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Abstract. We describe the kernel of the canonical map from the Floyd boundary of a relatively
hyperbolic group to its Bowditch boundary.

Using the Floyd completion we further prove that the property of relative hyperbolicity is in-
variant under quasi-isometric maps. If a finitely generated groupH admits a quasi-isometric map ϕ
into a relatively hyperbolic group G then H is itself relatively hyperbolic with respect to a system
of subgroups whose image under ϕ is situated within a uniformly bounded distance of the right
cosets of the parabolic subgroups of G.

We then generalize the latter result to the case when ϕ is an α-isometric map for any polynomial
distortion function α.

As an application of our method we provide in the Appendix a new short proof of a basic
theorem of Bowditch characterizing hyperbolicity.
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1. Introduction

We study the actions of discrete groups by homeomorphisms of compact Hausdorff spaces
such that

(a) the induced action on the space of triples of distinct points is properly discontinuous,
and

(b) the induced action on the space of pairs of distinct points is cocompact.

Let T be a compact Hausdorff topological space (a compactum). Denote by 2nT
the space of subsets of T of cardinality n endowed with the topology induced from the
product space.

V. Gerasimov: Department of Mathematics, Federal University of Minas Gerais,
Av. Antônio Carlos, 6627, Caixa Postal 702, CEP 30161-970 Belo Horizonte, Brazil;
e-mail: victor@mat.ufmg.br, victor.gerasimov@gmail.com
L. Potyagailo: UFR de Mathématiques, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex,
France; e-mail: Leonid.Potyagailo@univ-lille1.fr

Mathematics Subject Classification (2010): Primary 20F65, 20F67; Secondary 30F40, 57M07,
22D05



2116 Victor Gerasimov, Leonid Potyagailo

Recall that an action of a discrete group G by homeomorphisms on T is said to have
the convergence property if it satisfies the condition (a) [Bo2], [Tu2]. We also say in this
case that the action of G on T is 3-discontinuous.

An action of G on T is called cocompact on pairs or 2-cocompact if 22T/G is
compact.

It is shown in [Ge1] that an action with the properties (a), (b) is geometrically finite,
that is, every limit point is either conical or bounded parabolic. On the other hand it
follows from [Tu3, Theorem 1.C] that every minimal geometrically finite action on a
metrizable compactum has the property (b).

An action of G on T is said to be parabolic if it has a unique fixed point. The ex-
istence of a nonparabolic geometrically finite action of a finitely generated group G on
some compactum T is equivalent to the relative hyperbolicity of G with respect to some
collection of proper subgroups [Bo1], [Ya].

W. Floyd [F] introduced the notion of a boundary of a finitely generated group as fol-
lows. The word metric of G is rescaled by a “conformal factor” f : N→ R≥0 satisfying
the conditions (3)–(4) below (we further call f a Floyd function). The Cauchy comple-
tion of the resulting metric space is called the Floyd completion and is denoted by Gf .
The Floyd boundary is the subspace ∂fG = Gf \ G. The action of G on itself by left
multiplication extends to a convergence action on Gf [Ka].

It is shown in [F] that for any geometrically finite discrete subgroup G < IsomH3

of the isometry group of the hyperbolic space H3, and for the scaling function f (n) =
1/(n2

+1) (n ∈ N), there exists a continuousG-equivariant map F from ∂fG to the limit
set T = 3(G). The preimage F−1(p) of a point p is not a single point if and only if
p is a parabolic point of rank 1, in which case it is a pair of points [F]. P. Tukia [Tu1]
generalized Floyd’s Theorem to geometrically finite discrete subgroups of IsomHn.

If an action of a finitely generated group G on a compactum T has the properties (a)
and (b) then by [Ge2] there exists a continuous equivariant map F0 : ∂f0G → T for the
exponential function f0(n) = λ

n
0 for some λ0 ∈ ]0, 1[. An easy argument then shows (see

Corollary 2.8 below) that for any scaling function f ≥ f0 satisfying 1 ≤ f (n)/f (n+ 1)
≤ const (n ∈ N) there also exists a continuous G-equivariant map F : ∂fG → T . The
function f is called an (admissible) Floyd function and the map F is the corresponding
Floyd map.

Let StabG p be the stabilizer of a point p ∈ T under the action ofG. If p is parabolic,
the subgroup StabG p is called the (maximal) parabolic subgroup corresponding to p.

For a subset H of G we denote by ∂H its topological boundary in the space Gf .
Since the action of G on Gf has the convergence property, the topological boundary
∂(StabG p) of StabG p coincides with its limit set.

Our first result describes the preimage of a point under the map F .

Theorem A. LetG be a finitely generated group acting on a compactum T 3-discontinu-
ously and 2-cocompactly. Then for any admissible Floyd function f and for any parabolic
point p ∈ T , the corresponding Floyd map F satisfies

F−1(p) = ∂(StabG p). (1)

Furthermore, if there exist a 6= b such that F(a) = F(b) = p, then p is parabolic. ut
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One of the consequences of Theorem A is that the limit set of a maximal parabolic sub-
group for its action on Gf is a quotient of its Floyd boundary (see Corollary 3.10).

We note that subgroup inclusion does not necessarily imply embedding for the cor-
responding Floyd boundaries. A trivial example of this type is the inclusion Z ↪→ Z2

whose extension to the boundaries sends two endpoints of Z to one endpoint of Z2. An-
other example can be obtained by considering a Cannon–Thurston type map of a normal
hyperbolic subgroup into a hyperbolic group when the point preimages coincide with the
boundary of the ending laminations [CaT], [Mi].

Recall that a subgroupH ofG is called (strongly) quasiconvex if every quasigeodesic
in the Cayley graph of G with endpoints in H lies in a uniform neighborhood of H
(depending only on the affine distortion function of the quasigeodesics). Note that the
subgroups considered in the above examples are not strongly quasiconvex. We will show
below that maximal parabolic subgroups are strongly quasiconvex (Corollary 3.9).

It is proven in [GePo1, Corollary 7.7] that under the above hypotheses onG the Floyd
boundary ∂f (StabG p) of StabG p injects into ∂fG and coincides with the topological
boundary ∂(StabG p). This result and Theorem A imply that

F−1(p) = ∂f (StabG p), (1′)

providing a complete description of the Floyd map for relatively hyperbolic groups.
The above discussion leads us to the following:

Questions. Let a finitely generated group G act 3-discontinuously and 2-cocompactly
on a compactum T . Suppose that H is a strongly quasiconvex subgroup of G. Is it true
that the group injection H ↪→ G extends to an injection ∂fH ↪→ ∂fG between the Floyd
boundaries for some Floyd function f ? In particular is it true that the preimage of the
limit set for the action of H on T coincides with the limit set for its action on ∂fG?

Our next goal is to describe quasi-isometric maps into relatively hyperbolic groups.
We have the following:

Theorem B. Let a finitely generated group G act 3-discontinuously and 2-cocompactly
on a compactum T . Let ϕ : H → G be a quasi-isometric map of a finitely generated
group H into G. Then there exist a compactum S, a 3-discontinuous 2-cocompact action
of H on S, and a continuous map ϕ∗ : S → T such that for every H -parabolic point
p ∈ S the point ϕ∗p isG-parabolic, and ϕ(StabH p) is contained in a uniformly bounded
neighborhood of a right coset of StabG(ϕ∗p) in G. ut

Using known facts about relative hyperbolicity (see the end of Section 4), Theorem B can
be reformulated as follows:

Corollary 1.1. Let G be a finitely generated relatively hyperbolic group with respect to
a collection of subgroups Pj (j = 1, . . . , n). Let H be a finitely generated group and let
ϕ : H → G be a quasi-isometric map. Then H is relatively hyperbolic with respect to
a collection Qi such that ϕ maps each Qi into a uniform neighborhood of a left coset of
some Pj (the case Qi = H is allowed). ut
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Note that several particular cases of Corollary 1.1 are already known: if either the quasi-
isometric map ϕ : H → G is a monomorphism [Hr, Corollary 1.6]; or ϕ admits a quasi-
isometric inverse map [Dr, Theorem 1.2]; orG is relatively hyperbolic with respect to sub-
groups which themselves are not relatively hyperbolic with respect to proper subgroups
[BDM, Theorem 4.8]. Theorem B provides complete control of the parabolic subgroups
of the initial groupH under the map ϕ (cf. [BDM, p. 546]). The proof is independent and
does not rely on the above results.

