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Abstract. We use floor decompositions of tropical curves to prove that any enumerative problem
concerning conics passing through projective-linear subspaces in RP n is maximal. That is, there
exist generic configurations of real linear spaces such that all complex conics passing through these
constraints are actually real.
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1. Introduction

A rational curve of degree d in CP n is parameterized by a polynomial map

φ : CP 1
→ CP n, [t, u] 7→ [P0(t, u) : . . . : Pn(t, u)],

where the Pi(t, u)’s are homogeneous polynomials in two variables of degree d with no
common factors. Since Aut(CP 1) has dimension 3 and all the Pi(t, u)’s are defined up
to a common multiplicative constant, the dimension of the space of rational curves of
degree d in CP n is

(n+ 1)(d + 1)− 4 = (n+ 1)d + (n− 3).

Consequently, if we are looking for rational curves in CP n satisfying exactly this
number of independent conditions, we can reasonably expect the number of solution to
be finite. For example, if L is a linear subspace of codimension j ≥ 1 in CP n, the con-
dition “to intersect L” imposes exactly j − 1 independent conditions on rational curves
in CP n. Hence, if we choose a generic configuration ω = {L1, . . . , Lγ } of linear sub-
spaces of CP n, with lj = codimLj ≥ 1, such that

γ∑
j=1

(lj − 1) = (n+ 1)d + (n− 3) (1)
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we expect a finite number of rational curves of degree d in CP n intersecting all the linear
subspaces in ω. The term “generic” means that these linear subspaces have to be chosen
so that they impose altogether independent conditions.

It turns out that this number of rational curves, which we denote by Nd,n(l1, . . . , lγ ),
is indeed finite and does not depend on the configuration ω we have chosen, but only on n,
d, l1, . . . , lγ . The numbers Nd,n(l1, . . . , lγ ) are known as Gromov–Witten invariants of
the projective space CP n. For example, since there exists a unique line passing through
two distinct points in CP n, we have

N1,n(n, n) = 1 ∀n ≥ 2.

For a more detailed introduction to Gromov–Witten theory, we refer the interested
reader to the excellent book [KV06]. In this paper, it is convenient to extend the definition
of the numbers Nd,n(l1, . . . , lγ ) to any set of γ numbers in Z by

Nd,n(l1, . . . , lγ ) = 0 if
γ∑
j=1

(lj − 1) 6= (n+ 1)d+ (n− 3) or ∃j, lj ≤ 0 or lj ≥ n+ 1.

All linear spaces in our generic configuration ω can be chosen to be real. In this case,
it makes sense to enumerate real rational curves in CP n (i.e. rational curves which are
invariant under the complex conjugation of CP n) of degree d intersecting our configura-
tion of real linear subspaces. Unlike the enumeration of complex curves, the number of
real solutions, denoted by NR

d,n(l1, . . . , lγ , ω), now depends on the chosen configuration
ω of linear spaces. Clearly, we have the inequality

NR
d,n(l1, . . . , lγ , ω) ≤ Nd,n(l1, . . . , lγ ) ∀ω.

However, it is unknown in general if there exists a real configuration ω such that all
complex solutions are real. For example, can the 92 complex conics passing through eight
general lines in RP 3 be real? More generally, it is an important and difficult question to
ask how many solutions of an enumerative problem can be real (see [Ful84, §7.2]). When
all complex solutions can be real, we say that this enumerative problem is maximal.

To stress how difficult these questions are, let us summarize the very few things known
in 2011 about the maximality of the enumerative problems defined above. Since the cor-
responding Gromov–Witten invariant is equal to 1, it is trivial that the problem is maximal
in the following two cases:

• d = 1, lj = n for some j ;
• n = 2, d = 2, and l1 = l2 = l3 = l4 = l5 = 2.

It is also easy to see that the problem is maximal in the case n = 2 and d = 3 (and so
l1 = · · · = l8 = 2). The first systematic non-trivial result was obtained by Sottile who
proved in [Sot97] that the problem is maximal as soon as d = 1 (the so-called problems
of “Schubert-type”; actually problems of Schubert-type involving linear subspaces of any
dimension turn out to be maximal by [Vak06]). More recently, with the help of tropical
geometry, it was proved in [BM07] that the problem above is maximal for d = 2 and
n = 3. Up to our knowledge, nothing more was known before our investigation.
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Our main result is that the enumerative problems discussed above are maximal when
d = 2. Theorem 1.1 is a direct consequence of Theorem 2.5, Lemma 2.6, and Proposition
4.5.

Theorem 1.1. For n ≥ 2, l1 ≥ 1, . . . , lγ ≥ 1 satisfying

γ∑
j=1

(lj − 1) = 3n− 1,

there exists a generic configuration ω = {L1, . . . , Lγ } of real linear subspaces of CP n
such that codimLj = lj and

NR
2,n(l1, . . . , lγ , ω) = N2,n(l1, . . . , lγ ).

To prove Theorem 1.1, we use floor decomposition of tropical curves. In his pioneering
work [Mik05], Mikhalkin reduced the enumeration of complex and real algebraic curves
in (C∗)2 to the enumeration of some piecewise linear graphs in R2 called plane tropical
curves. Shortly afterwards these results were extended in [Mik] and [NS06] to the compu-
tation of genus 0 Gromov–Witten invariants of projective spaces of arbitrary dimension.
By stretching configurations of constraints along some specific direction, Brugallé and
Mikhalkin [BM] replaced the enumeration of tropical curves by a purely combinatorial
study of their floor decompositions. As an application, they exhibited a generic configu-
ration of eight real lines in RP 3 with 92 real conics passing through them.

In this paper, we refine the technique used in [BM07] in the case of CP 3 to system-
atically study the case d = 2. Along the way, we will give a proof of Sottile’s Theorem
different from the original one.

The question of existence of non-trivial lower bounds for the numbers NR
2,n(l1, . . . ,

lγ , ω) is also an important and difficult problem about which not much is known. The
combination of Welschinger invariants (see [Wel05a] and [Wel05b]) and tropical ge-
ometry allowed exhibiting such non-trivial lower bounds in the case of rational curves
passing through points in RP 2 or RP 3, i.e. for n = 2 or 3 and li = n for all i (see
[Wel05a], [Mik05], and [IKS04] for the case n = 2, and [Wel05b], and [BM] for the case
n = 3). In the case of enumeration of lines (and more generally in the enumeration of
real linear spaces), the existence of some non-trivial lower bounds has been proved by
Gabrielov and Eremenko in [EG02]. Up to our knowledge, the exact minimal value of
NR
d,n(l1, . . . , lγ , ω) (when non-trivial) is known so far only in the cases n = 2, d = 3

([DK00]) and d = 4 ([Rey]), and in the cases d = 1 and li = 2 for all i ([EG02]).
One could also study maximality of more general real enumerative problems, for ex-

ample by prescribing tangency conditions with constraints. We refer the interested reader
to [RTV97], [Ber08], [Sot], and [BBM] for some partial answers in this direction.

In Section 2 we give all tropical definitions needed to prove Theorem 1.1. In particular,
we set up the tropical enumerative problems studied in this paper. Next, in Section 3
we explain the main ideas of the floor decomposition technique to solve these tropical
enumerative problems, before focusing on the easier particular cases of enumeration of
lines and conics. Theorem 1.1 is finally proved in Section 4.
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2. Tropical geometry

In this section, we briefly review the tropical background needed in this paper. For more
details, we refer the reader, for example, to [Mik06], [RGST05], [IMS07], and [BPS08].

2.1. Rational tropical curves

Given a finite graph C (i.e. C has a finite number of edges and vertices) we denote by
Vert∞(C) (resp. Vert0(C)) the set of vertices of C which are (resp. are not) 1-valent, and
by Edge∞(C) (resp. Edge0(C)) the set of edges which are (resp. are not) adjacent to a
1-valent vertex. Throughout the text, we will always assume that the graphs considered
have no 2-valent vertices.

