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Abstract. An investigation is launched into the fundamental characteristics of operations on and
between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with
respect to the origin) in n-dimensional Euclidean space Rn. It is proved that if n ≥ 2, with three
trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in
the Hausdorff metric, GL(n)-covariant, and associative if and only if it is Lp addition for some
1 ≤ p ≤ ∞. It is also demonstrated that if n ≥ 2, an operation ∗ between compact convex
sets is continuous in the Hausdorff metric, GL(n)-covariant, and has the identity property (i.e.,
K ∗ {o} = K = {o} ∗ K for all compact convex sets K , where o denotes the origin) if and only
if it is Minkowski addition. Some analogous results for operations between star sets are obtained.
Various characterizations are given of operations that are projection covariant, meaning that the
operation can take place before or after projection onto subspaces, with the same effect.

Several other new lines of investigation are followed. A relatively little-known but seminal
operation calledM-addition is generalized and systematically studied for the first time. Geometric-
analytic formulas that characterize continuous and GL(n)-covariant operations between compact
convex sets in terms of M-addition are established. It is shown that if n ≥ 2, an o-symmetrization
of compact convex sets (i.e., a map from the compact convex sets to the origin-symmetric compact
convex sets) is continuous in the Hausdorff metric, GL(n)-covariant, and translation invariant if and
only if it is of the form λDK for some λ ≥ 0, where DK = K + (−K) is the difference body of
K . The term “polynomial volume” is introduced for the property of operations ∗ between compact
convex or star sets that the volume of rK ∗ sL, r, s ≥ 0, is a polynomial in the variables r and
s. It is proved that if n ≥ 2, with three trivial exceptions, an operation between origin-symmetric
compact convex sets is continuous in the Hausdorff metric, GL(n)-covariant, associative, and has
polynomial volume if and only if it is Minkowski addition.
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1. Introduction

One of the most prevalent operations in mathematics is vector addition. As an operation
between sets K and L, defined by

K + L = {x + y : x ∈ K, y ∈ L}, (1)

it is usually called Minkowski addition and continues to find wide utility in science. For
example, [6] provides references to its application in computer-aided design and manufac-
turing, computer animation and morphing, morphological image analysis, robot motion
planning, and solid modeling. In geometry, when the sets K and L are usually com-
pact convex sets in Rn, the operation is a cornerstone of the Brunn–Minkowski theory,
a profound and powerful apparatus developed by Minkowski, Blaschke, Aleksandrov,
Fenchel, and others. Indeed, the whole theory can be said to arise from combining two
concepts: volume and Minkowski addition. This stems from a fundamental observation
of Minkowski, who showed that if K1, . . . , Km are compact convex sets in Rn, and
t1, . . . , tm ≥ 0, the volume Hn(t1K1 + · · · + tmKm) is a homogeneous polynomial of
degree n in the variables t1, . . . , tm. The coefficients in this polynomial are called mixed
volumes. When m = n, K1 = · · · = Ki = K , and Ki+1 = · · · = Kn = B

n, the unit ball
in Rn, then, up to constant factors, the mixed volumes turn out to be averages of volumes
of orthogonal projections of K onto subspaces, and include the volume, surface area, and
mean width ofK as special cases. In this way, Minkowski created a unified framework for
solving problems of a metrical character. The influence of the Brunn–Minkowski theory is
felt not only in geometry, but in many other areas both in and outside mathematics. To hint
at these, we recall that zonoids (limits in the Hausdorff metric of finite Minkowski sums
of line segments) alone have found application in stochastic geometry [46, Section 4.6],
random determinants [47], Hilbert’s fourth problem [4], data analysis and mathematical
economics [39], and mathematical finance [38]. The classic treatise of Schneider [45]
provides a detailed survey of the Brunn–Minkowski theory and a host of references.

There are several (though surprisingly few) other ways of combining sets that have
found application in geometry and beyond. However, only the imagination limits the num-
ber of different operations that might be considered. In this paper we initiate an investi-
gation motivated, at the first level, by the simple yet fundamental question: What is so
special about the known operations, Minkowski addition in particular?

Before outlining our results, we briefly survey some other useful operations. Two
of these underpin far-reaching extensions to the classical Brunn–Minkowski theory. The
first, Lp addition, 1 < p ≤ ∞, introduced by Firey [10], [11] and denoted by +p, is
defined by

hK+pL(x)
p
= hK(x)

p
+ hL(x)

p (2)

for all x ∈ Rn and compact convex sets K and L containing the origin, where the func-
tions are the support functions of the sets involved. (When p = ∞, (2) is interpreted as
hK+∞L(x) = max{hK(x), hL(x)}, as is customary. It is possible to extend Lp addition to
arbitrary compact convex sets; see Section 5.2.) Note that when p = 1, (2) is equivalent
to (1) for compact convex K and L, so we regard Minkowski addition as the case p = 1
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of Lp addition. The rich theory that emerges is called the Lp-Brunn–Minkowski theory.
The second, radial addition, denoted by +̃, is just Minkowski addition restricted to lines
through the origin o: One defines x +̃ y = x + y if x, y, and o are collinear, x +̃ y = o,
otherwise, and

K +̃ L = {x +̃ y : x ∈ K, y ∈ L}

for star sets (compact sets star-shaped at the origin)K and L in Rn. When combined with
volume, radial addition gives rise to another substantial appendage to the classical theory,
called the dual Brunn–Minkowski theory. Indeed, in founding this theory, Lutwak [26]
proved that if K1, . . . , Km are star sets in Rn, and t1, . . . , tm ≥ 0, the volume Hn(t1K1 +̃

· · ·+̃tmKm) is a homogeneous polynomial of degree n in the variables t1, . . . , tm, a perfect
analog of Minkowski’s theorem. He called the coefficients of this polynomial dual mixed
volumes and showed that up to constant factors, they include averages of volumes of
sections of a star set by subspaces.

The significance of these two extensions of the classical Brunn–Minkowski theory
cannot be overstated. The Lp-Brunn–Minkowski theory has allowed many of the already
potent sharp affine isoperimetric inequalities of the classical theory, as well as related
analytic inequalities, to be strengthened; provided tools for attacks on major unsolved
problems such as the slicing problem of Bourgain; and consolidated connections between
convex geometry and information theory. See, for example, [9], [21], [22], [28], [29], [30],
[31], [32], and [33]. The dual Brunn–Minkowski theory can count among its successes
the solution of the Busemann–Petty problem in [14], [17], [27], and [49]. It also has
connections and applications to integral geometry, Minkowski geometry, the local theory
of Banach spaces, and stereology; see [15] and the references given there.

As well as Lp and radial addition, there are a few other operations familiar to many
geometers: pth radial addition +̃p, −∞ ≤ p 6= 0 ≤ ∞ (which is, roughly, to radial
addition +̃ as +p is to Minkowski addition +), polar Lp addition, and Blaschke addition.
These are all defined and discussed in Section 5.

Faced with our motivating question above—what is so special about these operations?
—it is reasonable to compile a list of properties that they may enjoy. Algebraic properties
such as commutativity and associativity immediately come to mind. Several properties
can be considered that express good behavior under natural geometrical operations, such
as continuity in an appropriate metric or covariance with respect to nonsingular linear
transformations. These and other properties that feature in our study are defined formally
in Section 4. They include two worthy of special mention: the identity property, mean-
ing that addition of the single point at the origin leaves a set unchanged, and projection
covariance, which states that the operation can take place before or after projection onto
subspaces, with the same effect.

Projection covariance plays a star role in this paper. Note that it is completely natural,
being automatically satisfied when the operation takes place between compact convex
sets and is both continuous with respect to the Hausdorff metric and GL(n)-covariant
(see Lemma 4.1). (Here, GL(n)-covariant means that the operation can take place be-
fore or after the sets concerned undergo the same transformation in GL(n).) Generally,
the Brunn–Minkowski theory caters readily for projections. Similarly, intersections with



2300 Richard J. Gardner et al.

subspaces are handled efficiently by the dual Brunn–Minkowski theory, and for this rea-
son we also consider the corresponding property, section covariance. Both projections
and sections are of course of prime importance in geometry, but besides, as Ball states
in his MathSciNet review of the book [25]: “A variety of problems from several areas of
mathematics, including probability theory, harmonic analysis, the geometry of numbers,
and linear programming, can be couched as questions about the volumes of sections or
projections of convex bodies.”

At this point we can state two of our main results.

Theorem A. If n ≥ 2, with three trivial exceptions, an operation between o-symmetric
compact convex sets is continuous in the Hausdorff metric, GL(n)-covariant, and asso-
ciative if and only if it is Lp addition for some 1 ≤ p ≤ ∞. (See Theorem 7.9; here,
o-symmetric means symmetric with respect to the origin.)

Theorem B. If n ≥ 2, an operation between compact convex sets is continuous in
the Hausdorff metric, GL(n)-covariant, and has the identity property if and only if it
is Minkowski addition. (See Corollary 9.11.)

Note that in both cases only one extra and quite weak property beyond continuity and
GL(n)-covariance is required for these strong classification theorems. Moreover, none of
the properties can be omitted, as we show with various examples.

In both of these results, it suffices to assume projection covariance instead of conti-
nuity and GL(n)-covariance. In fact, it is a consequence of our work that an operation
between compact convex sets is projection covariant if and only if it is continuous and
GL(n)-covariant; see Corollaries 7.7 and 9.9. It is remarkable that this single property
should have such dramatic consequences. Section covariance, for example, which at first
sight may seem to be of approximately the same strength, is decidedly weaker. Thus we
prove:

Theorem C. If n ≥ 2, with three trivial exceptions, an operation between o-symmetric
star sets is section covariant, continuous in the radial metric, rotation covariant, homo-
geneous of degree 1, and associative if and only if it is pth radial addition for some
−∞ ≤ p 6= 0 ≤ ∞. (See Theorem 7.17.)

The meaning of the term radial metric can be found, along with other basic definitions
and notation, in Section 2. Though the list of assumptions in Theorem C is longer than in
Theorem A, we again show by examples that none can be omitted. The analogy between
Theorems A and C is yet another instance of a still mysterious, imperfect duality between
projections onto subspaces and sections by subspaces, discussed at length in [15] and
[25], for example.

Notice that a consequence of Theorems A and C is that operations with these proper-
ties must be commutative, even though it is associativity that is assumed. This extraordi-
nary effect of associativity under certain circumstances actually has a long history, going
back at least to Abel’s pioneering work on the so-called associativity equation. A full dis-
cussion would take us too far afield; we refer the reader to the books [2] and [3] on func-
tional equations and [5] and [24] on triangular norms and copulas. It is also a well-known



Operations between sets in geometry 2301

phenomenon in semiring theory. In fact, associativity is brought to bear in Theorems A
and C via a result of Pearson [41] (see Proposition 3.2). Pearson’s work is more suited to
our purpose than the closely related and earlier articles of Aczél [1] and Bohnenblust [7].
In Section 3 we provide a minor service by clarifying the relationship between the three
results.

Our study has more to offer than merely determining minimal lists of properties
that characterize known operations. En route to Theorem A we establish a complete
geometric-analytic characterization of all continuous and GL(n)-covariant operations
(equivalently, of all projection covariant operations) between o-symmetric compact con-
vex sets in Rn for n ≥ 2, by proving in Theorem 7.6 that such operations are pre-
cisely those corresponding to M-addition for some compact convex set M that is 1-
unconditional (symmetric with respect to the coordinate axes) in R2. This means that
for all o-symmetric compact convex sets K and L in Rn, the operation is defined by

K ⊕M L = {ax + by : x ∈ K, y ∈ L, (a, b) ∈ M}. (3)

Surprisingly, this very natural generalization of Minkowski and Lp addition (which cor-
respond here to takingM = [−1, 1]2 andM equal to the unit ball in l2

p′
, 1/p+ 1/p′ = 1,

respectively) appears to have been introduced only quite recently, by Protasov [42], in-
spired by work on the joint spectral radius in the theory of normed algebras.

We actually discovered Protasov’s work after finding what turns out to be an equiv-
alent version of Theorem 7.6: Projection covariant (equivalently, continuous and GL(n)-
covariant) operations ∗ between o-symmetric compact convex sets are precisely those
given by the formula

hK∗L(x) = hM(hK(x), hL(x)) (4)

for all x ∈ Rn and some 1-unconditional compact convex setM in R2. The obviously fun-
damental character of M-addition and the equivalence of (3) and (4) in the given context
prompted us to simultaneously generalize M-addition (so that the sets K , L, and M are
arbitrary sets in the appropriate Euclidean spaces) and initiate a thorough investigation
into its properties. In fact, we further extend the scope by considering the analogous m-
ary operation betweenm sets in Rn, which we also callM-addition (the natural extension
of (3), where M is a subset of Rm). Our results are set out in Section 6.

In the transition from o-symmetric to general sets, we begin by observing that if an
operation between arbitrary compact convex sets satisfies the hypotheses of Theorem A
when restricted to the o-symmetric sets, then this restriction must be Lp addition for some
1 ≤ p ≤ ∞ (see Corollary 9.1). However, Theorem A itself does not hold for operations
between arbitrary compact convex sets and in this regard, the following example is in-
structive. Define

K ∗ L = 1
2DK +

1
2DL (5)

for all compact convex sets K and L in Rn, where DK is the difference body K + (−K)
of K . When K and L are o-symmetric, they coincide with their reflections −K and −L
in the origin, so ∗ is the same as Minkowski addition, but for general K and L, it is not
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equal to Lp addition for any p. The formula (5) leads to another new investigation, in
Section 8, on o-symmetrizations, i.e., maps from the compact convex sets (or star sets) to
the o-symmetric compact convex sets (or o-symmetric star sets, respectively). We obtain
the following characterization of the difference body operator.

Theorem D. If n ≥ 2, an o-symmetrization of compact convex sets is continuous in the
Hausdorff metric, GL(n)-covariant, and translation invariant if and only if it is of the
form λDK for some λ ≥ 0. (See Corollary 8.4.)

Once again, none of the assumptions can be omitted and the version stated in Corol-
lary 8.4 is only apparently more general, since an o-symmetrization of compact convex
sets is projection covariant if and only if it is both continuous and GL(n)-covariant, by
Lemma 4.3 and Corollary 8.3.

In the process of proving Theorem B, we show in Theorem 9.7 that projection co-
variant (equivalently, continuous and GL(n)-covariant) operations ∗ between arbitrary
compact convex sets are precisely those given by the formula

hK∗L(x) = hM
(
hK(−x), hK(x), hL(−x), hL(x)

)
(6)

for all x ∈ Rn and some closed convex set M in R4. (More work remains to be done
to understand which such sets M give rise via (6) to valid operations, but we show that
this is true if M is any compact convex subset of [0,∞)4, in which case K ∗ L is just
the M-sum of K , −K , L, and −L.) A similar result for section covariant operations ∗
between arbitrary star sets is given in Theorem 9.15; however, in this case the natural
analog of Theorem B fails to hold.

In Section 10, we set off in yet another new direction by focusing on operations
between o-symmetric compact sets having polynomial volume. This means that for all
r, s ≥ 0,

Hn(rK ∗ sL) =

m(K,L)∑
i,j=0

aij (K,L)r
isj (7)

for some real coefficients aij (K,L), somem(K,L) ∈ N∪ {0}, and all o-symmetric com-
pact convex or star sets K and L in Rn. It was mentioned above that both Minkowski and
radial addition have this property, the coefficients being mixed or dual mixed volumes, re-
spectively, but note that here the polynomial need not be homogeneous and its degree may
depend on K and L. In Theorem 10.3 we solve a problem known to experts by showing
that+p does not have polynomial volume for p > 1. (This effectively implies that the full
set of “Lp-mixed volumes” is not available unless p = 1.) As a result, we obtain the fol-
lowing characterization of Minkowski addition as an operation between o-symmetric sets.

Theorem E. If n ≥ 2, with three trivial exceptions, an operation between o-symmetric
compact convex sets is projection covariant, associative, and has polynomial volume if
and only if it is Minkowski addition. (See Corollary 10.4.)

Further examples show that none of the assumptions can be removed. An analog for
operations between star sets is stated in Corollary 10.7, but, interestingly, here pth radial
addition is allowed, provided that p ∈ N and p divides the dimension n.
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This work raises many natural questions and invites extensions in several different
directions, so we regard it as the first stage in an extensive program. Rather than elaborate
on this in detail here, we mention only that in [16], some of the results (Theorems 7.6
and 9.7 and Corollaries 7.7 and 9.9) are extended to m-ary operations and applied to
further the new Orlicz–Brunn–Minkowski theory (see [34], [35]). Also, since this paper
was written, Mesikepp [37] has obtained several results on M-addition.

The paper is organized as follows. After Section 2 giving definitions and notation,
Section 3 mainly concerns functions satisfying the associativity equation and different
types of homogeneity. The properties of operations and o-symmetrizations with which
we work are listed and defined in Section 4, and some basic lemmas relating them are
proved. In Section 5, the various examples of useful operations and o-symmetrizations are
defined and their properties are discussed, including some new observations. Our gener-
alization and extension of M-addition is presented in Section 6 and several fundamental
results are established that shed light on its behavior. Section 7 focuses on operations
between o-symmetric compact convex or star sets and Section 8 sets out the results on
o-symmetrizations. The symmetry restriction is discarded in Section 9, where we deal
with operations between arbitrary compact convex or star sets. In the final Section 10, we
state our results on the polynomial volume property.

2. Definitions and preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn. The
unit ball in Rn will be denoted by Bn. The standard orthonormal basis for Rn will be
{e1, . . . , en}. Otherwise, we usually denote the coordinates of x ∈ Rn by x1, . . . , xn. We
write [x, y] for the line segment with endpoints x and y. If x ∈ Rn \ {o}, then x⊥ is the
(n − 1)-dimensional subspace orthogonal to x, and lx is the line through o containing x.
(Throughout the paper, the term subspace means a linear subspace.)

IfX is a set, we denote by ∂X, intX, linX, convX, and dimX the boundary, interior,
linear hull, convex hull, and dimension (that is, the dimension of the affine hull) of X,
respectively. If S is a subspace of Rn, then X|S is the (orthogonal) projection of X onto
S and x|S is the projection of a vector x ∈ Rn onto S.

If t ∈ R, then tX = {tx : x ∈ X}. When t > 0, tX is called a dilatate of X. The set
−X = (−1)X is the reflection of X in the origin.

A body is a compact set equal to the closure of its interior.
We write Hk for k-dimensional Hausdorff measure in Rn, where k ∈ {1, . . . , n}. The

notation dz will always mean dHk(z) for the appropriate k = 1, . . . , n.
We follow Schneider [45] by writing κn for the volume Hn(Bn) of the unit ball in Rn,

so that κn = πn/2/ 0(1+ n/2).
The Grassmannian of k-dimensional subspaces in Rn is denoted by G(n, k).
A set is o-symmetric if it is centrally symmetric, with center at the origin. We shall call

a set in Rn 1-unconditional if it is symmetric with respect to each coordinate hyperplane;
this is traditional in convex geometry for compact convex sets. If X is a set in Rn, we
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denote by

X̂ = {(α1x1, α2x2, . . . , αnxn) : (x1, x2, . . . , xn) ∈ X, |αi | ≤ 1, i = 1, . . . , n} (8)

its 1-unconditional hull. Geometrically, this is the union of all o-symmetric coordinate
boxes that have at least one vertex in X.