We call a scalar nondecreasing function α : N → R>0 a distortion function if αn =
α(n) ≥ n for all n ∈ N.

Definition 1.2. A map ϕ : X → Y between two graphs X and Y equipped with the
standard graph metrics dX and dY is called α-isometric for a distortion function α if

dY (ϕ(x), ϕ(y)) ≤ α(dx(x, y)) and dX(x, y) ≤ α(dY (ϕ(x), ϕ(y))). (1)

Note the particular cases of α-isometric maps: 1) α(n) = n (isometric); 2) α(n) = cn
(Lipschitz); 3) α(n) = cn+ c (quasi-isometric).

Our next goal is to generalize Theorem B to the case when the distortion function of
the map ϕ is polynomial.

Theorem C. Let a finitely generated group G act 3-discontinuously and 2-cocompactly
on a compactum T . Let ϕ : H → G be an α-isometric map of a finitely generated
groupH intoG for a polynomial distortion function α. Then all statements of Theorem B
are true for the group H and the map ϕ. ut

We finish this introduction with a brief description of the methods used in the paper, and
outline its content.

One of the crucial points in proving the main results is the fact that the Floyd length of
any quasigeodesic in a locally finite connected graph situated far away from the origin is
small (the original statement for geodesics in Cayley graphs is due to A. Karlsson [Ka]).
In Section 3 we introduce in the (absolute) Cayley graph a system of quasigeodesic con-
vex hulls of subsets of T and horospheres. Using the above property of quasigeodesics
with respect to induced Floyd metrics (so called shortcut metrics) on the compactified
space T̃ = T tG, we prove several useful properties of these sets implying Theorem A.
The proof of Theorem B is given in Section 4 and is also based on the results of Section 3.
In Section 5 we generalize the above approach to the case of α-geodesics by proving a
generalization of Karlsson’s Lemma which is true for any α-geodesic once the distortion
function α and the Floyd function f form an appropriate pair (see Section 5). We then
obtain the proof of Theorem C following the lines of that of Theorem B. Note that even
though Theorem B is formally a particular case of Theorem C, we prefer to keep both
statements in the paper. Indeed, the case of quasi-isometric maps is certainly of indepen-
dent interest. Furthermore historically we first proved Theorem B in the earlier version of
our paper [GePo1] and then obtained its generalization.

We would like to stress that the above methods do not require the hyperbolicity of
the graph and in particular apply to the (absolute) Cayley graph of a relatively hyperbolic
group (and not to the relative one). We hope that this provides a new and useful approach
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to studying convergence groups. To confirm this, we provide in the Appendix a short
proof of the fact that the existence of a 3-discontinuous and 3-cocompact action on a
compactum without isolated points implies that the group is word-hyperbolic [Bo3].

Note also that the notion of α-geodesics is of independent interest. It is proved in
[GePo2, Main Theorem] that the property of relative quasiconvexity with respect to
α-geodesics is equivalent to other definitions of relative quasiconvexity when α is a
quadratic polynomial.

2. Preliminaries

2.1. Convergence actions

Let T be a compactum, that is, a compact Hausdorff space. Let SnT denote the orbit space
of the action of the permutation group on n symbols on the product T n = T × (n). . .×T . The
elements of SnT are generalized unordered n-tuples. Let 2nT denote the open subset of
SnT consisting of all unordered n-tuples whose components are distinct. Put 1nT =
SnT \2nT . So 12T is the image of the diagonal of T 2.

Convention. Unless otherwise stated, all group actions on compacta are assumed to have
the convergence property. We will also assume that |T | > 2, and so 23T 6= ∅.

Recall a few common definitions (see e.g. [Bo2], [GM], [Fr], [Tu2]). LetG be a group
acting on a compactum T . The discontinuity domain �(G) is the set of all points of T
where G acts properly discontinuously. The set 3(G) = T \ �(G) is the limit set and
the points of 3(G) are called limit points. The action of G on T is called minimal if
3(G) = T .

It is known that |3(G)| ∈ {0, 1, 2, c} [Tu2]. The action is called elementary if its limit
set is finite.

A point p ∈ T is called parabolic if |3(StabG p)| = 1.
A limit point x ∈ 3(G) is called conical if there exists an infinite sequence of distinct

elements gn ∈ G and distinct points a, b ∈ T such that

∀y ∈ T \ {x} : gn(y)→ a ∈ T ∧ gn(x)→ b.

Denote by Nc T the set of nonconical points of T .
A parabolic point p ∈ 3(G) is called bounded parabolic if the quotient space (3(G)\

{p})/StabG p is compact.
The action of G on T is called geometrically finite if every nonconical limit point is

bounded parabolic.
A subset N of any set on which G acts is called G-finite if N intersects finitely many

G-orbits.

Lemma 2.1 ([Ge1, Main Theorem]). If the action of G on T is 3-discontinuous and
2-cocompact then:

(a) The set Nc T is G-finite.
(b) For every p ∈ Nc T the quotient (T \ {p})/StabG p is compact. ut
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It follows from Lemma 2.1 that for a 2-cocompact action of G on T a nonconical point
p ∈ Nc T is isolated in T if and only if its stabilizer StabG p is finite. Hence, a non-
conical point with infinite stabilizer is bounded parabolic.

2.2. Quasigeodesics and Floyd completions of graphs

Recall that a (c-)quasi-isometric map ϕ : X→ Y between two metric spaces X and Y is
an α-isometric map for the affine distortion function α(n) = cn+ c (c > 1):

1
c
dX(x, y)− c ≤ dY (ϕ(x), ϕ(y)) ≤ cdX(x, y)+ c, (2)

where dX, dY are the metrics of X and Y respectively.

Remarks. 1) A quasi-isometric map can in general be multivalued. This more general
case can be easily reduced to the case of a single-valued map.

2) Sometimes other terms for quasi-isometric maps are used: large-scale Lipschitz
maps [Gr1] or quasi-isometric embeddings [BH] (note that ϕ is not necessarily an injec-
tive map).

A path in a graph 0 is a distance-nonincreasing map γ : I → 0 from a nonempty
convex subset I of Z. The length of the path γ is the diameter of I in Z. A subpath is a
path which is a restriction of γ .

A path γ : I → 0 is called a c-quasigeodesic if it is a c-quasi-isometric map. In the
case when γ is an isometry, it is called a geodesic.

A (c-quasi-)geodesic path γ : I → 0 defined on a half-infinite interval I of Z is
called a (c-quasi-)geodesic ray; a (quasi-)geodesic path defined on the whole Z is called
a (c-quasi-)geodesic line.

Let d( , ) denote the canonical shortest path distance function on 0. We denote by
NDM the D-neighborhood of a set M ⊂ 0 with respect to d.

We now briefly recall the construction of the Floyd completion of a graph 0 due to
W. Floyd [F]. Let 0 be a locally finite connected graph endowed with a basepoint v ∈ 00.
Let f : Z>0 → R>0 be a function satisfying the following conditions:

∃K > 0 ∀n ∈ N : 1 ≤
f (n)

f (n+ 1)
≤ K, (3)∑

n∈N
f (n) <∞. (4)

For convenience we extend the function f to Z≥0 by putting f (0) := f (1). We
further call any function f satisfying (3)–(4) a Floyd (scaling) function.

