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Abstract. Let � ⊂ Rn, n ≥ 3, and let p, 1 < p <∞, p 6= 2, be given. In this paper we study the
dimension of p-harmonic measures that arise from nonnegative solutions to the p-Laplace equation,
vanishing on a portion of ∂�, in the setting of δ-Reifenberg flat domains. We prove, for p ≥ n, that
there exists δ̃ = δ̃(p, n) > 0 small such that if � is a δ-Reifenberg flat domain with δ < δ̃, then
p-harmonic measure is concentrated on a set of σ -finite Hn−1-measure. We prove, for p ≥ n, that
for sufficiently flat Wolff snowflakes the Hausdorff dimension of p-harmonic measure is always
less than n − 1. We also prove that if 2 < p < n, then there exist Wolff snowflakes such that the
Hausdorff dimension of p-harmonic measure is less than n−1, while if 1 < p < 2, then there exist
Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is larger than n − 1.
Furthermore, perturbing off the case p = 2, we derive estimates for the Hausdorff dimension of
p-harmonic measure when p is near 2.

Keywords. p-harmonic function, p-harmonic measure, Hausdorff dimension, Reifenberg flat do-
main, Wolff snowflake

1. Introduction

Let G ⊂ Rn be a bounded domain. Recall that the solution in G to the Dirichlet problem
for the Laplace operator with continuous boundary data f is the unique smooth func-
tion u which is harmonic in G and equals f on ∂G. The maximum principle and Riesz
representation theorem yield, for sufficiently regular domains, the formula

u(x) =

∫
∂G

f (y) dωx(y) whenever x ∈ G,

where ω = ωx is referred to as the harmonic measure at x associated to the Laplace
operator. Let also g = g(·) = g(·, x) be the Green function for G with pole at x ∈ G and
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extend g to Rn \G by putting g ≡ 0 on Rn \G. Then ω is the Riesz measure associated
to g in the sense that∫

〈∇g,∇φ〉 dx = −

∫
φ dω whenever φ ∈ C∞0 (R

n
\ {x}).

We define the Hausdorff dimension of ω, denoted H-dimω, by

H-dimω = inf{α : there exists E Borel ⊂ ∂G with Hα(E) = 0 and ω(E) = ω(∂G)},

where Hα(E), for α ∈ R+, is the α-dimensional Hausdorff measure of E defined be-
low. In the past quarter century a number of remarkable results concerning H-dimω have
been established in planar domains, � ⊂ R2. In particular, Carleson [C] showed that
H-dimω = 1 when ∂� is a snowflake and that H-dimω ≤ 1 for any self-similar Cantor
set. Later Makarov [M] proved that H-dimω = 1 for any simply connected domain in the
plane. Jones and Wolff [JW] proved that H-dimω ≤ 1 whenever � ⊂ R2 and ω exists,
and Wolff [W2] strengthened [JW] by showing that ω is concentrated on a set of σ -finite
H 1-measure. We also mention results of Batakis [Ba], Kaufmann–Wu [KW], and Volberg
[V] who showed, for certain fractal domains and domains whose complements are Cantor
sets, that

Hausdorff dimension of ∂� = inf{α : Hα(∂�) = 0} > H-dimω.

In Rn, n ≥ 3, results for the dimension of harmonic measure can be found in [Bo], [W2],
[LVV], [KT], [KPT] but we emphasize that harmonic measure in space is, in general,
considerably less understood than harmonic measure in the plane. Indeed, Wolff [W2]
showed in three dimensions that there is “no reason at all” for the Hausdorff dimension
of harmonic measure to be equal to two, in contrast to the theorem of Makarov.

For p 6= 2, p-harmonic measure is a generalization, to the setting of the p-Laplace
operator, of the notion of harmonic measure. Results concerning the Hausdorff dimension
of p-harmonic measures in the plane can be found in [BL], [L] and [LNP]. Some of these
results are presented below as Theorems A–D.

In this paper we focus on the Hausdorff dimension of p-harmonic measure, p 6= 2,
in domains � ⊂ Rn with n ≥ 3. To the best of our knowledge, this is the first paper
in the literature devoted to the Hausdorff dimension of p-harmonic measure, p 6= 2, in
the higher dimensional setting. The nonlinearity and degeneracy of the p-Laplacian when
p 6= 2, has made such a study difficult. Only recently have the first and second author de-
veloped the tools that make such a study feasible (see [LN1]–[LN6] and [LLuN]). In these
papers the tools developed were used to solve several longstanding research problems on
p-harmonic functions.

To proceed we introduce some notation. Points in Euclidean n-space Rn are denoted
by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ Rn−1. We let Ē, ∂E,
diamE be the closure, boundary, and diameter of the set E ⊂ Rn and we define d(y,E)
to be the distance from y ∈ Rn to E; 〈·, ·〉 denotes the standard inner product on Rn and
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we let |x| = 〈x, x〉1/2 be the Euclidean norm of x; B(x, r) = {y ∈ Rn : |x − y| < r} for
x ∈ Rn, r > 0, and dx denotes Lebesgue n-measure on Rn. Let

h(E, F ) = max(sup{d(y,E) : y ∈ F }, sup{d(y, F ) : y ∈ E})

be the Hausdorff distance between the sets E,F ⊂ Rn. If O ⊂ Rn is open and 1 ≤
q ≤ ∞, then byW 1,q(O) we denote the space of equivalence classes of functions f with
distributional gradient ∇f = (fx1 , . . . , fxn), both of which are qth power integrable
on O. Let ‖f ‖1,q = ‖f ‖q + ‖|∇f |‖q be the norm in W 1,q(O) where ‖ · ‖q denotes
the usual Lebesgue q-norm in O. Next let C∞0 (O) be the set of infinitely differentiable
functions with compact support in O and let W 1,q

0 (O) be the closure of C∞0 (O) in the
norm of W 1,q(O).

Given λ a nondecreasing positive function on (0, r0), r0 > 0, with λ(0) = 0, we
next define Hausdorff measure corresponding to λ (denoted H λ) as follows. For fixed
δ with 0 < δ < r0, and E ⊆ Rn, let L(δ) = {B(xi, ri)} be a set of balls such that
E ⊆

⋃
B(xi, ri) and 0 < ri < δ for i = 1, 2, . . . . Set

φλδ (E) = inf
L(δ)

(∑
λ(ri)

)
.

Then
H λ(E) = lim

δ→0
φλδ (E).

Let α(k) denote the volume of the unit ball in Rk. In case λ(r) = α(k)rk we write H k

for H λ, and call it k-dimensional Hausdorff measure in Rn.
Given a bounded domainG, we say that u is p-harmonic inG provided u ∈ W 1,p(G)

and ∫
|∇u|p−2

〈∇u,∇θ〉 dx = 0 (1.1)

whenever θ ∈ W 1,p
0 (G). Observe that if u is smooth and ∇u 6= 0 in G, then

∇ · (|∇u|p−2
∇u) ≡ 0 in G (1.2)

and u is a classical solution in G to the p-Laplace partial differential equation. Here and
below, ∇· is the divergence operator.

Let � ⊂ Rn be a domain, and suppose that ∂� is bounded and nonempty. Let N be
a neighborhood of ∂�, let p be fixed, 1 < p <∞, and let u be a positive weak solution
to the p-Laplace equation in � ∩ N. Assume that u has zero boundary values on ∂� in
the Sobolev sense. More specifically if ζ ∈ C∞0 (N), then uζ ∈ W 1,p

0 (� ∩ N). Extend u
to N \� by putting u ≡ 0 on N \�. Then u ∈ W 1,p(N) and it follows from (1.1), as in
[HKM], that there exists a positive finite Borel measure µ on Rn, with support contained
in ∂�, satisfying ∫

|∇u|p−2
〈∇u,∇φ〉 dx = −

∫
φ dµ (1.3)

for all φ ∈ C∞0 (N). If ∂� is smooth enough, then

dµ = |∇u|p−1 dH n−1 on ∂�. (1.4)
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In the case p = 2, and if u is the Green function for � with pole at x ∈ �, then the
measure µ coincides with harmonic measure at x, ω = ωx , introduced above. We will
refer to µ as the p-harmonic measure associated to u. The Hausdorff dimension of the
measure µ, denoted H-dimµ, is defined as

H-dimµ = inf{α : there exists E Borel ⊂ ∂� with Hα(E) = 0
and µ(E) = µ(∂�)}. (1.5)

As mentioned above, in [BL], [L] and [LNP] the Hausdorff dimension of p-harmonic
measure µ is studied for general p, 1 < p < ∞ and n = 2. Theorems A and B stated
below are proved in [BL] and [L], respectively, while Theorems C and D are proved in
[LNP]. In fact, Theorem D is a corollary to Theorem C (see [LNP]). For the definition of
a k-quasi-circle we refer to [L].

Theorem A. Let p ∈ (1,∞), p 6= 2, and let u,µ be as in (1.1), (1.3). If ∂� is a quasi-
circle, then H-dimµ ≤ 1 for 2 < p <∞, and H-dimµ ≥ 1 for 1 < p < 2. Moreover, if
∂� is the von Koch snowflake then strict inequality holds for H-dimµ.

Theorem B. Let p ∈ (1,∞), p 6= 2, and let u,µ be as in (1.1), (1.3). Then there exists
k0(p) > 0 such that if ∂� is a k-quasi-circle and 0 < k < k0(p), then:

(a) µ is concentrated on a set of σ -finite H 1-measure when p > 2.
(b) There exists A = A(p) with 0 < A(p) < ∞ such that if 1 < p < 2, then µ is

absolutely continuous with respect to Hausdorff measure defined relative to λ̃ where

λ̃(r) = r exp[A
√

log 1/r log log log 1/r], 0 < r < 10−6.

Theorem C. Let p ∈ (1,∞), p 6= 2, and let u,µ be as in (1.1), (1.3). Suppose that � is
simply connected. Put

λ(r) = r exp[A
√

log 1/r log log 1/r], 0 < r < 10−6.

Then the following is true.

(a) If p > 2, then there exists A = A(p) ≤ −1 such that µ is concentrated on a set of
σ -finite H λ-measure.

(b) If 1 < p < 2, then there exists A = A(p) ≥ 1 such that µ is absolutely continuous
with respect to H λ.

Theorem D. Let p ∈ (1,∞), p 6= 2, and let u,µ be as in (1.1), (1.3). Suppose that � is
simply connected. Then H-dimµ ≤ 1 for 2 < p <∞, and H-dimµ ≥ 1 for 1 < p < 2.

For results in R3 we recall the famous paper [W2] where Wolff showed how to construct
domains, which we call Wolff snowflakes, for which the corresponding harmonic measure
had Hausdorff dimension either greater than 2 or less than 2. Also, in [LVV], it was shown
that the Hausdorff dimension of harmonic measures on both sides of a Wolff snowflake
in Rn can have dimension either> n−1 or< n−1. So for n ≥ 3 the Hausdorff dimension
of harmonic measure in Rn may not be equal to n− 1.

In this paper we prove Theorems 1–4, concerning the Hausdorff dimension of p-
harmonic measure, for 1 < p < ∞, p 6= 2, in certain subsets � ⊂ Rn, n ≥ 3. In
Theorem 1 we prove that (a) of Theorem B holds for p-harmonic measure in sufficiently
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flat Reifenberg flat domains ⊂ Rn, n ≥ 3, when p ≥ n. Reifenberg flat domains are
defined in Definition 2.1. In Theorem 2 we prove, for n ≥ 3, that if 2 < p < n, then there
exist Wolff snowflakes such that H-dimµ < n − 1, while if 1 < p < 2, then there exist
Wolff snowflakes such that H-dimµ > n − 1. In addition, we prove that if p ≥ n then
we always get, in the setting of the construction outlined, Wolff snowflakes for which
H-dimµ < n − 1. As outlined below, the sign of the difference (n − 1) − H-dimµ

is determined by the sign of a certain entropy integral for p-harmonic measure and this
connection is established in Theorem 3. Finally, using [W2], [LVV], and perturbing off the
p = 2 case we show that there are Wolff snowflakes such that the sign of (n−1)−H-dimµ

equals the sign of (n− 1)− H-dimω, for p near 2 (see Theorem 4).
The rest of this paper is organized as follows. In Section 2 we state our Theorems 1–4

and briefly outline the proof of Theorems 1–2. In Section 3 we first state some basic es-
timates for p-harmonic functions and p-harmonic measure in nontangentially accessible,
Reifenberg flat, and Lipschitz domains. In Section 4 we list some lemmas for elliptic par-
tial differential equations whose degeneracy is given in terms of anA2-weight. Theorem 1
is proved in Section 5 while Sections 6 and 7 are devoted to the proof of Theorems 2–4.

2. Statement of main results: Theorems 1–4

Definition 2.1. Let � ⊂ Rn be a domain. Then � and ∂� are said to be (δ, r0)-Reifen-
berg flat if for all w ∈ ∂� and 0 < r < r0, there exists a hyperplane P = P(w, r)

containing w such that

(a) h(∂� ∩ B(w, r), P ∩ B(w, r)) ≤ δr ,
(b) {x ∈ � ∩ B(w, r/2) : d(x, ∂�) ≥ 2δr} is contained in one component of Rn \ P .

We will say that � and ∂� are δ-Reifenberg flat if they are (δ, r0)-Reifenberg flat for
some r0 > 0. In our construction of Wolff snowflake domains we will have r0 = ∞. As
in [KT] one can show that there is a small positive δ̂ = δ̂(n) such that any δ-Reifenberg
flat domain with 0 < δ < δ̂ is an NTA-domain with M = M(n). For the definition of
NTA-domains we refer to Definition 3.1 below.

To give examples of classes of (δ, r0)-Reifenberg flat domains we first note that if
� ⊂ Rn is a Lipschitz domain with constant M , then � is (δ, r0)-Reifenberg flat for
some δ = δ(M), r0 > 0 with δ(M) → 0 as M → 0. However, using [LN3] we see
that in the setting of Lipschitz domains we always have H-dimµ = n− 1 and hence this
class of examples is less interesting from the perspective of Theorem 1. To give other
examples, we say, following [LLuN], that � is a quasi-ball provided � = f (B(0, 1)),
where f = (f1, . . . , fn) : Rn→ Rn is aK > 1 quasi-conformal mapping of Rn onto Rn.
That is, fi ∈ W 1,n(B(0, ρ)), 0 < ρ <∞, 1 ≤ i ≤ n, and for almost every x ∈ Rn with
respect to Lebesgue n-measure the following hold:

|Df (x)|n = sup
|h|=1
|Df (x)h|n ≤ K|Jf (x)|,

Jf (x) ≥ 0 or Jf (x) ≤ 0.
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In this display we have written Df (x) = (∂fi/∂xj ) for the Jacobian matrix of f , and
Jf (x) for the Jacobian determinant of f at x. If � = f (B(0, 1)) where f is a K quasi-
conformal mapping of Rn onto Rn, then one can show that ∂� is δ-Reifenberg flat,
with r0 = 1, where δ → 0 as K → 1 (see [R, Theorems 12.5–12.7]). For more on
δ-Reifenberg flat domains we refer to [CKL].

We now state our first main result.

Theorem 1. Let 0 < δ < δ̂(n) and suppose� ⊂ Rn, n ≥ 3, is a δ-Reifenberg flat domain
with r0 = ∞. Fix p ≥ n and let u,µ be as in (1.1), (1.3). There exists δ̃ = δ̃(p, n) > 0
such that if 0 < δ ≤ δ̃, then µ is concentrated on a set of σ -finite H n−1-measure.

Remark 2.2. Note that if � is δ-Reifenberg flat, then ∂� need not have locally finite
H n−1-measure or a tangent plane at any boundary point. However, one can show, as in
[LN5], that given η > 0 there exists δ > 0 such that if � is a δ-Reifenberg flat domain,
thenH n−1+η(∂�∩B(w, r)) <∞, whenever w ∈ ∂� and r > 0. This inequality clearly
implies that H-dimµ ≤ n− 1+ η. However, Theorem 1 is not implied by this estimate.

Outline of the proof of Theorem 1. The proof of Theorem 1 appears in Section 5. We
first observe, using the basic estimates of Section 3, that it suffices to prove Theorem 1
when u > 0 is p-harmonic in� with continuous boundary values 0 on ∂�. To state some
results from [LN5], let � be a δ-Reifenberg flat domain with r0 = ∞, 1 < p < ∞, and
let u > 0 be a p-harmonic function in � with u ≡ 0 on ∂� in the sense of continuous
boundary values. Then there exist δ0 > 0 and c1 ≥ 1, depending only on p, n, such that
if 0 < δ ≤ δ0 and x ∈ �, then u is infinitely differentiable in � (u ∈ C∞(�)) and

c−1
1 |∇u(x)| ≤ u(x)/d(x, ∂�) ≤ c1|∇u(x)|, x ∈ �,

|∇u|p−2 extends to an A2-weight on Rn with constant ≤ c1.
(2.6)

For the definition of an A2-weight and its A2-constant, see Section 4. Next consider the
partial differential equation

Lζ(x) =

n∑
i,k=1

∂

∂xi
[bik(x)ζxk (x)] = 0, (2.7)

where at x ∈ �,

bik(x) = |∇u|
p−4
[(p − 2)uxiuxk + δik|∇u|

2
](x), 1 ≤ i, k ≤ n, (2.8)

and δik is the Kronecker δ. From (2.6) and smoothness of u we see that bik are infinitely
differentiable in � and, at x ∈ �,

min{p − 1, 1}|ξ |2|∇u(x)|p−2
≤

n∑
i,k=1

bikξiξk ≤ max{1, p − 1}|∇u(x)|p−2
|ξ |2. (2.9)

From (2.6), Lemma 3.5, and Harnack’s inequality for u it follows that (bik(x)) are locally
uniformly elliptic in � with ellipticity constants given in terms of an A2-weight on Rn.
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Also, as in [LN1, (1.5)–(1.8)], it follows that u, uxk , 1 ≤ k ≤ n, are all classical solutions
to L. In Lemma 5.1 we show that ζ = log |∇u| is a subsolution to (2.7) when p ≥ n.

Using these facts, we can then use the argument in [L], with minor modifications, to get
Theorem 1.

To outline this argument, we note that Makarov (see [P, Theorem 6.13]) proved a sim-
ilar result in R2 for harmonic measure (p = 2) in a simply connected domain using Pless-
ner’s theorem. Moreover, the main step in proving Plessner’s theorem is to show that ifG
is an open set with G ⊂ B(0, 1), ∂G is locally Lipschitz, and H 1(∂G ∩ ∂B(0, 1)) > 0,
then the harmonic measure of ∂G ∩ ∂B(0, 1) with respect to some point in G is positive.
In our situation we show, following [L], that if G ⊂ � is an NTA-domain (see Definition
3.1), then

µ(∂G ∩ ∂�) > 0 ⇒ ω(∂G ∩ ∂�) > 0. (2.10)

Here ω is elliptic measure defined with respect to a point in G, and with respect to the
operator L in (2.7). To prove (2.10) we use results from [FJK1], [FJK2], [FKS] on elliptic
PDE whose ellipticity is given in terms of an A2-weight and argue as in [DJK].

In order to state Theorems 2–4 we next briefly describe the construction of Wolff
snowflakes introduced in [W2]. Let �0 = {(x

′, xn) : x
′
∈ Rn−1, xn > 0} and set

Q(r) = {x′ ∈ Rn−1
: −r/2 ≤ xi ≤ r/2 for 1 ≤ i ≤ n − 1}. Then Q(r) is an n − 1-

dimensional cube with sidelength r and center at 0. Let φ : Rn−1
→ R be a piecewise

linear function with supp φ ⊂ {x′ : |x′| < 1/2} and ‖∇φ‖∞ ≤ M. For fixed N large, set
ψ(x′) = N−1φ(Nx′). Let b > 0 be a small constant and let Q be an n − 1-cube (i.e.,
an n− 1-dimensional cube contained in some hyperplane) with center aQ and sidelength
l(Q). Let e be a unit normal to Q and define

PQ = cch(Q ∪ {aQ + bl(Q)e}), P̃Q = int cch(Q ∪ {aQ − bl(Q)e}), (2.11)

where cchE and intE denote the closed convex hull and interior of E, respectively. For
the cube Q(1) set e = −en and put

3 = {x ∈ PQ(1)∪P̃Q(1) : xn ≥ ψ(x)}, ∂ = {x ∈ Rn : x′ ∈ Q(1), xn = ψ(x′)}. (2.12)

We assume thatN = N(b,M) is so large that d(∂\∂�0, ∂[PQ(1)∪P̃Q(1)]) ≥ b/100.Note
that ∂ ⊂ Q(1)× [−1/2, 1/2] consists of a finite number of n− 1-dimensional faces. We
fix a Whitney decomposition of each face. That is, we divide each face of ∂ into n − 1-
cubes Q, with sidelengths 8−k , k = 1, 2, . . . , which are proportional to their distance
from the edges of the face they lie on. We also choose a distinguished n− 2-dimensional
‘side’ for each n− 1-cube.

Suppose� is a domain andQ ⊂ ∂� is an n−1-cube with distinguished side γ . Let e
be the outer unit normal to ∂� onQ and suppose that PQ∩� = ∅ and P̃Q ⊂ �.We form
a new domain �̃ as follows. Let T be the conformal affine map (i.e., a composition of a
translation, rotation, dilation) with T (Q(1)) = Q which fixes the dilation, T (0) = aQ
which fixes the translation, and finally fix the rotation by requiring that T ({x ∈ ∂Q(1) :
x1 = 1/2}) = γ and T (−en) is in the direction of e. Let 3Q = T (3) and ∂Q = T (∂).
Then we define �̃ through the relations �̃ ∩ (PQ ∪ P̃Q) = 3Q and �̃ \ (PQ ∪ P̃Q) =
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� \ (PQ ∪ P̃Q). Note that ∂Q inherits from ∂ a natural subdivision into Whitney cubes
with distinguished sides. We call this process ‘adding a blip to � along Q’.

