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Abstract. We provide partial results towards a conjectural generalization of a theorem of Lubotzky
–Mozes–Raghunathan for arithmetic groups (over number fields or function fields) that implies, in
low dimensions, both polynomial isoperimetric inequalities and finiteness properties.

As a tool in our proof, we establish polynomial isoperimetric inequalities and finiteness proper-
ties for certain solvable groups that appear as subgroups of parabolic groups in semisimple groups,
thus generalizing a theorem of Bux.

We also develop a precise version of reduction theory for arithmetic groups whose proof is, for
the most part, independent of whether the underlying global field is a number field or a function
field.

Our main result is Theorem 4 below. Before stating it, we provide some background.

0.1. Arithmetic groups

Let K be a global field (number field or function field), and let S be a nonempty set of
finitely many inequivalent valuations of K including one from each class of archimedean
valuations. The ring OS ⊆ K will denote the corresponding ring of S-integers.

For any v ∈ S, we let Kv be the completion of K with respect to v so that Kv is a
locally compact field.

Let G be a noncommutative, absolutely almost simple, K-isotropic K-group. Let G
be the semisimple Lie group

G =
∏
v∈S

G(Kv)

endowed with a left-invariant metric. Notice that |S| is the number of simple factors ofG.
Under the diagonal embedding, the arithmetic group G(OS) is a lattice in G. The

lattice being noncocompact is equivalent to the assumption that G is K-isotropic. The
metric on G restricts to a metric on G(OS).

Denote the Euclidean, or geometric, rank of G by k(G, S), so that

k(G, S) =
∑
v∈S

rankKv G.
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0.2. Word metric for higher rank arithmetic groups

If k(G, S) ≥ 2, then G(OS) is well-known to be finitely generated. Thus, G(OS) can be
endowed with a proper left-invariant word metric. Lubotzky–Mozes–Raghunathan [13]
showed that the word metric is determined by G by proving

Theorem 1. The diagonal embedding G(OS) ↪→ G is a quasi-isometric embedding
when k(G, S) ≥ 2.

Bux–Wortman conjectured a natural generalization to the above theorem in [7]. We in-
troduce a slight reformulation of that conjecture as Conjecture 2 below. The reformu-
lated version better illustrates the lack of dependence on whether the local fields Kv are
archimedean.

Before stating the conjecture, we must introduce the notion of a coarse manifold.

0.3. Coarse manifolds

A coarse manifold 6 in a metric space X is a function from the vertices of a triangulated
manifold M into X. In a slight abuse of language, we refer to the image of a coarse
manifold as a coarse manifold, thus a coarse manifold in X will be regarded as a subset
of X.

Given a coarse manifold6, we define ∂6 as the restriction of the function defining6
to ∂M .

We say 6 has scale r > 0 if every pair of adjacent vertices in M map to within
distance r of each other in X. We define the volume of 6 to be the number of vertices
in M .

If M is an n-manifold, we call 6 a coarse n-manifold. If 6′ is a coarse manifold as
well whose domain is the triangulated manifold M ′, then we say that 6 and 6′ have the
same topological type if M and M ′ are homeomorphic.

0.4. Expanding on Lubotzky–Mozes–Raghunathan

Having introduced the proper terminology, we state

Conjecture 2. Given G(OS) as above and a scale factor r1, there exists a linear poly-
nomial f and a scale factor r2 such that if 6 ⊆ G is a coarse n-manifold of scale r1,
with ∂6 ⊆ G(OS), and n < k(G, S), then there is a coarse n-manifold 6′ ⊆ G(OS) of
scale r2, with the same topological type as 6, and such that ∂6′ = ∂6 and vol(6′) ≤
f (vol(6)).

The bound of n < k(G, S) is known to be sharp in many cases. Indeed, Bux–Wortman
showed the bound is sharp whenK is a function field [7], Taback showed it is sharp when
G(OS) = SL2(Z[1/p]) [18], and Wortman showed it was sharp if every place in S is
archimedean and the K-type of G is An, Bn, Cn, Dn, E6 or E7 [19]. The bound was
conjectured to be sharp in general in [7].
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Notice that Lubotzky–Mozes–Raghunathan (Theorem 1) would quickly follow from
Conjecture 2. Indeed, let γ1, γ2 ∈ G(OS). Because G is quasi-isometric to a product
of symmetric spaces and Euclidean buildings, there exist r1 > 0, L ≥ 1, and C ≥ 0
(that depend only on G) and a coarse path 6 ⊆ G of scale r1 such that ∂6 = {γ1, γ2}

and the volume of 6 is bounded above by Ld(γ1, γ2) + C. We let r2 and f be as in
Conjecture 2, so there is a coarse path 6 ⊆ G(OS) of scale r2 > 0 and volume bounded
above by f (Ld(γ1, γ2)+C). We may assume the finite generating set of G(OS) contains
all elements of G(OS) whose distance from 1 is less than r2, so the theorem follows.

0.5. Isoperimetic inequalities

Recall that a group 0 is of type Fn if there is a K(0, 1) with finite n-skeleton.
If a group 0 is of type Fn, then we let X be an (n − 1)-connected CW-complex that

0 acts on cellularly, properly, and cocompactly. Suppose 1 ≤ m ≤ n − 1. If there are
constants L, t ≥ 1 and C ≥ 0 such that for any cellular m-sphere 6 ⊆ X there is a
cellular (m + 1)-disk D ⊆ X such that ∂D = 6 and vol(D) ≤ L vol(6)t + C, then
we say that 0 satisfies a polynomial m-dimensional isoperimetric inequality. (Here the
volume of 6 and D are the numbers of cells they contain.)

If in the above t can be taken to be (m+ 1)/m, then we say that 0 satisfies a Euclidean
m-dimensional isoperimetric inequality.

Satisfying a polynomial or Euclidean m-dimensional isoperimetric inequality is well-
known to be a quasi-isometry invariant, so it is independent of the choice of the space X.

Using a similar argument to that given in the proof above that Conjecture 2 implies
Theorem 1, we can take any coarse sphere 6 ⊆ G(OS) of dimension m ≤ k(G, S) − 2,
find a coarse (m + 1)-disk in G whose boundary is 6 and whose volume is Euclidean
with respect to 6 (G is quasi-isometric to a product of symmetric spaces and Euclidean
buildings so this is always possible), and then use Conjecture 2 to find a corresponding
coarse (m+ 1)-disk in G(OS) whose boundary is 6 and whose volume is Euclidean with
respect to 6. This brief sketch of a proof will be made precise in Section 7, and it proves
that Conjecture 2 would imply

Conjecture 3. G(OS) satisfies a Euclidean m-dimensional isoperimetric inequality if
m ≤ k(G, S)−2. In particular, the Dehn function for G(OS) is quadratic if k(G, S) ≥ 3.

Thurston’s conjecture that SL4(Z) has a quadratic Dehn function is a special case of
Conjecture 3 since rankR SL4 = 3.

As evidence for Conjecture 3, Druţu [8] proved that G(OS) has a Dehn function that
is bounded above by the function x 7→ x2+ε for any ε > 0 if S contains only archimedean
valuations, the K-rank of G equals 1, and k(G, S) ≥ 3.

Young [21] proved that if G(OS) = SLn(Z), then G(OS) has a quadratic Dehn func-
tion if n ≥ 5. The condition n ≥ 5 implies k(G, S) ≥ 4.

The work of Druţu and Young contains the only results in the literature that estab-
lish polynomial m-dimensional isoperimetric inequalities for noncocompact arithmetic
groups when m ≤ k(G, S)− 2.
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0.6. Main result

The main result proved in this paper is partial progress in proving Conjecture 2. Namely:

Theorem 4. Given G(OS) as above and a scale factor r1, there exists a polynomial f and
a scale factor r2 such that if6 ⊆ G is a coarse n-manifold of scale r1, with ∂6 ⊆ G(OS),
and n < |S|, then there is a coarse n-manifold 6′ ⊆ G(OS) of scale r2, with the same
topological type as 6, and such that ∂6′ = ∂6 and vol(6′) ≤ f (vol(6)).

If n = 1, then f can be taken to be linear.

If K is the algebraic closure of K , then for any v ∈ S we have rankKv G ≤ rankK G,
and it is a consequence of G being K-isotropic that 1 ≤ rankKv G for all v ∈ S. (In other
words, each simple factor of G has positive Euclidean rank.) Therefore,

|S| ≤ k(G, S) =
∑
v∈S

rankKv G ≤ |S| rankK G

and the inequalities above are sharp.
Applying the argument above that Conjecture 2 implies Lubotzky–Mozes–Raghu-

nathan (Theorem 1), we see that Theorem 4 implies Lubotzky–Mozes–Raghunathan for
those arithmetic groups for which |S| ≥ 2.

In higher dimensions—and similar to the reasoning above that Conjecture 2 implies
Conjecture 3—Theorem 4 implies

Corollary 5. G(OS) satisfies a polynomialm-dimensional isoperimetric inequality when
m ≤ |S|−2. In particular, the Dehn function of G(OS) is bounded above by a polynomial
if |S| ≥ 3.

0.7. Finiteness properties

One cannot inquire about the word metric of a group if the group in question is not
finitely generated. Similarly, m-dimensional isoperimetric inequalities only make sense
for groups that are of type Fm+1. Thus, in order for Theorem 1, Conjecture 3, and Corol-
lary 5 to be well-posed, we need to know that G(OS) is of type Fk(G,S)−1, and this is
known to be true. Indeed, Raghunathan [16] proved that G(OS) is of type Fn for all n
when S consists of only archimedean places, Borel–Serre [4] established that G(OS) is
of type Fn for all n when K is a number field, and Bux–Köhl–Witzel [6] recently estab-
lished that G(OS) is of type Fk(G,S)−1 in the case when K is a function field.

But while the finiteness properties of G(OS) that are needed for Theorem 1 and Corol-
lary 5 to be well-posed are known—that G(OS) is of type F|S|−1—our proof makes no use
of these finiteness properties, not even of finite generation. Rather, the needed finiteness
properties can be quickly derived as a corollary from Theorem 4.

We illustrate here a quick proof that Theorem 4 implies that G(OS) is of type F|S|−1:
Suppose G(OS) and r1 > 0 are given. For s > 0 we let R(s) be the simplicial complex
formed by declaring (k + 1)-tuples of points in G(OS) to be a simplex if each pair of
points in the (k+ 1)-tuple are within distance s of each other. Then R(∞) is contractible,
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and the natural action of G(OS) on R(∞) has finite cell stabilizers. Letm ≤ |S|−2. Any
m-sphere in R(r1) corresponds naturally to a coarse m-sphere in G(OS) of scale r1, and
Theorem 4 implies the existence of an (m + 1)-disk in R(r2) that fills that sphere. Thus
G(OS) is of type F|S|−1 by Brown’s criterion (see e.g. [9, Theorem 7.4.1]).

