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Abstract. Consider a family of integral complex locally planar curves whose relative Hilbert
scheme of points is smooth. The decomposition theorem of Beilinson, Bernstein, and Deligne as-
serts that the pushforward of the constant sheaf on the relative Hilbert scheme splits as a direct sum
of shifted semisimple perverse sheaves. We will show that no summand is supported in positive
codimension. It follows that the perverse filtration on the cohomology of the compactified Jaco-
bian of an integral plane curve encodes the cohomology of all Hilbert schemes of points on the
curve. Globally, it follows that a family of such curves with smooth relative compactified Jacobian
(“moduli space of D-branes”) in an irreducible curve class on a Calabi–Yau threefold will con-
tribute equally to the BPS invariants in the formulation of Pandharipande and Thomas, and in the
formulation of Hosono, Saito, and Takahashi.

1. Introduction

In this note a curve will always be integral, complete, locally planar, and defined over C.1

Let C be a curve of arithmetic genus g. The Hilbert scheme of points C[d] param-
eterizes length d subschemes of C; it is complete, integral, d-dimensional, and l.c.i.
[AIK, BGS]. If π : C → B is a family of curves, there is a relative Hilbert scheme
π [d] : C[d] → B with fibres (C[d])b = (Cb)[d]. Planarity of the curves ensures the exis-
tence of families in which the total space of C[d] is smooth ([S]), see Theorem 8 below;
ultimately this is a consequence of the smoothness of the Hilbert scheme of points on
a surface. When C[d] is smooth, the decomposition theorem of Beilinson, Bernstein and
Deligne [BBD] applied to the proper map π [d] : C[d] → B asserts that Rπ [d]∗ C decom-
poses as a direct sum of shifted intersection complexes associated to local systems on
constructible subsets of the base.

Let π̃ : C̃ → B̃ denote the restriction of π to the smooth locus. The Hilbert schemes of
a smooth curve are its symmetric products, and in particular the map π̃ [d] is smooth. Thus
the summand of Rπ [d]∗ C[d+dimB]with support equal toB is

⊕
IC(B,Rd+i π̃ [d]∗ C)[−i].
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As pointed out by Macdonald [M], the cohomology of the symmetric products is ex-
pressed in terms of the cohomology of the curves by the formula

Ri π̃ [d]∗ C =
bi/2c⊕
k=0

(
∧i−2kR1π̃∗C)(−k) = (R2d−i π̃ [d]∗ C)(d − i) for i ≤ d. (1)

Even given this expression, computing IC(B,Ri π̃ [d]∗ C) is a nontrivial matter, about which
we say nothing here. But at least Rπ [d]∗ C[d + dimB] contains no other summands:

Theorem 1. Let π : C → B be a family of integral plane curves, and let π̃ : C̃ → B̃ be
its restriction to the smooth locus. If C[d] is smooth, then

Rπ [d]∗ C[d + dimB] =

d⊕
i=−d

IC(B,Rd+i π̃ [d]∗ C)[−i].

From now on we will use the notation

pRiπ [d]∗ C[d + dimB] := pHi(Rπ [d]∗ C[d + dimB])

for the perverse cohomology sheaves of Rπ [d]∗ C[d + dimB].
The central term of (1) can be reinterpreted in terms of the family of Jacobians of

curves. Indeed, taking π̃J : J (C̃) → B̃ to be the family of Jacobians over the smooth
locus, there is a (canonical) identification of local systems

Ri π̃J∗ C =
∧i
(R1π̃∗C). (2)

Consequently,

Ri π̃ [d]∗ C =
⊕
k

(Ri−2kπ̃J∗ C)(−k) = (R
2d−i π̃ [d]∗ C)(d − i) for i ≤ d. (3)

It can be convenient to express (1)–(3) in the following formula:

∞∑
d=0

2d∑
i=0

qdRi π̃ [d]∗ C =
∑2g
i=0 q

i
∧i
(R1π̃∗C)

(1− qC)(1− qC(−1))
=

∑2g
i=0 q

iRi π̃J∗ C
(1− qC)(1− qC(−1))

. (4)

The family of Jacobians can be extended over the singular locus of π to the com-
pactified Jacobian [AK], πJ : J̄ d(C) → B, whose fibre J̄ d(C)b = J̄ d(Cb) parame-
terizes rank one, degree d torsion free sheaves on C.2 The map πJ is proper, and for
Gorenstein curves there is an Abel–Jacobi map AJ : C[d] → J̄ d(C) taking a subscheme
to the dual of its ideal sheaf.3 For d > 2g − 2, the map AJ is a Pd−g-bundle, and

2 It also extends to the generalized Jacobian J (C) whose fibre J (C)b parameterizes line bundles
on Cb; this is a commutative group scheme of dimension g of which the affine part is of dimension
δ(Cb). This is a subscheme of the compactified Jacobian, and acts on it. Such actions are central to
Ngô’s arguments, but play no role here.