To use the process of ‘adding a blip’ to construct a Wolff snowflake �∞, starting
from �0, we first add a blip to �0 along Q(1) obtaining a new domain �1. We then
inherit a subdivision of ∂�1 ∩ (PQ(1) ∪ P̃Q(1)) into Whitney cubes with distinguished
sides, together with a finite set of edges E1 (the edges of the faces of the graph are not in
the Whitney cubes). Let G1 be the set of all Whitney cubes in the subdivision. Then �2
is obtained from �1 by adding a blip along each Q ∈ G1. From this process, we inherit a
family of cubes G2 ⊂ ∂�2 (each with a distinguished side) and a set of edges E2 ⊂ ∂�2
of σ -finiteH n−2-measure. Continuing by induction we get (�m)∞n−1, (Gm)

∞

n−1, (Em)
∞

n−1,

where ∂�m ∩ (PQ(1) ∪ P̃Q(1)) = Em ∪
⋃
Q∈Gm

Q for m ≥ 1. In [W2], Wolff shows, for
n = 3 and in a similar situation, that if N = N(b,M) is large enough, then �m → �∞
in the Hausdorff distance sense. We call �∞ a Wolff snowflake.

For fixed p ∈ (1,∞), p 6= 2, let u∞ = u∞(·, p) be the positive p-harmonic function
in �∞ with continuous boundary value zero on ∂�∞ and |xn − u∞(x)| → 0 uniformly
as |x| → ∞. Let µ∞ be the p-harmonic measure associated with u∞ and let µ′∞ be the
restriction of µ∞ to (Q(1)× [−1, 1]) ∩ ∂�∞. More details concerning the construction
of�∞, u∞ will be given in Section 6. In particular, in Lemma 6.1 we prove the existence
and uniqueness of such a u∞.

Next we state our second main result.

Theorem 2. Let �∞, u∞, µ∞ be as above. If p ≥ n ≥ 3, then H-dimµ′∞ < n − 1.
Moreover, if 2 < p < n then there exists �∞ such that H-dimµ′∞ < n − 1, while if
1 < p < 2 then there exists �∞ such that H-dimµ′∞ > n− 1.

Outline of the proof of Theorem 2. The proof of Theorem 2 follows after the proof of
Proposition 7.6 and Theorem 3 in Section 7. As noted above, in [W2] Wolff constructed
snowflakes for which the Hausdorff dimension of harmonic measure is either larger than
n − 1 or less than n − 1. In his ingenious arguments, Wolff uses ideas of Carleson [C],
boundary Harnack inequalities and estimates for the Green function from [D], [JK], as
well as a high level of technical skill, in order to obtain his rather deep results. His proof
depends heavily on the linearity of the Laplace operator and hence until recently it seemed
unlikely that his program could be made to work for the nonlinear p-Laplacian when
1 < p <∞, p 6= 2. Indeed, as mentioned above, only recently have the first and second
authors in [LN1]–[LN6] and [LLuN] developed the basic tools for p-harmonic functions,
p 6= 2, necessary to begin writing this paper. Besides (2.6), these tools include boundary
Harnack inequalities for the ratio of two nonnegative p-harmonic functions, vanishing
on a portion of a Lipschitz or a sufficiently flat Reifenberg flat domain (see Theorem
3.9). Another important tool is the generalization to the setting of p-harmonic measure
(see [LN3]) of the classical result of Dahlberg [D] concerning the absolute continuity of
harmonic measure with respect to surface measure (see Theorem 3.10 below). By using
these recently developed tools the gist of Theorem 2 is that Wolff’s program can also be
made to work in the p-harmonic setting.

To outline our proof, let �̂(ε) = {(x′, xn) : xn > εθ̂(x′), x′ ∈ Rn−1
}. For fixed

p ∈ (1,∞), let û = û(·, ε) be the unique p-harmonic function in �̂ such that û ≡ 0 on
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∂�̂ and |xn − û(x)| → 0 uniformly as |x| → ∞, x ∈ �̂ (see Lemma 6.1). Furthermore,
let

I = I (ε) =

∫
∂�̂(ε)

|∇û(·, ε)|p−1 log |∇û(·, ε)| dH n−1. (2.13)

In Section 6 we prove existence of I (ε) and its differentiability with respect to ε, provided
θ̂ ∈ C∞0 (R

n−1). In fact in Lemma 6.3 we show that

I (0) = 0, I ′(0) = 0, I ′′(0) =
p − 2
p − 1

∫
Rn−1
|∇
′θ̂ |2 dH n−1,

where ∇ ′ denotes the gradient in the variables x′ ∈ Rn−1. From Taylor’s theorem it
follows that I (ε) > 0 for p > 2 while I (ε) < 0 when 1 < p < 2, provided 0 < ε ≤ ε0
and ε0 = ε0(p, n, θ̂) is small enough. In case p = 2 this calculation shows that I ′′(0) = 0
and then one is forced to evaluate integrals in order to determine the sign for I ′′′(0) or
even I (4)(0), as is done in [W2] and [LVV]. The choice of θ̂ determines the sign and it
seems remarkable that for p 6= 2 the sign depends on p only and not on θ̂ .

As the next step we then show (see Propositions 6.4, 6.5) that we can approximate εθ̂
by a piecewise linear function, φ = φ(·, ε), in such a way that the sign of I (ε) is pre-
served. More specifically let �̃ = {x ∈ Rn : xn > φ(x′), x′ ∈ Rn−1

} and let ũ be
the corresponding positive p-harmonic function in �̃ with continuous boundary value 0
on ∂�̃ and |xn − ũ(x)| → 0 uniformly as |x| → ∞. We prove that

Ĩ =

∫
∂�̃

|∇ũ|p−1 log |∇ũ| dH n−1

has the same sign as I (ε). Next we construct a Wolff snowflake �∞, as above, relative
to ψ(x′) = N−1φ(x′/N), x′ ∈ Rn−1, with �1 = {(x

′, xn) : xn > ψ(x′), x′ ∈ Rn−1
}.

Let �∞, u∞, µ∞, µ′∞ be the corresponding domain, p-harmonic function, measure, and
restriction of the measure, as defined above Theorem 2. We then prove the following
theorem in Section 7.

Theorem 3. There exist θ0 ∈ (0, 1) and N0 large, depending on p, n, such that if
‖∇φ‖∞ ≤ θ0, N ≥ N0, and Ĩ > 0, then H-dimµ′∞ < n − 1, while if Ĩ < 0, then
H-dimµ′∞ > n− 1.

From Theorem 3 and the above discussion we conclude that if 2 < p < n, then there
exist Wolff snowflakes for which H-dimµ′∞ < n − 1, while if 1 < p < 2, then there
exist Wolff snowflakes for which H-dimµ′∞ > n− 1. If p ≥ n, then we can use the fact
that log |∇ũ| is a subsolution to (2.7), with u replaced by ũ, in order to show that Ĩ > 0
for any Lipschitz function φ with compact support in {x′ ∈ Rn−1

: |x′| < 1/2}. Thus
for p ≥ n we always get H-dimµ′∞ < n − 1 when using the Wolff method. This gives
Theorem 2. Intuitively, the p ≥ n result says that adding any sort of Lipschitz blip to a
half-space increases the ‘p-entropy’.

Theorems 2 and 3 seem to indicate that the direct analogue of [BL] may hold in Rn,
n ≥ 3. However, the situation is much more interesting, as we show in Theorem 4. To
avoid confusion, for fixed p ∈ (1,∞), we here write µ∞(·, p), µ′∞(·, p) for the above
measures.
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Theorem 4. There is a Wolff snowflake for which µ′∞(·, p), for p in an open interval
containing 2, and µ′∞(·, 2) both have H-dim either > n− 1 or < n− 1.

In fact our proof will show that the results of [LVV] for interior and exterior harmonic
measures in a Wolff snowflake remain valid for interior and exterior p-harmonic measures
provided p is close enough to 2. The proof of Theorem 4 is similar to the proof of Theo-
rem 3, except that now all estimates must be made independent of p when p ∈ [3/2, 5/2].
In particular, we prove that a smooth graph for which the corresponding I is nonzero at
p = 2 can be approximated by piecewise linear graphs, for which the corresponding
integrals, as functions of p, have the same sign in an open interval containing 2 (see
Propositions 6.4, 6.5).

3. Estimates for p-harmonic functions

Definition 3.1. A domain � is called non-tangentially accessible (NTA) if there exist
M ≥ 2 and r0 > 0 such that the following are fulfilled:

(i) corkscrew condition: for any w ∈ ∂� and 0 < r < r0, there exists ar(w) ∈ �
satisfying M−1r < |ar(w)− w| < r and d(ar(w), ∂�) > M−1r,

(ii) Rn \ �̄ satisfies the corkscrew condition,
(iii) uniform condition: if w ∈ ∂�, 0 < r < r0, and w1, w2 ∈ B(w, r) ∩�, then there

exists a rectifiable curve γ : [0, 1] → � with γ (0) = w1 and γ (1) = w2 such that

(a) H 1(γ ) ≤ M|w1 − w2|,
(b) min{H 1(γ ([0, t])),H 1(γ ([t, 1]))} ≤ M d(γ (t), ∂�).

We note that (iii) is different from but equivalent to the usual Harnack chain condition
given in [JK] (see [BL, Lemma 2.5]). We choose this definition in order to emphasize the
dependence of � on M. The constants M , r0 will be called the NTA-constants of �.

Let 1 < p < ∞ and let � ⊂ Rn be a domain. Throughout this section and this
paper, unless otherwise stated, c will denote a positive constant ≥ 1, not necessarily the
same at each occurrence, depending only on p, n,M . In general, c(a1, . . . , am) denotes a
positive constant ≥ 1, which may depend only on p, n, M and a1, . . . , am, and which is
not necessarily the same at each occurrence. If A ≈ B then A/B is bounded from above
and below by positive constants which, unless otherwise stated, only depend on p, n,M .

3.1. Estimates in NTA-domains

For the proof of Lemmas 3.2–3.6 we refer to [LN1]. In these lemmas, 1(w, r) =
∂� ∩ B(w, r).

Lemma 3.2. Given p ∈ (1,∞), let u be a positive p-harmonic function in B(w, 2r).
Then

(i) rp−n
∫
B(w,r/2)

|∇u|p dx ≤ c
(

max
B(w,r)

u
)p
,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.
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Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(iii) |u(x)− u(y)| ≤ c(|x − y|/r)α max
B(w,2r)

u.

Lemma 3.3. Let � ⊂ Rn be an NTA-domain and suppose that p ∈ (1,∞) is given.
Let w ∈ ∂�, 0 < r < r0, and suppose that u is a nonnegative continuous p-harmonic
function in �̄ ∩ B(w, 2r) and that u = 0 on 1(w, 2r). Then

(i) rp−n
∫
�∩B(w,r/2)

|∇u|p dx ≤ c
(

max
�∩B(w,r)

u
)p
.

Furthermore, there exists α = α(p, n,M) ∈ (0, 1) such that if x, y ∈ � ∩ B(w, r), then

(ii) |u(x)− u(y)| ≤ c(|x − y|/r)α max
�∩B(w,2r)

u.

Lemma 3.4. Let � ⊂ Rn be an NTA-domain and suppose that p ∈ (1,∞) is given.
Let w ∈ ∂�, 0 < r < r0, and suppose that u is a non-negative continuous p-harmonic
function in �̄ ∩ B(w, 2r) and that u = 0 on 1(w, 2r). There exists c = c(p, n,M) ∈

[1,∞) such that if r̃ = r/c, then

max
�∩B(w,r̃)

u ≤ cu(ar̃(w)).

Lemma 3.5. Let � ⊂ Rn be an NTA-domain and suppose that p ∈ (1,∞) is given.
Let w ∈ ∂�, 0 < r < r0, and suppose that u is a non-negative continuous p-harmonic
function in �̄∩B(w, 4r) and u = 0 on1(w, 4r). Extend u to B(w, 4r) by defining u ≡ 0
on B(w, 4r) \�. Then u has a representative inW 1,p(B(w, 4r)) with Hölder continuous
partial derivatives in �∩B(w, 4r). In particular, there exists σ ∈ (0, 1], depending only
on p, n, such that if x, y ∈ B(ŵ, r̂/2), where B(ŵ, 4r̂) ⊂ � ∩ B(w, 4r), then

c−1
|∇u(x)−∇u(y)| ≤ (|x − y|/r̂)σ max

B(ŵ,r̂)
|∇u| ≤ cr̂−1(|x − y|/r̂)σ max

B(ŵ,2r̂)
u.

If ∇u(ŵ) 6= 0, then u is real analytic in a neighborhood of ŵ.

Lemma 3.6. Let � ⊂ Rn be an NTA-domain. Given p ∈ (1,∞), w ∈ ∂�, 0 <

r < r0, suppose that u is a positive p-harmonic function in � ∩ B(w, 2r), continu-
ous in �̄∩B(w, 2r), with u = 0 on1(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on
B(w, 2r) \ �. There exists a unique locally finite positive Borel measure µ on Rn, with
support in 1(w, 2r), such that for all θ ∈ C∞0 (B(w, 2r)),

(i)
∫
|∇u|p−2

〈∇u,∇θ〉 dx = −

∫
θ dµ.

Moreover, there exists c = c(p, n,M) ∈ [1,∞), such that if r̃ = r/c, then

(ii) c−1rp−nµ(1(w, r̃)) ≤ (u(ar̃(w)))
p−1
≤ crp−nµ(1(w, r̃/2)).
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3.2. Estimates in Reifenberg flat domains

Theorem 3.7 ([LN5, Lemma 3.8]). Let � ⊂ Rn be a (δ, r0)-Reifenberg flat domain.
Given p ∈ (1,∞), w ∈ ∂�, and 0 < r < r0, suppose that u is a positive p-harmonic
function in�∩B(w, 4r), u is continuous in �̄∩B(w, 4r), and u = 0 on1(w, 4r). Then
there exist δ̄1 = δ̄1(p, n) > 0, c̄1 = c̄1(p, n) ∈ [1,∞) and λ̄ = λ̄(p, n) ∈ [1,∞) such
that if 0 < δ < δ̄1, then

λ̄−1 u(y)

d(y, ∂�)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y, ∂�)
whenever y ∈ � ∩ B(w, r/c̄1).

Lemma 3.8 ([LN5, Lemma 3.15]). Let � ⊂ Rn be a (δ, r0)-Reifenberg flat domain.
Given p ∈ (1,∞), w ∈ ∂�, and 0 < r < r0, suppose that u is a positive p-harmonic
function in�∩B(w, 4r), u is continuous in �̄∩B(w, 4r), and u = 0 on1(w, 4r). Then
there exist, for ε > 0 given, δ̄2 = δ̄2(p, n, ε) > 0 and c̄2 = c̄2(p, n, ε) ∈ [1,∞) such
that

c̄−1
2

(
r̂

r

)1+ε

≤
u(ar̂(w))

u(ar(w))
≤ c̄2

(
r̂

r

)1−ε

whenever 0 < δ < δ̄2 and 0 < r̂ < r/4.

Theorem 3.9 ([LN5, Theorem 1]). Let � ⊂ Rn be a (δ, r0)-Reifenberg flat domain.
Given p ∈ (1,∞), w ∈ ∂�, and 0 < r < r0, suppose that u, v are positive p-harmonic
functions in � ∩ B(w, 4r), u, v are continuous in �̄ ∩ B(w, 4r), and u = 0 = v on
1(w, 4r). Then there exist δ̄3 = δ̄3(p, n) > 0, c̄3 = c̄3(p, n) ∈ [1,∞), and σ̄ =
σ̄ (p, n) ∈ (0, 1) such that if 0 < δ < δ̄3, then∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c̄3

(
|y1 − y2|

r

)σ̄
whenever y1, y2 ∈ � ∩ B(w, r/c̄3).

3.3. Estimates in Lipschitz domains

Let � ⊂ Rn be an NTA-domain. We say that � is a Lipschitz domain on scale t , t � r0,
with Lipschitz constant M ′ if for all w ∈ ∂� and 0 < r < t there exists a Lipschitz
function φ, with Lipschitz constant bounded by M ′, such that

� ∩ B(w, 4r) = {y = (y′, yn) ∈ Rn : yn > φ(y′)} ∩ B(w, 4r),
∂� ∩ B(w, 4r) = {y = (y′, yn) ∈ Rn : yn = φ(y′)} ∩ B(w, 4r), (3.1)

in an appropriate coordinate system. We let ei , 1 ≤ i ≤ n, denote the point in Rn with 1
in the ith coordinate position and zeroes elsewhere. In the following we will assume that,
in addition, � ⊂ Rn is a (δ, r0)-Reifenberg flat domain with δ < δ̂(n). Hence M ′ ≈ δ. If
� is a Lipschitz domain on scale t , and t � r0, w ∈ ∂�, then for 0 < b < 1 and y ∈ ∂�
we let

0(y) = 0b(y) = {x ∈ � : d(x, ∂�) > b|x − y|}. (3.2)
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Given w ∈ ∂�, 0 < r < t , and a measurable function k on
⋃
y∈1(w,2r) 0(y) ∩ B(w, 4r)

we define the nontangential maximal function N(k) : 1(w, 2r)→ R for k as

N(k)(y) = sup
x∈0(y)∩B(w,4r)

|k|(x) whenever y ∈ 1(w, 2r). (3.3)

We let Lq(1(w, 2r)), 1 ≤ q ≤ ∞, be the space of functions which are integrable,
with respect to H n−1, to the power q on 1(w, 2r). Let ‖f ‖Lq (1(w,2r)) be the norm of
f ∈ Lq(1(w, 2r)). Furthermore, given a measurable function f on 1(w, 2r) we say
that f is of bounded mean oscillation on 1(w, r), f ∈ BMO(1(w, r)), if there exists
A ∈ (0,∞) such that∫

1(y,s)

|f − f1|
2 dH n−1

≤ A2H n−1(1(y, s)) (3.4)

whenever y ∈ 1(w, r) and 0 < s ≤ r . Here f1 denotes the average of f on1 = 1(y, s)
with respect to H n−1. The least A for which (3.4) holds is denoted by ‖f ‖BMO(1(w,r)).
If f is a vector valued function, f = (f1, . . . , fn), then f1 = (f1,1, . . . , fn,1) and the
BMO-norm of f is defined as in (3.4) with |f − f1|2 = 〈f − f1, f − f1〉. For more on
BMO we refer the reader to [S, Chapter IV].

Theorem 3.10 ([LN3, Theorem 1]). Let � ⊂ Rn be a (δ, r0)-Reifenberg flat domain
with δ < δ̂(n) and assume, in addition, that � is a Lipschitz domain on scale t , t � r0.
Let w ∈ ∂� and 0 < r < t . Given p ∈ (1,∞), suppose that u is a positive p-harmonic
function in � ∩ B(w, 4r), u is continuous in �̄ ∩ B(w, 4r), and u = 0 on 1(w, 4r).
Extend u to B(w, 4r) by putting u ≡ 0 on B(w, 4r) \ � and let µ be the associated
measure corresponding to u as in Lemma 3.6 with 2r replaced by 4r . Then µ is absolutely
continuous with respect to H n−1 on 1(w, 4r). Moreover,

lim
x∈0(y), x→y

∇u(x) = ∇u(y)

for H n−1-almost every y ∈ 1(w, 4r) and there exist q > p and a constant c ∈ [1,∞),
which both depend only on p, n, such that

(i) ‖N(∇u|)‖Lq (1(w,2r)) ≤ cr−1+(n−1)/qu(ar(w)),

(ii)
∫
1(w,2r)

|∇u|q dH n−1
≤ cr

(n−1) p−1−q
p−1

(∫
1(w,2r)

|∇u|p−1 dH n−1
)q/(p−1)

,

(iii) log |∇u| ∈ BMO(1(w, r)) and
∥∥log |∇u|

∥∥
BMO(1(w,r)) ≤ c,

(iv) dµ(x) = |∇u|p−1(x) dH n−1 and ∇u(x)/|∇u(x)| is the inner unit normal to
� ∩ B(w, 2r) for H n−1-almost every x in 1(w, 2r).

Note that using Theorem 3.10 we can conclude that∫
1(w,r)

|∇u|p dH n−1
≤ cH n−1(1(w, r))

(
µ(1(w, r))

H n−1(1(w, r))

)p/(p−1)

, (3.5)
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and hence

1
µ(1(w, r))

∫
1(w,r)

η−1
|∇u|p dH n−1

≤ cη−1
(

µ(1(w, r))

H n−1(1(w, r))

)1/(p−1)

(3.6)

whenever η > 0. Next, using Jensen’s inequality we therefore see that

1
µ(1(w, r))

∫
1(w,r)

|∇u|p−1 log(η−1
|∇u|) dH n−1

≤ log
(
cη−1

(
µ(1(w, r))

H n−1(1(w, r))

)1/(p−1))
(3.7)

whenever η > 0. From (3.7), and boundedness of x|log x| on (0,1], we conclude that∫
1(w,r)

|∇u|p−1
|log(η−1

|∇u|)| dH n−1
≤ cµ(1(w, r))

if η ≈
(

µ(1(w, r))

H n−1(1(w, r))

)1/(p−1)

. (3.8)

Remark 3.11. For use in the proof of Theorem 4 we note that the constants in Lem-
mas 3.2–3.6, 3.8 and Theorems 3.7, 3.9, 3.10 can be chosen independent of p when
p ∈ [3/2, 5/2]. This statement can be proved by a straightforward but rather laborious
checking of details, in the references listed for these results.

4. Degenerate elliptic equations

In this section we state some lemmas for degenerate elliptic operators in the sense of
[FKS], [FJK1] and [FJK2]. They are the basis for many of our estimates in the proofs
of Theorems 1–4. Let w ∈ Rn, r > 0, and let λ(y) be a real valued Lebesgue measur-
able function defined almost everywhere on B(w, 2r). It is said to belong to the class
A2(B(w, r)) if there exists a constant γ such that

r−2n
∫
B(w̃,r̃)

λ dy ·

∫
B(w̃,r̃)

λ−1 dy ≤ γ (4.1)

whenever w̃ ∈ B(w, r) and 0 < r̃ ≤ r . If λ(y) belongs to the class A2(B(w, r)) then λ is
referred to as an A2(B(w, r))-weight. The smallest γ such that (4.1) holds is referred to
as the constant of the weight.