Notice that the proof in the previous paragraph does not use Theorem 4 in its fullest,
as the volumes of the filling disks used in the proof are irrelevant.

Using a similar proof, Conjecture 2 would imply that G(OS) is of type Fk(G,S)−1.
Again, this result is known by work of Raghunathan, Borel–Serre, and Bux–Köhl–Witzel,
and it is known by Bux–Wortman [7] that the group G(OS) is not of type Fk(G,S) when
K is a function field. Thus, Conjecture 2 would imply the strongest possible finiteness
result for G(OS) that is independent of whether the global field K is a number field or a
function field.

0.8. Solvable groups

Our proof of Theorem 4 proceeds by first studying the large scale geometry of certain
solvable groups. We prove the following generalization of Gromov’s result that certain
solvable Lie groups of the form Rn−1 nRn satisfy a quadratic Dehn function if n ≥ 3:

Theorem 6. Let Q be a proper K-parabolic subgroup of G. Let UQ be the unipotent
radical of Q and let AQ be the maximal K-split torus in the center of a K-Levi subgroup
of Q.

Given r1 > 0, there exists r2 > 0 and a polynomial f such that any coarse m-sphere
6 ⊆ (UQAQ)(OS) of scale r1 can be realized as the boundary of a coarse (m + 1)-ball
in (UQAQ)(OS) of scale r2 whose volume is bounded above by f (vol(6)) as long as
m ≤ |S| − 2.

In particular, (UQAQ)(OS) is of type F|S|−1 and satisfies a polynomialm-dimensional
isoperimetric inequality if m ≤ |S| − 2.

As a special case of the above proposition, if G is K-split and B is a K-defined Borel
subgroup of G, then UBAB = B, so B(OS) is of type F|S|−1. Thus, Theorem 6 generalizes
“half” of Bux’s theorem [5]:

Theorem 7. Suppose K is a function field, that G is K-split, and that B ≤ G is a
K-defined Borel subgroup. Then B(OS) is of type F|S|−1 but not of type F|S|.

Bux’s theorem is proved using piecewise linear Morse theory. It is the most prominent
result in the mostly unexplored field of finiteness properties of solvable arithmetic groups
over function fields.

Wortman [20] proves a converse to Theorem 6 by showing that (UQAQ)(OS) is not
of type F|S| if K is a function field, and that (UQAQ)(OS) has an exponential (|S| − 1)-
dimensional Dehn function if K is a number field, thus generalizing the “other half” of
Bux’s theorem.
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0.9. Outline of proof

The plan for our proof was motivated by the unpublished Abels–Margulis proof of the
Lubotzky–Mozes–Raghunathan theorem.

Section 1 of this paper contains some preliminary material and notation, and Section 2
displays an example that readers can use to guide themselves through the proofs in this
paper.

In Section 3 we state the precise version of reduction theory (Proposition 9) that we
will use in our proof of Theorem 4. We give a proof of Proposition 9 in an appendix
(Section 8). Aside from starting with the well-known result that there are finitely many
equivalence classes of minimal K-parabolic subgroups of G modulo G(OS), our proof is
independent of the characteristic of K .

The proof of our main result, Theorem 4, follows quickly from reduction theory
(Proposition 9) and Proposition 17 which states that “boundaries of parabolic regions”
have nice filling properties. On a first reading, the reader may wish to read the statement
of Proposition 17 from Section 5, along with Section 3, before proceeding to Section 6
for a short proof of our main result.

Section 4 contains a proof of our theorem on fillings in solvable arithmetic groups
(Theorem 6), which is equivalently stated as Proposition 10. It is used in Section 5 to
prove our result on filling in boundaries of parabolic regions (Proposition 17).

Section 7 contains a short proof that our main result implies the isoperimetric inequal-
ities stated in Corollary 5.

1. Preliminaries

Let K , OS , and G be as above. Because G is K-isotropic, it has a minimal K-parabolic
subgroup P. Let A be a maximal K-torus in P.

We denote the root system for (G,A) by8. A positive set8+ is defined by P. We let
1 ⊆ 8+ be the set of simple roots.

For I ⊆ 1, we let [I ] ⊆ 8 be the linear combinations generated by I , and we let
8(I)+ = 8+ − [I ] and [I ]+ = [I ] ∩8+.

If α ∈ 8, we let U(α) be the root group corresponding to α. For any set 9 ⊆ 8+

that is closed under addition, we let U9 be the group
∏
α∈9 U(α). The topological group∏

v∈S U9(Kv) is naturally identified topologically—but not necessarily algebraically—
with a product of topological vector spaces that we endow with a norm ‖ · ‖.

If I ⊆ 1, then we let AI be the connected component of the identity in
⋂
α∈I Ker(α).

We let ZG(AI ) be the centralizer of AI in G so that ZG(AI ) = MIAI where MI is
a reductive K-group with K-anisotropic center. We denote by PI the parabolic group
U8(I)+MIAI . The Levi subgroup MIAI normalizes the unipotent radical U8(I)+ , and
elements of AI commute with those of MI .

Note that if α ∈ 1, then P1−α is a maximal proper K-parabolic subgroup of G, and
that P∅ = P. To ease notation a bit, we will also denote U8(∅)+ = U8+ , M∅, and A∅ at
times as U, M, and A respectively.
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In the remainder of this paper we denote the product over S of local points of a K-
group by “unbolding”, so that, for example,

G =
∏
v∈S

G(Kv).

The metric on G. Suppose S = {v}. Let Q be a minimal Kv-parabolic subgroup of G
with maximal Kv-torus Av and unipotent radical Uv . Then there is a compact set B ⊆ G
such that UvAvB = G and thus the left-invariant metric on UvAv is quasi-isometric toG.

It follows that Av with the restricted metric from G is quasi-isometric to Euclidean
space. Also, if u ∈ Uv then there is someL > 0 such that (1/L) log(‖u‖+1) ≤ d(1, u) ≤
L log(‖u‖ + 1). The properties of the metric on G that we will use in this paper are
deduced from this paragraph after taking the product metric in the case when |S| > 1.

Bruhat decomposition. We let W ⊆ G(K) be a set of coset representatives, including 1,
for the Weyl group NG(A)/ZG(A) where NG(A) is the normalizer of A in G. Then G(K)
is a disjoint union

∐
w∈W P(K)wP(K).

Conjugation. If g, h ∈ G and H ⊆ G, then we denote ghg−1 as gh and gHg−1 as gH .

Bounds. Throughout, we write a = O(c) to mean that there is some constant κ depend-
ing only on G and G(OS) such that a ≤ κc.

2. An example to follow throughout

In this section we provide an example of an arithmetic group G(OS) that those less famil-
iar with arithmetic groups may prefer to focus on while reading the rest of this paper. The
example we provide is the arithmetic group SL3(Z[1/p1, . . . , 1/pk]) where p1, . . . , pk
are prime numbers. It is an example that is simple enough that most of this paper can be
read with it in mind and without any knowledge of the general properties of semisim-
ple groups, but it is complicated enough to illustrate all of the important features and
techniques of our general proof.

Although we do provide explicit examples in this section of K , G, G(OS), etc., these
examples are particular only to this section, and nowhere in the remainder of the paper is
any part of our proof restricted to this particular example.

2.1. Global field, valuations, and S-integers

For our example we take K to be the field Q of rational numbers.
Let v∞ be the archimedean valuation on Q. That is, v∞ endows Q with the restriction

of the standard norm on the real numbers, and the completion Kv∞ is the field R of real
numbers.

Given a prime number p, there is also a p-adic valuation on Q, denoted vp, whose
completion yields the locally compact field Qp of p-adic numbers. What is important to
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know about the p-adic norm is that the norm of p is less than 1, and hence the p-adic
norm of 1/p is greater than 1.

The archimedean and p-adic valuations are the only valuations that exist for Q up to
scale.

We can take for a set of valuations S = {v∞, vp1 , . . . , vpk } where each pi is a distinct
prime. Thus, |S| = k + 1.

The ring of S-integers OS in this example is the ring Z[1/p1, . . . , 1/pk]. Notice that
this ring has as units the elements of Q whose numerators and denominators are products
of powers of the primes p1, . . . , pk and their negatives.

It is a good exercise to check that Z[1/p1, . . . , 1/pk] embedded diagonally into the
product R×Qp1 × · · · ×Qpk is a discrete and cocompact subring.

2.2. Simple group and resulting arithmetic group and semisimple Lie group

We take for our example of G the group SL3(C) of 3×3 matrices with entries in C whose
determinants equal 1.

In what follows, if R is a subring of C, then G(R) is understood to be the group
SL3(R). In particular, the algebraic closures of R and Qp are isomorphic to C, so we can
consider R and Qp to be subrings of C and then the Lie group G is the product

SL3(R)× SL3(Qp1)× · · · × SL3(Qpk ).

The arithmetic group G(OS) in this example is SL3(Z[1/p1, . . . , 1/pk]). Embedded
diagonally into G, it is a discrete subgroup.

More generally, we regard elements of G(Q) = SL3(Q) as elements of G via the
diagonal embedding.

The number rankR SL3(C) is the maximal dimension of a subgroup of SL3(C) that
is diagonal after being conjugated by an element of SL3(R). Thus, rankR SL3(C) = 2.
Similarly, rankQp SL3(C) = 2 for any prime p, so for our choice of G(OS) we have
k(G, S) =

∑
v∈S rankKv SL3(C) =

∑
v∈S 2 = 2|S|.

2.3. Roots

We let P be the upper-triangular subgroup of SL3(C) whose entries below the diagonal
all equal 0, and we let A be the 2-dimensional group of all diagonal matrices in SL3(C).
The choice of P and A provides us with the set of six roots

8 = {λij | 1 ≤ i, j ≤ 3 and i 6= j}

where each λij : A→ C× is defined by λij (a1, a2, a3) = ai/aj if (a1, a2, a3) ∈ A is the
matrix whose three diagonal entries are given by a1, a2, and a3 respectively.

The operation of pointwise multiplication of roots is written additively, so that for
example, λ12 + λ23 = λ13 and −λij = λji . With this structure

8 = {λ12, λ23, λ12 + λ23,−λ12,−λ23,−λ12 − λ23}.
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The set of positive roots (consistent with our choice of P) is

8+ = {λ12, λ23, λ12 + λ23}

and the set of simple roots is
1 = {λ12, λ23}.