Define the Floyd length of an edge joining vertices x and y as f (n) where n =
d(v, {x, y}). Then the Floyd length Lf,v (or simply Lv for a fixed Floyd scaling func-
tion f ) of a path is the sum of the Floyd lengths of its edges. The Floyd distance δv (also
denoted by δf or δf,v) is the shortest path distance:

δv(a, b) = inf
α
Lf,v(α), (5)

where the infimum is taken over all paths between a and b.
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It follows from (3) that any two metrics δv1 and δv2 are bilipschitz equivalent with Lip-
schitz constant depending on d(v1, v2). The Cauchy completion 0f of the metric space
(00, δv) is called the Floyd completion. It is compact and does not depend on the choice
of the basepoint v. Denote by ∂f0 the set 0f \ 0 and call it the Floyd boundary. The
distance δv extends naturally to 0f .

The following lemma shows that the Floyd length of a far quasigeodesic is small.

Lemma 2.2 (Karlsson Lemma). For every ε > 0 and every c > 0, there exists a finite
set D ⊂ 0 such that the δv-length of every c-quasigeodesic γ ⊂ 0 that does not meet D
is less than ε. ut

Remark. A. Karlsson [Ka] proved this for geodesics in the Cayley graphs of finitely
generated groups. The proof of [Ka] does not use the group action and is still valid for
quasigeodesics. In Section 5 we provide a proof of Lemma 2.2 in the more general case
of α-geodesics (see Lemma 5.1).

Let S be a set of paths of the form γ : [0, n[ → 0 of unbounded length starting
at the same point a = γ (0). Every path γ ∈ S can be considered as an element of
the product

∏
i∈I Ni(a) where Ni(a) is the ball in 0 centered at a of radius i. Since 0

is a locally finite graph, the space
∏
i∈I Ni(a) is compact in the Tikhonov topology. So

every infinite sequence of paths in S contains a subsequence converging to a path of the
form δ : [0,∞[ → 0 all of whose initial segments are initial segments of paths in S. In
particular if S is a set of c-quasigeodesics (or more generally α-geodesics, see Section 5)
then every infinite subset of S admits a subsequence converging to a c-quasigeodesic
(respectively α-geodesic) of infinite length. Note that the infinite limit path exists in a
more general context when δ(0) belongs to a fixed finite set.

Definition 2.3. For a c-quasigeodesic ray r : [0,∞[ → 0 we say that r converges to a
point in ∂f0 if (r(n))n is a Cauchy sequence for the δf -metric. We then also say that r
joins the points r(0) and x = limn→∞ r(n) ∈ ∂f0.

Proposition 2.4. Let 0 be a locally finite connected graph. Then

(a) For each c > 0 every c-quasigeodesic ray in 0 converges to a point in ∂f0.
(b) For every p ∈ ∂f0 and every a ∈ 0 there exists a geodesic ray joining a and p.
(c) Every pair of distinct points in ∂f0 can be joined by a geodesic line.

Proof. (a) Let r : [0,∞[ → 0 be a c-quasigeodesic ray. Put xn = r(n) and rn =
r([n,∞[). For any vertex v ∈ 00 we have d(v, r(n)) → ∞. It follows from Karlsson’s
Lemma that Lf,v(rn)→ 0.

(b) Let Bf (p,R) denote the ball in the Floyd metric centered at p ∈ ∂f0 of ra-
dius R. For n ≥ 1, choose an ∈ Bf (p, 1/n) and join a to an by a geodesic segment γn.
Let γ be the limit path for the family S = {γn : n > 0}. By (a), γ converges to a
point q ∈ ∂f0. If p 6= q set 3δ = δ1(p, q) > 0 where 1 ∈ 0 is a fixed vertex (we
use this notation keeping in mind the case of Cayley graphs). Let n be an integer for
which Lf,1(γ |[n,∞[) ≤ δ. For m ≥ n we can choose k such that γk|[0,m] = γ |[0,m] and



2122 Victor Gerasimov, Leonid Potyagailo

δ1(ak, p) ≤ δ. So Lf,1(γk|[m,k]) ≥ δ. However the distance d(1, an) is unbounded, and
by Karlsson’s Lemma the quantity Lf,1(γk|[m,k]) should tend to zero. This contradiction
shows that p = q.

(c) Let p, q ∈ ∂f0 and p 6= q. By (b) there exist geodesic rays α, β : [0,∞[ → 0

such that α(0) = β(0) = a and α(∞) = p, β(∞) = q. Let 3δ = δv(p, q). By Karls-
son’s Lemma every geodesic segment joining a point α(n) in Bf (p, δ) to a point β(n) in
Bf (q, δ) intersects a finite set B = B(a,R) ⊂ 0. So there exists an infinite sequence of
geodesic segments γn passing through a point b ∈ B whose endpoints converge to the
pair {p, q}. A limit path for such a sequence is the geodesic line in question. ut

Let 0i (i = 1, 2) be locally finite connected graphs. The following lemma gives a suf-
ficient condition to extend a quasi-isometric map between the Floyd completions of the
graphs.

Lemma 2.5. Let ϕ : 01 → 02 be a c-quasi-isometric map for some c ∈ N. Suppose that
there exists a constant D > 0 such that

f2(n)

f1(cn)
< D (n ∈ N). (6)

Then ϕ extends to a Lipschitz map between the Floyd completions 01,f1 → 02,f2 .
Proof. To simplify the notations put 0i,fi = 0i (i = 1, 2). We denote by E and K the
constants from (3) corresponding to f1 and f2 respectively such that f1(n) ≤ E ·f1(n+1)
and f2(n) ≤ K · f2(n+ 1) (n ∈ N). By omitting the indices we use the notations d and δ
for the graph distances and the Floyd distances with respect to the functions fi and fixed
basepoints denoted by 1 in both graphs 0i (i = 1, 2).

We first prove that ϕ is a Lipschitz map with respect to the Floyd metrics, i.e.

∀x, y ∈ 01 : δ(x, y) ≥ εδ(ϕ(x), ϕ(y)) (7)

for some ε > 0.
It suffices to prove the statement when d(x, y) = 1.
By (2) we have d(ϕ(x), ϕ(y)) < cd(x, y) + c = 2c. Let γ : [0, n] → 02 be a

geodesic realizing the distance d(ϕ(x), ϕ(y)), and let ai = γ (i) (i = 0, . . . , n) be its
vertices where a0 = ϕ(x), an = ϕ(y). We have δ(x, y) = f1(d(1, {x, y})). Assume that
d(1, {x, y}) = d(1, x). Then

d(1, ai) ≥ d(ϕ(1), ϕ(x))− d(ϕ(x), ai)− d(1, ϕ(1)) ≥ d(ϕ(1), ϕ(x))− 2c− d(1, ϕ(1))
= d(ϕ(1), ϕ(x))− n0,

where n0 = 2c + d(1, ϕ(1)).
Choose r0 > c(n0+c) and let B(1, r0) denote the ball centered at 1 of radius r0. Then

for x ∈ 01 \ B(1, r0) we have d(ϕ(1), ϕ(x)) > n0. Using the monotonicity of f2 and (3)
for x, y ∈ 01 \ B(1, r0) we obtain

δ(ϕ(x), ϕ(y)) ≤

n−1∑
i=0

f2(d(1, {ai, ai+1})) ≤ 2cf2(d(ϕ(1), ϕ(x))− n0)

≤ 2cKn0f2(d(ϕ(1), ϕ(x))).
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The last term can be estimated using (2), (3) and (6):

f2(d(ϕ(1), ϕ(x))) ≤ Df1(cd(ϕ(1), ϕ(x))) ≤ Df1(c · d(1, x)/c − c2)

≤ D · Ec
2
· f1(d(1, x)),

where we used that d(1, x)− c2 > 0. Summing up we conclude

δ(ϕ(x), ϕ(y)) ≤ 2cDKn0Ec
2
· f1(d(1, x)).

So (7) is true for the constant ε = (2cDKn0Ec
2
)−1 outside of the ball B(1, r0). By

decreasing ε if necessary, we obtain the inequality (7) everywhere on 01.

The map ϕ : (01, δ)→(02, δ), being Lipschitz, extends to a Lipschitz map 01→02.
ut

Remarks. If, for a function f , the value f (n)/f (2n) is bounded from above (e.g. for
any polynomial function), then one can take the same scaling function f1 = f2 = f for
both graphs 01 and 02 independently of c.