Definition 2.1. A rational tropical curve C is a finite compact connected tree equipped
with a complete inner metric on C \ Vert∞(C).

By definition, the 1-valent vertices of C are at infinite distance from all the other
points of C. The elements of Edge∞(C) are called the ends of C. An edge in Edge∞(C)
(resp. Edge0(C)) is said to be unbounded (resp. bounded).

Example 1. An example of a rational tropical curve C is depicted in Figure 1. This curve
has five unbounded edges, and two bounded edges of finite lengths a and b. All the edge
lengths are indicated in the figure.

∞

∞ ∞

∞

a
b

∞

Fig. 1. A rational tropical curve.

Given e an edge of a tropical curve C, we choose a point p in the interior of e and
a unit vector ue of the tangent line to C at p. Of course, the vector ue depends on the
choice of p and is well-defined only up to multiplication by −1, but this will not matter
in the following. We will sometimes need ue to have a prescribed direction, and we will
then specify it. The standard inclusion of Zn in Rn induces a standard inclusion of Zn in
the tangent space of Rn at any point of Rn.

Definition 2.2. Let C be a rational tropical curve. A continuous map f : C \ Vert∞(C)
→ Rn is a tropical morphism if
• for any edge e of C, the restriction f|e is a smooth map with df (ue) = wf,euf,e where
uf,e ∈ Zn is a primitive vector, and wf,e is a non-negative integer;
• for any vertex v in Vert0(C)whose adjacent edges are e1, . . . , ek , one has the balancing

condition
k∑
i=1

wf,eiuf,ei = 0

where uei is chosen so that it points away from v.
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The integer wf,e is called the weight of the edge e with respect to f . When no con-
fusion is possible, we speak about the weight of an edge, without referring to the mor-
phism f . By abuse of notation, we write f : C → Rn instead of f : C\Vert∞(C)→ Rn.
If wf,e = 0, we say that the morphism f contracts the edge e. The morphism f is called
minimal if it does not contract any edge.

Given a vector u = (u1, . . . , un) in Rn, we define

du = max{0, u1, . . . , un}.

The degree of a tropical morphism f : C → Rn is defined by∑
e∈Edge∞(C)

wf,eduf,e

where uf,e is chosen so that it points to its adjacent 1-valent vertex.
We define the following vectors in Rn: U1 = (−1, 0, . . . , 0), U2 = (0,−1, 0, . . . , 0),

. . . , Un = (0, . . . , 0,−1), and Un+1 = (1, . . . , 1). A tropical morphism f : C → Rn
of degree d is said to be transverse at infinity if C has exactly (n + 1)d non-contracted
ends. Note that in this case, for any i = 1, . . . , n + 1, the curve C has exactly d edges
e ∈ Edge∞(C) with uf,e = Ui , where uf,e is chosen so that it points to its adjacent
1-valent vertex.

Example 2. Figure 2 depicts a tropical conic in R2 and a tropical conic in R3. For each
unbounded edge e, the vector uf,e pointing to infinity is given next to e.

U1
U2

U2

U1
U1

U4 U4

U3

U3

U1

U2 U2 U3 U3

Fig. 2. Tropical conics in R2 and in R3.

Two tropical morphisms f1 : C1 → Rn and f2 : C2 → Rn are said to be isomorphic
if there exists an isomorphism of metric graphs φ : C1 → C2 such that f1 = f2 ◦ φ. In
this text, we consider tropical curves and tropical morphisms up to isomorphism.

Two tropical morphisms h : C1 → Rn and h′ : C2 → Rn are said to be of the same
combinatorial type if there exists a homeomorphism of graphs φ : C1 → C2 (i.e. we
forget about the metric on C1 and C2) such that h = h′ ◦ φ, and wh,e = wh′,φ(e) for all
e ∈ Edge(C1).

In this text, we need the notion of reducible tropical morphism. Given two tropical
curves C1 and C2, two points p1 and p2 respectively on C1 and C2, the topological gluing
C1 ∪(p1,p2) C2 of C1 and C2 at p1 and p2 inherits naturally a structure of tropical curve
from C1 and C2. The curve Ci can be seen as a subset of C, and the point p1 = p2 is
called the node of C.
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Definition 2.3. A minimal tropical morphism f : C → Rn is said to be reducible if
there exist two minimal tropical morphisms f1 : C1 → Rn and f2 : C2 → Rn, and points
pi ∈ Ci , such that C is the gluing of C1 and C2 at the points p1 and p2, and f|Ci = fi .

We denote such a reducible tropical morphism f = f1 ∪p f2 : C1 ∪p C2 → Rn.
If f : C → Rn is a reducible tropical morphism of degree d, then fi : Ci → Rn is a
tropical morphism of degree di and d1+d2 = d . In particular, if d = 2 then d1 = d2 = 1.

2.2. Tropical linear spaces

Defining tropical linear spaces of Rn in full generality would require much more material
than needed in the rest of the paper. Moreover this would force us to make the distinction
between realizable and non-realizable tropical linear spaces, a notion we want to keep
out of the scope of this note. Instead, we define a restricted class of tropical linear spaces
of Rn, which we call complete tropical linear spaces. For a general definition and study
of tropical linear spaces, we refer to [Spe08].

Given 1 ≤ i < j ≤ n + 1, we denote by Ei,j the convex polyhedron of Rn obtained
by taking all non-negative real linear combinations of all the vectors Uk but Ui and Uj ,
and we define

H n
0 =

⋃
1≤i<j≤n+1

Ei,j .

Definition 2.4. A tropical hyperplane of Rn is the translation of H n
0 along any vector

of Rn.
A complete tropical linear space of dimension j is the intersection of n − j tropical

hyperplanes in general position. The ambient space Rn is a complete tropical linear space
of dimension n.

One could avoid the genericity assumption in Definition 2.4 by considering tropical
(or stable) intersections of tropical hyperplanes in Rn. We refer to [Mik06] or [RGST05]
for more details.

A tropical linear space of dimension j is a finite polyhedral complex of pure dimen-
sion j .

Example 3. A tropical plane and a tropical line in R3 are depicted in Figure 3.

Fig. 3. A tropical plane and a tropical line in R3.
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2.3. Tropical enumerative geometry

Now that we have defined tropical rational curves and complete tropical linear spaces
in Rn, we can play the same game as in Section 1. Namely, let us fix some integers
d ≥ 1, n ≥ 2, γ ≥ 2, l1 ≥ 1, . . . , lγ ≥ 1 subject to equality (1), and let us choose
a configuration ω = {L1, . . . , Lγ } of complete tropical linear spaces in Rn such that
codimLj = lj for j = 1, . . . , γ . Then we define TC(ω) as the set of all minimal rational
morphisms f : C → Rn of degree d such that f (C) intersects all tropical linear spaces
in ω. This game is related to Section 1 by the following fundamental theorem.

Theorem 2.5 (Correspondence Theorem, [Mik05], [Mik], [NS06]). If ω is generic, then
the set TC(ω) is finite and composed of tropical morphisms transverse to infinity. More-
over, to each element f in TC(ω), one can associate a positive integer number µ(f ),
called the multiplicity of f , which depends only on f and ω, such that

Nd,n(l1, . . . , lγ ) =
∑

f∈TC(ω)
µ(f ).

Proof. As explained in [BBM, Section 6] the multiplicity of f reduces to local computa-
tions, which are done in [NS06]. ut

There is a combinatorial definition of the integer µ(f ) just in terms of the tropical mor-
phism f and the configuration ω. However we will not need it in this paper, so instead of
giving the precise definition of µ(f ), let us just explain its geometrical meaning.