Let Kn be the class of nonempty compact convex subsets of Rn, let Kns denote the
class of o-symmetric members of Kn, let Kno be the class of members of Kn containing
the origin, and let Knoo be those sets in Kn containing the origin in their interiors. A set
K ∈ Kn is called a convex body if its interior is nonempty.

If K is a nonempty closed (not necessarily bounded) convex set, then

hK(x) = sup{x · y : y ∈ K}, (9)

for x ∈ Rn, is its support function. A nonempty closed convex set is uniquely determined
by its support function. Support functions are homogeneous of degree 1, that is,

hK(rx) = rhK(x)

for all x ∈ Rn and r ≥ 0, and are therefore often regarded as functions on Sn−1. They are
also subadditive, i.e.,

hK(x + y) ≤ hK(x)+ hK(y)

for all x, y ∈ Rn. Any real-valued function on Rn that is sublinear, that is, both homoge-
neous of degree 1 and subadditive, is the support function of a unique compact convex set.
The Hausdorff distance δ(K,L) between sets K,L ∈ Kn can be conveniently defined by

δ(K,L) = ‖hK − hL‖∞, (10)

where ‖ · ‖∞ denotes the L∞ norm on Sn−1. (For compact convex sets, this is equivalent
to the alternative definition

δ(K,L) = max
{

max
x∈K

d(x, L),max
x∈L

d(x,K)
}

that applies to arbitrary compact sets, where d(x,E) denotes the distance from the point x
to the set E.) Proofs of these facts can be found in [45]. Gruber’s book [20] is also a good
general reference for convex sets.

Let K be a nonempty, closed (not necessarily bounded) convex set. If S is a subspace
of Rn, then it is easy to show that

hK|S(x) = hK(x|S) (11)

for each x ∈ Rn. The formula (see [15, (0.27), p. 18])

hφK(x) = hK(φ
tx) (12)

for x ∈ Rn gives the change in a support function under a transformation φ ∈ GL(n),
where φt denotes the linear transformation whose standard matrix is the transpose of that
of φ. (Equation (12) is proved in [15, p. 18] for compact sets, but the proof is the same if
K is unbounded.)
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The polar set of an arbitrary set K in Rn is

K◦ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

See, for example, [48, p. 99].
Recall that lx is the line through the origin containing x ∈ Rn \ {o}. A set L in Rn is

star-shaped at o ifL∩lu is either empty or a (possibly degenerate) closed line segment for
each u ∈ Sn−1. If L is star-shaped at o, we define its radial function ρL for x ∈ Rn \ {o}
by

ρL(x) =

{
max{c : cx ∈ L} if L ∩ lx 6= ∅,
0 otherwise.

This definition is a slight modification of [15, (0.28)]; as defined here, the domain of ρL
is always Rn \ {o}. Radial functions are homogeneous of degree −1, that is,

ρL(rx) = r
−1ρL(x)

for all x ∈ Rn \ {o} and r > 0, and are therefore often regarded as functions on Sn−1.
In this paper, a star set in Rn is a compact set that is star-shaped at o and contains o.

(Other definitions have been used; see, for example [15, Section 0.7] and [19].) We denote
the class of star sets in Rn by Sn and the subclass of such sets that are o-symmetric by Sns .
Note that each of these two classes is closed under finite unions, countable intersections,
and intersections with subspaces. The radial metric δ̃ defines the distance between star
sets K,L ∈ Sn by

δ̃(K,L) = ‖ρK − ρL‖∞ = sup
u∈Sn−1

|ρK(u)− ρL(u)|.

Observe that this differs considerably from the Hausdorff metric; for example, the radial
distance between any two different o-symmetric line segments containing the origin and
of length two is one.

Let C be a class of sets in Rn and let Cs denote the subclass of o-symmetric members
of C. We call a map ♦ : C → Cs an o-symmetrization on C, and for K ∈ C, we call ♦K
an o-symmetral.

3. Some background results

The following result is due to Bohnenblust [7].

Proposition 3.1. Let f : [0,∞)2 → R satisfy the following conditions:
(i) f (rs, rt) = rf (s, t) for r, s, t ≥ 0;

(ii) f (s, t) ≤ f (s′, t ′) for 0 ≤ s ≤ s′ and 0 ≤ t ≤ t ′;
(iii) f (s, t) = f (t, s) for s, t ≥ 0;
(iv) f (0, 1) = 1;
(v) f (s, f (t, u)) = f (f (s, t), u) for s, t, u ≥ 0.

Then there exists p, 0 < p ≤ ∞, such that

f (s, t) = (sp + tp)1/p, (13)

where, in the case p = ∞, we mean f (s, t) = max{s, t}.
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The equation in (v) is called the associativity equation and has generated a large literature;
see, for example, [2], [3], and [5].

In [12, Theorem 4], Fleming states: The conclusion of Bohnenblust’s theorem remains
true even with condition (iii) of the hypotheses removed. He means to say also that (iv)
should be replaced by f (1, 0) = f (0, 1) = 1 (or else the function f (s, t) = t for all
s, t ≥ 0 would be a counterexample). Fleming ascribes this result to B. Randrianantoanina
in a personal communication. See also [13, Theorem 9.5.3].

For s, t ≥ 0, let

f1(s, t) = log(es + et − 1);

f2(s, t) =

{
min{s, t} if s > 0 and t > 0,
max{s, t} if s = 0 or t = 0;

f3(s, t) = t;

f4(s, t) = min{s, t};
f5(s, t) = s + t +

√
st.

Then one can check that for i = 1, . . . , 5, the function fi(s, t) satisfies all but the ith of
the five hypotheses of Proposition 3.1.

A related result is due to Aczél [1, Theorem 2]. He shows that if f is continuous
and satisfies only the hypotheses (i), (ii) (but with strict inequalities), and (v) in Bohnen-
blust’s theorem, then f is given by (13). Incidentally, according to Aczél, (ii) with strict
inequalities is equivalent to the cancellation law (f (s, t) = f (s, u) ⇒ t = u and
f (s, t) = f (u, t)⇒ s = u).

The following result, stronger than Aczél’s, was proved by Pearson [41, Theorem 2]
in a paper on topological semigroups.

Proposition 3.2. Let f : [0,∞)2 → [0,∞) be a continuous function satisfying condi-
tions (i) and (v) of Proposition 3.1. Then either f (s, t) = 0, or f (s, t) = s, or f (s, t) = t ,
or there exists p, 0 < p ≤ ∞, such that f is given by (13), or

f (s, t) =

{
(sp + tp)1/p if s > 0 and t > 0,
0 if s = 0 or t = 0,

for some p < 0, or f (s, t) = min{s, t} (the case p = −∞).

The functions f1(s, t) and f5(s, t) above are continuous and show that both conditions (i)
and (v) are necessary in the previous proposition. Note that Proposition 3.2 also implies
that any function f : [0,∞)2 → [0,∞) that satisfies conditions (i) and (v), but not
(ii), of Proposition 3.1 cannot be continuous. Indeed, if such a function were continuous,
it would have to be one of the possibilities given by Proposition 3.2, but each of these
satisfies (ii).

Proposition 3.2 implies Aczél’s result mentioned above, since if f : [0,∞)2 → R
satisfies (i) and (ii) of Proposition 3.1, then (i) implies that f (0, 0) = f (0 · 1, 0 · 1) =
0 · f (1, 1) = 0 and from (ii) it follows that f is nonnegative. Therefore Proposition 3.2
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applies, but the only strictly increasing function provided by Proposition 3.2 is the one
given in (13).

Let f : [0,∞)2 → R satisfy (i), (ii), (iv) (in the symmetric form f (1, 0) = f (0, 1)
= 1), and (v) in Proposition 3.1. If s, t > 0, then by (i) and (iv), f (s, t) = tf (s/t, 1) ≥
tf (0, 1) = t > 0. Hence the restriction f : (0,∞)2 → (0,∞) is well defined and
satisfies (i), (ii), and (v). We claim that this restriction is also continuous. To see this, let
s0, t0 > 0, define w = min{s0, t0}, and choose ε ∈ [0, w). Then, for s ∈ (s0 − ε, s0 + ε)
and t ∈ (t0 − ε, t0 + ε), we use first (ii) and then (i) to obtain

f (s, t) ≤ f (s0 + ε, t0 + ε) ≤ f (s0(1+ ε/w), t0(1+ ε/w)) = (1+ ε/w)f (s0, t0).

Similarly, f (s, t) ≥ (1− ε/w)f (s0, t0) and hence

|f (s, t)− f (s0, t0)| ≤
ε

w
f (s0, t0).

Therefore f is continuous at (s0, t0). Another result of Pearson [41, Theorem 1] then
applies and shows that the restriction of f to (0,∞)2 must be of one of five types of
functions given there. The condition f (0, 1) = f (1, 0) = 1 and (i) imply that f (s, 0) = s
and f (0, t) = t for all s, t ≥ 0. This and (ii) can be used to rule out all the functions
provided by [41, Theorem 1] except those given by (13). This shows that Bohnenblust’s
theorem is a consequence of [41, Theorem 1] and also confirms Fleming’s statement
mentioned above.

The following proposition sheds light on the relation between various types of homo-
geneity. We omit the proof, which is an easy adaptation of the argument in [3, p. 345].

Proposition 3.3. Let f : [0,∞)2 → [0,∞) be a continuous function satisfying

f (rs, rt) = g(r)f (s, t)

for all r, s, t ≥ 0 and some function g : [0,∞)→ [0,∞). Then f ≡ 0 or g(r) = rc for
some c ∈ R and all r ≥ 0. If, in addition, f (0, t) = t for all t > 0 (or f (s, 0) = s for all
s > 0), then g(r) = r for all r ≥ 0.

The inequality

ϕ−1(ϕ(s1 + s2)+ ϕ(t1 + t2)) ≤ ϕ
−1(ϕ(s1)+ ϕ(t1))+ ϕ

−1(ϕ(s2)+ ϕ(t2)), (14)

where s1, s2, t1, t2 ≥ 0 and ϕ : [0,∞) → [0,∞) is continuous and strictly increasing
with ϕ(0) = 0, is known as Mulholland’s inequality. It was first studied by Mulholland
[40] and represents a generalization of Minkowski’s inequality to functions other than
ϕ(s) = sp, p ≥ 1. Mulholland proved that (14) holds if ϕ(s) = s exp(ψ(log s)) for some
continuous, increasing, convex function ψ on R. He gave as particular examples satisfy-
ing this condition the functions ϕ(s) = sinh s and ϕ(s) = s1+a exp(bsc) for a, b, c ≥ 0.
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4. Properties of binary operations and o-symmetrizations

For certain classes C, D of sets in Rn with C ⊂ D, we seek natural properties to impose
on an arbitrary binary operation ∗ : C2

→ D that force the operation to coincide with
a known one. The investigation is restricted to the cases D ⊂ Kn and D ⊂ Sn. In the
following list, it is assumed that C is an appropriate class for the property under consider-
ation. The properties are supposed to hold for all appropriate K,L,M,N,Km, Lm ∈ C
and for all r, s ≥ 0. Properties 10–12 do not play a major role in our investigation, but are
nonetheless familiar properties that could be considered in characterizing known opera-
tions. Moreover, since the best-known operations all satisfy these three properties, they
act as extra motivation for Property 13, which we shall see in Section 10 can distinguish
Minkowski addition from Lp addition for p > 1.

1. (Commutativity) K ∗ L = L ∗K .
2. (Associativity) K ∗ (L ∗M) = (K ∗ L) ∗M .
3. (Homogeneity of degree k) (rK) ∗ (rL) = rk(K ∗ L).
4. (Distributivity) (rK) ∗ (sK) = (r + s)K .
5. (Identity) K ∗ {o} = K = {o} ∗K .
6. (Continuity) Km→ M,Lm→ N ⇒ Km ∗ Lm→ M ∗N as m→∞.
7. (GL(n)-covariance) φ(K ∗ L) = φK ∗ φL for all φ ∈ GL(n).
8. (Projection covariance) (K ∗ L)|S = (K|S) ∗ (L|S) for all S ∈ G(n, k), 1 ≤ k ≤
n− 1.

9. (Section covariance) (K ∗L) ∩ S = (K ∩ S) ∗ (L ∩ S) for all S ∈ G(n, k), 1 ≤ k ≤
n− 1.

10. (Monotonicity) K ⊂ M,L ⊂ N ⇒ K ∗ L ⊂ M ∗N .
11. (Cancellation) K ∗M = L ∗M ⇒ K = L and M ∗K = M ∗ L⇒ K = L.
12. (Valuation) K ∪ L,K ∩ L ∈ C ⇒ (K ∪ L) ∗ (K ∩ L) = K ∗ L.
13. (Polynomial volume) Hn(rK ∗ sL) =

∑m(K,L)
i,j=0 aij (K,L)r

isj for some real coeffi-
cients aij (K,L) and m(K,L) ∈ N ∪ {0}.

Of course, continuity (Property 6) is with respect to some suitable metric. Throughout
the paper, we shall use the Hausdorff metric when D ⊂ Kn and otherwise, if D ⊂ Sn,
the radial metric.

In the definitions of projection and section covariance, the stated property is to hold
for all 1 ≤ k ≤ n − 1. However, the proofs of our results never require k > 4, and often
k = 1 or k = 1, 2 suffices.

Note that these properties are not independent. For example, Property 4 implies Prop-
erty 5, and the following lemma implies that for compact convex sets, Property 8 follows
from Properties 6 and 7.

Lemma 4.1. Let C ⊂ Kn be closed under the action of GL(n) and the taking of Haus-
dorff limits. If ∗ : C2

→ Kn is continuous and GL(n)-covariant, then it is also projection
covariant.

Proof. Let S be a proper subspace of Rn and let φ denote projection onto S. Let (φm),
m ∈ N, be a sequence of transformations in GL(n) that converges (in the sense of con-
vergence of n × n matrices) to φ. If K ∈ Kn, we claim that φmK → φK as m → ∞,



Operations between sets in geometry 2309

in the Hausdorff metric. To see this, let u ∈ Sn−1. Then, using (12) and the continuity of
support functions, we have

lim
m→∞

|hφmK(u)− hφK(u)| = lim
m→∞

|hK(φ
t
mu)− hK(φ

tu)|

=

∣∣∣hK( lim
m→∞

φtmu
)
− hK(φ

tu)

∣∣∣ = |hK(φtu)− hK(φtu)|
= 0.

The convergence is uniform in u ∈ Sn−1 by [45, Theorem 1.8.12], so

lim
m→∞

‖hφmK − hφK‖∞ = 0,

which in view of (10) proves the claim.
For K,L ∈ C, we now have

φ(K ∗ L) = lim
m→∞

φm(K ∗ L) = lim
m→∞

(φmK ∗ φmL) =
(

lim
m→∞

φmK
)
∗

(
lim
m→∞

φmL
)

= φK ∗ φL,

as required. ut

We shall also consider other properties of operations that are easily stated in words, for
example, rotation covariance. Some of the above properties can be stated in different
versions; for example, Property 6 is continuity in both variables separately, and one can
impose instead continuity in either variable or joint continuity. Properties 5 and 11 can be
stated as one-sided versions.

Various modifications of the above properties can be considered. For example, we
may impose:

3′. (Quasi-homogeneity) (rK) ∗ (rL) = g(r)(K ∗ L) for some continuous function
g : [0,∞] → [0,∞].

The following lemma relates quasi-homogeneity to homogeneity of degree 1.

Lemma 4.2. Suppose that C ⊂ D are classes of sets in Rn such that rBn ∈ C for all
r ≥ 0 and ∗ : C2

→ D is a quasi-homogeneous operation that satisfies eitherK∗{o} = K
or {o} ∗K = K , for all K ∈ C. Then ∗ is homogeneous of degree 1.

Proof. Suppose that ∗ is quasi-homogeneous, for some continuous function g : [0,∞] →
[0,∞]. Suppose thatK ∗{o} = K for allK ∈ C (the proof for the case when {o}∗K = K
is similar). Then for r ≥ 0, we have

rBn = (rBn) ∗ {o} = (rBn) ∗ {ro} = g(r)(Bn ∗ {o}) = g(r)Bn.

Thus g(r) = r for r ≥ 0 and so ∗ is homogeneous of degree 1. ut

Another natural modification is:

9′. (Affine section covariance) (K ∗ L) ∩ S = (K ∩ S) ∗ (L ∩ S) for all S ∈ A(n, k),
1 ≤ k ≤ n− 1, where A(n, k) denotes the set of k-dimensional planes in Rn.

However, we shall not find use for Property 9′ in this paper.
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Analogous properties will be considered of o-symmetrizations ♦ : C → Cs , for ex-
ample:

1. (Homogeneity of degree k) ♦(rK) = rk♦K .
2. (Identity) ♦K = K if K ∈ Cs .
3. (Continuity) Km→ K ⇒ ♦Km→♦K as m→∞.
4. (GL(n)-covariance) φ(♦K) = ♦(φK) for all φ ∈ GL(n).
5. (Projection covariance) (♦K)|S = ♦(K|S) for all S ∈ G(n, k), 1 ≤ k ≤ n− 1.
6. (Section covariance) (♦K) ∩ S = ♦(K ∩ S) for all S ∈ G(n, k), 1 ≤ k ≤ n− 1.
7. (Monotonicity) K ⊂ L⇒ ♦K ⊂ ♦L.

We shall not find use for Property (7) in this paper.
The pertinent remarks above concerning the list of properties of binary operations

apply also to these properties of o-symmetrizations. In particular, the following lemma
holds.

Lemma 4.3. If ♦ : Kn → Kns is continuous and GL(n)-covariant, then it is also projec-
tion covariant.

Proof. Let S be a proper subspace of Rn and let φ denote projection onto S. Let (φm),
m ∈ N, be a sequence of transformations in GL(n) that converges (in the sense of con-
vergence of n× n matrices) to φ. If K ∈ Kn, then as in the proof of Lemma 4.1, we have
φmK → φK as m→∞, in the Hausdorff metric. Therefore

φ(♦K) = lim
m→∞

φm(♦K) = lim
m→∞

♦(φmK) = ♦
(

lim
m→∞

(φmK)
)
= ♦(φK). ut

5. Examples of binary operations and o-symmetrizations

The properties of known additions in this section are those listed in Section 4 for opera-
tions ∗ : C2

→ D, where C, D are classes of sets in Rn with C ⊂ D. It will always be
assumed that D ⊂ Kn or D ⊂ Sn, as appropriate, and that C is an appropriate subclass
of D.

5.1. Minkowski addition

The vector or Minkowski sum of sets X and Y in Rn is defined by

X + Y = {x + y : x ∈ X, y ∈ Y }.

