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Abstract. In this article, we study small perturbations of the family of Friedmann–Lemaı̂tre–
Robertson–Walker cosmological background solutions to the coupled Euler–Einstein system with
a positive cosmological constant in 1 + 3 spacetime dimensions. The background solutions model
an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing ex-
ponentially accelerated expansion. Our nonlinear analysis shows that under the equation of state
p = c2

s ρ, 0 < cs <
√

1/3, the background metric + fluid solutions are globally future-stable
under small irrotational perturbations of their initial data. In particular, we prove that the perturbed
spacetime solutions, which have the topological structure [0,∞)×T3, are future causally geodesi-
cally complete. Our analysis is based on a combination of energy estimates and pointwise decay
estimates for quasilinear wave equations featuring dissipative inhomogeneous terms. Our main new
contribution is showing that when 0 < cs <

√
1/3, exponential spacetime expansion is strong

enough to suppress the formation of fluid shocks. This contrasts against a well-known result of
Christodoulou, who showed that in Minkowski spacetime, the corresponding constant-state irrota-
tional fluid solutions are unstable.

Keywords. Cosmological constant, energy dissipation, expanding spacetime, geodesically com-
plete, global existence, irrotational fluid, relativistic fluid, wave coordinates

1. Introduction

The irrotational Euler–Einstein system models the evolution of a dynamic spacetime
(M, g) containing a perfect fluid with vanishing vorticity. By spacetime, we mean a
4-dimensional time-orientable Lorentzian manifold M together with a spacetime met-
ric gµν on M of signature (−,+,+,+). In this article, we endow this system with a
positive cosmological constant 3 and consider the equation of state p = c2

sρ, where p is
the fluid pressure, ρ is the proper energy density, and the nonnegative constant cs is the
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speed of sound. As is fully discussed in Section 3, under these assumptions, the irrota-
tional Euler–Einstein system comprises the equations (here and throughout, we use units
with 8πG = c = 1, where c is the speed of light propagation in Maxwell’s theory of
electromagnetism, and G is Newton’s universal gravitational constant)

Ricµν − 1
2Rgµν +3gµν = T

(scalar)
µν (µ, ν = 0, 1, 2, 3), (1.1a)

Dα(σ
sgαβDβ8) = 0, (1.1b)

whereD is the Levi-Civita connection corresponding to gµν, Ricµν is the Ricci curvature
tensor, R = gαβ Ricαβ is the scalar curvature, 8 is the fluid potential (see Remark 1.1),
T
(scalar)
µν = 2σ s(∂µ8)(∂ν8) + gµν(s + 1)−1σ s+1 is the energy-momentum tensor of an

irrotational fluid, σ = −gαβ(∂α8)(∂β8) is the square of the enthalpy per particle, and
s = (1 − c2

s )/(2c
2
s ). The fundamental unknowns are (M, g, ∂8), while the pressure

and proper energy density can be expressed as p = 1
s+1σ

s+1, ρ = 2s+1
s+1 σ

s+1. In this
article, we will mainly restrict our attention to the case s > 1, which is equivalent to
0 < cs <

√
1/3. Although we limit our discussion to the physically relevant case of 1+3

dimensions, we expect that our work can be easily generalized to apply to the case of
1+ n dimensions, n ≥ 3.

Remark 1.1. Due to possible topological obstructions arising in the application of
Poincaré’s lemma on the spacetime slab [0, T ] × T3 (see Section 3.1), the function 8
may only be defined locally (even though the one-form ∂8, which is the physically rel-
evant fluid variable, does not suffer from this problem). For simplicity, we only give
complete details in this article in the case that 8 can be globally defined. Equivalently,
we only give complete details in the case that the spacetime one-form βµ defined in equa-
tion (3.12) below is exact. We remark that the exactness condition is preserved by the
flow of the relativistic Euler equations if it is satisfied by the (3-dimensional) initial data
one-form β̊j (which is discussed in more detail below). Under our exactness assumption,
in any spacetime slab [0, T ] × T3 where βµ exists, there exists a function 8 such that
∂µ8 = βµ. For a general irrotational fluid, βµ is closed (i.e., dβ = 0) but not exact (see
Section 3.1 for more details). In this general case, equation (1.1b) would be viewed as an
equation for the components βµ. Furthermore, one would have to supplement (1.1b) with
the equations dβ = 0 (the corresponding evolution equations are ∂tβj −∂jβ0 = 0 relative
to the wave coordinate system we use throughout our analysis). We chose to provide full
details only in the exact case because exactness simplifies the presentation and the deriva-
tion of the fluid energy estimates. However, we stress that the estimates that we derive for
∂µ8 in the exact case are precisely the same as those that could be derived for βµ in the
general irrotational case; all of our proofs in the exact case could be slightly altered in a
very straightforward fashion to apply to the general irrotational case.

As we explain in Section 3, the specification of an equation of state is sufficient to
close the relativistic Euler equations. Our choice of p = c2

sρ is often made in the math-
ematics and cosmology literature. As is explained in Section 4, under such equations of
state, there exists a family of Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) solutions
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to (1.1a)–(1.1b) that are frequently used to model a fluid-filled universe undergoing accel-
erated expansion; these are the solutions that we investigate in detail in this article. The
cases p = 0 and p = (1/3)ρ, which are known as the “dust” and “radiation” equations
of state, are of special significance in the cosmology literature. The latter is often used
as a simple model for a “radiation-dominated” universe, while the former for a “matter-
dominated” universe. Unfortunately, as we will see, these two equations of state lie just
outside of the scope of our main theorem. Our results can be summarized as follows. We
state them roughly here; they are stated more precisely as theorems in Sections 11 and 12.

Main Results. If 0 < cs <
√

1/3 (i.e., s > 1), then the FLRW background solu-
tion ([0,∞)×T3, g̃, ∂8̃) to (1.1a)–(1.1b), which describes an initially uniform
quiet fluid of constant positive proper energy density evolving in a spacetime
undergoing exponentially accelerated expansion, is globally future-stable under
small perturbations. In particular, small perturbations of the initial data corre-
sponding to the background solution have maximal globally hyperbolic develop-
ments that are future causally geodesically complete. We remark that through-
out this article, ∂t is future-directed. Above, g̃ = −dt2 + e2�(t)∑3

i=1(dx
i)2,

and ∂8̃ := (∂t8̃, ∂18̃, ∂28̃, ∂38̃) = (9̄e
−κ�(t), 0, 0, 0), where 9̄ is a positive

constant, κ = 3/(2s + 1) = 3c2
s , �(t) ∼ (

√
3/3)t is defined in (4.15), and

T3
:= [−π, π]3 with the ends identified. Furthermore, in the wave coordinate

system introduced in Section 5.1, suitably time-rescaled versions of the compo-
nents gµν of the perturbed metric, its inverse gµν, the fluid potential one-form
∂8, and various coordinate derivatives of these quantities each converge to func-
tions of the spatial coordinates (x1, x2, x3) as t → ∞. The limiting functions
are close to time-rescaled components of the FLRW solution, which are constant
in t and (x1, x2, x3).

Remark 1.2. In future work, using other techniques, we plan to extend the results as
follows: (i) by removing the assumption of irrotationality, and (ii) by proving future sta-
bility in the case cs = 0. The case cs =

√
1/3 has recently been addressed [LVK13]

via Friedrich’s conformal method (see Section 1.1). Furthermore, we note that Rendall
[Ren04] found (using formal power series expansions) evidence suggesting instability
when cs >

√
1/3.

Remark 1.3. In this article, we do not address the issue of whether or not the perturbed
solutions are decaying towards the exact FLRW background solution. Note also that our
results only address perturbations of fluids featuring a strictly positive proper energy den-
sity ρ. We have thus avoided certain technical difficulties, such as dealing with a free
boundary, that arise when ρ vanishes. Furthermore, note that we have only shown stabil-
ity in the “expanding” direction (t →∞).

We would now like to make a few remarks about the cosmological constant. We do
not attempt to give a detailed account of the rich history of3, but instead defer to the dis-
cussion in [Car01]; we offer only a brief introduction. While the cosmological constant
was originally introduced by Einstein [Ein17] to allow for static solutions to the Einstein
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equations in the presence of matter, the present day motivation for introducing 3 > 0 is
entirely different. The story behind the modern motivation begins in 1929, when Hubble
discovered the expansion of the universe [Hub29]. In brief, Hubble’s “law,” which was
formulated based on measurements of redshift, states that the velocities at which distant
galaxies are receding from Earth are proportional to their distance from Earth. Further-
more, the present day explanation is that the cause of these velocity shifts is the expansion
of spacetime itself. For example, a metric of the form g = −dt2 + a2(t)

∑3
i=1(dx

i)2,

with d
dt
a > 0, creates a redshift effect. Now in the 1990’s, experimental evidence derived

from sources such as type Ia supernovae and the cosmic microwave background led to a
surprising conclusion: the universe is in fact undergoing accelerated expansion. Our main
motivation for introducing the positive cosmological constant is that it allows for space-
time solutions of (1.1a)–(1.1b) that feature this effect. A simple example of a solution
to the Einstein-vacuum equations that features such accelerated expansion is the metric
g = −dt2 + e2Ht∑3

i=1(dx
i)2 on the manifold (−∞,∞)× T3, where H =

√
3/3.

The introduction of a positive cosmological constant is not the only known mech-
anism for generating solutions to Einstein’s equations with accelerated expansion. In
particular, Ringström’s work [Rin08], which is the main precursor to this article, shows
that the Einstein-nonlinear scalar field system, with a suitably chosen nonlinearity V (8),
has an open family of future-global solutions undergoing accelerated expansion. More
specifically, the system studied by Ringström can be obtained by replacing (1.1b) with
gαβDαDβ8 = V ′(8) and setting T

(scalar)
µν = (∂µ8)(∂ν8) −

[ 1
2g
αβ(∂α8)(∂β8) +

V (8)
]
gµν in equation (1.1a). V is required to satisfy V (0) > 0, V ′(0) = 0, V ′′(0) > 0,

so that in effect, the influence of the cosmological constant is emulated by V (8) when 8
is small. Ringström’s main result, which is analogous to our main result, is a proof of the
future-global stability of a large class of spacetimes featuring accelerated expansion.

The Main Results stated above allude to both the existence of an initial value prob-
lem formulation of the Einstein equations, and the existence of a “maximal” solution.
These notions are fleshed out in Section 3.2, but we offer a brief description here. One
of the principal difficulties in analyzing the Einstein equations is the lack of a canonical
coordinate system. Intimately connected to this difficulty is the fact that due to the dif-
feomorphism invariance of the equations, their hyperbolic nature is not readily apparent
until one makes some kind of gauge choice. One way of resolving these difficulties is
to work in a special coordinate system known as wave coordinates (also known as har-
monic gauge or de Donder gauge), in which the Einstein equations become a system of
quasilinear wave equations. One advantage of such a formulation is that local-in-time ex-
istence for a system of wave equations is immediate, because a standard hyperbolic theory
based on energy estimates has been developed (consult e.g. [Hör97, Ch. VI], [Tay97, Ch.
16], [SS98], [Sog08]). Although the use of wave coordinates is often attributed solely to
Choquet-Bruhat, it should be emphasized that use of wave coordinates in the context of
the Einstein equations goes back to at least 1921, where it is featured in the work of de
Donder [dD21]. However, the completion of the initial value problem formulation of the
Einstein equations is in fact due to Choquet-Bruhat [CB52]; her main contribution was a
proof that the wave coordinate condition is preserved during the evolution of solutions to
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a modified version of the equations if it is initially satisfied and the constraint equations
(1.2a)–(1.2b) are satisfied (see the remarks below).

The initial data for the irrotational Euler–Einstein system consist of a 3-dimensional
Riemannian manifold 6̊ and the following fields defined on 6̊: a Riemannian metric g̊,
a symmetric two-tensor K̊, a function 9̊, and a closed one-form β̊ (i.e., dβ̊ = 0, where
d denotes the exterior derivative operator on 6̊). A solution consists of a 4-dimensional
manifold M, a Lorentzian metric g, and a closed one-form ∂8 (see Remark 1.1) on M
satisfying (1.1a)–(1.1b), together with an embedding 6̊ ↪→ M such that g̊ is the first
fundamental form of 6̊ [see definition (3.33)], K̊ is the second fundamental form of 6̊
[see definition (3.34)], the restriction of ∂

N̂
8 to 6̊ is 9̊, and the restriction of ∂8 to

vectors tangent to 6̊ is β̊. Here ∂
N̂
8 denotes the duality pairing of the one-form ∂8 with

the vector field N̂, where N̂ is the future-directed unit normal N̂ to 6̊ (i.e., ∂
N̂
8 is the

normal derivative of 8); see Section 2.3 for a summary of the conventions we use for
identifying tensors inherent to 6̊ with spacetime tensors. It is important to note that the
initial value problem is overdetermined, and that the data are subject to the Gauss and
Codazzi constraints. The constraints can be expressed as follows relative to an arbitrary
local coordinate system (x1, x2, x3) on 6̊:

R̊ − K̊abK̊
ab
+ (g̊abK̊ab)

2
− 23 = 2T (scalar)(N̂, N̂)|6̊, (1.2a)

D̊aK̊aj − g̊
abD̊j K̊ab = T

(scalar)(N̂, ∂/∂xj )|6̊ (j = 1, 2, 3), (1.2b)

where R̊ is the scalar curvature of g̊, D̊ is the Levi-Civita connection corresponding
to g̊, and N̂ is the future-directed normal to 6̊. We remark that when p = c2

sρ, the
results of Section 3.3 imply that T (scalar)(N̂, N̂)|6̊ = 2σ̊ s9̊2

− (s + 1)−1σ̊ s+1 and
T (scalar)(N̂, ∂/∂xj )|6̊ = 2σ̊ s9̊β̊j , where σ̊ = 9̊2

− g̊abβ̊aβ̊b = σ |6̊ .

