] and [16] about a magnetic characterization of the minimal partitions when n = 2.

Keywords. Minimal partitions, nodal sets, Aharonov–Bohm Hamiltonians, Courant’s nodal theo-
rem

1. Introduction

1.1. Main definitions

We mainly consider the Dirichlet Laplacian in a bounded domain� ⊂ R2. We would like
to analyze the relations between the nodal domains of the real-valued eigenfunctions of
this Laplacian and the partitions of � into k open sets Di which are minimal in the sense
that the maximum over theDi’s of the ground state energy1 of the Dirichlet realization of
the Laplacian H(Di) in Di is minimal. In the case of a Riemannian compact manifold,
the natural extension is to consider the Laplace–Beltrami operator. We denote by λj (�)
the increasing sequence of its eigenvalues and by uj some associated orthonormal basis
of real-valued eigenfunctions. The ground state u1 can be chosen to be strictly positive
in�, but the other eigenfunctions uk must have zero sets. For any real-valued u ∈ C0

0(�),
we define the zero set of u as

N(u) = {x ∈ �
∣∣ u(x) = 0} (1)

and call the components of � \ N(u) the nodal domains of u. The number of nodal
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domains of u is denoted µ(u). These µ(u) nodal domains define a k-partition of �, with
k = µ(u).

We recall that the Courant nodal theorem says that, for k ≥ 1, if λk denotes the k-th
eigenvalue andE(λk) the eigenspace ofH(�) associated with λk , then, for all real-valued
u ∈ E(λk) \ {0}, µ(u) ≤ k.

In dimension 1 the Sturm–Liouville theory says that we always have equality (for
Dirichlet in a bounded interval) in the previous theorem (this is what we will call later a
Courant-sharp situation). A 1956 theorem due to Pleijel [24] says that this cannot be true
when the dimension is larger than one (here we consider the 2D-case).

We now introduce, for k ∈ N (k ≥ 1), the notion of k-partition. We define a k-partition
of � to be a family D = {Di}ki=1 of mutually disjoint sets in �. We call it open if the
Di are open sets in �, and connected if the Di are connected. We denote by Ok(�) the
set of open connected partitions of �. We now introduce the notion of spectral minimal
partition.

Definition 1.1. For any integer k ≥ 1, and for D in Ok(�), we introduce

3(D) = max
i
λ(Di). (2)

Then we define
Lk(�) = inf

D∈Ok

3(D), (3)

and call D ∈ Ok a minimal k-partition if Lk(�) = 3(D).
If k = 2, it is rather well known (see [19] or [13]) that L2(�) = λ2(�) and that the

associated minimal 2-partition is a nodal partition, i.e. a partition whose elements are the
nodal domains of some eigenfunction corresponding to λ2.

A partition D = {Di}ki=1 of � in Ok is called strong if

Int
(⋃
i

Di

)
\ ∂� = �, (4)

where, for a set A ⊂ R2, Int(A) means the interior of A.
To a strong partition, we associate a closed set in �, which is called the boundary set

of the partition:
N(D) =

⋃
i

(∂Di ∩�). (5)

N(D) plays the role of the nodal set (in the case of a nodal partition).
This suggests the following definition:

Definition 1.2. We call a partition D regular if its associated boundary set N(D) has the
following properties:

(i) Except for finitely many distinct xi ∈ � ∩ N in the neighborhood of which N is
the union of νi = ν(xi) smooth curves (νi ≥ 3) with one end at xi , N is locally
diffeomorphic to a regular curve.

(ii) ∂� ∩ N consists of a (possibly empty) finite set of points zi . Moreover N is near zi
the union of ρi distinct smooth half-curves which hit zi .

(iii) N has the equal angle meeting property.
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The xi are called the critical points and form the set X(N). Similarly we denote by Y (N)
the set of the boundary points zi . By the equal angle meeting property, we mean that the
half-curves meet with the some angle at each critical point of N and also at the boundary
together with the tangent to the boundary.

We say that Di,Dj are neighbors, written Di ∼ Dj , if Dij := Int(Di ∪Dj ) \ ∂� is
connected. We associate with each D a graph G(D) by associating with each Di a vertex
and to each pair Di ∼ Dj an edge. We will say that the graph is bipartite if it can be col-
ored by two colors (two neighbors having two different colors). We recall that the graph
associated with a collection of nodal domains of an eigenfunction is always bipartite.