In the following we let � ⊂ Rn be an NTA-domain with NTA-constants M, r0. We
let w ∈ ∂�, 0 < r < r0, and we consider the operator

L̂ =

n∑
i,j=1

∂

∂yi

(
b̂ij (y)

∂

∂yj

)
(4.2)
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in � ∩ B(w, 2r). We assume that the coefficients {b̂ij (y)} are bounded, Lebesgue mea-
surable functions defined almost everywhere on B(w, 2r). Moreover, b̂ij = b̂ji for all
i, j ∈ {1, . . . , n}, and

β−1λ(y)|ξ |2 ≤

n∑
i,j=1

b̂ij (y)ξiξj ≤ β|ξ |
2λ(y) (4.3)

for almost every y ∈ B(w, 2r), where λ ∈ A2(B(w, r)). By definition L̂ is a degenerate
elliptic operator (in divergence form) in B(w, 2r) with ellipticity measured by the func-
tion λ and β. If O ⊂ B(w, 2r) is open then we let W̃ 1,2(O) be the weighted Sobolev
space of equivalence classes of functions v with distributional gradient ∇v and norm

‖v‖̃21,2 =

∫
O

v2λ dy +

∫
O

|∇v|2λ dy <∞. (4.4)

Let W̃ 1,2
0 (O) be the closure of C∞0 (O) in the W̃ 1,2(O) norm. We say that v is a weak

solution to L̂v = 0 in O provided v ∈ W̃ 1,2(O) and∫
O

∑
i,j

b̂ijvyiφyj dy = 0 (4.5)

whenever φ ∈ C∞0 (O).
The following lemmas are based on the results in [FKS], [FJK1] and [FJK2]. In these

lemmas c depends on n,M, β, γ. Also A ≈ B means the ratio of A/B is bounded above
and below by constants having the same dependence as c.

Lemma 4.1. Let� ⊂ Rn be an NTA-domain with constantsM, r0, w ∈ ∂�, 0 < r < r0,
and let λ be an A2(B(w, r))-weight with constant γ . Suppose that v is a positive weak
solution to L̂v = 0 in � ∩ B(w, 2r). Then there exists a constant c ≥ 1 such that if
w̃ ∈ �, r̃ > 0, and B(w̃, 2r̃) ⊂ � ∩ B(w, r), then

(i) c−1r̃2
∫
B(w̃,r̃/2)

|∇v|2λ dy ≤ c

(∫
B(w̃,r̃)

λ dy

)(
max
B(w̃,r̃)

v
)2
≤ c

∫
B(w̃,2r̃)

|v|2λ dy,

(ii) max
B(w̃,r̃)

v ≤ c min
B(w̃,r̃)

v.

Furthermore, there exists α = α(n,M, β, γ ) ∈ (0, 1) such that if x, y ∈ B(w̃, r̃) then

(iii) |v(x)− v(y)| ≤ c(|x − y|/r̃)α max
B(w̃,2r̃)

v.

Lemma 4.2. Let� ⊂ Rn be an NTA-domain with constantsM, r0, w ∈ ∂�, 0 < r < r0,
and let λ be an A2(B(w, r))-weight with constant γ . Suppose that v is a positive weak
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solution to L̂v = 0 in �∩B(w, 2r) and that v = 0 on 1(w, 2r) in the weighted Sobolev
sense. Then there exists 1 ≤ c <∞ such that the following holds with r̃ = r/c:

(i) r2
∫
�∩B(w,r/2)

|∇v|2λ dy ≤ c

∫
�∩B(w,r)

|v|2λ dy,

(ii) max
�∩B(w,r̃)

v ≤ cv(ar̃(w)).

Furthermore, there exists α = α(n,M, β, γ ) ∈ (0, 1) such that if x, y ∈ � ∩ B(w, r̃),
then

(iii) |v(x)− v(y)| ≤ c(|x − y|/r)α max
�∩B(w,2r̃)

v.

Proceeding as in [FJK1] and [FJK2] we can derive the existence of the Green function,
ĝ(·, ·), associated to the operator L̂. In particular, the following lemma can be proved.

Lemma 4.3. Let � ⊂ Rn be an NTA-domain with constants M, r0, and let λ be an
A2(Rn)-weight with constant γ . Then there exists a Green function g(·, ·) : � × � →
(0,∞], associated to the operator L̂ with L̂g(·, y) = 0 in � \ B(y, ε) for each y ∈ �̂,
ε > 0. The Green function also satisfies g(x, y) = g(y, x) for x 6= y, and ζ(·)g(·, y) ∈
W̃

1,2
0 [� \ B̄(y, ε)] whenever B̄(y, ε) ⊂ � and ζ ∈ C∞0 (R

n
\ B̄(y, ε)). For y ∈ � let

g(·, y) ≡ 0 on Rn \ �. Then g(·, y) is continuous on Rn \ {y}. Finally, if x 6= y and
d(y, ∂�) < r0/4, then for n ≥ 3,

(a) g(x, y) ≈ λ(y)−1
|x − y|2−n whenever x ∈ B(y, d(y, ∂�)/2),

(b) g(x, y) ≤ cλ(y)−1
|x − y|2−n−σd(x, ∂�)σ for some σ = σ(n,M, γ, β) whenever

x ∈ � \ B(y, d(y, ∂�)/2).

Applying Lemmas 4.1 and 4.2 in� to v(·) = g(·, y), y ∈ �, one can deduce the existence
of a measure ω(·, y), with support on ∂�, ω(∂�, y) = 1, such that

θ(y) =

∫ n∑
i,j=1

θxi b̂ijgxj (·, y) dx +

∫
θ dω(·, y) (4.6)

whenever θ ∈ C∞0 (R
n). We say that ω(·, y) is the elliptic measure for � corresponding

to y and L̂.
Our next step is to analyze the elliptic measure ω(·, y). To do this we first note that

using Lemmas 4.1–4.3 and (4.6) the following lemma can be derived (see [FJK1], [FJK2],
for details).

Lemma 4.4. Let � ⊂ Rn be an NTA-domain with constants M, r0, and let λ be an
A2(Rn)-weight with constant γ. There exists 1 ≤ c < ∞ such that if z ∈ ∂�, 0 < ρ <

r0/c, and y ∈ � \ B(z, 4ρ), then

c−1ρn−2g(y, aρ(z))λ(aρ(z)) ≤ ω(∂� ∩ B(z, ρ), y) ≤ cρ
n−2g(y, aρ(z))λ(aρ(z)).
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We observe from Lemma 4.4 and Harnack’s inequality that ω(·, y) is a doubling measure
in the following sense. There exists 1 ≤ c <∞ such that

ω(B(x, 2s), y) ≤ cω(B(x, s), y) whenever x ∈ ∂� ∩ B(z, 4ρ), s ≤ ρ. (4.7)

Moreover, using Lemma 4.3, Lemma 4.4 and Harnack’s inequality we see that there exists
a constant c ≥ 1 such that if z and ρ are as in Lemma 4.4, then

cω(∂� ∩ B(z, ρ), aρ/2(z)) ≥ 1. (4.8)

Let �, λ be as in Lemma 4.3. Using Lemma 4.2 and (4.7)–(4.8), it is not difficult to
show that the continuous Dirichlet problem for � and L̂ always has a solution. That is,
given a continuous function θ on ∂�with compact support, there exists a weak solution2
to L̂ in � that takes on the boundary values θ continuously. In fact,

2(x) =

∫
θ dω̂(x, ·) whenever x ∈ �. (4.9)

Next we state the main lemma of [DJK].

Lemma 4.5. Let �, λ, L̂, ω be as in Lemma 4.3, and let �̃ ⊂ � be an NTA-domain with
constants M, r0. Let ω̃ be elliptic measure for �̃ corresponding to L̂. Then there exist
c ≥ 1 and σ > 0, depending on M,n, γ, such that the following is true. If 0 < r ≤

r0/c,w ∈ ∂�̃, and E is a Borel subset of ∂� ∩ ∂�̃ ∩ B(w, r), then

ω(E, ãr(w)) ≤ cω̃(E, ãr(w))
σ .

In Lemma 4.5, ãr(w) is defined relative to �̃ as in Definition 3.1. Observe that the in-
equality ω̃(E, ãr(w)) ≤ ω(E, ãr(w)) follows from the weak maximum principle for L̂.
We note that Lemma 4.5 is proved in detail only for uniformly elliptic operators and when
�̃,� are Lipschitz domains. However this lemma also remains valid in our situation (see
the last section in [DJK]). For our purposes, it is enough to know that Lemma 4.5 is true
when E is ‘most’ of ∂�̂∩B(w, r), which is easier to prove. In fact a self-contained proof
of (a) in Theorem B, readily adaptable to the current situation, can be found in [L].

Next we state a boundary Harnack inequality for positive solutions to L̂ vanishing on
a portion of ∂�.

Lemma 4.6. Let � ⊂ Rn be an NTA-domain with constants M, r0, and let λ be an
A2(Rn)-weight with constant γ . Suppose that w ∈ ∂�, 0 < r < r0/4, and v1, v2 are two
positive weak solutions to L̂v = 0 in � ∩ B(w, 2r) with v1 = 0 = v2 on 1(w, 2r) in the
weighted Sobolev sense. Then there exist 1 ≤ c < ∞ and α = α(n,M, β, γ ) ∈ (0, 1)
such that∣∣∣∣log

v1(y1)

v2(y1)
− log

v1(y2)

v2(y2)

∣∣∣∣ ≤ c( |y1 − y2|

r

)α
whenever y1, y2 ∈ � ∩ B(w, r/c).
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Finally in this section we point out our applications of the above lemmas to p-harmonic
functions. Let 0 < δ < δ̂(n) and let � ⊂ Rn be a (δ, r0)-Reifenberg flat domain. Given
p ∈ (1,∞),w ∈ ∂�, and 0 < r < r0, suppose that u is a positive p-harmonic function in
�∩B(w, 4r), u is continuous in �̄∩B(w, 4r), and u = 0 on 1(w, 4r). Using Theorem
3.7 we see that there exist δ̄ = δ̄1(p, n) > 0, c̄1 = c̄1(p, n), and ã = ã(p, n) such that if
0 < δ < δ̄1, then

ã−1 u(y)

d(y, ∂�)
≤ |∇u(y)| ≤ ã

u(y)

d(y, ∂�)
(4.10)

whenever y ∈ � ∩ B(w, r/c̄1). We refer to (4.10) as the fundamental inequality for u in
� ∩ B(w, r/c̄1). Using Theorem 3.7 and Lemma 3.8, the following can be proved.

Lemma 4.7 ([LN5, Lemma 3.30]). Let � be a (δ, r0)-Reifenberg flat domain, w ∈ ∂�,
and 0 < r < r0/4. Fix p ∈ (1,∞), and suppose that u is a positive p-harmonic function
in�∩B(w, 4r), u is continuous in �̄∩B(w, 4r), and u = 0 on1(w, 4r). Then there exist
δ4 = δ4(p, n) > 0 and c̄4 = c̄4(p, n) ≥ 1 such that if 0 < δ < δ̄4 and r̂ = r/c̄4, then
|∇u|p−2 extends to an A2(B(w, 2r̂))-weight with constant depending only on p and n.
Moreover, the above constants can be chosen independent of p when p ∈ [3/2, 5/2].

As an application of Lemma 4.7 suppose r0 = ∞ and let b̂ij (y) = bij (y) whenever
y ∈ �, where bij (y), 1 ≤ i, j ≤ n, are defined in (2.8). From (2.7), (2.9) we see that
the lemmas in this section can be applied to solutions of L. Observe from (4.10) that if
y ∈ �, then λ(y) ≈ (u(y)/d(y, ∂�))p−2, where for δ > 0 small enough, the constants in
the ratio depend only on p, n, and can be chosen independent of p when p ∈ [3/2, 5/2].

5. Proof of Theorem 1

To begin the proof of Theorem 1 recall that we are assuming � is a δ-Reifenberg flat do-
main with r0 = ∞,where δ is so small that Theorems 3.9 and 3.7 hold. Letting r →∞ in
Theorem 3.9 we see that any two p-harmonic functions under consideration are constant
multiples of each other. Moreover, using Lemmas 3.2-3.6 and compactness arguments, it
is easily shown that there exists such a p-harmonic function u with u 6≡ 0. Using The-
orem 3.7 and Lemma 3.5 we see that the function u is infinitely differentiable and that
|∇u| 6= 0 in �. Recall from (2.7) and (2.8) that u, uxk , 1 ≤ k ≤ n, are solutions to

Lζ(x) =

n∑
i,j=1

∂

∂xi
[bij (x)ζxj (x)] = 0, (5.1)

where, at x ∈ �,

bij (x) = |∇u|
p−4
[(p − 2)uxiuxj + δij |∇u|

2
](x), 1 ≤ i, j ≤ n, (5.2)

and δij is the Kronecker δ. Also at x ∈ �,

min{p − 1, 1}|ξ |2|∇u(x)|p−2
≤

n∑
i,j=1

bij ξiξj ≤ max{1, p − 1}|∇u(x)|p−2
|ξ |2. (5.3)
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From (5.3) and Lemma 4.7 we deduce that

|∇u|p−2 extends to an A2-weight on Rn. (5.4)

To prove Theorem 1 we will need the following lemma.

Lemma 5.1. Let τ(x) = log |∇u(x)|2 whenever x ∈ �. If p ≥ n, then Lτ ≥ 0 in �.

Proof. For fixed a ∈ � we assume, as we may since (5.1) is invariant under rotations,
that ∇u(a) = ux1(a)e1. Let τ = log |∇u|2 and note that

τxj =

n∑
k=1

2uxkuxkxj
|∇u|2

.

Furthermore,

Lτ =

n∑
i,j,k=1

(
bij

2uxkuxkxj
|∇u|2

)
xi

=

n∑
i,j,k=1

2uxk
|∇u|2

(bijuxkxj )xi+

n∑
i,j,k=1

2bijuxkxj

(
uxk

|∇u|2

)
xi

.

The first term on the right is zero since Luxk = 0. We differentiate the second term to get

Lτ =

n∑
i,j,k=1

[
2|∇u|−2bijuxkxj uxkxi −

n∑
i,j,k,l=1

4|∇u|−4uxkuxkxj bijuxluxlxi

]
. (5.5)

Evaluating at a, and using that uxj (a) = 0 for j 6= 1, we see that

b11 = (p − 1)|∇u|p−2, bii = |∇u|
p−2 for i 6= 1, bij = 0 for i 6= j.

Using these equalities in (5.5) we obtain, at a ∈ �,

Lτ = 2|∇u|p−4
(
(p − 1)

n∑
k=1

u2
xkx1
+

n∑
i=2, k=1

u2
xkxi
− 2(p − 1)u2

x1x1
−

n∑
i=2

2u2
x1xi

)
.

Collecting the x1x1 and x1xi (i 6= 1) derivatives yields

Lτ = 2|∇u|p−4
(
−(p − 1)u2

x1x1
+ (p − 2)

n∑
k=2

u2
xkx1
+

n∑
k,i=2

u2
xkxi

)
. (5.6)

The last sum contains the pure second derivatives of u in the ek direction when k 6= 1.
These derivatives may be estimated using the p-Laplace equation for u at the point a, i.e.,
at a we have

(p − 1)ux1x1 +

n∑
k=2

uxkxk = 0.

Solving for ux1x1 , taking squares and using Hölder’s inequality we see that

n∑
k=2

u2
xkxk
≥
(p − 1)2

n− 1
u2
x1x1

.
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Substituting this expression into (5.6) gives

Lτ ≥ 2|∇u|p−4
((

(p − 1)2

n− 1
− (p − 1)

)
u2
x1x1
+ (p − 2)

n∑
k=2

u2
xkx1
+

n∑
k,i=2,k 6=i

u2
xkxi

)
.

Thus, Lτ ≥ 0 when (p−1)2
n−1 − (p − 1) = (p−1)(p−n)

n−1 ≥ 0. In particular, Lτ ≥ 0 if p ≥ n.
ut

We note, for later use, that the above argument shows, for p > n, that

Lτ ≥ c−1
|∇u|p−4

n∑
i,j=1

u2
xixj

(5.7)

for some c = c(p, n), where c→∞ as p→ n.

Proof of Theorem 1. To prove Theorem 1, let µ be the positive Borel measure associated
with u. Using Lemma 3.6, Harnack’s inequality, and the NTA property of �, we see that
there exist c ≥ 1 and θ > 0, both depending only on p, n, such that

c−1
(
s

r

)1/θ

≤
µ(B(y, s))

µ(B(w, r))
≤ c

(
s

r

)θ
(5.8)

whenever w ∈ ∂�, y ∈ ∂� ∩ B(w, r), and 0 < s < r. Let K̂ be the set of all x ∈ ∂�
with

lim sup
r→0

µ(B(x, r))

rn−1 > 0. (5.9)

We claim that
K̂ has σ -finite H n−1-measure. (5.10)

Indeed, given m a positive integer, let K̂m be the subset of K̂ ∩ B(0, m) for which the
lim sup in (5.9) is> 1/m.Using a well known covering lemma, we can choose a covering
{B(yi, 5ri)} of K̂m ∩ B(w, r) with yi ∈ K̂, ri ≤ ε < 1/5, {B(yi, ri)} pairwise disjoint
and

µ(B(yi, 5ri)) > 5rn−1
i /m. (5.11)

Thus ∑
i

rn−1
i < m

∑
i

µ(B(xi, 5ri)) ≤ cm
∑
i

µ(B(xi, ri))

≤ cmµ(∂� ∩ B(0, 2m)) <∞, (5.12)

as we see from (5.11), (5.8). Letting ε → 0 and using the definition ofH n−1-measure we
conclude from (5.12) that H n−1(K̂m) <∞. Hence (5.10) is true.

To complete the proof of Theorem 1 we intend to show that

µ(∂� \ K̂) = 0 (5.13)



On the dimension of p-harmonic measure in space 2217

and the proof is by contradiction. Indeed, assume that (5.13) does not hold. Then, if
w ∈ ∂� \ K̂, it follows from (5.4) and Theorem 3.7 that

|∇u(x)| ≈ r−1u(ar(w)) ≈ (r
1−nµ[B(w, r)])1/(p−1)

→ 0 as r → 0 (5.14)

for x ∈ B[ar(w), d(ar(w), ∂�)/2]. Clearly (5.14) implies that τ(x)→−∞ as x → ∂�

in the sense stated. We will use this fact to construct �̂ ⊂ � and a compact set F ⊂
∂�̂ ∩ (∂� \ K̂) such that τ is bounded from above in �̂ and τ(x) → −∞ whenever
x → y ∈ F . Furthermore, by construction we will have µ(F) > 0. Indeed, to start the
construction of �̂ and F we see that if (5.13) does not hold, then by a measure-theoretic
argument there exist w ∈ ∂�, ρ > 0 small, and F compact such that

F ⊂ (∂� \ K̂) ∩ B(w, ρ) and µ(F) > 0. (5.15)

We construct �̂ based on F . Let x ∈ F and let k be an integer with 2k ≤ 100ρ. Let
P = P(x, 2k+10n) be the hyperplane corresponding to x, 2k+10n, in Definition 2.1. Let
π(z) be the orthogonal projection of z onto P and let η = η(x, 2k) be the unit normal to
P pointing into �. Let

C(x, k) = {z : |π(z)| < 1000 · 2k and 2k−4 < 〈z, η〉 < 2k+4
}

and put
�̂ =

⋃
2k≤100ρ, x∈F

C(x, k). (5.16)

Using δ-Reifenberg flatness of �, it is easily shown, for δ small enough, that �̂ ⊂ � is
an NTA-domain. By construction,

τ(x)→−∞ as x ∈ �̂→ z ∈ F ⊂ ∂�̂. (5.17)

Let θ(z) = lim sup
x∈�̂→z

τ(x) whenever z ∈ ∂�̂. From (5.17) and a compactness argu-
ment we see that τ is bounded from above in �̂. Thus θ is upper semicontinuous on ∂�̂
and there exists a decreasing sequence (θn) of continuous functions with limn→∞ θn = θ

pointwise on ∂�̂. Let 2n be the solution to the Dirichlet problem for L, �̂, with bound-
ary function θn. Since τ is a subsolution to L (see Lemma 5.1) and θ ≤ θn, it follows
from the weak maximum principle for L that τ ≤ 2n. From this inequality, (4.9), and the
monotone convergence theorem we conclude that

τ(aρ(w)) ≤ lim
n→∞

2n(aρ(w)) = lim
n→∞

∫
2n dω̂(·, aρ(w)) =

∫
θ dω̂(·, aρ(w)). (5.18)

Here aρ(w) is defined relative to �̂. Since θ = −∞ on F we conclude from (5.18) that

ω̂(F, aρ(w)) = 0 (5.19)

where ω̂(·, aρ(w)) is the elliptic measure, at aρ(w), associated to L and �̂. Furthermore,
let g be the Green function for � relative to L, and ω the corresponding elliptic measure.
Then, using (5.19) and Lemma 4.5 it follows that

ω(F, aρ(w)) = 0. (5.20)
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Finally from Lemmas 4.3, 4.4, 4.6, 3.6, and Theorem 3.7, we deduce that

µ(B(z, s)) ≈ ω(B(z, s), aρ(w)). (5.21)

Here≈means that the constants can be chosen independent of s, z, provided 0 < s ≤ ρ/c

and z ∈ ∂�∩B(w, ρ).Using (5.21) and a covering argument we first find thatµ restricted
to ∂�∩B(w, ρ) is absolutely continuous with respect to ω(·, aρ(w)) and thereupon from
(5.20) that µ(F) = 0. In particular, we have reached a contradiction to (5.15). Thus (5.13)
is valid and the proof of Theorem 1 is complete. ut

6. Estimates of Wolff type integrals—the case of an unbounded Lipschitz domain

6.1. Existence and uniqueness of û

Let C = {x : |xi | ≤ 1/2, 1 ≤ i ≤ n}. Let �̂ be an NTA-domain with constants
M, r0 = ∞ such that ∂�̂ ∩ (Rn \ C) = {x : xn = 0} ∩ (Rn \ C). We prove

Lemma 6.1. For given p ∈ (1,∞), there exists a unique positive p-harmonic function û
in �̂, continuous in Rn, such that

û ≡ 0 on Rn \ �̂ and |xn − û(x)| → 0 uniformly as |x| → ∞, x ∈ �̂.