Theorem 2.5 is obtained by degenerating the standard complex structure on (C∗)n via
the following self-diffeomorphism of (C∗)n:

Ht : (C∗)n→ (C∗)n, (zi) 7→

(
|zi |

1
log t

zi

|zi |

)
,

Namely, for any tropical complete linear space Lj of codimension lj in ω, there exists
a family (Lt,j )t>0 of complex linear spaces in (C∗)n of codimension lj such that the set
Log◦Ht (Lt,j ) converges to Lj when t →∞, in the Hausdorff metric on compact subsets
of (R∗)n. The map Log is defined by Log(zi) = (log |zi |). Hence to each t , we associate
a configuration ωt = {Lt,1, . . . , Lt,γ } of linear subspaces of (C∗)n. For t large enough,
the configuration ωt is generic if ω is generic, so the complex rational curves of degree d
passing through all the linear spaces in ωt form a finite set C(ωt ). It turns out, and this is
the core of Theorem 2.5, that the set Log◦Ht (C(ωt )) converges to the set TC(ω), and that
for any tropical morphism f ∈ TC(ω) there exist exactly µ(f ) complex curves in C(ωt )
whose image under Log ◦Ht converge to f (C).

Suppose now that the linear spaces Lt,j are chosen to be all real (this is always pos-
sible). In particular, all curves in C(ωt ) are either real or come in pairs of complex con-
jugate curves. A very important property of the map Ht is that it commutes with the
standard complex conjugation in (C∗)n. As a consequence, both curves in a pair of com-
plex conjugate curves in C(ωt ) have the same image under Log◦Ht . In particular we have
the following lemma, where [µ(f )]2 denotes the value modulo 2 of the integer µ(f ).
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Lemma 2.6. If ω is generic, then there exists a generic configuration � of real linear
spaces in RP n such that there exist at least

∑
f∈TC(ω)[µ(f )]2 real rational curves of

degree d in RP n intersecting all linear spaces in �.

Theorem 1.1 is a consequence of Theorem 2.5 and Lemma 2.6: we exhibit generic con-
figurations ω such that the set TC(ω) contains exactly N2,n(l1, . . . , lγ ) distinct tropical
curves. Hence, all of them must have multiplicity 1, which implies the maximality of
the corresponding enumerative problem by Lemma 2.6. The main tool to exhibit such
configurations ω is the floor decomposition technique.

2.4. Enumeration of tropical reducible conics

Here we state some easy facts about a small variation of the problem presented in Sec-
tion 2.3. Namely, we enumerate tropical reducible conics passing through a generic col-
lection of complete tropical linear spaces.

The next lemma is standard (see for example [BBM] or [GKM09]).

Lemma 2.7. Let α be a combinatorial type of reducible morphisms f1 ∪p f2 : C1 ∪p C2
→ Rn of degree 2. Then the space of all reducible tropical morphisms with combinatorial
type α is naturally a convex polyhedron of dimension at most 3n− 2, with equality if and
only if Ci is trivalent and pi is not a vertex of Ci for i = 1, 2.

Let us fix some integers l0 ≥ 0 and l11 , . . . , l
1
γ1
, l21 , . . . , l

2
γ2
≥ 1 such that

l0 +

2∑
i=1

γi∑
j=1

(lij − 1) = 3n− 2

and let us choose a tropical complete linear space L0 in Rn of codimension l0 and
two configurations ω1 and ω2 of complete tropical linear spaces in Rn such that ωi =
{Li1, . . . , L

i
γi
} with codimLij = lij . Then we define TCred(L0, ω

1, ω2) as the set of all
reducible rational morphisms f = f1 ∪p f2 : C1 ∪p C2 → Rn of degree 2 such that
fi(Ci) intersects all tropical linear spaces in ωi for i = 1, 2 and f (p) ∈ L0. Note that if
TCred(L0, ω

1, ω2) 6= ∅, we necessarily have

γi∑
j=1

(lij − 1) ≤ 2n− 2 for i = 1, 2.

The next lemma is a straightforward application of Lemma 2.7 and standard tech-
niques in tropical enumerative geometry (see for example [BBM], [NS06], or [GKM09]).

Lemma 2.8. For a generic choice of L0, ω1, and ω2, the set TCred(L0, ω
1, ω2) is finite,

and composed of tropical morphisms transverse to infinity.

Note that we can pose the same problem in complex geometry, and that we can easily
give the answer in terms of the numbers N1,n. Namely, let L0 be a linear space in CP n of
codimension l0, and ω1 and ω2 two configurations of linear spaces in CP n such that ωi =
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{Li1, . . . , L
i
γj
} with codimLij = l

i
j . Then we defineN red

2,n(l0, {l
1
1 , . . . , l

1
γ1
}, {l21 , . . . , l

2
γ1
}) as

the number of reducible conics C1 ∪p C2 in CP n such that Ci intersects all spaces in ωi

for i = 1, 2 and p ∈ L0.

Lemma 2.9. With the hypothesis above, we have

N red
2,n(l0, {l

1
1 , . . . , l

1
γ1
}, {l21 , . . . , l

2
γ2
}) =

2∏
i=1

N1,n

(
2n− 1−

γi∑
j=1

(lij − 1), li1, . . . , l
i
γi

)
.

Proof. Let Vi be the algebraic variety in CP n given by the union of all lines pass-
ing through all linear spaces in ωi . By definition, the number N red

2,n(l0, {l
1
1 , . . . , l

1
γ1
},

{l21 , . . . , l
2
γ1
}) is equal to the number of intersection points in V1 ∩ V2 ∩ L0, i.e. is equal

to the product of the degrees of V1 and V2. Since the configuration of linear spaces is
generic, Vi has dimension 2n− 1−

∑γi
j=1(l

i
j − 1). The degree of Vi is the number of in-

tersection points of Vi with a generic linear space in CP n of complementary dimension,
and this number is by definition precisely N1,n(2n− 1−

∑γi
j=1(l

i
j − 1), li1, . . . , l

i
γi
). ut

3. Floor decomposition of tropical curves

Here we explain how to enumerate complex curves of degree 1 and 2 with the help of
the floor decomposition technique. This technique works for any degree (see [BM07],
[BM08], [BM]) but the exposition of the method in its full generality would require a
quite heavy formalism, which in our opinion would harm understanding this text. Hence
we just give the main idea of the method before focusing on the degree 1 and 2 cases.
Note that the floor decomposition technique has strong connections with the Caporaso
and Harris method (see [CH98]), extended later by Vakil (see [Vak00b], [Vak00a]), and
with the neck-stretching method in symplectic field theory (see [EGH00]).

We denote by π : Rn → Rn−1 the linear projection forgetting the last coordinate.
Given a minimal tropical morphism f : C → Rn, the morphism π ◦ f : C → Rn−1 is
not minimal in general. However, there exists a unique tropical curve C′ equipped with
a map ρ : C → C′ and a unique minimal tropical morphism f ′ : C′ → Rn−1 such that
f = f ′ ◦ ρ. We say that f ′ is induced by π ◦ f , and that f is a lifting of f ′.

3.1. General method

The starting idea of floor decomposition is to compute the numbers Nd,n(l1, . . . , lγ ) by
induction on the dimension n. As easy as it sounds, this approach does not work straight-
forwardly and one has to act carefully: It is easy to compute that through one point p
and two tropical lines L1 and L2 in R3 passes exactly one tropical line L (see Example
4). However, there exist infinitely many tropical lines in R2 passing trough π(p), π(L1),
and π(L2), and without knowing L, it is not clear at all which one of these planar lines is
π(L).