1.2. Motivation and overview

Before we state some results on spectral minimal partitions, discuss their properties and
finally formulate and prove the central result of the present paper, we give an informal
overview of our results. The main result is a new characterization of minimal partitions
via specific magnetic Hamiltonians; see Section 4 for the necessary definitions and expla-
nations of those operators.

In [21] we have characterized via minimal partitions the case of equality in Courant’s
nodal theorem (see Theorem 2.3 below). Roughly speaking (see Theorem 2.2), if a min-
imal partition could in principle stem from an eigenfunction it must be already produced
by the nodal domains of an eigenfunction, and this can only happen if there is equality
in (7). Pleijel’s result of [24] implies, roughly speaking, that eigenfunctions associated to
higher eigenvalues cannot lead to equality in (7).

In Section 3 we give a few pictures of non-nodal minimal partitions, or more precisely
natural candidates, since it is notoriously hard to work out explicit examples for such
partitions. A first glance shows that there are points where an odd number of nodal arcs
meet.

More than 10 years ago together with Maria Hoffmann-Ostenhof and Mark Owen
we investigated some special magnetic Schrödinger operators, called Aharonov–Bohm
Hamiltonians, i.e. Hamiltonians with zero magnetic field but with singular magnetic vec-
tor potential and with half-integer circulation around holes [17, 18] (see Section 4). This
investigation was motivated by the result of Berger and Rubinstein [3], surprising at that
time, about the zero set of a groundstate for such a problem with one hole. For more than
one hole similar results were obtained on zero sets: each hole was hit by an odd number
of nodal arcs.2

The findings in [17, 18] motivated the conjecture in [5] and [16], reformulated and
proved in the present paper. The result says roughly that spectral minimal partitions are
obtained by minimizing a certain eigenvalue of an Aharonov–Bohm Hamiltonian with
respect to the number and the position of poles if we assume that � is simply connected.
See Theorem 5.1 for the full result.

This new approach to spectral minimal partitions sheds new light on them. While in
the original formulation [21], say for a fixed �, the Lk(�) and the associated minimal

2 Similar results for punctured domains were later obtained in [1].
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partitions as defined in Definition 1.1 require the calculation of3(D) for k-partitions, the
new formulation can be considered as an, admittedly involved, eigenvalue minimization.

2. Basic properties of minimal partitions

The following theorems have been proved by Conti–Terracini–Verzini [11, 12, 13] and
Helffer–T. Hoffmann-Ostenhof–Terracini [21]:

Theorem 2.1. For any k, there exists a minimal regular k-partition. Moreover any mini-
mal k-partition has a regular representative.3

Other proofs of a somewhat weaker version of this statement have been given by Bucur–
Buttazzo–Henrot [8] and Caffarelli–F. H. Lin [10].

A natural question is whether a minimal partition of � is a nodal partition, i.e. the
family of nodal domains of an eigenfunction of H(�). We have first the following con-
verse theorem ([19], [21]):

Theorem 2.2. If the graph of a minimal partition is bipartite, then this partition is nodal.

A natural question is now to determine how general the previous situation is. Surprisingly
this only occurs in the so called Courant-sharp situation. We say that u is Courant-sharp
if

u ∈ E(λk) \ {0} and µ(u) = k.

For any integer k ≥ 1, we denote by Lk(�) the smallest eigenvalue of H(�) whose
eigenspace contains an eigenfunction with k nodal domains. We set Lk(�) = ∞ if there
are no such eigenfunctions. In general, one can show that

λk(�) ≤ Lk(�) ≤ Lk(�). (6)

The last result gives the full picture of the equality cases:

Theorem 2.3. Suppose � ⊂ R2 is regular. If Lk(�) = Lk(�) or Lk(�) = λk(�) then

λk(�) = Lk(�) = Lk(�). (7)

In addition, one can find in E(λk) a Courant-sharp eigenfunction.

This answered a question posed in [9, Section 7].

Remark 2.4. Very recently spectral partitions for discrete problems, namely quantum
graphs, have been investigated in [2].

3. Examples of minimal k-partitions for special domains

Using Theorem 2.3, it is now easier to analyze the situation for the disk or for rectangles
(at least in the irrational case), since we have just to check for which eigenvalues one can
find associated Courant-sharp eigenfunctions.

3 Modulo sets of capacity 0.
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The possible topological types of a minimal partition D rely essentially on Euler’s
formula and the fact that the Di’s have to be nice, in the sense that

Int(Di) ∩� = Di . (8)

Figures 2 and 3 illustrate possible situations.