Remark 1.4. In this article, we do not address the issue of solving the constraint equa-
tions for the system (1.1a)–(1.1b).

17 years after the initial value problem formulation was understood, Choquet-Bruhat
and Geroch showed [CBG69] that every sufficiently smooth initial data set [satisfying the
constraints (1.2a)–(1.2b)] launches a unique maximal globally hyperbolic development.
Roughly speaking, this is the largest spacetime solution to the Einstein equations that is
uniquely determined by the data. This result is still a local well-posedness result in the
sense that it allows for the possibility that the spacetime might contain singularities. In
particular, future-directed, causal geodesics may terminate, which in physics terminology
means that an observer (light ray in the case of null geodesics) may run into the end
of spacetime in finite affine parameter. For spacetimes launched by initial data near that
of the FLRW solution, our main result rules out the possibility of these singularities for
observers (light rays) traveling in the “future direction.”

We offer a few additional remarks concerning wave coordinates. The classic wave
coordinate condition is the algebraic relation 0µ = 0, where the 0µ are the contracted
Christoffel symbols of the spacetime metric. In this article, we use a version of the wave
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coordinate condition that is closer in spirit to the one used by Ringström in [Rin08],
which was itself inspired by the ideas in [FR00]. Specifically, we set 0µ = 0̃µ, where
0̃µ is the contracted Christoffel symbol of the background solution metric. Simple com-
putations imply that 0̃µ = 3ωδµ0 , where ω(t) ∼

√
3/3, which is uniquely determined

by the parameters 3 > 0, ρ̄ > 0, and ς = 3(1 + c2
s ), is the function from (4.21).

Here, ρ̄ denotes the initial proper energy density of the FLRW solution. It follows that
in our wave coordinate system, the (geometric) wave equation gαβDαDβv = 0 for the
function v is equivalent to the modified (also known as the “reduced”) wave equation
gαβ∂α∂βv = 3ω∂tv, which features the dissipative source term ω∂tv. We provide a more
detailed discussion of this modified scalar equation in Section 1.2. Furthermore, in Sec-
tion 5, we modify the irrotational Euler–Einstein system in an analogous fashion, arriving
at an equivalent hyperbolic system featuring dissipative terms. More precisely, the modi-
fied system is equivalent to the Einstein equations if the data satisfy the Einstein constraint
equations (1.2a)–(1.2b) and the wave coordinate condition.

1.1. Comparison with previous work

First, it should be emphasized that the behavior of solutions to the fluid equation (1.1b)
on exponentially expanding backgrounds is quite different than it is in flat spacetime.
In particular, if one fixes a background metric on [0,∞) × T3 near the FLRW metric
g̃µν, then our proof shows that the fluid equation (1.1b) on this background with 0 <

cs <
√

1/3 has global solutions arising from data that are close to that of an initial
uniform quiet fluid state, which is represented by ∂8̃. This is arguably the most interesting
aspect of our main result. In contrast, Christodoulou’s monograph [Chr07b] shows that
on the Minkowski spacetime background, shock singularities can form in solutions to the
irrotational fluid equation arising from smooth data that are arbitrarily close to that of a
uniform quiet fluid state. Our original intuition for this article was that rapid spacetime
expansion should pull apart the fluid and discourage the formation of shocks.

In addition to Christodoulou’s nonlinear instability result in the case of flat spacetime,
we also mention the well-known linear instability result of Sachs and Wolfe [SW67],
which features slowly expanding spacetimes. In this work, they consider the Euler–Ein-
stein system with 3 = 0 under the equations of state p = 0 and p = (1/3)ρ. Sachs–
Wolfe then consider a family of background solutions to this system on the manifold
(−∞,∞) × R3. We remark that these well-known background solutions are of FLRW
type, and can be obtained as special cases of the solutions that we present in Section 4
(modulo the fact that the Sachs–Wolfe solutions have spatial slices diffeomorphic to R3,

while our solutions have spatial slices diffeomorphic to T3). When 3 = 0, the back-
ground metric is g̃ = −dt2 + t2Q

∑3
i=1(dx

i)2, where Q = 2
3(1+c2

s )
. In particular, the

expansion is not accelerated. For the purposes of the present article, the most important
result of [SW67] is that the linearization of the Euler–Einstein system with3 = 0 around
the FLRW solutions is unstable. In particular, the linearized system features solutions
whose relative density perturbations can grow like tC, where C > 0 depends on cs . Com-
bining this Sachs–Wolfe result with the results of the present paper and those of [LVK13],
one reaches the following moral conclusion: rapid spacetime expansion can suppress the
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formation of fluid instabilities, while slow spacetime expansion does not. As a side re-
mark, we mention the most well-known aspect of [SW67]: Sachs–Wolfe showed that the
growing density perturbations couple back into the metric. The resulting variations in the
metric lead to anisotropies in the cosmic microwave background. In particular, the amount
by which photons are gravitationally shifted varies with direction in the sky. The theoret-
ical predictions of this effect, which is known as the Sachs–Wolfe effect, are consistent
with the variations in the cosmic microwave background detected by the Mather–Smoot
team’s COBE satellite in 1992 [BMW+92].

Next, we note that Brauer, Rendall, and Reula [BRR94] have shown a Newtonian ana-
logue of our main result. More specifically, they studied Newtonian cosmological models
with a positive cosmological constant and with perfect fluid sources under the equation
of state p = Cρ

γ
Newt, where ρNewt ≥ 0 is the Newtonian mass density, C > 0 is a

constant, and γ > 1 is a constant. These models were based on Newton–Cartan theory,
which is a slight generalization of ordinary Newtonian gravitational theory that can be
endowed with a highly geometric interpretation. The authors showed that small pertur-
bations of a uniform quiet fluid state of constant positive density lead to a future-global
solution. It is of particular interest to note that they do not require the fluid to be irrota-
tional. This suggests that our main result can be extended to allow for (small) nonvan-
ishing vorticity. As discussed in Remark 1.2, we will address this issue in an upcoming
article.

We also note a curious anti-correlation between our results and some well-known
stability arguments for the Euler–Poisson system (a nonrelativistic system with vanish-
ing cosmological constant) which may be found e.g. in Chapter XIII of Chandrasekhar’s
book [Cha61]. Chandrasekhar considers a simple model for an isolated body in equilib-
rium, namely a static compactly supported solution to the Euler–Poisson equations under
an equation of state equivalent to p = Cnγ , where n denotes the fluid element number
density, C > 0 is a constant, and γ > 0. He uses virial identity arguments to suggest that
such a configuration is stable if γ > 4/3.However, since (3.7) implies that the equation of
state p = c2

sρ (here ρ denotes the proper energy density, a relativistic quantity) is equiv-
alent to p = Cn1+c2

s , our main results show that our background solution is stable under
irrotational perturbations if 1 < 1 + c2

s < 4/3; i.e., our results seem to anti-correlate
with the aforementioned nonrelativistic one. We temper this observation by noting that
our problem differs in several key ways from that of Chandrasekhar; Chandrasekhar stud-
ied compactly supported data for a nonrelativistic system on a flat background, while
here we study relativistic fluids of everywhere positive energy density on an expanding
background.

In addition to the previously mentioned work of Ringström, we would also like to
mention some other contributions related to the issue of global nonlinear stability for
solutions to the Einstein equations with a positive cosmological constant. The first au-
thor to obtain global stability results in this direction was Helmut Friedrich, first in vac-
uum spacetime [Fri86] in 1 + 3 dimensions, and then later for the Einstein–Maxwell
and Einstein–Yang–Mills equations [Fri91]. Anderson then extended the vacuum result
to cover the case of 1+ n dimensions, n odd [And05]. Their work was based on the con-
formal method, which reduces the question of global stability for the Einstein equations
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to the much simpler question of local-in-time stability for the conformal field equations,
which were developed by Friedrich. We remark that the conformal field equations are
symmetric hyperbolic, and for such systems, local-in-time stability is a standard result.
Unfortunately, the conformal method does not seem to be easily applicable to all mat-
ter models that arise in general relativity. In particular, Ringström has stated that one of
his main motivations for his wave coordinate approach in [Rin08] is that the conformal
method cannot necessarily be easily adapted to handle matter models other than Maxwell
and Yang–Mills fields. Our work can be viewed as an example of the robustness of the
wave coordinate approach when 3 > 0. We also note that future-stability in the case
cs =
√

1/3 was shown [LVK13] via the conformal method. We remark that the key struc-
tural property that allows one to apply the conformal method is the vanishing of the trace
of the energy-momentum tensor; for a perfect fluid, the vanishing occurs only for the
equation of state p = (1/3)ρ.

Finally, we compare our work here with the body of work on the stability of Min-
kowski space, which is the most well-known solution to the Einstein-vacuum equations
in the case 3 = 0. This groundbreaking work, which was initiated by Christodoulou and
Klainerman [CK93], covered the case of the Einstein-vacuum equations in 1+ 3 dimen-
sions. Their proof, which is manifestly covariant, relied upon several geometric foliations
of spacetime, including maximal t = const slices and also a family outgoing null cones.
In particular, it was believed that wave coordinates were unstable in this setting and there-
fore were unsuitable for proving the global stability of Minkowski spacetime. However,
Lindblad and Rodnianski have recently devised yet another proof for the Einstein-vacuum
and Einstein-scalar field systems [LR05], [LR10], which is much shorter but less precise,
and which proves the global stability of Minkowski spacetime in the wave coordinate
gauge 0µ = 0. In particular, Lindblad and Rodnianski were the first authors to show that
a wave coordinate system can be used to prove global stability results for the Einstein
equations. As we will explain in the next section, our result was technically simpler to
achieve than either of these results. More specifically, in 1 + 3 dimensions with 3 = 0,
the Einstein-vacuum equations contain nonlinear terms that are on the border of what can
be expected to allow for global existence. More precisely, the equations contain nonlin-
ear terms that, on the basis of their order alone, might be expected to produce finite-time
blow-up (even for small data). However, in wave coordinates, the Einstein equations were
shown to satisfy the weak null condition [LR03], which means that they have a special
geo-algebraic structure that allows for small-data global existence. As we will see, the ad-
dition of 3 > 0 to the Einstein equations, together with our previously mentioned wave
coordinate choice, will lead to the presence of energy dissipation terms. Consequently,
in the parameter range 0 < cs <

√
1/3, we do not have to contend with the difficult

“borderline integrals” that appear in the proofs of the stability of Minkowski spacetime.
A more thorough comparison of the proofs of the stability of Minkowski spacetime to the
proofs of the stability of exponentially expanding solutions can be found in the introduc-
tion of [Rin08]. Moreover, we remark that readers interested in results related to those
of Christodoulou–Klainerman and Lindblad–Rodnianski can consult [BZ09], [KN03],
[Loi08], [Spe10].
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1.2. Overview of the analysis

Our working version of the modified irrotational Euler–Einstein system is provided by
equations (5.15a)–(5.15d) below. These equations form a coupled system of quasilin-
ear wave equations containing dissipative inhomogeneous terms and “error” inhomoge-
neous terms. The system has a diagonal principal part and features two distinct inverse
Lorentzian metrics: (i) the inverse spacetime metric g−1, and (ii) the reciprocal acoustical
metric m−1 [see (5.17a)–(5.17c)], which is an inverse Lorentzian metric corresponding
to the irrotational fluid equation (1.1b). We remark that m−1 depends on both g and ∂8.
More precisely, each equation in the system (5.15a)–(5.15d) can be written in the form

eκλ∂κ∂λv = αH∂tv + βH 2v + F, (1.3)

where v ∈ {8, g00 + 1, g0j , hjk = e
−2�gjk}j,k=1,2,3, e is one of the two aforementioned

inverse Lorentzian metrics, α > 0 and β ≥ 0 are constants, H =
√
3/3, and F is a

nonlinear inhomogeneous error term. We remark that strictly speaking, equation (5.15d)
below is not written in the form (1.3). However, since the function ω(t) [see (4.21)]
rapidly converges to the constant H, equation (5.15d) can be massaged into this form
with α = κH by viewing the difference κ(H − ω(t))∂t8 as an additional error term.
Now as we will see, our main future stability theorem is driven by the dissipative terms
αH∂tv and βH 2v. Although the system (5.15a)–(5.15d) is quasilinear, our basic strategy
for analyzing (1.3) can readily be seen by studying a model semilinear wave equation for
a single unknown. For simplicity, we will only address the case β = 0 in this section.
The model equation is gαβDαDβv = F(v, ∂v) for the pre-specified metric g(model) =
−dt2 + e2t∑3

i=1(dx
i)2 on the manifold-with-boundary M = [0,∞) × T3. Here, we

are using a standard local coordinate system (x1, x2, x3) on T3. An omitted computation
implies that relative to this coordinate system, this model equation can be expressed as
follows (where δjk is the standard Kronecker delta):

−∂2
t v + e

−2tδab∂a∂bv = 3∂tv + F. (1.4)

A standard strategy for proving future-global existence for wave equations such as
(1.4) is to derive a priori estimates showing that suitably strong norms of the solution
cannot blow up in finite time. The proof that global existence follows from the finite-
ness of the norms is known as a continuation principle. We remark that the precise
details of the continuation principle used in this article are provided in Theorem 5.4.
Roughly speaking, in order to apply the continuation principle, it suffices to control
the H 3(T3) norm of the perturbations. In order to dynamically control these norms,
we use an L2-L∞ framework based on energy estimates + Sobolev embedding. To de-
rive energy estimates for solutions to (1.4), one can define the “usual” energy E2(t) =∫
T3

{
(∂tv)

2
+ e−2tδab(∂av)(∂bv)

}
d3x, and a standard integration by parts argument to-

gether with a Cauchy–Schwarz estimate leads to the estimates

d

dt
E2
= −2

∫
T3
{3(∂tv)2 + e−2tδab(∂av)(∂bv)+ (∂tv)F } d

3x ≤ −2E2
+ 2E‖F‖L2 .