3 In general, it is better to define the Abel–Jacobi map from the Quot scheme of the dualizing
sheaf (see [AK]).
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RAJ∗C =
⊕d−g

i=0 C[−2i]; thus the statement in Theorem 1 is true in this range for the
map πJ as well. Over a sufficiently small open set, π admits a section σ with image in the
smooth locus of the curves; twisting by O(σ ) identifies the J̄ d(C) for varying d and so
πJ∗ C does not depend on d . In particular, we recover the support theorem for the map πJ ,
a special case of Ngô’s support theorem [N]. It can be shown [S, Prop. 14] that smoothness
of the relative compactified Jacobian implies smoothness of all relative Hilbert schemes.
Therefore taking IC sheaves in (1) and (2) yields the following corollary.

Corollary 2. Let π : C → B be a family of integral plane curves of arithmetic genus g.
If the relative compactified Jacobian J̄ (C) is smooth, then

pRi−dπ [d]∗ C[d + dimB] =

bi/2c⊕
k=0

pRi−g−2kπJ∗ C[g + dimB](−k) for 0 ≤ i ≤ d.

(The pRi−d for i > d are determined similarly by duality.)

This corollary has a consequence for the enumerative geometry of Calabi–Yau three-
folds, which we briefly sketch. Gopakumar and Vafa argued in [GV] that the cohomol-
ogy of the moduli space of D-branes (roughly speaking, semistable sheaves supported
on curves) on a Calabi–Yau Y should give rise to integer “BPS” invariants, one for each
genus and homology class in H2(Y,Z), which encode the Gromov–Witten invariants of Y .
Hosono, Saito, and Takahashi [HST] use intersection cohomology and the tools of [BBD]
to give a precise formulation; however, their proposal is known not to give the desired
BPS numbers in general [BP]. A different definition of integer BPS invariants is given
by Pandharipande and Thomas [PT] using the closely related spaces of “stable pairs”,
which for integral planar curves are just the Hilbert schemes of points. By the work of
Behrend [B], the BPS invariants are extracted by a weighted Euler characteristic of these
spaces, the weighting function depending only on the singularities of the moduli space.
For BPS invariants associated to irreducible homology classes, it is sensible to discuss
the contribution of an individual curve in both theories; if the moduli space of sheaves
on Y is smooth along the locus of sheaves supported on a curve C, then the intersection
cohomology considerations may be neglected in [HST], and likewise the weighting func-
tion of Behrend may be neglected in [PT]. In this case, taking Euler characteristics in
the Corollary yields the equality of the contributions of the curve C to these two theories.
Such curves will certainly appear if Y contains a Fano surface, and indeed the enumerative
geometry of curves on surfaces is also illuminated by the stable pairs spaces [KST, KT].

The Hilbert schemes also appear in the conjecture of Oblomkov, Rasmussen, and
the second author [OS, ORS]. This relates the cohomology of the Hilbert schemes of
points on a locally planar curve to the Khovanov–Rozansky HOMFLY homology of
the links of its singularities. The HOMFLY homology is a vector space carrying three
gradings, and its Poincaré polynomial P is written in the variables a, q, t . When the
curve has a unique singularity, the conjecture implies that, up to normalization, the low-
est coefficient of a in P is

∑
q2nw(C[n]), where w is the weight polynomial w(X) :=∑

i,j t
i(−1)i+j dim GriWHjc (X). The present work shows that the series on the RHS may
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be extracted instead from the perverse filtration on the cohomology of the compactified
Jacobian of C. The perverse filtration is surely no easier to compute directly than the
Hilbert scheme series, but at least in special cases the cohomology of the compactified
Jacobian (under its alias of affine Springer fibre [L]) appears in the geometric construction
of the spherical representations of the rational Cherednik algebra [VV]. The perverse fil-
tration interacts well with these geometric constructions, and as a consequence the series
above can sometimes be computed after passing to other incarnations of the Cherednik
algebra and its representations which are more suitable for computations. Details appear
in [ORS].

Theorem 1 is inspired by the support theorem of B. C. Ngô [N], and is a consequence
of it when d > 2g − 2. Nonetheless our proofs—we give two—do not logically depend
on his work, and rely on the deformation theory results in [S]; in particular, the analogue
of the crucial “δ-regularity” assumption in [N] is automatically satisfied in our case once
the total space C[d] is smooth (see Corollary 9).

Conventions. We follow [BBD] in declaring F ∈ Dbc(X) perverse when dim SuppHi(F)
≤ −i, and the same holds for the Verdier dual. That is, if X is smooth and n-dimensional,
C[n] is perverse. In arguments of a topological nature, we omit Tate twists. As mentioned
at the outset, all curves are integral and have singularities of embedding dimension 2. All
families of curves will enjoy a smooth base. For a curve C, we denote by C its normal-
ization, and write δ(C) for the difference between its arithmetic and geometric genera,
which we term the cogenus: δ(C) = pa(C)− pa(C).

2. Background on relative Hilbert schemes and versal deformations

The Hilbert schemes of points on integral planar curves are singular, but not hopelessly
so:

Theorem 3 ([AIK, BGS]). Let C be a complete integral planar curve. Then C[d] is in-
tegral, complete, d-dimensional, and locally a complete intersection.