Proposition 3.1. Let U be an open set in R2 with piecewise-C1 boundary and let N be a
closed set such that U \ N has k components and that N has the properties of Definition
1.2. Let b0 be the number of components of ∂U and b1 be the number of components of
N ∪ ∂U . Denote by ν(xi) and ρ(zi) the numbers of arcs associated with the xi ∈ X(N),
respectively zi ∈ Y (N). Then

k = b1 − b0 +
∑

xi∈X(N)

(
ν(xi)

2
− 1

)
+

1
2

∑
zi∈Y (N)

ρ(zi)+ 1. (9)

This allows us to analyze minimal partitions of a specific topological type. If in addition
the domain has some symmetries and we assume that a minimal partition keeps some of
these symmetries, then we find natural candidates for minimal partitions.

Minimal 3-partitions

In the case of the disk (see [20]), we have no proof that the minimal 3-partition is the
“Mercedes star” or Y -partition, i.e. the partition created by three straight rays meeting at
the center with equal angles. But if we assume that the minimal 3-partition has a unique
singular point at the center then one can show it is indeed the Y -partition. This point of
view is explored numerically by Bonnaillie–Helffer [5] (using some method equivalent to
the Aharonov–Bohm approach and playing with the location of the critical point). There
is also an interesting theoretical analysis by Noris–Terracini [23].

We have no example of minimal 3-partitions with two critical points. For the disk and
the square the minimal 4-partitions are nodal.

Minimal 5-partitions

Using the covering approach, we were able (with V. Bonnaillie) in [5] to produce numeri-
cally the following candidate D1 for a minimal 5-partition assuming a specific topological
type.

Fig. 1. Candidate D1 for the 5-partition of the square.
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It is interesting to compare it with other possible topological types of minimal 5-part-
itions. They can be classified by using Euler’s formula (see formula (9)). Inspired by
numerical computations in [14], one looks for a configuration which has the symmetries
of the square and four critical points. We get two types of models that we can reduce to
a Dirichlet–Neumann problem on a triangle corresponding to the eighth of the square.
Moving the Neumann boundary on one side as in [7] leads to two candidates D2 and D3.
One has lower energy 3(D) and one recovers the pictures in [14].

3(D1) = 111.910 3(D2) = 104.294 3(D3) = 131.666

Fig. 2. Three candidates for the 5-partition of the square.

Note that in the case of the disk a similar analysis leads to a different answer. The
partition of the disk by five half-rays with equal angles has lower energy than the minimal
5-partition with four singular points.

104.367 110.832

Fig. 3. Two candidates for the 5-partition of the disk.

4. The Aharonov–Bohm approach

Let us recall some definitions and results about the Aharonov–Bohm Hamiltonian (for
short ABX-Hamiltonian) defined in an open set� which can be simply connected or not.
These results were initially motivated by the work of Berger–Rubinstein [3], and further
developed in [1, 17, 18, 6, 5].

Simply connected case: one pole

We first consider the case when one pole, denoted by X = (x0, y0), is chosen in � and
introduce the magnetic potential

AX(x, y) = (AX1 (x, y), A
X
2 (x, y)) =

8

2π

(
−
y − y0

r2 ,
x − x0

r2

)
. (10)
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We know that in this case the magnetic field vanishes identically in

�̇X = � \ {X}. (11)

The ABX-Hamiltonian is defined by considering the Friedrichs extension starting from
C∞0 (�̇X), and the associated differential operator is

−1AX := (Dx − A
X
1 )

2
+ (Dy − A

X
2 )

2 with Dx = −i∂x and Dy = −i∂y . (12)

We will consider in what follows the very special case when the flux 8 created at X =
(x0, y0), which can be computed by considering the circulation of AX along a simple
closed path turning once anti-clockwise around X, satisfies

8

2π
=

1
2
. (13)

Under assumption (13), let KX be the anti-linear operator

KX = e
iθX0,

with (x − x0)+ i(y − y0) =
√
|x − x0|2 + |y − y0|2 e

iθX , where 0 is the complex con-
jugation operator 0u = ū and

∇θX = 2AX, (14)

which can also be rewritten in the form

−AX = AX −∇θX.

The flux condition (13) shows that one can find a solution θX of (14) (a priori multi-
valued) such that eiθX is single-valued and C∞. Hence −1AX and −1−AX are inter-
twined by the gauge transformation associated with eiθX . Then we have

KX1AX = 1AXKX. (15)

We say that a function u is KX-real if it satisfies KXu = u. Then the operator −1AX
preserves the KX-real functions. In the same way one proves that the usual Dirichlet
Laplacian admits an orthonormal basis of real-valued eigenfunctions or one restricts this
Laplacian to the vector space over R of real-valued L2 functions, one can construct for
−1AX a basis of KX-real eigenfunctions or, alternatively, consider the restriction of the
ABX-Hamiltonian to the vector space over R

L2
KX
(�̇X) = {u ∈ L

2(�̇X) : KX u = u}.