WhenK,L ∈ Kn,K+L can be equivalently defined as the compact convex set such that

hK+L(u) = hK(u)+ hL(u) (15)

for all u ∈ Sn−1. Minkowski addition satisfies all the 13 properties listed in Section 4
with C = Kn, except Property 9, section covariance. (Here, and throughout this section,
the homogeneity Property 3 is with k = 1.) Some of these are a direct consequence
of (15) and the properties of the support function. For Properties 12 and 13, see [45,
Lemma 3.1.1] and [45, Theorem 5.1.6], respectively.
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5.2. Lp addition

Let 1 < p ≤ ∞. Firey [10], [11] introduced the notion of what is now called the Lp sum
ofK,L ∈ Kno . (The operation has also been called Firey addition, as in [8, Section 24.6].)
This is the compact convex set K +p L defined by

hK+pL(u)
p
= hK(u)

p
+ hL(u)

p

for u ∈ Sn−1 and p <∞, and by

hK+∞L(u) = max{hK(u), hL(u)}

for all u ∈ Sn−1. Note that K +∞ L = conv(K ∪ L). The operation of Lp addition
satisfies the properties listed in Section 4 with C = Kno , except Property 4, distributivity,
and Property 9, section covariance; Property 13 is discussed in Section 10.

Lutwak, Yang, and Zhang [36] extended the previous definition for 1 < p < ∞, as
follows. Let K and L be arbitrary subsets of Rn and define

K +p L = {(1− t)1/p
′

x + t1/p
′

y : x ∈ K, y ∈ L, 0 ≤ t ≤ 1}, (16)

where p′ is the Hölder conjugate of p, i.e., 1/p+ 1/p′ = 1. In [36] it is shown that when
K,L ∈ Kno , this definition agrees with the previous one.

Equation (16) makes sense for arbitrary K,L ∈ Kn. However, the right-hand side of
(16) is not in general convex. To see this, takeK = {x} andL = {y}, where x and y do not
lie on the same line through the origin. ThenK+p L is a nonlinear curve that approaches
[x, x + y] ∪ [y, x + y] as p→ 1 and [x, y] as p→∞. An important exception is given
in the following theorem.

Theorem 5.1. For each K ∈ Kn, the set K +p (−K) defined by (16) with L = −K is
convex and hence belongs to Kn.

Proof. Let K ∈ Kn and let K†
= conv{K, o}. We claim that K +p (−K) = K†

+p

(−K†). Once this is proved, the result follows immediately from [36, Lemma 1.1], which
states that K +p L ∈ Kno whenever K,L ∈ Kno .

To prove the claim, it suffices to show that if x(1), x(2) ∈ K and 0 ≤ α, β, t ≤ 1, then
there are y(1), y(2) ∈ K and 0 ≤ s ≤ 1 such that

(1− t)1/p
′

αx(1) − t1/p
′

βx(2) = (1− s)1/p
′

y(1) − s1/p′y(2).

Indeed, the inclusionK†
+p (−K

†) ⊂ K+p (−K) then follows and the reverse inclusion
is obvious. We shall seek a solution to the previous equation with y(1)= (1−θ)x(1)+θx(2)

and y(2) = x(2), where 0 ≤ θ ≤ 1. Substituting, we see that it suffices to solve the
equations

(1− s)1/p
′

(1− θ) = (1− t)1/p
′

α (17)

and
(1− s)1/p

′

θ − s1/p′
= −t1/p

′

β (18)
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for s and θ . Adding (17) and (18), we obtain

f (s) = (1− s)1/p
′

− s1/p′
= (1− t)1/p

′

α − t1/p
′

β = γ, (19)

say, where −1 ≤ γ ≤ 1. Since the function f (s) is strictly decreasing for 0 ≤ s ≤ 1 with
f (0) = 1 and f (1) = −1, (19) has a solution for s. Now (17) and (18) give

θ =
(1− s)1/p

′

− (1− t)1/p
′

α

(1− s)1/p′
=
s1/p′
− t1/p

′

β

(1− s)1/p′
.

In view of the previous equation, it is enough to show that one of the two numerators is
nonnegative. Suppose, on the contrary, that tβp

′

> s and (1− t)αp
′

> 1− s. These two
inequalities imply that tβp

′

> 1− (1− t)αp
′

and hence t (βp
′

− αp
′

) > 1− αp
′

. Clearly
β ≤ α is not possible, but if β > α, then

t >
1− αp

′

βp
′
− αp

′
≥ 1,

a contradiction. ut

Noting that hK†(u) = max{hK(u), 0} for u ∈ Sn−1, the previous result suggests a rea-
sonable definition of the Lp sum of K,L ∈ Kn for 1 ≤ p ≤ ∞, namely via the equation

hK+pL(u)
p
= max{hK(u), 0}p +max{hL(u), 0}p (20)

for u ∈ Sn−1. Since K = K† when K ∈ Kno , this definition extends the original one. It
can be checked that the extended operation retains all the properties listed above for the
original Lp addition, except Property 5, the identity property, which holds if and only if
o ∈ K . We shall return to this extension of Lp addition in Example 6.7.

5.3. M-addition

LetM be an arbitrary subset of R2 and define theM-sumK⊕M L of arbitrary setsK and
L in Rn by

K ⊕M L = {ax + by : x ∈ K, y ∈ L, (a, b) ∈ M}. (21)

It appears thatM-addition was first introduced, for centrally symmetric compact con-
vex sets K and L and a 1-unconditional convex body M in R2, by Protasov [42], moti-
vated by work on the joint spectral radius in the theory of normed algebras.

Note that if M = {(1, 1)}, then ⊕M is ordinary vector or Minkowski addition, and if

M = {(a, b) ∈ [0, 1]2 : ap
′

+ bp
′

= 1} = {((1− t)1/p
′

, t1/p
′

) : 0 ≤ t ≤ 1}, (22)

where p > 1 and 1/p+1/p′ = 1, then⊕M is Lp addition as defined in [36]. The limiting
case p = 1, p′ = ∞ givesM = [e1, e1+ e2]∪ [e2, e1+ e2], and the case p = ∞, p′ = 1
corresponds to M = [e1, e2] and

K ⊕M L = {(1− t)x + ty : x ∈ K, y ∈ L, 0 ≤ t ≤ 1} =
⋃
{[x, y] : x ∈ K, y ∈ L}.

For a choice of M leading to a different extension of Lp addition, see Example 6.7.
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If M is a compact set in R2, it follows from the definition (21) that ⊕M maps (Cn)2
to Cn, where Cn denotes the class of compact sets in Rn. It is easy to see that in this
case ⊕M is monotonic, continuous in the Hausdorff metric, and GL(n)-covariant (and
hence projection covariant, by Lemma 4.1, and homogeneous of degree 1). Protasov [42]
proved that if M is a compact convex subset in R2 that is 1-unconditional, then ⊕M :
(Kns )2 → Kns . (This proof is omitted in the English translation.) This and other results on
M-addition can be found in Section 6.

5.4. Radial and pth radial addition

The radial sum K +̃ L of K,L ∈ Sn can be defined either by

K +̃ L = {x +̃ y : x ∈ K, y ∈ L},

where

x +̃ y =

{
x + y if x, y, and o are collinear,
o otherwise,

or by
ρK+̃L = ρK + ρL.

Radial addition satisfies all the 13 properties listed in Section 4 with C = Sn, except
Property 8, projection covariance. Many of these are a direct consequence of the previous
equation and the properties of the radial function; for example, Property 7 follows from
[15, (0.34), p. 20].

More generally, for any p > 0, we can define the pth radial sumK +̃pL ofK,L ∈ Sn
by

ρK+̃pL(x)
p
= ρK(x)

p
+ ρL(x)

p (23)

for x ∈ Rn \ {o}. If p < 0, we define ρK+̃pL(x) as in (23) when ρK(x), ρL(x) > 0, and
by ρK+̃pL(x) = 0 otherwise. Of course we can extend these definitions in a consistent
fashion by setting K +̃−∞ L = K ∩ L and K +̃∞ L = K ∪ L. The operation of pth
radial addition satisfies Properties 1–3, 6, 7, 9, 10, and 12 of Section 4 with C = Sn, and
if p > 0, Properties 5 and 11 also hold. Property 13 is discussed in Section 10.

Hints as to the origins of these radial additions can be found in [15, Note 6.1].

5.5. Polar Lp addition

In [10], Firey defined the p-sum of K,L ∈ Knoo for −∞ ≤ p ≤ −1 to be (Ko
+−p L

o)o.
We shall call this operation from (Knoo)2 to Knoo polar Lp addition, although in view
of the relation hKo = 1/ρK (see [15, (0.36), p. 20]), the polar Lp sum of K and L is
just K +̃p L. (In [8, Section 24.6], it is called Firey addition and the special case when
p = −1 is sometimes called inverse addition, as in [44].) Since Knoo ⊂ Sn, polar Lp
addition satisfies Properties 1–3, 7, and 9–12 of Section 4 with C = Knoo. It also satisfies
Property 6, continuity, with respect to the Hausdorff metric, but this is lost when lower-
dimensional sets are involved.
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Theorem 5.2. If n ≥ 2 and −∞ ≤ p ≤ −1, polar Lp addition cannot be extended to a
continuous operation ∗ : (Kns )2 → Kn.

Proof. Let n ≥ 2 and −∞ ≤ p ≤ −1 and suppose, to the contrary, that ∗ : (Kns )2 → Kn
is such a continuous extension. Let K 6= {o} ⊂ e⊥n be an o-symmetric compact convex
set, and let {Km} be a sequence of o-symmetric convex bodies such that Km → K as
m→∞. For each m, we have

(Ko
m +−p K

o
m)
o
= (2−1/pKo

m)
o
= 21/pKm,

so

K ∗K = lim
m→∞

21/pKm = 21/pK. (24)

(This holds true also for the limiting value p = −∞.) Let φα denote a counterclockwise
rotation by angle α in the {x1, xn}-plane and let D denote the o-symmetric (n − 1)-
dimensional unit ball in e⊥1 . Let 0 < α < π/2, let K = [−e1, e1], and let Km = K +

(1/m)D and Lm,α = φαKm, for m ∈ N, so that Km and Lm,α are spherical cylinders
such that Km → K and Lm → φαK as m → ∞. Then Ko

m = conv{±e1, mD} and
Lom,α = φαK

o
m are double cones such that Ko

m +∞ L
o
m,α = conv(Ko

m ∪ L
o
m,α)→ Rn as

m → ∞ for any fixed α. Hence (Ko
m +∞ Lom,α)

o
→ {o} as m → ∞. Since polar Lp

sums decrease as p increases, it follows that (Ko
m+−p L

o
m,α)

o
→ {o} as m→∞ for any

fixed α and all −∞ ≤ p ≤ −1. By the continuity assumption, K ∗ φαK = {o}. Now
letting α→ 0, we obtain K ∗K = {o}, contradicting (24). ut

5.6. Blaschke addition

Another important binary operation in convex geometry is Blaschke addition ], defined
for convex bodiesK andL in Rn by lettingK ]L be the unique convex body with centroid
at the origin such that

S(K ]L, ·) = S(K, ·)+ S(L, ·),

where S(K, ·) denotes the surface area measure of K . See [15, p. 130] or [45, p. 394]. As
an operation between convex bodies, Blaschke addition satisfies Properties 1–3, 7, and
12 of Section 4. The GL(n)-covariance is not quite obvious, but a proof is given in [18].
When n = 2, Blaschke addition is the same as Minkowski addition, up to translation, so
it can be extended to a continuous operation between o-symmetric compact convex sets
in R2 in this case. For n ≥ 3, such an extension does not exist, as we now prove.

Theorem 5.3. If n ≥ 3, Blaschke addition cannot be extended to a continuous operation
∗ : (Kns )2 → Kn.

Proof. For a > 0, let Ka = [0, a]n−1
× [−1/2, 1/2] and La = [−1/2, 1/2]n−1

×

[0, an−2
]. Then S(Ka, ·) consists of point masses of an−2 at ±e1, . . . ,±en−1 and an−1

at ±en, while S(La, ·) consists of point masses of an−2 at ±e1, . . . ,±en−1 and 1 at ±en.
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Therefore S(Ka ]La, ·) consists of point masses of 2an−2 at ±e1, . . . ,±en−1 and 1 +
an−1 at ±en. It follows easily that Ka ]La is the coordinate box[

−
(1+ an−1)

1
n−1

2
,
(1+ an−1)

1
n−1

2

]n−1

×

[
−

an−2

(1+ an−1)
n−2
n−1
,

an−2

(1+ an−1)
n−2
n−1

]
.

As a → 0, Ka → [−en/2, en/2], La → P , and Ka ]La → P , where P is the o-
symmetric (n−1)-dimensional coordinate cube P of side length 1 contained in e⊥n . Let φ
be any rotation that leaves the xn-axis fixed and satisfies φei 6= ej for all i = 1, . . . , n−1
and j = 1, . . . , n. Then φKa → [−en/2, en/2] as a → 0. Also, S(φKa, ·) consists of
point masses of an−2 at ±φe1, . . . ,±φen−1 and an−1 at ±en, so S(φKa ]La, ·) consists
of point masses of an−2 at ±e1 . . . ,±en−1,±φe1, . . . ,±φen−1 and 1+ an−1 at ±en.

Minkowski’s existence theorem (see, for example, [15, Theorem A.3.2]) guarantees
the existence of a convex polytope J with centroid at the origin such that

S(J, ·) =
∑
{δx : x = ±e1 . . . ,±en,±φe1, . . . ,±φen−1},

where δx denotes a point mass of 1 at x. Then J is an o-symmetric cylinder with the xn-
axis as its axis, and the formula for S(J, ·) shows that the cross-section Q = J ∩ e⊥n has
volume 1 and 4(n−1) facets whose volumes are equal. Letψa be the linear transformation
of Rn defined by

ψa(y + sen) = (1+ an−1)
1
n−1 y + an−2(1+ an−1)−

n−2
n−1 sen

for y ∈ e⊥n and s ∈ R. Then ψaJ is also an o-symmetric cylinder with the xn-axis as
its axis and cross-section Qa = ψa(J ) ∩ e

⊥
n of volume 1 + an−1. Moreover, each facet

of ψaJ parallel to en is the product of an (n− 2)-dimensional face parallel to e⊥n and an
edge parallel to en. Its volume is therefore the volume of the corresponding parallel facet
of J , which is 1, times(

((1+ an−1)
1
n−1 )n−2)(an−2(1+ an−1)−

n−2
n−1
)
= an−2.

Since their volumes and outer unit normals are therefore the same, ψaJ = φKa ] La , by
the uniqueness part of Minkowski’s existence theorem. Thus the formula for ψa shows
that Qa → Q and φKa ] La → Q as a→ 0.

Now the theorem is proved, because if ] had a continuous extension ∗ defined on
(Kns )2, we would have [−en/2, en/2] ∗P = P , [−en/2, en/2] ∗P = Q, and P 6= Q. ut

5.7. o-symmetrizations

Examples of o-symmetrizations are the central symmetral (see [15, p. 106])

1K = 1
2K +

1
2 (−K)

for K ∈ Kn, the pth central symmetral

1pK =
( 1

2K
)
+p

( 1
2 (−K)

)
=

1
2 (K +p (−K))

for K ∈ Kn and p ≥ 1, the chordal symmetral (see [15, p. 196])

1̃K = 1
2K +̃

1
2 (−K)
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for K ∈ Sn, and the pth chordal symmetral

1̃pK =
( 1

2K
)
+̃p

( 1
2 (−K)

)
=

1
2 (K +̃p (−K))

for K ∈ Sn and p 6= 0. For the latter, see [15, p. 234], where different notation is
used. Note that the fact that 1pK ∈ Kns for K ∈ Kn follows from Theorem 5.1 if Lp
addition is defined as in [36], or, equivalently, from the definition given by (20) (see also
Example 6.7).

The o-symmetrizations 1 and 1p satisfy the o-symmetrization properties listed in
Section 4, except Property 6, section covariance, and 1̃ and 1̃p satisfy Properties 1, 4, 6,
and 7, and also Property 2 if p > 0. Here Property 1 is with k = 1.

There are many other important o-symmetrizations in convex geometry, for example,
the projection body, intersection body, and centroid body operators, usually denoted by
5K , IK , and 0K , respectively. See, for example, [15]. Note that Steiner symmetrization
is not an o-symmetrization.

6. M-addition

We begin by generalizing the definition of M-addition in (21). Let M be an arbitrary
subset of Rm and define the M-sum ⊕M(K1, . . . , Km) of arbitrary sets K1, . . . , Km in
Rn by

⊕M(K1, . . . , Km) =
{ m∑
i=1

aix
(i)
: x(i) ∈ Ki, (a1, . . . , am) ∈ M

}
. (25)

For m = 2 and n ≥ 2, this becomes M-addition as in (21).
An equivalent definition is

⊕M(K1, . . . , Km) =
⋃
{a1K1 + · · · + amKm : (a1, . . . , am) ∈ M}.

Several properties of M-addition, natural m-ary analogues of those for binary addi-
tions listed in Section 4, follow easily from these equivalent definitions. Them-ary opera-
tion⊕M is monotonic and GL(n)-covariant. IfM andKi , i = 1, . . . , m, are compact, then
⊕M(K1, . . . , Km) is also compact. In the various settings below, when ⊕M : Cm → Kn,
where C = Kn, Kno , or Kns , ⊕M is continuous in the Hausdorff metric and since it is also
GL(n)-covariant, it is homogeneous of degree 1, rotation covariant, and, by a straightfor-
ward extension of Lemma 4.1, projection covariant.

Theorem 6.1. Let m ≥ 2 and let M be a subset of Rm.

(i) If m ≤ n, the operation ⊕M maps (Kn)m to Kn if and only if M ∈ Km and M is
contained in one of the 2m closed orthants of Rm. (The assumption m ≤ n is needed
only to conclude that M ∈ Km.)

(ii) If M ∈ Km, then ⊕M maps (Kno)m to Kno if and only if M is contained in one of the
2m closed orthants of Rm.



Operations between sets in geometry 2317

Proof. (i) Let

M ′ = {x = (x1, . . . , xn) ∈ Rn : (x1, . . . , xm) ∈ M,xm+1 = · · · = xn = 0}.

(Here we assume that m ≤ n.) If ⊕M maps (Kn)m to Kn, then ⊕M({e1}, . . . , {em}) =

M ′ ∈ Kn. Since M ′ is a copy of M embedded into Rn, we have M ∈ Km.
Suppose thatM is not contained in one of the 2m closed orthants of Rm. Then there are

c, d > 0 and i ∈ {1, . . . , m} such thatM| lei = [−cei, dei]. LetKi = conv{o, e1, . . . , en}

and Kj = {o} for 1 ≤ j 6= i ≤ m. Then

⊕M(K1, . . . , Km) = {aix : (a1, . . . , am) ∈ M, x ∈ Ki}

= {aix : x ∈ Ki, −c ≤ ai ≤ d} = −cKi ∪ dKi

is not convex.
Conversely, suppose that M ∈ Km is contained in one of the 2m closed orthants

of Rm. Let Ki ∈ Kn, i = 1, . . . , m, and let w, z ∈ ⊕M(K1, . . . , Km). Then there are
x(i), y(i) ∈ Ki , i = 1, . . . , m, and (a1, . . . , am), (b1, . . . , bm) ∈ M such that

w =

m∑
i=1

aix
(i) and z =

m∑
i=1

biy
(i).