(1.5)
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Note that the energy dissipative term−2E2 on the right-hand side of (1.5) arises from two
sources: (i) the dissipative term 3∂tv on the right-hand side of (1.4); (ii) the fact that the
spatial part of g−1 decays at the rate e−2t . It is clear from (1.5) that sufficient estimates
of ‖F‖L2 in terms of E would lead to energy decay as t →∞, which is the main step in
establishing future-global existence.

Our estimates for the modified irrotational Euler–Einstein system are in the spirit of
the above argument. The corresponding energies are defined in Section 6 (we remark that
in our work below, we work with rescaled energies that are approximately constant in
time), and by using integration by parts, one can derive analogous versions of (1.5) for
the quasilinear equations (5.15a)–(5.15d); see Lemmas 6.4 and 6.7. However, in (5.15a)–
(5.15d) [and hence also in (1.3)], the metric is not pre-specified, but instead depends on
the solution itself. Consequently, the coerciveness of the energies also depends on the
solution. In order to handle this difficulty, we introduce Sobolev norms (also in Section 6)
that are independent of the solution. The Sobolev norms are strong enough to control (by
Sobolev embedding) the norms appearing in the continuation principle. We then compare
the strength of the energies to the strength of the norms. This comparative analysis, which
is carried out in Proposition 10.1, shows that (under viable bootstrap assumptions) the
energies and norms are equivalent up to factors bounded by a constant.

The bulk of the work in this article goes towards estimating the inhomogeneous error
terms [analogous to F in (1.4)] and towards ensuring that the perturbed solution remains
close to the background solution. This analysis is carried out in Section 9. We remark
that the main tools used for estimating the inhomogeneous terms are Sobolev–Moser
type estimates, which we have placed in the Appendix for convenience. Our analysis of
the spacetime metric components closely parallels the work [Rin08] of Ringström. In
particular, based on Ringström’s work, we provide a Counting Principle estimate [see
(9.33)] based on the net number of spatial indices in a product of metric and fluid quan-
tities. This tool can be used to quickly (and roughly, but well enough to prove small-data
future-global existence) determine the rates of decay/growth of products of such terms.
We remark that the Counting Principle is not precise enough to detect the improved decay
estimates derived in Section 12.

Although Ringström’s framework is useful for analyzing the metric components, our
analysis of the fluid variables ∂µ8 (µ = 0, 1, 2, 3) involves additional complications
beyond those encountered in his analysis. We would now like to briefly discuss these
complications, and also to indicate why we make the assumption 0 < cs <

√
1/3. We

believe that the breakdown of our proof in the case cs = 0 is merely an artifact of our
methods; we cannot address the equation of state p = 0 here because under the present
framework, the Lagrangian for 8 would vanish [see equation (3.17)]. In a future article,
we will investigate the Euler–Einstein equations with p = 0 using a different framework.
In addition, as mentioned above, future stability in the case cs =

√
1/3 has been shown

in the recent article [LVK13]. In contrast, the question of how perturbed solutions behave
when cs >

√
1/3 is open. However, as noted above, Rendall [Ren04] found heuristic ev-

idence (in the form of formal series expansions) suggesting instability when cs >
√

1/3.
In addition, in Section 11.3, we indicate why our future stability proof breaks down when
cs ≥
√

1/3.
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The principal difficulty we encounter in our analysis of ∂8 is that the background fluid
one-form ∂8̃ = (9̄e−κ�, 0, 0, 0) and the associated quantity σ̃ = −g̃αβ(∂α8̃)(∂β8̃)
(here g̃ = −dt2 + e2�(t)∑3

i=1(dx
i)2 is the background FLRW metric discussed in the

Main Results above) both exponentially decay to 0 as t → ∞. Therefore, the quantity
σ = −gαβ(∂α8)(∂β8) corresponding to a slightly perturbed solution will also decay.
Furthermore, by examining the fluid equation (1.1b), we see that σ = 0 corresponds to
a possible degeneracy. In particular, our proof (Lemma 7.3) that the reciprocal acoustical
metric (m−1)µν is well-defined and Lorentzian can fail when σ = 0. In order to avoid this
degeneracy, and in order to close our bootstrap argument for global existence, we prove
that σ does not decay too quickly, and that it never becomes 0 in finite time. In fact, for
the future-global solutions that we construct, we show that the perturbed σ decays at the
same rate as σ̃ . Since this fact plays a key role in our estimates for the fluid equation,
we now outline our approach to its proof; our approach is intimately connected to the
assumption 0 < cs <

√
1/3, which is heavily used throughout the paper.

We begin by noting that our main Sobolev norm bootstrap assumption is that SN (t)
≤ ε on an interval t ∈ [0, T ), where SN (t) is defined in (6.2f), N ≥ 3 is an inte-
ger, and ε is a sufficiently small positive number. We remark that our main future-global
existence theorem (Theorem 11.5) shows that when the data are small, SN (·) is future
globally bounded by a multiple of SN (0). Now assuming that ε is sufficiently small,
that the perturbed gµν is near g̃µν, and that 0 < cs <

√
1/3, the results of Proposi-

tion 9.1 [see (9.7)] imply that σ is strictly positive and decays at the same rate as σ̃ .
A key ingredient in the proof of these estimates is suitable L∞ estimates for the ratios
Zj := ∂j8/∂t8 (j = 1, 2, 3). Let us explain how these ratios enter into the analysis.
First, assuming for simplicity of the discussion that gµν is near g̃µν, we deduce that
σ ≈ (∂t8

2)[1 − e−2�δabZaZb]. Now our bootstrap assumption SN (t) ≤ ε implies via
Sobolev embedding that ∂t8 ≈ 9̄e−κ�, where κ = 3c2

s . Thus, in order to show that σ
decays at the same rate as σ̃ , it suffices to show that e−2�δabZaZb decays to 0. The main
point is that our proof only allows us to deduce such an estimate when 0 < cs <

√
1/3.

Specifically, our bootstrap assumption SN (t) ≤ ε implies via Sobolev embedding that
‖∂t∂j8‖L∞ ≤ Cεe−κ�(t) ≤ Cεe−Ht . Integrating this estimate from t = 0, assuming
that ∂j8 is initially of size ε, and using the fact that e−Ht is integrable over the interval
t ∈ [0,∞), we deduce that ‖∂j8‖L∞ ≤ Cε on [0, T ) (where C does not depend on T ).
Also using ∂t8 ≈ 9̄e−κ�, we deduce that ‖Zj‖L∞ ≤ Cεeκ� on [0, T ). Therefore, we
conclude that ‖e−2�δabZaZb‖L∞ ≤ Cε2e2(κ−1)�. Thus, if 0 < κ < 1, then the esti-
mates we have just outlined strongly suggest that indeed σ decays like σ̃ . In contrast, if
κ > 1, then the estimate ‖e−2�δabZaZb‖L∞ ≤ Cε2e2(κ−1)� allows for the possibil-
ity that the spatial derivatives e−2�δab(∂a8)(∂b8) become large in magnitude relative to
(∂t8)

2. In turn, this allows for the possibility that σ becomes 0 in finite time; we expect
that instability may be present in these cases. Hence, throughout the article, we make the
assumption 0 < κ < 1. This is equivalent to 1 < s < ∞ and to 0 < cs <

√
1/3; this

parameter range of stability is precisely the one mentioned in the Main Results stated
above.

The above mathematical conditions have a physical interpretation. To elaborate, we
first note that the four-velocity u of the fluid is connected to the fluid one-form via equa-
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tions (3.12) and (3.14), which imply that uµ = −σ−1/2∂µ8. From this relation, the
bootstrap assumption SN (t) ≤ ε, and the Sobolev estimates of Proposition 9.1, it is
straightforward to verify (using arguments as in the previous paragraph) that u0

− 1 and
gabu

aub both decay towards 0 whenever 0 < cs <
√

1/3. Hence, in this parameter
regime, the perturbed four-velocity decays towards that of the “quiet FLRW fluid” state
ũµ ≡ (1, 0, 0, 0). In contrast, when cs >

√
1/3, our estimates allow for the possibil-

ity that gabuaub grows without bound; again, for this reason, even though we currently
have no rigorous proof, we suspect that the background solutions may be unstable when
cs >
√

1/3.

1.3. Applications to spatial topologies other than T3

The model metric g(model) = −dt
2
+ e2t∑3

i=1(dx
i)2 has another feature that is of cru-

cial relevance for possible extensions of our work. To illustrate our point, let us consider
g(model) to be a metric on [0,∞) × R3, a Lorentzian manifold-with-boundary that has
the Cauchy hypersurface 6̊ := {t = 0}. Simple computations imply that the causal past
of the causal future of a point intersects 6̊ in a precompact set. For example, in this
model spacetime, the causal past of the causal future of the origin is contained in the set
{(t, x1, x2, x3) | t ≥ 0,

∑3
i=1(x

i)2 ≤ 4}. This is in stark contrast to the situation en-
countered in Minkowski spacetime, where the causal future of a point is the solid forward
null cone emanating from that point, and the causal past of this solid null cone contains
the entire Cauchy hypersurface {t = 0}. One consequence of this fact is that the study
of solutions to wave equations on exponentially expanding spacetimes is a “very” local
problem; i.e., if we make assumptions about the data in a large enough ball B̊ ⊂ 6̊, then
we can control the solution in a noncompact region of spacetime that includes a cylinder
of the form [0,∞)× B, where B ⊂ B̊ is a suitably chosen spatial-coordinate ball.

Using these observations, Ringström was able to prove the future stability of various
solutions to the Einstein-nonlinear scalar field system for many spatial topologies in ad-
dition to T3 [Rin08]. The main idea of the proof is to choose local coordinate patches on
the spatial slices on which the problem is quantitatively close to the case 6̊ = T3, and to
piece together the future development of these patches into a global spacetime. The most
difficult part of his argument is the global existence theorem on T3.However, his patching
argument requires the use of cut-off functions, which introduces regions in which the Ein-
stein constraint equations are not satisfied. To deal with this difficulty, he constructs his
modified system of equations in such a manner that one can still conclude future-global
existence, even if the constraint equations are not satisfied in the cut-off regions. Finally,
after patching, these artificially-introduced regions are of course “discarded” and are not
part of the spacetime.

The modified system (5.15a)–(5.15d) that we study is similar to Ringström’s modified
equations in that our global existence argument depends only on a smallness condition on
the data, and not on whether or not the constraint equations are satisfied. As noted above,
this is the main step in Ringström’s work. For these reasons, it is very likely that his
patching arguments can be used to extend our result to other spatial topologies. However,
for the sake of brevity, we do not explore this issue in this article.
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1.4. Outline of the structure of the paper

• In Section 2, we describe our conventions for indices and introduce some notation for
differential operators and Sobolev norms.
• In Section 3, we introduce the irrotational Euler–Einstein system.
• In Section 4, we use a standard ODE ansatz to derive a well-known family of back-

ground Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) solutions to the irrotational
Euler–Einstein system.
• In Section 5 we introduce wave coordinates and use algebraic identities valid in such

a coordinate system to construct a modified version of the irrotational Euler–Einstein
system. We then discuss how to construct data for the modified system from data for
the unmodified system in a manner that is compatible with the wave coordinate condi-
tion. Finally, we discuss classical local well-posedness for the modified system and the
continuation principle that is used in Section 11.
• In Section 6, we introduce the relevant norms and the related energies for the modified

system that we use in our future-global existence argument. We also provide a prelim-
inary analysis of the time derivatives of the energies, but the inhomogeneous terms are
not estimated until Section 9.
• In Section 7, we introduce some bootstrap assumptions on the spacetime metric gµν .