If the scaling function for the graph 02 is f2(n) = α
n (α ∈ ]0, 1[) then to satisfy (6)

we can take f1(n) = β
n as the scaling function for the group H where β = α1/c.

Let G be a finitely generated group and let S be a finite generating set for G. Denote
by d the word metric corresponding to S. Let Gf denote the Floyd completion G t ∂fG
of the Cayley graph of G with respect to S corresponding to a function f satisfying
(3)–(4). Condition (3) implies the equicontinuity for the action of every g ∈ G by left
multiplication onG (with an equicontinuity constant depending on g) [Ka]. So the action
of each element g ∈ G extends by homeomorphism to Gf . Therefore the whole group G
acts on Gf by homeomorphisms. The Floyd metric δg is the g-shift of δ1 (where 1 is the
identity element of G):

δg(x, y) = δ1(g
−1x, g−1y), x, y ∈ Gf , g ∈ G.

On the space Gf we also consider the following shortcut pseudometrics.

Definition 2.6. Let ω be a closed G-invariant equivalence relation on Gf . The shortcut
pseudometric δg is the maximal element in the set of symmetric functions % : Gf×Gf
→ R≥0 that vanish on ω and satisfy the triangle inequality, and the inequality % ≤ δg .

For p, q ∈ Gf the value δg(p, q) is the infimum of the finite sums
∑n
i=1 δg(pi, qi)

such that p = p1, q = qn and 〈qi, pi+1〉 ∈ ω (i = 1, . . . , n−1) [BBI, p. 77]. Obviously,
δg is the g-shift of the pseudometric δ1. The pseudometrics δg1 and δg2 are bilipschitz
equivalent with the same constant as for δg1 and δg2 .

The pseudometric δg induces a pseudometric on the quotient spaceGf /ω.We denote
this induced pseudometric by the same symbol δg .

The following result will be often used further.
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Lemma 2.7 ([Ge2]). Let G be a finitely generated group acting 3-discontinuously and
2-cocompactly on a compactum T such that card(T ) > 2. Then there exists λ0 ∈ ]0, 1[
and a continuous G-equivariant map F0 : ∂f0G→ T where f0(n) = λ

n
0 .

Summary of the proof of Lemma 2.7. For the reader’s convenience we provide a few
explanations about the proof of the existence of the Floyd map. We refer the reader to the
preprint [Ge2] for more details. It consists of two parts. In the first part it is proven that
if a locally compact group G acts 3-properly on a compactum T (i.e. properly on 23T )
and properly and cocompactly on a locally compact Hausdorff space L then there exists a
unique topology on T tL for which the union of these two actions gives rise to a 3-proper
action Gy (T ∪ L) [Ge2, 5.2].

However to prove the lemma it is enough to consider the particular case when a finitely
generated group G acts 3-discontinuously on the Hausdorff space T . In this case one can
directly show that there exists a locally finite, connected G-finite graph G such that the
action of G on the topological space M = T ∪ G is 3-discontinuous [GePo1, Proposition
3.14]. The graph G is a graph of entourages of T (i.e. neighborhoods of the diagonal12T

of T 2). The properties of its local finiteness and G-finiteness are proved in [Ge1].
Since G acts 2-cocompactly on T it is easy to prove that the action G y 22M also

admits a compact fundamental set (see e.g. Lemma 3.2 below). Then by [Ge1, Proposi-
tion E] there exists a generating entourage u on M such that the orbit Gu generates the
set of entourages EntM of M as a filter. Then it follows from [Ge2, 6.2] that the system
{un =

⋂
Snu | n ∈ N} is a Frink system of entourages, where S is a finite symmetric

generating set ofG and Sn is the collection of words ofG of length at most n. By a classi-
cal result from general topology the above Frink system gives rise to a Frink metric 1u,S
on M which is the maximal among all the metrics % on M satisfying %|un ≤ 2−n. Fur-
thermore if 1u,S(x, y) ≤ 2−n then (x, y) ∈ un−1 [Ke, Lemma 6.2] (or [Ge2, Proposition
6.1.1]). In particular the Frink metric generates the topology of M and {un | n ∈ N} is a
countable base for the uniformity of this topology. Let v ∈ G0 be a basepoint. It is shown
in [Ge2, 6.3] that there exist positive constants ρ and c such that for the exponential Floyd
function f (n) = 2−n/ρ and for every edge e ∈ G1 one has

1u,S(e) ≤ cδf,v(e). (∗)

So (∗) implies that the inclusion map G0
→ M is uniformly continuous. Thus since

M is complete, the identity map on G extends continuously and equivariantly to map
F : Gf → M satisfying

∀x, y ∈ Gf : 1u,S(F (x), F (y)) ≤ cδf,v(x, y). (∗∗)

Since the graph G isG-finite and connected there exists aG-equivariantC-quasi-isometry
ψ between the Cayley graph of G (with respect to some finite generating set) and the
graph G. By Lemma 2.5 it extends to a G-equivariant map ψ : Gf0 → Gf where f0 =

f 1/C and f (n) = 2−n/ρ is the above Floyd function for G. So f0(n) = λ
n
0 where λ0 =

2−1/Cρ . The map F0 := F ◦ ψ satisfies the statement of the lemma. ut
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Remark. The same proof gives that for any connected locally compact graph 0 admitting
a cocompact action of the group G there exist an exponential function f (n) = µn (µ ∈
]0, 1[) and a G-equivariant continuous map F : ∂f0→ T .

The following corollary shows that every Floyd function f greater than f0 admits a
Floyd map.

Corollary 2.8. Under the assumptions of Lemma 2.7 for every function f ≥ f0 satisfying
(3)–(4) there exists a continuous G-equivariant Floyd map F : ∂fG→ T . In particular
this is true for any function f (n) = 1/P(n) where P(n) is a polynomial of degree k > 1
(n ∈ N ∪ {0}, P(0) 6= 0).

Proof. Let f0(n) = λn0 be the function from 2.7. Since f (n) ≤ f0(n) (n > n0) we
have δf0(x, y) ≤ δf (x, y) (x, y ∈ G). So the identity map extends continuously and
equivariantly to a map χ : ∂fG → ∂f0G. By Lemma 2.7 there exists a continuous G-
equivariant map F0 : ∂f0G→ T . Put F = F0 ◦ χ.

Since every function of type 1/P where P is a polynomial of degree k > 1 satisfies
the conditions (3)–(4) and f0(n) ≤ 1/P(n) (n > n0), it admits such a map too. ut

3. The orbit compactification space T̃ and its convex subsets

In this section we fix a 3-discontinuous and 2-cocompact action by homeomorphisms of
a finitely generated group G on a compactum T containing at least three distinct points.

3.1. The space T̃

For a fixed admissible Floyd function f let F : ∂fG → T be the Floyd map obtained
in Corollary 2.8. We extend F over Gf = G t ∂fG to the disjoint union T̂ = T t G

by the identity map id : G → G. We keep the notation F for this extension. The maps

T
id
→ T̂

F
← Gf determine on T̂ the pushout topology: a set S ⊂ T̂ is open if and only if

S∩T is open in T and F−1S is open inGf . The space T̂ , being the union of two compact
spaces T and F(Gf ), is a compactum.

Since every point x ∈ ∂fG is the limit of a sequence gn ∈ G and the map F is
equivariant we deduce that3(G) = F(∂fG) for the limit set3(G) of the actionGy T .

By Lemma 2.1 the set T \3(G) is G-finite. Denote by T̃ the subspace 3(G) tG of T̂ .

Remark. We need to introduce T̂ before T̃ in order to include the exceptional case of
2-ended groups. In this case if the action G y T is not parabolic, 3(G) consists of two
points and we need at least one more point to apply Corollary 2.8.