Let 0 < t < 1. We have to show that (1− t)w + tz ∈ ⊕M(K1, . . . , Km).
Our assumption on M implies that ai and bi have the same sign for all i = 1, . . . , m.

If at least one of ai and bi are nonzero for all i = 1, . . . , m, then (1− t)ai + tbi 6= 0 for
all i = 1, . . . , m. In this case

(1− t)w + tz = (1− t)
m∑
i=1

aix
(i)
+ t

m∑
i=1

biy
(i)
=

m∑
i=1

((1− t)aix(i) + tbiy(i))

=

m∑
i=1

(
((1− t)ai + tbi)

(1− t)aix(i) + tbiy(i)

(1− t)ai + tbi

)
∈ ⊕M(K1, . . . , Km),

since

(1− t)aix(i) + tbiy(i)

(1− t)ai + tbi
=

(1− t)|ai |
(1− t)|ai | + t |bi |

x(i) +
t |bi |

(1− t)|ai | + t |bi |
y(i) ∈ Ki (26)

for i = 1, . . . , m, and

((1− t)a1 + tb1, . . . , (1− t)am + tbm) = (1− t)(a1, . . . , am)+ t (b1, . . . , bm) ∈ M.

If ai = bi = 0 for some i, we have (1− t)ai + tbi = 0, so the point in Ki in (26) can be
replaced by an arbitrary point in Ki .

(ii) Let M ∈ Km. Obviously, if o ∈ Ki for i = 1, . . . , m, then o ∈ ⊕M(K1, . . . , Km).
The result follows directly from this and the proof of (i). ut

Note that if the dimension of M is less than m, it is possible that M is contained in more
than one of the 2m closed orthants of Rm.

The fact that ⊕M is Lp addition on (Kno)2 when M is given by (22) shows that in part
(ii) of the previous theorem, it is not necessary that M is convex.
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Lemma 6.2. If M ⊂ Rm and Ki ∈ Kns , i = 1, . . . , m, then

⊕M(K1, . . . , Km) = ⊕M̂(K1, . . . , Km),

where M̂ is the 1-unconditional hull of M defined by (8).

Proof. Since M ⊂ M̂ , we have ⊕M(K1, . . . , Km) ⊂ ⊕M̂(K1, . . . , Km). For the reverse
inclusion, let z ∈ ⊕M̂(K1, . . . , Km). Then there are x(i) ∈ Ki and −1 ≤ αi ≤ 1,
i = 1, . . . , m, and (a1, . . . , am) ∈ M such that

z =

m∑
i=1

αiaix
(i)
=

m∑
i=1

aiy
(i),

where y(i) = αix(i) ∈ Ki because Ki ∈ Kns . Hence z ∈ ⊕M(K1, . . . , Km). ut

Theorem 6.3. Let 2 ≤ m ≤ n and let M be a compact subset of Rm. Then ⊕M maps
(Kns )m to Kns if and only if the 1-unconditional hull M̂ of M is convex. (The assumption
m ≤ n is not needed for the “if” part.)

Proof. LetKi ∈ Kns , i = 1, . . . , m, and suppose that M̂ is convex. SinceM is compact, it
is easy to see that M̂ is also compact. LetM ′ = M̂ ∩ [0,∞)m. Then M̂ ′ = M̂ because M̂
is 1-unconditional. Therefore, by Lemma 6.2, ⊕M(K1, . . . , Km) = ⊕M ′(K1, . . . , Km).
By Theorem 6.1(i), it follows that ⊕M(K1, . . . , Km) ∈ Kn. Also, ⊕M(K1, . . . , Km) is
o-symmetric due to the o-symmetry of Ki , i = 1, . . . , m, so ⊕M maps (Kns )m to Kns .

Conversely, suppose that ⊕M maps (Kns )m to Kns . Then

⊕M([−e1, e1], . . . , [−em, em])

=

{ m∑
i=1

aiαiei : (a1, . . . , am) ∈ M, |αi | ≤ 1, i = 1, . . . , m
}

= {(α1a1, . . . , αmam, 0, . . . , 0) : (a1 . . . , am) ∈ M, |αi | ≤ 1, i = 1, . . . , m}

belongs to Kns and is a copy of M̂ in Rn. Therefore M̂ is convex. ut

As was mentioned in Section 5.3, the following corollary was proved by Protasov [42]
for 1-unconditional M and m = 2.

Corollary 6.4. Let m ≥ 2. If M ∈ Km and M is either contained in one of the 2m closed
orthants of Rm or is 1-unconditional, then ⊕M maps (Kns )m to Kns .

Proof. Either of the two hypotheses on M guarantees that M̂ is convex, so the result
follows directly from the previous theorem. (In the case of the first hypothesis, it is also
an easy consequence of Theorem 6.1(i).) ut

Obviously there are nonconvex setsM such that M̂ is convex and hence⊕M maps (Kns )m
to Kns . Indeed, we have already observed in Section 5.3 that whenM is the nonconvex set
defined by (22), the operation ⊕M is Lp addition as defined in [36], and as an operation
on (Kns )2, this is equivalent to⊕M̂ , where M̂ is the unit ball in ln

p′
. However, there are also
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compact convex sets M , even o-symmetric ones, such that M̂ is not convex. A specific
example is given by M = conv{(2, 1), (−2,−1), (−1, 2), (1,−2)}; the 1-unconditional
hull M̂ of this o-symmetric square contains the points (±2,±1) and (±1,±2) but not
(±3/2,±3/2), so M̂ is not convex. Consequently, by Theorem 6.3, it is not true in general
that ⊕M maps (Kns )m to Kns when M ∈ Kns .

Theorem 6.5. (i) Let m ≥ 2 and let M ∈ Km be contained in one of the 2m closed
orthants of Rm. Let εi = ±1, i = 1, . . . , m, denote the sign of the ith coordinate of a
point in the interior of this orthant and let

M+ = {(ε1a1, . . . , εmam) : (a1, . . . , am) ∈ M}

be the reflection of M contained in [0,∞)m. If Ki ∈ Kn, i = 1, . . . , m, then

h⊕M (K1,...,Km)(x) = hM+(hε1K1(x), . . . , hεmKm(x)) (27)

for all x ∈ Rn.
(ii) Let m ≥ 2 and let M ∈ Km be 1-unconditional. If Ki ∈ Kns , i = 1, . . . , m, then

h⊕M (K1,...,Km)(x) = hM(hK1(x), . . . , hKm(x))

for all x ∈ Rn.

Proof. (i) By Theorem 6.1(i), ⊕M(K1, . . . , Km) ∈ Kn. If z ∈ ⊕M(K1, . . . , Km), then
by (25), z = a1x

(1)
+ · · ·+ amx

(m) with x(i) ∈ Ki , i = 1, . . . , m, and (a1, . . . , am) ∈ M .
If u ∈ Sn−1, then using (9), we have

z · u =

m∑
i=1

ai(x
(i)
· u) =

m∑
i=1

(εiai)(εix
(i)
· u) ≤

m∑
i=1

(εiai)hεiKi (u)

= (ε1a1, . . . , εmam) · (hε1K1(u), . . . , hεmKm(u)) ≤ hM+(hε1K1(u), . . . , hεmKm(u)).

By (9) again, this shows that

h⊕M (K1,...,Km)(u) ≤ hM+(hε1K1(u), . . . , hεmKm(u)).

Now choose (a1(u), . . . , am(u)) ∈ M such that hM+(hε1K1(u), . . . , hεmKm(u)) is
equal to (ε1a1(u), . . . , εmam(u)) · (hε1K1(u), . . . , hεmKm(u)). Choose x(i) ∈ Ki such that
εix

(i)
· u = hεiKi (u) for i = 1, . . . , m. Then hM+(hε1K1(u), . . . , hεmKm(u)) is equal to

(ε1a1(u), . . . , εmam(u)) · (ε1x
(1)
· u, . . . , εmx

(m)
· u) =

( m∑
i=1

ai(u)x
(i)
)
· u

≤ h⊕M (K1,...,Km)(u).

This proves the result for x ∈ Sn−1, and the general case follows by the homogeneity of
support functions.
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(ii) By Corollary 6.4, ⊕M(K1, . . . , Km) ∈ Kns . If z ∈ ⊕M(K1, . . . , Km), then by
(25), z = a1x

(1)
+ · · · + amx

(m) with x(i) ∈ Ki , i = 1, . . . , m, and (a1, . . . , am) ∈ M . If
u ∈ Sn−1, then using (9) and (|a1|, . . . , |am|) ∈ M , we have

z · u =

m∑
i=1

ai(x
(i)
· u) ≤

m∑
i=1

|ai |hKi (u) = (|a1|, . . . , |am|) · (hK1(u), . . . , hKm(u))

≤ hM(hK1(u), . . . , hKm(u)).

By (9) again, this shows that

h⊕M (K1,...,Km)(u) ≤ hM(hK1(u), . . . , hKm(u)).

The rest of the proof is as in part (i) with M+ = M and εi = 1 for i = 1, . . . , m. ut

Corollary 6.6. Let m ≥ 2 and let M be a compact convex set in Rm. Then

F(x) = hM(hK1(x), . . . , hKm(x)), (28)

for x ∈ Rn, is a support function whenever Ki ∈ Kn, i = 1, . . . , m, if and only if
M ⊂ [0,∞)m.

Proof. Let M ⊂ [0,∞)m be a compact convex set and let Ki ∈ Kn, i = 1, . . . , m. By
Theorem 6.1(i), ⊕M(K1, . . . , Km) ∈ Kn. Then the fact that F(x) is a support function
follows from Theorem 6.5(i), since in (27) we have M+ = M and εi = 1 for i =
1, . . . , m.

For the converse, suppose that F(x) is a support function whenever Ki ∈ Kn, i =
1, . . . , m. Fix j ∈ {1, . . . , m} and letKj = [−e1,−e2] andKi = {o} for 1 ≤ i 6= j ≤ m.
Then hKj (e1) = hKj (e2) = 0, hKj (e1 + e2) = −1, and of course hKi ≡ 0 for 1 ≤ i 6=
j ≤ m. Therefore

F(ek) = hM(hK1(ek), . . . , hKm(ek)) = hM(0, . . . , 0) = 0

for k = 1, 2, and

F(e1 + e2) = hM(hK1(e1 + e2), . . . , hKm(e1 + e2)) = hM(−ej ).

The subadditivity of F(x), with x = e1, e2, and e1+e2, now gives hM(−ej ) ≤ 0+0 = 0.
Since this holds for each j = 1, . . . , m, we have M ⊂ [0,∞)m. ut

Example 6.7. Let 1 < p ≤ ∞ and let

M = {(x1, x2) ∈ [0, 1]2 : xp
′

1 + x
p′

2 ≤ 1},

where p > 1 and 1/p + 1/p′ = 1. Then M is the part of the unit ball in l2
p′

contained in
the closed positive quadrant. The support function of M is given for x ∈ R2 by

hM(x1, x2) =

{
(max{x1, 0}p +max{x2, 0}p)1/p if 1 < p <∞,
max{max{x1, 0},max{x2, 0}} if p = ∞.
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By Theorem 6.5 and Corollary 6.6, for this choice of M , we have, for all K,L ∈ Kn and
x ∈ Rn,

hK⊕ML(x) = hM(hK(x), hL(x))

=

{
(max{hK(x), 0}p +max{hL(x), 0}p)1/p if 1 < p <∞,
max{max{hK(x), 0},max{hL(x), 0}} if p = ∞.

Thus we have retrieved the extension of Lp addition to sets in Kn via (20) proposed
earlier. In general, this extension is different from that in [36], but by Theorem 5.1 and its
proof, the two extensions coincide in the special case when L = −K . In particular, the
o-symmetral 4pK can be defined via either extension of Lp addition in an unambiguous
way.

The situation is different for sets in the class Kno . Indeed, suppose that F as defined
in (28) is a support function whenever Ki ∈ Kno , i = 1, . . . , m. Suppose that hM(a) ≤ 0
for some a = (a1, . . . , am) ∈ (0,∞)m, and let Ki = aiB

n, i = 1, . . . , m. Then
hKi (u) = ai for all u ∈ Sn−1 and i = 1, . . . , m. Consequently, F(u) = hM(a) ≤ 0 for
all u ∈ Sn−1, which implies that F ≡ 0 and hence M = {o}. It follows that if M 6= {o},
then M ∩ [0,∞)m is a nontrivial compact convex set. However, it is not necessary that
M ⊂ [0,∞)m; for example, if m = 2 and M = B2, then

F(x) = (hK1(x)
2
+ hK2(x)

2)1/2

for all x ∈ Rn, so F is the support function of the L2 sumK1+2K2 for allK1,K2 ∈ Kno .
Next, we seek a version of Corollary 6.6 for sets in the class Kns .

Lemma 6.8. Let m ≥ 2 and let M ∈ Kms . Then

F(x) = hM(hK1(x), . . . , hKm(x)),

for x ∈ Rn, is a support function whenever Ki ∈ Kns , i = 1, . . . , m, if and only if
hM(s1, . . . , sm) is increasing in each variable on [0,∞)m.

Proof. Suppose that hM(s1, . . . , sm) is increasing in each variable for si ≥ 0, i =
1, . . . , m, and let Ki ∈ Kns , i = 1, . . . , m. Clearly F is homogeneous of degree 1. Also,
for x, y ∈ Rn, the subadditivity of support functions implies that

F(x + y) = hM(hK1(x + y), . . . , hKm(x + y))

≤ hM(hK1(x)+ hK1(y), . . . , hKm(x)+ hKm(y))

= hM
(
(hK1(x), . . . , hKm(x))+ (hK1(y), . . . , hKm(y))

)
≤ hM(hK1(x), . . . , hKm(x))+ hM(hK1(y), . . . , hKm(y)) = F(x)+ F(y).

This proves that F is a support function.
Conversely, suppose that F is a support function. To show that hM(s1, . . . , sm) is

increasing in each variable on [0,∞)m, we may, without loss of generality, prove that if
0 < t1 < t2 and si > 0, i = 1, . . . , m− 1, we have

hM(s1, . . . , sm−1, t1) ≤ hM(s1, . . . , sm−1, t2).
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In fact, it suffices to assume also that t2 < 2t1, since the general case then follows by
iteration. LetKi = [−sie1, sie1] for i = 1, . . . , m− 1, let x = (1, 1, 0, . . . , 0) ∈ Rn, and
let y = (1,−1, 0, . . . , 0) ∈ Rn. Note that hKi (x) = hKi (y) = si and hKi (x + y) = 2si ,
i = 1, . . . , m − 1. Choose Km ∈ Kns such that hKm(x) = hKm(y) = t2 and hKm(x + y)
= 2t1. (This is possible since 0 < t1 < t2 < 2t1.) Then, since F is subadditive, we have

2hM(s1, . . . , sm−1, t1) = hM(2s1, . . . , 2sm−1, 2t1)
= hM(hK1(x + y), . . . , hKm(x + y)) = F(x + y)

≤ F(x)+ F(y)

= hM(hK1(x), . . . , hKm(x))+ hM(hK1(y), . . . , hKm(y))

= 2hM(s1, . . . , sm−1, t2),

as required. ut

Note that it is not necessary that hM is strictly increasing in each variable. This is
shown by taking M = conv{±e1, . . . ,±em} (i.e., the unit ball in lm1 ), in which case
hM(s1, . . . , sm) = max{s1, . . . , sm} for s1, . . . , sm ≥ 0.

If M ∈ Km is 1-unconditional, then M is o-symmetric and it follows from Theo-
rem 6.5(ii) and Lemma 6.8 that hM is increasing in each variable on [0,∞)m. When
m = 2, the next lemma provides a sort of converse statement.

Lemma 6.9. Suppose that M ∈ K2
o is such that hM(s, t) is increasing in each variable

for s, t ≥ 0. Then there is an M ′ ∈ K2 that is 1-unconditional and such that hM ′(s, t) =
hM(s, t) for s, t ≥ 0.

Proof. Suppose that M ∈ K2
o is such that hM(s, t) is increasing in each variable for

s, t ≥ 0. We claim that among the points in M with the greatest x2-coordinate, there is
one contained in [0,∞)2. If this is not the case, let (−a, b), a, b > 0, be the one with the
greatest x1-coordinate. Let s, t > 0 be such that the tangent line toM orthogonal to (s, t)
meets ∂M at (−c, d), where 0 < c ≤ a and 0 ≤ d ≤ b. Then

hM(s, t) = (−c, d) · (s, t) = −cs + dt < bt = hM(0, t),

which contradicts the fact that hM(s, t) is increasing in s for s ≥ 0. This proves the claim.
Similarly, one can show that among the points inM with the greatest x1-coordinate, there
is one contained in [0,∞)2.

Let z be the point in M ∩ [0,∞)2 with the greatest x2-coordinate and such that the
(possibly degenerate) horizontal line segment T with left endpoint on the x2-axis and
right endpoint equal to z has relative interior disjoint from M . Similarly, let z′ be the
point inM ∩ [0,∞)2 with the greatest x1-coordinate and such that the (possibly degener-
ate) vertical line segment T ′ with lower endpoint on the x1-axis and upper endpoint equal
to z′ has relative interior disjoint from M . Let M ′ be the compact convex set such that
M ′ ∩ [0,∞)2 = conv{M ∩ [0,∞)2, T , T ′} and M ′ is 1-unconditional. By this construc-
tion, hM ′(s, t) = hM(s, t) for all s, t ≥ 0. ut

Of special interest in Section 8 is the behavior of the M-sum of a compact convex set K
in Rn and its reflection −K , particularly when M ∈ K2 is symmetric in the line x1 = x2.
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By Theorem 6.1(i), K ⊕M (−K) is convex and hence easily seen to be in Kns , when
M ⊂ [0,∞)2, and then Theorem 6.5(i) implies that hM(hK(x), h−K(x)), x ∈ Rn, is
the support function of K ⊕M (−K). It is natural to ask if these observations remain
true when M ∈ K2

s . The following example shows that this is not the case, even if M is
1-unconditional and symmetric in the line x1 = x2 and o ∈ K .

Let M = [−1, 1]2 and let K = [0, 1]2. Then (0, 2) = 1(0, 1) + (−1)(0,−1)
and (−1, 1) = (−1)(1, 0) + (−1)(0,−1) both belong to K ⊕M (−K). We claim that
(−1/2, 3/2) 6∈ K ⊕M (−K). Indeed, otherwise there would be 0 ≤ x1, x2, y1, y2 ≤ 1
and −1 ≤ a, b ≤ 1 such that −1/2 = ax1 − by1 and 3/2 = ax2 − by2. For the first
equation to hold, we need a < 0 or b > 0, or both, but then the second equation cannot
hold. This proves the claim and shows that K ⊕M (−K) is not convex.