We then use these assumptions to provide some linear-algebraic lemmas that are use-
ful for analyzing gµν, the inverse metric gµν, and the reciprocal acoustical metric
(m−1)µν, which is the effective inverse metric for the irrotational fluid equation (1.1b).
• In Section 8, we introduce our main bootstrap assumption, which is a smallness con-

dition on SN , a norm of a difference between the perturbed solution and the FLRW
solution. We also define the positive constants q and ηmin, which play a fundamental
role in the technical estimates of the following sections.
• Section 9 contains most of the technical estimates. We assume the bootstrap assump-

tions from the previous sections and use them to deduce estimates for gµν, gµν,
(m−1)µν, and for the nonlinearities appearing in the modified equations (5.15a)–
(5.15d).
• Section 10 is a very short section in which we show that the Sobolev norms we have

defined are equivalent to the energies.
• In Section 11, we use the estimates from the previous sections to prove our main the-

orem, which is a small-data future-global existence result for the modified equations
(where “small” means close to the FLRW background solution). We then discuss the
breakdown of our proof in the case cs ≥

√
1/3. Finally, we use the global existence

theorem to prove a related theorem, which states that initial data satisfying the irrota-
tional Euler–Einstein constraints, the wave coordinate condition, and a smallness con-
dition lead to a future geodesically complete solution of the irrotational Euler–Einstein
system.
• In Section 12, we prove that the global solution from the main theorem converges (in

a certain sense) as t →∞. The main idea is that once we have a global small solution
to the modified system, we can revisit the modified equations and upgrade some of the
estimates proved in Section 11.
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2. Notation

In this section, we briefly introduce some notation that we use in this article.

2.1. Index conventions

Greek indices α, β, . . . take on the values 0, 1, 2, 3, while Latin indices a, b, · · · (which
we sometimes call “spatial indices”) take on the values 1, 2, 3. Pairs of repeated indices,
with one raised and one lowered, are summed (from 0 to 3 if they are Greek, and from 1
to 3 if they are Latin). We lower and raise indices with the spacetime metric gµν and its
inverse gµν . Some exceptions to this rule include the constraint equations (1.2a)–(1.2b)
and (3.32a)–(3.32b), in which we use the 3-metric g̊jk and its inverse g̊jk to lower and
raise indices, and in Section 12, in which all indices are lowered and raised with gµν and
gµν except for the 3-metric g(∞)jk , which has gjk(∞) as its corresponding inverse metric.

2.2. Coordinate systems and differential operators

Throughout this article, we work in a standard local coordinate system (x1, x2, x3) on T3.

Although strictly speaking this coordinate system is not globally well-defined, the vec-
tor fields ∂j := ∂/∂xj are globally well-defined. This coordinate system extends to a
local coordinate system (x0, x1, x2, x3) on manifolds-with-boundary of the form M =

[0, T ) × T3, and we often write t instead of x0. In this local coordinate system, the
background FLRW metric g̃ is of the form (4.1). We write ∂µ to denote the coordinate
derivative ∂/∂xµ, and we often write ∂t instead of ∂0. Throughout the article, we will
perform all of our computations with respect to the fixed frame {∂µ}µ=0,1,2,3.

If Eα = (n1, n2, n3) is a triplet of nonnegative integers, then we define the spatial
multi-index coordinate differential operator ∂Eα by ∂Eα := ∂

n1
1 ∂

n2
2 ∂

n3
3 . We denote the order

of Eα by |Eα|, where |Eα| := n1 + n2 + n3.

We write

DµT
ν1···νr
µ1···µs

= ∂µT
ν1···νr
µ1···µs

+

r∑
a=1

0 νa
µ αT

ν1···νa−1ανa+1νr
µ1···µs −

s∑
a=1

0 α
µ µa

T ν1···νr
µ1···µa−1αµa+1µs

(2.1)

[where the Christoffel symbol 0 α
µ ν is defined in (3.2d)] to denote the components of the

covariant derivative of a tensor field on M with components T ν1···νr
µ1···µs .

We write ∂(N)T ν1···νr
µ1···µs to denote the array containing all of the N th order spacetime

coordinate derivatives (including time derivatives) of the component T ν1···νr
µ1···µs . Similarly,

we write ∂(N)T ν1···νr
µ1···µs to denote the array containing all of theN th order spatial coordinate

derivatives of the component T ν1···νr
µ1···µs . We omit the superscript (N) when N = 1.

2.3. Identification of spacetime tensors and spatial tensors

We will often view T3 as an embedded submanifold of the spacetime M under an em-
bedding ιt of the form ιt : T3 ↪→ {t} × T3

⊂M, ιt (x
1, x2, x3) := (t, x1, x2, x3). Note
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that the embedding is a diffeomorphism between T3 and {t} × T3. We will often sup-
press the embedding by identifying T3 with its image ιt (T3). Furthermore, if T j1···jr

k1···ks
is a

T3-inherent “spatial” tensor field, then there is a unique “spacetime” tensor field T ′ν1···νr
µ1···µs

defined along ιt (T3) ' T3 such that ι∗t T
′
= T and T ′ is tangent to ιt (T3). Here ι∗t de-

notes the pullback by ιt . Recall that T ′ν1···νr
µ1···µs is tangent to ιt (T3) if any contraction of any

upstairs (downstairs) index with the unit normal covector N̂µ (unit normal vector N̂µ)
results in 0; for downstairs indices, this notion depends on the spacetime metric gµν . We
will sometimes identify T with T ′ (especially along the initial data Cauchy hypersurface
6̊ ' T3), and use the same symbol to denote both, e.g. T j1···jr

k1···ks
' T

ν1···νr
µ1···µs . For example,

we shift back and forth between viewing g̊ as a 6̊-inherent Riemannian metric g̊jk, and
as a spacetime tensor field g̊µν defined along the embedded hypersurface 6̊ ⊂ M [i.e.,
viewing g̊µν as the first fundamental form of 6̊ relative to (M, g)]. All of these standard
identifications should be clear in context.

2.4. Norms

All of the Sobolev norms we use are defined relative to the local coordinate system
(x1, x2, x3) on T3 introduced above. We remark that our norms are not coordinate invari-
ant quantities, since we work with the norms of the components of tensor fields relative to
this coordinate system. If f is a function defined on the hypersurface {x ∈M | x0

= t}

' T3, then relative to this coordinate system, we define the standard Sobolev norm
‖f ‖HN as follows, where d3x := dx1dx2dx3:

‖f ‖HN :=

( ∑
|Eα|≤N

∫
T3
|∂Eαf (t, x

1, x2, x3)|2 d3x

)1/2

. (2.2)

The symbol d3x represents a slight abuse of notation since the coordinate system
(x1, x2, x3) is not globally well-defined on T3.More precisely, by “

∫
T3 f d

3x, ” we mean
the integral of f over T3 with respect to the measure corresponding to the volume form
of the standard Euclidean metric on T3.

Using the above notation, we can write the N th order homogeneous Sobolev norm
of f as

‖∂(N)f ‖L2 :=

∑
|Eα|=N

‖∂Eαf ‖L2 . (2.3)

If K ⊂ Rn or K ⊂ Tn, then CNb (K) denotes the set of N -times continuously differen-
tiable functions (either scalar or array-valued, depending on context) on the interior of K
with bounded derivatives up to order N that extend continuously to the closure of K. The
norm of a function F ∈ CNb (K) is defined by

|F |N,K :=
∑
| EI |≤N

sup
·∈K
|∂ EIF(·)|, (2.4)
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where ∂ EI is a multi-indexed operator representing repeated partial differentiation with
respect to the arguments · of F,which may be either spacetime coordinates or metric/fluid
potential one-form components depending on context. When N = 0, we also use the
notation

|F |K := sup
·∈K
|F(·)|. (2.5)

Furthermore, we use the notation

|F (N)|K :=
∑
| EI |=N

|∂ EIF |K. (2.6)

In the case that K = T3, we sometimes use the more familiar notation

‖F‖L∞ := ess sup
x∈T3

|F(x)|, (2.7)

‖F‖CNb
:=

∑
|Eα|≤N

∥∥∂EαF‖L∞ . (2.8)

If I ⊂ R is an interval and X is a normed function space, then we use CN (I,X) to
denote the set of N -times continuously differentiable maps from I into X.

2.5. Running constants

We use C to denote a running constant that is free to vary from line to line. In general,
it can depend on N [see (8.1)], cs, and 3, but can be chosen to be independent of all
functions (gµν, ∂µ8) (µ, ν = 0, 1, 2, 3) that are sufficiently close to the background
solution (g̃µν, ∂µ8̃) of Section 4. We sometimes use notation such as C(N) to indicate
the dependence of C on quantities that are peripheral to the main argument. Occasionally,
we use c, C∗, K1, etc., to denote a constant that plays a distinguished role in the analysis.
We remark that many of the constants blow up as 3→ 0+.

2.6. A warning on the sign of �̂g

Although we often choose notation that agrees with the notation used by Ringström in
[Rin08], our reduced wave operator �̂g := gαβ∂α∂β has the opposite sign of the one in
[Rin08].

3. The irrotational Euler–Einstein system

The Einstein equations connect the Einstein tensor Ricµν − 1
2gµνR, which contains in-

formation about the curvature of the spacetime (M, g), to the energy-momentum-stress-
density tensor (energy-momentum tensor for short) Tµν, which contains information
about the matter content of spacetime. In 1 + 3 dimensions, they can be expressed as

Ricµν − 1
2Rgµν +3gµν = Tµν (µ, ν = 0, 1, 2, 3), (3.1)
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where Ricµν is the Ricci curvature tensor, R is the scalar curvature, and 3 is the cosmo-
logical constant. We stress that the stability results proved in this article heavily depend
upon the assumption 3 > 0. Recall that the Ricci curvature tensor and scalar curvature
are defined in terms of the Riemann curvature tensor Riem β

µαν , which can be expressed
in terms of the Christoffel symbols 0 α

µ ν of the metric. In a local coordinate system, these
quantities can be expressed as follows (α, β, µ, ν = 0, 1, 2, 3):

Riem β
µαν := ∂α0

β
µ ν − ∂µ0

β
α ν + 0

β
α λ0

λ
µ ν − 0

β
µ λ0

λ
α ν, (3.2a)

Ricµν := Riem α
µαν = ∂α0

α
µ ν − ∂µ0

α
α ν + 0

α
α λ0

λ
µ ν − 0

α
µ λ0

λ
α ν, (3.2b)

R := gαβ Ricαβ , (3.2c)

0 α
µ ν :=

1
2g
αλ(∂µgλν + ∂νgµλ − ∂λgµν). (3.2d)

We remark that under our sign convention, DµDνXα −DνDµXα = Riem β
µναXβ .

The Bianchi identities (see e.g. [Wal84]) imply that the left-hand side of (3.1) is di-
vergence free, which leads to the following equations being satisfied by T µν :

DνT
µν
= 0 (µ = 0, 1, 2, 3). (3.3)

By contracting each side of (3.1) with gµν, we deduce that R = 43 − T , where
T := gαβTαβ is the trace of Tµν . From this fact, it easily follows that (3.1) is equivalent
to

Ricµν = 3gµν + Tµν − 1
2T gµν (µ, ν = 0, 1, 2, 3). (3.4)

It is not our aim to give a complete discussion of the notion of a perfect fluid. A
thorough introduction to the subject, including a discussion of its history, can be found
in Christodoulou’s survey article [Chr07a]. Here, we only provide a brief introduction. In
general, the energy-momentum tensor for a perfect fluid is

T
µν

(fluid) = (ρ + p)u
µuν + pgµν (µ, ν = 0, 1, 2, 3), (3.5)

where ρ ≥ 0 is the proper energy density, p ≥ 0 is the pressure, and u is the four-velocity,
a unit-length (i.e., uαuα = −1) future-directed vector field on M. The relativistic Euler
equations, which are the laws of motion for a perfect relativistic fluid, are the four equa-
tions (3.3) together with a conservation law (3.6b) for the number of fluid elements. In a
local coordinate system, they can be expressed as follows:

DνT
µν

(fluid) = 0 (µ = 0, 1, 2, 3), (3.6a)

Dν(nu
ν) = 0, (3.6b)

where n is the proper number density of the fluid elements. We also introduce the ther-
modynamic variable η, the entropy per fluid element, which we will discuss below.