Proposition 3.1. LetG act on compactaX and Y and letψ : X→ Y be aG-equivariant
continuous surjective map. If the action on X is 3-discontinuous, so is the action on Y .
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Proof. The map ψ induces a proper G-equivariant continuous surjective map S3X →

S3Y . Let K and L be compact subsets of 23Y. Since Y is Hausdorff, the preimage of
every compact set in 23Y ⊂ S3Y is compact in 23X. Thus K1 = ψ−1(K) and L1 =

ψ−1(L) are compact subsets of23X. The action onX is discontinuous so the set {g ∈ G |
gK1 ∩L1 6= ∅} is finite. By the equivariance of ψ the set {g ∈ G | gK ∩L 6= ∅} is finite
too. ut

Lemma 3.2. The induced action G on T̃ is 3-discontinuous and 2-cocompact.

Proof. By [Ka] the group G acts 3-discontinuously on Gf = G t ∂fG. The Floyd map
F : Gf → T̃ is G-equivariant and continuous. By Proposition 3.1 the action on T̃ is
3-discontinuous.

IfK is a compact fundamental set for the action ofG on22(T ) thenK1 = K ∪{1}×
(T̃ \ {1}) is a compact fundamental set for the action of G on 22T̃ . ut

Remark. The statement of Lemma 3.2 is true for more general 3-proper actions [Ge2]
(see also the summary of the proof of Lemma 2.7).

Let ω be the kernel of the Floyd map F : Gf → T̃ , i.e. (x, y) ∈ ω if and only if
F(x) = F(y). It determines the shortcut pseudometric δg (g ∈ G) onGf (see Subsection
2.2). The map F transfers it to a pseudometric on T̃ also denoted by δg:

∀x, y ∈ ∂fG : δg(F (x), F (y)) = δg(x, y). (8)

Since δg is the maximal pseudometric on Gf satisfying δg ≤ δg for the Floyd metric δg ,
by the property (∗∗) of Section 2 the transferred pseudometric δg (g ∈ G) becomes a real
metric on T̃ , i.e.

∀p, q ∈ T̃ : δg(p, q) = 0 ⇒ p = q. (8′)

Any metric δg determines the topology of T̃ .

Lemma 3.3. LetH be the stabilizer of a parabolic point p. EveryH -invariant setM⊂G
closed in T̃ \ {p} is H -finite.

Proof. By Lemma 3.2 the action of G on T̃ is 3-discontinuous and 2-cocompact, so by
Lemma 2.1 the space (T̃ \ {p})/H is compact. SinceG ⊂ T̃ is an orbit of isolated points,
the closed subset M/H of (T̃ \ {p})/H consists of isolated points. So the set M/H is
finite. ut

3.2. Horocycles and horospheres

By Proposition 2.4(a) every c-quasigeodesic ray γ : N → G converges to a point
p ∈ ∂fG. We call the point p = limn→∞ γ (n) the target of γ and denote it by γ (∞).
The path F ◦ γ converges to the point F(p) ∈ T̃ which we also call the target. In other
words a c-quasigeodesic ray extends to a continuous map from N = N∪{+∞} to T̃ . The
target is necessarily a limit point for the actionGy T̃ . So any bi-infinite c-quasigeodesic
γ : Z→ G extends to a continuous map of Z = Z∪ {−∞,+∞} with γ (±∞) ⊂ T . The
set γ (±∞) is either a pair of limit points or a single limit point.

Every quasigeodesic, either finite or infinite, is defined on a closed subset J ⊂ Z
with ∂J being a pair or a single point.
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Definition 3.4. A bi-infinite c-quasigeodesic γ : Z→ G is called a c-horocycle at p ∈ T
if γ (+∞) = γ (−∞) = p.

Definition 3.5. The c-hull HcM of a set M ⊂ T̃ is the union of M and all c-quasi-
geodesics (finite or infinite) having both endpoints in M:

HcM = M ∪ {γ (I ) | γ : I → G is a c-quasigeodesic, I ⊂ Z, and γ (∂I) ⊂ M}.

The c-hull Hcp of a singleton {p} ∈ T is called the c-horosphere at p.

By M we denote the closure of M in T̃ .

Main Lemma. T ∩M = T ∩ HcM for every M ⊂ T̃ and c > 0.

Proof. Suppose for contradiction that there exist M and c such that T ∩ HcM \M 6= ∅.
Let a ∈ T ∩ HcM \M. By Karlsson’s Lemma there exists r > 0 such that the δ1-length
of every c-quasigeodesic outside of the ball Nr(1) ⊂ G is less than ε = δ1(M, a)/2 > 0
where 1 ∈ G is a basepoint.

By assumption there exists a c-quasigeodesic γ : I = [i−, i+] → G such that 0 ∈ I ,
γ (∂I) ⊂ M, and γ (0) is arbitrarily close to a. So we can assume that δ1(a, γ (0)) < ε

and γ (0) 6∈ Nr1(1) where r1 = r + cr + c/2. Let γ+ = γ |I∩N and γ− = γ |I∩(−N). For
their Floyd lengths L1 (see 2.2) we have

L1(γ±) ≥ δ1(γ (i±), γ (0)) ≥ δ1(γ (i±), a)− δ1(a, γ (0)) ≥ δ1(M, a)−δ1(a, γ (0))
≥ 2ε − ε = ε.

So there exists a subsegment J = [j−, j+] of I such that 0 ∈ J and d(1, γ (j±)) ≤ r .

x

x

M

(0)

1
r

r

γ

γ

γ

γ
1 −

+(j

(j

)

)

εB(a,  )

a

We obtain d(γ (j−), γ (j+)) = diam(γ (∂J )) ≤ 2r and length(γ |J ) ≤ c(2r+1). Thus
d(1, γ (0)) ≤ d(1, γ (∂J )) + d(γ (0), γ (∂J )) ≤ r1 = r + c

2 (2r + 1). So γ (0) ∈ Nr1(1).
A contradiction. ut

We finish the subsection by obtaining several corollaries of the Main Lemma.
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Lemma 3.6. There is no c-horocycle at a conical point.

Proof. Let p ∈ T be a conical point. There exist distinct points a, q ∈ T and a sequence
(gn) ⊂ G such that gn(p) → q and gn(x) → a for all x ∈ T \ {p}. Suppose for
contradiction that γ is a c-horocycle at p.

Let Q be a closed neighborhood of q such that a /∈ Q. We can assume that qn =
gn(p) ∈ Q for all n. So gn(γ (0)) ∈ HcQ. By Lemma 3.2 the action G y T̃ has the
convergence property. So gn(γ (0)) → a. It follows that a ∈ (HcQ ∩ T ) \ (Q ∩ T ),
contradicting the Main Lemma. ut

Until the end of this subsection we fix a parabolic fixed point p, and denote by H the
stabilizer of p in G.

Lemma 3.7. For every c the set (G ∩ Hcp)/H is finite.

Proof. The set Hcp is H -invariant. By the Main Lemma it is closed in T̃ \ {p} and p is
its unique limit point. Thus the setG∩Hcp is a closedH -invariant subset of T̃ \ {p}. The
result follows from Lemma 3.3. ut

Lemma 3.8. The closure in T̃ of any H -finite subset M of G is M ∪ {p}.

Proof. It suffices to consider the case when M is an H -orbit. As d(M,Hcp) is bounded,
the Floyd distance δ1(m,Hcp) tends to zero while m ∈ M tends to T . ut

The following corollary establishes that parabolic subgroups are (strongly) quasiconvex
(see the definition in the introduction):

Corollary 3.9. The stabilizer of every parabolic point is strongly quasiconvex.

Proof. Let Hcp be the c-horosphere at p. By Lemmas 3.7 and 3.8 the set Hcp ∩ G
is H -finite. So there exists D = D(p, c) > 0 such that for every h ∈ H we have
d(Hcp, h) ≤ D. Therefore H ⊂ M where M is the D-neighborhood of Hcp ∩G.

We haveM = M ∪{p}. By the Main Lemma, HcM = HcM ∪{p}. So HcM is closed
in T̃ \ {p} and by Lemma 3.3 it is also H -finite.