7. Operations between o-symmetric compact convex or star sets

Here we focus on projection covariant operations ∗ : (Kns )2 → Kn or section covariant
operations ∗ : (Sns )2 → Sn. We remark at the outset that in this case, the distributivity
property (rK) ∗ (sK) = (r + s)K is too strongly tied to Minkowski or radial addition for
a nontrivial classification theorem. Indeed, we have the following easy result.

Theorem 7.1. Let ∗ : (Kns )2 → Kn (or ∗ : (Sns )2 → Sn) be projection covariant (or
section covariant, respectively) and have the distributivity property. ThenK ∗L = K+L
for all K,L ∈ Kns (or K ∗ L = K +̃ L for all K,L ∈ Sns , respectively).
Proof. Suppose that K,L ∈ Kns and u ∈ Sn−1, and recall that lu denotes the line through
the origin parallel to u. Then

(K ∗ L)| lu = (K| lu) ∗ (L| lu) = [−ru, ru] ∗ [−su, su]

= (r[−u, u]) ∗ (s[−u, u]) = (r + s)[−u, u] = [−(r + s)u, (r + s)u]

= [−ru, ru] + [−su, su] = (K| lu)+ (L| lu) = (K + L)| lu

for suitable r, s ≥ 0 (depending on u) and all u ∈ Sn−1. But this implies that hK∗L(u) =
hK+L(u) for all u ∈ Sn−1 and hence K ∗L = K +L. The other case follows in a similar
fashion. ut

The next two results can be stated in different versions, according to the corresponding
versions of the results in Section 3. In both results, we interpret Lp addition for −∞ ≤
p < 1, p 6= 0, via (23) and the remarks following it, since when n = 1, the classes of
o-symmetric compact convex sets and o-symmetric star sets coincide.

Lemma 7.2. Let ∗ : (K1
s )

2
→ K1

s be continuous, homogeneous of degree 1, and asso-
ciative. Then either K ∗ L = {o}, or K ∗ L = K , or K ∗ L = L, for all K,L ∈ K1

s , or
else ∗ = +p, i.e., the operation is Lp addition, for some −∞ ≤ p 6= 0 ≤ ∞.
Proof. Suppose that for each s, t ≥ 0,

[−s, s] ∗ [−t, t] = [−f (s, t), f (s, t)].

Then the function f : [0,∞)2 → [0,∞) satisfies the hypotheses of Proposition 3.2, and
the result follows immediately. ut
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Corollary 7.3. Let ∗ : (K1
s )

2
→ K1

s be a continuous, quasi-homogeneous, and associa-
tive operation that has the identity property. Then ∗ = +p for some 0 < p ≤ ∞.

Proof. This follows directly from Lemmas 4.2 and 7.2, bearing in mind that the identity
property fails in general when −∞ ≤ p < 0. ut

To see that none of the assumptions of Lemma 7.2 nor the first three assumptions of
Corollary 7.3 can be omitted, define ∗ by taking the function f in the proof of Lemma 7.2
to be f1, f2, or f5 as defined after Proposition 3.1. The operation ∗ defined by

[−s, s] ∗ [−t, t] = [−st, st]

for s, t ≥ 0 shows that the identity property in Corollary 7.3 cannot be omitted either.

Lemma 7.4. If n ≥ 2, then ∗ : (Kns )2 → Kn is projection covariant if and only if there
is a homogeneous-of-degree-1 function f : [0,∞)2 → [0,∞) such that

hK∗L(x) = f (hK(x), hL(x)) (29)

for all K,L ∈ Kns and all x ∈ Rn.

Proof. Suppose that ∗ : (Kns )2 → Kn is projection covariant and let u ∈ Sn−1. Then for
any two o-symmetric compact convex sets K and L in Rn, we have

(K ∗ L)| lu = (K| lu) ∗ (L| lu). (30)

One consequence of this is that if I and J are o-symmetric closed intervals in lu, we must
have I ∗ J ⊂ lu. Hence there are functions fu, gu : [0,∞)2 → R such that −gu ≤ fu
and

[−su, su] ∗ [−tu, tu] = [−gu(s, t)u, fu(s, t)u] (31)

for all s, t ≥ 0.
Let 0 ≤ α ≤ 1 and choose v ∈ Sn−1 such that u · v = α. Using (30) with K =

[−su, su], L = [−tu, tu], and lu replaced by lv , and (31), we obtain

α[−gu(s, t)v, fu(s, t)v] = [−gu(s, t)u, fu(s, t)u]| lv

= ([−su, su] ∗ [−tu, tu])| lv = ([−su, su]| lv) ∗ ([−tu, tu]| lv)

= [−αsv, αsv] ∗ [−αtv, αtv] = [−gv(αs, αt)v, fv(αs, αt)v]

for all s, t ≥ 0. Therefore

fv(αs, αt) = αfu(s, t) and gv(αs, αt) = αgu(s, t) (32)

for all s, t ≥ 0. Interchanging u and v in the first equation in (32), we also have

fu(αs, αt) = αfv(s, t) (33)

and hence
fu(α

2s, α2t) = αfv(αs, αt) = α
2fu(s, t)
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for all s, t ≥ 0. Setting r = α2, we get

fu(rs, rt) = rfu(s, t) (34)

for 0 ≤ r ≤ 1 and s, t ≥ 0. Replacing s and t by s/r and t/r , respectively, yields

fu(s/r, t/r) = (1/r)fu(s, t) (35)

for 0 < r ≤ 1 and s, t ≥ 0. From (34) and (35), it follows that fu is homogeneous of
degree 1.

Now fix u ∈ Sn−1. Let v ∈ Sn−1 be such that u · v > 0 and choose 0 < α < 1 such
that α = u · v. Then from (33) and the homogeneity of fu, we obtain

αfv(s, t) = fu(αs, αt) = αfu(s, t)

for all s, t ≥ 0. This shows that fv = fu for all such v and consequently fu = f , say, is
independent of u.

Applying the same arguments to the second equation in (32), we see that gu = g,
say, is also homogeneous of degree 1 and independent of u. Now from (30) and (31) with
fu = f and gu = g, we obtain

[−hK∗L(−u)u, hK∗L(u)u] = (K ∗ L)| lu = (K| lu) ∗ (L| lu)

= [−hK(u)u, hK(u)u] ∗ [−hL(u)u, hL(u)u]

= [−g(hK(u), hL(u))u, f (hK(u), hL(u))u].

Comparing the second coordinates in the previous equation, we conclude that

hK∗L(u) = f (hK(u), hL(u)) (36)

for all u ∈ Sn−1. (Note that in view of the equality of the first coordinates and the o-
symmetry of K and L, we must in fact have g(s, t) = f (s, t) ≥ 0 for all s, t ≥ 0.)

Let r ≥ 0. Then (36) and the homogeneity of support functions imply that

hK∗L(ru) = rhK∗L(u) = rf (hK(u), hL(u)) = f (rhK(u), rhL(u))

= f (hK(ru), hL(ru)),

and (29) follows.
For the converse, let S ∈ G(n, k), 1 ≤ k ≤ n−1, be a subspace and let x ∈ Rn. Using

(11) and (29), we obtain

h(K∗L)|S(x) = hK∗L(x|S) = f (hK(x|S), hL(x|S))

= f (hK|S(x), hL|S(x)) = h(K|S)∗(L|S)(x),

establishing the projection covariance of ∗. ut

In view of (29), we obtain the following corollary.

Corollary 7.5. If n ≥ 2 and ∗ : (Kns )2 → Kn is projection covariant, then in fact
∗ : (Kns )2 → Kns .
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Another easy consequence of Lemma 7.4 is that if n ≥ 2, then any projection covariant
operation ∗ : (Kns )2 → Kn must be both homogeneous of degree 1 and rotation covariant.
However, an even stronger conclusion will be drawn in Corollary 7.7.

Theorem 7.6. Let n ≥ 2. An operation ∗ : (Kns )2 → Kn is projection covariant if and
only if it can be defined by

hK∗L(x) = hM(hK(x), hL(x)) (37)

for all K,L ∈ Kns and x ∈ Rn, or equivalently by

K ∗ L = K ⊕M L, (38)

where M is a 1-unconditional compact convex set in R2. Moreover, M is uniquely deter-
mined by ∗.

Proof. By Lemma 7.4, the operation defined by (37) is projection covariant.
Conversely, let ∗ : (Kns )2 → Kn be projection covariant. By Lemma 7.4, (29) holds

for some homogeneous-of-degree-1 function f : [0,∞)2 → [0,∞).
LetK0 = [−e1, e1], L0 = [−e2, e2], and S = lin{e1, e2}. From the projection covari-

ance of ∗, we have

(K0 ∗ L0)|S = (K0|S) ∗ (L0|S) = K0 ∗ L0,

so K0 ∗L0 ⊂ S. Identifying S with R2 in the natural way, we let M = K0 ∗L0. Then for
x = (x1, . . . , xn) ∈ Rn with x1, x2 ≥ 0, (29) with K = K0 and L = L0 yields

hM(x1, x2) = hK0∗L0(x) = f (hK0(x), hL0(x)) = f (|x1|, |x2|) = f (x1, x2). (39)

Since hK(x), hL(x) ≥ 0 for allK,L ∈ Kns and all x ∈ Rn, (37) follows directly from (29)
and (39). Moreover, from its definition and Corollary 7.5, M is an o-symmetric compact
convex set.

By (37) and Lemma 6.8 with m = 2, hM(s, t) is increasing in each variable for
s, t ≥ 0. By Lemma 6.9, there exists a 1-unconditional set M ′ ∈ K2 such that hM ′ = hM
on [0,∞)2. Hence we can assume that M has this property. Now (38) follows from (37)
via Theorem 6.5(ii) with m = 2. The equivalence of (37) and (38) is also a consequence
of Theorem 6.5(ii) with m = 2.

Let x1, x2 ≥ 0. Then (37) with K = x1B
n and L = x2B

n yields hK∗L(u) =
hM(x1, x2) for u ∈ Sn−1. This shows that M ∩ [0,∞)2, and since M is 1-unconditional,
M itself is uniquely determined by the operation ∗. ut

Corollary 7.7. Let n ≥ 2. An operation ∗ : (Kns )2 → Kn is projection covariant if and
only if it is continuous and GL(n)-covariant (and hence homogeneous of degree 1).

Proof. If ∗ is continuous and GL(n)-covariant, then it is projection covariant by Lem-
ma 4.1 and homogeneous of degree 1. Since ⊕M : (Kns )2 → Kns is continuous and
GL(n)-covariant, the converse follows from Theorem 7.6. ut
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Corollary 7.8. Neither polar Lp addition, for n ≥ 2 and −∞ ≤ p ≤ −1, nor Blaschke
addition, for n ≥ 3, can be extended to a projection covariant operation ∗ : (Kns )2 → Kn.

Proof. This is an immediate consequence of Theorems 5.2 and 5.3 and Corollary 7.7. ut

The special case of the next theorem when ∗ = ⊕M for some 1-unconditional compact
convex set M in R2 was proved earlier by Protasov [43], by a fairly intricate direct argu-
ment. Rather than appealing to [43], however, we prefer to utilize the more general results
of Section 3.

Theorem 7.9. If n ≥ 2, then ∗ : (Kns )2 → Kn is projection covariant and associative
if and only if ∗ = ⊕M , where either M = {o}, or M = [−e1, e1], or M = [−e2, e2],
or M is the unit ball in l2p for some 1 ≤ p ≤ ∞; in other words, if and only if either
K ∗L = {o}, or K ∗L = K , or K ∗L = L, for all K,L ∈ Kns , or else ∗ = +p for some
1 ≤ p ≤ ∞.

Proof. Note that by Corollary 7.5, we have ∗ : (Kns )2 → Kns , so the associativity property
makes sense. By Theorem 7.6, (37) holds for some 1-unconditional compact convex set
M in R2. The support function hM(s, t) is continuous and homogeneous of degree 1.
Since ∗ is associative, (37) implies that

hM
(
hK(x), hM(hL(x), hN (x))

)
= hM

(
hM(hK(x), hL(x)), hN (x)

)
for all K,L,N ∈ Kns and x ∈ Rn. Setting K = rBn, L = sBn, and N = tBn, for
r, s, t ≥ 0, we obtain

hM(r, hM(s, t)) = hM(hM(r, s), t),

i.e., hM is associative. It follows that hM satisfies the hypotheses of Proposition 3.2 and
so must be of one of the forms listed there. The case p < 1 is excluded because hM is
a support function. The remaining possibilities are that M = {o}, or M = [−e1, e1], or
M = [−e2, e2], or M is the unit ball in l2p for some p ≥ 1. ut

The three elementary exceptional cases in Theorem 7.9 can be eliminated by imposing
the identity property in addition to those assumed there, i.e., projection covariance and
associativity. The following corollary assumes continuity and GL(n)-covariance, but by
Corollary 7.7, could equivalently be stated with the assumption of projection covariance
instead.

Corollary 7.10. If n ≥ 2, the operation ∗ : (Kns )2→ Kn is continuous, GL(n)-covariant,
associative, and has the identity property if and only if ∗ = +p for some 1 ≤ p ≤ ∞.

Proof. By Lemma 4.1, if ∗ is continuous and GL(n)-covariant, then it is also projection
covariant and Theorem 7.9 applies. The identity property assumption eliminates the other
possibilities for ∗ in the statement of Theorem 7.9. The converse is clear. ut

Various examples of operations ∗ : (Kns )2 → Kn can be obtained by defining

hK∗L(x) = f (hK(x), hL(x)) (40)
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for all K,L ∈ Kns and x ∈ Rn, where f : [0,∞)2 → R. However, the options for the
function f are already severely limited by the fact that the right-hand side of (40) must be
a support function. It is not enough that f is nonnegative and homogeneous of degree 1;
for example, we cannot take f = f5 as defined after Proposition 3.1.

Example 7.11. The force of Theorem 7.9 is apparent when considering the possibility of
taking

f (s, t) = sinh−1(sinh s + sinh t)
for s, t ≥ 0. Then (40) takes the form

hK∗L(x) = sinh−1(sinhhK(x)+ sinhhL(x))

for all K,L ∈ Kns and x ∈ Rn. The subadditivity of hK∗L then follows from the subaddi-
tivity of hK and hL, together with the fact that the sinh function is increasing and satisfies
Mulholland’s inequality (14). However, hK∗L is not homogeneous of degree 1. This can
be proved directly, but since the resulting operation would be associative and projection
covariant, it is already a consequence of Theorem 7.9.

In fact, from Lemma 7.4 and Theorem 7.6 we know that if (40) holds, where f is
homogeneous of degree 1, then ∗ = ⊕M for some 1-unconditional compact convex setM .
The next example is of this type.

Example 7.12. To show that associativity cannot be dropped in Theorem 7.9 and Corol-
lary 7.10, we can take in (40) the function

f (s, t) = f6(s, t) =
1
2 (s + t)+

1
2 (s

2
+ t2)1/2.

The function f6 is homogeneous of degree 1 and the resulting operation ∗ : (Kns )2 → Kn,
defined by

hK∗L(x) =
1
2 (hK(x)+ hL(x))+

1
2 (hK(x)

2
+ hL(x)

2)1/2,

for all K,L ∈ Kns and x ∈ Rn, satisfies all the other hypotheses of those results. This
corresponds to M-addition with M = 1

2 [−1, 1]2 + 1
2B

2. More generally, let λi > 0, i =
1, . . . , m, satisfy

∑m
i=1 λi = 1. Let pi ≥ 1, let B2

pi
be the unit ball in l2pi , i = 1, . . . , m,

and define
M = λ1B

2
p1
+ · · · + λmB

2
pm
.

Then the operation⊕M is continuous, GL(n)-covariant, and has the identity property, but
is not associative.

Example 7.13. Define

K ∗ L =

{
K ∩ L if K 6= {o} and L 6= {o},
K ∪ L if K = {o} or L = {o}

for all K,L ∈ Kns . This operation is GL(n)-covariant, associative, and has the identity
property, but it is neither continuous nor projection covariant (take K = [−e1, e1] and
L = [−e2, e2] and consider projections onto the x1-axis). This shows that projection
covariance cannot be omitted in Theorem 7.9 and continuity cannot be dropped in Corol-
lary 7.10.
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Example 7.14. Let n ≥ 2 and define

K ∗ L =

(
Hn(K)1/n +Hn(L)1/n

κ
1/n
n

)
Bn

for all K,L ∈ Kns . This operation is continuous, homogeneous of degree 1, rotation
covariant, and associative, but is not projection covariant and does not have the identity
property. This also shows that projection covariance cannot be omitted in Theorem 7.9.

Example 7.15. Let n ≥ 2 and let F : Kns → Kns be such that F(K) is the set obtained by
rotatingK by an angle equal to its volume Hn(K) around the origin in the {x1, x2}-plane.
Note that since Hn(F (K)) = Hn(K), the map F is injective and so F−1 is defined. Of
course, F−1 rotates by an angle −Hn(K) instead. Now define

K ∗ L = F−1(F (K)+ F(L)) (41)

for all K,L ∈ Kns . It is easy to check that ∗ is continuous, associative, homogeneous
of degree 1, rotation covariant, and moreover has the identity property. However, ∗ is
not projection covariant or GL(n)-covariant. This is rather clear from Theorem 7.9 and
Corollary 7.10, but an explicit example can be constructed as follows.

LetK = [−1/2, 1/2]× [−π1/(n−1)/2, π1/(n−1)/2]n−1 and L = [−(1/4)e1, (1/4)e1]

be an o-symmetric coordinate box and line segment in the x1-axis in Rn, respectively.
Since Hn(K| le1) = Hn(L| le1) = 0, we have F(K| le1) = K| le1 and F(L| le1) = L| le1

and hence
(K| le1) ∗ (L| le1) = (K + L)| le1 = [−3/4, 3/4].

Also, Hn(K) = π and Hn(L) = 0, so F(K) = K and F(L) = L. Therefore

F(K)+ F(L) = K + L = [−3/4, 3/4] × [−π1/(n−1)/2, π1/(n−1)/2]n−1

and hence Hn(F (K)+ F(L)) = 3π/2. Therefore

K ∗ L = [−π1/(n−1)/2, π1/(n−1)/2] × [−3/4, 3/4] × [−π1/(n−1)/2, π1/(n−1)/2]n−2

so
(K ∗ L)| le1 = [−π

1/(n−1)/2, π1/(n−1)/2] 6= (K| le1) ∗ (L| le1).

This example also shows that projection covariance cannot be omitted in Theorem 7.9
and moreover that GL(n)-covariance is essential for Corollary 7.10.