Unfortunately, even in a prescribed spacetime (M, g), the equations (3.6a)–(3.6b) do
not form a closed system. The standard means of closing the equations is to appeal to
the laws of thermodynamics, which imply the following relationships between the fluid
variables (see e.g. [GTZ99]):
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1. ρ ≥ 0 is a function of n ≥ 0 and η ≥ 0.
2. p ≥ 0 is defined by

p = n
∂ρ

∂n

∣∣∣∣
η

− ρ, (3.7)

where the notation |· indicates partial differentiation with · held constant.
3. A perfect fluid satisfies

∂ρ

∂n

∣∣∣∣
η

> 0,
∂p

∂n

∣∣∣∣
η

> 0, ,
∂ρ

∂η

∣∣∣∣
n

≥ 0, with “=”⇔ η = 0. (3.8)

As a consequence, ζ, the speed of sound in the fluid, is always real for η > 0:

ζ 2
:=

∂p

∂ρ

∣∣∣∣
η

=
∂p/∂n|η

∂ρ/∂n|η
> 0. (3.9)

In general, ζ is not constant. However, for the equations of state we study in this article,
ζ is equal to the constant cs .

4. We also demand that the speed of sound is positive and less than the speed of light
whenever n > 0 and η > 0:

n > 0 and η > 0 ⇒ 0 < ζ < 1. (3.10)

Relationships 1–3 express the laws of thermodynamics and are fundamental thermo-
dynamic assumptions, while relationship 4 ensures that at each x ∈M, vectors that are
causal with respect to the sound cone in TxM are necessarily causal with respect to the
gravitational null cone in TxM. The sound cone is defined to be the subset of tangent
vectors X ∈ TxM such that mαβXαXβ = 0, where mµν is the acoustical metric. The
matrix mµν is the inverse of the reciprocal acoustical metric (m−1)µν, which is intro-
duced in Section 5.4; i.e., mµν is not obtained by lowering the indices of (m−1)µν with
gµν . The gravitational null cone is the subset of tangent vectors X ∈ TxM such that
gαβX

αXβ = 0. The physical interpretation of relationship 4 is that the speed of sound
is less than the speed of propagation of gravitational waves. See [Spe09b] for a more
detailed analysis of the geometry of the sound cone and the gravitational null cone.

We note that the assumptions ρ ≥ 0, p ≥ 0 together imply that the energy-momentum
tensor (3.5) satisfies both the weak energy condition (T (fluid)

αβ XαXβ ≥ 0 whenever X is
timelike and future-directed with respect to the gravitational null cone) and the strong
energy condition ([T (fluid)

µν −
1
2g
αβT

(fluid)
αβ gµν]X

µXν ≥ 0 whenever X is timelike and
future-directed with respect to the gravitational null cone). Furthermore, if we assume
that the equation of state is such that p = 0 when ρ = 0, then (3.9) and (3.10) guarantee
that p ≤ ρ. It is then easy to check that 0 ≤ p ≤ ρ implies that the dominant energy
condition holds (−gµαT (fluid)

αν Xν is causal and future-directed whenever X is causal and
future-directed with respect to the gravitational null cone).

Under the remaining relationships, relationship 1 is equivalent to making a choice
of an equation of state, which is a function that expresses p in terms of η and ρ. An
equation of state is not necessarily a fundamental law of nature, but can instead be an
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empirical relationship between the fluid variables. In this article, we consider the case of
an irrotational, barotropic fluid under the equation of state p = c2

sρ, where 0 < cs <√
1/3, and according to (3.9), the constant cs is the speed of sound. A barotropic fluid is

one for which p is a function of ρ alone. Because η plays no role in the analysis of such
fluids, this quantity is absent from the remainder of our article. As discussed in Section
3.1, these assumptions imply that the tensor T µν(fluid) defined in (3.5) is equal to the tensor
T
µν

(scalar) defined in (3.44), and that the equations (3.3) are equivalent to (3.43), a single
quasilinear wave equation for a scalar function 8 (see Remark 1.1). As a consequence, it
follows that T µν(scalar) also satisfies the weak, strong, and dominant energy conditions.

3.1. Irrotational fluids

In this section, we introduce the notion of an irrotational fluid. Our main goal is to show
that for an irrotational fluid, the entire content of the relativistic Euler equations is con-
tained in a single scalar wave equation for the fluid potential [equation (3.20)]. We as-
sume that the fluid is barotropic, but we do not yet impose the particular equation of state
p = c2

sρ. The fluid potential description of an irrotational fluid in a curved spacetime goes
back to at least 1937 [Syn02]. However, in this article, we use modern terminology and
notation found e.g. in [Chr07b]. We begin by introducing an important thermodynamic
quantity σ ≥ 0, which is the square of the enthalpy per particle

√
σ ≥ 0:

√
σ :=

ρ + p

n
=
dρ

dn
, (3.11)

where we have used (3.7).
We also introduce the following one-form:

βµ := −
√
σ uµ (µ = 0, 1, 2, 3). (3.12)

The fluid vorticity v is then defined to be dβ, where d denotes the exterior derivative
operator. In local coordinates, we have

vµν := ∂µβν − ∂νβµ (µ, ν = 0, 1, 2, 3). (3.13)

An irrotational fluid is defined to be a fluid for which vµν vanishes everywhere. In
this case, by Poincaré’s lemma, there locally exists (see Remark 1.1) a scalar function 8,
known as the fluid potential, such that

βµ = ∂µ8 (µ = 0, 1, 2, 3), (3.14)

which implies that the four-velocity is connected to ∂8 via the equation

uµ = −
∂µ8
√
σ

(µ = 0, 1, 2, 3), (3.15)

and the square of the enthalpy per particle is connected to ∂8 via

σ = −gαβ(∂α8)(∂β8). (3.16)
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We now show that under the assumption of irrotationality, the equations (3.6a) reduce
to a single quasilinear wave equation for 8. We begin by postulating that the Lagrangian
for the purported wave equation is equal to p:

p = L = L (σ ). (3.17)

We note for future use that we can differentiate (3.11) with respect to
√
σ and use the

chain rule to conclude that dp = nd
√
σ + dn(

√
σ −

dρ
dn
) = nd

√
σ , i.e.,

dp

d
√
σ
= n. (3.18)

In (3.18), we are viewing p as a function of σ. We also note that from (3.17) and (3.18),
it follows that

2
∂L

∂σ
= σ−1/2 ∂L

∂
√
σ
=

n
√
σ
=

n2

ρ + p
. (3.19)

We now recall a standard fact: that the Euler–Lagrange equation corresponding to the
Lagrangian (3.17) is

Dα

[
∂L

∂σ
gαβDβ8

]
= 0. (3.20)

Using (3.15) and (3.19), we conclude that for an irrotational fluid, (3.20) is equivalent to
the continuity equation Dν(nuν) = 0 from (3.6b).

To show that the remaining fluid equations (3.6a) follow from (3.20), we first recall
that the energy-momentum tensor for a Lagrangian scalar-field theory can be expressed
as

T (scalar)
µν = −2

∂L

∂gµν
+ gµνL , (3.21)

and that if ∂8 is a solution to (3.20), then T (scalar)
µν is symmetric and divergence free:

T µν = T νµ (µ, ν = 0, 1, 2, 3), (3.22)

DνT
µν

(scalar) = 0 (µ = 0, 1, 2, 3). (3.23)

For future use, we remark that if ∂8 is a solution to the inhomogeneous equation

Dα

[
∂L

∂σ
gαβDβ8

]
+ I∂8 = 0, (3.24)

then

DνT
µν

(scalar) = −2I∂8Dµ8 (µ = 0, 1, 2, 3). (3.25)

In the case of the Lagrangian (3.17), one can check that (3.21) implies that

T (scalar)
µν = 2

∂L

∂σ
(∂µ8)(∂ν8)+ gµνL . (3.26)
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Using (3.11), (3.15), (3.17), and (3.26), we compute that

T (scalar)
µν =

n
√
σ
(∂µ8)(∂ν8)+ gµνp = (ρ + p)uµuν + pgµν . (3.27)

By examining (3.5) and (3.27), we observe that T (scalar)
µν = T

(fluid)
µν . To summarize, we

have shown that if ∂8 is a solution to (3.20), then (3.23) necessarily holds. Furthermore,
we have shown that if p, n, u, and ρ are defined through ∂8 via equations (3.17), (3.18),
(3.15), and (3.19) respectively, then it follows that all five equations from (3.6a)–(3.6b)
are necessarily satisfied. Thus, it follows that for an irrotational fluid, the entire content
of the Euler equations is contained in the single scalar equation (3.20) (see Remark 1.1).

We conclude with a summary of the constraints that ∂8 and L (σ ) must satisfy in
order to have an irrotational fluid interpretation. We first summarize the following rela-
tionships between various fluid quantities, ∂8, and L (σ ):

√
σ =

ρ + p

n
=
dρ

dn
= [−gαβ(∂α8)(∂β8)]

1/2, (3.28a)

p = L (σ ), (3.28b)

n =
dL

d
√
σ
= 2
√
σ
dL

dσ
, (3.28c)

ρ = 2σ
dL

dσ
−L = σ

d

d
√
σ

(
L
√
σ

)
= 2σ 3/2 d

dσ

(
L
√
σ

)
, (3.28d)

dp

dn
=

√
σ dL

dσ

2σ d
2L
dσ 2 +

dL
dσ

, (3.28e)

dp

dρ
=

dL
dσ

2σ d
2L
dσ 2 +

dL
dσ

. (3.28f)

Let us quickly discuss how to derive the relations (3.28a)–(3.28f). Equation (3.28a) fol-
lows from (3.7), (3.11) and (3.16). Equation (3.28b) is a restatement of the postulate
(3.17). Equation (3.28c) follows from (3.18) and (3.28b). Equation (3.28d) follows from
the thermodynamic relation ρ = n

√
σ − p, (3.28b), and (3.28c). Equation (3.28e) fol-

lows from the chain rule relation dp
dn
=

dp
dσ
[
dn
dσ
]
−1, (3.28b), and (3.28c). Equation (3.28f)

follows from dp
dρ
=

dp
dn
[
dρ
dn
]
−1, (3.28a), and (3.28e).

As discussed at the beginning of Section 3, physical considerations lead to constraints
on the fluid variables. For simplicity, we assume that all of the scalar-valued fluid variables
are strictly nonzero; this assumption holds for the fluid solutions considered in this article.
Then the following physical constraints hold:

σ > 0, (3.29a)
p > 0, (3.29b)
n > 0, (3.29c)
ρ > 0, (3.29d)
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dp

dn
> 0 [see (3.8)], (3.29e)

0 <
dp

dρ
< 1 [see (3.9) and (3.10)]. (3.29f)

With the help of (3.28a)–(3.28f), it is straightforward to verify that (3.29a)–(3.29f)
are collectively equivalent to the following inequalities regarding ∂8 and L :

gαβ(∂α8)(∂β8) < 0, (3.30a)
L (σ ) > 0, (3.30b)
dL

dσ
> 0, (3.30c)

d

dσ
(L /
√
σ) > 0, (3.30d)

d2L

dσ 2 > 0. (3.30e)

We remark that the Lagrangians L (σ ) corresponding to the equations of state p =
c2
sρ [see (3.40)] satisfy the above assumptions when 0 < cs < 1; this claim is verified in

Section 3.3.

3.2. The initial value problem for the irrotational Euler–Einstein system

In this section, we discuss various aspects of the initial value problem for the Einstein
equations, including the initial data and the notion of the maximal globally hyperbolic
development of the data. We assume that we are given a Lagrangian L = L (σ ) and a
fluid one-form ∂8 that are subject to the constraints (3.30a)–(3.30e). We remark that the
discussion in this section is very standard, and we provide it only for convenience.

3.2.1. Summary of the irrotational Euler–Einstein system. We first summarize the re-
sults of the previous sections by stating that the irrotational Euler–Einstein system is the
following system of equations:

Ricµν − 1
2Rgµν +3gµν = T

(scalar)
µν (µ, ν = 0, 1, 2, 3), (3.31a)

Dα

[
∂L

∂σ
gαβDβ8

]
= 0, (3.31b)

where L = L (σ ), σ = −gαβ(∂α8)(βα8), and T (scalar)
µν = 2 ∂L

∂σ
(∂µ8)(∂ν8)+ gµνL .