We systematically employ versal deformations of curve singularities. We will always
mean this in the sense of analytic spaces (see [GLS] for a thorough treatment). The base
of a versal deformation of a plane curve singularity is smooth. If π : C → B is a fam-
ily of curves, we say it is locally versal at b if it induces versal deformations of all the
singularities of Cb. This last condition may be rephrased as follows ([FGvS, Section A]):
letting V(Cb) be the product of the versal deformations of the singularities of Cb, there
is a natural tangent map TbB → TbV(Cb) at b coming from the local-to-global spectral
sequence for first order deformations of Cb. The family is locally versal if this tangent
map is surjective. Such families have in particular the following properties:

Theorem 4 ([DH, T]). Let π : C → B be a family of curves. The cogenus is an upper
semicontinuous function on B. Local versality is an open condition, and in a locally
versal family the locus of curves of cogenus at least δ is equal to the closure of the locus
of δ-nodal curves. In particular, the locus of curves of cogenus δ in a locally versal family
has codimension δ.
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Any curve singularity can be found on a rational curve; for an explicit construction see
e.g. [L]. Moreover, if C → B is a family of curves, then locally near b ∈ B one can find a
different family C′ → B such that C′b is rational with the same singularities as Cb and the
two families induce the same deformations of the singularities of the central fibre.

Proposition 5 ([FGvS]). The map from the base of a versal deformation of an integral
locally planar curve to the product of the versal deformations of its singularities is a
smooth surjection.

Corollary 6. Let π : C → B be a family of curves. Fix b ∈ B, and let Cb be the normal-
ization of Cb. Then there exists a neighbourhood b ∈ U ⊂ B and a family π ′ : C′ → U

such that C′b is rational with the same singularities as Cb, and C and C′ induce the same
deformations of these singularities on U , and in particular have the same discriminant
locus. Moreover, on U , we have an equality of local systems R1π̃∗C = R1π̃ ′∗C⊕H1(Cb),
the latter summand meaning the constant local system with the specified fibre.

Proof. Let C′ be a rational curve with the same singularities as Cb; let C′ → V(C′) be a
versal deformation of C′, and, as above, let V(Cb) be the product of the versal deforma-
tions of the singularities of Cb. We identify V(Cb) = V(C′), and, by Proposition 5, the
map V(C′)→ V(Cb) is a smooth surjection, so we may choose, possibly after shrinking,
a local section σ . Pulling back, again possibly after shrinking B, the family C′ → V(C′)
to B via the composition

B → V(Cb)→ V(Cb)
σ
−→ V(C′)

we obtain a family of rational curves π ′ : C′B → B.
Shrink U ⊂ B further so that the inclusion Cb → C|U is a homotopy equivalence, and

let b̃ ∈ U be a point with smooth fibre C
b̃
. Let V be the summand of R1π̃∗C whose fibre

at b̃ is the kernel of the composition of the specialization map H1(C
b̃
)→ H1(Cb) with the

pullback to the normalization H1(Cb)→ H1(Cb). This is a symplectic summand; let V⊥
be its orthogonal complement. As V contains all vanishing cycles, the Picard–Lefschetz
formula ensures V⊥ has trivial monodromy and thus extends to a trivial local system
over B with fibre V⊥b = H1(Cb). On the other hand, V depends only on the deformation
of the singularities, which is the same in C and C′. ut

To make use of such a replacement, it is necessary to know that the relative Hilbert
scheme C′[d] is smooth if C[d] is. This follows from results of the second author on the
smoothness of relative Hilbert schemes [S], which we now review. Recall that in view of
our conventions, the base B of a family is always supposed to be smooth.

Proposition 7 ([S, Prop. 14]). Let π : C → B be a family of curves. If C[d] is smooth,
then C[n] is smooth for any n ≤ d.

In particular, if n = 1, then C must be smooth.
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Theorem 8. Let C → B be a family of curves. For b ∈ B, let I be the image of TbB in
the product of the first-order deformations of the singularities of Cb. Then:

(1) The smoothness of C[d] along C[d]b depends only on I .
(2) If C[d] is smooth along C[d]b , then dim I ≥ min(d, δ(Cb)).
(3) If dim I ≥ d and I is general among such subspaces, then C[d] is smooth along C[d]b .
(4) C[d] is smooth along C[d]b for all d if and only if I is transverse to the image of the

“equigeneric ideal”. It suffices for I to be generic of dimension at least δ(Cb).
Proof. For (1), take a subscheme z of C[d]b which decomposes as z =

∐
zi into sub-

schemes of lengths di supported at points ci . Let (Ci, ci)→ (Vi, 0) be miniversal defor-
mations of the curve singularities (Cb, ci) and (B, b)→

∏
(Vi, 0) a map along which the

multi-germ
∐
(C, ci)→ (B, b) pulls back. Then analytically locally the germ (C[d], [z])

pulls back from
∏
(C[di ]i , [zi]) along the same map. As the fibres of (C[di ]i , [zi])→ (Vi, 0)

are reduced of dimension di by [AIK, BGS] and the total space is smooth by [S, Prop.
17], the smoothness of the pullback depends only on the image of TbB in

∏
T0Vi , which

is well defined as the Vi were taken miniversal. The miniversal deformation of the germ
of a curve at a smooth point being trivial, only the singularities contribute.