Proof. We first establish the existence part of Lemma 6.1. Indeed, suppose ρ � n and let
uρ(·) be the p-harmonic function in B(0, ρ) ∩ �̂ with boundary values (in the Sobolev
sense) uρ = xn on ∂B(0, ρ)∩ �̂ and uρ = 0 on B̄(0, ρ)∩ ∂�̂. Existence of uρ(·) follows
from the usual calculus of variations minimizing argument for a functional involving the
gradient raised to the pth power. From the maximum principle for p-harmonic functions
on �̂ ∩ B(0, ρ) we have

|xn − uρ(x)| ≤ 1, x ∈ �̂ ∩ B(0, ρ). (6.1)

From Lemma 3.3 we see that uρ(·) is Hölder continuous in B(0, ρ) with exponent in-
dependent of ρ. Using Ascoli’s theorem and Lemma 3.5 it follows that a subsequence,
{uρm(·)}, converges uniformly on compact subsets of Rn (extend uρ(·) to all of B(0, ρ)
by setting it equal to zero in B(0, ρ) ∩ (Rn \ �̂)) to a Hölder continuous function û ≥ 0
on Rn which is p-harmonic in �̂. Also (6.1) holds with uρ(·) replaced by û, for x ∈ �̂.
To proceed we apply a barrier argument, Lemmas 3.5, 3.4 to û, to get

|∇û(x)| ≤ c′û(|x|en)/|x| ≤ c for x ∈ �̂, |x| ≥ 2n, (6.2)

where en = (0, . . . , 0, 1). Next if ξ = (ξ1, . . . , ξn), w = (w1, . . . , wn) ∈ Rn \ {0}, and
1 ≤ i ≤ n, we note that

|ξ |p−2ξi − |w|
p−2wi =

∫ 1

0

d

dλ
{|λξ + (1− λ)w|p−2

[λξi + (1− λ)wi]} dλ

=

n∑
j=1

(ξ − w)j

(∫ 1

0
aij [λξ + (1− λ)w] dλ

)
, (6.3)
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where, for 1 ≤ i, j ≤ n,

aij (η) = |η|
p−4
[(p − 2)ηiηj + δij |η|2] for η ∈ Rn \ {0}. (6.4)

In this display δij , once again, denotes the Kronecker delta. Using (6.3) and the fact that
û, xn are p-harmonic we deduce that if U(x) = xn − û(x), and

Aij (x) =

∫ 1

0
aij [λen + (1− λ)∇û(x)] dλ

whenever x ∈ �̂ and 1 ≤ i, j ≤ n, then

L̃U(x) =

n∑
i,j=1

∂

∂xi
[Aij (x)Uxj ] = 0 on �̂. (6.5)

Moreover, for x ∈ �̂, it is easily seen that

c−1
|ξ |2(1+ |∇û(x)|)p−2

≤

n∑
i,j=1

Aij (x)ξiξj whenever ξ ∈ Rn \ {0},

n∑
i,j=1

|Aij (x)| ≤ c(1+ |∇û(x)|)p−2,

(6.6)

where c depends only on p, n, and can be chosen independent of p when p ∈ [3/2, 5/2].
From (6.5), (6.6) we see that U is a solution in �̂ to L̃, a degenerate elliptic PDE whose
ellipticity is given by (6.6). Moreover from (6.2), L̃ is uniformly elliptic with bounded
coefficients in �̂ \ B̄(0, 2n). Using (4.8) with λ = 1, (6.1), (6.6), Lemma 4.1(ii), and
the maximum principle for solutions to L̃, we see that if ω̃ρ is elliptic measure for L̃ and
�̃ρ := (�̂ ∩ B(0, 2ρ)) \ B̄(0, 2n), defined as in (4.9), then

|xn − û(x)| ≤ ω̃ρ(∂�̃ρ ∩ ∂B(0, 2ρ), x)+ ω̃ρ(∂�̃ρ ∩ ∂B(0, 2n), x)
for 2n < |x| < 2ρ, (6.7)

as follows by comparing boundary values and using (6.1) for û. Now using Lemma 4.2(iii)
we observe that

ω̃ρ(∂�̃ρ ∩ ∂B(0, 2ρ), x) = 1− ω̃ρ(∂�̃ρ \ ∂B(0, 2ρ), x) ≤ c(|x|/ρ)α (6.8)

whenever 8n < |x| < ρ/4, x ∈ �̃. Moreover, let g̃ρ(·, ·) be the Green function for �̃, L̃.
Then using Lemmas 4.4, 4.1(ii) and 4.3(b), with λ ≡ 1, we see that

ω̃ρ(∂�̃ρ ∩ ∂B(0, 2n), x) ≤ cg̃ρ(x, 3nen) ≤ c|x|2−n−σ whenever 8n < |x| < ρ/4.
(6.9)

Combining (6.7)–(6.9) we can conclude that

|xn − û(x)| ≤ c((|x|/ρ)
α
+ |x|2−n−σ ) whenever 8n < |x| < ρ/4. (6.10)
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The nonnegative constants c, α, and σ are independent of ρ and x. Hence, if we let
ρ → ∞ through a sequence we then see that U → 0 as x → ∞ and existence of û in
Lemma 6.1 has been established.

To prove uniqueness suppose v is another such solution and let {uρm(·)} be the se-
quence used in the construction of û above. Then given ε > 0 we have, for m sufficiently
large,

|uρm(·)− v| ≤ ε in �̂ ∩ B(0, ρm).

This follows from comparing the boundary values of uρm and v, and by using the fact that
|xn−v(x)| → 0 uniformly as |x| → ∞. Lettingm→∞ we conclude that û = v. Hence
û is unique and the proof of Lemma 6.1 is complete. ut

6.2. Existence, differentiability, and sign of I (ε)

Now let θ̂ ∈ C∞0 ({x
′
: |x′| < 1/2}) with ‖θ̂‖∞ < 1/2 and set �̂(ε) = {(x′, xn) : xn >

εθ̂(x′), x′ ∈ Rn−1
} for ε ∈ (0, 1). For fixed p ∈ (1,∞), let û(·, ε), be the unique p-

harmonic function function in �̂(ε) satisfying the conclusion Lemma 6.1. Put U(x, ε) =
xn − û(x, ε) for x ∈ �̂(ε). We sometimes write û, U, �̂, for û(·, ε), U(·, ε), �̂(·, ε).

Remark 6.2. For some η ∈ (0, 1) depending only on p, n we have

ûxn(x) ≥ η|∇û(x)| ≥ η
2û(x)/d(x, ∂�̂) for x ∈ �̂. (6.11)

Indeed, the right-hand inequality in (6.11) is given in Theorem 3.7 when ∂�̂ is flat
enough. However the above inequality holds with no flatness assumption in a Lipschitz
graph domain provided η is also allowed to depend on the Lipschitz norm of the graph
function, and η can be chosen independent of p when p ∈ [3/2, 5/2] (see [LN2, Lem-
ma 4.28]).

In the following we first establish the existence and differentiability of I (ε).

Existence of I (ε). From (6.11) and Lemma 3.5 we see that the coefficients Aij of L̃
in (6.5), defined with respect to xn and û = û(·, ε), are infinitely differentiable in �̂,
and that U = U(·, ε) is a solution to this divergence form elliptic PDE (see (6.6)). Let
g̃(·, ·), ω̃(·, ·), be the Green function and elliptic measure corresponding to L̃ in �̂. As in
(6.10) we get

|U(x)| ≤ c′|x|2−n−σ in �̂ \ B̄(0, 8n). (6.12)

Extending û by Schwarz reflection, and using Schauder estimates, we see that

|∇
kû(x)| ≤ c(k)|x|1−k for |x| ≥ 8n (6.13)

for k = 0, 1, . . . , with c(k) depending only on p, n, k. Furthermore, also extending U by
Schwarz reflection and using (6.12) we deduce that

|∇U(x)| ≤ c|x|−1 max{U(y) : |x|/2 ≤ |y| ≤ 3|x|/2} ≤ c̃|x|1−n−σ (6.14)
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in Rn \ B̄(0, 8n) where c̃ ≥ 1 depends only on p, n. Next let

I = I (ε) =

∫
∂�̂(ε)

|∇û(·, ε)|p−1 log |∇û(·, ε)| dH n−1 (6.15)

and observe, using that U(x, ε) = xn − û(x, ε), (6.13), (6.14) as well as first semester
calculus, that ∫

∂�̂(ε)∩[Rn\B(0,8n)]
|∇û(·, ε)|p−1∣∣log |∇û(·, ε)|

∣∣ dH n−1
≤ c (6.16)

where c depends only on p, n and can be chosen independent of p ∈ [3/2, 5/2]. Next
we note from a result of Lieberman [Li] that ∇û has a Hölder γ extension to the closure
of �̂ ∩ B(0, 8n) for some γ ∈ (0, 1], depending on p, n, and the C2 norm for θ̂ . Using
this result and (6.11) we conclude that û is a solution to a non-divergence form uniformly
elliptic equation with Hölder continuous coefficients in the closure of �̂ ∩ B(0, 2n). We
now use classical Schauder theory (see [GT, Chapters 6, 9]) and a bootstrap type argument
to find that û has a C∞ extension with ∇û 6= 0 to the closure of �̂∩B(0, 8n). In view of
this fact and (6.16) we deduce the existence of I (ε). ut

Differentiability of I (ε). Let

Û (x, ε1, ε2) =
û(x, ε2)− û(x, ε1)

ε2 − ε1
.

Note that û(x′, εθ̂(x′), ε) ≡ 0 for all x′ ∈ Rn−1. Using this and Schauder estimates up to
the boundary one can show that

max
x∈∂[�̂(ε1)∩�̂(ε2)]

|Û (x, ε1, ε2)+ θ̂ (x
′)ûxn(x, ε1)| → 0 as ε2 → ε1.

Thus Û (·, ε1, ε2) is uniformly bounded on ∂[�̂(ε2) ∩ �̂(ε1)] and ≡ 0 on ∂�̂(·) ∩ (Rn \
B(0, n)). From this fact and our earlier estimates we conclude that Û (·, ε1, ε2) is a
bounded solution to an elliptic PDE (constructed similarly to the one in (6.4), (6.5)) with
ellipticity constants independent of ε1, ε2 ∈ [−ε0, ε0], and with C∞ coefficients. Also
from (6.10) for û(·, εi), i = 1, 2, we find that Û (x, ε1, ε2)→ 0 uniformly as |x| → ∞.
Using these facts and arguing as in (6.10) we conclude, for some σ̃ ∈ (0, 1), and C ≥ 1,
independent of ε1, ε2, that

|Û (x, ε1, ε2)| ≤ C|x|
2−n−σ̃ for x ∈ �̂(ε1) \ B(0, n). (6.17)

Letting ε2 → ε1 it again follows from Schauder type estimates (see for example (4.11)–
(4.16) in [LN2]) that the derivative of û(·, ε) with respect to ε, ûε(·, ε), exists at ε1 and
that

ûε(x, ε1) = −θ̂ (x
′)ûxn(x, ε1) whenever x ∈ ∂�̂(ε1). (6.18)

Furthermore, ûε is, at ε = ε1, a C∞ solution in �̂(ε1) to

Lζ(x) =

n∑
i,j=1

∂

∂xi
[bij (x, ε)ζxj (x)] = 0, (6.19)
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where

bij (x, ε) = |∇û(x, ε)|
p−4
[(p − 2)ûxi (x, ε)ûxj (x, ε)+ δij |∇û(x, ε)|

2
] (6.20)

for 1 ≤ i, j ≤ n. Using a similar argument for derivatives of û(·, ε) we deduce that
(∇kû)ε = ∇

k(ûε), where ∇k for k ≥ 2 denotes an arbitrary kth partial derivative in x.
Also from (6.17)–(6.20), Schwarz reflection and Schauder estimates we get

|∇
kûε | ≤ C(k)|x|

2−n−σ̃−k (6.21)

for |x| > 8n. Continuing, using difference quotients and Schauder type arguments, we
find, for ε ∈ [−ε0, ε0], that ûε2 (the second order derivative of û(·, ε) with respect to ε)
is C∞ in the closure of �̂(ε) and that

Lûε2(x) = −

n∑
i,j=1

∂

∂xi
[(bij )ε(ûε)xj ](x, ε) (6.22)

with

ûε2 = −2θ̂ (x′)(ûε)xn − θ̂ (x
′)2ûx2

n
at x = (x′, εθ̂(x′)) ∈ ∂�̂(ε). (6.23)

Moreover
Dl û is continuous on the closure of

⋃
ε∈[−ε0,ε0]

�̂(ε)× {ε} (6.24)

where Dl denotes any combination of partial derivatives in x, ε with at most two partial
derivatives in ε. Finally (6.21) holds with ûε replaced by ûε2 . Furthermore, proceeding by
induction we deduce that (6.24) holds for any combination of partial derivatives in x, ε.
Also (6.21) holds with ûε replaced by ûεm , the derivative of orderm of û(·, ε)with respect
to ε, and C(k) replaced by C(k,m) whenever m is a positive integer. Also, analogues
of (6.22), (6.23) are valid, as can be obtained from differentiating these equations with
respect to ε. Thus I (ε) as defined in (6.15) is inC∞[−ε0, ε0] and derivatives can be found
by differentiating under the integral sign. ut

The sign of I (ε). Concerning the sign of I (ε) we prove

Lemma 6.3. For I as in (6.15) and p fixed, 1 < p <∞, we have

I (0) = 0, I ′(0) = 0, and I ′′(0) =
p − 2
p − 1

∫
Rn−1
|∇
′θ̂ |2(x′) dx′.

In Lemma 6.3, ∇ ′ denotes the gradient on Rn−1 with respect to x′ and dx′ is the n − 1
Lebesgue measure. Note that once Lemma 6.3 is proved it follows from Taylor’s theo-
rem with remainder that, for fixed p 6= 2, there exists ε1, depending on p, n, and the
C3(Rn−1) norm of θ̂ , such that I (ε) > 0 for p > 2 and I (ε) < 0 for p < 2 in [−ε1, ε1].

For p = 2 the sign of I depends on θ̂ , as discussed in Section 2.
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Proof of Lemma 6.3. To begin, we observe that

I (ε) =

∫
Rn−1
|∇û(x′, εθ̂(x′), ε)|p−1 log |∇û(x′, εθ̂(x′), ε)|

√
1+ ε2|∇ ′θ̂ (x′))|2 dx′.

(6.25)
Also

(−ε∇ ′θ̂ (x′), 1)

(1+ ε2|∇ ′θ̂ |2)1/2

is the inner normal to ∂�(ε) at (x′, εθ̂(x′)), and ∇û(x′, εθ̂(x′), ε) is parallel to this inner
normal. Thus at (x′, εθ̂(x′)),

|∇û| =
−ε〈∇ ′θ̂ ,∇ ′û〉 + ûxn√

1+ ε2|∇ ′θ̂ |2
,

where 〈·, ·〉 denotes the usual inner product on Rn−1. Substituting the last expression into
the integrand in (6.25) we see that this integrand equals

[−ε〈∇ ′θ̂ ,∇ ′û〉 + ûxn ]
p−1(1+ ε2

|∇
′θ̂ |2)(2−p)/2

×
{
log(−ε〈∇ ′θ̂ ,∇ ′û〉 + ûxn)−

1
2 log(1+ ε2

|∇
′θ̂ (x′)|2)

}
. (6.26)

Now from û(x, ε) = 0 when x = (x′, εθ̂(x′)) ∈ ∂�̂(ε) and the chain rule we have

∇
′û = −εûxn∇

′θ̂ at x = (x′, εθ̂(x′)) ∈ ∂�̂(ε). (6.27)

Using (6.26), (6.27), the integrand in (6.25) becomes, at x = (x′, εθ̂(x′)),

F(x′, ε) = (1+ ε2
|∇
′θ̂ |2)p/2û

p−1
xn

{
log(ûxn)+

1
2 log(1+ ε2

|∇
′θ̂ )|2)

}
. (6.28)

We expand this expression in powers of ε, since our goal is to find I ′′(0). For this purpose
we note from (6.21), (6.24), Taylor’s theorem, and the fact that û(x, 0) = xn that

ûxn(x
′, εθ̂(x′), ε) = 1+ a1(x

′)ε + a2(x
′)ε2
+O(ε3),

where O(ε3) denotes a measurable function on Rn−1 whose L1 and L∞ norms are
bounded by Aε3. Here A is a constant independent of ε when ε ∈ [−ε0, ε0]. Using
this equality in (6.28) and once again (6.21), (6.24), we obtain, after expanding in powers
of ε,

F(x′, ε) = a1(x
′)ε +

(
a2(x

′)+ (p − 3/2)a1(x
′)2 + |∇ ′θ(x′)|2/2

)
ε2
+O(ε3). (6.29)

Using (6.29) in the integral defining I (ε), and letting ε → 0, we deduce that

I ′(0) =
∫
Rn−1

a1(x
′) dx′, (6.30)

while
I ′′(0) =

∫
Rn−1
[2a2(x

′)+ (2p − 3)a1(x
′)2 + |∇ ′θ̂ (x′)|2] dx′. (6.31)
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Note that a1, 2a2 are the first and second total derivatives in ε of ûxn(x
′, εθ̂(x′), ε) evalu-

ated at ε = 0. Using this fact and smoothness of the derivatives of û in (x, ε) we see that
a1(x

′) = ûεxn(x
′, 0). Now from (6.18), û(x, 0) = xn, (6.22), and (6.20), we deduce that

ûε(x
′, 0, 0) = −θ̂ (x′), x′ ∈ Rn−1,

(p − 1)ûεx2
n
(x′, xn, 0)+

n−1∑
i,j=1

ûεx2
i
(x′, xn, 0) = 0 for (x′, xn) ∈ H,

(6.32)

where H := Rn−1
× (0,∞). It follows from (6.32) that h(x) = ûε(x

′,
√
p − 1 xn, 0)

is harmonic on H with boundary values −θ̂ . Using the divergence theorem we can use
(6.30) to conclude that

I ′(0) =
∫
Rn−1

a1(x
′) dx′ =

∫
Rn−1

ûεxn dx
′
= (p − 1)−1/2

∫
Rn−1

hxn dx
′
= 0. (6.33)

Next we compute

a2(x
′) = 2θ̂ (x′)ûεx2

n
(x′, 0)+ ûε2xn

(x′, 0), x′ ∈ Rn−1. (6.34)

Observe that, from (6.32) and (6.24),∫
Rn−1

2θ̂ ûεx2
n
dx′ =

2
p − 1

n−1∑
i=1

∫
Rn−1

θ̂ θ̂x2
i
dx′ = −

2
p − 1

∫
Rn−1
|∇
′θ̂ |2 dx′. (6.35)

Using (6.35), (6.34) in (6.31) we find that

I ′′(0) =
∫
Rn−1

[
2a2(x

′)+ (2p − 3)a1(x
′)2 + |∇ ′θ̂ (x′)|2

]
dx′

=

∫
Rn−1

[
(2p − 3)û2

εxn
+
p − 3
p − 1

|∇
′θ̂ |2 + ûε2xn

]
dx′. (6.36)

Observe that ûε2 , evaluated at ε = 0, is a solution to the PDE in (6.22) on H . We inte-
grate both sides of this equation over H. Next we integrate by parts to obtain an integral
over ∂H (permissible from the decay estimates in (6.21)). Finally using (6.20), (6.32) to
evaluate coefficients at ε = 0, we get∫

Rn−1

[
(p − 1)ûε2xn

+ (p − 2)|∇ ′θ̂ |2 + (p − 2)(p − 1)û2
εxn

]
dx′ = 0. (6.37)

Using (6.37) in (6.36) it follows that

I ′′(0) =
∫
Rn−1

[
(p − 1)û2

εxn
− (p − 1)−1

|∇
′θ̂ |2

]
dx′. (6.38)

Finally observe from harmonicity of h defined above (6.33) and Rellich inequalities, or
simply integration by parts, that∫

Rn−1
|∇
′θ̂ |2 dx′ = (p − 1)

∫
Rn−1

û2
εxn
dx′. (6.39)
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From (6.38), (6.39), we conclude

I ′′(0) =
p − 2
p − 1

∫
Rn−1
|∇
′θ |2 dx′.

This completes the proof of Lemma 6.3. ut

6.3. Continuity and stability of sgn I under approximation

Next in order to avoid confusion we change notation slightly. Given φ ∈ C∞0 ({x
′
:

|x′| < 1/2}) with C2 norm ≤ 1/100, and p ∈ (1,∞), let u′ = u′(·, p, φ) be the
unique positive p-harmonic function in �′ = �′(φ) = {(x′, xn) : xn > φ(x′)} which is
continuous in Rn with u′ ≡ 0 on Rn \ �′ and lim|x|→∞ |xn − u′(x)| = 0 for x ∈ �′.
Existence and uniqueness of u′ follow from Lemma 6.1. Set

I (φ, p) =

∫
∂�

|∇u′|p−1 log |∇u′| dH n−1.

Note that in the previous section we proved that I (φ, p) exists. In this subsection we
prove the following propositions.

Proposition 6.4. With the above notation, we have limp→2 I (φ, p) = I (φ, 2). Thus if
I (φ, 2) 6= 0, then there exists ε̂ = ε̂(φ, n) > 0 such that sgn I (φ, p) = sgn I (φ, 2) when
p ∈ [2− ε̂, 2+ ε̂].

Proposition 6.5. There exists a sequence φm, m = 1, 2, . . . , of piecewise linear func-
tions on Rn−1 with ‖φm‖∞ ≤ ‖φ‖∞, ‖∇φm‖∞ ≤ n‖∇φ‖∞, and limm→∞ I (φm, p) =

I (φ, p) whenever 1 < p < ∞. Moreover, I (φm, ·) → I (φ, ·) as m → ∞, uniformly
(in p) when p ∈ [3/2, 5/2].

Proof of Proposition 6.4. First, as pointed out in Remark 3.11, the constants in Lemmas
3.2–3.5 can be chosen independent of p when p ∈ [3/2, 5/2]. Also the barrier argument
in (6.2), as well as the subsequent Schwarz reflection argument, yield constants that are
independent of p when p ∈ [3/2, 5/2]. Using these facts and retracing our steps we get
(6.10) for xn− u′(x, p) when x ∈ �′ \ B̄(0, 8n) with constants that are independent of p
when p ∈ [3/2, 5/2].