3.2.2. Initial data for the irrotational Euler–Einstein system. The initial value problem
formulation of the Einstein equations goes back to the seminal work [CB52] by Choquet-
Bruhat. Initial data for the system (3.31a)–(3.31b) consist of a 3-dimensional manifold 6̊
together with the following fields on 6̊: a Riemannian metric g̊, a symmetric covariant
two-tensor K̊, a function 9̊, and a closed one-form β̊ (i.e., ∂i β̊j − ∂j β̊i = 0).
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It is well-known that one cannot consider arbitrary data for the Einstein equations.
The data are in fact subject to the following constraints, which can be expressed as follows
relative to an arbitrary local coordinate system (x1, x2, x3) on 6̊:

R̊ − K̊abK̊
ab
+ (g̊abK̊ab)

2
− 23 = 2T (scalar)(N̂, N̂)|6̊, (3.32a)

D̊aK̊aj − g̊
abD̊j K̊ab = T

(scalar)
(
N̂,

∂

∂xj

)∣∣∣∣
6̊

(j = 1, 2, 3). (3.32b)

Above, R̊ is the scalar curvature of g̊, D̊ is the Levi-Civita connection corresponding
to g̊, and N̂ is the future-directed normal to 6̊. We remark that when p = c2

sρ, the
results of Section 3.3 below imply that T (scalar)(N̂, N̂)|6̊ = 2σ̊ s9̊2

− (s + 1)−1σ̊ s+1 and
T (scalar)(N̂, ∂/∂xj )|6̊ = 2σ̊ s9̊β̊j , where σ̊ = 9̊2

− g̊abβ̊aβ̊b.

The constraints (3.32a)–(3.32b) are manifestations of the Gauss and Codazzi equa-
tions respectively. These equations relate the geometry of the ambient Lorentzian space-
time (M, g) + matter field ∂8 (which have to be constructed in the problem at hand) to
the geometry + matter field inherited by an embedded Riemannian hypersurface (which
will be (6̊, g̊) + (9̊, β̊) after construction). Without providing the rather standard details
(see e.g. [Chr08]), we remark that they can be derived as consequences of the following
assumptions:

• 6̊ is a submanifold of the spacetime manifold M.
• g̊ is the first fundamental form of 6̊.
• K̊ is the second fundamental form of 6̊.
• ∂

N̂
8 = 9̊ and ∂8|6̊ = β̊ (see Remark 1.1), where N̂ is the future-directed normal to

6̊ and ∂8|6̊ denotes the restriction of ∂8 to 6̊.
• The irrotational Euler–Einstein system is satisfied along 6̊.

We recall that g̊ is the Riemannian metric on 6̊ defined by

g̊|x(X, Y ) = g|x(X, Y ) ∀X, Y ∈ Tx6̊, (3.33)

and that K̊ is the symmetric tensor field on 6̊ defined by

K̊|x(X, Y ) = g|x(DXN̂, Y ) = g|x(DY N̂, X) ∀X, Y ∈ Tx6̊, (3.34)

where D is the Levi-Civita connection corresponding to g.

3.2.3. The definition of a solution to the irrotational Euler–Einstein system. In this sec-
tion, we define the notion of a solution to the irrotational Euler–Einstein system launched
by a given initial data set. We begin with the following definition, which describes the
maximal possible region of causal influence associated to a set S ⊂M, where (M, g) is
a spacetime.



2392 Igor Rodnianski, Jared Speck

Definition 3.1 (Cauchy developments). Given any set S ⊂ M, we define D(S), the
Cauchy development of S, to be the union D(S) = D+(S) ∪ D−(S), where D+(S) is
the set of all points p ∈ M such that every past-inextendible causal curve through p
intersects S, and D−(S) is the set of all points p ∈M such that every future-inextendible
causal curve through p intersects S. Recall that a curve γ : [s0, smax) → M is said to
be future-inextendible if there does not exist an immersed future-directed curve γ̃ : I =
[s0, s1) → M with s1 > smax and γ̃ |[s0,smax) = γ. Past-inextendibility is defined in an
analogous manner. D+(S) is called the future Cauchy development of S, while D−(S) is
called the past Cauchy development of S.

We also rigorously define a Cauchy hypersurface.

Definition 3.2 (Cauchy hypersurface). A Cauchy hypersurface 6̊ in a Lorentzian man-
ifold M is a hypersurface that is intersected exactly once by every inextendible timelike
curve in M.

It is well-known that if 6̊ ⊂M is a Cauchy hypersurface, then D(6̊) =M (see e.g.
[O’N83]).

Definition 3.3 (A solution). Given sufficiently smooth initial data (6̊, g̊jk, K̊jk, 9̊, β̊j )
(j, k = 1, 2, 3), as described in Section 3.2.2, a (classical) solution to the irrotational
Euler–Einstein system (3.31a)–(3.31b) is a 4-dimensional manifold M, a Lorentzian
metric gµν, a closed one-form ∂µ8 (corresponding to a locally defined function 8—
see Remark 1.1) (µ, ν = 0, 1, 2, 3), and an embedding 6̊ ↪→M subject to the following
conditions:

• g is a C2 tensor field and ∂8 is a C1 tensor field.
• Equations (3.31a)–(3.31b) are satisfied in M by the components of g and ∂8.
• 6̊ is a Cauchy hypersurface in (M, g).
• g̊ is the first fundamental form of 6̊.
• K̊ is the second fundamental form of 6̊.
• ∂

N̂
8 = 9̊ and ∂8|6̊ = β̊ (see Remark 1.1), where N̂ is the future-directed normal to

6̊ and ∂8|6̊ denotes the restriction of ∂8 to 6̊.

The triple (M, g, ∂8) is called a globally hyperbolic development of the initial data.

3.2.4. The maximal globally hyperbolic development. We now recall a fundamental ab-
stract existence result of Choquet-Bruhat and Geroch [CBG69], which states that for ini-
tial data of sufficient regularity, there is a unique “largest” spacetime determined by it.
The following definition captures the notion of this “largest” spacetime.

Definition 3.4 (Maximal globally hyperbolic development). Given sufficiently smooth
initial data for the irrotational Euler–Einstein system (3.31a)–(3.31b) [which by definition
satisfy the constraints (3.32a)–(3.32b) and dβ̊ = 0], a maximal globally hyperbolic devel-
opment of the data is a globally hyperbolic development (M, g, ∂8) together with an em-
bedding ι : 6̊ ↪→M with the following property: if (M′, g′, ∂8′) is any other globally
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hyperbolic development of the same data with an associated embedding ι′ : 6̊ ↪→M′,

then there is a map ψ : M′
→ M that is a diffeomorphism onto its image such that

ψ∗g = g′, ψ∗∂8 = ∂8′, and ψ ◦ ι′ = ι. Here, ψ∗ denotes the pullback by ψ.

Before we can state the theorem, we also need the following definition, which captures
the notion of having two different representations of the same spacetime.

Definition 3.5 (Isometrically isomorphic developments). The developments (M, g, ∂8)

and (M′, g′, ∂8′) are said to be isometrically isomorphic if the map ψ from the previous
definition is a diffeomorphism from M to M′.

We now state the theorem. The first conclusion is from [CBG69], and the second
from [Ger70].

Theorem 3.6 (Existence and topological structure of a maximal globally hyperbolic de-
velopment). Given sufficiently smooth initial data for the irrotational Euler–Einstein
system (3.31a)–(3.31b) [which by definition satisfy the constraints (3.32a)–(3.32b) and
dβ̊ = 0], there exists a maximal globally hyperbolic development of the data which is
unique up to isometric isomorphism. If 6̊ is a Cauchy hypersurface in M, then the max-
imal globally hyperbolic development is homeomorphic to R× 6̊.

We remark that the article [CBG69] only discusses the case of smooth data. However, as
discussed in [CGP10, Section 6], the regularity assumptions on the data stated in Theorem
5.2 are sufficient for the conclusions of Theorem 3.6 to be valid.

Most of the remainder of this article is dedicated to the properties of the maximal glob-
ally hyperbolic developments of sufficiently smooth data near those corresponding to the
FLRW background solutions of Section 4. The following proposition gives a simple crite-
rion for identifying the portion of the maximal globally hyperbolic development manifold
that lies to the future of a Cauchy hypersurface 6̊.

Proposition 3.7 (Identification of D+(6̊)). Let (M, g, ∂8) be the maximal globally
hyperbolic development of initial data given on the Cauchy hypersurface 6̊, and let
M = D+(6̊) ∪ D−(6̊) be the splitting of M into the future and past of 6̊. Assume
that F ⊂ D+(6̊) has the following properties: (i) 6̊ ⊂ F , and (ii) (F , g|F ) is future-
causally geodesically complete. By “future-causally geodesically complete,” we mean
that all future-directed causal geodesics can be extended indefinitely in affine parameter.
Furthermore, g|F denotes the restriction of g to F . Then

F = D+(6̊). (3.35)

Proof. Any point x ∈ D+(6̊) can be joined to 6̊ by an affinely parameterized, past-
directed timelike geodesic γ. If we reverse the orientation of γ, we have an affinely pa-
rameterized future-directed timelike geodesic initiating from 6̊ and passing through x.
By assumption, all such curves are contained in F . ut
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3.3. Calculations for the equation of state p = c2
sρ

For the remainder of this article, we restrict our attention to equations of state of the form

p = c2
sρ, (3.36)

where by equation (3.9), cs is the speed of sound. As mentioned in the introduction to this
article, our stability results are limited to the following parameter range:

0 < cs <
√

1/3. (3.37)

Equations (3.7), (3.17), (3.19), and (3.36) imply that there exist constants C > 0 and
C̃ > 0 such that

p = Cn1+c2
s = C̃σ s+1, (3.38)

where

s =
1− c2

s

2c2
s

, c2
s =

1
2s + 1

. (3.39)

Choosing a convenient normalization constant, we conclude that under the equation of
state (3.36), the Lagrangian (3.17) is given by

L =
σ s+1

s + 1
. (3.40)

Recall that in order for the Lagrangian (3.40) to have a fluid interpretation, we must
verify that (3.30a)–(3.30e) hold. The following computations confirm that the Lagrangian
(3.40) in fact has a fluid interpretation whenever σ > 0:

dL

dσ
= σ s > 0, (3.41a)

d

dσ
(L /
√
σ) =

2s + 1
2(s + 1)

σ s−1/2 > 0, (3.41b)

d2L

dσ 2 = sσ
s−1 > 0. (3.41c)

In particular, (3.28b)–(3.28f) imply that for the Lagrangian (3.40), we have

p = (s + 1)−1σ s+1 > 0, (3.42a)

n = 2σ s+1/2 > 0, (3.42b)

ρ =
2s + 1
s + 1

σ s+1 > 0, (3.42c)

dp

dn
=

1
2s + 1

√
σ > 0, (3.42d)

dp

dρ
=

1
2s + 1

. (3.42e)



The nonlinear future stability of the FLRW family 2395

Furthermore, in the case of the Lagrangian (3.40), the Euler–Lagrange equation (3.20) is

Dα(σ
sgαβDβ8) = 0, (3.43)

while the energy-momentum tensor (3.26) is easily calculated to be

T (scalar)
µν = 2σ s(∂µ8)(∂ν8)+ gµν(s + 1)−1σ s+1. (3.44)

For future reference, we record here the following two identities, which follow easily
from (3.44):

T (scalar)
:= gαβT

(scalar)
αβ =

2(1− s)
s + 1

σ s+1, (3.45)

T (scalar)
µν −

1
2T

(scalar)gµν = 2σ s(∂µ8)(∂ν8)+
s

s + 1
σ s+1gµν (µ, ν = 0, 1, 2, 3).

(3.46)

3.3.1. Summary of the irrotational Euler–Einstein system under the equation of state p =
c2
sρ. To summarize, we note that under the equation of state p = c2

sρ, the irrotational
Euler–Einstein system comprises the equations

Ricµν −3gµν − T (scalar)
µν +

1
2T

(scalar)gµν = 0 (µ, ν = 0, 1, 2, 3) (3.47a)

where T (scalar)
µν = 2σ s(∂µ8)(∂ν8) + gµν(s + 1)−1σ s+1 is as in (3.44), together with

(3.43), the equation of motion for an irrotational fluid:

Dα(σ
sgαβDβ8) = 0. (3.47b)

4. FLRW background solutions

Our main results concern the future stability (with respect to irrotational perturbations) of
a class of background solutions ([0,∞)×T3, g̃, ∂8̃) to the system (3.47a)–(3.47b). These
background solutions, which are of FLRW type, physically model the evolution of an
initially uniform quiet fluid in a spacetime that is undergoing rapid expansion. We remark
that strictly speaking, the terminology “FLRW” is usually reserved for a class of solutions
that have spatial slices diffeomorphic to S3, R3, or hyperbolic space (see e.g. [Wal84]).
To find our FLRW-type solutions of interest, we follow a procedure outlined in [Wal84,
Chapter 5] which, under appropriate ansatzes, reduces the Euler–Einstein equations to
ODEs. Although our goal is to find ODE solutions to the irrotational equations (3.47a)–
(3.47b), the procedure we follow will produce ODE solutions to the full Euler–Einstein
system (3.1)+ (3.5). However, these ODE solutions will turn out to be irrotational. Thus,
as discussed in Section 3.1, these solutions can also be interpreted as solutions to the
irrotational system. We remark that the derivation of these solutions is very well-known,
and that we have provided it only for convenience.
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4.1. Derivation of the FLRW solution

To proceed, we first make the ansatz that the background metric g̃ has the warped product
structure (see e.g. [O’N83])

g̃ = −dt2 + a2(t)

3∑
i=1

(dxi)2, (4.1)

from which it follows that the only corresponding nonzero Christoffel symbols are

0̃ 0
j k = ωgjk, 0̃ k

j 0 = ωδ
k
j (j, k = 1, 2, 3), (4.2)

where

ω(t) := a−1(t)
d

dt
a(t). (4.3)

Using definitions (3.2b) and (3.2c), together with (4.2), we compute that

R̃ic00 −
1
2 R̃g̃00 = 3ω2, (4.4a)

R̃ic0j −
1
2 R̃g̃0j = 0 (j = 1, 2, 3), (4.4b)

R̃icjk − 1
2 R̃g̃jk = −

{
2a−1 d

2

dt2
a + ω2

}
gjk (j, k = 1, 2, 3). (4.4c)

We then assume that ρ̃ = ρ̃(t), p̃ = p̃(t), and ũµ ≡ (1, 0, 0, 0), which implies that
∂8̃ = (∂t8̃(t), 0, 0, 0). We also assume that the equation of state (3.36) holds. Inserting
these ansatzes into the Bianchi identity (3.3) with µ = 0 and using (3.5), we compute that

d

dt
ln ρ̃ = −3ω(1+ c2

s ) = −
d

dt
ln([a(t)]3(1+c

2
s )). (4.5)

Integrating (4.5), we deduce that ρ̃(t)[a(t)]3(1+c
2
s ) is constant:

ρ̃a3(1+c2
s ) ≡ ρ̄å3(1+c2

s ) =: κ̊, (4.6)

where the positive constant ρ̄ denotes the initial (uniform) energy density, and the positive
constant å is defined by å := a(0).