The “highest root” is λ13 = λ12 + λ23.

2.4. Subgroups of G defined by roots

The group A{λ12} ≤ A is given by the group of diagonal matrices (a1, a2, a3) where
a1 = a2. The group A{λ23} ≤ A is given by the group of diagonal matrices (a1, a2, a3)

where a2 = a3. The group A∅ equals A.
Notice that the multiplicative group A{λ12}(OS) is virtually isomorphic to Zk , as is

A{λ23}(OS). The group A(OS) is virtually isomorphic to Z2k .
The group M{λ12}

∼= SL2(C) is the set of matrices in SL3(C) that can be written in
the form ∗ ∗ 0

∗ ∗ 0
0 0 1

 .
The group M{λ23}

∼= SL2(C) consists of all matrices in SL3(C) that can be written in the
form 1 0 0

0 ∗ ∗

0 ∗ ∗

 .
The group M =M∅ is trivial. For I ( 1, elements of MI commute with elements of AI .

For any λij ∈ 8, the root group U(λij ) is the subgroup of SL3(C) that equals the
identity matrix in every entry except for perhaps the entry in the i-th row and j -th column.
Notice that if u ∈ U(λij ) and a ∈ A then aua−1

= λij (a)u.
Notice that U(λij )(R) is isomorphic to the additive group R, and thus U(λij )(R) has a

natural structure of a normed 1-dimensional vector space with an obvious choice of norm.
Likewise U(λij )(Qp) is isomorphic to the normed vector space Qp. The group U(λij ) is
isomorphic to the product R×Qp1 × · · · ×Qpk .

Following the notation from the previous section, we have 8({λ12})
+
= {λ13, λ23},

8({λ23})
+
= {λ12, λ13}, and 8(∅)+ = {λ12, λ13, λ23}. From this, and the fact that for

I ( 1 the group U8(I)+ is simply the product of those U(λij ) with λij ∈ 8(I)+, one can
easily see that each U8(I)+ has the topological structure of a product of normed vector
spaces (each of dimension 2 or 3 depending on the cardinality of I ) and we endow each
U8(I)+ with a norm that we denote simply as ‖ · ‖, ignoring the set I in our notation for
the norm. The group structure on U8(I)+ is also of a product of vector spaces if I = {λ12}

or if I = {λ23}. If I = ∅ then the group structure on U = U8(∅)+ is nilpotent, but not
abelian.
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It is easy to form explicitly the parabolic groups PI = U8(I)+MIAI for I ( 1. The
group P{λ12} is the set of matrices in SL3(C) of the form∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 =
1 0 ∗

0 1 ∗

0 0 1

∗ ∗ 0
∗ ∗ 0
0 0 1

a1 0 0
0 a1 0
0 0 a−2

1

 .
Elements of P{λ23} have the form ∗ ∗ ∗0 ∗ ∗

0 ∗ ∗


and elements of P = P{∅} have the form∗ ∗ ∗0 ∗ ∗

0 0 ∗

 .
It is easy to check that U8(I)+ is a normal subgroup of PI .
There is an automorphism of SL3(C) that restricts to an isomorphism between P{λ12}

and P{λ23}. Much of the proof in this paper is considered by examining parabolic groups
(or spaces associated with them) in the different cases enumerated by proper subsets
I ( 1. Thus, when considering our proof as it applies to the particular example from
this section, one can often restrict to just two cases: I = {λ12} and I = ∅.

2.5. Parabolic regions

In the next section, “parabolic regions” will be defined. They will be denoted as RI for
I ( 1.

Very nearly, RI is the space

PI (Z[1/p1, . . . , 1/pk])A+I

or equivalently

U8(I)+(Z[1/p1, . . . , 1/pk])MI (Z[1/p1, . . . , 1/pk])A+I

where A+I is defined in the next section as those a ∈ A such that a commutes with
elements of MI (Z[1/p1, . . . , 1/pk]) and such that, up to multiplying a by an element
of A(Z[1/p1, . . . , 1/pk]), ‖a−1ua‖ ≤ ‖u‖ for any u ∈ U8(I)+(Z[1/p1, . . . , 1/pk])
≤ U8(I)+ .

Since U8(I)+(Z[1/p1, . . . , 1/pk]) is a cocompact lattice in U8(I)+ , and because we
are only interested in the large scale geometry of RI , the actual definition of a parabolic
region that we will use is

RI = U8(I)+MI (Z[1/p1, . . . , 1/pk])A+I .

We make this substitution only to ease notation a bit.
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2.6. Weyl group and cusps

We let W ⊆ SL3(C) be the set of six matrices that permute the standard coordinate
vectors e1, e2, e3 ∈ C3. The elements of W normalize A, and they are representatives for
the Weyl group which is defined as the normalizer of A modulo A.

The “longest element” of the Weyl group is represented by the transposition that in-
terchanges e1 and e3 and fixes e2.

The set F from Theorem 8 below as it applies to the example illustrated in this section
consists of only the identity element. That is, the double coset space

SL3(Z[1/p1, . . . , 1/pk])\SL3(Q)/P(Q)

is a single point. Indeed, it is well known that

SL3(Z)\SL3(Q)/P(Q)

is a single point, as this is equivalent to the assertion that SL3(Z) acts transitively on
complete flags in Q3.

2.7. End of example

We have now concluded our example, and in the remainder of the paper we will return
to our more general notation where K is an arbitrary global field, G is an arbitrary non-
commutative, absolutely almost simple, K-isotropic K-group, P is an arbitrary minimal
K-parabolic subgroup of G, and so on.

3. Parabolic regions and the pruning of G to G(OS)

This section contains the precise statement from reduction theory that our proof requires.
We begin by recalling the “finiteness of cusps” theorem from reduction theory.

Theorem 8. There exists a finite set F ⊆ G(K) of coset representatives for
G(OS)\G(K)/P(K).

Proof. Restriction of scalars applied to Proposition 15.6 of Borel’s book [3] on arithmetic
groups gives the result when OS is the ring of integers in a number field. The general case
for number fields is immediate since any ring of S-integers contains the ring of integers.

When K is a function field, this theorem is Behr’s [1, Satz 8]. Behr’s proof needs a
technical hypothesis (used for [1, Satz 5]). However, Harder has removed the need for
that hypothesis: [12, Korollar 2.2.7] can be used as a replacement for [1, Satz 5] in the
proof. ut
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3.1. Parabolic regions

If Q is a proper K-parabolic subgroup of G, then Q is conjugate over G(K) to PI for
some proper subset I ( 1. We let

3Q = {γf ∈ G(OS)F |
γfPI = Q for some I ( 1}

where F is as in Theorem 8. Notice that Theorem 8 ensures that 3Q is nonempty.
Given any a = (av)v∈S ∈ A, and any α ∈ 8, we let

|α(a)| =
∏
v∈S

|α(av)|v

where | · |v is the v-adic norm on Kv .
Given any t > 0 and any I ( 1 we let

A+I (t) = {a ∈ AI | |α(a)| ≥ t if α ∈ 1− I }

and we let A+I = A
+

I (1).
For t > 0, we let

RQ(t) = 3QU8(I)+MI (OS)A
+

I (t).

We call any such subset of G a parabolic region. We set RQ = RQ(1).

Boundaries of parabolic regions. We let ∂A+I (t) be the set of all a ∈ AI (t) such that
there exists α ∈ 1 − I with |α(a)| ≤ |α(b)| for all b ∈ AI (t). Then we define the
boundary of a parabolic region as

∂RQ(t) = 3QU8(I)+MI (OS)∂A
+

I (t).

3.2. Pruning G to G(OS)

Given 0 ≤ n < |1|, we let P(n) be the set of K-parabolic subgroups of G that are
conjugate over G(K) to some PI with |I | = n.

We will directly apply the following result from reduction theory to our proof of
Theorem 4.

Proposition 9. There exists a bounded set B0 ⊆ G, and given a bounded set Bn ⊆ G

and any Nn ≥ 0 for 0 ≤ n < |1|, there exists tn > 1 and a bounded set Bn+1 ⊆ G such
that

(i) G =
⋃

Q∈P(0) RQB0;
(ii) if Q,Q′ ∈ P(n) and Q 6= Q′, then the distance between RQ(tn)Bn and RQ′(tn)Bn is

at least Nn;
(iii) G(OS) ∩ RQ(tn)Bn = ∅ for all n;
(iv) if n ≤ |1| − 2 then (

⋃
Q∈P(n) RQBn) − (

⋃
Q∈P(n) RQ(2tn)Bn) is contained in⋃

Q∈P(n+1) RQBn+1;
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(v) (
⋃

Q∈P(|1|−1) RQB|1|−1) − (
⋃

Q∈P(|1|−1) RQ(2t|1|−1)B|1|−1) is contained in
G(OS)B|1|; and

(vi) if Q∈P(n), then there is an (L,C) quasi-isometry RQ(tn)Bn→U8(I)+MI (OS)A
+

I

for some I ( 1 with |I | = n. The quasi-isometry restricts to an (L,C) quasi-
isometry ∂RQ(tn)Bn → U8(I)+MI (OS)∂A

+

I where L ≥ 1 and C ≥ 0 are indepen-
dent of Q.

Proposition 9 can be deduced from the Borel–Harish-Chandra–Behr–Harder reduction
theory. The case when K is a number field can be deduced from work of Borel ([3] and
[2]) and the case when K is a function field can be shown using Harder’s work [12].

In the appendix (Section 8), we give a more unified proof of Proposition 9.

4. Filling spheres in solvable groups

In this section we will prove

Proposition 10. Let I ⊆ 1, 0 < n ≤ |S| − 2, and r > 0. There are m ∈ N and
r ′ > 0 such that if6 is an r-coarse n-sphere in U8(I)+AI (OS), then there is an r ′-coarse
(n+ 1)-ball in U8(I)+AI (OS) whose volume is O(vol(6)m) and whose boundary is 6.

Proposition 10 will be used to prove Proposition 17 in the next section. Our proof of
Proposition 10 is motivated by a proof of Gromov’s that certain solvable Lie groups have
simply connected asymptotic cones ([11, 2.B.f]).

4.1. Reducing to cells in slices

Before the next lemma, we need a couple of definitions.
Given a coarse manifold 6 that is the image under a function f of the vertices of a

triangulated manifold M , a coarse (polysimplicial) subdivision of 6 is an extension of f
to the vertices of a (polysimplicial) subdivision of M .

A k-slice in U8(I)+AI (OS) is a left coset of[∏
v∈S′

U8(I)+(Kv)
]
AI (OS)

for some S′ ⊆ S with |S′| = k.