To check (2), we may by (1) assume the map TbB → I is an isomorphism and then
identify locally B with its image in some representative B of

∏
(Vi, 0). Shrink B until it

can be written as B ×D for some polydisc D; by openness of smoothness we may shrink
D further until C[d]|B×ε is smooth for all ε ∈ D. It is known [DH, T] that the locus of
nodal curves with δ(Cb) nodes in

∏
Vi is nonempty (and of codimension δ(Cb)); choose

ε so that the slice B × ε contains such a point p corresponding to such a curve. If d ≤ δ,
there is a point z ∈ C[d]p naming a subscheme supported at d nodes. The Zariski tangent
space TzC[d]p is 2d-dimensional, so C[d]p cannot be smoothed out over a base of dimension
less than d .

For (3), again assume B is embedded in B =
∏

Vi ; now the situation is analytically
locally smooth over that in [S, Thm. 19]. Finally, (4) is stated in [FGvS] for the compact-
ified Jacobian; it follows for C[d] for d � 0 because this space fibres smoothly over the
Jacobian, and for lower d by Proposition 7. ut

Corollary 9. If C → B is a family of curves with C[d] smooth, then for δ ≤ d , the locus
of curves with cogenus δ is of codimension at least δ in B.

Proof. Suppose not; let B ′ be a generic δ− 1-dimensional smooth subvariety of B. Then
the restriction C[d] ×B B ′ is smooth and B ′ intersects the locus of curves of cogenus δ.
This contradicts (2) of Theorem 8. ut

Remark. Corollary 9 explains why we do not require a “δ-regularity” assumption as in
[N]—in the case of Hilbert schemes and Jacobians, it follows from smoothness of the
total space.

3. Estimates

The following is a variation on the “Goresky–MacPherson inequality” of [N, Section 7.3].
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Lemma 10. Let π : X → Y be a locally projective morphism of smooth varieties with
irreducible fibres of dimension n. Then

(1) pRjπ∗C[dimX] = 0 if |j | > n, and pR±nπ∗C[dimX] = C[dimY ].
(2) Hi(pRjπ∗C[dimX]) = 0 for |j | 6= n and i ≥ n− dimY − |j |.

In particular, every summand of Rπ∗C is supported on a subvariety of codimension < n.

Proof. The first statement follows immediately from the fact that the fibres are con-
nected of dimension n. The estimate is symmetric in j and, by relative hard Lefschetz,
pRjπ∗C[dimX] ' pR−jπ∗C[dimX], thus we may assume j ≥ 0. We check at a point
y ∈ Y , where by [BBD], Hi(pRjπ∗C[dimX])y is a summand of Hi+j+dimX(Xy,C).
This vanishes for dimension reasons if i+j+dimX = i+j+dimY+n > 2 dimXy = 2n.
Finally, as the fibres are irreducible, R2nπ∗C ' C. This top-dimensional cohomology is
already accounted for by the summand pRnπ∗C[dimX] = C[dimY ] and thus the vanish-
ing for j = i is ensured. The final statement follows because a summand supported on a
subvariety Y ′ is the IC sheaf associated to some local system on an open subset of Y ′ and
consequently the stalk of the cohomology sheaf in degree − dimY ′ is nonzero on a gen-
eral point of Y ′; this is prohibited by the stated estimate when dimY − dimY ′ ≥ n. ut

Lemma 11. Let π : C → B be a family of curves such that C[d] is smooth. Then for i > 0,
and for every j , the support of the sheaf Hi(IC(B,Rj π̃ [d]∗ C)[− dimB]) is contained in
the locus of curves of cogenus > i.

Proof. We check at some point b ∈ B and write δ for the cogenus of Cb. By semicontinu-
ity of cogenus, in some neighbourhood all curves have cogenus ≤ δ; we shrink B to this
neighbourhood and show that Hi(IC(B,Rj π̃ [d]∗ C)[− dimB]) = 0 for all i ≥ δ. Shrink-
ing B further if necessary, let π ′ : C′ → B be the family of curves constructed in Corol-
lary 6, which we recall has the property that C′b is rational, R1π̃∗C = R1π̃ ′∗C ⊕ H1(Cb),
and by item (1) of Theorem 8, C′[d] is smooth. Taking exterior powers and comparing
with equation (1), we see that Rj π̃ [d]∗ C is a sum of R≤j π̃ ′[d]∗ C; it will therefore suffice to
check the assertion for the family C′.