Let γ : I → G be a c-quasigeodesic segment with endpoints in H ⊂ M. Then γ (I )
and M are both subsets of the H -finite set HcM. Hence for any a ∈ γ (I ) there exist
hi ∈ H (i = 1, 2) and b ∈ M such that d(h1(a), h2(b)) ≤ const. Since M is H -invariant
we have h−1

1 h2(b) ∈ M . Then d(a,M) ≤ const and so d(a,H) ≤ const, where the
constant only depends on c and p. ut

3.3. The point preimage under the Floyd map

We will now prove the following.

Theorem A. Let G be a finitely generated group acting on a compactum T 3-discontinu-
ously and 2-cocompactly. Then for any admissible Floyd function f and for any parabolic
point p ∈ T , the corresponding Floyd map F satisfies

F−1(p) = ∂(StabG p). (1)

Furthermore, if there exist a 6= b such that F(a) = F(b) = p, then p is parabolic.
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Proof. Extending the map F by the identity map as in Subsection 3.1 we can suppose
that we have a continuous and G-equivariant map F : Gf → T̃ . Denote H = StabG p.
Let x ∈ F−1(p). We will show that x ∈ ∂H ⊂ ∂fG. Let y ∈ ∂H. If y = x then there
is nothing to prove. If not, then by Proposition 2.4(c) there exists a bi-infinite geodesic γ
joining x and y. It is a horocycle in T̃ , so γ (Z) ⊂ Hcp. By Lemma 3.7, γ (Z) is con-
tained in Hg1 ∪ · · · ∪ Hgl . By Lemma 3.8 the boundary of each H -coset is {p}. So
x = limn→∞ hngi where i ∈ {1, . . . , l} and hn ∈ H. Since d(hngi, hn) = d(gi, 1) is
constant for all n, we have δ1(x, hn)→ 0 and x ∈ ∂H ⊂ ∂fG.

Assume that a 6= b. As above, join a and b by a bi-infinite geodesic γ . Then γ is a
horocycle in T̃ , and by Lemma 3.6 the point p = F(a) = F(b) is parabolic. ut

Remark. By Theorem A the preimage of a conical point under an equivariant map is a
single point. This is true in a more general setting without assuming that the action of G
on T is 2-cocompact [Ge2, Proposition 3.5.2].

Corollary 3.10. In the notation of Theorem A the set ∂(StabG p) is a quotient of the
Floyd boundary ∂f1(StabG p) for some Floyd function f1.

Proof. Since H = StabG p is undistorted in G [Ge1], the inclusion map H ↪→ G is c-
quasi-isometric for some integer c. For a given Floyd function f there exists a Floyd func-
tion f1 satisfying conditions (3)–(4) such that f (n)/f1(cn) is bounded from above. By
Lemma 2.5 the inclusion extends to a continuous map Hf1 → Gf . It maps ∂f1(StabG p)
onto ∂(StabG p). ut

Remarks. (a) We confess that we do not understand the argument in [F, p. 216] stating
that the preimage under the map F of a parabolic fixed point p ∈ 3(G) of rank at least
two is a single point, where G < IsomHn is a geometrically finite Kleinian group.

Our statements above complete this argument. Indeed the crucial place was to prove
that the preimage F−1(p) of every parabolic point p ∈ ∂Hn is the limit set of its stabilizer
for the action on ∂fG. This follows from Theorem A. Then by Karlsson’s Lemma the
Floyd boundary of a virtually abelian group of rank at least 2 is a point. In particular this
is true for any discrete elementary subgroupH of IsomHn of rank at least 2. By Corollary
3.10 it follows that F−1(p) coincides with the image of the Floyd boundary of H , and so
is a point. Thus F−1(p) is homeomorphic to the Floyd boundary of H.

(b) A stronger statement is proved in [GePo1, Corollary 7.7] where it is shown that
the quotient map described in Corollary 3.10 is injective.

4. Compactification of a quasi-isometric map. Proof of Theorem B

Let G and H be finitely generated groups with fixed finite generating sets. We denote the
corresponding word metrics by the same symbol d.

Let ϕ : H → G be a c-quasi-isometric map. We now choose two Floyd functions fi
(i = 1, 2) satisfying the condition (6) of Lemma 2.5. Let Hf1 and Gf2 denote the corre-
sponding Floyd completions.



2130 Victor Gerasimov, Leonid Potyagailo

To simplify notation we put

X = ∂f2G, Y = ∂f1H, X̃ = X tG, Ỹ = Y tH.

By Lemma 2.5 the map ϕ∗ extends to a uniformly continuous map Ỹ → X̃ which we
keep denoting by ϕ. By continuity the inequality (7) of the proof of Lemma 2.5 remains
valid for this extension.

The kernel θ0 of the composition Ỹ
ϕ
→ X̃

F
→ T̃ is a closed equivalence relation on Ỹ .

We have
(x, y) ∈ θ0 ⇔ Fϕ(x) = Fϕ(y). (9)

The following equivalence relation on Ỹ is closed and H -invariant:

θ =
⋂
{hθ0 : h ∈ H }. (10)

So (x, y) ∈ θ if and only if (h(x), h(y)) ∈ θ0 for each h ∈ H.
Let S̃ = Ỹ /θ and S = Y/θ . Denote by π the quotient map Ỹ → S̃. It isH -equivariant.

Since θ is closed, the space S̃ is a compactum [Bourb, Prop I.10.8]. The open subspace
A = π(H) of S̃ is an H -orbit of isolated points. The group H acts 3-discontinuously
on Ỹ . Since |S̃| > 2, by Proposition 3.1 the action of H on S̃ is 3-discontinuous too.

The map ϕ sends θ into the kernel of F , and induces a continuous map ϕ∗ : S̃ → T̃

such that the following diagram is commutative:

X̃
F

−−−−→ T̃

ϕ

x xϕ∗
Ỹ

π
−−−−→ S̃

The equivalence θ determines the shortcut pseudometrics δg on S̃ such that

∀p, q ∈ Ỹ , ∀g ∈ G : δg(p, q) = δg([p], [q]). (11)

Proposition 4.1. The action of H on S̃ is 2-cocompact.

Proof. By Lemma 3.2 it suffices to verify 2-cocompactness on S. Let [p], [q] be distinct
θ -classes in S. For some h ∈ H and p, q ∈ Y we have 〈hp, hq〉 /∈ θ0, so Fϕ(hp) 6=
Fϕ(hq). Denote by K a compact fundamental set for the action of G on 22T̃ , i.e.

22T̃ =
⋃
{gK : g ∈ G}.

Let δ be the infimum of the continuous function δ1|K . It is strictly positive by (8′). There
exists g ∈ G such that {g−1Fϕ(hp), g−1Fϕ(hq)} ∈ K . So δg(Fϕ(hp), Fϕ(hq)) ≥ δ.
As δg ≥ δg we also have δg(ϕ(hp), ϕ(hq)) ≥ δ. Let γ be a bi-infinite geodesic in H
with ∂γ = {hp, hq}. Since ϕ is c-quasi-isometric, ϕ(γ ) is contained in a c-quasigeodesic
inG. So by Karlsson’s Lemma there exists r = r(c, δ) such that d(g, ϕ(γ )) ≤ r . Assume
that d(g, g0) ≤ r for g0 = ϕ(h0), h0 = γ (0).
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By the bilipschitz equivalence of the shortcut metrics, δg0(Fϕ(hp), Fϕ(hq) ≥

δ/D(r) for a function D(r) depending only on r. By (8), δg0(ϕ(hp), ϕ(hq)) =

δg0(Fϕ(hp), Fϕ(hq)). By (7) of Lemma 2.5 we obtain

δ1(h
−1
0 hp, h−1

0 hq) = δh0(hp, hq) ≥ εδg0(ϕ(hp), ϕ(hq)) ≥ εδ/D(r) = δ1.