Lemma 11. Given r > 0 and n ∈ N, there is some r ′ > 0 such that any coarse n-sphere
6 ⊆ U8(I)+AI (OS) of scale r can be subdivided into a coarse polysimplicial n-sphere
6′ of scale r ′ such that every coarse k-cell in 6′ is contained in a k-slice, and such that
vol(6′) = O(vol(6)).

Proof. Let

πv : U8(I)+AI (OS)→ U8(I)+(Kv) and πA : U8(I)+AI (OS)→ AI (OS)

be the obvious projection maps.
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Let σ ⊆ 6 be a k-simplex and let x1, . . . , xk+1 be its vertices. For each v ∈ S, we
form an abstract k-simplex with vertices πv(x1), . . . , πv(xk+1). Call this simplex Zσ,v .
Let Zσ,A be the abstract k-simplex with vertices πA(x1), . . . , πA(xk+1).

Let
Zσ =

(∏
v∈S

Zσ,v

)
× Zσ,A.

Notice that Zσ is a polysimplicial complex that is homeomorphic to a (|S| + 1)k-ball,
and that the number of cells in Zσ is bounded by a constant depending only on k and |S|.
There is also an obvious function from the vertices of Zσ into U8(I)+AI (OS), which we
will denote as h.

Because 6 has scale r , there is some r ′ > 0 depending only on r and n such that if u
and w are vertices in Zσ , then the distance between h(u) and h(w) is at most r ′. Thus, the
vertices of any k-cell in Zσ maps via h to a coarse k-cell in U8(I)+AI (OS) of diameter
at most r ′. Furthermore, any such coarse k-cell must be contained in a k-slice, since it
projects to a positive-dimensional simplex in at most k of the Zσ,v factors.

Vertices of 6 are clearly contained in 0-slices. Suppose σ ⊆ 6 is a coarse 1-simplex.
Its faces—that is, its endpoints—are represented by vertices in Zσ . Connect them to a
path σ̃ in the 1-skeleton of Zσ . Since the number of edges in Zσ is bounded, σ̃ consists
of a bounded number of edges. Map the vertices of σ̃ into U8(I)+AI (OS) via h, and we
have subdivided σ into a uniformly bounded number of coarse 1-polysimplices of scale r ′

such that each coarse 1-polysimplex is contained in a 1-slice.
We continue by induction.
Let σ now be a coarse k-simplex in 6. By induction hypothesis we may assume

that the faces of σ , named τ1, . . . , τk+1, have been subdivided into coarse (k − 1)-
polysimplices of scale r ′ that are contained in (k − 1)-slices.

The subdivided τi are represented by complexes τ̃i ⊆ Zτi . Since τi ⊆ σ , we have
Zτi ⊆ Zσ , and

⋃
i τ̃i ⊆ Zσ is the continuous image of a (k − 1)-sphere.

Because Zσ has a uniformly bounded number of polysimplices, there is a topological
k-ball σ̃ ⊆ Zσ whose boundary is

⋃
i τ̃i ⊆ Zσ and such that via h, the vertices of σ̃

represent a coarse polysimplicial k-ball of scale r ′ in U8(I)+AI (OS), whose volume is
bounded by a constant depending on n and |S|, and such that each coarse k-polysimplex
in the coarse ball is contained in a k-slice.

The result is a coarse polysimplicial subdivision of 6 all of whose coarse k-poly-
simplices are contained in k-slices. ut

4.2. The geometry of slices

The convenience of reducing the problem of filling spheres in U8(I)+AI (OS) to filling
spheres in k-slices of U8(I)+AI (OS) is that k-slices are negatively curved in some sense.
Our proof of Lemma 13 makes these remarks more precise, but first we will need

Lemma 12. If I ⊆ 1 and S′ is a proper subset of S, then the projection of AI (OS) into∏
v∈S′ AI (Kv) is a finite Hausdorff distance from

∏
v∈S′ AI (Kv).
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Proof. It suffices to prove the lemma when S′ = S − {w} for some w ∈ S.
Notice that the geometric dimension of AI (OS) equals (|S| − 1)(|1− I |) (by Dirich-

let’s units theorem), as does
∏
v∈S′ AI (Kv). So it suffices to check that the kernel of the

projection AI (OS)→
∏
v∈S′ AI (Kv) is bounded. But if a ∈ AI (OS) is trivial in AI (Kv)

for each v ∈ S′, then by the product formula, a has trivial norm in AI (Kw), and thus a is
bounded in AI . ut

Lemma 13. Let I ⊆ 1, let k < |S|, and let n, r ≥ 0. Then there is some r ′ > 0 such
that any coarse polysimplicial n-sphere 6 of scale r that is contained in a k-slice of
U8(I)+AI (OS) bounds a coarse polysimplicial (n+ 1)-ball, denotedD, which is of scale
r ′ and is contained in the same k-slice with vol(D) = O(diam(6)n+1

+vol(6)diam(6)).

Proof. After left translation, we may assume

1 ∈ 6 ⊆
∏
v∈S′

U8(I)+(Kv)AI (OS)

where |S′| = k.
Let L be the diameter of6, and choose u ∈

∏
v∈S′ U8(I)+(Kv) and a ∈ AI (OS) such

that ua ∈ 6. Then d(1, a) ≤ L and ‖u‖ = O(eL).
By the previous lemma, there is some b ∈ AI (OS) such that |α(b)|v < 1 for all

α ∈ 1− I and v ∈ S′. Therefore, |β(b)|v < 1 for all β ∈ 8(I)+ and v ∈ S′. The choice
of b depends on S′ and is independent of 6.

Notice that for N = O(L), d(abN , uabN ) = d(1, b−N (a−1ua)bN ) ≤ 1. Thus, we
may assume that 6bN is contained in AI (OS), which is quasi-isometric to Euclidean
space and thus there is an r-coarse polysimplicial ball D′ ⊆ AI (OS) whose volume is
O(Ln+1) and whose boundary is 6bN . Therefore, we can let

D = D′ ∪

N⋃
i=0

6bN . ut

Notice that the volume of a coarse 0 sphere equals 2, and if n > 0, then the diameter of an
r-coarse n-sphere is bounded by r(vol(6)). Thus from Lemma 13 we have the following
two corollaries.

Corollary 14. Let I ⊆ 1, let k < |S|. Then there is some r ′ > 0 such that if x and y
are any two points in a k-slice of U8(I)+AI (OS), then x and y are the endpoints of an
r ′-coarse path whose volume (or length) is O(d(x, y)).

Corollary 15. Let I ⊆ 1, and let k < |S|, and let n, r > 0. Then there is some
r ′ > 0 such that any coarse polysimplicial n-sphere of scale r contained in a k-slice
of U8(I)+AI (OS) bounds a coarse polysimplicial (n + 1)-ball of scale r ′ in the same
k-slice with vol(D) = O(vol(6)n+1).
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4.3. Filling spheres that are piecewise in slices

We use the negative curvature of k-slices to prove

Lemma 16. For r > 0 and n ≤ |S| − 2, there are m ∈ N and r ′ > 0 such that if
6 ⊆ U8(I)+AI (OS) is an r-coarse polysimplicial n-sphere all of whose coarse k-cells
are contained in k-slices (for all k ≤ n), then there is an r ′-coarse polysimplicial (n+1)-
ball D such that ∂D = 6 and vol(D) = O(vol(6)m).

Proof. We may assume that 1 ∈ 6.
Fix w ∈ S and let

π : U8(I)+AI (OS)→
[ ∏
v∈(S−w)

U8(I)+(Kv)
]
AI (OS)

be the obvious projection onto the (|S| − 1)-slice.
Let

D′ ⊆
∏

v∈S−w

U8(I)+(Kv)AI (OS)

be the coarse polysimplicial (n+ 1)-ball with ∂D′ = π(6) that is given by Corollary 15.
If x is a vertex in 6, then by Corollary 14 we can connect x to π(x) with a coarse

path of lengthO(vol(6)) contained in the 1-slice that is the coset of U8(I)+(Kw)AI (OS)

containing x and π(x). Call this path px .
Given a coarse 1-cell σ ⊆ 6 with endpoints x1 and x2, notice that

σ ∪ π(σ) ∪ px2 ∪ px1

is a coarse loop contained in a 2-slice, since σ is contained in a 1-slice. Therefore, by
Corollary 15 there is a coarse polysimplicial 2-disk Dσ contained in the 2-slice whose
volume is O(vol(6)2) and whose boundary is the loop above.

We continue by induction. If σ ⊆ 6 is a coarse k-cell with faces τ1, . . . , τm, then

σ ∪ π(σ) ∪

m⋃
i=1

Dτi

is a coarse polysimplicial k-sphere contained in a (k + 1)-slice. Since k ≤ n, we have
k + 1 ≤ |S| − 1, and thus by Corollary 15, there is a coarse polysimplicial (k + 1)-
diskDσ contained in the (k+1)-slice whose volume is polynomial in vol(6), and whose
boundary is the above coarse polysimplicial k-sphere.

Let C be the set of all n-cells in 6. Then

D = D′ ∪
⋃
σ∈C

Dσ

satisfies the lemma. ut
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Proof of Proposition 10. Subdivide 6 to 6′ using Lemma 11. Then 6′ bounds a coarse
polysimplicial ball D by Lemma 16.

Since the Hausdorff distance between 6 and 6′ is bounded, we may use D and the
quasi-isometry fromG to its associated product of symmetric spaces and Euclidean build-
ings to realize the desired coarse (n+ 1)-ball in U8(I)+AI (OS).

Proof of Theorem 6. The theorem follows immediately from Proposition 10. Indeed, we
may assume that Q = PI for some proper subset I ( 1. Thus, UQ = U8(I)+ , any K-
Levi subgroup of PI is conjugate over PI (K) to MIAI , and the maximal K-split torus
of the center of MIAI is AI . Furthermore, since U8(I)+ is unipotent, U8(I)+(OS) is a
cocompact lattice in, and thus is quasi-isometric to, U8(I)+ .

5. Filling manifolds in the boundaries of parabolic regions

For a proper subset I ( 1, we let A+I = A
+

I (1), RI = U8(I)+MI (OS)A
+

I , and ∂RI =
U8(I)+MI (OS)∂A

+

I .
In this section we use Proposition 10 to prove that a coarse manifold in the boundary

of a parabolic region has a polynomially efficient filling in the same boundary. The precise
statement is given as

Proposition 17. There is some m ∈ N, and given r > 0, there is some r ′ > 0 such that
the following holds:

If n ≤ |S| − 1 and 6 ⊆ RI is an r-coarse n-manifold whose volume and maximum
distance from 1 are bounded by d > 0, and whose boundary components are contained in
∂RI , then there is an r ′-coarse n-manifold 6′ ⊆ ∂RI of the same topological type as 6,
with ∂6′ = ∂6 and

vol(6′) = O(dm).