Note δ is the common arithmetic genus of the fibres of π ′. From Macdonald’s for-
mula (1), all summands of Ri π̃ ′[d]∗ C appear already as summands of Ri π̃ ′[min(d,δ)]

∗ C. As
C′[min(d,δ)] is smooth by Proposition 7, we may as well assume d ≤ δ. By relative hard
Lefschetz, it suffices to check the assertion for j ≤ d. But now j ≤ d ≤ δ ≤ i, thus by
the previous lemma, we are done. ut

Remark. Being an IC sheaf ensures that the above mentioned cohomology is supported
on some subspace of codimension i + 1. The force of the lemma is to show this subspace
lies inside the codimension i+1 locus of curves of cogenus i+1. Experimental evidence
suggests that the support is much smaller, and it would be interesting to have a precise
characterization.

Lemma 12. Let π : C → B be a family of curves, B ′ ⊂ B a smooth closed subvariety,
and π ′ : C′ → B ′ the restricted family. Assume C[d] and C′[d] are smooth. Denote by π̃
and π̃ ′ the respective smooth loci of the maps. Then IC(B,Ri π̃ [d]∗ C)|B ′ [dimB ′ − dimB]

= IC(B ′,Ri π̃ ′[d]∗ C).
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Proof. By induction on the codimension of B ′ in B, we are reduced to proving the
statement for B ′ a Cartier divisor in B. By [BBD, Cor. 4.1.12], the complex K :=
IC(B,Ri π̃ [d]∗ C)|B ′ [−1] is a perverse sheaf. By proper base change, K is a summand
of Rπ ′[d]∗ C[d + dimB ′]. As C′[d] is smooth, K must be the sum of IC complexes, and by
Corollary 9 the locus of curves of cogenus δ ≤ d appears in codimension at least δ in B ′.
By Lemma 11 and the fact that the fibre is d-dimensional, dim SuppHi(K) < −i for
i 6= − dimB ′. Therefore no summand of K is an IC complex associated to a local sys-
tem supported in positive codimension in B ′, and the claimed isomorphism follows from
the obvious fact that, on the smooth locus, K coincides with the (shifted) local system
Ri π̃ ′[d]∗ C[dimB ′]. ut

Corollary 13. Let π : C → B be a family of curves, and π ′ : C′→ B ′ its restriction to a
smooth subvariety of the base; assume C[d] and C′[d] are smooth. Let F be the summand
of Rπ [d]∗ C[d + dimB] not supported on all of B, i.e.

Rπ [d]∗ C[d + dimB] =
( d⊕
i=−d

IC(B,Rd+i π̃ [d]∗ C)[−i]
)
⊕ F ,

and similarly F ′ for B ′. If B ′ 6⊂ SuppF , then F ′ = F |B ′ [dimB ′ − dimB].

4. Proof via reduction to rational curves

Proposition 14. Let π : C → B be a family of curves. Then, in some neighbourhood of
b ∈ B, Theorem 1 holds for d ≤ δ(Cb).
Proof. Suppose not; let C → B be a counterexample over a base of minimal dimension.
Let b ∈ B be any point in the support of a summand F of Rπ [d]∗ C not supported on
all of B. By Theorem 8 and Corollary 13, the restriction of the family to a general slice
of dimension d passing through b remains a counterexample. Therefore d ≥ dimB. On
the other hand, by (2) of Theorem 8, and the assumption that d ≤ δ(Cb), we must have
d ≤ dimB. By Lemma 10, the support of F is of codimension < d , thus it intersects a
general d−1-dimensional slice of B. Again by Corollary 13, the restricted family remains
a counterexample, contradicting the assumption of minimal dimensionality. ut

Now let π : C → B be a family of curves; shrinking to a neighbourhood of some b ∈ B,
let π ′ : C′ → B be the replacement family of Corollary 6. Then from equation (4), we
see

∞∑
d=0

2d∑
i=0

qdRi π̃ [d]∗ C =
( ∞∑
d=0

2d∑
i=0

qdHi(Cb
[d]
)
)
⊗

(2δ(Cb)∑
i=0

qi
∧iR1π̃ ′∗C

)
. (5)

As the final term is manifestly symmetric about qδ , the series is determined by its first δ
terms.

To finish the proof of Theorem 1, it would suffice to show that∑
qdH∗(C[d]b ) =

(∑
qdH∗(Cb

[d]
)
)
ZC(q) (6)
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for a generating polynomial of vector spaces ZC(q) of degree 2δ with coefficients sym-
metric around qδ . Indeed, then the fibre at b of both sides of the equality asserted in
Theorem 1 would be determined in the same way by their values for C[≤δ], which by
Proposition 14 are equal.

However, we know no direct way to establish equation (6), although of course it will
follow as a consequence of Theorem 1. Instead, we prove the product formula and check
the symmetry in the Grothendieck group of varieties, in which we denote by L the class of
the affine line. This is still sufficient, because the weight polynomial both factors through
the Grothendieck group of varieties and serves to witness the nonexistence of summands
of Rπ [d]∗ C[dimB]. For K a complex of vector spaces carrying a weight filtration, we
write the weight polynomial w(K) :=

∑
i,j t

i(−1)i+j dim GriWHj (K). For a variety Z,
we abbreviate w(Z) for w(H∗c(Z)).