Non-simply connected case

In this situation, magnetic potentials in � with zero magnetic field can be different from
gradients if some fluxes around some holes are not in 2πZ. In this situation we will be
interested in potentials where the flux created by some hole is π . This will be realized in
this article by introducing a pole in the hole. Except that �̇X = � (there is no singularity
in �) all what has been defined before goes through and this is actually the initial case
treated in the pioneering work [3].
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Poles and holes

We can extend our construction of an Aharonov–Bohm Hamiltonian in the case of a
configuration with ` distinct points X1, . . . , X` (putting flux π at each of these points).
These points can be chosen in � or in the holes. They are distinct and each hole contains
at most one Xk . We can just take as magnetic potential

AX
=

∑̀
j=1

AXj ,

where X = (X1, . . . , X`). Our Hamiltonian will be defined in �̇X = � \ X. We can
also construct (see [17, 18]) the anti-linear operator KX, where θX is replaced by a mul-
tivalued function φX such that ∇φX = 2AX and eiφX is single-valued and C∞. We can
then consider the real subspace of KX-real functions in L2

KX
(�̇X) and our operator as an

unbounded selfadjoint operator on L2
KX
(�̇X).

It was shown in [17, 18] for the case with holes and in [1] for the case with poles that
the nodal set of such a KX-real eigenfunction has the same structure as the nodal set of a
real-valued eigenfunction of the Laplacian except that an odd number of half-lines meet
at each pole and at the boundary of each hole containing someXk . In the case of one hole,
this fact was first observed by Berger–Rubinstein [3] for the first eigenfunction (assuming
that the first eigenvalue is simple). We denote by Lk(�̇X) the lowest eigenvalue, if it
exists, such that there exists a KX-real eigenfunction with k nodal domains and we set
Lk(�̇X) = +∞ if there is no such eigenvalue.

5. The magnetic characterization of a minimal partition

We now prove the following conjecture presented (in the simply-connected case) in [5]
and [16].

Theorem 5.1. Suppose � is a bounded, not necessarily simply connected, domain with
m disjoint closed holes Bi (i = 1, . . . , m) with non-empty interiors. Again assume that
∂� is piecewise C1. Then

Lk(�) = inf
`∈N

inf
X1,...,X`

Lk(�̇X) (16)

where in the infimum each Xj = (xj , yj ) is either in Int(Bi) or in �. In each Bi there is
either one or no Xi . The Xi ∈ � are distinct points.

Let us first give the proof in the simply connected case.

Step 1: inf`∈N infX1,...,X` Lk(�̇X) ≤ Lk(�). Considering a minimal k-partition D =
(D1, . . . , Dk), we know that it has a regular representative and we denote by Xodd(D) :=
(X1, . . . , X`) the critical points of the boundary set of the partition for which an odd
number of half-curves meet.
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To prove Step 1, we have indeed just to prove that, for this family of points X =
Xodd(D), Lk(�) is an eigenvalue of the Aharonov–Bohm Hamiltonian associated with
�̇X and to explicitly construct the corresponding eigenfunction with k nodal domains
described by the Di’s.

For this, we recall that we have proven in [21] the existence of a family (ui)ki=1 such
that ui is a ground state of H(Di) and ui −uj is a second eigenfunction ofH(Dij ) when
Di ∼ Dj . The claim is that one can find a sequence εi(x) of S1-valued functions, where
εi is a suitable4 square root of eiφX in Di , such that

∑
i εi(x)ui(x) is an eigenfunction of

the ABX-Hamiltonian associated with the eigenvalue Lk .
More explicitly, let us describe how we can construct εi(x). We start from some i0

and define εi0(x) = e(i/2)φX . According to the footnote, εi0(x) is a well defined C∞