Next we note that (6.11) holds for u′(·, p) on �′ with η independent of p when p ∈
[3/2, 5/2]. From this we deduce that (6.14) holds on �′ \ B̄(0, 8n) with U replaced
xn−u

′(x, p) (and with constants independent of p when p ∈ [3/2, 5/2]). We also observe
that a check of the proof in [Li], mentioned after (6.16), yields the existence of γ ′ = γ ′(n)
such that u′(·, p) ∈ C1,γ ′(�̄′ ∩ B̄(0, 4ρ)) whenever p ∈ [3/2, 5/2] and ρ > 0, and
with C1,γ ′ norm depending only on n, φ, ρ. Using this observation and (6.11) one sees
that Schauder estimates can be used once again to get u′ ∈ C∞(�̄′ ∩ B̄(0, 2ρ)), with
C3(�̄′ ∩ B̄(0, 2ρ)) norm independent of p when p ∈ [3/2, 5/2]. Hence u′(·, p) →
u′(·, 2) in C3(�̄′ ∩ B̄(0, ρ)) for each ρ > 0 as p→ 2. This deduction, (6.11), and (6.14)
imply that I (φ, p)→ I (φ, 2) as p→ 2. Thus Proposition 6.4 is true. ut
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Proof of Proposition 6.5. To define φm, m = 1, 2, . . . , we first take a grid of closed
cubes of sidelength ηm in Rn−1 with sides parallel to the coordinate axes, and then divide
each cube into closed simplexes with disjoint interiors. Next define φm to be the unique
piecewise linear function on Rn−1 that agrees with φ at the vertices of each simplex and
is linear inside each simplex. Choosing 0 < ηm ≤ 10−20, m = 1, 2, . . . , with ηm → 0
as m → ∞, we deduce from φ ∈ C∞0 ({x

′
: |x′| < 1/2}) that (φm) is a sequence of

piecewise linear functions satisfying

‖φm‖∞ ≤ ‖φ‖∞ and suppφm ⊂ {x′ : |x′| < 1/2},
‖∇φm‖∞ ≤ n‖∇φ‖∞,

lim
m→∞

(‖φm − φ‖∞ + ‖∇φm −∇φ‖∞) = 0.
(6.40)

For fixed p ∈ (1,∞), let u′m, m = 1, 2, . . . , be the p-harmonic function in Lemma 6.1
defined relative to �′m = {x = (x

′, xn) : xn > φm(x
′)} and let µ′m, µ

′ be the measures
corresponding to u′m, u

′ as in Lemma 3.6. From Lemmas 3.2–3.6 and Lemma 6.1 we
deduce that

µ′m→ µ′ weakly as m→∞. (6.41)

From Theorem 3.10 we find that if fm(x) = |∇u′m|
p−1(x), x ∈ ∂�′m, m = 1, 2, . . . ,

while f (x) = |∇u′|p−1(x), x ∈ ∂�′, then these functions existH n−1-almost everywhere
and

dµ′m = fm dH
n−1 and dµ′ = f dH n−1. (6.42)

Let f̃m(x′) = fm(x
′, φm(x

′)),m = 1, 2, . . . . Put f̃ (x′) = f (x′, φ(x′)) for x′ ∈ Rn−1.

Then

dµ′m(x
′, φm(x

′)) = f̃m(x
′)

√
1+ |∇φm(x′)|2 dx′,

dµ′(x′, φ(x′)) = f̃ (x′)

√
1+ |∇φ(x′)|2 dx′,

almost everywhere, with respect to (n− 1)-dimensional Lebesgue measure on Rn−1. Fix
ρ > n and let B ′(0, ρ) = {x′ ∈ Rn−1

: |x′| < ρ}. From Theorem 3.10 we get the
existence of c(ρ) = c(ρ, p, n) ≥ 1 such that if q = p/(p − 1), then

‖f̃m‖Lq (B ′(0,2ρ)) + ‖f̃ ‖Lq (B ′(0,2ρ)) ≤ c(ρ) for m = 1, 2, . . . . (6.43)

Moreover, c(ρ) can be chosen independent of p when p ∈ [3/2, 5/2]. From (6.40)–(6.43)
we conclude that

f̃m→ f̃ weakly in Lq(B ′(0, 2ρ)) (6.44)

for each ρ > 0.
Next we state the following important lemma.

Lemma 6.6. f̃m − f̃ → 0 in the norm of Lq(Rn−1), and this convergence is uniform
(in p) when p ∈ [3/2, 5/2].
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Before giving the proof of Lemma 6.6, we use it to complete the proof of Proposition
6.5. To proceed we observe that from the smoothness of ∂�′, u′, barrier estimates, and
(6.14) there exists ξ ∈ (0, 1/10) with |∇u′| ≥ 2ξ on ∂�′. Furthermore, ξ can be chosen
independent of p when p ∈ [3/2, 5/2]. Let Em = {x′ ∈ Rn−1

: |f̃m(x
′)| ≥ ξ}. From this

observation, Lemma 6.6, and weak type estimates we see that

H n−1(Rn−1
\ Em)→ 0 as m→∞, uniformly (in p) when p ∈ [3/2, 5/2]. (6.45)

Observe, for m = 1, 2, . . . , that

I (φm, p) = (p − 1)−1
∫
Rn−1
|f̃m|(x

′) log |f̃m(x′)|
√

1+ |∇φm(x′)|2 dx′

= (p − 1)−1
∫
B ′(0,ρ)

. . . dx′ + (p − 1)−1
∫
Rn−1\B ′(0,ρ)

. . . dx′ =: Jm +Km. (6.46)

We also write I (φ, p) = J +K, where J,K are defined as in (6.46) but with f̃m replaced
by f̃ . Given δ′ > 0 we deduce from (6.14) that there exists ρ large so that

|Km| + |K| < δ′ for m = 1, 2, . . . . (6.47)

To estimate Jm we write Jm = Nm + Sm and J = N ′m + S
′
m, where

Nm = (p − 1)−1
∫
Em∩B ′(0,ρ)

|f̃m(x
′)| log |f̃m(x′)|

√
1+ |∇φm(x′)|2 dx′,

Sm = (p − 1)−1
∫
B ′(0,ρ)\Em

|f̃m(x
′)| log |f̃m(x′)|

√
1+ |∇φm(x′)|2 dx′,

N ′m = (p − 1)−1
∫
Em∩B ′(0,ρ)

|f̃ (x′)| log |f̃ (x′)|
√

1+ |∇φ(x′)|2 dx′,

S′m = (p − 1)−1
∫
B ′(0,ρ)\Em

|f̃ (x′)| log |f̃ (x′)|
√

1+ |∇φ(x′)|2 dx′.

(6.48)

Using (6.45), the inequality

t |log t | ≤ c(1+ t (1+q)/2) on (0,∞),

as well as Hölder’s inequality and (6.43), we see that

|Sm| + |S
′
m| → 0 as m→∞, uniformly (in p) when p ∈ [3/2, 5/2]. (6.49)

Finally using

t |log(t/s)| + |s − t | |log s| ≤ c(ξ)|t − s|(tq−1
+ sq−1) for s, t ∈ [ξ,∞),

as well as Hölder’s inequality, (6.40), (6.43), and Lemma 6.6 we also find that

|Nm −N
′
m| → 0 as m→∞, uniformly (in p) when p ∈ [3/2, 5/2]. (6.50)
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From (6.46)–(6.50) we conclude that there exists a positive integer m0 = m0(δ
′, ρ, p)

such that
|I (φm, p)− I (φ, p)| < 2δ′ for m ≥ m0. (6.51)

Moreover, m0 can be chosen independent of p when p ∈ [3/2, 5/2]. Hence, as δ′ is
arbitrary the proof of Proposition 6.5 is complete. ut

The rest of the section is devoted to the proof of Lemma 6.6. We will reuse the nota-
tion developed up to the statement of the lemma. Let ψ∗ ∈ C∞0 (B(0, 2ρ)), ψ∗ ≡ 1 on
B(0, ρ), and |∇ψ∗| ≤ c/ρ. Put ψ̃(x′) = ψ∗(x′, φ(x′)) when x′ ∈ Rn−1. We first prove
the following auxiliary lemma.

Lemma 6.7. ∫
ψ̃f̃m(·, p)f̃

q−1(·, p) dx′→

∫
ψ̃f̃ q(·, p) dx′

as m→∞, uniformly (in p) when p ∈ [3/2, 5/2].

Proof. Recall that u′m, u
′ are continuous on Rn with u′m, u

′
≡ 0 outside of �′m, �

′, re-
spectively. We claim that

u′m(·, p)→ u′(·, p) in W 1,p(B(0, 4ρ)), uniformly (in p) when p ∈ [3/2, 5/2].
(6.52)

To prove this observe, from (6.40), Lemma 3.3, (6.10) with û replaced by u′, u′m and the
maximum principle for p-harmonic functions, that

‖u′m(·, p)− u
′(·, p)‖∞→ 0 as m→∞, uniformly (in p) when p ∈ [3/2, 5/2].

(6.53)

Let 0 ≤ ψ ∈ C∞0 (B(0, 8ρ)) with ψ ≡ 1 on B(0, 4ρ) and ‖∇ψ‖∞ ≤ c/ρ. Using (6.53)
and θ = ψ(u′m − u

′) as a test function in (1.3) with u replaced by u′, u′m, respectively, as
well as Lemma 3.6(ii), we find that∫

B(0,4ρ)

(
|∇u′m|

p−2
∇u′m − |∇u

′
|
p−2
∇u′

)
· ∇(u′m(·, p)− u

′(·, p)) dx → 0 (6.54)

asm→∞, uniformly (in p) when p ∈ [3/2, 5/2]. The integral in (6.54) can be estimated
from below by

c−1
∫
B(0,4ρ)

(|∇u′m| + |∇u
′
|)p−2
|∇u′m −∇u

′
|
2 dx. (6.55)

Moreover ‖∇u′ − ∇u′m‖Lp(B(0,4ρ)) can be estimated using the integral in (6.55). Doing
this and using (6.54) we get (6.52).

To continue the proof of Lemma 6.7, we note from our discussion in the proof of
Proposition 6.4 that |∇u′| has a C2 extension, say F(·, p), to B(0, 4ρ) with C2 norm
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bounded by theC2 norm of |∇u′| on�′∩B(0, 4ρ), uniformly (in p) when p ∈ [3/2, 5/2].
We next put θ = ψ∗F in (1.3) with û replaced by u′, u′m. We then get∣∣∣∣∫
∂�′

Fψ∗|∇u′|p−1 dH n−1
−

∫
∂�′m

Fψ∗|∇u′m|
p−1 dH n−1

∣∣∣∣
=

∣∣∣∣∫
B(0,1)

(
|∇u′|p−2

∇u′ − |∇u′m|
p−2
∇u′m

)
· ∇(Fψ∗)

∣∣∣∣
≤ A(1+ ‖ |∇u′| ‖p−1

Lp(B(0,2ρ) + ‖ |∇u
′
m| ‖

p−1
Lp(B(0,2ρ))‖∇u

′
m −∇u

′
‖
ξ

Lp(B(0,ρ)). (6.56)

In (6.56), ξ = min(p − 1, 1), while A depends on ρ and the C1 norm of F but can be
chosen independent of p when p ∈ [3/2, 5/2]. In particular, using (6.56), (6.52) and
Hölder’s inequality we can conclude that∣∣∣∣∫

∂�′
Fψ∗|∇u′|p−1 dH n−1

−

∫
∂�′m

Fψ∗|∇u′m|
p−1 dH n−1

∣∣∣∣→ 0 as m→∞. (6.57)

Rewriting the left-hand side of (6.57) in terms of f̃m, f̃ , using (6.40) and smoothness
of F, we deduce that Lemma 6.7 is true. ut

Proof of Lemma 6.6. To prove Lemma 6.6 we use a Rellich type inequality and argue
as in displays (2.40)–(2.42) and (5.30)–(5.35) of [LN1]. Let Ĉ be the cone obtained by
drawing rays from ρen through points in (Rn−1

×{0})∩B ′(0, ρ) to∞. First for fixedm,
u′m as above, and given η > 0 small, we apply the divergence theorem to the vector field
|∇u′m|

pen in Dm = {y ∈ �′m : yn > φm(y
′)+ η} ∩ Ĉ. We get∫

∂Dm

〈en, νm〉|∇u
′
m|
p dH n−1

=

∫
Dm

∇ · (en|∇u
′
m|
p) dx

= p

n∑
i=1

∫
Dm

|∇u′m|
p−2(u′m)xi (u

′
m)xixn dx

= p

∫
∂Dm

|∇u′m|
p−2
〈∇u′m, νm〉(u

′
m)xn dH

n−1, (6.58)

where νm denotes the outer unit normal toDm. In obtaining the last equality we have used
integration by parts and p-harmonicity of u′m. Letting η → 0 in (6.58), using Theorem
3.10(i), (iv), as well as the Lebesgue dominated convergence theorem, we find that∫

∂D′m

[〈en, ν
′
m〉|∇u

′
m|
p
− p|∇u′m|

p−2
〈∇u′m, ν

′
m〉(u

′
m)xn ] dH

n−1
= 0, (6.59)

where ν′m denotes the outer unit normal to D′m = �′m ∩ Ĉ. (6.59) also holds with
D′m, u

′
m, ν

′
m replaced by D′, u′, ν′, where D′ = �′ ∩ Ĉ and ν′ is the outer unit normal

to D′. From Theorem 3.10(i) we also get∫
∂D′m

|∇u′m|
r dH n−1

≤ c <∞, where r/p ≥ 1+ δ . (6.60)
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Here 0 < δ = δ(p, n) is uniformly (in p) bounded from below when p ∈ [3/2, 5/2].
Moreover, we note from Lemmas 3.2–3.5, (6.40), (6.52), and Lemma 6.1 that

∇u′m→ ∇u
′ uniformly on compact subsets of �′ as m→∞. (6.61)

Moreover for a given compact set the convergence is also uniform (in p) when p ∈
[3/2, 5/2]. Using (6.61), (6.40), (6.60), and uniform integrability type arguments we de-
duce that

0 =
∫
∂D′m∩�

′

[〈en, ν
′
m〉|∇u

′
m|
p
− p|∇u′m|

p−2
〈∇u′m, ν

′
m〉(u

′
m)xn ] dH

n−1

→

∫
∂D′∩�′

[〈en, ν
′
〉|∇u′|p − p|∇u′|p−2

〈∇u′, ν′〉u′xn ] dH
n−1 (6.62)

as m → ∞, uniformly (in p) when p ∈ [3/2, 5/2]. In view of (6.59) for u′m, u
′, (6.62),

and the fact that −ν′ = ∇u′/|∇u′|,−ν′m = ∇u
′
m/|∇u

′
m|, on ∂�′, ∂�′m, respectively, we

have ∫
∂D′m∩∂�

′

〈en, ν
′
m〉|∇u

′
m|
p dH n−1

→

∫
∂D′∩∂�′

〈en, ν
′
〉|∇u′|p dH n−1 (6.63)

as m → ∞, uniformly (in p) when p ∈ [3/2, 5/2]. Writing (6.63) with integrals over
B ′(0, ρ) and recalling the definition of f̃m, f̃ , we see that∫

B ′(0,ρ)
f̃
q
m dH

n−1
→

∫
B ′(0,ρ)

f̃ q dH n−1 (6.64)

as m→∞, uniformly (in p) when p ∈ [3/2, 5/2].
To conclude the proof of Lemma 6.6 we use (6.64), Lemma 6.7, and with minor

changes essentially copy the usual proof that weak and norm convergence imply strong
convergence in Lq(Rn−1) (see [RN, p. 78]). In the following we only give the details of
the proof in the case when q ≥ 2. Indeed, given δ′ > 0 we can use (6.14) to find ρ > 0
large so that∫

Rn\B ′(0,ρ)
(ψ̃ |f̃m − f̃ |f̃

q−1
+ |f̃m − f̃ |

q
+ |f̃ q − f̃

q
m|) dx

′
≤ δ′

whenever m = 1, 2, . . . . Moreover, it follows from (6.64) and Lemma 6.7 that we can
choose m0 large enough (independent of p when p ∈ [3/2, 5/2]) so that∣∣∣∣∫

B ′(0,ρ)
(f̃m − f̃ )f̃

q−1 dx′
∣∣∣∣+ ∣∣∣∣∫

B ′(0,ρ)
(f̃ q − f̃

q
m) dx

′

∣∣∣∣ ≤ 2δ′ for m ≥ m0.

From these inequalities we conclude, for some absolute c ≥ 1 and given ε > 0, that

c−1
∫
Rn−1
|f̃m − f̃ |

q dx′ ≤

∣∣∣∣∫
Rn−1
[f̃
q
m − f̃

q
− qf̃ q−1(f̃m − f̃ )] dx

′

∣∣∣∣ ≤ ε
for m ≥ m0 provided δ′ is small enough. This concludes the proof of Lemma 6.6. ut
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Remark 6.8. Wolff proves Proposition 6.5 using a Rellich inequality for u′m − u
′. How-

ever, the proof of this inequality uses linearity of Laplace’s equation. Thus we were forced
to give a different argument when 1 < p <∞, p 6= 2. Eventually we arrived at the above
argument.

7. Estimates of Wolff type integrals—the case of an unbounded Reifenberg flat
domain

7.1. An ergodic argument for the dimension of p-harmonic measure and the proof of
Theorems 2–4

We now return to the construction of a Wolff snowflake outlined in Section 2; in this
section we use ideas of Carleson [C] to reduce the proof of Theorems 2 and 4 to the
estimation of integrals of the form I alluded to in Section 2. As in Section 2, let φ :
Rn−1

→ R be a piecewise linear function with

‖∇φ‖∞ ≤ θ0 (7.1)

and with support contained in {x′ : |x′| < 1/2}. Letψ(x′) = N−1φ(Nx′), x′ ∈ Rn−1, for
fixed N ≥ N0, and define 3, ∂ relative to ψ as in (2.12). Here θ0, N

−1
0 are small positive

numbers depending on p, n, but it turns out that they can be chosen independent of p
when p ∈ [3/2, 5/2]. Given an n − 1-cube Q recall the definition of PQ, P̃Q in (2.11)
defined relative to b = 1/10 and a unit normal e.Next given a region�withQ ⊂ ∂�, let
e be the outer unit normal to ∂� onQ and suppose that PQ∩� = ∅ while P̃Q ⊂ �.With
this scenario recall the definition of adding a blip to� alongQ defined below (2.12). That
is, we form a new domain �̃with (PQ∪P̃Q)∩�̃ = 3Q and (PQ∪P̃Q)∩∂�̃ = ∂Q,while
� = �̃ outside of PQ ∪ P̃Q. Here T (3) = 3Q, T (∂) = ∂Q, where T is the conformal
affine mapping defined below (2.12). 3Q is the blip added to � along Q. In Section 2
we added a blip to �0 = {(x

′, xn) : x
′
∈ Rn−1, xn > 0} along Q(1) to obtain �1.

Moreover, each face of ∂ = ∂Q(1) was divided into n− 1-dimensional Whitney cubes of
sidelengths 8−k , k = 1, 2, . . . , which are proportional to the distance of the cubes from
the edges of the face that contains the cube. Notice that we added a blip along a cube of
sidelength 1 and that the generated Whitney cubes all have strictly smaller sidelengths.
We also put G1 = {Q : Q ⊂ ∂Q(1)} and let �2 be the domain obtained from �1 by
adding a blip to eachQ ∈ G1. Next we divided ∂Q,Q ∈ G1, into cubes using the natural
subdivision obtained from mapping ∂Q(1) conformally onto ∂Q. Put G2 = {Q : Q ⊂ ∂Q′

for some Q′ ∈ G1} and note that

∂�i ∩ (PQ(1) ∪ P̃Q(1)) = Ei ∪ {Q : Q ∈ Gi} for i = 1, 2,

where E1 is the finite set of edges of ∂ = ∂Q(1) and E2 is a countable union of edges.
Proceeding by induction we get, as in Section 2, (�m), (Gm), and (Em) with

∂�m ∩ (PQ(1) ∪ P̃Q(1)) = Em ∪ {Q : Q ∈ Gm}
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for m = 1, 2, . . . . Let �∞ =
⋂
∞

m=1
⋃
∞

i=m�i . It is easily seen for θ0, N
−1
0 small enough

that h(�m, �∞)→ 0 as m→∞ where h(·, ·) denotes Hausdorff distance defined as in
Section 1.

We now put G0 = {Q(1)} and set G =
⋃
Gm and E =

⋃
Em. As in [W2], we say

that Q ∈ G is the father of Q′ ∈ G or Q′ is the son of Q if Q′ ⊂ ∂Q. Moreover, Q′ is
an mth generation descendant of Q provided there exist Q1, . . . ,Qm+1 with Q1 = Q,
Qm+1 = Q

′ and Qi the father of Qi+1 for i = 1, . . . , m. We write Q′ < Q provided Q′

is for some m a descendant of Q.
Given nonempty 0 ⊂ Gwe say that 0 is closed under the descent relation if whenever

Q′ ∈ 0 and Q′ < Q ∈ G, then Q ∈ 0. Thus for any 0 closed under descent we always
have Q(1) ∈ 0. If 0 is closed under the descent relation we can form a domain �0
by adding blips over cubes in 0. That is, �2

0 is obtained from �1 by adding blips over
the cubes in G1 ∩ 0 and for m ≥ 2, �m+1

0 is obtained from �m0 by adding blips over
the cubes in Gm ∩ 0. Either the process terminates for some m so that �m0 = �0 , or
�m0 → �0 as m → ∞ in the sense of Hausdorff distance provided θ0, N

−1
0 are small

enough, depending only on n. Finally recall from Section 3 that � is Lipschitz on scale
t with norm ≤ M provided that for each x ∈ ∂� the set B(x, t) ∩ ∂� is the graph of a
Lipschitz function f : Rn−1

→ R with ‖∇f ‖∞ ≤ M . The next lemma shows that stages
in the construction can be in the class of Reifenberg flat domains or even Lipschitz on
scale t.

Lemma 7.1. Let 0 ⊂ G be closed under the descent relation. For θ0, N
−1
0 small enough,

depending only on n, there exists c = c(n) so that

(a) �0 is Reifenberg flat with constant ≤ cθ0.

(b) If 0 contains only cubes of diameter ≥ t > 0, then �0 is Lipschitz on a scale t, with
norm ≤ cθ0.

Proof. Wolff essentially proves (b) in [W2, Lemma 2.2] and also shows that �0 is an
NTA-domain. To prove (a) we assume as we may that 0 ∩ Gm = ∅ for some large m.
Given r > 0 and x ∈ ∂�0 we claim there exists a plane 6 = 6(x, r) and c = c(n) such
that

h(6 ∩ B(x, r), ∂�0 ∩ B(x, r)) ≤ cθ0. (7.2)

If x ∈ ∂�0 \ (PQ(1) ∪ P̃Q(1)), we choose 6 = {x : xn = 0} and observe that (7.2) is
true, as follows easily from (7.1) with φ replaced by ψ, the fact that ψ has support in
Q(1/N), and the construction of �0. Also if x ∈ ∂�0 ∩ (PQ(1) ∪ P̃Q(1)) and r ≥ 1, we
put 6 = {x : xn = 0} and observe that (7.2) is true. Otherwise, r < 1 and if x 6∈ E, there
exist Q1, . . . ,Qk ∈ 0, 2 ≤ k ≤ m + 1, with Q1 = Q(1), x ∈ Qk, and Qi the father of
Qi+1 for 1 ≤ i ≤ k − 1. In this case we either have (α) l(Qi+1) ≤ r < l(Qi) for some i,
or (β) r < l(Qk). In case (α) we choose 6 to be the plane through x parallel to Qi .