Similarly, inserting the ansatzes into Einstein’s equations (3.1) + (3.5), equating 00
components, and using (4.4a) + (4.6) , we deduce (as in e.g. [Wal84]) the following ODE:

d

dt
a = a

√
3

3
+
ρ̃

3
= a

√
3

3
+

κ̊

3a3(1+c2
s )
. (4.7)

Equations (4.6) and (4.7) are known as the Friedmann equations in the cosmology lit-
erature. We observe that the rapid expansion of the background spacetime can be easily
deduced from the ODE (4.7), which suggests that the asymptotic behavior is a(t) ∼ eHt ,
where H :=

√
3/3. A more detailed analysis of a(t) is provided in Lemma 4.2.
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Let us make a few remarks about the remaining 0j and jk components of Einstein’s
equations (3.1) + (3.5). Clearly, (4.4b) and (3.5) imply that the 0j components of Ein-
stein’s equations are satisfied by (g̃, ρ̃, ũ) since both sides of the equations are equal to 0
in this case. In contrast, using (4.4c) and (3.5), we deduce that the quantities (g̃, ρ̃, ũ)
satisfy the jk components of (3.1) + (3.5) if and only if the following ODE is satisfied
by a(t):

2a
d2

dt2
a +

(
d

dt
a

)2

−3a2
= −c2

s a
2ρ̃. (4.8)

It is straightforward to verify that (4.8) in fact follows as an automatic consequence of
(4.6)–(4.7). We conclude that if a(t) satisfies (4.7), g̃µν is defined by (4.1), ρ̃ is implicitly
defined by (4.6), and ũµ = (1, 0, 0, 0), then the quantities

(
g̃µν, ρ̃, ũ

µ
)

do in fact solve
Einstein’s equations:

R̃icµν − 1
2 R̃g̃µν +3g̃µν = T̃

(fluid)
µν (µ, ν = 0, 1, 2, 3). (4.9)

In addition, the fluid equations

Dν T̃
µν

(fluid) = 0 (µ = 0, 1, 2, 3) (4.10)

follow as a consequence of (4.9) and the Bianchi identities. Finally, for barotropic fluids,
it is straightforward to verify that (3.6b) follows as an automatic consequence of (4.10)
and the thermodynamic relation (3.7):

Dν (̃nũ
ν) = 0. (4.11)

In summary, we have shown that the FLRW background variables satisfy the full Euler–
Einstein system (3.1) + (3.5) + (3.6a)–(3.6b).

We now use the above results to calculate the background one-form ∂8̃. With σ̃ :=
−g̃αβ(∂α8̃)(∂β8̃) = (∂t8̃)

2, we use (3.39), (3.42a), and (4.6) to compute that

c2
s κ̊a
−3(1+c2

s ) = c2
s ρ̃ = p̃ =

2c2
s

1+ c2
s

σ̃ (1+c
2
s )/(2c

2
s ) =

2c2
s

1+ c2
s

(∂t8̃)
(1+c2

s )/c
2
s . (4.12)

The equalities in (4.12) imply that

∂t8̃ = 9̄a
−3/(2s+1)

= 9̄e−κ�, (4.13)

where

9̄ :=

(
ρ̄
s + 1
2s + 1

)1/(2s+2)

åκ, (4.14)

�(t) := ln(a(t)), (4.15)

κ :=
3

2s + 1
= 3c2

s . (4.16)

Remark 4.1. �(t) has been introduced solely for cosmetic purposes.
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For future use, we also note the following consequences of the above discussion:

3ω2
−3 = ρ̃ = κ̊e−2κ(s+1)�

=
2s + 1
s + 1

σ̃ s+1, (4.17a)

− 3
d

dt
ω = 3ω2

−3+ κ̊
s + 2

2s + 1
e−2κ(s+1)�

= 3κ̊
s + 1
2s + 1

e−2κ(s+1)�
= 3σ̃ s+1.

(4.17b)

4.2. Analysis of Friedmann’s equation

In the following lemma, we analyze the asymptotic behavior of solutions to the ODE
(4.7).

Lemma 4.2 (Analysis of Friedmann’s equation). Let å, κ̊, ς > 0 be constants, and let
a(t) be the solution to the following ODE:

d

dt
a(t) = a(t)

√
3

3
+

κ̊

3[a(t)]ς
, a(0) = å. (4.18)

Then with H :=
√
3/3, the solution a(t) is given by

a(t) =

{
sinh

(
ςHt

2

)√
κ̊

3H 2 + å
ς + åς/2 cosh

(
ςHt

2

)}2/ς

, (4.19)

and for all integers N ≥ 0, there exists a constant CN > 0 such that for all t ≥ 0, with
A :=

{ 1
2 (
√
κ̊/(3H 2)+ åς + åς/2)

}2/ς
, we have

(1/2)2/ς åeHt ≤ a(t) ≤ AeHt , (4.20a)∣∣∣∣e−Ht dNdtN a(t)− AHN

∣∣∣∣ ≤ CNe−ςHt . (4.20b)

Furthermore, for all integers N ≥ 0, there exists a constant C̃N > 0 such that for all
t ≥ 0, with

ω := a−1 d

dt
a, (4.21)

we have

H ≤ ω(t) ≤

√
H 2 +

κ̊

3åς
, (4.22a)∣∣∣∣ dNdtN (ω(t)−H)

∣∣∣∣ ≤ C̃Ne−ςHt . (4.22b)

Remark 4.3. Because of equation (4.7), we will assume for the remainder of the article
that ς = 3(1+ c2

s ).

Proof. We leave the elementary analysis of this ODE to the reader. ut
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5. The modified irrotational Euler–Einstein system

In this section, we introduce our version of wave coordinates, which is based on the
framework developed in [Rin08]. We then use algebraic identities that are valid in wave
coordinates to construct a modified version of the irrotational Einstein equations, which
is a system of quasilinear wave equations containing energy-dissipative terms. Next, to
facilitate our analysis in later sections, we algebraically decompose the modified system
into principal terms and error terms. Finally, we show that solutions to the modified sys-
tem also verify the unmodified system if the Einstein constraint equations and the wave
coordinate condition are both satisfied along the Cauchy hypersurface 6̊.

5.1. Wave coordinates

To hyperbolize the Einstein equations, we use a version of the well-known family of wave
coordinate systems. More specifically, we use a coordinate system in which the contracted
Christoffel symbols 0µ := gαβ0 µ

α β of the spacetime metric g are equal to the contracted
Christoffel symbols 0̃µ := g̃αβ 0̃ µ

α β of the background metric g̃. This condition is known
as a wave coordinate condition since 0µ ≡ 0̃µ if and only if the coordinate functions
(which are scalar-valued) are solutions to the wave equation gαβDαDβxµ + Fµ = 0.
In the wave coordinate system, the four scalar-valued functions Fµ can be expressed as
Fµ = 0̃µ = 3ω(t)δµ0 . Using (4.1) and (4.2), we compute that in wave coordinates,

0µ = 0̃µ = 3ωδµ0 , 0µ = gµα0
α
= 3ωg0µ, (5.1)

where ω(t), which is uniquely determined by the parameters 3 > 0, ρ̄ > 0, and ς =
3(1+ c2

s ), is the function from (4.21).
We now define the quantities

Qµ
:= Fµ − 0µ, Qµ := Fµ − 0µ. (5.2)

We will treatQµ, 0µ, and Fµ as one-forms when we compute their covariant derivatives.
However, one should note that this is an abuse of notation; for example, the Fµ do not
have the transformation properties of a one-form under changes of coordinates.

The idea behind wave coordinates is to work in a coordinate system in whichQµ
≡ 0,

so that whenever it is expedient, we may replace 0µ with 3ωδµ0 (and vice versa) without
altering the content of the Einstein equations. The existence of such a coordinate system
is nontrivial, and it was only in 1952 that Choquet-Bruhat [CB52] first showed that they
exist in general. With this idea in mind, we define (as in [Rin08, equation (47)]) the
modified Ricci tensor R̂icµν by

R̂icµν := Ricµν + 1
2 (DµQν +DνQµ)

= −
1
2 �̂ggµν +

1
2 (DµFν +DνFµ)+ g

αβgγ δ(0αγµ0βδν

+ 0αγµ0βνδ + 0αγ ν0βµδ), (5.3)
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where

�̂g := g
αβ∂α∂β (5.4)

is the reduced wave operator corresponding to the metric g.
We now replace the Ricµν with R̂icµν in (3.47a), expand the covariant differentiation

in (3.47b), and add additional inhomogeneous terms Iµν and I∂8 to the left-hand sides of
(3.47a) and (3.47b) respectively, thus arriving at the modified irrotational Euler–Einstein
system (µ, ν = 0, 1, 2, 3)

R̂icµν −3gµν − T (scalar)
µν +

1
2T

(scalar)gµν + Iµν = 0, (5.5a)

[σgαβ − 2s(gακ∂κ8)(gβλ∂λ8)]∂α∂β8− σ0α∂α8

+ 2s0αλβ(∂α8)(∂λ8)(∂β8)+ I∂8 = 0. (5.5b)

Here, the additional terms are defined to be

I00 := − 2ωQ0
= 2ω(00

− 3ω), (5.6a)
I0j = Ij0 := 2ωQj = 2ω(3ωg0j − 0j ) (j = 1, 2, 3), (5.6b)
Ijk = Ijk := 0, (j, k = 1, 2, 3), (5.6c)

I∂8 := −σg
αβQα∂β8 = σ0

α∂α8− 3ωσ∂t8. (5.6d)

We have several important remarks to make concerning the modified system (5.5a)–
(5.5b). First, because the principal term on the left-hand side of (5.5a) is − 1

2 �̂ggµν, the
modified system comprises a quasilinear system of wave equations and is of hyperbolic
character. Second, the gauge terms Iµν, I∂8 have been added to the system in order to pro-
duce an energy dissipation effect that is analogous to the effect created by the 3∂tv term
on the right-hand side of the model equation (1.4). These dissipation-inducing terms play
a key role in the future-global existence theorem of Section 11. Finally, in Section 5.5, we
will show that if the initial data satisfy the Gauss and Codazzi constraints (3.32a)–(3.32b),
and if the wave coordinate conditionQµ|t=0 = 0 is satisfied, thenQµ, Iµν, I∂8 ≡ 0, and
R̂icµν ≡ Ricµν; i.e., under these conditions, the solution to (5.5a)–(5.5b) is also a solution
to the irrotational Euler–Einstein system (3.47a)–(3.47b).

5.2. Summary of the modified irrotational Euler–Einstein system for the equation of
state p = c2

sρ

For convenience, we summarize [with the help of (3.46)] the results of the previous sec-
tion by listing the modified irrotational Euler–Einstein system (j, k = 1, 2, 3):

R̂ic00 + 2ω00
− 6ω2

−3g00 − 2σ s(∂t8)2 −
s

s + 1
σ s+1g00 = 0, (5.7a)

R̂ic0j + 2ω(3ωg0j − 0j )−3g0j − 2σ s(∂t8)(∂j8)−
s

s + 1
σ s+1g0j = 0, (5.7b)

R̂icjk −3gjk − 2σ s(∂j8)(∂k8)−
s

s + 1
σ s+1gjk = 0, (5.7c)

[σgαβ − 2s(gακ∂κ8)(gβλ∂λ8)]∂α∂β8− 3ωσ∂t8+ 2s0αλβ(∂α8)(∂λ8)(∂β8) = 0.
(5.7d)
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5.3. Construction of initial data for the modified system

In this section, we assume that we are given initial data (6̊, g̊, K̊, 9̊, β̊) for the irrota-
tional Euler–Einstein equations (3.47a)–(3.47b) as described in Section 3.2.2 [which by
definition satisfy the constraints (3.32a)–(3.32b) and dβ̊ = 0]. We will use these data
to construct initial data for the modified equations that lead to a solution (M, g, ∂8) of
both the modified system and the unmodified irrotational Euler–Einstein equations; recall
that a solution solves both systems if and only if Qµ ≡ 0, where Qµ is defined in (5.2).
We remark that in general, we may consider arbitrary data for the modified equations
(5.7a)–(5.7d). However, if the solution of the modified system is also to be a solution of
the Einstein equations (3.31a), then we cannot choose the data arbitrarily.