function. Let Di a nearest neighbor of Di0 . Then we define εi(x) = −e(i/2)φX . Then we
can extend the definition by considering the neighbors of the neighbors. We have to check
that the construction is consistent. The problem can be reduced to the following question.
Consider a closed simple path γ in �̇X transversal to N (D) (and avoiding the critical
points). Take some origin x0 on γ ∩ Di1 . We start from ε(x) = e(i/2)φX(x) in Di1 and,
choosing the positive orientation, multiply by −1 each time we cross an arc of N (D). It
is then a consequence of Euler’s formula that the number of crossings along γ is odd if
and only if there are an odd number of points of X inside γ (apply Euler’s formula (9)
with U being the open set bounded by γ ). It is then clear that ε(x) is well defined along
γ .
Step 2: inf`∈N infX1,...,X` Lk(�̇X) ≥ Lk(�). Conversely, given ` distinct pointsXi in�,
any family of nodal domains of aKX-real eigenfunction of the Aharonov–Bohm operator
on �̇X corresponding to Lk gives a k-partition. Using the results of [17] and [1], we
immediately see that the Xi’s correspond to the “odd” singular points of the partitions.
In each of these nodal domains Di , Lk is an eigenvalue of the Dirichlet realization of the
Schrödinger operator with magnetic potential AX, which is by the diamagnetic inequality
higher than the ground state energy of the Dirichlet Laplacian in Di without magnetic
field. Hence the energy 3k(D) of this partition is indeed less than Lk(�̇X).
Step 3: Proof in the non-simply connected case. The main change is in Step 1. In the
non-simply connected case, the set X consists of the singular points of the boundary set
inside � where an odd number of half-lines arrive together with those points in the holes
whose boundary is hit by an odd number of half-curves.
Examples. Let us present a few examples illustrating the theorem in the case of a simply
connected domain. When k = 2, there is no need to consider punctured�’s. The infimum
is obtained for ` = 0. When k = 3, it is possible to show (see Remark 5.3 below) that it is
enough to minimize over ` = 0, ` = 1 and ` = 2. In the case of the disk and the square,
it is proven that the infimum cannot occur for ` = 0 and we conjecture that the infimum
is for ` = 1 and is attained for the punctured domain at the center. For k = 5, it seems
that the infimum is for ` = 4 in the case of the square (see Figure 2) and for ` = 1 in the
case of the disk (see Figure 3).

4 Note that by construction theDi ’s never contain any point of X. Hence the ground state energy
of the Hamiltonian H(Di) is the same as the ground state energy of HAX(Di).
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Remark 5.2. If D is a regular representative of a minimal k-partition and if �̇X is con-
structed as in Step 1 of the above proof, then Lk(�) = λk(�̇X) (Courant -sharp situation).
Coming back indeed to this step, one can follow the proof of Theorem 1.13 (Section 6) in
[21].

Remark 5.3. Euler’s formula (9) implies that for a minimal k-partition D of a simply
connected domain � the cardinality of Xodd(D) satisfies

#Xodd(D) ≤ 2k − 3. (17)

Note that if b1 = b0, we necessarily have a singular point on the boundary. The argument
depends only on Euler’s formula. If we implement the additional property that the open
sets Di of a minimal partition are nice (see (8)), we can exclude the case when there is
only one point on the boundary. We emphasize that this was not a priori excluded from
the results of [17, 1]. Hence, we obtain

b1 − b0 +
1
2

∑
ρ(yi) ≥ 1,

which implies the inequality

#Xodd(D) ≤ 2k − 4. (18)

This estimate seems optimal for a general geometry although all the known candidates
for minimal partitions for k = 3 and 5 have fewer odd critical points.

Remark 5.4. The argument around (8) shows that a nodal set of aKX-real eigenfunction
that corresponds to a minimal partition cannot have a critical point that is met only by one
nodal arc. Actually that can happen for ground states of Aharonov–Bohm Hamiltonians
(see [17]) which of course do not correspond to minimal partitions.

Remark 5.5. It would be interesting to look at the case of the sphere (already considered
in [22]) and the first problem in this case is to define the suitable magnetic Laplacian.
We refer to [25] for one of the first papers on this question. More specifically, we would
like to construct in our case an Aharonov–Bohm Hamiltonian. Note for example that we
cannot have such an operator with one pole and flux π around this pole. Fortunately there
are no minimal k-partitions whose boundary set consists of one “odd” critical point on
the sphere, as can be seen by Euler’s formula for the sphere (see [22, Remark 4.2]). We
indeed know that the number of “odd” critical points is even. This is actually a standard
result from graph theory that the number of vertices with odd degree is even (see for
example Corollary 1.2 in [4]).

This suggests that instead of putting flux π around each pole, we take alternately π
and −π for the fluxes in order to get a total flux equal to 0. In other words, we should
probably describe Xodd(D) as a union of dipoles.

Acknowledgments. When writing this paper we benefited from a useful discussion with V. Bon-
naillie-Noël and S. Terracini.
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