Then from the definition of adding a blip we see, for N0 large enough, that each point in
6∩B(x, r) lies within cθ0r of a point in ∂�0 ∩B(x, r) and vice versa. In case (β) we let
6 be the plane containing Qk and observe that once again (7.2) holds. If x ∈ E choose
y ∈ ∂�0 \ E with |y − x| < θ0r and use the plane corresponding to y, r to show that
(7.2) holds. This completes the proof of Lemma 7.1. ut
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Given p ∈ (1,∞), observe from Lemma 7.1 that if θ0, N
−1
0 > 0 are small enough,

N0 = N0(n), θ0 = θ0(p, n), then the lemmas in Section 3 for Reifenberg flat domains
hold with � replaced by �0. Furthermore, if 0 contains no cubes of diameter ≤ r, then
Theorem 3.10 holds in balls of radius≈ r.Moreover, constants can be chosen independent
of p when p ∈ [3/2, 5/2]. In the following we suppose that θ0, N

−1
0 are so small that all

of the above hold. In general we will allowN−1
0 , θ0 to vary so that several more conditions

are satisfied, however eventually these numbers will be fixed.
The next lemma is the crucial one for obtaining estimates over the stages of the con-

struction.

Lemma 7.2. Let 0′ ⊂ 0 ⊂ G, suppose that 0,0′ are closed under the descent relation
and that h(∂�0, ∂�0′) = r . Given p ∈ (1,∞), let u0, u0′ be the p-harmonic functions
in Lemma 6.1 corresponding to �0, �0′ and let µ0, µ0′ be the associated measures. Let
α = α(p, n) ∈ (0, 1) be as in Lemma 3.3. Then for θ0, N

−1
0 sufficiently small, there exists

c = c(p, n) ≥ 1 such that

(a)
∣∣∣∣log

u0(x)

u0′(x)

∣∣∣∣ ≤ (crs
)α

for all x ∈ �0′ with d(x, ∂�0′) ≥ s ≥ 100r. Moreover if

(�0′ \�0) ∪ (�0 \�0′) ⊂ B(aQ̂, 4l(Q̂)/N)

for some Q̂ ∈ 0′, then

(b)
∣∣∣∣log

u0(x)

u0′(x)

∣∣∣∣ ≤ (crs
)αµ0′(B(aQ̂, l(Q̂)/N))

µ0′(B(aQ̂, s))

for all x ∈ �0′ with |x−a
Q̂
| ≥ s ≥ 100 l(Q̂)/N. In both of these estimates the constant c

can be chosen independent of p when p ∈ [3/2, 5/2].

In Lemma 7.2, a
Q̂

is the center of Q̂ as defined in Section 2. For the moment we assume
Lemma 7.2 in order to broadly outline the Carleson–Wolff game plan (see [C], [W2]),
and to prove Theorems 2–4. The proof of Lemma 7.2 will be given in the next subsection.
For fixed p ∈ (1,∞), let�∞ be the Wolff snowflake constructed earlier in Section 7 and
let u∞, µ∞ be the corresponding p-harmonic function and measure. Given Q ∈ G let
2Q = (PQ ∪ P̃Q) ∩ ∂�∞ and let EQ be the union of the edges in ∂Q′ for all Q′ ∈ G
with Q′ ⊂ Q. Clearly, EQ is a countable union of edges and each edge has finite H n−2-
measure. IfQ ∈ G1 we can identify points in2Q \EQ with points inQ, using sequences
in a countable set of symbols (see [W2]). Doing this we can define the shift S on2Q \EQ
by letting S|Q be the inverse of the mapping T defined in Section 2 relative to Q. Thus
S|Q is a conformal affine map of Q onto Q(1), so S(2Q) = 2Q(1) and S is defined
on 2Q(1) up to a set of σ -finite H n−2-measure. As in Section 2 we let µ′∞ = µ∞|2Q(1) .
Following [C], [W2] we prove

Lemma 7.3. µ′∞ is mutually absolutely continuous with respect to a measure ν on2Q(1).
Moreover ν is invariant under S and S is ergodic on 2Q(1).
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Proof. Let FQ(ε) = {x ∈ ∂�∞ : d(x, ∂Q) ≤ εl(Q)} whenever Q ∈ G and 0 < ε < 1.
Using the doubling property of µ∞ (see Lemma 3.6(ii)) one deduces the existence of
λ = λ(p, n) ∈ (0, 1) such that µ∞(FQ(ε)) ≤ λµ∞(FQ(2ε)). Iterating this inequality we
find, for some β > 0 and c ≥ 1, depending only on p, n, that

µ∞(FQ(ε)) ≤ cε
βµ∞(2Q). (7.3)

A similar estimate holds for any of the edges in ∂Q(1). It follows that µ∞(EQ(1)) = 0.
Thus S is defined µ′∞-almost everywhere on 2Q(1).

We now define ν. For Y ⊂ 2Q(1) a Borel set, let

ν(m)(Y ) =
1
m

m−1∑
j=0

µ′∞(S
−jY )

and let ν be a weak∗ limit point of {ν(m)}. Note that here S−0Y = Y . Furthermore,

ν(m)(S−1Y )− ν(m)(Y ) =
1
m
(µ′∞(S

−mY )− µ′∞(Y ))→ 0 as m→∞,

since µ′∞ is finite. Thus ν is invariant under S. To prove mutual absolute continuity, given
ε > 0, one first shows, for some cε = c(ε) ≥ 1, that

if Y ⊂ 2Q(1) is Borel and Y ∩ FQ(1)(ε) = ∅, then c−1
ε µ′∞(Y ) ≤ ν(Y ) ≤ cεµ

′
∞(Y ).

(7.4)

To prove (7.4) we use Lemma 3.6(ii), the boundary Harnack inequality in Theorem 3.9,
as well as invariance of the p-Laplace equation under rotations, translations and dilations,
to get for Q ∈ Gm, m ≥ 1,

c−1
ε µ′∞(Y )µ

′
∞(2Q) ≤ µ

′
∞(S

−mY ∩2Q) ≤ cεµ
′
∞(Y )µ

′
∞(2Q). (7.5)

For more details concerning the deduction of (7.5), see [W2, Lemma 2.10] or [BL, (3.14)–
(3.16)]. Summing overQ ∈ Gm, and thenm, we see that (7.4) holds. If Y ∩FQ(1)(ε) 6= ∅,
we let Y = Y1∪Y2 where Y1, Y2 are disjoint and Y1 = Y ∩FQ(1)(ε). Then S−mY1∩Q ⊂

FQ(ε) whenever Q ∈ Gm. Using this fact, (7.3), and summing over Q ∈ Gm, as well
as m, we obtain

ν(Y1)+ µ
′
∞(Y1) ≤ cε

β . (7.6)

In view of (7.5) and (7.4), we conclude that

µ′∞(Y ) ≤ cεν(Y )+ cε
β

and vice versa, whenever Y is a Borel subset of 2Q(1). Since ε ∈ (0, 1) is arbitrary it
follows that µ′∞, ν are mutually absolutely continuous.

Having established the existence of ν, the invariance of ν under S, and that µ′∞ is
mutually absolutely continuous with respect to the measure ν on 2Q(1), it remains to
establish that S is ergodic on 2Q(1) with respect to ν, that is, we need to show, whenever
H ⊂ 2Q(1) is Borel and S−1(H) = H, that either ν(2Q(1) \H) = 0 or ν(H) = 0.
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To do this we will assume ν(H) > 0 and prove that ν(2Q(1) \ H) = 0. Set L =
2Q(1) \H . For x ∈ 2Q(1) \ EQ(1) and m = 1, 2, . . . , let Qm(x) be the cube in Gm with
x ∈ 2Qm(x). As ν(H) > 0,we choose ε > 0 so small that ν(FQ(1)(ε)) < ν(H)/4,which
can be done thanks to (7.6) with Y1 = FQ(1)(ε). Let H ′ = H \ FQ(1)(ε) and suppose
x ∈ L\FQ(1)(2ε). Then form large enough,2Qm(x)∩FQ(1)(ε) = ∅. By (7.4), (7.5) with
Y = H ′, S−mH ′ ∩2Qm(x),2Qm(x), we have

ν(H ∩2Qm(x))

ν(2Qm(x))
=
ν(S−mH ∩2Qm(x))

ν(2Qm(x))

≥
ν(S−mH ′ ∩2Qm(x))

ν(2Qm(x))
≥ c−3

ε ν(H ′) ≥ 3c−3
ε ν(H)/4. (7.7)

From the doubling property of µ′∞, (7.4), and differentiation theory, we deduce

ν(H ∩2Qm(x))

ν(2Qm(x))
→ 0

for ν-almost every x ∈ L\FQ(1)(2ε) (i.e., ν-almost every x ∈ L\FQ(1)(2ε) is a point of ν-
density one). (7.7) and the above display are contradictory unless ν(L \ FQ(1)(2ε)) = 0.
Since ε can be arbitrarily small we conclude that ν(L) = 0. This completes the proof of
Lemma 7.3. ut

Armed with Lemma 7.3 one can now apply appropriate versions of Birkhoff’s ergodic
theorem and the entropy theorem of Shannon–McMillan–Breiman to prove the following
lemma (see [W2, Lemma 2.10]).

Lemma 7.4. Given x ∈ 2Q(1) \ EQ(1), let Qm(x), for m = 1, 2, . . . , be the cube in Gm
with x ∈ 2Qm(x). Let σm(x) = l(Qm(x)) and hm(x) = µ∞(2Qm(x)). Then the limits

σ = lim
m→∞

1
m

log
1

σm(x)
and h = lim

m→∞

1
m

log
1

hm(x)

exist and are constant for ν-almost every x ∈ 2Q(1).

This lemma gives us access to H-dimµ′∞ as follows. For x ∈ 2Q(1)\EQ(1) and t ∈ (0, 1)
let m be a nonnegative integer such that σm+1(x) ≤ t < σm(x). Note that t ≈ σm(x) ≈
σm+1(x) with constants of proportionality independent of m and x. Using the doubling
property of µ∞, we see that ∣∣∣∣log

hm(x)

µ′∞(B(x, t))

∣∣∣∣≤ c (7.8)

for some c = c(p, n) ∈ [1,∞). Using these facts, Lemma 7.4 and measure-theoretic type
arguments it follows that

lim
t→0

logµ′∞(B(x, t))
log t

= lim
m→∞

loghm(x)
log σm(x)

= h/σ = H-dimµ′∞ (7.9)

for µ′∞-almost every x ∈ 2Q(1).
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Next let k be a large positive integer and set 0k = {Q ∈ G : l(Q) ≥ 8−k}. Clearly 0k
is closed with respect to the descent relation. For a fixed p ∈ (1,∞), we write uk for the
p-harmonic function, u0k defined earlier, and �k = �0k . Let

λk = (p − 1)
∫
∂�k

|∇uk|
p−1 log |∇uk| dH n−1.

Now we show how to find the sign of (n− 1)− H-dimµ′∞.

Lemma 7.5. With the above notation,

lim
k→∞

λk/k = µ
′
∞(R

n)((n− 1)− H-dimµ′∞) log 8.

Proof. As in the proof of (7.3) we note, for some α ∈ [0, 1], c, depending only on p, n,
that

µk({x ∈ ∂�k : d(x, ∂Q(1)) < ε}) ≤ cεα. (7.10)

Let µ′k denote the restriction of µk to ∂�k ∩ (Q(1) × [−1, 1]). Then from (7.10) and
Lemmas 3.2–3.6 we see that

µ′k → µ′∞ weakly as k→∞. (7.11)

Next let Q1, . . . ,Qr be the n − 1-dimensional cubes in G with l(Qi) = 8−k−1. Wolff
[W2, (2.13)] shows, for k large enough, say k ≥ k0, that Qi ⊂ ∂�k for 1 ≤ i ≤ r, and
that, for some c = c(n) ≥ 1,

(∂�k ∪ ∂�∞) ∩ (Q(1)× [−1, 1]) ⊂
r⋃
i=1

B(aQi , c8
−k), (7.12)

where aQi is the center of Qi . Thus there exist disjoint Borel Hi, 1 ≤ i ≤ r, with
Qi ⊂ Hi ⊂ B(aQi , c8

−k) and
⋃r
i=1Hi = ∂�k ∩ (Q(1)× [−1, 1]). Given δ > 0 we can

use Lemma 7.4, the doubling property of µ∞ and Egoroff type arguments to deduce that
if k0 is large enough, then for some c′ = c′(p, n), we have

−
kh

σ
(1+ δ) log 8− c′ ≤ logµ′∞(B(aQi , c8

−k)) ≤ −
kh

σ
(1− δ) log 8+ c′ (7.13)

except for an exceptional set, say β, of i with∑
i∈β

µ′k(Hi) ≤ δ.

Using Lemmas 7.2 and 3.6(ii) we see that if 1 ≤ i ≤ r then for some ĉ = ĉ(p, n),

ĉ−1
≤

µ′k(Hi)

µ′∞(B(aQ, c8−k))
≤ ĉ. (7.14)

Also as in (5.8) we see, for some τ ∈ (0, 1) depending only on p, n and 1 ≤ i ≤ r , that

τ log k ≤ − logµ′k(Hi) ≤ τ
−1 log k for k ≥ k0. (7.15)
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Using (7.13), (7.14) when i 6∈ β, and (7.15) when i ∈ β, it follows that, for some
c̃, c∗ ≥ 1,

−kµ′k(R
n)[h/σ(1+ c̃δ)− (n− 1)(1− c̃δ)] log 8− c∗ ≤

r∑
i=1

µ′k(Hi) log
µ′k(Hi)

H n−1(Hi)

≤ −kµ′k(R
n)[h/σ(1− c̃δ)− (n− 1)(1+ c̃δ) log 8] + c∗. (7.16)

Now �k is Lipschitz on a scale of 8−k for θ0, N
−1
0 small enough so we can use (3.8) to

deduce that∣∣∣∣∫
Hk

|∇uk|
p−1 log |∇uk| dH n−1

−
µ′k(Hk)

p − 1
log

µ′k(Hk)

H n−1(Hk)

∣∣∣∣ ≤ cµ′k(Hk). (7.17)

Also, using (3.8) as in (7.17), (5.8) with µ replaced by µk, and (6.14) with û replaced by
uk, it follows that if ∂ ′�k denotes the part of ∂�k outside of Q(1) × [−1, 1], then for
some c = c(p, n) ≥ 1, ∫

∂ ′�k

|∇uk|
p−1 log |∇uk| dH n−1

≤ c. (7.18)

Using (7.17), (7.18) in (7.16), dividing by k and letting k → ∞, we conclude, for some
ĉ = ĉ(p, n), that

lim inf
k→∞

µ′k(R
n)((n− 1)− h/σ − ĉδ) log 8 ≤ lim inf

k→∞
λk/k,

lim sup
k→∞

µ′k(R
n)((n− 1)− h/σ + ĉδ) log 8 ≥ lim sup

k→∞

λk/k.

Hence, letting δ→ 0, using (7.11) and (7.9) we get Lemma 7.5. ut

Let � = {x : xn > φ(x′)} and recall, for fixed p ∈ (1,∞), that

I = I (φ, p) =

∫
∂�

|∇u′|p−1 log |∇u′| dH n−1,

where u′ is the p-harmonic function in Lemma 6.1, defined relative to �. To complete
the proof of Theorems 2–4 we prove

Proposition 7.6. If θ0 in (7.1) is sufficiently small, and if I = I (φ, p) 6= 0, then there
exist β ∈ (0, 1), c ≥ 1, a positive integer k1, depending only on p, n, and ρ = ρ(p, n,N)
∈ (0,∞) such that the following is true. If I < 0, then∫
∂�k+1

|∇uk+1|
p−1 log |∇uk+1| dH

n−1
≤

∫
∂�k

|∇uk|
p−1 log |∇uk| dH n−1

+ρ(I+cN−β)

for k ≥ k1, while if I > 0 then the above display is valid with ≤ replaced by ≥ and c
by −c. All constants can be chosen independent of p when p ∈ [3/2, 5/2].
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The proof of Proposition 7.6 will be given after the proof of Lemma 7.2. We now prove
Theorems 2–4. For simplicity, we first prove Theorem 3, then Theorem 2, and finally
Theorem 4.

Proof of Theorem 3. First, choose N0 so large that cN−β ≤ |I |/2 for N ≥ N0. Second,
iterating the display in Proposition 7.6 from k = k1 to k = m− 1 we see, if I < 0, that∫

∂�m

|∇um|
p−1 log |∇um| dH n−1

≤

∫
∂�k1

|∇uk1 |
p−1 log |∇uk1 | dH

n−1

+
1
2 (m− k1 − 2)ρI. (7.19)

If I > 0 we get this inequality with ≤ replaced by ≥. Moreover, dividing these inequali-
ties by m and letting m→∞ we find, using Lemma 7.5, that

µ′∞(R
n)((n− 1)− H-dimµ′∞) log 8 ≤ 1

2 (p − 1)ρI if I < 0,

µ′∞(R
n)((n− 1)− H-dimµ′∞) log 8 ≥ 1

2 (p − 1)ρI if I > 0.
(7.20)

In particular, if I < 0, then H-dimµ′∞ > n− 1, while if I > 0, then H-dimµ′∞ < n− 1,
and this gives Theorem 3. ut

Proof of Theorem 2. We first prove the statement in Theorem 2 made for p fixed, 1 <
p < n, p 6= 2. In this case we use Lemma 6.3 to deduce that if φ̂ = εθ̂ , then ‖∇φ̂‖∞ ≤ θ0
for sufficiently small ε = ε(p, n) > 0 and I (φ̂, p) > 0 for p > 2 while the reverse
inequality holds when 1 < p < 2. Using Propositions 6.4 and 6.5, we find that if 1 <
p < 2, then there exists a piecewise linear φ with support contained in {x′ : |x′| < 1/2}
and with I (φ, p) < 0, while if p > 2 then there exists such a φ with I (φ, p) > 0. Using
these facts, we can now argue as in the proof of Theorem 3, using Proposition 7.6, and
once again choosingN0 large enough, to deduce the validity of Theorem 2 for 1 < p < n,
p 6= 2. If p ≥ n in Theorem 2 we can use the fact that v = log |∇u′| is a subsolution to
the PDE in (5.1), (5.2) (defined relative to u′) in order to conclude that I (φ, p) > 0 for
any Lipschitz φ 6≡ 0 with support inQ(1). In fact, if L is defined relative to u′ as in (5.1),
(5.2), then for p > n we get from (5.7)

Lv ≥ c−1
|∇u′|p−4

n∑
i,j=1

(u′xixj )
2
= J

in �, where c = c(p) → ∞ as p → n, while for p = n,Lv ≥ 0. Now integrating by
parts one deduces at least heuristically for p > n that∫

�

u′J dx ≤

∫
�

(u′Lv − vLu′) dx = (p − 1)I (φ, p). (7.21)

(7.21) can be proved rigorously by first applying the above argument in {x : u′(x) > t}

∩ B(0, R) (R > 0 large, t > 0 small). Letting R → ∞ and arguing as in (6.21), (6.14),
we obtain (7.21) with� replaced by�(t) = {x ∈ � : u′(x) > t}. Now from (6.11) for u′

we see that ∂�(t) = {x : xn = ψt (x
′)} for some smooth ψt and ‖∇ψt‖∞ ≤ c, where
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c is independent of t when 0 < t < 1. Using this fact, Theorem 3.10(i), and (6.14), we
deduce that one can let t → 0 to get (7.21).

Thus I (φ, p) > 0 when p > n unless all second derivatives of u′ vanish on �, which
implies that u′(x) = xn, so φ ≡ 0. If p = n the above argument gives I (φ, n) > 0
unless Lv ≡ 0 in �. To show this possibility cannot occur, we note ∇u′ 6= 0 so by
Lemma 3.5, u′ is real analytic in a neighborhood of each point in �. Using this fact and
Schwarz reflection we see that if x̂ = (x′, 0), |x′| ≥ n, then u′ extends to a real analytic
p-harmonic function in B(x̂, 1) (also denoted u′) with u′ ≡ 0 on B(x̂, 1) ∩ {x : xn = 0}.
Then from (5.6) we see that Lv(x̂) = 0 only if u′xixj (x̂) = 0 for 1 ≤ i, j ≤ n. Thus ∇u′

is constant on {x : xn = 0}\B(0, n). Using the Cauchy–Kovalevskaya theorem it follows
that u′ is linear in B(x̂, 1). From Lemma 6.1 we find first that u′(x) = xn in an open set
containing ∂� \ B(0, n) and thereupon from real analyticity of u′ that u′(x) ≡ xn and
φ ≡ 0. We have reached a contradiction to our assumption that φ 6≡ 0. Thus I (φ, n) > 0
when φ 6≡ 0 and Theorem 2 is true when p ≥ n. ut

Proof of Theorem 4. To prove Theorem 4 note that if θ0 is small enough (independent of
p when p ∈ [3/2, 5/2]) and if we have, for some c = c(n) ≥ 1 and η ∈ (0, 1/2),

c−1
≤ I (φ, p)/I (φ, 2) ≤ c for p ∈ (2− η, 2+ η), (7.22)

then we can choose N0 independent of p when p ∈ (2 − η, 2 + η), so that cN−β ≤
|I (φ, p)|/2 whenever N ≥ N0 and p ∈ [2 − η, 2 + η]. From Proposition 7.6 and the
above discussion, we see that either H-dimµ′∞(·, p) > n−1 or H-dimµ′∞(·, p) < n−1
when p ∈ [2 − η, 2 + η]. Thus to prove Theorem 4 it suffices to show that (7.22) holds
for some φ, η, c. To show existence we note that in [W2] examples are provided, when
n = 3, p = 2, of smooth φ̂ 6≡ 0 with support in {x′ : |x′| < 1/2} for which I (φ̂, 2)
is either positive or negative. Moreover ‖∇φ̂‖∞ can be arbitrarily small. These examples
generalize easily to Rn. More examples of such φ̂ and a rather involved study of I (φ̂, 2)
for various φ̂ can be found in [LVV]. From the above discussion and Propositions 6.4,
6.5, we see there exist a piecewise linear φ and η > 0 for which (7.1) holds and (7.22) for
some c, η. Furthermore, I (φ, ·) can be either positive or negative on [2−η, 2+η]. Hence
we can conclude from Proposition 7.6, as in the proof of Theorem 3, that Theorem 4 is
valid. ut

7.2. Proof of Lemma 7.2

In order to complete the proof of Theorems 2–4 it suffices to prove Lemma 7.2 and Propo-
sition 7.6. In this subsection we prove Lemma 7.2. For later use we allow the possibil-
ity that 0′ = ∅, in which case �0′ = �0 = {(x

′, xn) : x
′
∈ Rn−1, xn > 0}. Let

0′, 0, u0, u0′ , µ0, µ0′ , r, s be as in Lemma 7.2. We assume, as we may, that 0,0′ are
finite since otherwise we prove the conclusion of Lemma 7.2 for 0∩0m, 0′∩0m. Letting
m→∞, and using Lemmas 3.2–3.6, we then get Lemma 7.2.