To make the induction work, we first stretch the configuration ω in the direction Un =
(0, . . . , 0,−1). Then the tropical curves we are counting break into several floors for
which we can apply induction.
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Example 4. Let us explain how to use the floor decomposition technique in a simple
case. Let us choose a point p and two tropical lines L1 and L2 in R3 such that L1
(resp. L2) consists of only one edge with direction (0, 1, 0) (resp. (1, 0, 0)) contained
in the horizontal plane with equation z = a1 (resp. z = a2). If the third coordinate of p is
much greater than a1 which in its turn is much greater than a2, then the unique tropical
line L in R3 passing through p, L1, and L2 is depicted in Figure 4, and π(L) is the unique
tropical line in R2 passing through π(p) and π(L1) ∩ π(L2).

ππ

Fig. 4. Floor decomposition technique to compute N1,3(3, 2, 2) = 1.

Definition 3.1. Let C be a rational tropical curve and f : C → Rn a tropical morphism.
An elevator of f is an edge e of C with uf,e = (0, . . . , 0,±1). A floor of f is a connected
component of C minus all its elevators.

Note that if f is a morphism of degree d in Rn and F is a floor of f , then C induces
a structure of tropical curve on F and π ◦ f|F : F → Rn−1 is a tropical morphism of
degree 1 ≤ d ′ ≤ d. The integer d ′ is called the degree of F .

Example 5. Examples of planar and spatial conics are depicted in Figure 5. Elevators are
indicated by dotted lines.

(a) A planar conic with two floors (b) A planar conic with one floor

(c) A spatial conic with one floor

Fig. 5

Definition 3.1 extends to any tropical varieties in Rn, but we keep restricting ourselves
to complete tropical linear spaces.
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Definition 3.2. Let L be a complete tropical linear space in Rn of codimension j . The
wall (resp. floor) of L is the union of all faces of L of codimension j which contain (resp.
do not contain) the direction (0, . . . , 0, 1).

Note that if L is a complete tropical linear space of codimension j in Rn with wall
W and floor F , then π(W) is a complete tropical linear space of codimension j in Rn−1,
and π(F ) = π(L) is a complete tropical linear space of codimension j − 1 in Rn−1.

Example 6. A tropical plane L in R3 together with its wall W are depicted in Figure 6.
Clearly, π(L) = R2 and π(W) is a tropical line in R2.

π

L

W π(W)

Fig. 6. π(L) = R2 and π(W) is a tropical line.

Let us fix some integers d ≥ 1, n ≥ 2, γ ≥ 2, l1 ≥ 1, . . . , lγ ≥ 1 subject to
equality (1), and let us choose a generic configuration ω = {L1, . . . , Lγ } of complete
tropical linear spaces in Rn such that codimLj = lj for j = 1, . . . , γ . As before, TC(ω)
is the set of all rational tropical morphisms f : C → Rn of degree d such that f (C)
intersects all tropical linear spaces in ω.

Definition 3.3. An element L of ω is called a vertical (resp. horizontal) constraint for
f ∈ TC(ω) if f (C) ∩ L lies in the wall (resp. floor) of L.

Let us denote by Vert(Lj ) the set of vertices of the complete tropical linear space Lj ,
and let us fix a hypercube Hn−1 in Rn−1 such that the cylinder Hn−1 × R contains the
set
⋃γ

j=1 Vert(Lj ). Given two points v = (v1, . . . , vn) and w = (w1, . . . , wn) in Rn, we
define |v−w|n = |vn−wn|. Finally, we define RH to be the length of the edges of Hn−1,
and

R(ω) = min
j 6=k, v∈Vert(Lj ), w∈Vert(Lk)

|v − w|n.

The following observation is the key point of the technique.

Proposition 3.4 (Brugallé–Mikhalkin [BM07], [BM08], [BM]). There exists a real
number D(n, d), depending only on n and d, such that if R(ω) ≥ RHD(n, d) then for
each morphism f : C → Rn in TC(ω) and for each floor F of f , f (F) meets exactly
one horizontal constraint.

Definition 3.5. If R(ω) ≥ RHD(n, d), we say that ω is a (d, n)-decomposing configu-
ration.
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Note that requiring a configuration ωT to be (d, n)-decomposing is the same as im-
posing conditions on the relative position of the vertices of elements of ωT. In particular,
it makes sense to say that a configuration ωT is (d, n)-decomposing even if its elements
do not satisfy equality (1).

The choice of the preferred direction Un provides a natural partial order among the
tropical linear spaces.

Definition 3.6. Let L and L′ in Rn be two complete tropical linear spaces. We say that
L is higher than L′, and write L� L′, if any vertex of L has last coordinate greater than
all vertices of L′.

Note that Rn is higher than any other tropical linear space. Before explaining in de-
tail the case of lines and conics, we need to introduce a notation. Given a generic con-
figuration {L1, . . . , Lγ } of complete tropical linear spaces in Rn, k ∈ {1, . . . , γ }, and
A ⊂ {1, . . . , γ }, we define the following complete tropical linear spaces in Rn−1:

L′k = π(Wk), L̂′k = π(Lk), and L̃′A =
⋂
j∈A

π(Lj ),

where Wj is the wall of Lj . We also denote by L̃′k the complete tropical linear space
L̃′
{1,...,k}.

3.2. The case d = 1

Suppose that d = 1, so that
∑γ

j=1(lj − 1) = 2n − 2. We choose a (1, n)-decomposing
configuration ω = {L1, . . . , Lγ } of complete tropical linear spaces in Rn, n ≥ 3, such
that Lj has codimension lj and Lj+1 is higher than Lj for j = 1, . . . , γ −1. We denote by
Wk the wall of the constraint Lk . We denote by TC(ω)(k) the subset of tropical morphisms
in TC(ω) whose floor meets the horizontal constraint Lk (remember that in degree one,
the floor is unique). According to Proposition 3.4, we have

TC(ω) =
γ⊔
k=1

TC(ω)(k).

Given k in {1, . . . , γ }, we define ω′(k) = {L̃′k−1, L̂
′

k, L
′

k+1, . . . , L
′
γ }. Since ω is generic,

the tropical linear space L′k has codimension lk , L̂′k has codimension lk−1, and L̃′k−1 has
codimension

∑k−1
j=1(lj − 1) if non-empty. If f : C → Rn is an element of TC(ω)(k), then

the tropical morphism π ◦f : C → Rn induces obviously an element of TC(ω′(k)). More-
over, any tropical morphism f ′ in TC(ω′(k)) can be lifted in a unique way as an element f
of TC(ω)(k): the only unknown is the location of the elevator of f , which is given by the
unique intersection point of f ′(C′)with L̃′k−1 (see Examples 4 and 7). Hence, there exists
a natural bijection between the two sets TC(ω)(k) and TC(ω′(k)). Moreover this bijection
respects multiplicity of tropical curves. In other words, we have the following proposition:
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Proposition 3.7 (Brugallé–Mikhalkin [BM07], [BM08], [BM]). For any k in {1, . . . , γ },
we have ∑

f∈TC(ω)(k)
µ(f ) =

∑
f ′∈TC(ω′(k))

µ(f ′).

Note that TC(ω′(k)) = ∅ if k = 1 or
∑k−1
j=1(lj−1) > n. Proposition 3.7 allows one to com-

pute all the numbers N1,n out of the numbers N1,n−1. Since it is trivial that N1,2(2) = 1,
all the numbers N1,n can be computed using Proposition 3.7.

Example 7. Let ω = {L1, L2, L3, L4} be a (1, 3)-decomposing configuration of four
lines in R3 with Lj+1 � Lj . The set TC(ω)(k) is non-empty only for k = 2, 3, and the
corresponding projected configurations in R2 are ω′(2) = {π(L1), π(L2), π(W3), π(W4)}

and ω′(3) = {π(L1) ∩ π(L2), π(L3), π(W4)} (see Figure 7a). Since there exists only one
line passing through two points in the plane, we get N1,3(2, 2, 2, 2) = 1+ 1 = 2.