Using (11) we conclude that the set {{s1, s2} ∈ 22S : δ1(s1, s2) ≥ δ1} is a compact
fundamental set for the action of H on 22S. ut

Theorem B. Let a finitely generated group G act 3-discontinuously and 2-cocompactly
on a compactum T . Let ϕ : H → G be a quasi-isometric map of a finitely generated
group H .

Then there exist a compactum S, a 3-discontinuous 2-cocompact action of H on S,
and a continuous map ϕ∗ : S → T such that for everyH -parabolic point p ∈ S the point
ϕ∗p isG-parabolic, and ϕ(StabH p) is contained in a uniformly bounded neighborhood
of a right coset of StabG(ϕ∗p) in G.

Proof. The space S and the map ϕ∗ are already constructed. We are going to prove that ϕ∗
maps H -parabolic points to G-parabolic points. Let p be a parabolic point for the action
of H on S̃ and let Q be its stabilizer. By [Ge1, Main Theorem, d], Q is finitely generated
and undistorted in H . So the embedding Q ↪→ H is quasi-isometric. Since Q is infinite,
there exists a bi-infinite geodesic γ : Z→ Q. Thus γ is a c-quasigeodesic in H for some
c > 0.

By Proposition 4.1 the action of H on S̃ is 2-cocompact. By the Main Lemma the
boundary ofQ in S̃ is {p}. In particular, γ is a c-horocycle. Since ϕ is quasi-isometric, the
path ϕ ◦ γ : Z→ T̃ is an l-quasigeodesic for some constant l > 0. The continuity of ϕ∗
and the commutativity of the above diagram imply that limn→±∞ ϕ∗(γ (n)) = ϕ∗(p).

Thus ϕ∗ ◦ γ is an l-horocycle at the point ϕ∗p. It follows from Lemma 3.6 that ϕ∗p is
parabolic for the action of G on T .

Every h ∈ Q belongs to a bi-infinite geodesic in Q. So by the above argument
we have ϕ(Q) ⊂ Hl(ϕ∗p). Since Nc T is G-finite there exists a finite set W of G-
nonequivalent parabolic points of G such that g(ϕ∗p) = q ∈ W for some g ∈ G. Thus
g(Hl(ϕ∗p)) = Hlq. By Lemma 3.7 the set G ∩ Hlq is StabG q-finite. So there exists a
uniform constant C > 0 such that for all q ∈ W and all y ∈ Hlq, d(y,StabG q) ≤ C. So
d(gϕ(Q),StabG q) = d(ϕ(Q), g−1 StabG q) = d(ϕ(Q),StabG (ϕ∗p)g−1) ≤ C. ut

Proof of Corollary 1.1. Suppose thatG is a finitely generated relatively hyperbolic group
with respect to parabolic subgroups Pi (i = 1, . . . , n) in the strong sense of Farb [Fa].
Then by [Bo1] (see also [Hr]) the group G has a geometrically finite 3-discontinuous ac-
tion on a compact metrizable space X. It follows from [Tu3, Theorem 1.C] that the space
22X/G is compact. Let S be a compactum as in Theorem B on which the group H acts
3-discontinuously and 2-cocompactly. By [Ge1] this action is geometrically finite, the set
of parabolic points is H -finite, and their stabilizers are all finitely generated. It follows
from [Ya] that H is relatively hyperbolic with respect to the stabilizers Qi (i = 1, . . . , k)
of H -nonequivalent parabolic points. By Theorem B the image of every parabolic sub-
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group of H by ϕ is contained in a uniform neighborhood of a right coset of the corre-
sponding parabolic subgroup of G which is a left coset of one of Pj (j = 1, . . . , n). The
corollary follows. ut

5. α-isometric rigidity. Proof of Theorem C

The goal of this section is to generalize Theorem B to the case of α-isometric maps
(see (1)).

Theorem C. Let a finitely generated group G act 3-discontinuously and 2-cocompactly
on a compactum T . Let ϕ : H → G be an α-isometric map of a finitely generated
group H intoG for a polynomial distortion function α. Then all statements of Theorem B
are true for the group H and the map ϕ.

The proof will follow the lines of the proof of Theorem B using a few new facts.

Definition. A path γ : I → 0 in a graph 0 is called an α-geodesic if the map γ is
α-isometric.

We start with the following generalization of Karlsson’s Lemma 2.2:

Lemma 5.1 (Generalized Karlsson Lemma). Let 0 be a locally finite connected graph
endowed with a basepoint v ∈ 00. Let α : N→ R>0 and f : N→ R>0 be respectively
the distortion and Floyd scaling function satisfying∑

n∈N
α2n+1fn <∞, (12)

where αn = α(n) and fn = f (n). Then for every ε > 0 there exists r = r(ε) such that
for every α-distorted path γ : I → 0 the condition d(v, γ ) > r implies that Lf,v(γ ) < ε

for the Floyd length Lf,v of γ.

Proof. Let 0 ∈ I realize the distance d(v, γ ) = d(v, γ (0)) > r. For every i > r we
put xi = min{x ∈ I | ∀t ≥ x : d(γ (t), v) ≥ i}. We have d(v, γ (xi)) = i. Indeed,
if not then d(v, γ (xi)) > i and by the triangle inequality d(v, γ (xi − 1)) > i − 1
and so d(v, γ (xi − 1)) ≥ i, which is impossible by the choice of xi . So the interval
I is subdivided into the intervals Ii = [xi, xi+1[ such that for all t ∈ Ii , d(v, γ (t)) ≥
d(v, γ (xi)) = i. By the triangle inequality d(γ (xi), γ (xi+1)) ≤ 2i + 1. Since γ is an α-
geodesic we have xi+1 − xi ≤ α2i+1. For the Floyd length this yields Lδf,v (γ |[xi ,xi+1]) ≤

f (d(v, γ (Ii))) · lengthdγ (Ii) = α2i+1fi . Thus

Lf,v(γ ) ≤

k∑
i=r

α2i+1fi + α2kfk,

where k < ∞ only if I is finite and d(v, γ (xk)) = d(v, γ (max I )). By (12) there exists
r = r(ε) such that

∑k
i=r α2i+1fi < ε/2 and α2kfk ≤ α2k+1fk < ε/2 as (αn)n is a

nondecreasing sequence. The lemma is proved. ut
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Definition 5.2. We call the couple (f, α) of a Floyd scaling function f and a distortion
function α appropriate if it satisfies (12).

Corollary 5.3. If the pair (f, α) is appropriate then every α-geodesic ray in a locally
finite connected graph 0 converges to a point in ∂f0.

Proof. One repeats the argument of Proposition 2.4 where instead of the Karlsson Lemma
one uses the Generalized Karlsson Lemma. ut

The following result generalizes Lemma 2.5 to the case of α-isometric maps:

Lemma 5.4. Let 0i (i = 1, 2) be locally finite connected graphs and ϕ : 01 → 02 be an
α-isometric map for some distortion function α : N→ N. Suppose that the Floyd scaling
functions fi : N→ R>0 (i = 1, 2) satisfy

f2(n)/f1(αn) ≤ D (n ∈ N) (13)

for some constantD > 0. Then ϕ extends to a Lipschitz map (denoted by the same letter)
ϕ : 01,f1 → 02,f2 .

Proof. We keep the notations of the proof of Lemma 2.5. Using the α-isometric map
ϕ the same argument of Lemma 2.5 shows that for all x, y ∈ 01 \ B(1, r0) such that
d(x, y) = 1 and r0 = α(n0), n0 = α1 + d(1, ϕ(1)) the following is true:

d(ϕ(x), ϕ(y) < α1,

δf2(ϕ(x), ϕ(y)) ≤ α1K
n0f2(d(ϕ(1), ϕ(x)) ≤ α1K

n0Df1(α(d(ϕ(1), ϕ(x)))
≤ α1K

n0Df1(d(1, x)).