Note that the trivial operations K ∗ L = {o}, or K ∗ L = K , or K ∗ L = L, for all
K,L ∈ Kns , show that the identity property alone cannot be omitted in Corollary 7.10.

Next, we consider operations on pairs of star sets. The case n = 1 is already dealt
with in Lemma 7.2, since S1

s = K1
s , and Lp addition and pth radial addition coincide.

Lemma 7.16. Suppose that n ≥ 2 and that ∗ : (Sns )2 → Sn is rotation and section
covariant. Then ∗ : (Sns )2 → Sns .
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Proof. Let u ∈ Sn−1, and let φu be a rotation such that φu(u) = −u. Note that φulu = lu.
If K,L ∈ Sns , then

φu((K ∗ L) ∩ lu) = (φu(K ∗ L)) ∩ lu = (φuK ∗ φuL) ∩ lu

= ((φuK) ∩ lu) ∗ ((φuL) ∩ lu) = (K ∩ lu) ∗ (L ∩ lu) = (K ∗ L) ∩ lu.

Thus (K ∗ L) ∩ lu ∈ Sns for all u ∈ Sn−1, so K ∗ L ∈ Sns . ut

Theorem 7.17. If n ≥ 2, then ∗ : (Sns )2 → Sn is continuous, homogeneous of degree 1,
rotation and section covariant, and associative if and only if either K ∗ L = {o}, or
K ∗ L = K , or K ∗ L = L, for all K,L ∈ Sns , or else ∗ = +̃p for some −∞ ≤ p ≤ ∞
with p 6= 0.

Proof. If ∗ : (Sns )2 → Sn is rotation and section covariant, then by Lemma 7.16, we have
∗ : (Sns )2 → Sns , so associativity makes sense. Let u ∈ Sn−1. Since ∗ is section covariant,
for any two o-symmetric star sets K and L in Rn, we have

(K ∗ L) ∩ lu = (K ∩ lu) ∗ (L ∩ lu). (42)

One consequence of this is that if I and J are o-symmetric closed intervals in lu, we must
have I ∗ J ⊂ lu. Hence, for each u ∈ Sn−1, there is a function fu : [0,∞)2 → [0,∞)
such that

[−su, su] ∗ [−tu, tu] = [−fu(s, t)u, fu(s, t)u] (43)

for all s, t ≥ 0. Let φ be a rotation. Then φu ∈ Sn−1 and, for s, t ≥ 0, we use (43) and
the rotation covariance of ∗ to obtain

[−fφu(s, t)φu, fφu(s, t)φu] = [−sφu, sφu] ∗ [−tφu, tφu]

= φ[−su, su] ∗ φ[−tu, tu] = φ([−su, su] ∗ [−tu, tu])

= φ[−fu(s, t)u, fu(s, t)u] = [−fu(s, t)φu, fu(s, t)φu].

We conclude that fφu(s, t) = fu(s, t) for s, t ≥ 0. Since φ was an arbitrary rotation, we
conclude that fu = f , say, is independent of u. Now from (42) and (43) with fu = f , we
obtain

[−ρK∗L(u)u, ρK∗L(u)u] = (K ∗ L) ∩ lu = (K ∩ lu) ∗ (L ∩ lu)

= [−ρK(u)u, ρK(u)u] ∗ [−ρL(u)u, ρL(u)u]

= [−f (ρK(u), ρL(u))u, f (ρK(u), ρL(u))u].

Hence
ρK∗L(u) = f (ρK(u), ρL(u)) (44)

for allK,L ∈ Sns , all u ∈ Sn−1, and some function f : [0,∞)2 → [0,∞). Let r, s, t ≥ 0
and u ∈ Sn−1 and let K = sBn and L = tBn. Then (44) and the homogeneity of ∗ imply
that

f (rs, rt) = f (rρK(u), rρL(u)) = f (ρrK(u), ρrL(u))

= ρrK∗rL(u) = ρr(K∗L)(u) = rρK∗L(u) = rf (ρK(u), ρL(u)) = rf (s, t),
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so f is homogeneous of degree 1. The associativity of f is proved by the same argument
used for hM in the proof of Theorem 7.9. Let sm, tm ≥ 0,m ∈ N, be such that (sm, tm)→
(s, t) as k→∞. With Km = smBn, Lm = tmBn, K = sBn, and L = tBn, we obtain

f (sm, tm) = f (ρKm(u), ρLm(u)) = ρKm∗Lm(u)→ ρK∗L(u) = f (ρK(u), ρL(u))

= f (s, t)

as m → ∞, for all u ∈ Sn−1, by the continuity of ∗. Hence f is continuous. It follows
that f satisfies the hypotheses of Proposition 3.2 and so must be of one of the forms
listed there. Then (44) implies that ∗ is one of the operations listed in the statement of the
theorem.

The converse is clear. ut

A characterization of pth radial addition is obtained by adding the identity property to the
hypotheses of Theorem 7.17.

Note that as in Corollary 7.3, the assumption of homogeneity of degree 1 in Theo-
rem 7.17 can be weakened to quasi-homogeneity if the identity property is added to the
hypotheses.

Various examples of operations ∗ : (Sns )2 → Sn can be obtained by defining K ∗ L
by

ρK∗L(u) = f (ρK(u), ρL(u))

for u ∈ Sn−1, where f : [0,∞)2 → [0,∞). Here either the function f is homogeneous
of degree 1, or one extends the definition to Rn \ {o} by setting

ρK∗L(ru) =
1
r
ρK∗L(u)

for u ∈ Sn−1 and r > 0. Examples showing that homogeneity, continuity, and associativ-
ity cannot be dropped separately in Theorem 7.17 are obtained by taking f = f1, f = f2,
or f = f5, respectively, as given after Proposition 3.1. (Note that taking f = f2 yields an
operation that is not the same as that defined in Example 7.13; to see the difference, take
K = [−e1, e1] and L = [−e2, e2].) All these operations also have the identity property.
Example 7.14 shows that section covariance cannot be omitted, but this operation does
not have the identity property; an obvious modification of Example 7.15, where (41) is
replaced byK ∗L = F−1(F (K) +̃F(L)) for allK,L ∈ Sns serves the same purpose and
also has the identity property. Finally, the following example proves the necessity of the
hypothesis of rotation covariance.

Example 7.18. To show that rotation covariance cannot be omitted from the hypotheses
of Theorem 7.17, let n ≥ 2 and let p : Sn−1

→ [1,∞) be any function that is continuous
but not rotation invariant. (For example, when n = 2, we can take p(θ) = sin θ + 2 for
0 ≤ θ < 2π .) Then define p(ru) = p(u) for all r > 0. Define

ρK∗L(x) = (ρK(x)
p(x)
+ ρL(x)

p(x))1/p(x)

for all K,L ∈ Sns and x ∈ Rn \ {o}. Then ∗ is continuous, homogeneous of degree 1,
associative, section covariant, and has the identity property, but it is not rotation covariant.
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8. Classification of o-symmetrizations

Lemma 8.1. Let H be the closed half-plane {(s, t) ∈ R2
: −s ≤ t}. If n ≥ 2, the

o-symmetrization ♦ : Kn → Kns is projection covariant if and only if there is a homoge-
neous-of-degree-1 function f : H → [0,∞), symmetric in its variables, such that

h♦K(x) = f (hK(x), h−K(x)) (45)

for all K ∈ Kn and all x ∈ Rn.

Proof. Let ♦ : Kn → Kns be projection covariant and let u ∈ Sn−1. For K ∈ Kn, we
have

(♦K)| lu = ♦(K| lu). (46)

One consequence of this is that if I is a closed interval in lu, we must have♦I ⊂ lu. Thus
there is a function fu : H → [0,∞) such that

♦[−su, tu] = [−fu(s, t)u, fu(s, t)u] (47)

whenever (s, t) ∈ H .
Let 0 ≤ α ≤ 1 and choose v ∈ Sn−1 such that u · v = α. Using (46) with K =

[−su, tu] and lu replaced by lv , and (47), we obtain

α[−fu(s, t)v, fu(s, t)v] = [−fu(s, t)u, fu(s, t)u]| lv = (♦[−su, tu])| lv

= ♦([−su, tu]| lv) = ♦[−αsv, αtv]

= [−fv(αs, αt)v, fv(αs, αt)v]

for all (s, t) ∈ H . Therefore fv(αs, αt) = αfu(s, t) for all (s, t) ∈ H . Now exactly as
in the proof of Lemma 7.4, we conclude that fu is homogeneous of degree 1 and further
that fu = f , say, is independent of u.

Now from (46) and (47) with fu = f , we obtain

[−h♦K(u)u, h♦K(u)u] = (♦K)| lu = ♦(K| lu) = ♦[−hK(−u)u, hK(u)u]

= [−f (h−K(u), hK(u))u, f (h−K(u), hK(u))u]

for all u ∈ Sn−1. This yields

h♦K(u) = f (h−K(u), hK(u)) (48)

for all u ∈ Sn−1.
Let (s, t) ∈ H and choose K ∈ Kn and u ∈ Sn−1 such that h−K(u) = s and

hK(u) = t . Then by (48), we have

f (s, t) = f (h−K(u), hK(u)) = h♦K(u) = h♦K(−u)

= f (h−K(−u), hK(−u)) = f (hK(u), h−K(u)) = f (t, s),

so f is symmetric in its variables and (45) holds for x ∈ Sn−1. Then the homogeneity
of f can be used, just as it was in the proof of Lemma 7.4, to obtain (45).

An argument analogous to that in the last paragraph of the proof of Lemma 7.4 proves
the converse. ut
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Theorem 8.2. If n ≥ 2, the o-symmetrization ♦ : Kn → Kns is projection covariant if
and only if there is a compact convex set M in R2, symmetric in the line x1 = x2, such
that

h♦K(x) = hM(hK(x), h−K(x)) (49)

for all K ∈ Kn and all x ∈ Rn.

Proof. Let ♦ : Kn → Kns be projection covariant. Lemma 8.1 implies that there is a
homogeneous-of-degree-1 function f : H → [0,∞), symmetric in its variables, such
that (45) holds.

Let K0 = [−e2, e1]. Then for x = (x1, . . . , xn) ∈ Rn with (x1, x2) ∈ H , we have
−x1 ≤ x2 and hence

hK0(x) = max{−x · e2, x · e1} = max{−x2, x1} = x1

and similarly h−K0(x) = x2. Let S = lin{e1, e2} and note that the projection covariance
of ♦ implies that

(♦K0)|S = ♦(K0|S) = ♦K0,

so ♦K0 ⊂ S. Identifying S with R2 in the natural way, we let M = ♦K0. Then (45) with
K = K0 yields

hM(x1, x2) = h♦K0(x) = f (hK0(x), h−K0(x)) = f (x1, x2) (50)

whenever (x1, x2) ∈ H . Since (hK(x), h−K(x)) ∈ H for allK ∈ Kn and all x ∈ Rn, (49)
follows directly from (45) and (50). Finally, f is symmetric in its variables by Lemma 8.1,
so the symmetry of M in the line x1 = x2 is a consequence of (50).

The converse is clear. ut

Corollary 8.3. Let n ≥ 2. An o-symmetrization ♦ : Kn → Kns is projection covariant if
and only if it is continuous and GL(n)-covariant (and hence homogeneous of degree 1).

Proof. If ♦ is continuous and GL(n)-covariant, then it is projection covariant by Lem-
ma 4.3. If ♦ is projection covariant, then both the continuity and the GL(n)-covariance
(using the formula [15, (0.27), p. 18] for the change in a support function under a linear
transformation) are easy consequences of (49). ut

Theorem 8.2 raises the question as to which compact convex sets M in R2, symmetric
in the line x1 = x2, are such that the right-hand side of (49) is a support function for
every K ∈ Kn. A partial answer is provided by Corollary 6.6, which implies that this is
true if in addition M ⊂ [0,∞)2. It is natural to ask when it is true if in addition M is
1-unconditional.

We first observe that it is true when M is the unit ball in l21 , that is, M =

conv{±e1,±e2}. In this case the right-hand side of (49) becomes

hM(hK(x), h−K(x)) = max{|hK(x)|, |h−K(x)|}

for all x ∈ Rn, and it is a routine exercise to show that this is a support function.
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However, the right-hand side of (49) is not a support function when M is the
unit ball in l2p and 1 < p ≤ ∞. To see this, suppose the contrary, and let K =
conv{−e1,−e2,−e1−e2}, so that hK(e1) = hK(e2) = 0, hK(e1+e2) = −1, h−K(e1) =

h−K(e2) = 1, and h−K(e1 + e2) = 2. The subadditivity of hM(hK(x), h−K(x)), with
x = e1, e2, and e1 + e2, yields

hM(−1, 2) ≤ 2hM(0, 1).

Now let M be the unit l2p ball, so that hM(s, t) = (|s|p
′

+ |t |p
′

)1/p
′

and 1 ≤ p′ < ∞.
Then the previous inequality implies that 1+ 2p

′

≤ 2p
′

, which is false.
The following corollary characterizes the central symmetral operator (or, equivalently,

the difference body operator, where the difference body DK is defined by DK = K +
(−K) = 21K).

Corollary 8.4. If n ≥ 2, the o-symmetrization ♦ : Kn→ Kns is projection covariant and
translation invariant, i.e., ♦(K + z) = ♦K for all z ∈ Rn, if and only if there is a λ ≥ 0
such that ♦K = λ1K .

Proof. Let K ∈ Kn. By (49), we have

h♦(K+z)(x) = hM(hK+z(x), h−K−z(x)) = hM(hK(x)+ x · z, h−K(x)− x · z)

for all x, z ∈ Rn. Choosing z so that x · z = (h−K(x)− hK(x))/2, we obtain

h♦K(x) = h♦(K+z)(x) = hM

(
hK(x)+ h−K(x)

2
,
hK(x)+ h−K(x)

2

)
= λh1K(x),

where λ = hM(1, 1), for all x ∈ Rn. ut

Neither projection covariance nor translation invariance can be omitted in the previous
result. Indeed, the o-symmetrization defined as in Example 6.7 by ♦K = 1pK for
K ∈ Kn is projection covariant but not translation invariant when p > 1, while the
o-symmetrization defined by ♦K = Bn for each K ∈ Kn is translation invariant but not
projection covariant.

The next result is obtained in the same fashion as Theorem 7.17, with the symmetry
of f proved as in Lemma 8.1.

Theorem 8.5. If n ≥ 2, the o-symmetrization ♦ : Sn → Sns is homogeneous of degree 1
and rotation and section covariant if and only if there is a function f : [0,∞)2 → [0,∞),
symmetric in its variables, such that

ρ♦K(x) = f (ρK(x), ρ−K(x))

for all K ∈ Sn and all x ∈ Rn.

9. Operations between arbitrary compact convex or star sets

We begin with the following result, that can be deduced immediately from Corollary 7.5.

Corollary 9.1. Suppose that n ≥ 2 and that ∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) is
such that its restriction to (Kns )2 is projection covariant. Then ∗ : (Kns )2 → Kns .
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Many consequences of the previous simple result and those from Section 7 could be
stated. For example, Theorem 7.9 and Corollary 9.1 yield the following corollary.

Corollary 9.2. Let n ≥ 2, and let ∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) be such that
its restriction to the o-symmetric sets is projection covariant and associative. Then this
restriction must be either K ∗L = {o}, or K ∗L = K , or K ∗L = L, for all K,L ∈ Kns ,
or else ∗ = +p for some 1 ≤ p ≤ ∞.

Corollary 9.3. Let n ≥ 2, and let ∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) be such that its
restriction to the o-symmetric sets is continuous, GL(n)-covariant, associative, and has
the identity property. Then this restriction must be Lp addition for some 1 ≤ p ≤ ∞.

Example 9.4. The previous corollary does not hold when n = 1. Indeed, let 1 ≤ p 6=
q ≤ ∞ and define ∗ : (K1)2 → K1 by

[−s1, t1] ∗ [−s2, t2] = [−(|s1|
p
+ |s2|

p)1/p, (|t1|
q
+ |t2|

q)1/q ]

for all s1, t1, s2, t2 with −s1 ≤ t1 and −s2 ≤ t2. Then ∗ satisfies the hypotheses of
Corollary 9.3 but its restriction to the o-symmetric intervals is not Lp addition for any
1 ≤ p ≤ ∞.

Example 9.5. Even when n ≥ 2, an operation ∗ : (Kn)2 → Kn that is continuous,
GL(n)-covariant, and associative need not beLp addition. For example, let♦ : Kn→ Kns
be an o-symmetrization that is continuous and GL(n)-covariant, and that has the identity
property ♦K = K if K ∈ Kns . For some 1 ≤ p ≤ ∞ and all K,L ∈ Kn, define

K ∗ L = ♦K +p ♦L.

Then ∗ is clearly continuous and GL(n)-covariant, and it is easy to check that ∗ is also
associative. A more specific example is obtained by taking ♦K = 1qK for K ∈ Kn,
q ≥ 1 (defined for q > 1 as in Example 6.7). The simplest operation in this class is given
by p = q = 1, i.e.,

K ∗ L = 1K +1L.

Of course, this is ordinary Minkowski addition when restricted to the o-symmetric sets.

Nevertheless, results such as Corollaries 9.2 and 9.3 show that respectable projec-
tion covariant operations between arbitrary compact compact sets must actually be Lp
addition (or pth radial addition, respectively) when restricted to o-symmetric sets. The
assumption of projection covariance is crucial. Indeed, Corollary 7.8 shows that neither
polar Lp addition, for n ≥ 2 and −∞ ≤ p ≤ −1, nor Blaschke addition, for n ≥ 3,
can be extended to projection covariant operations, even between o-symmetric compact
convex sets.