Proposition 15. Suppose we are given a proper map f : X → Y between smooth vari-
eties, and some summand F of Rf∗C[dimX]. If, for all y ∈ Y , we have w(Fy[− dimX])

= w(Xy), then F = Rπ∗C[dimX].

Proof. Let Rf∗C[dimX] = F
⊕

G; we must show that if w(Gy) = 0 for all y ∈ Y , then
G = 0. Now G is a direct sum of shifted complexes of the form IC(Li), with Li local
systems supported on locally closed subsets of B underlying pure variations of Hodge
structures. Then for y a general point of the support, the purity of G and the vanishing of
the weight polynomial force the vanishing of the local systems. ut

Let C be a curve, Csm its smooth locus, and C its normalization. For p ∈ C, we write
(C, p)[n] for the subvariety of C[n] parameterizing subschemes set-theoretically sup-
ported at p; our notation is meant to recall that it depends only on the germ of C at p. Let
b(p) be the number of analytic local branches of C near p. Splitting subschemes accord-
ing to their support gives the following equality in the Grothendieck group of varieties:∑

qn[C[n]] =
∑

qn[(Csm)[n]]
∏

p∈C\Csm

∑
qn[(C, p)[n]]

=

(∑
qn[C

[n]
]

)( ∏
p∈C\Csm

(1− q)b(p)
∑

qn[(C, p)[n]]
)
. (7)

This is the desired product formula. It remains to show that the final term of (7) is
symmetric around qδ . After passing to Euler characteristics, this is shown in [PT] using
Serre duality; the argument below is similar.

Proposition 16. Let C be a Gorenstein curve of cogenus δ, with smooth locus Csm and
b(p) analytic local branches at a point p ∈ C. Define

ZC(q) :=
∏

p∈C\Csm

(1− q)b(p)
∑

qn[(C, p)[n]].

Then ZC(q) is a polynomial in q of degree 2δ. Moreover, writing L for the class of the
affine line, we have ZC(q) = (q2L)δZC(1/qL).
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Proof. By (7), we may assume C is a rational curve of arithmetic genus g; note in this
case Z(C) = (1 − q)(1 − qL)

∑
qd [C[d]]. Fix a degree 1 line bundle O(1) on C. We

map C[d] → J̄ 0(C) by associating the ideal I ⊂ OC to the sheaf I ∗ = Hom(I,OC) ⊗

O(−d); the fibre is P(H 0(C, I ∗)). For F a rank one degree zero torsion free sheaf, we
write the Hilbert function as hF (d) = dim H0(C,F ⊗O(d)). Then since over the strata
with constant Hilbert function, the map from the Hilbert schemes to the compactified
Jacobian is the projectivization of a vector bundle, we have the equality

∑
qd [C[d]] =∑

h[{F |hF = h}]
∑
qd [Ph(d)−1

].
Fix h = hF for some F . Evidently h is supported in [0,∞), and by Riemann–Roch

and Serre duality is equal to d+1−g in (2g−2,∞). Inside [0, 2g−2], it either increases
by 0 or 1 at each step. Let φ±(h) = {d | 2h(d − 1)− h(d − 2)− h(d) = ±1}; evidently
φ− ⊂ [0, 2g] and φ+ ⊂ [1, 2g − 1], and

Zh(q) := (1− q)(1− qL)
∑

qd [Ph(d)−1
] =

∑
d∈φ−(F)

qdLh(d)−1
−

∑
d∈φ+(F)

qdLh(d−1).

This is a polynomial in q of degree at most 2g, hence so is ZC(q).
Now let G = F∗ ⊗ ωC ⊗O(2− 2g), and h∨ = hG . By Serre duality and Riemann–

Roch, h∨(d) = h(2g−2−d)+d+1−g, so in particular d ∈ φ±(h∨)⇔ 2g−d ∈ φ±(h).
It follows that q2gLgZh(1/qL) = Zh∨(q). As ZC(q) =

∑
h[{F |hF = h}]Zh(q), we

obtain the final stated equality. ut

This completes the (first) proof of Theorem 1.

5. Proof by reduction to nodal curves

Lemma 17. If Theorem 1 holds for all versal families of curves, then it holds for all
families.

Proof. By Corollary 13, the hypothesis implies that Theorem 1 holds for any subfamily
of a versal family. Now let π : C → B be a family such that the theorem fails; let F be
the summand of Rπ [d]∗ C whose support is not all of B, and let b ∈ B be a point such that
Fb 6= 0. Let φ : B → V(Cb) be a map to the miniversal deformation, and let B ′ ⊂ B be a
smooth closed subvariety through b such that dφb|B ′ is an isomorphism onto the image of
dφb(TbB). By Theorem 8(1), C[d]|B ′ is still smooth. According to Corollary 13, choosing
B ′ 6⊂ SuppF ensures that the restricted family still provides a counterexample in any
neighbourhood of b. Shrinking still further, the map B ′ → V(Cb) may be taken to be the
embedding of a smooth subvariety, giving a contradiction. ut

We now prove Theorem 1 for the versal family. The argument is induction on the cogenus,
which depends crucially on the properties of the versal family identified in Theorems 4
and 8. For clarity, we separate topological generalities from the specific properties of the
versal family.