For short we write �′, �, u′, u, µ′, µ for �0′ , �0, u0′ , u0, µ0′ , µ0, respectively.
From the descent relation we see there exist positive integers m1 < · · · < mk and corre-
sponding domains �′i , 1 ≤ i ≤ k, satisfying �′ = �′1, � = �′k, and for 1 ≤ i ≤ k, �′i+1
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is obtained from �′i by adding blips to certain Q ⊂ ∂�′i with l(Q) = 8−mi . Let u′i, µ
′

i be
the p-harmonic function and associated measure corresponding to �′i as in Lemma 6.1
and put ri = h(�′i, �

′

i+1) for i = 1, . . . , k. From the Wolff construction we observe for
θ0, N

−1
0 small enough that

r/2 ≤ r1 ≤ r and 2ri ≤ ri−1, 2 ≤ i ≤ k. (7.23)

We prove, under the scenario of Lemma 7.2(a), that∣∣∣∣log
ui+1(x)

ui(x)

∣∣∣∣ ≤ (cris
)α

(7.24)

whenever x ∈ �′ with d(x, ∂�′) ≥ s. Also under the assumptions in Lemma 7.2(b) we
will prove that ∣∣∣∣log

ui+1(x)

ui(x)

∣∣∣∣ ≤ (cris
)αµ′(B(a

Q̂
, l(Q)/N))

µ′(B(a
Q̂
, s))

(7.25)

when x ∈ �′ with |x − a
Q̂
| ≥ s ≥ 100 l(Q̂)/N. Summing (7.24), (7.25), and using

properties of logarithms, as well as (7.23), we obtain Lemma 7.2.
To prove (7.24), (7.25) we need some more notation. Fix i, 1 ≤ i ≤ k − 1, and let Ki

be the set of Q ∈ G of sidelength 8−mi ,Q ⊂ ∂�′i, that blips are added to in order to get
�′i+1 for 1 ≤ i ≤ k − 1. Given Q ∈ Ki let πQ(x) denote the projection of Rn on the
plane containing Q. Let νQ denote the inner unit normal to �′i at points in Q. Then from
Section 2 and the discussion at the beginning of Section 7 we see that

�′i+1 ∩ (PQ ∪ P̃Q) = {x : 〈x − πQ(x), νQ〉 > ψQ(πQ(x))} ∩ (PQ ∪ P̃Q),

∂�′i+1 ∩ (PQ ∪ P̃Q) = {x : 〈x − πQ(x), νQ〉 = ψQ(πQ(x))} ∩ (PQ ∪ P̃Q),
(7.26)

where ψQ is a piecewise linear function defined on the plane through Q with support in
B(aQ, l(Q)/2N) Also,

‖∇ψQ‖∞ ≤ θ0 and ri ≤ ‖ψQ‖∞ ≤ 2ri < l(Q)/N. (7.27)

Finally �′i+1 = �
′

i outside of
⋃
Q∈Ki

(PQ ∪ P̃Q). Choose ψ̃Q : Q → R to be C∞ with
support in Q ∩ B(aQ, l(Q)/N), ‖∇ψ̃Q‖∞ ≤ θ0, and ‖ψ̃Q − ψQ‖∞ < 10−3

‖ψQ‖∞.

Define a deformation �(t), t ∈ [0, 1], of �′i as follows: given Q ∈ Ki,

�(t) ∩ (PQ ∪ P̃Q) = {x : 〈x − πQ(x), νQ〉 > tψ̃Q(πQ(x))} ∩ (PQ ∪ P̃Q),

∂�(t) ∩ (PQ ∪ P̃Q) = {x : 〈x − πQ(x), νQ〉 = tψ̃Q(πQ(x))} ∩ (PQ ∪ P̃Q).
(7.28)

Let �(t)=�′i outside of
⋃
Q∈Ki

(PQ ∪ P̃Q). Note �(0)=�′i and h(�(1),�′i+1)→0 as∑
Q∈Ki

‖ψQ − ψ̃Q‖∞→ 0.
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As in Lemma 7.1 we see that�(t) is Reifenberg flat with constant ≤ cθ0, and (PQ ∪ P̃Q)
∩�(t) is Lipschitz for t ∈ [0, 1]. Next for fixed p ∈ (1,∞), let u(·, t), t ∈ [0, 1], be the
p-harmonic function in Lemma 6.1 defined relative to �(t).

Let

U(x, t1, t2) =
u(x, t2)− u(x, t1)

t2 − t1
when x ∈ �(t1) ∩�(t2).

We repeat the argument in Section 6 for difference quotients of u(·, ε), only now we use
the results from Section 3.2 for Reifenberg flat domains, especially Theorem 3.7. Thus for
fixed t1 6= t2 ∈ [0, 1], U(·, t1, t2) satisfies an elliptic equation (see (6.5)) whose ellipticity
can be expressed in terms of anA2-weight. Hence the results in Section 4 can be used with
constants independent of t1, t2.AlsoU(·, t1, t2) = 0 on ∂(�(t2)∩�(t1)) and this function
is smooth at points where U(·, t1, t2) 6= 0. Using these facts and arguing as in Section 6
we see first that U(·, t1, t2) is smooth in the closure of B(aQ, l(Q)/N) ∩ �(t2) ∩ �(t1)
with constants independent of t1, t2. Second, from the boundary maximum principle it
follows that U(·, t1, t2) is uniformly bounded in �(t2) ∩�(t1). Moreover, from Lemmas
4.1 and 4.2, we see that this function is Hölder continuous and in a certain weighted
Sobolev space on �(t2) ∩ �(t1). The constants are independent of t1, t2 ∈ [0, 1]. We
conclude, as in Section 5, that ut = limt2→t U(x, t, t2) exists whenever t ∈ [0, 1] and
x ∈ �(t). Moreover, ut (·, ·), u(·, ·) are C∞ in the interior of

⋃
t∈[0,1]�(t) × {t} and

C∞ in x, t in
⋃
t∈[0,1] B̄(aQ, l(Q)/N) ∩ �̄(t) × {t} whenever Q ∈ Ki . Arguing as in

(6.19)–(6.20) we find that both u(·, t) and ut (·, t), t ∈ [0, 1], are solutions in �(t) to

Lζ =

n∑
i,j=1

∂

∂xi
[bij (x, t)ζxj (x)] = 0, (7.29)

where

bij (x, t) = |∇u(x, t)|
p−4
[(p − 2)uxi (x, t)uxj (x, t)+ δij |∇u(x, t)|

2
] (7.30)

for 1 ≤ i, j ≤ n. Furthermore, since u(π(x) + tνψ̃Q(πQ(x)), t) = 0 whenever x ∈
Q ∈ Ki, it follows, as in (6.18), from the chain rule and smoothness of u(·, t), ut (·, t)
that

ut (π(x)+ tνψ̃Q(πQ(x)), t) = −uν
(
πQ(x)+ tνψ̃Q(πQ(x)), t

)
ψ̃Q(πQ(x)) (7.31)

whenever x ∈ Q ∈ Ki .
For fixed t ∈ [0, 1], let gt (·, ·) be the Green function for the PDE in (7.29), (7.30). We

note that Lemmas 4.3–4.4 hold for g. Also since u(·, t) is smooth up to the boundary in
each �(t) ∩ B(aQ, l(Q)/N), Q ∈ Ki, it follows from (4.6) and Schauder type estimates
that

ut (x) = −(p − 1)
∑
Q∈Ki

∫
∂�(t)

uν |∇u(·, t)|
p−2
|∇gt (x, ·)|ψ̃Q dH

n−1 (7.32)

whenever d(x, ∂�′) ≥ s ≥ 100r.
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Our plan is to estimate |ut (x, t)| in terms of u(x, t) for t ∈ [0, 1], which will then
give us an estimate for ∣∣∣∣log

u(x, 1)
u(x, 0)

∣∣∣∣ ≤ ∫ 1

0

|ut (x, t)|

u(x, t)
dt. (7.33)

To do this let w ∈ ∂�(t) with |x − w| = γ and let aγ /2(w) be as in Definition 3.1.
Observe from (7.32), (7.27), and Harnack’s inequality for positive solutions that

|ut (x, t)| ≤ cri
∑
Q∈Ki

∫
∂�(t)∩B(aQ,l(Q)/N)

|∇u(·, t)|p−1
|∇gt (aγ /2(w), ·)| dH

n−1

= cri

∞∑
k=0

∑
Q∈Ki

∫
∂�(t)∩Ak∩B(aQ,l(Q)/N)

|∇u(·, t)|p−1
|∇gt (aγ /2(w), ·)| dH

n−1, (7.34)

where

Ak = {y ∈ Rn : 2kγ ≤ |y − w| < 2k+1γ }, k = 1, 2, . . . ,
A0 = {y ∈ Rn : |y − w| < 2γ }.

Let z ∈ ∂�(t) ∩ Ak ∩ B(aQ, l(Q)/N) for some k ∈ {0, 1, . . . }. Then, using Lemma
4.6, applied to gt (aγ /2(w), ·) and u(·, t), and the interior Harnack inequality as well as
l’Hôpital’s rule, we see that

|∇gt (aγ /2(w), z)| ≤ c|∇u(z, t)|
gt (aγ /2(w), a2kγ (w))

u(a2kγ (w), t)
(7.35)

H n−1-almost everywhere on ∂�(t)∩Ak ∩B(aQ, l(Q)/N). From (7.34), (7.35), we find

|ut (x, t)|

≤ cri

∞∑
k=0

gt (aγ /2(w), a2kγ (w))

u(a2kγ (w), t)

∑
Q∈Ki

∫
∂�(t)∩Ak∩B(aQ,l(Q)/N)

|∇u(·, t)|p dH n−1.

(7.36)

To estimate the integrals in (7.36) we note that ∂�(t) ∩ B(aQ, 4l(Q)/N), Q ∈ Ki, is
Lipschitz on a scale ri and each point of this set lies within ri of a point where u(·, t) is
zero. Second, we apply Theorem 3.10(ii), (iv) to u(·, t), and then use Lemma 3.6(ii) to
deduce that if ζ ∈ ∂�(t) ∩ Ak ∩ B(aQ, l(Q)/N), then∫

∂�(t)∩B(ζ,ri )∩Ak

|∇u(·, t)|p dH n−1
≤ cr−1

i u(ari (ζ ), t)µt (B(ζ, ri) ∩ Ak), (7.37)

where µt is the measure associated with u(·, t). Also using Lemma 3.3 and the Harnack
inequality for p-harmonic functions, we find that

u(ari (ζ ), t) ≤ c(ri/γ )
α2−kαu(a2kγ (w), t). (7.38)
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Combining (7.37), (7.38), using a covering lemma, and the doubling property of µt , we
see that∑

Q∈Ki

∫
∂�(t)∩Ak∩B(aQ,l(Q)/N)

|∇u(·, t)|p dH n−1

≤ cr−1
i (ri/γ )

α2−kαu(a2kγ (w), t)µt (∂�(t) ∩ Ak). (7.39)

Using (7.39) in (7.36) we find, after dividing by u(aγ (w), t) and using the Harnack in-
equality, that

|ut (x, t)|

u(x, t)
≤ c(ri/γ )

α
∞∑
k=0

2−kα
gt (aγ /2(w), a2kγ (w))

u(aγ (w), t)
µt (∂�(t) ∩ Ak). (7.40)

Applying Lemma 4.6 to the functions gt (·, a2kγ (w)), u(·, t), using also the Harnack in-
equality, we can continue the estimate in (7.40) to conclude that

|ut (x, t)|

u(x, t)
≤ c(ri/γ )

α
∞∑
k=0

2−kα
gt (a2k−1γ (w), a2kγ (w))

u(a2kγ (w), t)
µt (∂�(t) ∩ Ak). (7.41)

From Lemmas 4.3(a), 3.6(ii), and Theorem 3.7, we get

gt (a2k−1γ (w), a2kγ (w)) ≤ c(2
kγ )2−n|∇u(a2kγ (w), t)|

2−p
≤ c

u(a2kγ (w), t)

µt (∂�(t) ∩ Ak)
.

(7.42)
Combining (7.42), (7.41) we find that

|ut (x, t)|

u(x, t)
≤ c(ri/γ )

α
∞∑
k=0

2−kα ≤ c2(ri/γ )
α, (7.43)

where c depends only on p, n but can be chosen independent of p when p ∈ [3/2, 5/2].
Using (7.43) in (7.33) we obtain∣∣∣∣log

u(x, 1)
u(x, 0)

∣∣∣∣ ≤ c(ri/γ )α.
Letting ‖ψ̃ − ψ‖∞ → 0 we conclude from this inequality, from γ ≥ s/2, and from our
earlier remarks that first (7.24) is valid and second that (a) in Lemma 7.2 is true.

To prove the validity of (b) in Lemma 7.2 we use the same notation as in the proof
of (a). Let ρ = 4l(Q̂)/N, τ = |x− a

Q̂
|, and let ζ be a point in ∂�(t) with |ζ − a

Q̂
| < ρ.

Note that ut = 0 on ∂�(t) \ B(a
Q̂
, ρ). Using this and arguing as in (7.32)–(7.36) we get

|ut (x, t)| ≤ cri

∫
∂�(t)∩B(a

Q̂
,ρ)

|∇u(·, t)|p−1
|∇gt (x, ·)| dH

n−1

≤ cri
gt (x, aτ (ζ ))

u(aτ (ζ ))

∫
∂�(t)∩B(a

Q̂
,ρ)

|∇u(·, t)|p dH n−1. (7.44)
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Now arguing as in (7.37)–(7.39) we obtain∫
∂�(t)∩B(a

Q̂
,ρ)

|∇u(·, t)|p dH n−1
≤ cr−1

i (ri/τ)
αu(aτ (ζ ))µt (B(aQ̂, ρ)).

Moreover the analogue of (7.42) is

gt (x, aτ (ζ )) ≤ c
u(x, t)

µt (B(aQ̂, τ ))
.

Using the above inequalities in (7.44) we get

|ut (x, t)|

u(x, t)
≤ c(ri/τ)

α
µt (B(aQ̂, ρ))

µt (B(aQ̂, τ ))
. (7.45)

We claim that
µt (B(aQ̂, ρ))

µt (B(aQ̂, τ ))
≈
µ′(B(a

Q̂
, ρ))

µ′(B(a
Q̂
, τ ))

, (7.46)

where≈means the two ratios are bounded above and below by constants depending only
on p, n, and these constants can be chosen independent of p when p ∈ [3/2, 5/2]. Indeed
from (7.23), (7.24), (7.43), and integration we find that

u(aξ (ζ ), t) ≈ u
′(aξ (ζ )) whenever ξ = ρ or τ and t ∈ [0, 1] .

This fact, Lemma 3.6(ii), and Harnack’s inequality (Lemma 3.2(ii)) imply (7.46). Using
(7.46) in (7.45), integrating, and using the doubling property of µ′, we get∣∣∣∣log

u(x, 1)
u(x, 0)

∣∣∣∣ ≤ c(ri/τ)α µ′(B(aQ̂, l(Q̂)/N))µ′(B(a
Q̂
, τ ))

.

Letting ‖ψ̃ − ψ‖∞ → 0 we conclude from the above inequality, from τ ≥ s, and from
our earlier remarks that Lemma 7.2(b) is valid. The proof of Lemma 7.2 is now complete.

ut

7.3. Preliminary reductions for the proof of Proposition 7.6

In this section we use the game plan in [W2] to estimate the integrals in Proposition 7.6.
To begin, we prove

Lemma 7.7. Let 0′ ⊂ 0 ⊂ G and suppose that 0,0′ are closed under the descent
relation. For fixed p ∈ (1,∞), let u0, u0′ , µ0, µ0′ be the corresponding p-harmonic
functions and measures, defined relative to �0, �0′ as in Lemma 6.1. Given η > 0 there
exists R = R(η) > 0 such that

|µ0(S)− µ0′(S)| ≤ η whenever S is a Borel set with B(0, R) ⊂ S.
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Proof. To simplify we once again let u = u0 , µ = µ0 , u′ = u0′ , µ′ = µ0′ . Recall from
Section 2 that �0 = {(x

′, xn) : x
′
∈ Rn−1, xn > 0}. For θ0, N

−1
0 small enough we see

from Lemma 7.1 that Theorem 3.7 can be used in place of (6.11) to get (see (6.14))

|en −∇û(x)| + |en −∇u
′(x)| ≤ c̃|x|1−n−σ (7.47)

for some σ > 0, depending on p, n, whenever x ∈ �̄0 \ B(0, n). Also from Theorem
3.10 we have

dµ = |∇u|p−1 dH n−1 and dµ′ = |∇u′|p−1 dH n−1 on ∂�0 \ B(0, n). (7.48)

Using (7.47) and (7.48) we deduce, for R > 0 large enough, that

|µ(S \ B(0, R))− µ′(S \ B(0, R))|

≤ c

∫
∂�0\B(0,R)

∣∣|∇u|p−1
− |∇u′|p−1∣∣ dH n−1

≤ η/2. (7.49)

Next suppose that 0 ≤ θ ∈ C∞0 (B(0, 2R)) with θ ≡ 1 on B(0, R) and |∇θ | ≤ c/R.

Using θ as a test function in Lemma 3.6(i), for u and for u′, we see that∫
〈(|∇u|p−2

∇u− |∇u′|p−2
∇u′),∇θ〉 dx = −

∫
θ(dµ− dµ′). (7.50)

The left-hand integral in (7.50) is easily estimated using (7.47) and the fact that ∇θ = 0
in B(0, R).As for the right-hand integral in (7.50) we divide it into integrals over B(0, R)
and Rn \ B(0, R). The integral over the last set is estimated using the same strategy as in
the proof of (7.49). We deduce from (7.50) for R large enough that

|µ(B(0, R))− µ′(B(0, R))| ≤ η/2.

Combining this inequality with (7.49) we conclude that Lemma 7.7 is true. ut

Our purpose in the following is to reduce the proof of Proposition 7.6 to the proof of a
quite technically involved lemma which we then prove in the next subsection. Recall, in
the context of Proposition 7.6, that ψ(x′) = φ(Nx′)/N , x′ ∈ Rn−1, and let ũ1 be the
p-harmonic function in {(x′, xn) : xn > ψ(x′)} guaranteed by Lemma 6.1. Let u1(x) =

ũ1(Nx)/N. Then u1 is p-harmonic in {(x′, xn) : xn > φ(x′)} and |xn − u1(x)| → 0 as
x → ∞. Using this observation, uniqueness in Lemma 6.1, and changing variables we
have

I (ψ, p) = I (φ, p)/Nn−1. (7.51)

Recall from Subsection 7.1 that �m = �0m where 0m = {Q ∈ G : l(Q) ≥ 8−m},
m = 1, 2, . . . . Also for k a fixed and large positive integer, Q1, . . . ,Qr ⊂ ∂�k were the
n−1-dimensional cubes of sidelength 8−k−1 inG that blips were added to in order to get
�k+1. Following Wolff we define intermediary domains, �ik, 1 ≤ i ≤ r + 1, as follows:
�1
k = �k, while for 1 ≤ i ≤ r , �i+1

k is obtained from �ik by adding a blip along Qi .

Thus �k+1 = �
r+1
k . Below we show that Proposition 7.6 is an easy consequence of the

following lemma.
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Lemma 7.8. For fixed p ∈ (1,∞), let ujk , µ
j
k , 1 ≤ j ≤ r + 1, be the p-harmonic

function and measure corresponding to �jk as in Lemma 6.1. Assume I = I (φ, p) 6= 0
Then for θ0, N

−1
0 sufficiently small there exist β ∈ (0, 1), c ≥ 1, a positive integer k1, and

ξ ∈ (0,∞), depending only on p, n, such that if I < 0, then∫
∂�

j+1
k

|∇u
j+1
k |

p−1 log |∇uj+1
k | dH

n−1
≤

∫
∂�

j
k

|∇u
j
k |
p−1 log |∇ujk | dH

n−1

+ ξ(Nn−1I (ψ, p)+ cN−β)µ
j
k(B(aQj , 100 · 8−k/N))

for 1 ≤ j ≤ r , while if I > 0 then the above display is valid with ≤ replaced by ≥
and c by −c. Moreover, the constants ξ, β, c, k1 can be chosen independent of p when
p ∈ [3/2, 5/2].