(a)

L2

L3, L4

L1

L3

L4

L1

L2

(b) Line in TC(ω)(2) (c) Line in TC(ω)(3)

Fig. 7. Floor decomposition technique to compute N1,3(2, 2, 2, 2) = 2.

To depict tropical curves passing through a decomposing configuration, we use the
following convention: a floor (resp. elevator) of the curve is represented by an ellipse
(resp. a vertical edge); a constraint intersecting a floor (resp. elevator) is depicted by a
dotted segment intersecting the corresponding ellipse (resp. vertical edge); a constraint
is represented by a horizontal (resp. vertical) segment if it is a horizontal (resp. vertical)
constraint for the curve.
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For example, the two tropical lines passing through the four lines L1, . . . , L4 are
represented by the diagrams depicted in Figures 7b and c.

Corollary 3.8. Given l1, . . . , lγ ≥ 1 such that
∑γ

j=1(lj − 1) = 2n− 2, we have

N1,n(l1, . . . , lγ ) =

γ∑
k=2

N1,n−1

(k−1∑
i=1

(li − 1), lk − 1, lk+1, . . . , lγ

)
.

Example 8. Let us compute the numbers C(n, l) = N1,n(l, l1, . . . , l2n−1−l) with 2 ≤
l ≤ n and l1 = · · · = l2n−1−l = 2. According to Corollary 3.8, for any n ≥ 2 and
3 ≤ l ≤ n we get

C(n, l) = C(n− 1, l − 1)+ C(n, l + 1). (2)

Hence we can extend the definition of the numbers C(n, l) for all pairs (n, l) with n ≥ 1
according to relation (2), which is a Pascal type relation. The sequence

A(n, l) =

(
2n− l − 1
n− 1

)
−

(
2n− l − 1

n

)
also satisfies relation (2), and we have

∀n ≥ 1 C(n, 0) = A(n, 0) = 0 and C(n, n) = A(n, n) = 1

so these two sequences must be equal on the set {(n, l) ∈ Z2
: n ≥ 1}. Hence we get

∀n ≥ 2, ∀l ∈ {2, . . . , n}, C(n, l) =

(
2n− l − 1
n− 1

)
−

(
2n− l − 1

n

)
. (3)

In particular, we find again the Catalan numbers

C(n, 2) = C(n, 1) =
1
n

(
2n− 2
n− 1

)
.

Note that Corollary 3.8 and (3) almost immediately imply that

∀n ≥ 2, ∀k, l ∈ {2, . . . , n}, N1,n(k, l, l1, . . . , l2n−k−l) =

(
2n− l − k
n− k

)
−

(
2n− l − k

n

)
where l1 = · · · = l2n−k−l = 2.

3.3. The case d = 2

Let us suppose that d = 2, so that
∑γ

j=1(lj − 1) = 3n − 1. We choose a (2, n)-
decomposing configuration ω = {L1, . . . , Lγ } of complete tropical linear spaces in Rn,
n ≥ 3, such that Lj has codimension lj ≥ 2 and Lj+1 is higher than Lj for j =
1, . . . , γ − 1. As in Section 3.2, we denote by Wk the wall of the constraint Lk . Given an
element f of TC(ω), either f has one floor of degree 2, or it has two floors of degree 1.

Let us first deal with the case of a conic with one floor of degree 2. Let k be an
integer in {1, . . . , γ }, and A t B a partition of {1, . . . , k − 1} into two sets. We denote
by TC(ω)(k,A,B) the set of all tropical morphisms in TC(ω) with one floor F of degree 2
such that
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• the floor F meets the horizontal constraint Lk;
• one of the two elevators of f meets all the constraints Lj with
j ∈ A, while the other elevator meets all the constraints Lj with
j ∈ B.

B A

Lk

Lk+1, . . . , Lγ

According to Proposition 3.4, the set of all tropical morphisms in TC(ω) with a single
floor is equal to

γ⊔
k=1

⊔
AtB={1,...,k−1}

TC(ω)(k,A,B).

We define ω′(k,A,B) = {L̃′A, L̃
′

B , L̂
′

k, L
′

k+1, . . . , L
′
γ }. The complete tropical linear space

L′k has codimension lk , the space L̂′k has codimension lk − 1, and L̃′A (resp. L̃′B ) has
codimension

∑
j∈A(lj − 1) (resp.

∑
j∈B(lj − 1)) if non-empty. As in Section 3.2, there is

a natural map

φ(k,A,B) : TC(ω)(k,A,B)→ TC(ω′(k,A,B)).

In contrast to Section 3.2, the map φ(k,A,B) is injective and respects multiplicity if and
only if

codim L̃′A ≥ 2, codim L̃′B ≥ 2, and codim L̂′k ≥ 2.

In general, given f ′ ∈ TC(ω′(k,A,B)) we have∑
f∈φ−1

(k,A,B)
(f ′)

µ(f ) = 2m(k,A,B)µ(f ′)

where m(k,A,B) is the number of spaces in {L̃′A, L̃
′

B , L̂
′

k} of codimension 1. The factor
2m(k,A,B) is just the manifestation of the fact that a conic in projective space intersects
a hyperplane in two points (counted with multiplicity). Altogether we hence have the
following proposition.

Proposition 3.9 (Brugallé–Mikhalkin [BM07], [BM08], [BM]). Given any k,A, and B
as above, we have ∑

f∈TC(ω)(k,A,B)
µ(f ) = 2m(k,A,B)

∑
f ′∈TC(ω′(k,A,B))

µ(f ′).

We now treat the case of tropical morphisms f in TC(ω) with two floors of degree 1. Let
k1 < k2 be two integers in {1, . . . , γ }, AtB be a partition of {1, . . . , k1− 1}, D a subset
of {k1 + 1, . . . , k2 − 1}, and C1 t C2 a partition of {k1 + 1, . . . , γ } \ ({k2} ∪D).

We denote by TC(ω)(k1,k2,A,B,C1,C2,D) the set of tropical morphisms in TC(ω) with
two floors F1 and F2 of degree 1 such that
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• the floor Fi meets the constraint Lki , and all the constraints Lj
with j ∈ Ci ;
• one of the two unbounded elevators of f meets all the constraints
Lj with j ∈ A, while the other unbounded elevator meets all the
constraints Lj with j ∈ B;
• the bounded elevator of f meets all the constraints Lj with j ∈ D.

B A

C1
D

Lk2

C2

Lk1

According to Proposition 3.4, the set of all tropical morphisms in TC(ω) with two
floors is equal to ⊔

1≤k1<k2≤γ

⊔
A,B,C1,C2,D

TC(ω)(k1,k2,A,B,C1,C2,D).

Given i = 1, 2, we define the following integers:

l′ij = lj if j ∈ Ci, l′A =
∑
j∈A

(lj − 1), l′10 = 2n−
∑
j∈C1

(l′j − 1)− l′A − l
′

B − l
′

k1
,

l′ki = lki − 1, l′B =
∑
j∈B

(lj − 1), l′20 = 2n− 2−
∑
j∈C2

(l′j − 1)− l′k2
.

Finally, we denote by γi the cardinals of the set Ci .

Proposition 3.10 (Brugallé–Mikhalkin [BM07], [BM08], [BM]). Given k1, k2, A,B,

C1, C2, and D as above, we have∑
f∈TC(ω)(k1,k2,A,B,C1,C2,D)

µ(f )

= N1,n−1(l
′1
i1
, . . . , l′1iγ1

, l′A, l
′

B , l
′

k1
, l′10 )N1,n−1(l

′2
j1
, . . . , l′2jγ2

, l′k2
, l′20 ).