So for all x, y ∈ 01 we obtain δf2(ϕ(x), ϕ(y)) ≤ const · δf1(x, y). Thus ϕ extends to a
Lipschitz map 01,f1 → 02,f2 . ut

Remark. For the Floyd scaling function f1 = 1/P1 and for the distortion function
α = P2 where Pi are polynomials of degree > 1 we put f2 = f1 ◦ α = 1/P1 ◦ P2.
Then the condition (13) is satisfied.

For a distortion function α we introduce similarly to 3.5 the α-hull HαM of a set M :

HαM = M ∪ {γ (I ) | γ : I → G is α-geodesic, I ⊂ Z, and γ (∂I) ⊂ M}.

We have the following generalization of the Main Lemma:

Lemma 5.5 (Main Lemma for α-hulls). For every polynomial function α : N→ R≥0,

∀M ⊂ T̃ : T ∩M = T ∩ HαM. (14)
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Proof. Fix a Floyd function f = 1/P such that P is a polynomial of degree > 1 and
the pair (f, α) is appropriate. By Corollary 2.8 for the function f there exists a Floyd
map F : Gf → T̃ . It gives the shortcut metric δ1,f on T̃ satisfying δ1,f ≥ δ1,f (see (8)
and (8′)).

Using the Generalized Karlsson Lemma (instead of Karlsson’s Lemma 2.2) in the
argument of the Main Lemma we find that the Floyd length of every α-geodesic outside
of the ball of a radius r is less than ε = δ1,f (M, a)/2 > 0. By the same argument, every
α-geodesic with endpoints inM lies in the union ofM and a ball of finite radius centered
at 1 ∈ G. The lemma follows. ut

Definition. A bi-infinite α-geodesic γ : Z → G is called an α-horocycle at a point
p ∈ T if γ (+∞) = γ (−∞) = p.

Using the Generalized Karlsson Lemma and Lemma 5.5 (instead of 2.2 and Main
Lemma) in the proofs of Lemmas 3.7 and 3.6 we obtain the following generalizations for
α-geodesics.

Lemma 5.6. For every polynomial distortion function α there is no α-horocycle at a
conical point. ut

Lemma 5.7. For every polynomial distortion function α the set (G ∩ Hαp)/H is finite.
ut

Proof of Theorem C. Let ϕ : H → G be an α-isometric map. Following the above
Remark we fix Floyd scaling functions f1 and f2 of polynomial type such that f1 = 1/P1
and f2 = 1/P1 ◦ α (degP1 > 1). As before we put

X = ∂f2G, Y = ∂f1H, X̃ = X tG, Ỹ = Y tH.

For the Floyd function f2 by Corollary 2.8 there exists a Floyd map F : X̃→ T̃ .

As in the proof of Theorem B we define the quotients S̃ and S of the spaces Ỹ and Y
respectively. The action H y S̃ is 3-discontinuous. To show that it is 2-cocompact we
modify the proof of Proposition 4.1 as follows. For a geodesic γ ⊂ H we obtain the
α-geodesic ϕ(γ ) ⊂ G.

The series 6 =
∑
k α2k+1f2,k converges. As α is a polynomial function we have

α(2k + 1)
P1(α(k))

≤ const ·
α(k)

P1(α(k))
.

Since degP1 > 1 the series
∑
k α(k)/P1(α(k)) converges and so does 6. Thus apply-

ing the Generalized Karlsson Lemma to the space X̃, we conclude that ϕ(γ ) is within a
distance r = r(α, δ) of the basepoint g. So d(g, g0) ≤ r where g0 = ϕ(h0) for some
h0 ∈ H. Applying now Lemma 5.4 (instead of 2.5) we see that the action H y 22S

admits a compact fundamental set.
To show that ϕ∗(p) ∈ T is parabolic for a parabolic point p ∈ S, we proceed simi-

larly. Since every parabolic subgroup is undistorted in H , there exists a c-quasigeodesic
horocycle γ ⊂ H at the limit point p. The composition ϕ ◦ γ is an α-geodesic horocycle
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in T̃ . It follows from Lemma 5.6 that its unique limit point ϕ∗(p) ∈ T is parabolic for the
action Gy T .

Similarly applying Lemma 5.7 we deduce that the setG∩Hαq is StabG q-finite. This
implies that the image of every parabolic subgroupQ ofH is within a uniformly bounded
distance of a right coset of StabG(ϕ∗p) in G. Theorem C follows. ut

6. Appendix: a short proof that 3-cocompactness of an action implies
word-hyperbolicity of the group

As an application of our method we give a short proof of the following theorem of
B. Bowditch:

Theorem ([Bo3]). Let G be a finitely generated group acting 3-discontinuously and 3-
cocompactly on a compactum T without isolated points. Then G is word-hyperbolic.

We start with the following.

Lemma 6.1. Let a groupG act 3-discontinuously on a compactum T . Let p, q be distinct
nonconical points in T and let K be a compact subset of T 2

\ 12T . Then the set S =
{g ∈ G : (gp, gq) ∈ K} is finite.

Proof. We will use some simple facts about convergence actions on compacta proved in
[Ge1]. Assume that S is infinite. The compact K can be covered by finitely many closed
subproducts of the form A×B with A∩B = ∅. So we can assume thatK = A×B where
A,B are closed disjoint sets. The set 3repS of repellers of limit crosses for S (see [Ge1,
Subsection 18]) is nonempty. It is contained in {p, q} since otherwise, for some g ∈ S,
the pair {gp, gq} becomes arbitrarily small.

So S contains an infinite subset S1 with 3repS1 being a single point. Without loss of
generality we can assume that S = S1 and 3repS = {p}. The set 3attrS of attractors of
limit crosses is contained in B. Let B1 be a closed neighborhood of B disjoint from A.
Thus, for a ∈ T \ {p}, the set {g ∈ S : ga /∈ B1} is finite since it has no limit crosses.
Hence {{gp, ga} : g ∈ S} is contained in a compact subset of 22T . So p is conical by
[Ge1, Definition 3]. ut

Remark. Note that with the additional assumption that T is metrizable the above lemma
easily follows from Gehring–Martin’s definition of the convergence property.

Corollary. If G acts 3-discontinuously and 3-cocompactly on a compactum T without
isolated points then every point of T is conical.

Proof. Clearly, 3-cocompactness implies 2-cocompactness, hence every nonconical point
is either isolated or parabolic [Ge1]. By assumption the discontinuity domain is empty.
Assume that parabolic points do exist. Hence there exist at least two parabolic points
since otherwise we must have a discontinuity domain.

Let p, q be distinct parabolic points and let L be a compact fundamental set for
the action of G on 23T . We can assume that L has the form

⋃n
i=1Ai×Bi×Ci where
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Ai, Bi, Ci are closed disjoint subsets of T . For every a ∈ T \ {p, q} there exist ga ∈ G
such that ga(p, q, a) ∈ L. By Lemma 6.1 the set {ga : a ∈ T \ {p, q}} is finite. If
ga(p, q, a) ∈ Ai(a)×Bi(a)×Ci(a) then T \ {p, q} is a union of finitely many closed sets
g−1
a Ci(a). Thus {p, q} is open and p and q are isolated, contradicting the assumption. ut

Proof of the Theorem. Assume that G is not hyperbolic. There exists a sequence of
geodesic triangles with sides {ln, mn, kn} so that d(xn, mn ∪ kn) → ∞ for xn ∈ ln.

Using the G-action we can make xn equal to 1 for all n. By Karlsson’s Lemma the Floyd
length of mn ∪ kn tends to zero and so δ1(yn, zn) → 0 where ∂ln = {yn, zn}. Since all
ln pass through the same point 1 we can choose a subsequence converging to a geodesic
horocycle l. By Lemma 3.6 the target of l is not conical, contradicting the above Corol-
lary. ut

Remark. In [Bo3] the above Theorem is proved without the assumption thatG is finitely
generated. It is shown in [GePo1, Corollary 3.38] that a groupG acting 3-discontinuously
and 2-cocompactly on a compactum T is relatively finitely generated with respect to
maximal parabolic subgroups. In particular if G acts 3-cocompactly on T by the above
Corollary there are no parabolic subgroups and so G is finitely generated.
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