Proof of Proposition 7.6 assuming Lemma 7.8. We only supply the proof when I < 0.
The proof is essentially unchanged if I > 0. We observe that if

0
j
k = 0k ∪ {Q1, . . . ,Qj }

then 0jk is closed under the descent relation for 1 ≤ j ≤ r + 1 and 0jk ⊂ 0
i
k whenever

1 ≤ j ≤ i ≤ r + 1. Thus we can apply Lemma 7.2 to get uik(x) ≈ u
j
k(x) whenever

x ∈ �k with d(x, ∂�k) ≥ 100h(�k, �k+1). Using this, and Lemma 3.6(ii), we find that

µlk(B(aQj , 100 · 8−k/N)) ≈ µmk (B(aQj , 100 · 8−k/N)) (7.52)

whenever 1 ≤ j, l,m ≤ r + 1. The proportionality constants depend only on p, n, and
can be chosen independent of p when p ∈ [3/2, 5/2]. To get Proposition 7.6 we iterate
the display in Lemma 7.8 starting at j = 1 and finishing with j = r. In this way we get a
sum involving various measures. In view of (7.52) we can replace all these measures by
µk = µ

1
k. Doing this and using (7.51) we get∫

∂�k+1

|∇uk+1|
p−1 log |∇uk| dH n−1

≤

∫
∂�k

|∇uk|
p−1 log |∇uk| dH n−1

+ cξ(I (φ, p)+ cN−β)µk

( r⋃
j=1

B(aQj , 8−k/N)
)
. (7.53)

From the doubling property of µ and the Wolff construction (see [W2, (2.13)]) it follows
that

ĉ−1
≤ µk

( r⋃
j=1

B(aQj , 8−k−1/N)
)
≤ c̃,

where ĉ = ĉ(p, n,N), c̃ = c̃(p, n) ≥ 1. Using this inequality in (7.53) we get Proposi-
tion 7.6. ut
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7.4. Proof of Lemma 7.8

To prove Lemma 7.8 fix k, j , 1 ≤ j ≤ r, and p ∈ (1,∞). Then �j+1
k is obtained from

�
j
k by adding a blip along Qj . Let t = 8−k−1 and let T be the conformal affine mapping

introduced in Section 2. Then T (Q(1)) = Qj and if �̃ = T −1(�
j+1
k ), � = T −1(�

j
k),

then �̃ is obtained from� by adding the blip3 toQ(1) in (2.12). Let u(x) = t−1u
j
k(T x)

and ũ(x) = t−1u
j+1
k (T x), x ∈ Rn. Since the p-Laplacian is invariant under conformal

affine mappings and multiplication by a constant, we see that u, ũ are p-harmonic in
�, �̃, respectively, and continuous on Rn with u ≡ 0 on Rn \� while ũ ≡ 0 on Rn \ �̃.
Let µ, µ̃ be the measures associated with u, ũ, respectively. Observe that if F is a Borel
subset of ∂�, then

H n−1(T (F )) = tn−1H n−1(F ),

µ
j
k(T (F )) = t

n−1µ(F).
(7.54)

Similar equalities hold when F ⊂ ∂�̃. From (7.54) and Lemma 7.7 we see that

lim
R→∞

(∫
∂�̃∩B(0,R)

|∇ũ|p−1 log |∇ũ| dH n−1
−

∫
∂�∩B(0,R)

|∇u|p−1 log |∇u| dH n−1
)

= t1−n
(∫

∂�
j+1
k

|∇u
j+1
k |

p−1 log |∇uj+1
k | dH

n−1
−

∫
∂�

j
k

|∇u
j
k |
p−1 log |∇ujk | dH

n−1
)
.

From this deduction and (7.54) we see that to prove the inequality in Lemma 7.8 it suffices
to prove a similar inequality involving u, ũ,�, �̃, and with Q(1) replacing Qj . For this
purpose let λ = |∇u(0)|. Then, using Theorem 3.9 applied to the functions u and xn,
l’Hôpital’s rule, Theorem 3.10 and Lemma 3.6, we see that

λ = |∇u(0)| ≈ (µ(B(0, ρ))/ρn−1)1/(p−1) whenever 0 < ρ ≤ 1. (7.55)

From (7.55), as well as (7.54), Lemma 7.2(b) applied to u
j
k , u

j+1
k , �

j
k , �

j+1
k , and

l’Hôpital’s rule we see that if u∗, u∗∗ denote either of ũ, u, then∣∣∣∣ |∇u∗(z)||∇u∗∗(z)|
− 1

∣∣∣∣ ≤ c θα0 µ(B(0, 1/N))
(|z|N)αµ(B(0, |z|))

≤ c2 θα0 N
1−nλp−1

(|z|N)αµ(B(0, |z|))
(7.56)

whenever z ∈ ∂� \ B(0, 100/N). Also from Lemmas 7.2(a) and 3.6(ii) we have

c−1µ(B(0, ρ)) ≤ µ̃(B(0, ρ)) ≤ cµ(B(0, ρ)) (7.57)

for some c = c(p, n) whenever ρ ≥ 1/N. For fixed R ≥ 1010 we intend to estimate

Î = Î (R) :=

∫
∂�̃∩B(0,R)

λ−(p−1)
|∇ũ|p−1 log(λ−1

|∇ũ|) dH n−1

−

∫
∂�∩B(0,R)

λ−(p−1)
|∇u|p−1 log(λ−1

|∇u|) dH n−1. (7.58)

LettingR→∞, using our estimate, Lemma 7.7, and (7.54), we will then get Lemma 7.8.
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For this purpose, and for a parameter γ ∈ (0, 1) to be fixed, we put

∂� = (∂� ∩ B(0, N−γ )) ∪
∞⋃
k=1

Ek,

where
Ek = ∂� ∩ B(0, R) ∩

(
B(0, 2kN−γ ) \ B(0, 2k−1N−γ )

)
.

Using this notation we let

J =

∫
∂�̃∩B(0,N−γ )

λ−(p−1)
|∇ũ|p−1 log(λ−1

|∇ũ|) dH n−1

−

∫
∂�∩B(0,N−γ )

λ−(p−1)
|∇u|p−1 log(λ−1

|∇u|) dH n−1 (7.59)

and

Ik =

∫
Ek

λ−(p−1)
|∇ũ|p−1 log(λ−1

|∇ũ|) dH n−1

−

∫
Ek

λ−(p−1)
|∇u|p−1 log(λ−1

|∇u|) dH n−1 (7.60)

whenever k is a positive integer. Hence,

Î = J +

∞∑
k=1

Ik. (7.61)

We first focus on the term Ik for k = 1, 2, . . . . For fixed k we write

Ik =

∫
Ek

λ−(p−1)[
|∇ũ|p−1 log(λ−1

|∇ũ|)− |∇ũ|p−1 log(λ−1
|∇u|)

]
dH n−1

+

∫
Ek

λ−(p−1)[
|∇ũ|p−1 log(λ−1

|∇u|)− |∇u|p−1 log(λ−1
|∇u|)

]
dH n−1

=

∫
Ek

λ−(p−1)
|∇ũ|p−1 log

|∇ũ|

|∇u|
dH n−1

+

∫
Ek

λ−(p−1)
[|∇ũ|p−1

− |∇u|p−1
] log(λ−1

|∇u|) dH n−1

=: I 1
k + I

2
k . (7.62)

Using (7.56), (7.57), and the fact that |log x| ≈ |1 − x| on (1/2, 2) we find, for some
c = c(p, n), that

|I 1
k | ≤ c

∫
Ek

λ−(p−1)
|∇ũ(z)|p−1

∣∣∣∣ |∇ũ(z)||∇u(z)|
− 1

∣∣∣∣ dH n−1

≤
c2θα0 µ̃(B(0, 2kN−γ ))

2kαN (1−γ )α+n−1µ(B(0, 2k−1N−γ ))
≤

c3θα0
2kαN (1−γ )α+n−1 . (7.63)
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Hence
∞∑
k=1

|I 1
k | ≤ cN

−(1−γ )α+1−n. (7.64)

We next estimate I 2
k . Observe from (7.56) and l’Hôpital’s rule that

∣∣|∇u(z)|p−1
− |∇ũ(z)|p−1∣∣ ≤ c|∇u(z)|p−1

∣∣∣∣1− |∇u(z)||∇ũ(z)|

∣∣∣∣
≤ c2
|∇u(z)|p−1 θα0 N

1−nλp−1

(|z|N)αµ(B(0, |z|))
(7.65)

whenever z ∈ Ek . Using (7.65) in the definition of I 2
k we obtain

|I 2
k | ≤

cθα0 N
1−n

(2k−1N1−γ )αµ(B(0, 2k−1N−γ ))
|Tk|, (7.66)

where

Tk =

∫
Ek

|∇u|p−1
|log(λ−1

|∇u|)| dH n−1.

Let Ak = {1kj } = {1kj (wkj , rkj )} = {∂� ∩ B(wkj , rkj )}, where wkj ∈ ∂�, rkj ≈ N−γ ,
is a covering of Ek such that 1kj (wkj , rkj/4) ∩1kj (wkj ′ , rkj ′/4) = ∅ whenever j 6= j ′.
Then

|Tk| ≤
∑
j

∫
1kj

|∇u|p−1
|log(λ−1

|∇u|)| dH n−1

≤

∑
j

∫
1kj

|∇u|p−1∣∣log
(
Nγ (n−1)/(p−1)λ−1(µ(1kj ))

1/(p−1))∣∣ dH n−1

+

∑
j

∫
1kj

|∇u|p−1∣∣log
(
N−γ (n−1)/(p−1)

|∇u|(µ(1kj ))
−1/(p−1))∣∣ dH n−1

=:

∑
j

(T 1
kj + T

2
kj ). (7.67)

To estimate T 1
kj we first note, using (7.55), that

Nγ (n−1)/(p−1)λ−1(µ(1kj ))
1/(p−1)

≈

(
µ(1kj )

µ(B(0, N−γ ))

)1/(p−1)

. (7.68)

Using (7.68) in the definition of T 1
kj we get

T 1
kj ≤ c

∣∣∣∣µ(1kj ) log
µ(1kj )

µ(B(0, N−γ ))

∣∣∣∣ ≤ ckµ(1kj ), (7.69)
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where the last inequality follows from the doubling property for the measure µ. To esti-
mate T 2

kj we use (3.8), which yields

T 2
kj ≤ cµ(1kj )

∣∣∣∣log
(
cN−γ (n−1)/(p−1)(µ(1kj ))

−1/(p−1)
(

µ(1kj )

H n−1(1kj )

)1/(p−1))∣∣∣∣
≤ cµ(1kj ). (7.70)

Putting (7.69), (7.70) together we can first conclude, by standard arguments, that

|Tk| ≤
∑
j

(T 1
kj + T

2
kj ) ≤ ckµ(Ek), (7.71)

and then from (7.66), (7.71) that

|I 2
k | ≤

ckθα0 N
1−nµ(Ek)

(2k−1N1−γ )αµ(B(0, 2k−1N−γ ))
≤

c2kθα0 N
1−n

(2k−1N1−γ )α
. (7.72)

Summing over k we see first that

∞∑
k=1

|I 2
k | ≤ cN

−(1−γ )α+1−n,

and then, from this inequality and (7.64), that

∞∑
k=1

|Ik| ≤ cN
−(1−γ )α+1−n, (7.73)

where c depends only on p, n and can be chosen independent of p when p ∈ [3/2, 5/2].
This completes the estimate of |Î − J |.

Next we focus on estimating J in (7.59). As in (7.51) let ũ1 be the p-harmonic func-
tion in �̃1 = {x : xn > ψ(x′)} defined by Lemma 6.1. That is, �̃1 is obtained by adding
the blip in (2.12) to�0 alongQ(1) and so ∂�̃∩(PQ(1)∪ P̃Q(1)) = ∂�̃1∩(PQ(1)∪ P̃Q(1)).

We set

λ̃ =
|∇ũ(ẑ)|

|∇ũ1(ẑ)|
for some ẑ ∈ ∂�̃ ∩ ∂�̃1, |ẑ| ≈ N

−γ ,

and we note, using Theorem 3.9, l’Hôpital’s rule, the interior Harnack inequality, and
Lemma 3.6, that

λ̃ ≈
ũ(en)

ũ1(en)
≈

(
µ̃(B(0, 1))
µ̃1(B(0, 1))

)1/(p−1)

. (7.74)

Furthermore, using (7.57), the fact that ũ1(en) ≈ 1, and Lemma 3.6(ii), we see that

λ̃ ≈
(
µ̃(B(0, 1))

)1/(p−1)
≈ λ. (7.75)

We also need a more refined estimate for |λ − λ̃|. In particular, using the point ẑ and the
triangle inequality we have

|λ− λ̃| ≤
∣∣|∇u(0)| − |∇u(ẑ)|∣∣+ ∣∣|∇u(ẑ)| − |∇ũ(ẑ)|∣∣+ λ̃∣∣|∇ũ1(ẑ)| − 1

∣∣. (7.76)
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Since Q(1) is part of a hyperplane, we see from Schwarz reflection and Schauder type
arguments as in Section 6, Harnack’s inequality, and Lemma 3.6(ii) that∣∣|∇u(0)| − |∇u(ẑ)|∣∣ ≤ c|ẑ|λ ≈ N−γ λ. (7.77)

Furthermore, as in (7.68) we deduce from (7.55), (7.56) that

∣∣|∇u(ẑ)|−|∇ũ(ẑ)|∣∣ ≤ c|∇u(ẑ)| θα0 N
1−nλp−1

N (1−γ )αµ(B(0, N−γ ))
≤ c2λN−(1−γ )(α+n−1). (7.78)

Finally, from Lemma 6.2 applied to �0, �̃1, and (7.75), we see that

λ̃
∣∣|∇ũ1(ẑ)| − 1

∣∣ ≤ cλN−(1−γ )(α+n−1). (7.79)

Combining (7.77)–(7.79) and using the result in (7.76) we can conclude that

|λ− λ̃| ≤ c(N−γ +N−(1−γ )(α+n−1))λ. (7.80)

Before we estimate J we need one more preliminary estimate. In particular if z ∈
∂�̃ ∩ ∂�̃1, |z| ≤ N−γ , then we first note that∣∣λ̃−1

|∇ũ(z)| − |∇ũ1(z)|
∣∣ = λ̃−1

∣∣∣∣ |∇ũ(z)||∇ũ1(z)|
−
|∇ũ(ẑ)|

|∇ũ1(ẑ)|

∣∣∣∣|∇ũ1(z)|, (7.81)

and second, from Theorem 3.9 with r = 1, and l’Hôpital rule, we see that there exists
σ̄ ∈ (0, 1) such that∣∣λ̃−1

|∇ũ(z)| − |∇ũ1(z)|
∣∣ ≤ λ̃−1N−γ σ̄

|∇ũ(ẑ)|

|∇ũ1(ẑ)|
|∇ũ1(z)| ≤ cN

−γ σ̄
|∇ũ1(z)|. (7.82)

After these preliminaries we begin the estimate of J in (7.59). In particular, we first
introduce the decomposition

J = J1 + J2 + J3 + J4, (7.83)

where

J1 =∫
∂�̃∩B(0,N−γ )

[
λ−(p−1)

|∇ũ|p−1 log(λ−1
|∇ũ|)− λ̃−(p−1)

|∇ũ|p−1 log(λ̃−1
|∇ũ|)

]
dH n−1,

J2 =

∫
∂�̃∩B(0,N−γ )

[
λ̃−(p−1)

|∇ũ|p−1 log(λ̃−1
|∇ũ|)− |∇ũ1|

p−1 log |∇ũ1|
]
dH n−1,

J3 =

∫
∂�̃∩B(0,N−γ )

|∇ũ1|
p−1 log |∇ũ1| dH

n−1,

J4 = −

∫
∂�∩B(0,N−γ )

λ−(p−1)
|∇u|p−1 log(λ−1

|∇u|) dH n−1. (7.84)



2252 John L. Lewis et al.

As for J1 we note that

|J1| ≤ λ
−(p−1)

|log(λλ̃−1)|

∫
∂�̃∩B(0,N−γ )

|∇ũ|p−1 dH n−1

+ |λ−(p−1)
− λ̃−(p−1)

|

∫
∂�̃∩B(0,N−γ )

|∇ũ|p−1 log(λ̃−1
|∇ũ|) dH n−1

=: J11 + J12. (7.85)

Using (7.55), (7.57), and elementary estimates for the logarithm we see that

J11 ≤ c|λ− λ̃|λ
−pµ̃(B(0, N−γ )) ≤ c|λ− λ̃|λ−1N−γ (n−1). (7.86)

Hence, using (7.86)–(7.80), we can conclude that

J11 ≤ c(N
−γ
+N−(1−γ )(α+n−1))N−γ (n−1)

= c(N−γ n +N−((1−γ )α+n−1)). (7.87)

Considering the term J12 we observe from (7.75) and (7.80) that

J12 ≤ |λ− λ̃|λ
−p

∫
∂�̃∩B(0,N−γ )

|∇ũ|p−1
|log(λ̃−1

|∇ũ|)| dH n−1

≤ c(N−γ +N−(1−γ )(α+n−1))λ−(p−1)J121, (7.88)

where

J121 :=

∫
∂�̃∩B(0,N−γ )

|∇ũ|p−1
|log(λ̃−1

|∇ũ|)| dH n−1. (7.89)

To complete an estimate of J12 we first estimate J121. Indeed, using (3.8) we first see that

J121 ≤ cµ̃(B(0, N−γ ))
∣∣∣∣log

(
cλ̃−1

(
µ̃(B(0, N−γ ))

H n−1(B(0, N−γ ))

)1/(p−1))∣∣∣∣. (7.90)

Second, from (7.90), (7.79), (7.55), and (7.57), it follows that

J121 ≤ cµ(B(0, N−γ ))
∣∣∣∣log

(
cλ−1

(
µ(B(0, N−γ ))

H n−1(B(0, N−γ ))

)1/(p−1))∣∣∣∣
≤ cλp−1N−γ (n−1). (7.91)

Now using (7.91) in (7.88) we see that

J12 ≤ c(N
−γ n
+N−((1−γ )α+n−1)). (7.92)

Hence, from (7.92) and (7.87) we have

J1 ≤ J11 + J12 ≤ c(N
−γ n
+N−((1−γ )α+n−1)). (7.93)
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We next consider the term J2. We write

J2 ≤

∫
∂�̃∩B(0,N−γ )

λ̃−(p−1)
|∇ũ|p−1

∣∣∣∣log
(
λ̃−1

(
|∇ũ|

|∇ũ1|

))∣∣∣∣ dH n−1

+

∫
∂�̃∩B(0,N−γ )

∣∣(λ̃−(p−1)
|∇ũ|p−1

− |∇ũ1|
p−1) log(|∇ũ1|)

∣∣ dH n−1

=: J21 + J22. (7.94)

To estimate J21 and J22 we first note, using Theorem 3.9, that∣∣∣∣log
(
λ̃−1

(
|∇ũ(z)|

|∇ũ1(z)|

))∣∣∣∣ ≤ cN−γ σ̄ whenever |z| ≤ N−γ . (7.95)

Furthermore, since∣∣λ̃−(p−1)
|∇ũ|p−1

− |∇ũ1|
p−1∣∣

≤ c
∣∣λ̃−1
|∇ũ| − |∇ũ1|

∣∣ ∣∣λ̃−(p−2)
|∇ũ|p−2

+ |∇ũ1|
p−2∣∣, (7.96)

we also see, using (7.82), Theorem 3.9 and the Harnack inequality for p-harmonic func-
tions, that ∣∣λ̃−(p−1)

|∇ũ(z)|p−1
− |∇ũ1(z)|

p−1∣∣ ≤ cN−γ σ̄ |∇ũ1(z)|
p−1 (7.97)

for H n−1-almost every z such that |z| ≤ N−γ . In particular, we can conclude that

J21 ≤ cN
−γ σ̄

∫
∂�̃∩B(0,N−γ )

λ̃−(p−1)
|∇ũ|p−1 dH n−1,

J22 ≤ cN
−γ σ̄

∫
∂�̃∩B(0,N−γ )

|∇ũ1|
p−1∣∣log |∇ũ1|

∣∣ dH n−1.

(7.98)

Hence, using (7.55), (7.57), and (7.75) we see that

J21 ≤ cN
−γ σ̄λ−(p−1)µ(B(0, N−γ )) ≤ cN−γ σ̄N−γ (n−1). (7.99)

To estimate J22 we use (7.98) and (3.8) to first get

J22 ≤ cN
−γ σ̄ µ̃1(B(0, N−γ ))

∣∣∣∣log
µ̃1(B(0, N−γ ))
H n−1(B(0, N−γ ))

∣∣∣∣. (7.100)

Second, from Lemma 7.2(a) applied to �0, �̃1, and Lemma 3.6(ii), we deduce that
µ̃1(B(0, N−γ )) ≈ N−γ (n−1). Using this inequality in (7.100) we find that

J22 ≤ cN
−γ σ̄N−γ (n−1). (7.101)

Putting (7.101), (7.99) together we have

J2 ≤ J21 + J22 ≤ cN
−γ σ̄N−γ (n−1), (7.102)

and this completes our estimate of the term J2.
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We next consider the term J3. Now

J3 = I (ψ, p)−

∫
Rn−1\B(0,N−γ )

|∇ũ1|
p−1 log |∇ũ1| dH

n−1. (7.103)

To estimate the last integral note from Lemma 7.2(b), again applied to �0, �̃1, and
l’Hôpital’s rule, that

∣∣log |∇u1(x)|
∣∣ ≤ cθα0 N

1−n

Nα|x|n−1+α whenever |x| ≥ 100/N .

Using this inequality to estimate the integral in (7.103) we see that

|J3 − I (ψ, p)| ≤ cN
−((1−γ )α+n−1). (7.104)

Finally, we consider J4. Using (3.8) and (7.55) we get

J4 ≤ cλ
−(p−1)µ(B(0, N−γ ))

∣∣∣∣log
(
λ−1

(
µ(B(0, N−γ ))

H n−1(B(0, N−γ ))

)1/(p−1))∣∣∣∣
≤ cN−γ n. (7.105)

Collecting the estimates in (7.93), (7.102), (7.104), (7.105), we have proved that

|Î (R)− I (ψ, p)| ≤ |J1| + |J2| + |J4| +

∞∑
k=1

|Ik| + cN
−((1−γ )α+n−1)

≤ c
(
N−γ n +N−((1−γ )α+(n−1))

+N−γ σ̄N−γ (n−1)), (7.106)

where α, σ̄ ∈ (0, 1) are fixed numbers while γ ∈ (0, 1) is a degree of freedom. To
complete the argument, and the proof, we now let

γ = min
{

1−
1

2n
,

1
2

(
1+

n− 1
σ̄ + n− 1

)}
. (7.107)

Then we can conclude from (7.106), (7.107) that there exists β = β(p, n) > 0 such that

Î (R) ≤ I (ψ, p)+ cN1−n−β . (7.108)

Moreover, β can be chosen independent of p when p ∈ [3/2, 5/2]. Letting R →∞ and
using Lemma 7.7, (7.54), (7.58), it follows from (7.108) that

lim
R→∞

tn−1λp−1Î (R)

=

(∫
∂�

j+1
k

|∇u
j+1
k |

p−1 log |∇uj+1
k | dH

n−1
−

∫
∂�

j
k

|∇u
j
k |
p−1 log |∇ujk | dH

n−1
)
,

where t = 8−k−1, and that

lim
R→∞

tn−1λp−1Î (R) ≤ tn−1λp−1(I (ψ, p)+ cN1−n−β).
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Furthermore, from (7.54), (7.55), we deduce that

tn−1λp−1
≈ Nn−1µ

j
k(B(aQj , t/N)).

Using this inequality in the second last display we conclude that the proof of Lemma 7.8
is complete. ut
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