Let us give a heuristic of the proof of Proposition 3.10. We define ω′1 =

{L̃′A, L̃
′

B , L̂
′

k1
, L′j : j ∈ C1}, ω′2 = {L̂′k2

, L′j : j ∈ C2}, and ω(k1,k2,A,B,C1,C2,D) =

(L̃′D, ω
′1, ω′2). As in Section 3.2, there is a natural and bijective map

φ : TC(ω)(k1,k2,A,B,C1,C2,D)→ TCred(ω
(k1,k2,A,B,C1,C2,D))

and Proposition 3.10 now follows from Lemma 2.9.
Once again, since it is trivial that N2,1(2) = 1 and N2,2(5) = 1, all the numbers Nn,2

can be computed inductively using Propositions 3.7, 3.9, and 3.10.

Example 9 (see [BM07]). In Figure 8, we depict all possible floor decompositions for
tropical conics in R3 passing through a (2, 3)-decomposing configuration of eight tropical
lines. In each case, we specify the number of (k1, k2, A,B,C1, C2,D) or (k, A,B) with
a non-empty corresponding set of tropical morphisms, and the sum of the multiplicities
of the corresponding curves in TC(ω)(k1,k2,A,B,C1,C2,D) or TC(ω)(k,A,B) for each such
choice.
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5, µ = 1 3, µ = 1 10, µ = 1 12, µ = 1 3, µ = 1

5, µ = 1 3, µ = 1 10, µ = 1 12, µ = 1

3, µ = 1 1, µ = 8 3, µ = 4 3, µ = 2

Fig. 8. Floor decompositions of the 92 tropical conics passing through eight lines in R3.

4. Maximal configurations for conics

4.1. Well-ordered totally decomposing configurations

To prove Theorem 1.1, we exhibit maximal configurations, that is, configurations ω of
complete tropical linear spaces such that the cardinality |TC(ω)| is equal to the corre-
sponding Gromov–Witten invariant.

In this section, we define well-ordered totally decomposing configurations. The rest
of the paper will be devoted to the proof that any such configuration is maximal when
dealing with conics.

Definition 4.1. Let ω = {L1, . . . , Lγ } be a (d, n)-decomposing configuration of com-
plete tropical linear spaces in Rn, and let Wi be the wall of Li . We say that ω is a (d, n)-
totally decomposing configuration if it satisfies one of the following two conditions:

• n = 2;
• for any subset 0 ⊂ {1, . . . , γ } the configuration {π(Li), π(Wj ) : i ∈ 0, j /∈ 0} is
(d, n− 1)-totally decomposing.

Since a hyperplane in Rn has a single vertex, the existence of totally decomposing
configurations of tropical hyperplanes is straightforward. Now suppose that we want to
construct a totally decomposing configuration ω = {L1, . . . , Lγ } with codimLi = li . We
start with a totally decomposing configuration {H1, . . . , Hγ } of tropical hyperplanes, and
we construct Li by intersecting li copies of Hi translated by very small vectors.

Remark. Let {L1, . . . , Lγ } be a generic totally decomposing configuration of complete
tropical linear spaces, 0 ⊂ {1, . . . , γ }, and ω′ the configuration {π(Li), π(Wj ) : i ∈ 0,
j /∈ 0}. Then it follows directly from Definition 4.1 that given any elements L1, . . . ,Lk
of ω′, the floor of the complete tropical linear space

⋂k
i=1 Lk is contained in the floor of

the lowest space among L1, . . . ,Lk (see Figure 9).
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π(L4)

⋂4
i=2 π(Li)

π(L2)

π(L5)

π(L6)

π(L3)

π(W6)

π(L1)

Fig. 9. ω = {L1, . . . , L6}.

The next lemma provides an alternative proof of Sottile’s Theorem about maximality
of real enumerative problems concerning lines in projective spaces.

Lemma 4.2. Let ω be a (1, n)-totally decomposing configuration of complete tropical
linear spaces in Rn subject to equality (1) with d = 1. Then ω is maximal.

Proof. We use induction on n. Clearly, the lemma is true for n = 2. Suppose now that
n ≥ 3 and that the lemma is true in dimension n− 1. In what follows, we use the notation
of Section 3.2. Any projected configuration ω′(k) in Rn−1 is (1, n− 1)-totally decompos-
ing, and thus maximal by the induction hypothesis. Hence any tropical morphism f in
TC(ω′(k)) has multiplicity 1. Since the two sets TC(ω)(k) and TC(ω′(k)) have the same
cardinality, we deduce from Proposition 3.7 that

∑
f∈TC(ω)

µ(f ) =

γ∑
k=2

|TC(ω)(k)| = |TC(ω)|.

In other words, the configuration ω is maximal. ut

It turns out that (2, n)-totally decomposing configurations are not necessarily maximal.

Definition 4.3. Let ω = {L1, . . . , Lγ } be a (d, n)-totally decomposing configuration of
complete tropical linear spaces in Rn, and let Wi be the wall of Li . We say that ω is a
well-ordered (d, n)-totally decomposing configuration if it satisfies one of the following
two conditions:

• n = 2;
• for any subset 0 ⊂ {1, . . . , γ } the configuration {π(Li), π(Wj ) : i ∈ 0, j /∈ 0}

is a well-ordered (d, n − 1)-totally decomposing configuration; moreover for any i
and j such that Li � Lj , we have π(Li) � π(Lj ) and π(Wi) � π(Lj ) whenever
the following three conditions hold: codimπ(Lj ) ≥ 1, π(Li) � π(Wj ) and π(Wi)

� π(Wj ).
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Again it is trivial that well-ordered totally decomposing configurations of hyperplanes
exist, from which it follows that there exists a well-ordered totally decomposing configu-
ration ω = {L1, . . . , Lγ } with codimLi = li for any fixed positive integers l1, . . . , lγ .

Remark. Let {L1, . . . , Lγ } be a generic well-ordered totally decomposing configu-
ration of complete tropical linear spaces, 0 ⊂ {1, . . . , γ }, and ω′ the configuration
{π(Li), π(Wj ) : i ∈ 0, j /∈ 0}. Then it follows directly from Definition 4.3 that
given any elements L1, . . . ,Lk of ω′, the configuration obtained from ω′ by replacing
L1, . . . ,Lk by

⋂k
i=1 Li is still a well-ordered totally decomposing configuration (see

Figure 9, where L6 � · · · � L1).

We will prove in Proposition 4.5 that a well-ordered (2, n)-totally decomposing con-
figuration is maximal. We will treat the case of tropical conics with two floors of degree
one using the total decomposition hypothesis more or less as in Lemma 4.2 (see Proposi-
tion 4.7), and we will treat the case of tropical conics with one floor of degree 2 using the
well-order hypothesis.

Before proving Proposition 4.5 in its full generality, let us first illustrate by a simple
example how the well-order hypothesis solves the maximality problem for the case of
tropical conics with one floor of degree 2.

4.2. Conics through eight lines in R3

Maximality of the real enumerative problem concerning conics passing through eight
spatial lines in general position in RP 3 was first announced by Brugallé and Mikhalkin
in [BM07].

Let us fix a well-ordered (2, 3)-totally decomposing configuration ω = {L1, . . . , L8}

of eight tropical lines in R3. We suppose that L8 � L7 � · · · � L1, and we denote
by Wi the wall of Li . Recall that notations have been defined in Section 3.3.

Lemma 4.4. If the triple (k, A,B) is such that TC(ω)(k,A,B) is non-empty, then it con-
tains exactly 2m(k,A,B) tropical morphisms, all of them of multiplicity 1.