Proof. The quotient map
RI →MI (OS)A

+

I

is distance nonincreasing.
Choose a Lipschitz map A+I → ∂A+I that is the identity on ∂A+I . Because MI and AI

commute, MI (OS)A
+

I is a metric direct product, the induced map

MI (OS)A
+

I →MI (OS)∂A
+

I

is Lipschitz.
We define qI to be the composition

RI →MI (OS)A
+

I →MI (OS)∂A
+

I

so that qI is Lipschitz, and takes values in ∂RI .
Suppose xi ∈ ∂6. Then xi = uimiai for some ui ∈ U8(I)+ , mi ∈ MI (OS), and

ai ∈ ∂A
+

I .
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Given i, choose w ∈ S, and let uw ∈ U8(I)+(Kw) and u−w ∈
∏
v∈S−w U8(I)+(Kv)

be such that uwu−w = (miai)−1uimiai .
By Corollary 14, there is a course path fw ⊆ U8(I)+(Kw)AI (OS) of length O(d)

whose endpoints are 1 and uw. By the same corollary, there is a coarse path f−w ⊆[∏
v∈S−w U8(I)+(Kv)

]
AI (OS) of length O(d) whose endpoints are 1 and u−w. We let

fi ⊆ U8(I)+AI (OS) be the union of fw and uwf−w, so that fi is a coarse path from 1 to
(miai)

−1uimiai whose length is O(d).
Thus,

miaifi ⊆ miaiU8(I)+AI (OS) ⊆ U8(I)+miaiAI (OS) ⊆ U8(I)+mi∂A
+

I

⊆ U8(I)+MI (OS)∂A
+

I ⊆ ∂RI

is a path of length O(d) that connects miai = qI (xi) to uimiai = xi . We name this
path D(xi).

In the remainder of this proof, we will denote a coarse k-simplex in ∂6 by the (k+1)-
tuple of its vertices.

We claim that for any coarse simplex (x1, . . . , xk) in ∂6, there is a coarse k-disk
D(x1, . . . , xk) such that

(i) D(x1, . . . , xk) ⊆ miaiU8(I)+AI (OS)Bk for any 1 ≤ i ≤ k and some compact set
Bk ⊆ G of radius depending on k with 1 ∈ Bk .

(ii) ∂D(x1, . . . , xk) is the union

(x1, . . . , xk) ∪ qI (x1, . . . , xk) ∪

k⋃
i=1

D(x1, . . . , x̂i, . . . , xk)

where (x1, . . . , x̂i, . . . , xk) denotes the simplex obtained by removing the vertex xi
from the simplex (x1, . . . , xk).

(iii) The volume of D(x1, . . . , xk) is O(dm) for some m depending on k.

We prove our claim by induction on k. The case when k = 1 is resolved, so we assume
our claim is true for k and assume that (x1, . . . , xk+1) is a coarse simplex in ∂6.

Let s(x1, . . . , xk+1) be the union of (x1, . . . , xk+1), qI (x1, . . . , xk+1), and⋃k+1
i=1 D(x1, . . . , x̂i, . . . , xk+1). By the induction hypothesis, s(x1, . . . , xk+1) is a coarse

sphere of dimension k ≤ |S| − 2.
If B ⊆ G is the ball of radius r around 1, and 1≤ i, j≤k+ 1, then (miai)−1mjaj ∈B

by our assumption on the scale of 6.
Recall that mi, mj ∈ MI , so they commute with AI (OS) and normalize U8(I)+ , as

do ai and aj . Thus,

mjajU8(I)+AI (OS)Bk = miaiU8(I)+AI (OS)(miai)
−1mjajBk

⊆ miaiU8(I)+AI (OS)BBk.

Therefore, we let Bk+1 = BBk so that s(x1, . . . , xk+1) ⊆ miaiU8(I)+AI (OS)Bk+1 for
any 1 ≤ i ≤ k + 1.
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By Proposition 10, there is a coarse (k + 1)-ball in m1a1U8(I)+AI (OS)Bk+1 whose
boundary is s(x1, . . . , xk+1), and whose volume is bounded by a polynomial in the vol-
ume of s(x1, . . . , xk+1). We name this ball D(x1, . . . , xk+1). This justifies our claim.

Now let X be the union of D(x1, . . . , xn) taken over maximal simplices (x1, . . . , xn)

in ∂6. Then X is a coarse n-manifold in

MI (OS)(∂A
+

I )U8(I)+AI (OS)Bn ⊆ U8(I)+MI (OS)∂A
+

I Bn ⊆ ∂RIBn.

The volume of X is O(dm) for some m, and the boundary of X is ∂6 ∪ qI (∂6).
Notice that X establishes something like a “polynomial homotopy” between qI restricted
to ∂6 and the identity map restricted to ∂6.

We let 6′ be the image of qI (6)∪X under the obvious rough isometry RIBn→ RI .
ut

6. Proof of main result (Theorem 4)

Let B0 be as in Proposition 9 and let 6 ⊆ G =
⋃

Q∈P(0) RQB0 be a coarse n-manifold
of scale r0 with ∂6 ⊆ G(OS) and n < |S|.

We relabel 6 as 60, and we let N0 = 2r0. Then let B1 and t0 be as in Proposition 9.
For Q ∈ P(0), we define the coarse manifolds

60,Q = 60 ∩ RQ(t0)B0 and 60,∂ = 60 −
⋃

Q∈P(0)
60,Q.

Notice that 60,Q ∩60,Q′ = ∅ if Q 6= Q′ by Proposition 9(ii).
For each Q ∈ P(0) we may perturb the points in 60,Q by distance at most r0 such

that ∂60,Q ⊆ ∂RQ(t0)B0, the latter set being quasi-isometric (with constants independent
of Q) to ∂R∅ by Proposition 9(vi).

By Proposition 17, there is some r1 > 0 (that depends on the constants of the above
quasi-isometry) and a coarse manifold 6′0,Q ⊆ ∂RQ(t0)B0 of scale r1 for each Q ∈ P(0)
such that the coarse manifold

61 = 60,∂ ∪
⋃

Q∈P(0)
6′0,Q

is of scale r1, of the same topological type as 60, and its volume is O(vol(6)k) for
some k.

Also note that by Proposition 9(iv),

61 ⊆
( ⋃

Q∈P(0)
RQB0

)
−

( ⋃
Q∈P(0)

RQ(2t0)B0

)
⊆

⋃
Q∈P(1)

RQB1.

Furthermore, since G(OS) ∩ RQ(t0)B0 = ∅ by Proposition 9(iii), we have ∂60 = ∂61.
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Repeat this argument with 1 ≤ n < |1| − 1 in place of 0 above. The result is a coarse
manifold 6|1| of scale r|1| (for some r|1| > 0); of the same topological type as 60; with
∂6|1| = ∂60; of volume O(vol(6)k) for some k; and contained in

( ⋃
Q∈P(|1|−1)

RQB|1|−1

)
−

( ⋃
Q∈P(|1|−1)

RQ(2t|1|−1)B|1|−1

)

and hence in G(OS)B|1| by Proposition 9(v).
As G(OS)B|1| is a finite Hausdorff distance from G(OS), our proof is complete.

7. Isoperimetric inequalities

In this section, we prove that our main result implies Corollary 5. That is, we show that
G(OS) satisfies a polynomial m-dimensional isoperimetric inequality when m ≤ |S| − 2.

Let X be an (|S| − 2)-connected CW-complex that G(OS) acts on, cellularly, freely,
properly, and cocompactly. Choose a basepoint x ∈ X and let φ : G(OS)→ G(OS) ·x be
the orbit map. It is a bijective quasi-isometry where G(OS) is endowed with the restriction
of the left-invariant metric on G(OS), and G(OS) · x is endowed with the restriction of
the path metric on X.

Let 6 ⊆ X be a cellular m-sphere for m ≤ |S| − 2. Every point in 6 is a uniformly
bounded distance from a point in the orbit G(OS) ·x. Thus, there exists some r0 > 0 such
that after perturbing 6 by a uniformly bounded amount, the Hausdorff distance between
6 and 6 ∩G(OS) · x is uniformly bounded and 6 ∩G(OS) · x is an r0-coarse m-sphere.

Therefore, φ−1(6 ∩ G(OS) · x) is an r1-coarse m-sphere in G(OS) for some r1 > 0
that depends only on r0 and the quasi-isometry constants of φ.

Since G is quasi-isometric to a CAT(0) space, there is an r1-coarse (m + 1)-disk
D ⊆ G with ∂D = φ−1(6 ∩G(OS) · x) and vol(D) = O(vol(6)(m+1)/m).

By Theorem 4, there is some r2 > 0 and a polynomial f such that there exists an
r2-coarse (m + 1)-disk D′ ⊆ G(OS) with ∂D′ = φ−1(6 ∩ G(OS) · x) and vol(D′) =
f (vol(6)(m+1)/m).

There is some r3 > 0 depending only on r2 and on the quasi-isometry constants of φ
such that φ(D′) ⊆ X is an r3-coarse (m + 1)-disk with boundary 6 ∩ G(OS) · x and
vol(φ(D′)) = vol(D′).

Starting with the 0-skeleton given by φ(D′), we connect adjacent vertices in the coarse
manifold φ(D′)with 1-cells. If the two adjacent points are contained in6∩G(OS)·x, then
we use the 1-cell that connects them in 6. We continue by the dimension of the skeleton
to define a topological (m + 1)-ball D′′ ⊆ X that is a uniformly bounded Hausdorff
distance from φ(D′), whose boundary is 6, and that contains O(vol(D′)) many cells.
This proves Corollary 5.

Notice that if f were a linear polynomial, the proof above establishes a Euclidean
isoperimetric inequality, and thus that Conjecture 2 implies Conjecture 3.
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8. Appendix: Reduction theory and a proof of Proposition 9

In this section we provide a proof of Proposition 9.
Throughout this section, F will be the set given in Theorem 8. We will also make use

of the notation introduced in Section 1.
We begin with the main result from reduction theory:

Theorem 18. There is a bounded set B ⊆ G such that

G(OS)FUMA
+

∅
B = G.

Proof. Springer [17, 2.1F] provides an adelic version of this theorem. See Godement [10,
Theorem 11] for the proof that the adelic version implies this theorem using Theorem 8.
([10, Theorem 11] is stated for number fields, but the proof works for an arbitrary global
field.) ut

8.1. Root choice

We will need to make use of a carefully chosen positive root. We explain that choice
below along with some related notation.