Definition 18. Let X be a smooth complex analytic space with a constructible stratifica-
tion X =

∐
Xi such that Xi is everywhere of codimension ≥ i. We write N(

∐
Xi) for

the full subcategory of Dbc(X) whose objects F have the following property.
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For x ∈ Xi with i < dimX and for generic, sufficiently small, polydiscs X ⊃
Di × D ⊃ Di × 0 3 x, for sufficiently small ε ∈ D, the restriction

Fx = R0(Di × 0,F |Di×0) = R0(Di × D,F |Di×D)→ R0(Di × ε,F)

is an isomorphism.

Lemma 19. N(
∐
Xi) is a thick triangulated subcategory of Dbc(X), i.e., it is closed un-

der shifts, triangles, and taking summands.

Lemma 20. Let X+ ⊂ X be an open subset such that Xi \ X+ is of codimension > i.
Then the composition N(

∐
Xi)→ Dbc(X)→ Dbc(X

+), where the second functor is given
by restriction to the open set X+, is faithful.

Proof. Note that the condition onX+ implies thatXdimX ⊆ X
+. Consider F ∈ N(

∐
Xi)

such that F |X+ = 0. We must show Fx = 0 for all x ∈ X. Suppose by induction Fx = 0
for x ∈ X<i and consider x ∈ Xi \X+. Evidently (Xi \X+)∪X>i is of codimension> i,
so the generic Di×ε from the definition of N(

∐
Xi) passing near x misses this locus com-

pletely. Thus by assumption and the induction hypothesis, Fx = R0(Di × ε,F) = 0. ut

We now apply the statements above to X = B, the base of a locally versal family, with
the stratification B =

∐
Bi given by the loci of curves of cogenus i, and X+ ⊆ B the

open set parameterizing curves with at worst nodal singularities.

Proposition 21. Let π : C → B be a locally versal family of curves. Let Bi be the locus
of curves of cogenus i. Then Rπ [d]∗ C[dimB] ∈ N(

∐
Bi).

Proof. We check at some b ∈ Bδ . The definition of N is local on the base; as π̃ is
proper, after shrinking B the inclusion C[d]b ↪→ C[d] becomes a homotopy equivalence.
Any sufficiently small polydisc b ∈ Dδ × D ⊂ B will induce homotopy equivalences
C[d]b → C[d]|Dδ×0 → C[d]|Dδ×D. By Theorem 8(3), a generic choice ensures that the
latter two spaces are smooth, possibly after further shrinking the discs; by openness of
smoothness we can shrink D still further so that the projection C[d]Dδ×D → D is smooth. It

follows that, possibly after shrinking Dδ further, H∗(C[d]Dδ×D) = R0(Dδ × D,Rπ [d]∗ C)→
R0(Dδ × ε,Rπ [d]∗ C) = H∗(C[d]Dδ×ε) is an isomorphism (see [FGvS, proof of Thm. 1] for
a similar argument). ut

Proposition 22. Theorem 1 holds for all locally versal families of curves.

Proof. Let π : C → B be a locally versal family of curves, and let Bi be the locus of
curves of cogenus i. Let F be any summand of Rπ [d]∗ C supported on a proper subvariety
of B. Then by Lemma 19 and Proposition 21, F ∈ N(

∐
Bi). By Theorem 4 [DH, T], the

locus of nodal curves is dense in each Bi ; thus by Lemma 20 we need only check that the
restriction of F to the locus of nodal curves is zero, i.e. Theorem 1 holds for families of
nodal curves; this is done in the next lemma. ut
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Lemma 23. Theorem 1 holds for locally versal families of nodal curves.

Proof. Let π : C → B be such a family. Let b ∈ B be the base point, let {c1, . . . , cδ} ⊆ Cb
be the nodal set of the central curve Cb, and denote by r its geometric genus. Shrinking B
if necessary, we can assume:

(1) the discriminant locus is a normal crossing divisor 1 =
⋃
Di with i = 1, . . . , δ,

where Di is the locus in which the i-th node ci is preserved.
(2) If b0 is such that Cb0 is nonsingular, the vanishing cycles {ζ1, . . . , ζδ} in Cb0 associated

with the nodes of Cb are disjoint.

As the curve Cb is irreducible, the cohomology classes in H1(Cb0) of these vanishing
cycles are linearly independent, and can then be completed to a symplectic basis.

Let Ti be the generators of the (abelian) local fundamental group π1(B \1, b0) where
Ti corresponds to “going around Di”. Then the monodromy defining the local system
R1π̃∗C on B \1 is given via the Picard–Lefschetz formula, and, in the symplectic basis
above, has a Jordan form consisting of δ Jordan blocks of length 2. From this it is easy
to compute the invariants of the local systems obtained by applying any linear algebra
construction to R1π̃∗C, such as those that appear in Ri π̃ [d]∗ C. Let Si,[d] be the linear
algebra operation, described by formula (1), such that Ri π̃ [d]∗ C = Si,[d]R1π∗C. Denote
by j : B \1→ B the open inclusion.