Proof. Let us fix such a triple (k, A,B). It is easy to see that the three higher lines L6, L7
and L8 are vertical constraints for elements of TC(ω)(k,A,B) (see Figure 8). In particular,
the configuration ω′(k,A,B) in R2 contains the three points w8 = π(W8), w7 = π(W7),
and w6 = π(W6). Since ω is a well-ordered (2, 3)-totally decomposing configuration,
the configuration ω′(k,A,B) is (2, 2)-decomposing and the points w8, w7, and w6 are its
highest elements. Moreover, N2,2(2, 2, 2, 2, 2) = 1 so ω′(k,A,B) is maximal. Hence the
set TC(ω′(k,A,B)) reduces to a unique plane tropical conic f : C → R2 (passing through
the three points w8, w7, w6, and two others) which intersects the m(k,A,B) = 1, 2 or 3
tropical lines in ω′(k,A,B).

It remains to show that each of these m(k,A,B) tropical lines intersects the tropical
conic f (C) in two distinct points, which would imply the lemma by Proposition 3.9.
According to what we said above about the configuration ω′(k,A,B), the tropical conic f
has two floors of degree 1 passing through the points w8 and w6, while the bounded
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w7
w6

w8

Fig. 10. Floor decomposition of a planar conic.

elevator of f passes through w7 (see Figure 10). Since any tropical line in ω′(k,A,B) is
lower than w6, it must intersect f (C) along its unbounded elevators. In particular, it
intersects f (C) in two distinct points. ut

It is immediate that the set TC(ω)(k1,k2,A,B,C1,C2,D) is either empty of composed of a
unique tropical morphism of multiplicity 1 (see Figure 8). So the set TC(ω) is composed
of tropical morphisms of multiplicity 1. Hence according to Lemma 2.6, there exists a
generic configuration of eight lines in RP 3 such that exactly 92 real conics intersect these
eight lines.

4.3. General case

Theorem 1.1 is a direct consequence of Proposition 4.5, Theorem 2.5, and Lemma 2.6.
The next proposition relies on Proposition 4.7, which is proved in the next section.

Proposition 4.5. Let ω be a well-ordered (2, n)-totally decomposing configuration of
complete tropical linear spaces in Rn subject to equality (1). Then ω is maximal.

Proof. Our goal is to prove that
∑
f∈TC(ω) µ(f ) = |TC(ω)|. This is obviously true when

n = 2 since the left hand side is 1. Suppose that n ≥ 3 and the equality is true in lower
dimensions. Since ω is (2, n)-decomposing, we have∑
f∈TC(ω)

µ(f )

=

∑
(k,A,B)

( ∑
f∈TC(ω)(k,A,B)

µ(f )
)
+

∑
(k1,k2,A,B,C1,C2,D)

( ∑
f∈TC(ω)(k1,k2,A,B,C1,C2,D)

µ(f )
)

where the sums are taken following Section 3.3.
Suppose that TC(ω)(k,A,B) is non-empty. By induction, ω′(k,A,B) is a well-ordered

(2, n − 1)-totally decomposing configuration and so is maximal. Moreover, the map
φ(k,A,B) : TC(ω)(k,A,B) → TC(ω′(k,A,B)) is 2m(k,A,B)-to-1, counted with multiplici-
ties. Hence, it remains to show that any conic in TC(ω′(k,A,B)) intersects each of the
m(k,A,B) hyperplanes of ω′(k,A,B) in two distinct points, which would imply, by Propo-
sition 3.9, that

|TC(ω)(k,A,B)| = 2m(k,A,B)|TC(ω′(k,A,B))| = 2m(k,A,B)
∑

f ′∈TC(ω′(k,A,B))
µ(f ′)

=

∑
f∈TC(ω)(k,A,B)

µ(f ).
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We have ω′(k,A,B)={L̃′A, L̃
′

B , L̂
′

k, L
′

k+1, . . . , L
′
γ }, so a tropical hyperplaneH in ω′(k,A,B)

is either L̂′k , L̃
′

A or L̃′B . Since ω′(k,A,B) is a well-ordered configuration, L̂′k , L̃
′

A and L̃′B
are its three lowest elements. In particular, H is higher than at most two other elements
of ω′(k,A,B). The configuration ω′(k,A,B) is (2, n − 1)-decomposing, so any unbounded
elevator and any floor of a conic in TC(ω′(k,A,B)) has to intersect at least one element of
ω′(k,A,B) which is not a hyperplane. In particular, a hyperplane in ω′(k,A,B) intersects such
a conic strictly below the lowest floor, that is, along its two unbounded elevators in two
distinct points (see Figure 11).

Fig. 11. Floor decompositions in TC(ω′(k,A,B)) and hyperplanes.

Suppose that TC(ω)(k1,k2,A,B,C1,C2,D) is non-empty. According to Section 3.3, we
have

|TCred(ω
(k1,k2,A,B,C1,C2,D))| = |TC(ω)(k1,k2,A,B,C1,C2,D)|

≤

∑
f∈TC(ω)(k1,k2,A,B,C1,C2,D)

µ(f )

≤ N1,n−1(l
′1
i1
, . . . , l′1iγ1

, l′A, l
′

B , l
′

k1
, l′10 )N1,n−1(l

′2
j1
, . . . , l′2jγ2

, l′k2
, l′20 ). (4)

According to Proposition 4.7 (see the next section) applied to ω(k1,k2,A,B,C1,C2,D) =

(L̃′D, ω
′1, ω′2), we get

|TCred(ω
(k1,k2,A,B,C1,C2,D))|

= N1,n−1(l
′1
i1
, . . . , l′1iγ1

, l′A, l
′

B , l
′

k1
, l′10 )N1,n−1(l

′2
j1
, . . . , l′2jγ2

, l′k2
, l′20 ).

Hence all inequalities in (4) are in fact equalities, and we have

|TC(ω)(k1,k2,A,B,C1,C2,D)| =

∑
f∈TC(ω)(k1,k2,A,B,C1,C2,D)

µ(f ),

which completes the proof of the proposition. ut

4.4. Reducible conics through a well-ordered totally decomposing configuration

A reducible tropical morphism f : C → Rn of degree 2 has either two floors of degree 1,
or a unique (reducible) floor of degree 2. The proof of Proposition 3.4 only relies on
the finiteness of the set TC(ω) and on vectors uf,e for e ∈ Edge∞(C). In particular
Lemma 2.8 implies that Proposition 3.4 still holds for elements of TCred(L0, ω

1, ω2). In
this section we compute the numbers of reducible tropical morphisms of degree 2 passing
through a particular configuration of complete tropical linear spaces in Rn.
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Let l0 ≥ 0 and l11 , . . . , l
1
γ1
, l21 , . . . , l

2
γ2
≥ 1 be some integers such that

l0 +

2∑
i=1

γi∑
j=1

(lij − 1) = 3n− 2.

We choose a complete tropical linear space L0 in Rn of codimension l0 and two configu-
rations ω1 and ω2 of complete tropical linear spaces in Rn such that ωi = {Li1, . . . , L

i
γi
}

with codimLij = l
i
j and Lij � Lij+1.

Definition 4.6. The configuration {L0, ω
1, ω2
} is said to be separated if the configuration

{L0} ∪ω
1
∪ω2 is a well-ordered (2, n)-totally decomposing configuration, and if L0 and

elements of ω1 are below elements of ω2.

Note that we do not make any assumption about the mutual position of L0 and
elements of ω1, and that the projection to Rn−1 of a separated configuration in Rn
is still separated. Given a separated configuration {L0, ω

1, ω2
} in Rn, we denote by

TN red
n (l0, {l

1
1 , . . . , l

1
γ1
}, {l21 , . . . , l

2
γ2
}) the cardinality of TCred(L0, ω

1, ω2). We will see
in Proposition 4.7 that this cardinality does not depend on L0, ω

1, and ω2 as long as
{L0, ω

1, ω2
} is separated.