Given w ∈ W and α ∈ 8, we let αw ∈ 8 be defined by αw(a) = α(w−1aw). Then
we define 1w = {αw | α ∈ 1}, and we let (8w)+ and (8w)− be the sets of positive and
negative roots respectively with respect to the simple roots 1w.

The sets of roots 8+, (8w)+, and (8w)− are closed under addition, so 8+ ∩ (8w)+

and 8+ ∩ (8w)− are as well. Hence, there are corresponding unipotent subgroups
U8+∩(8w)+ ,U8+∩(8w)− ≤ U8+ that we label as Uw,+ and Uw,− respectively. They are
each normalized by MA ≤ ZG(A) (see e.g. [3, 21.9(ii)]).

In the case w 6= 1, we have 8+ ∩ (8w)− 6= ∅, and the next lemma determines a
choice of a root τJ,I,w ∈ 8+ ∩ (8w)− that has some properties we will need later in this
section. As an example of the following lemma, if w represents the longest element of the
Weyl group then 8+ ∩ (8w)− = 8+ and τJ,I,w is the highest root with respect to 8+.

Lemma 19. Suppose I, J ( 1, that w ∈ W , and w /∈ PJ (K). Then there is some
τJ,I,w ∈ 8

+
∩ (8w)− such that

(i) if α ∈ 8+ ∩ (8w)− then α + τJ,I,w /∈ 8;
(ii) if a ∈ A+I (1) then |τJ,I,w(a)| ≥ 1; and

(iii) for any r > 0 there is some t > 1 such that a ∈ wA+J (t) implies |τJ,I,w(a)| < r .

Proof. Let 6 be the apartment of the spherical building for G(K) that corresponds to A.
Let CP,CwP,CwPJ ⊆ 6 be the simplices corresponding to P, wP, and wPJ respectively.

We write1 as {α1, . . . , αn}, and for each j , let Hj ⊆ 6 be the simplicial hemisphere
corresponding to αj .

Either CwPJ * Hj for some j , or else CwPJ ⊆
⋂n
j=1 Hj = CP, which implies through

the type preserving action of the Weyl group on 6 that wPJ = PJ and thus w ∈ PJ (K).
By the hypotheses of the lemma, we proceed under the assumption that there is some j

such that CwPJ * Hj . Then clearly CwP * Hj , so that αj ∈ 8+ ∩ (8w)−.
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Let 1w = {β1, . . . , βn} and choose the ordering on the roots such that Jw =
{β1, . . . , β|J |}. Because αj ∈ (8w)−, we have αj =

∑
i m0,iβi where m0,i ≤ 0 for

all i.
Choose a root τ1 ∈ 8

+
∩ (8w)− such that τ1 =

∑
i m1,iβi where m1,i ≤ m0,i for all

i and the coefficient m1,1 is minimal possible.
Then choose a root τ2 ∈ 8

+
∩(8w)− such that τ2 =

∑
i m2,iβi wherem2,i ≤ m1,i ≤

m0,i for all i and m2,2 is minimal. (Notice of course that m2,1 = m1,1 for any choice of
τ2 by our choice of τ1.)

Continue in this manner until obtaining a root τn ∈ 8+ ∩ (8w)− such that τn =∑
i mn,iβi wheremn,i ≤ mn−1,i ≤ · · · ≤ m0,i ≤ 0 for all i and such that if there is a root∑
i miβi ∈ 8

+
∩ (8w)− with mi ≤ mn,i for all i, then

∑
i miβi = τn.

We rename τn as τJ,I,w. If α ∈ 8+ ∩ (8w)−, then α + τJ,I,w /∈ 8+ ∩ (8w)− by
the previous paragraph. But 8+ ∩ (8w)− is closed under addition, so it must be that
α + τJ,I,w /∈ 8. This is part (i) of the lemma.

Part (ii) follows from τJ,I,w ∈ 8
+.

For part (iii), notice that CwPJ * Hj implies that αj /∈ [Jw]. Therefore τJ,I,w /∈ [Jw],
and in particular, mn,k < 0 for some k > |J |.

Let a ∈ wA+J (t) where t > 1. Then |βi(a)| = 1 if i ≤ |J | and |βi(a)| ≥ t for all
i > |J |. Therefore |βi(a)|mn,i ≤ 1 for all i (since mn,i ≤ 0) , and

|τJ,I,w(a)| =
∏
v∈S

|τJ,I,w(av)|v =
∏
v∈S

∣∣∣∑
i

mn,iβi(av)

∣∣∣
v
=

∏
v∈S

∏
i

(|βi(av)|v)
mn,i

=

∏
i

|βi(a)|
mn,i ≤ |βk(a)|

mn,k ≤ tmn,k . ut

8.2. Proximity to integer points

Our proof will rely on identifying certain points in G that are close to points in G(OS)

(Lemma 21 below), identifying certain points in G that are far from points in G(OS)

(Lemma 23 below), and then contrasting these two identifications.

Lemma 20. Suppose X ⊆ G(K) is a finite set. Then there is a finite set B ⊆ G such that
XG(OS) ⊆ G(OS)B.

Proof. For x ∈ X, we let 0x = G(OS) ∩ xG(OS)x
−1. Since x ∈ G(K), there is a finite

set {y1, . . . , yk} of right coset representatives for 0x in xG(OS)x
−1.

Thus, xG(OS) = xG(OS)x
−1x =

⋃
i 0xyix ⊆ G(OS){y1, . . . , yk}x. ut

As a consequence of the previous lemma we have

Lemma 21. There is some C > 0 such that any point in

G(OS)F
−1G(OS)FG(OS)UMW

−1

is within distance C of a point in G(OS).
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Proof. Since U is unipotent and M isK-anisotropic, it follows that there is some compact
set B ⊆ UM such that (UM)(OS)B = UM . Thus, G(OS)F

−1G(OS)FG(OS)UMW
−1

is contained in G(OS)F
−1G(OS)FG(OS)BW

−1 and the lemma follows from the previ-
ous lemma. ut

For τ ∈ 8 let Aτ be the kernel of τ in A. Let

A(τ, t) = {a ∈ A | |τ(a)| ≥ t}

and fix aτ ∈ A such that |τ(aτ )| > 1.

Lemma 22. There is some C > 0 such that for any k0 ∈ N, there is some t0 > 1 such
that the Hausdorff distance between

⋃
k≥k0

A(OS)Aτ (aτ )
k and A(τ, t0) is at most C.

Proof. Since OS ⊆ Kw is bounded if w /∈ S, we see that A(OS) ≤ A(Kw) is bounded.
Hence the image of A(OS) under the map g 7→ |τ(g)|w is bounded and therefore is
trivial.

For any x ∈ K , the product of |x|v over all valuations v of K equals 1, so it follows
that |τ(a)| = 1 for any a ∈ A(OS).

Notice also that |τ(a)| = 1 for any a ∈ Aτ , so A(OS)Aτ ⊆ A(τ, 1) ∩ A(−τ, 1)
and the lemma will follow for t0 = |τ((aτ )k0)| if we establish that A(OS)Aτ is a finite
Hausdorff distance from A(τ, 1) ∩ A(−τ, 1). This essentially follows from a dimension
count. (By dimension, we mean the dimension of a quasi-isometric Euclidean space.)

The group Aτ is quasi-isometric to Euclidean space of dimension |S|(rankK(A)− 1).
Dirichlet’s units theorem shows that the dimension of A(OS) equals (|S| − 1)rankK(A)
and that the dimension of Aτ (OS) equals (|S| − 1)(rankK(A)− 1).

Since A(OS) ∩ Aτ = Aτ (OS), it follows that the dimension of A(OS)Aτ equals

(|S| − 1)rankK(A)+ |S|(rankK(A)− 1)− (|S| − 1)(rankK(A)− 1).

The above number is |S|rankK(A) − 1, which is the dimension of A(τ, 1) ∩ A(−τ, 1).
Therefore, A(OS)Aτ is a finite Hausdorff distance fromA(τ, 1)∩A(−τ, 1), which proves
the lemma. ut

We will use the previous lemma to establish the following

Lemma 23. Suppose I, J ( 1, w ∈ W , and w /∈ PJ (K). Then for any C > 0, there
exists some t > 1 such that any g ∈ Uw,−MA(τJ,I,w, t) is at distance at least C from
G(OS).

Proof. Choose γ ∈ U(τJ,I,w)(OS) with γ 6= 1.
For k ∈ N, let

Ok = {u ∈ U(τJ,I,w) | d(u, 1) ≤ 1/k} and Fk = {g ∈ G | g
−1γg ∈ Ok}

so that Fk+1 ⊆ Fk .
For k sufficiently large,Ok ∩G(OS) = 1, which implies Fk ∩G(OS) = ∅, and in fact

limk→∞ d(Fk,G(OS)) = ∞. Let m be such that the distance between Fm and G(OS) is
sufficiently large.
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Note that limk(aτJ,I,w )
−kγ (aτJ,I,w )

k
= 1, so there is some k0 ∈ N such that (aτJ,I,w )

k

∈ Fm if k ≥ k0.
Let α ∈ 8+ ∩ (8w)−. By Lemma 19(i), commutators of elements in U(α) with el-

ements in U(τJ,I,w) are contained in U(α+τJ,I,w) = 1. That is, the group Uw,− commutes
with U(τJ,I,w), and in particular, with γ .

Notice that AτJ,I,w also commutes with γ ∈ U(τJ,I,w). Therefore, if g ∈ Uw,−AτJ,I,w
and k ≥ k0, then

(aτJ,I,w )
−kg−1γg(aτJ,I,w )

k
= (aτJ,I,w )

−kγ (aτJ,I,w )
k
∈ Om

so g(aτJ,I,w )
k
∈ Fm.

The distance between G(OS) and λFn for any λ ∈ G(OS) equals the distance between
Fn and λ−1G(OS) = G(OS). Therefore, the union over k ≥ k0 of the sets

Uw,−M(OS)A(OS)AτJ,I,w (aτJ,I,w )
k
=M(OS)A(OS)Uw,−AτJ,I,w (aτJ,I,w )

k

is a sufficiently large distance from G(OS).
Using Lemma 22, we find that for some t > 1 there is a sufficiently large distance

between G(OS) and Uw,−M(OS)A(τJ,I,w, t), and thus a sufficiently large distance be-
tween G(OS) and Uw,−M(OS)A(τJ,I,w, t)B where B is a given compact set. Precisely,
since M is K-anisotropic, we choose B ⊆ M to be a compact fundamental domain for
M(OS). Our lemma follows since elements of B commute with those in A. ut

Notice that in the above proof, the properties of τJ,I,w are used to find an integral unipo-
tent element (γ ) that commutes with the unipotent group Uw,−. Thus, if Uw,− were re-
placed with the trivial group in the above lemma, we would be free to apply the resulting
statement to any root τ ∈ 8. That is, the proof of the preceding lemma simplifies to prove
the following

Lemma 24. Suppose τ ∈ 8. Then for any C > 0, there exists some t > 1 such that any
g ∈ A(τ, t) is at distance at least C from G(OS).