Lemma 9.6. Let H be the closed half-plane {(s, t) ∈ R2
: −s ≤ t}. If n ≥ 2, then

∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) is projection covariant if and only if there is a
homogeneous-of-degree-1 function f : H 2

→ R (or f : [0,∞)4 → R, respectively)
such that

hK∗L(x) = f
(
hK(−x), hK(x), hL(−x), hL(x)

)
(51)

for all K,L ∈ Kn (or K,L ∈ Kno , respectively) and all x ∈ Rn.
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Proof. Suppose that ∗ : (Kn)2 → Kn is projection covariant. (The proof when ∗ :
(Kno)2 → Kn is a straightforward modification of what follows.) Let u ∈ Sn−1. Since ∗
is covariant under projection onto lu, for any two compact convex sets K and L in Rn we
have

(K ∗ L)| lu = (K| lu) ∗ (L| lu). (52)

Consequently, if I and J are closed intervals in lu, we must have I ∗ J ⊂ lu. Hence there
are functions fu, gu : H 2

→ R such that −gu ≤ fu and

[−s1u, t1u] ∗ [−s2u, t2u] = [−gu(s1, t1, s2, t2)u, fu(s1, t1, s2, t2)u] (53)

for all s1, t1, s2, t2 with −s1 ≤ t1 and −s2 ≤ t2, i.e., for (s1, t1, s2, t2) ∈ H 2.
Let 0 ≤ α ≤ 1 and choose v ∈ Sn−1 such that u · v = α. Using (52) with K =

[−s1u, t1u], L = [−s2u, t2u], and lu replaced by lv , and (53), we obtain

α[−gu(s1, t1, s2, t2)v, fu(s1, t1, s2, t2)v] = [−gu(s1, t1, s2, t2)u, fu(s1, t1, s2, t2)u]| lv

= ([−s1u, t1u] ∗ [−s2u, t2u])| lv

= ([−s1u, t1u]| lv) ∗ ([−s2u, t2u]| lv)

= [−αs1v, αt1v] ∗ [−αs2v, αt2v]

= [−gv(αs1, αt1, αs2, αt2)v, fv(αs1, αt1, αs2, αt2)v]

for all (s1, t1, s2, t2) ∈ H 2. Therefore

fv(αs1, αt1, αs2, αt2) = αfu(s1, t1, s2, t2),

gv(αs1, αt1, αs2, αt2) = αgu(s1, t1, s2, t2)

for all (s1, t1, s2, t2) ∈ H 2. Now exactly as in the proof of Lemma 7.4, we conclude that
both fu and gu are homogeneous of degree 1 and further that fu = f and gu = g, say,
are independent of u. Thus we have

[−s1u, t1u] ∗ [−s2u, t2u] = [−g(s1, t1, s2, t2)u, f (s1, t1, s2, t2)u] (54)

for all u ∈ Sn−1 and (s1, t1, s2, t2) ∈ H 2. Then (52) and (54) yield

[−hK∗L(−u)u, hK∗L(u)u] = (K ∗ L)| lu = (K| lu) ∗ (L| lu)

= [−hK(−u)u, hK(u)u] ∗ [−hL(−u)u, hL(u)u]

=
[
−g
(
hK(−u), hK(u), hL(−u), hL(u)

)
u, f

(
hK(−u), hK(u), hL(−u), hL(u)

)
u
]
.

Comparing the second coordinates in the previous equation, we deduce (51) for x ∈ Sn−1.
(Note that in view of the equality of the first coordinates, we must in fact have
g(s1, t1, s2, t2) = f (t1, s1, t2, s2) for all (s1, t1, s2, t2) ∈ H 2.) As in the proof of The-
orem 7.6, using the homogeneity of f and of support functions, we easily obtain (51) for
all x ∈ Rn.

An argument analogous to that in the last paragraph of the proof of Lemma 7.4 proves
the converse. ut
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Our next goal is to show that the function f in the previous lemma can be taken to be the
support function of a closed convex set. Unfortunately, the method used in the transition
from Lemma 7.4 to Theorem 7.6 works only when n ≥ 4 (see Remark 9.8), and otherwise
another route has to be followed.

Theorem 9.7. If n ≥ 2, then ∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) is projection
covariant if and only if there is a nonempty closed convex set M in R4 such that

hK∗L(x) = hM
(
hK(−x), hK(x), hL(−x), hL(x)

)
(55)

for all K,L ∈ Kn (or K,L ∈ Kno , respectively) and x ∈ Rn.

Proof. Suppose that ∗ : (Kn)2 → Kn is projection covariant. By Lemma 9.6, there is a
homogeneous-of-degree-1 function f : H 2

→ R such that (51) holds, where H is as in
the statement of Lemma 9.6.

We aim to prove that f is subadditive on H 2. To this end, let a, b ∈ H 2, so that
−a1 ≤ a2, −a3 ≤ a4, −b1 ≤ b2, and −b3 ≤ b4. Let

K0 = [−a1e1 − b1e2, a2e1 + b2e2] and L0 = [−a3e1 − b3e2, a4e1 + b4e2]

be line segments in Rn. Then

hK0(−e1) = a1, hK0(e1) = a2, hK0(−e2) = b1, and hK0(e2) = b2. (56)

(For example,

hK0(−e1) = max{(−a1e1−b1e2) · (−e1), (a2e1+b2e2) · (−e1)} = max{a1,−a2} = a1.)

Similarly, we obtain

hK0(−e1 − e2) = a1 + b1, hK0(e1 + e2) = a2 + b2, (57)
hL0(−e1) = a3, hL0(e1) = a4, hL0(−e2) = b3, hL0(e2) = b4, (58)

hL0(−e1 − e2) = a3 + b3, and hL0(e1 + e2) = a4 + b4. (59)

Therefore by (51) and the subadditivity of hK0∗L0 , we have

f (a + b) = f
(
hK0(−e1 − e2), hK0(e1 + e2), hL0(−e1 − e2), hL0(e1 + e2)

)
= hK0∗L0(e1 + e2) ≤ hK0∗L0(e1)+ hK0∗L0(e2)

= f
(
hK0(−e1), hK0(e1), hL0(−e1), hL0(e1)

)
+ f

(
hK0(−e2), hK0(e2), hL0(−e2), hL0(e2)

)
= f (a)+ f (b).

This proves that f is subadditive on H 2.
Our next goal is to show that f is continuous on H 2. We first claim that for each

r > 0, there is an R = R(r) > 0 such thatK ∗L ⊂ RBn wheneverK,L ⊂ rBn. Indeed,
we know that the function f is sublinear and hence convex on H 2. Since f is also finite
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on H 2
∩ [−r, r]4, it has a maximum, R, say, on this set, attained at one of the vertices.

Because K,L ⊂ rBn, we have(
hK(−u), hK(u), hL(−u), hL(u)

)
∈ H 2

∩ [−r, r]4

for all u ∈ Sn−1. Then (51) implies that hK∗L(u) ≤ R for all u ∈ Sn−1, proving the
claim.

Now suppose that a ∈ H 2 and let ε > 0. If a 6= o, let r = 2 maxi=1,...,4{|ai |}

and if a = o, let r = 1. In each case, let R be the corresponding radius defined in the
previous paragraph. Choose 0 < θ < π/2 small enough to ensure that with x = e1 and
x′ = cos θ e1 + sin θ e2, we have R|x − x′| < ε. Let

K1 =

[
−a1e1 +

(
a1 cos θ − a′1

sin θ

)
e2, a2e1 +

(
−a2 cos θ + a′2

sin θ

)
e2

]
= [p, q],

say, and

L1 =

[
−a3e1 +

(
a3 cos θ − a′3

sin θ

)
e2, a4e1 +

(
−a4 cos θ + a′4

sin θ

)
e2

]
= [v,w],

say, be line segments in Rn. It is easy to check that(
hK1(−x), hK1(x), hL1(−x), hL1(x)

)
= a,(

hK1(−x
′), hK1(x

′), hL1(−x
′), hL1(x

′)
)
= a′.

(60)

The latter equation shows that a′ ∈ H 2. We claim that K1, L1 ⊂ rB
n if a′ is sufficiently

close to a. To see this, note that K1, L1 ⊂ cB
n, where

c = max{|p|, |q|, |v|, |w|} = max
i=1,...,4

{(a2
i + a

′2
i − 2aia′i cos θ)1/2/sin θ}. (61)

If a = o, then c = maxi=1,...,4{|a
′

i |/sin θ} < 1 = r for a′ sufficiently close to a. If a 6= o,
note that as a′→ a, the right-hand expression in (61) approaches

max
i=1,...,4

{|ai |/cos(θ/2)} ≤
√

2 max
i=1,...,4

{|ai |} < r,

proving the claim. Then K1 ∗ L1 ⊂ RB
n and from this, (60), (51), and the subadditivity

of hK1∗L1 , we get

f (a)− f (a′) = hK1∗L1(x)− hK1∗L1(x
′) ≤ hK1∗L1(x − x

′) ≤ R|x − x′| < ε

for all a′ sufficiently close to a. The same bound applies to f (a′)−f (a), establishing the
continuity of f .

Because f is sublinear on H 2, it is also convex on H 2. Extend f to a function f̄ :
R4
→ R ∪ {∞} by defining f̄ (x) = ∞ for x /∈ H 2. Then f̄ is convex and proper (i.e.,

not identically∞). Since f is continuous on H 2, f̄ is lower semicontinuous and hence
closed (i.e., the epigraph {(x, t) ∈ R5

: t ≥ f̄ (x), x ∈ R4, t ∈ R} of f̄ is closed; see
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[44, p. 52]). By [44, Theorem 13.2], there is a nonempty closed convex set M ⊂ R4 with
support function hM = f̄ and therefore hM = f on H 2. This yields (55) for this case.

The case when ∗ : (Kno)2 → Kn is projection covariant is handled in a similar fashion.
By Lemma 9.6, there is a homogeneous-of-degree-1 function f : [0,∞)4 → R such
that (51) holds, and it suffices to prove that f is subadditive and continuous on [0,∞)4.
For the former, let a, b ∈ [0,∞)4 and define K ′0 = [−a1, a2] × [−b1, b2] × {o} and
L′0 = [−a3, a4] × [−b3, b4] × {o}, rectangles in the {x1, x2}-plane in Rn. Note that
K ′0, L

′

0 ∈ Kno . One readily verifies that (56)–(59) hold with K0 and L0 replaced by K ′0
and L′0, respectively, allowing the proof of the subadditivity of f to go through as above.
For the continuity of f , let a ∈ [0,∞)4 and follow the proof above, replacing K1 and L1
by K ′1 = conv{K1, o} and L′1 = conv{L1, o}, respectively. Note that K ′1, L

′

1 ∈ Kno .
Then (60) holds with K1 and L1 replaced by K ′1 and L′1, respectively, and it is clear
that K ′1, L

′

1 ⊂ rBn with the same values of r used above. This allows the proof of the
continuity of f and the conclusion to go through as before.

The converse is clear. ut

Suppose that f is a continuous and convex (and hence sublinear) function defined on
a closed convex cone C in Rn with apex at the origin. If it were possible to extend f
to a continuous and convex function on Rn, then we could conclude from the proof of
Theorem 9.7 that the set M could be taken to be a compact convex set for all n ≥ 2. But
[23, Theorem 2.2] states that if intC 6= ∅, then unless C = Rn, there is always such an f
for which this extension is not possible. When n ≥ 4, we can avoid this difficulty, as the
following remark demonstrates.

Remark 9.8. When n ≥ 4, the set M in Theorem 9.7 can be taken to be a compact
convex set, and moreover the proof can be shortened considerably. To be specific, when
∗ : (Kn)2 → Kn is projection covariant and n ≥ 4, we may set K0 = [−e1, e2] and
L0 = [−e3, e4] and define M = K0 ∗ L0. Identifying S = lin{e1, e2, e3, e4} with R4 in
the natural way, it follows that by its very definition, M is a compact convex set in R4.
Using the same argument as in the proof of Theorem 7.6, we apply (51) with K = K0
and L = L0 to obtain

hM(x1, x2, x3, x4) = hK0∗L0(x) = f
(
hK0(−x), hK0(x), hL0(−x), hL0(x)

)
= f (x1, x2, x3, x4), (62)

whenever (x1, x2, x3, x4) ∈ H
2. Since

(
hK(−x), hK(x), hL(−x), hL(x)

)
∈ H 2 for all

K,L ∈ Kn and x ∈ Rn, (55) follows directly from (51) and (62). When ∗ : (Kno)2 → Kn
is projection covariant, we can take K0 = conv{o,−e1, e2} and L0 = conv{o,−e3, e4}

instead.
Observe that in order to obtain (62), we require projection covariance for subspaces

of dimension 4, whereas for Theorem 9.7, only projections onto lines are used.

Corollary 9.9. Let n ≥ 2. An operation ∗ : (Kn)2 → Kn (or ∗ : (Kno)2 → Kn) is
projection covariant if and only if it is continuous and GL(n)-covariant (and hence ho-
mogeneous of degree 1).
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Proof. If ∗ is continuous and GL(n)-covariant, then it is projection covariant by Lem-
ma 4.1. Suppose that ∗ is projection covariant. The proof of Theorem 9.7 shows that hM
is continuous on H 2 or [0,∞)4, as appropriate. The continuity of ∗ follows from this,
(55), and (10), while the GL(n)-covariance of ∗ is an easy consequence of (55) and (12).

ut

As was the case with Theorem 7.6, in Theorem 9.7 there will generally be more than one
set M giving rise to the same operation ∗ via (55).

Theorem 9.7 raises the question as to which closed convex sets M in R4 are such that
the right-hand side of (55) is a support function for all K,L ∈ Kn. A partial answer is
provided by Corollary 6.6, which implies that this is true ifM is a compact convex subset
of [0,∞)4. In this case, we have

K ∗ L = ⊕M(K,−K,L,−L),

by Lemma 6.5(i) and (55).

Theorem 9.10. Suppose that n ≥ 2. The operation ∗ : (Kn)2 → Kn is projection co-
variant and has the identity property if and only if it is Minkowski addition.

Proof. By Theorem 9.7, there is a closed convex set M in R4 such that (55) holds. We
first claim that

M ⊂ {(x1, 1+ x1, x3, 1+ x3) ∈ R4
: x1, x3 ≤ 0}, (63)

a quadrant of a 2-dimensional plane in R4 containing (0, 1, 0, 1). To see this, let a ≥ 1,
let K = [e1, ae1], and let L = {o}. If x = −e1, we have hK(x) = −1, hK(−x) = a, and
of course hL(±x) = 0. Therefore, by (55),

−1 = hK(x) = hK∗{o}(x) = hM(a,−1, 0, 0).

Consequently, we have hM(a,−1, 0, 0) = −1 < 0 for all a ≥ 1. In particular,

hM(1,−1, 0, 0) = −1. (64)

Taking a = 1, i.e., K = {e1}, but now x = e1, we obtain

hM(−1, 1, 0, 0) = 1. (65)

Equations (64) and (65) imply that

M ⊂ {x ∈ R4
: x2 = 1+ x1}.

Now suppose that hM(e1) ≥ c > 0. Then there is a z ∈ M such that z · e1 ≥ c and

hM(a,−1, 0, 0) = hM(ae1 − e2) ≥ (ae1 − e2) · z ≥ ac − z · e2,

which is positive for sufficiently large a. This contradiction shows that hM(e1) ≤ 0. In
exactly the same way, using {o} ∗ L = L for all L ∈ Kn, we can show that

M ⊂ {x ∈ R4
: x4 = 1+ x3}

and hM(e3) ≤ 0. It follows that (63) holds and the claim is proved.
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Next, we claim that (0, 1, 0, 1) ∈ M . Indeed, if this is not the case, then (63) and the
fact that M is closed yield

α = sup{x1 + x3 : (x1, 1+ x1, x3, 1+ x3) ∈ M} < 0.

Suppose that K ∈ Kno . Then hK(−x), hK(x) ≥ 0 and we have, by (55),

hK∗K(x) = hM(hK(−x), hK(x), hK(−x), hK(x))

= sup{z1hK(−x)+ (1+ z1)hK(x)+ z3hK(−x)+ (1+ z3)hK(x) :

=

(z1, 1+ z1, z3, 1+ z3) ∈ M}

sup{(z1 + z3)(hK(−x)+ hK(x))+ 2hK(x) : (z1, 1+ z1, z3, 1+ z3) ∈ M}

= αhK(−x)+ (2+ α)hK(x). (66)

Let

K = conv{o,−e1 + e2,−e1 − e2}

and note that K ∈ Kno . Let x = e1 + e2 ∈ Rn and y = e1 − e2 ∈ Rn. Then hK(x) =
hK(y) = hK(x + y) = 0 and hK(−x) = hK(−y) = hK(−x − y) = 2. By (66),
hK∗K(x + y) = 2α and hK∗K(x) = hK∗K(y) = 2α. But since α < 0, this implies

hK∗K(x + y) > hK∗K(x)+ hK∗K(y),

contradicting the subadditivity of hK∗K . This proves the claim.
Now let K,L ∈ Kn and x ∈ Rn. Then

hK∗L(x) = hM(hK(−x), hK(x), hL(−x), hL(x))

= sup{z1hK(−x)+ z2hK(x)+ z3hL(−x)+ z4hL(x) : (z1, z2, z3, z4) ∈ M}

≤ sup{z1hK(−x)+ (1+ z1)hK(x)+ z3hL(−x)+ (1+ z3)hL(x) : z1, z3 ≤ 0}
≤ hK(x)+ hL(x), (67)

since hK(−x)+hK(x) ≥ 0 and hL(−x)+hL(x) ≥ 0. On the other hand, (0, 1, 0, 1) ∈ M ,
so

hM(hK(−x), hK(x), hL(−x), hL(x)) ≥ (0, 1, 0, 1) · (hK(−x), hK(x), hL(−x), hL(x))
= hK(x)+ hL(x),

which implies by (55) and (67) that ∗ is Minkowski addition.
The converse is clear. ut

Corollary 9.11. Suppose that n ≥ 2. The operation ∗ : (Kn)2 → Kn is continuous,
GL(n)-covariant, and has the identity property if and only if it is Minkowski addition.
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Theorem 9.10 and Corollary 9.11 do not hold for operations ∗ : (Kno)2 → Kn satisfying
the same hypotheses, since Lp addition, for example, is of this type. (More generally, the
operations defined in Example 7.12 also satisfy these hypotheses.)

The extension of Lp addition given in Example 6.7 is continuous and GL(n)-co-
variant, and hence projection covariant by Lemma 4.1, but does not have the identity
property. The operation ∗ defined in Example 7.13 is valid for K,L ∈ Kn, and this is
GL(n)-covariant and has the identity property, but is neither continuous nor projection
covariant. Together with the following example, we see that none of the hypotheses of
Theorem 9.10 or Corollary 9.11 can be omitted.

Example 9.12. Define

K ∗ L = (1+Hn(L))K + (1+Hn(K))L

for all K,L ∈ Kn. This operation is continuous and has the identity property, but is not
GL(n)-covariant.

Let H be the closed half-plane {(s, t) ∈ R2
: −s ≤ t} and let n ≥ 2. If ∗ :

(Kn)2 → Kn (or ∗ : (Kno)2 → Kno) is projection covariant and associative, then one
can show that the set M in Theorem 9.7 satisfies

hM
(
s1, t1, hM(t2, s2, t3, s3), hM(s2, t2, s3, t3)

)
= hM

(
hM(t1, s1, t2, s2), hM(s1, t1, s2, t2), s3, t3

)
for all (si, ti) ∈ H (or (si, ti) ∈ [0,∞)2, respectively), i = 1, 2, 3. Moreover, the pre-
vious displayed equation can be recast as a vector associativity equation (see [2, (1),
Section 8.2.3, p. 370] in the case when the dimension m = 2). However, relatively little
seems to be known about this vector associativity equation, and in particular, no result
corresponding to Proposition 3.2 is available.

We now turn to operations on pairs of star sets. The following result can be deduced
immediately from Lemma 7.16.

Corollary 9.13. Suppose that n ≥ 2 and that ∗ : (Sn)2 → Sn is such that its restriction
to (Sns )2 is rotation and section covariant. Then ∗ : (Sns )2 → Sns .

Theorem 7.17 and Corollary 9.13 provide the following corollary.