We have a natural isomorphism

(Si,[d]H1(Cb0))
π1(B\1,b0) = H−dimB(IC(B,Ri π̃ [d]∗ C))b

between the monodromy invariants on Si,[d]H1(Cb0) and the stalk at b of the first non-
vanishing cohomology sheaf of the intersection cohomology complex of Ri π̃ [d]∗ C. The
decomposition theorem in [BBD] then implies that H∗(C[d]b ) contains the Hodge structure

H[d] :=
⊕
i

(Si,[d]H1(Cb0))
π1(B\1,b0)

as a direct summand, with the weight filtration defined in the standard way by the loga-
rithms of the monodromy operators (see [CK]).

It is easy to compute H[d] explicitly; presumably H∗(C[d]b ) can be computed by ele-
mentary methods and shown to match; this would complete the proof. In the absence of
such a calculation, we use Proposition 15 and instead compare weight polynomials. On
the one hand, we compute

∑
qdw(H[d]) = (1− q + t2q2)δ(1+ tq)2r/(1− q)(1− t2q).

On the other hand, when C = P1
+ is a rational curve with a single node, Riemann–

Roch ensures that the Abel map is a projective bundle for any d ≥ 1; when d = 1 we
have [J̄ 0(P1

+)] = [P1
+] = L. Thus we get the formula∑
qd [(P1

+)
[d]
] = (1− q + q2L)/((1− q)(1− qL)).

Comparison with equation (7) gives
∑
qd [C[d]b ] = (

∑
qd [Cb

[d]
])(1− q + q2L)δ; taking

weight polynomials gives the desired result. ut

This completes the (second) proof of Theorem 1.
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6. An application

Given a projective map F : X → Y with X nonsingular, the decomposition theorem
([BBD]) RF∗C[dimX] =

⊕r
i=−r

pRiF∗C[dimX][−i] gives, by proper base change, an
isomorphism

Hk(F−1(y))
8F
←−−

r⊕
i=−r

Hk−dimX−i(pRiF∗C[dimX])y,

for every y ∈ Y and k ∈ N. The filtration

Hk
≤0(F

−1(y)) ⊆ Hk
≤1(F

−1(y)) ⊆ · · · ⊆ Hk
≤2r−1(F

−1(y))

⊆ Hk
≤2r(F

−1(y)) = Hk(F−1(y)),

where

Hk
≤l(F

−1(y)) := 8F

(−r+l⊕
i=−r

Hk−dimX−i(pRiF∗C[dimX])y

)
,

is called the perverse filtration on Hk(F−1(y)) associated with F .
Let C be a complete integral locally planar curve. A deformation C ⊂ C π

−→ B 3 b,

with C = π−1(b), such that C[d] is nonsingular, defines, by the above, a perverse filtration
Hk
≤0(C

[d]) ⊆ Hk
≤1(C

[d]) ⊆ · · · ⊆ Hk
≤2d−1(C

[d]) ⊆ Hk
≤2d(C

[d]) = Hk(C[d]) on the
cohomoloy groups of the d−th Hilbert scheme of C. The following proposition shows
that this filtration is in fact intrinsic, i.e. it does not depend on π :

Proposition 24. Let C be a complete integral curve, Let C ⊂ C π
−→ B 3 b, and

C ⊂ C′ π ′

−→ B 3 b′ be two deformations of C with the property that C[d] and C′[d] are
nonsingular. Then the perverse filtrations on Hk(C[d]) associated with π and π ′ coincide.

Proof. By Theorem 1 we have

Hk
≤l(C

[d]) := 8π

(−d+l⊕
i=−d

Hk−d−dimB−i(IC(B,Rd+i π̃ [d]∗ C))b
)
, (8)

and similarly for π ′. By appropriately shrinking B and B ′ around b and b′ respectively,
we may assume that the families are the pullback from a versal deformation C ⊂ Cv

πv
−→

Bv 3 bv of C. By arguments analogous to those in Section 2 we are reduced to proving
the statement in the case when π : C = Cv ×Bv B → B and π ′ : C′ = Cv ×Bv B

′
→ B ′

are the restriction of Cv → Bv to two smooth subvarieties B
i
↪→ Bv

i′

←↩ B ′ with bv =

b = b′ ∈ B ∩ B ′. The natural restriction maps

i∗Rπ [d]∗ C = i∗i∗Rπ [d]v ∗
C← Rπ [d]v ∗

C→ i′∗i
′∗Rπ [d]v ∗

C = i′∗Rπ
′[d]
∗ C

induce isomorphisms on the cohomology sheaves at the point bv, and the statement now
follows immediately from the expression (8) applied to the maps π, π ′ and πv, and
Lemma 12. ut
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