As an immediate consequence of Lemma 23 we have the following

Lemma 25. Suppose I, J ( 1, that w ∈ W , and w /∈ PJ (K). For any bounded set B
⊆ G, there is some s > 1 such that the sets UMA(τJ,I,w, 1)B and wUMA(−τJ,I,w, s)B

are disjoint.

Proof. Recall that MA normalizes U and wU , elements of A commute with elements
in M , and the inverse of an element in A(−τJ,I,w, s) is contained in A(τJ,I,w, s).

Thus, we can multiply given elements from each of the sets in question on the left
by inverses of elements in wUMA(−τJ,I,w, s), and on the right by inverses of elements
in B, to see that the lemma follows from showing that the sets wUUMA(τJ,I,w, s) and
BB−1 are disjoint for some s > 1.

Recall that Uw,+, Uw,− ≤ U , Uw,+Uw,− = U , and Uw,+ ≤ wU . Thus, wUU =
wUUw,+Uw,− =

wUUw,−, and after multiplying on the left by the inverses of elements
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in wU , we are left to prove that the sets Uw,−MA(τJ,I,w, s) and wUBB−1 are disjoint
for some s > 1.

But wU is a unipotent K-group, so there is some compact set Bw ⊆ wU such
that wU = (wU)(OS)Bw. Thus, we need to show that the sets Uw,−MA(τJ,I,w, s) and
(wU)(OS)(BwBB

−1) are disjoint for some s > 1. This follows from Lemma 23. ut

8.3. Disjointness of distinct parabolic regions

The goal of this subsection is to prove Lemma 32, which will quickly imply that distinct
parabolic regions are—after removing a neighborhood of their boundaries—disjoint.

Given γ1, γ2, γ3 ∈ G(OS) and f1, f2 ∈ F , let p2wp1 ∈ P(K)WP(K) be such that
γ−1

3 f−1
2 γ2f1γ1 = p2wp1. Let pi = uimiai for ui ∈ U(K),mi ∈M(K), and ai ∈ A(K).

Given γ−1
3 f−1

2 γ2f1γ1, our choice of group elements p2, w, p1, u2, m2, a2, u1, m1,
and a1 will be fixed for Lemmas 26 and 27.

Lemma 26. Suppose I, J ( 1, w ∈ W , and w /∈ PJ (K). Suppose s > 0 is given. Then
there is some t > 1 (independent of γ−1

3 f−1
2 γ2f1γ1) such that

a2wa1A
+

J (t)w
−1
⊆ A(−τJ,I,w, s).

Proof. Let u2 = u−2 (u
+

2 )
−1 where u−2 ∈ Uw,− and u+2 ∈ Uw,+. Since MA normalizes

Uw,+ we have
a−1

2 m−1
2 u+2 ∈ Uw,+ ≤ U(8w)+ .

Notice that if α ∈ 8 and v ∈ U(α), then w−1
v ∈ U

(αw
−1
)
. Therefore

(m2a2w)
−1
u+2 =

w−1
(a
−1
2 m−1

2 u+2 ) ∈ U8+ = U.

It follows that
(u1m1)

−1
[
(m2a2w)

−1
u+2 ] ∈ UM

and thus
a−1

1 [(u1m1)
−1
[
(m2a2w)

−1
u+2 ]] ∈ UM

since A normalizes UM .
By Lemma 21, the following point is a bounded distance from G(OS):

γ−1
3 f−1

2 γ2f1γ1
a−1

1 [(u1m1)
−1(m2a2w)

−1

u+2 ]w
−1

= p2wp1
a−1

1 [(u1m1)
−1
[
(m2a2w)

−1
u+2 ]]w

−1

= u2m2a2wu1m1a1
a−1

1 [(u1m1)
−1
[
(m2a2w)

−1
u+2 ]]w

−1

= u2m2a2w(u1m1)(u1m1)
−1
[
(m2a2w)

−1
u+2 ]a1w

−1

= u2m2a2w
(m2a2w)

−1
u+2 a1w

−1
= u2u

+

2 m2a2wa1w
−1
= (u−2 m2)a2wa1w

−1.
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By Lemma 23, there is some r > 1 that is independent of a2(wa1w
−1) ∈ A and such

that |τJ,I,w(a2wa1w
−1)| < r .

By Lemma 19(iii) there is some t > 1 such that |τJ,I,w(a)| < 1/sr for any a ∈
wA+J (t).

Therefore,

|τJ,I,w(a2wa1w
−1a)| = |τJ,I,w(a2wa1w

−1)||τJ,I,w(a)| < 1/s

and thus |−τJ,I,w(a2wa1w
−1a)| > s. ut

Lemma 27. Suppose I, J ( 1. For any bounded set B ⊆ G there is some t > 1 (in-
dependent of γ−1

3 f−1
2 γ2f1γ1) such that if γ−1

3 f−1
2 γ2f1γ1 ∈ G(OS)F

−1G(OS)FG(OS)

is not contained in PJ (K), then the sets γ−1
3 f−1

2 γ2f1γ1UMA
+

J (t)B and UMA+I (t)B
are disjoint.

Proof. If γ−1
3 f−1

2 γ2f1γ1 is not contained in PJ (K) then w /∈ PJ (K).
The groupA commutes withM and it normalizesU and wU . The groupM normalizes

U and wM = M . Thus,

γ−1
3 f−1

2 γ2f1γ1UMA
+

J (t)B = p2wp1UMA
+

J (t)B = p2wUMa1A
+

J (t)B

= p2
wUMwa1A

+

J (t)B = u2
wUMa2wa1A

+

J (t)B.

By Lemma 25, there is some s > 1 such that UMA(τJ,I,w, 1)[B ∪ wB] is disjoint
from wUMA(−τJ,I,w, s)[B ∪ wB].

By Lemma 19, A+I (1) ⊆ A(τJ,I,w, 1). By Lemma 26, there is some t > 1 such
that a2wa1A

+

J (t)w
−1
⊆ A(−τJ,I,w, s). Therefore, u−1

2 UMA+I (1)B is disjoint from
wUMa2wa1A

+

J (t)B, which proves the lemma. ut

Lemma 28. Suppose I, J ( 1 with |I | = |J | and I 6= J . For any bounded
set B ⊆ G there is some t > 1 (independent of γ−1

3 f−1
2 γ2f1γ1) such that if

γ−1
3 f−1

2 γ2f1γ1 ∈ G(OS)F
−1G(OS)FG(OS) is contained in PJ (K) and PI (K), then

the sets γ−1
3 f−1

2 γ2f1γ1A
+

J (t)B and A+I (t)B are disjoint.

Proof. We let p = γ−1
3 f−1

2 γ2f1γ1 Notice that p ∈ PI∩J (K) so that p = uma where
u ∈ U8(I∩J )+ , m ∈ MI∩J , and a ∈ AI∩J .

Elements of AI ≤ AI∩J commute withma, and they normalize U8(I∩J )+ . Therefore,
A+I (t)

−1p ⊆ U8(I∩J )+pA
+

I (t)
−1. Hence,

A+I (t)
−1pA+J (t)B ⊆ U8(I∩J )+pA

+

I (t)
−1A+J (t)B

and the lemma will follow if we show that p−1U8(I∩J )+BB
−1 is disjoint from

A+I (t)
−1A+J (t).

Since U8(I∩J )+ is a unipotentK-group, there is some compact set BI∩J ⊆ U8(I∩J )+
such that U8(I∩J )+(OS)BI∩J = U8(I∩J )+ . Therefore, p−1U8(I∩J )+BB

−1 is contained
in

G(OS)FG(OS)F
−1G(OS)U8(I∩J )+(OS)BI∩JBB

−1

and thus is contained in a metric neighborhood of G(OS) by Lemma 21.
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The set [I ] ∩ 8(J )+ is nonempty since J does not contain I , and we choose τ ∈
[I ]∩8(J )+. ThusA+I (t)

−1A+J (t) ⊆ A(τ, t) and the lemma follows from Lemma 24. ut

Lemma 29. Suppose I, J ( 1 with |I | = |J |. Let B ⊆ G be a bounded set. There is a
t > 1 such that if f−1

2 γ2f1 ∈ F
−1G(OS)F and either f−1

2 γ2f1 /∈ PJ (K), f−1
2 γ2f1 /∈

PI (K), or J 6= I , then the sets f−1
2 γ2f1PJ (OS)A

+

J (t)B and PI (OS)A
+

I (t)B are disjoint.

Proof. By the previous two lemmas there is some t > 1 such that for any γ3 ∈ PI (OS)

and γ1 ∈ PJ (OS) we have that γ−1
3 f−1

2 γ2f1γ1A
+

J (t)B is disjoint from A+I (t)B as long
as either γ−1

3 f−1
2 γ2f1γ1 /∈ PJ (K), γ−1

1 f−1
1 γ−1

2 f2γ3 /∈ PI (K), or I 6= J .
If I = J and γ−1

3 f−1
2 γ2f1γ1 ∈ PJ (K), then f−1

2 γ2f1 ∈ γ3PJ (K)γ−1
1 = PJ (K).

If I = J and γ−1
1 f−1

1 γ−1
2 f2γ3 ∈ PI (K), then f−1

1 γ−1
2 f2 ∈ γ1PI (K)γ−1

3 = PI (K),
and hence f−1

2 γ2f1 ∈ PI (K). ut

At this point, we have done most of the work that was required in this subsection. The
next three lemmas provide some cosmetic reformulation of what we have done.

We let A↑I (t) = {a ∈ AI | |α(a)|v ≥ t if α ∈ 1− I and v ∈ S}.

Lemma 30. For I ( 1 there is some bounded set BA,I ⊆ AI containing 1 such that for
any t > 1, A+I (t) ⊆ AI (OS)A

↑

I (
|S|
√
t)BA,I .