Corollary 9.14. Let n ≥ 2, and let ∗ : (Sn)2 → Sn be such that its restriction to the
o-symmetric sets is continuous, homogeneous of degree 1, rotation and section covariant,
and associative. Then this restriction must be either K ∗ L = {o}, or K ∗ L = K , or
K ∗ L = L, for all K,L ∈ Sns , or else ∗ = +̃p for some −∞ ≤ p ≤ ∞ with p 6= 0.

Theorem 9.15. If n ≥ 2, then ∗ : (Sn)2 → Sn is rotation and section covariant if and
only if there is a function f : [0,∞)4 → R such that

ρK∗L(u) = f
(
ρK(−u), ρK(u), ρL(−u), ρL(u)

)
(68)

for all K,L ∈ Sn and all u ∈ Sn−1. The operation ∗ is in addition homogeneous of
degree 1 if and only if f is too and (68) holds for u ∈ Rn \ {o}.
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Proof. Suppose that ∗ : (Sn)2 → Sn is rotation and section covariant. Let u ∈ Sn−1. For
any two o-symmetric star sets K and L in Rn, we have

(K ∗ L) ∩ lu = (K ∩ lu) ∗ (L ∩ lu). (69)

One consequence of this is that if I and J are o-symmetric closed intervals in lu, we must
have I ∗ J ⊂ lu. Hence there are functions fu, gu : [0,∞)4 → R such that

[−s1u, t1u] ∗ [−s2u, t2u] = [−gu(s1, t1, s2, t2)u, fu(s1, t1, s2, t2)u] (70)

for all s1, t1, s2, t2 ≥ 0.
Let φ be a rotation. Just as in the proof of Theorem 7.17, we use the rotation covari-

ance of ∗ to obtain fφu(s1, t1, s2, t2) = fu(s1, t1, s2, t2) for s1, t1, s2, t2 ≥ 0, and conclude
that fu = f , say, is independent of u. Similarly, gu = g, say, is independent of u. Now
from (69) and (70) with fu = f and gu = g, we obtain

[−ρK∗L(−u)u, ρK∗L(u)u] = (K ∗ L) ∩ lu = (K ∩ lu) ∗ (L ∩ lu)

= [−ρK(−u)u, ρK(u)u] ∗ [−ρL(−u)u, ρL(u)u]

=
[
−g
(
ρK(−u), ρK(u), ρL(−u), ρL(u)

)
u, f

(
ρK(−u), ρK(u), ρL(−u), ρL(u)

)
u
]
.

Comparing the second coordinates in the previous equation, we deduce (68). (Note that
in view of the equality of the first coordinates, we must in fact have g(s1, t1, s2, t2) =
f (t1, s1, t2, s2) for all s1, t1, s2, t2 ≥ 0.)

Suppose that ∗ is also homogeneous of degree 1. As in the proof of Theorem 7.17,
this extra property and (68) yield the homogeneity of f and then it is easy to show that
(68) holds for all u ∈ Rn \ {o}.

The converses are clear. ut

It is natural to ask whether the appropriate analog of Theorem 9.10 holds for star sets,
that is, must an operation ∗ : (Sn)2 → Sn that is homogeneous of degree 1, rotation and
section covariant, and has the identity property be radial addition? The answer is negative,
as is shown by defining

ρK∗L(x) = ρK(x)+ ρL(x)+
√
ρK(±x)ρL(±x)

for all x ∈ Rn \{o}, for any particular choice of the plus and minus signs. These examples
also show that the analog of Corollary 9.11 fails to hold.

10. Operations having polynomial volume

In this section we examine operations ∗ : (Kns )2 → Kns (or ∗ : (Sns )2 → Sns ) that have
polynomial volume, that is,

Hn(rK ∗ sL) =

m(K,L)∑
i,j=0

aij (K,L)r
isj (71)

for some real coefficients aij (K,L), some m(K,L) ∈ N ∪ {0}, and all K,L ∈ Kns (or all
K,L ∈ Sns , respectively) and r, s ≥ 0.
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Lemma 10.1. Let ∗ : (Kns )2 → Kns (or ∗ : (Sns )2 → Sns ) be homogeneous of degree 1
and have polynomial volume. Then

Hn(rK ∗ sL) =

n∑
i=0

ai(K,L)r
n−isi (72)

for some real coefficients ai(K,L) and all K,L ∈ Kns (or all K,L ∈ Sns , respectively)
and r, s ≥ 0. Moreover, a0(K,L) = a0(K) ≥ 0, an(K,L) = an(L) ≥ 0, and ai(rK,L)
= rn−iai(K,L) and ai(K, sL) = siai(K,L) for i = 0, . . . , n and all r, s ≥ 0.

Proof. Let K,L ∈ Kns (or all K,L ∈ Sns , respectively) and r, s ≥ 0. For any t ≥ 0, the
assumptions and (71) imply that

m(K,L)∑
i,j=0

aij (K,L)r
isj t i+j = Hn((tr)K ∗ (ts)L) = Hn(t (rK ∗ sL))

= tnHn(rK ∗ sL) = tn
m(K,L)∑
i,j=0

aij (K,L)r
isj .

Comparing coefficients of powers of t , we obtain aij (K,L) = 0 whenever i + j 6= n.
This proves (72).

By (72), Hn(rK ∗{o}) = Hn(rK ∗0L) = a0(K,L)r
n is independent of L, so we may

write a0(K,L) = a0(K) and similarly an(K,L) = an(L). Moreover, Hn(rK ∗ sL) =

Hn(1(rK) ∗ sL) implies by (72) that

n∑
i=0

ai(K,L)r
n−isi =

n∑
i=0

ai(rK,L)1n−isi,

so ai(rK,L) = rn−iai(K,L) and ai(K, sL) = siai(K,L) for i = 0, . . . , n and all
r, s ≥ 0. ut

Ordinary Minkowski addition is not the only operation that satisfies (72). Indeed, if F,G :
Kns → Kns are homogeneous of degree 1, and

K ∗ L = F(K)+G(L), (73)

then

Hn(rK ∗ sL) = Hn(F (rK)+G(sL)) = Hn(rF (K)+ sG(L))

=

n∑
i=0

Vi(F (K),G(L))r
n−isi,

by Minkowski’s theorem for mixed volumes (see, for example, [15, Theorem A.3.1]).
Here Vi(F (K),G(L)) denotes the mixed volume of n − i copies of F(K) and i copies
of G(L). It follows that in (72) we may take ai(K,L) = Vi(F (K),G(L)). Moreover,
the operation ∗ defined by (73) is homogeneous of degree 1, and it is continuous and
rotation invariant if both F and G are, respectively. If F = G and F(F(K) + F(L)) =
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F(K) + F(L) for all K,L ∈ Kns , then ∗ is also associative. An operation with all these
properties has already been given in Example 7.14; here F = G is given by F(K) =
(Hn(K)/κn)

1/nBn, and the operation is neither projection covariant nor closely related
to Lp addition.

The following easy result shows that when n = 1, the polynomial volume property is
extremely strong.

Theorem 10.2. Let ∗ : (K1
s )

2
→ K1

s be homogeneous of degree 1 and have polynomial
volume. Then there are constants a, b ≥ 0 such that

K ∗ L = aK + bL (74)

for all K,L ∈ K1
s . Hence ∗ is Minkowski addition if it also has the identity property.

Proof. Since n = 1, Lemma 10.1 implies that H1(rK ∗ sL) = a0(K)r + a1(L)s for
all K,L ∈ K1

s and r, s ≥ 0. Therefore rK ∗ sL is an o-symmetric interval of length
a0(K)r + a1(L)s. When K = L = B1, this gives

[−r, r] ∗ [−s, s] = rB1
∗ sB1

= [−(a0(B
1)r + a1(B

1)s)/2, (a0(B
1)r + a1(B

1)s)/2]
= [−(ar + bs), ar + bs] = a[−r, r] + b[−s, s],

where a = a0(B
1)/2 and b = a1(B

1)/2, for all r, s ≥ 0. ut

Note that when n = 1, the apparently stronger property (74) is actually equivalent to (73).
The first author and Mathieu Meyer convinced themselves during discussions in 1996

that the following theorem is true, but followed a rather different route and did not publish
the result.

Theorem 10.3. Let n ≥ 1 and let −∞ ≤ p 6= 0 ≤ ∞ if n = 1 and 1 ≤ p ≤ ∞ if n ≥ 2.
The operation +p : (Kns )2 → Kns does not have polynomial volume unless p = 1. (Here
we interpret the cases when −∞ ≤ p < 0 and p = ∞ as in Proposition 3.2.)

Proof. Suppose that +p has polynomial volume. Since +p is homogeneous of degree 1,
(72) holds, by Lemma 10.1. Let K ∈ Kns . Suppose that −∞ < p 6= 0 < ∞, and
1 ≤ p <∞ if n ≥ 2. Then

hrK+p sK(u)
p
= hrK(u)

p
+ hsK(u)

p
= (rp + sp)hK(u)

p

for all u ∈ Sn−1, so rK +p sK = (rp + sp)1/pK for r, s ≥ 0. Therefore, assuming
Hn(K) > 0, (72) implies that

(rp + sp)n/p =

n∑
i=0

cir
n−isi,

where ci , i = 0, . . . , n, are constants and where r, s ≥ 0. In particular,

(1+ sp)n/p =
n∑
i=0

cis
i (75)
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for all s ≥ 0. If p = ∞, we get instead

max{1, s}n =
n∑
i=0

cis
i

for all s ≥ 0, which is clearly impossible, and the case p = −∞ can be dismissed in a
similar fashion.

We claim that (75) implies that p ∈ N and p divides n. To see this, note first that
if p < 0, then the left-hand side of (75) converges to 1 as s → ∞. This implies that
c1 = · · · = cn = 0. But then the left-hand side of (75) is constant, a contradiction.
Assume, therefore, that p > 0. The binomial expansion of the left-hand side of (75)
yields

∞∑
j=0

(
n/p

j

)
spj =

n∑
i=0

cis
i (76)

for s ∈ [0, 1).
If p ∈ N and p does not divide n, then the left-hand side of (76) does not terminate,

since
(
n/p
j

)
6= 0 for j ∈ N. Note that pj ∈ N and therefore a contradiction follows from

the uniqueness of power series representations.
It remains to consider the case when p > 0 and p /∈ N. Either p > n or there is a

k ∈ {0, . . . , n− 1} such that p ∈ (k, k + 1). Set s = 0 in (76) to get c0 = 1 and hence
∞∑
j=1

(
n/p

j

)
spj =

n∑
i=1

cis
i . (77)

If k = 0, then p ∈ (0, 1) and we deduce from (77) that

n

p
+

(
n/p

2

)
sp + · · · =

n∑
i=1

cis
i−p.

Evaluating this equation at s = 0 yields n/p = 0, a contradiction. Now let 1 ≤ k ≤ n−1,
so that p > k ≥ 1. From (77), we get

n

p
sp−1
+

(
n/p

2

)
s2p−1

+ · · · =

n∑
i=1

cis
i−1.

Evaluating this equation at s = 0 yields c1 = 0. Suppose that c1 = · · · = ci = 0 for
i < k ≤ n− 1. Then

n

p
sp−i−1

+

(
n/p

2

)
s2p−i−1

+ · · · = ci+1 + ci+2s + · · · .

Evaluating this equation at s = 0 yields ci+1 = 0. Thus we conclude that c1 = · · · =

ck = 0 and therefore

n

p
+

(
n/p

2

)
sp + · · · = ck+1s

k+1−p
+ · · · .

Evaluating this equation at s = 0 yields n/p = 0, a contradiction.
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Finally, if p > n, we arrive as above at c1 = · · · = cn = 0. Since the left-hand side
of (75) is not constant, we again obtain a contradiction. This proves the claim.

More work is needed to exclude the possibility that 1 6= p ∈ N and p divides n. To
this end, let p > 1 and let p′ denote the Hölder conjugate of p, so that 1/p + 1/p′ = 1.
Let

D =

{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

(
|xi |

ai

)p
≤ 1

}
,

where ai > 0, i = 1, . . . , n, so thatD is a linear image of the unit ball in lnp corresponding
to a diagonal matrix with entries ai , i = 1, . . . , n. We claim that

hD(u) =
( n∑
i=1

(ai |ui |)
p′
)1/p′

for u = (u1, . . . , un) ∈ S
n−1. To see this, note that by symmetry we may restrict vec-

tors to the positive orthant. Then, using Hölder’s inequality and the definition (9) of the
support function, we obtain for u = (u1, . . . , un) ∈ S

n−1 and x = (x1, . . . , xn) ∈ D,

u · x =

n∑
i=1

uixi ≤
( n∑
i=1

(aiui)
p′
)1/p′

( n∑
i=1

(
xi

ai

)p)1/p

≤

( n∑
i=1

(aiui)
p′
)1/p′

.

Now taking (
xi

ai

)p
=

( n∑
i=1

(aiui)
p′
)−1

(aiui)
p′

for i = 1, . . . , n, it is easy to check that x ∈ D and equality holds in the previous
inequalities. This proves the claim.

Now let

K =
{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

|xi |
p′
≤ 1

}
and

L =
{
x = (x1, . . . , xn) ∈ Rn : |x1/2|p

′

+

n∑
i=2

|xi |
p′
≤ 1

}
,

that is, K is the unit ball in ln
p′

and L is a linear image of it corresponding to a diagonal
matrix with entries 2, 1, . . . , 1. Then we have

hK+psL(u) =
( n∑
i=1

|ui |
p
+ sp

(
|2u1|

p
+

n∑
i=2

|ui |
p
))1/p

=

(
(1+ 2psp)|u1|

p
+

n∑
i=2

(1+ sp)|ui |p
)1/p

for u = (u1, . . . , un) ∈ S
n−1, so K +p sL is a linear image of the unit ball in ln

p′
corre-

sponding to a diagonal matrix with entries (1+ 2psp)1/p, (1+ sp)1/p, . . . , (1+ sp)1/p.
It follows that

Hn(K +p sL) = c(1+ 2psp)1/p(1+ sp)(n−1)/p,
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where c is a constant depending only on n and p. Therefore (72) implies that

(1+ 2psp)(1+ sp)n−1
= (c0 + c1s + · · · + cns

n)p = q(s)p,

say, for some ci , i = 0, . . . , n. Let q(s) = r1(s)
m1 · · · rk(s)

mk be a factorization into
powers of irreducible factors, any two of which are relatively prime. Then

(1+ 2psp)(1+ sp)n−1
= r1(s)

m1p · · · rk(s)
mkp.

The polynomials 1+2psp and 1+sp do not have a common divisor, since any divisor must
also divide sp and hence be of the form si for some i = 1, . . . , p. But si is not a divisor
of 1 + sp. Since R[s] is a unique factorization domain, we deduce that r1(s)m1p, say, is
a divisor of 1 + 2psp. This implies that m1p deg(r1) ≤ p and thus m1 = deg(r1) = 1.
Writing r1(s) = a + bs, where a, b 6= 0, we obtain

r1(s)
p
=

p∑
i=0

(
p

i

)
aibp−isp−i = λ(1+ 2psp)

for some λ 6= 0. If p > 1, this implies that a = 0 or b = 0, a contradiction. This shows
that p = 1. ut

Corollary 10.4. Let ∗ : (Kns )2 → Kns be an associative operation that has polynomial
volume. If n = 1, assume that ∗ is also homogeneous of degree 1. If n ≥ 2, assume that ∗
is also projection covariant. Then either K ∗ L = {o}, or K ∗ L = K , or K ∗ L = L, for
all K,L ∈ Kns or ∗ is Minkowski addition.

Proof. When n = 1, the result follows easily from Theorem 10.2 and the associativity
assumption. For n ≥ 2, we appeal instead to Theorems 7.9 and 10.3. ut

None of the assumptions in the previous corollary can be omitted. Indeed, the operation
defined by K ∗ L = 2K + L, for all K,L ∈ Kns , shows that the associativity assumption
in the previous corollary cannot be omitted. The operation in Example 7.15 is easily seen
to have polynomial volume (note that the map F is homogeneous of degree 1 and F−1

preserves volume), so projection covariance is necessary when n ≥ 2. Finally,Lp addition
is associative and projection covariant when n ≥ 2, but does not have polynomial volume,
by Theorem 10.3.

The following corollary is a direct consequence of the previous one and provides a
characterization of Minkowski addition.

Corollary 10.5. Let n ≥ 2. The operation ∗ : (Kns )2 → Kns is continuous, GL(n)-
covariant, associative, and has the identity property and polynomial volume if and only if
it is Minkowski addition.

Theorem 10.6. Let −∞ ≤ p 6= 0 ≤ ∞. The operation +̃p : (Sns )2 → Sns has poly-
nomial volume if and only if p ∈ N and p divides n. (Here we interpret the cases when
−∞ ≤ p < 0 and p = ∞ as in Proposition 3.2.)
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Proof. Suppose that +̃p has polynomial volume. Since +̃p is homogeneous of degree 1,
(72) holds, by Lemma 10.1. Let K ∈ Sns . Suppose that −∞ < p 6= 0 <∞. Then

ρrK+̃p sK(u)
p
= ρrK(u)

p
+ ρsK(u)

p
= (rp + sp)ρK(u)

p

for all u ∈ Sn−1, so rK +̃p sK = (rp + sp)1/pK for r, s ≥ 0. As in the proof of
Theorem 10.3, we take r = 1, conclude that

(1+ sp)n/p =
n∑
i=0

cis
i

for all s ≥ 0, and deduce that p ∈ N and p divides n. The cases p = ±∞ can also be
excluded as in the proof of Theorem 10.3.

Now assume that p ∈ N and p divides n. For arbitrary K,L ∈ Sns , we have

ρrK+̃p sL(u)
p
= (rρK(u))

p
+ (sρL(u))

p,

where n = mp, say, with m ∈ N. So

Hn(rK +̃p sL) =
1
n

∫
Sn−1

ρrK+̃psL(u)
n du =

1
n

∫
Sn−1

(
(rρK(u))

p
+ (sρL(u))

p
)m
du

=
1
n

∫
Sn−1

m∑
j=0

(
m

j

)
(rρK(u))

(m−j)p(sρL(u))
jp du

=

n∑
i=0

ai(K,L)r
n−isi,

where

ai(K,L) =


(
n/p

i/p

)
1
n

∫
Sn−1

ρK(u)
n−iρL(u)

i du if i = jp, j = 0, . . . , n/p,

0 otherwise.

Therefore (72) holds, as required. ut

Corollary 10.7. Let ∗ : (Sns )2 → Sns be an associative operation that has polynomial
volume. If n = 1, assume that ∗ is also homogeneous of degree 1. If n ≥ 2, assume that
∗ is also rotation and section covariant. Then either K ∗ L = {o}, or K ∗ L = K , or
K ∗ L = L, or K ∗ L = K +̃p L, where p ∈ N and p divides n, for all K,L ∈ Sns .

Proof. This follows directly from Theorem 10.2 (or Corollary 10.4) when n = 1 and
from Theorems 7.17 and 10.6 when n ≥ 2. ut
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