Proposition 4.7. For any generic separated configuration {L0, ω
1, ω2
} in Rn, we have

TN red
n (l0, {l

1
1 , . . . , l

1
γ1
}, {l21 , . . . , l

2
γ2
}) =

∏
i=1,2

N1,n

(
2n− 1−

γi∑
j=1

(lij − 1), li1, . . . , l
i
γi

)
.

Proof. The case n = 2 is straightforward. Suppose now that n ≥ 3 and that the proposi-
tion is true in lower dimensions.

Let f : C1 ∪p C2 → Rn be an element of TCred(L0, ω
1, ω2). An elevator of f has to

meet at least one constraint, and the elements of ω2 are above L0 and the elements of ω1,
so f has two floors of degree 1; moreover the node of C is either on both elevators of C1
and C2, or on the floor of C1 and the elevator of C2 (see Figure 12).

C1

C2

p

p

C2

C1

Fig. 12

We define k0 as the smallest integer such that L1
k0

is higher than L0 if such an element
of ω1 exists, and by k0 = 0 otherwise. We denote by Fi the floor of Ci , i = 1, 2.

We consider the partition⊔
k0≤k1≤γ1
1≤k2≤γ2

Ck1,k2
1 t

⊔
1≤k2≤γ2

Ck2
2 t

⊔
1≤k1≤k0−1

1≤k2≤γ2

Ck1,k2
3

of the set TCred(L0, ω
1, ω2) where
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• Ck1,k2
1 is the set of all elements f1 ∪p f2 : C1 ∪p C2 → Rn in TCred(L0, ω

1, ω2) such
that p is on both elevators of f1 and f2, and the floor Fi meets the horizontal constraint
Liki

; note that Ck1,k2
1 = ∅ if k0 = 0;

• Ck2
2 is the set of all elements f1 ∪p f2 : C1 ∪p C2 → Rn in TCred(L0, ω

1, ω2) such that
p is on the floor F1, L0 is the horizontal constraint of F1, and the floor F2 meets the
horizontal constraint L2

k2
; note that Ck2

2 = ∅ if k0 ≤ 1;

• Ck1,k2
3 is the set of all elements f1 ∪p f2 : C1 ∪p C2 → Rn in TCred(L0, ω

1, ω2) such
that p is on the floor F1, and the floor Fi meets the horizontal constraint Liki .

We denote by W i
j (resp. W0) the wall of the constraint Lij (resp. L0). We consider the

following complete tropical linear spaces in Rn−1:

L′ij = π(W
i
j ), L̂′ij = π(L

i
j ), L̃

′k1,k2
0 = π(L0) ∩

⋂
i=1,2

⋂
1≤j≤ki−1

π(Lij ),

L̃′1k =
⋂

1≤j≤k−1

π(L1
j ), L̃

′k2
0 = π(L0) ∩

⋂
1≤j≤k2−1

π(L2
j ),

L′k2
0 = π(W0) ∩

⋂
1≤j≤k2−1

π(L2
j ),

and the following configurations:

ω
i,ki
1 = {L̂′iki , L

′i
ki+1, . . . , L

′i
γi
} for i = 1, 2,

ω1
2 = {L̃

′1
k0
, L′1k0

, . . . , L′1γ1
}, ω

1,k1
3 = {L̂′1k1

, L̃′1k1
, L′1k1+1, . . . , L

′1
γ1
}.

Given an element f of Ck1,k2
1 , the tropical morphism π ◦ f induces an element of

TCred(L̃
′k1,k2
0 , ω

1,k1
1 , ω

2,k2
1 ). Conversely any element f ′1 ∪p′ f

′

2 : C
′

1 ∪p′ C
′

2 → Rn−1 of
TCred(L̃

′k1,k2
0 , ω

1,k1
1 , ω

2,k2
1 ) has a unique lift f1 ∪p f2 : C1 ∪p C2 → Rn in Ck1,k2

1 ; the
elevators of f1 and f2 correspond to p′, and the node p is at the unique intersection
point of the elevator of Ci with L0. Hence, we find that the total number of tropical
morphisms f in Ck1,k2

1 is

TN red
n−1

(
l0 − 1+

∑
i=1,2

ki−1∑
j=1

(lij − 1), {l1k1
− 1, l1k1+1, . . . , l

1
γ1
}, {l2k2

− 1, l2k2+1, . . . , l
2
γ2
}

)
.

Given an element f of Ck2
2 , the tropical morphism π ◦ f induces an element of

TCred(L̃
′k2
0 , ω1

2, ω
2,k2
1 ). Conversely, any element f ′1 ∪p′ f

′

2 : C
′

1 ∪p′ C
′

2 → Rn−1 of
TCred(L̃

′k2
0 , ω1

2, ω
2,k2
1 ) has a unique lift f1 ∪p f2 : C1 ∪p C2 → Rn in Ck2

2 ; the elevator of
f2 corresponds to the node p′, the elevator of f1 corresponds to the unique intersection
point of C′1 and L̃′1k0

, and the node p corresponds to the unique intersection point of the

elevator of f2 and L0. Hence, the total number of tropical morphisms f in Ck2
2 is

TN red
n−1

(
l0 − 1+

k2−1∑
j=1

(l2j − 1),
{k0−1∑
j=1

(l1j − 1), l1k0
, . . . , l1γ1

}
, {l2k2
− 1, l2k2+1, . . . , l

2
γ2
}

)
.
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Given an element f of Ck1,k2
3 , the tropical morphism π ◦ f induces an element of

TCred(L′k2
0 , ω

1,k1
3 , ω

2,k2
1 ). Conversely, any element f ′1 ∪p′ f

′

2 : C
′

1 ∪p′ C
′

2 → Rn−1 of
TCred(L′k2

0 , ω
1,k1
3 , ω

2,k2
1 ) has a unique lift f1 ∪p f2 : C1 ∪p C2 → Rn in Ck1,k2

3 . Hence,
the total number of tropical morphisms f in Ck1,k2

3 is

TN red
n−1

(
l0+

k2−1∑
j=1

(l2j −1),
{k1−1∑
j=1

(l1j −1), l1k1
−1, l1k1+1, . . . , l

1
γ1

}
, {l2k2
−1, l2k2+1, . . . , l

2
γ2
}

)
.

Altogether with the induction hypothesis, we conclude that

TN red
n (l0, {l

1
1 , . . . , l

1
γ1
}, {l21 , . . . , l

2
γ2
}) = AB

where

A =

γ2∑
k2=1

N1,n−1

(
2n− 2−

γ2∑
j=k2

(l2j − 1), l2k2
− 1, l2k2+1, . . . , l

2
γ2

)
and

B =

γ1∑
k1=k0

N1,n−1

(
2n− 2−

γ1∑
j=k1

(l1j − 1), l1k1
− 1, l1k1+1, . . . , l

1
γ1

)

+N1,n−1

(
2n− 2−

γ1∑
j=1

(l1j − 1),
k0−1∑
j=1

(l1j − 1), l1k0
, . . . , l1γ1

)

+

k0−1∑
k1=1

N1,n−1

(
2n− 1−

γ1∑
j=1

(l1j − 1),
k1−1∑
j=1

(l1j − 1), l1k1
− 1, l1k1+1, . . . , l

1
γ1

)

Now it follows from Corollary 3.8 that

A = N1,n

(
2n− 1−

γ2∑
j=1

(l2j − 1), l21 , . . . , l
2
γ2

)
,

B = N1,n

(
2n− 1−

γ1∑
j=1

(l1j − 1), l11 , . . . , l
1
γ1

)
,

which completes the proof of the proposition. ut
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