Proof. If |S| = 1, then A↑I (t) = A
+

I (t) and the lemma follows.
If |S| > 1, then let a ∈ A+I (t) and choose w ∈ S such that |α(a)|w ≥ |α(a)|v for

v ∈ S − {w}.
By Lemma 12, there is some a0 ∈ AI (OS) such that |α(a0a)|v ≥

|S|
√
t for all v ∈

S − {w} and the distance between |α(a0a)|w and |S|
√
t is uniformly bounded. Thus, there

is some bounded ab ∈ AI such that a0aab ∈ A
↑

I (
|S|
√
t). Hence, a ∈ a−1

0 A
↑

I (
|S|
√
t)a−1

b . ut

For c > 0 we let BI (c) = {u ∈ U8(I)+ | ‖u‖ ≤ c}. Note that BI (c) is compact,
and since U8(I)+ is unipotent, there is some c0 such that U8(I)+(OS)BI (c0) = U8(I)+ .
We let BI = BI (c0). Notice that if a ∈ A↑I (1) and b ∈ BI then a−1ba ∈ BI so that
BIA

↑

I (t) ⊆ A
↑

I (t)BI when t > 1.

Lemma 31. Given I ( 1 there is some bounded set B ⊆ G such that if t > 1 then

U8(I)+MI (OS)A
+

I (t) ⊆ PI (OS)A
↑

J (
|S|
√
t)B.

Proof. Because U8(I)+ is normalized by MI (OS) ≤ MI and AI (OS) ≤ AI , Lemma 30
yields the following inclusions of sets:

U8(I)+MI (OS)A
+

I (t) ⊆ U8(I)+MI (OS)AI (OS)A
↑

I (
|S|
√
t)BA,I

=MI (OS)AI (OS)U8(I)+A
↑

I (
|S|
√
t)BA,I

=MI (OS)AI (OS)U8(I)+(OS)BIA
↑

I (
|S|
√
t)BA,I

⊆ PI (OS)A
↑

I (
|S|
√
t)BIBA,I . ut

And now we have the lemma that this subsection was devoted to:
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Lemma 32. Let I, J ( 1 with |I | = |J |. Let B ⊆ G be a bounded set. There is a t > 1
such that if f−1

2 γ2f1 ∈ F
−1G(OS)F and either f−1

2 γ2f1 /∈ PJ (K), f−1
2 γ2f1 /∈ PI (K),

or J 6= I , then the sets f−1
2 γ2f1U8(J )+MJ (OS)A

+

J (t)B and U8(I)+MI (OS)A
+

I (t)B

are disjoint.

Proof. As A↑J (
|S|
√
t) is contained in A+J (t), the proof is a straightforward combination of

Lemmas 29 and 31. ut

8.4. Coarse stabilization of parabolic regions under parabolic translations

In the next lemma we will prove that translating the parabolic region associated to PJ
by elements of PJ (K) ∩ F−1G(OS)F stabilizes the parabolic region up to a bounded
Hausdorff distance.

Lemma 33. Let J ( 1. There is a bounded set B ⊆ G such that if t > 1 and f−1
2 γf1 ∈

F−1G(OS)F with f−1
2 γf1 ∈ PJ (K), then the set f−1

2 γf1U8(J )+MJ (OS)A
+

J (t) is con-
tained in U8(J )+MJ (OS)A

+

J (t)B.

Proof. Notice that f
−1
2 γf1PJ = PJ and hence γf1 PJ = f2PJ .

Let γ0 be a fixed element of G(OS) with f−1
2 γ0f1 ∈ PJ (K). Then γ0f1PJ = f2PJ ,

and by letting λ = γ γ−1
0 we have

λf2PJ = λγ0f1PJ = γf1PJ = f2PJ ,

which implies that λ ∈ (f2PJ )(OS).
Let 31 ⊆ PJ (OS) be a finite index subgroup such that (γ0f1)31(γ0f1)

−1 is con-
tained in (γ0f1PJ )(OS) and let g1, . . . , gm be a set of right coset representatives for31 in
PJ (OS).

Let 32 ⊆ (
f2PJ )(OS) be a finite index subgroup such that f−1

2 32f2 is contained in
PJ (OS) and let h1, . . . , h` be a set of right coset representatives for 32 in (f2PJ )(OS).

Each gi is in PJ (K), γ0f1PJ = f2PJ , and hj ∈ (f2PJ )(K) for all j . Therefore,
f−1

2 hj (γ0f1)gi normalizes, and hence is contained in, PJ (K). We choose a bounded set
B ′ ⊆ PJ such that ⋃

i,j

f−1
2 hj (γ0f1)gi ⊆ B

′.

As in the comments preceding Lemma 31, we may assume that

B ′A
↑

J (
|S|
√
t) ⊆ A

↑

J (
|S|
√
t)B ′.
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We have the following inclusions of sets:

f−1
2 γf1PJ (OS)A

↑

J (
|S|
√
t) = f−1

2 λ(γ0f1)PJ (OS)A
↑

J (
|S|
√
t)

=

⋃
i

f−1
2 λ(γ0f1)31giA

↑

J (
|S|
√
t) =

⋃
i

f−1
2 λ(γ0f1)31(γ0f1)

−1(γ0f1)giA
↑

J (
|S|
√
t)

⊆

⋃
i

f−1
2 λ(γ0f1PJ )(OS)(γ0f1)giA

↑

J (
|S|
√
t) =

⋃
i

f−1
2 λ(f2PJ )(OS)(γ0f1)giA

↑

J (
|S|
√
t)

=

⋃
i

f−1
2 (f2PJ )(OS)(γ0f1)giA

↑

J (
|S|
√
t) =

⋃
i,j

f−1
2 32hj (γ0f1)giA

↑

J (
|S|
√
t)

=

⋃
i,j

f−1
2 32f2f

−1
2 hj (γ0f1)giA

↑

J (
|S|
√
t) =

⋃
i,j

PJ (OS)f
−1
2 hj (γ0f1)giA

↑

J (
|S|
√
t)

⊆ PJ (OS)B
′A
↑

J (
|S|
√
t) ⊆ PJ (OS)A

↑

J (
|S|
√
t)B ′.

Let B be as in Lemma 31. Then

f−1
2 γf1U8(J )+MJ (OS)A

+

J (t) ⊆ f
−1
2 γf1PI (OS)A

↑

I (
|S|
√
t)B ⊆ PJ (OS)A

↑

J (
|S|
√
t)B ′B

⊆ U8(J )+MJ (OS)A
+

J (t)B
′B. ut

Proof of Proposition 9. For part (i), notice that M is K-anisotropic. Therefore there is a
bounded set BM ⊆ M such that M = M(OS)BM . If B is as in Theorem 18, then we let
B0 = BMB. Thus,

G(OS)FUM(OS)A
+

∅
B0 = G(OS)FUM(OS)A

+

∅
BMB = G(OS)FUM(OS)BMA

+

∅
B

= G(OS)FUMA
+

∅
B = G.

For (ii), suppose Bn and Nn are given. Let Q = γ1f1PJ and Q′ = γ2f2PI . Assume that
Q 6= Q′ and |I | = |J | = n.

Let γf ∈ 3Q. If t > 1, then Lemma 33 shows that there is some bounded set B ⊆ G
such that γfU8(J )+MJ (OS)A

+

J (t)Bn is contained in γ1f1U8(J )+MJ (OS)A
+

J (t)BBn.
Therefore, RQ(t)Bn is contained in γ1f1U8(J )+MJ (OS)A

+

J (t)BBn.
Similarly, RQ′(t)Bn is contained in γ2f2U8(I)+MI (OS)A

+

I (t)BBn.

If f−1
2 γ−1

2 γ1f1 ∈ PJ (K) and I = J then f−1
2 γ−1

2 γ1f1PJ = PI , which contra-
dicts that Q 6= Q′. Thus, we can apply Lemma 32 to find some tn > 1 such that
f−1

2 γ−1
2 RQ(tn)BnBN is disjoint from f−1

2 γ−1
2 RQ′(tn)BnBN where BN is a neighbor-

hood of 1 ∈ G of radius Nn.
For (iii), notice in the above that we could choose tn to be arbitrarily large.
Let w ∈ W represent the longest element of the Weyl group so that τJ,I,w is the

highest root with respect to 8+ and Uw,− = U . Then by Lemma 23, there is some
tn > 1 such thatU8(I)+A(τJ,I,w, tn) is arbitrarily far from G(OS). Hence,U8(I)+A

+

I (tn),
and thus MI (OS)U8(I)+A

+

I (tn), is arbitrarily far from G(OS). Then by Lemma 20,
U8(I)+MI (OS)A

+

I (tn) is arbitrarily far from F−1G(OS)G(OS), which proves this part
of the proposition.
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For (iv) and (v), let I ( 1. Let γ ∈ G(OS), f ∈ F , u ∈ U8(I)+ , m ∈ MI (OS),
a ∈ A+I , and b ∈ Bn. Furthermore, assume that |α(a)| < 2tn for some α ∈ 1 − I . Let
J = I ∪ α.

There is a bounded neighborhood of the identity BI,α ⊆ A depending on 2tn such that
a ∈ A+J BI,α . Thus,

γf umab ∈ γfU8(I)+MI (OS)A
+

J BI,αBn.

TheK-group U8(I)+∩[J ]+ is unipotent, so there is some bounded setBJ ⊆U8(I)+∩[J ]+
⊆ MJ containing the identity such that U8(I)+∩[J ]+(OS)BJ = U8(I)+∩[J ]+ . Recall that
MI (OS) normalizes U8(I)+ . Therefore,

U8(I)+MI (OS) =MI (OS)U8(I)+ =MI (OS)U8(J )+U8(I)+∩[J ]+

⊆MJ (OS)U8(J )+U8(I)+∩[J ]+ = U8(J )+MJ (OS)U8(I)+∩[J ]+

= U8(J )+MJ (OS)U8(I)+∩[J ]+(OS)BJ

= U8(J )+MJ (OS)BJ .

Since BJ ⊆ MJ commutes with A+J , we have

γf umab ∈ γfU8(J )+MJ (OS)A
+

J BJBI,αBn.

If we let B ′ be the product over I and α of the sets BJBI,α , then we can let Bn+1
= B ′Bn.

In the case when |I | = |1| − 1, notice that for |J | = |1| the groups U8(J )+ and A+J
are trivial and MJ = G, so

γf umab ∈ γfG(OS)B|1|.

The lemma follows after enlarging B|1| in view of Lemma 20.
For (vi), suppose Q = γfPI for some γ ∈ G(OS) and f ∈ F . As in the proof

of (ii), Lemma 33 implies that there is a bounded set B ⊆ G such that RQ(tn)Bn is
contained in γfU8(I)+MI (OS)A

+

I (tn)BBn, and there is an obvious quasi-isometry from
γfU8(I)+MI (OS)A

+

I (tn)BBn to the space U8(I)+MI (OS)A
+

I that satisfies the proposi-
tion. ut
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