To supply data for the modified equations, we must specify along 6̊ = {t = 0}
the full spacetime metric components gµν |t=0, their transversal derivatives ∂tgµν |t=0
(µ, ν = 0, 1, 2, 3), the transversal derivative ∂t8|t=0 of the fluid potential, and the tan-
gential (i.e., spatial) derivatives ∂8|t=0 of the fluid potential (see Remark 1.1). To satisfy
the requirements

• 6̊ = {t = 0},
• g̊ is the first fundamental form of 6̊,
• ∂t is transversal to 6̊,
• K̊ is the second fundamental form of 6̊,
• ∂

N̂
8|6̊ = ∂t8|t=0 = 9̊, where ∂

N̂
:= differentiation in the direction of the future-

directed normal to 6̊,
• ∂8|6̊ = β̊,

we set (for j, k = 1, 2, 3)

g00|t=0 = −1, g0j |t=0 = 0, gjk|t=0 = g̊jk, (5.8)

∂tgjk|t=0 = 2K̊jk, ∂t8|t=0 = 9̊, ∂j8|t=0 = β̊j . (5.9)

Furthermore, we need to satisfy the wave coordinate condition Qµ|t=0 = 0 (µ =
0, 1, 2, 3). To meet this need, we first calculate that

00|t=0 = −
1
2 (∂tg00)|t=0 − g̊

abK̊ab, (5.10)

0j |t=0 = −∂tg0j |t=0 +
1
2 g̊
ab(2∂a g̊bj − ∂j g̊ab) (j = 1, 2, 3). (5.11)

With the help of (5.10) and (5.11), the condition Qµ|t=0 = 0 is easily seen to be equiva-
lent to the following relations, where ω(t), which is uniquely determined by the parame-
ters 3 > 0, ρ̄ > 0, and ς = 3(1+ c2

s ), is the function from (4.21) (and j = 1, 2, 3):

∂tg00|t=0 = 2(−3ω|t=0 g00|t=0︸ ︷︷ ︸
−1

− g̊abK̊ab) = 2(3ω(0)− g̊abK̊ab), (5.12)

∂tg0j |t=0 = −3ω|t=0 g0j |t=0︸ ︷︷ ︸
0

+
1
2 g̊
ab(2∂a g̊bj − ∂j g̊ab) = g̊ab

(
∂a g̊bj −

1
2∂j g̊ab

)
. (5.13)

We remark that in the above expressions, g̊jk denotes a component of g̊−1. This completes
our specification of the data for the modified equations.
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5.4. Decomposition of the modified irrotational Euler–Einstein system in wave
coordinates

Naturally, the key step in our proof of our global existence theorem is our careful analysis
of the nonlinear terms. In order to better see their structure, we dedicate this section to a
decomposition of the modified system (5.7a)–(5.7d) into principal terms and error terms,
which we denote by variations of the symbol 4. The estimates of Section 9 will justify
the claim that the 4 terms are in fact error terms. We begin by recalling the previously
mentioned rescaling hjk of the spatial indices of the metric:

hjk := e
−2�gjk (j, k = 1, 2, 3). (5.14)

The decomposition is captured in the next proposition. Additional details are provided in
Appendix A.

Proposition 5.1 (Decomposition of the modified equations). The equations (5.7a)–
(5.7d) can be written as follows ( for j, k = 1, 2, 3):

�̂g(g00 + 1) = 5H∂tg00 + 6H 2(g00 + 1)+400, (5.15a)

�̂gg0j = 3H∂tg0j + 2H 2g0j − 2Hgab0ajb +40j , (5.15b)

�̂ghjk = 3H∂thjk +4jk, (5.15c)

�̂m8 = κω∂t8+4∂8, (5.15d)

where H :=
√
3/3, ω(t), which is uniquely determined by the parameters 3 > 0,

ρ̄ > 0, and ς = 3(1+ c2
s ), is the function from (4.21), κ := 3

1+2s = 3c2
s ,

�̂m := −∂
2
t + 2(m−1)0a∂t∂a + (m

−1)ab∂a∂b (5.16)

is the reduced wave operator corresponding to the reciprocal acoustical metric (m−1)µν

(µ, ν = 0, 1, 2, 3), and the components of m−1 are given by

(m−1)00
= −1, (5.17a)

(m−1)0j = −
4

0j
(m)

(1+ 2s)+4(m)
, (5.17b)

(m−1)jk =
gjk −4

jk

(m)

(1+ 2s)+4(m)
. (5.17c)

The error terms 4µν, 4∂8, 4(m), 4
0j
(m), and 4jk(m) above are provided in equations

(A.4a)–(A.4d) and (A.6a)–(A.6c).

5.5. Classical local well-posedness

In this section, we discuss classical local well-posedness for the modified system of PDEs
(5.15a)–(5.15d). The theorems in this section are stated without proof; we instead provide
references for the rather standard techniques that can be used to prove them.
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Theorem 5.2 (Local well-posedness). Let N ≥ 3 be an integer, and assume that 0 <
cs < 1. Let g̊µν = gµν |t=0, 2K̊µν = (∂tgµν)|t=0 (µ, ν = 0, 1, 2, 3), 9̊ = (∂t8)|t=0,

and ∂j 8̊ = β̊j = ∂j8|t=0 (see Remark 1.1) be initial data (not necessarily satisfying
the Einstein constraints) on the manifold 6̊ = T3 for the modified irrotational equations
(5.15a)–(5.15d) satisfying ( for i, j, k = 1, 2, 3)

g̊00 + 1 ∈ HN+1, g̊0j ∈ H
N+1, ∂i g̊jk ∈ H

N , (5.18a)

K̊00 ∈ H
N , K̊0j ∈ H

N , K̊jk − ω(0)e2�(0)g̊jk ∈ H
N , (5.18b)

9̊ − 9̄ ∈ HN , ∂j 8̊ ∈ H
N , (5.18c)

where 9̄ >0 is a constant. Assume further that there are constants C1 > 1 and C2, C3>0
such that

C−1
1 δabX

aXb ≤ g̊abX
aXb ≤ C1δabX

aXb, ∀(X1, X2, X3) ∈ R3, (5.19a)
g̊00 ≤ −C2, (5.19b)
σ̊ ≥ C3, (5.19c)

where σ̊ = −gαβ(∂α8)(∂β8)|t=0. Then these data launch a unique classical solu-
tion (gµν, ∂µ8) (µ, ν = 0, 1, 2, 3) to the modified system existing on a spacetime slab
(T−, T+)× T3, with T− < 0 < T+, such that

gµν ∈ C
N−1
b ((T−, T+)× T3), ∂µ8 ∈ C

N−2
b ((T−, T+)× T3), (5.20)

such that g00 < 0, σ > 0, and such that the eigenvalues of the 3 × 3 matrix gjk are
uniformly bounded from below strictly away from 0 and from above.

The solution has the following regularity properties:

g00 + 1, g0j ∈ C
0((T−, T+),H

N+1), (5.21a)

∂igjk ∈ C
0((T−, T+),H

N ), (5.21b)

∂tg00, ∂tg0j , ∂tgjk − 2ω(t)gjk ∈ C0((T−, T+),H
N ), (5.21c)

eκ�∂t8− 9̄, ∂j8 ∈ C
0((T−, T+),H

N ). (5.21d)

Furthermore, gµν is a Lorentzian metric on (T−, T+) × T3, and the sets {t} × T3 are
Cauchy hypersurfaces in the Lorentzian manifold (M := (T−, T+) × T3, g) for t ∈
(T−, T+). Similarly, the reciprocal acoustical metric (m−1)µν is an inverse Lorentzian
metric on (T−, T+)× T3.

In addition, there exists an open neighborhood O of (g̊µν, K̊µν, 9̊, ∂j 8̊ = β̊j ) such
that all irrotational data belonging to O launch solutions that also exist on the inter-
val (T−, T+) and that have the same regularity properties as (gµν, ∂µ8). Furthermore,
on O, the map from the initial data to the solution is continuous. By continuous, we mean
continuous relative to the norms on the data and the norms on the solution that are stated
in the hypotheses and conclusions of this theorem.

Finally, if, as described in Section 5.3, the data for the modified system are constructed
from data for the irrotational Euler–Einstein system (which by definition satisfy the con-
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straints (3.32a)–(3.32b) and dβ̊ = 0 on the Cauchy hypersurface {0} × T3), and if the
wave coordinate condition Qµ|{0}×T3 = 0 holds, then (gµν, ∂µ8) is also a solution to
the unmodified equations (3.47a)–(3.47b) on (T−, T+)× T3.

Remark 5.3. The hypotheses in Theorem 5.2 have been stated in a manner that allows
us to apply it to sufficiently smooth initial data near that of the background solution of
Section 4. Furthermore, we remark that the assumptions and conclusions concerning the
metric components gjk would appear more natural if expressed in terms of the variables
hjk := e

−2�gjk; these rescaled quantities are the ones that we use in our global existence
proof.

Proof of Theorem 5.2. Theorem 5.2 can be proved using standard methods that follow
from energy estimates in the spirit of the ones proved below in Sections 6.2, 6.3, and 10.
See e.g. [Hör97, Ch. VI], [Maj84, Ch. 2], [SS98, Ch. 5], [Sog08, Ch. 1], [Spe09b], and
[Tay97, Ch. 16] for details on how to prove local well-posedness as a consequence of
the availability of these kinds of energy estimates. Also see [Rin08, Proposition 1]. We
remark that the Lorentzian nature of (m−1)µν follows from that of gµν and the inequality
σ > 0; see Lemma 7.3. The fact that (gµν, ∂µ8) is also a solution to the unmodified
equations if the constraints and the wave coordinate condition Qµ|6̊ = 0 are satisfied is
addressed in Section 5.6. ut

In our proof of Theorem 11.5, we will use the following continuation principle, which
provides criteria that are sufficient to ensure that a solution to the modified equations
exists globally in time.

Theorem 5.4 (Continuation principle). Assume the hypotheses of Theorem 5.2. Let Tmax
be the supremum over all times T+ such that the solution (gµν, ∂µ8) (µ, ν = 0, 1, 2, 3)
exists on the slab [0, T+)×T3 and has the properties stated in the conclusions of Theorem
5.2. Then if Tmax <∞, one of the following four possibilities must occur:

(1) There is a sequence (tn, xn) ∈ [0, Tmax)× T3 such that limn→∞ g00(tn, xn) = 0.
(2) There is a sequence (tn, xn) ∈ [0, Tmax)×T3 such that the smallest eigenvalue of the

3× 3 matrix gjk(tn, xn) converges to 0 as n→∞.
(3) There is a sequence (tn, xn) ∈ [0, Tmax)×T3 such that limn→∞ σ(tn, xn) = 0, where

σ = −gαβ(∂α8)(∂β8).

(4) lim
t→T −max

sup
0≤τ≤t

{
‖∂8(τ, ·)‖C1

b
+

3∑
µ,ν=0

(
‖gµν(τ, ·)‖C2

b
+ ‖∂tgµν(τ, ·)‖C1

b

)}
= ∞.

Similar results hold for an interval of the form (Tmin, 0].

Remark 5.5. If (1) or (2) occurs, then the hyperbolicity of equations (5.15a)–(5.15c)
breaks down. Similarly, if (3) occurs, then either the finiteness or the Lorentzian nature of
the reciprocal acoustical metric (m−1)µν can break down (see Lemma 7.3).

Proof of Theorem 5.4. See e.g. [Hör97, Ch. VI], [Sog08, Ch. 1], [Spe09a] for the ideas
behind the proof. ut
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5.6. Preservation of the wave coordinate condition

In Section 5.3, from given initial data for the Einstein equations, we constructed initial
data for the modified equations that in particular satisfy the wave coordinate condition
along the Cauchy hypersurface 6̊, i.e., Qµ|t=0 = 0. As mentioned in the statement of
Theorem 5.2, these data launch a solution of both the modified equations and the Einstein
equations. As we have discussed previously, this fact would follow from the condition
Qµ ≡ 0. In the next proposition, we sketch a proof of the fact that this condition holds.

Proposition 5.6 (Preservation of the wave coordinate condition). Let (g̊jk, K̊jk, 9̊, ∂j 8̊
= β̊j ) (j, k = 1, 2, 3) be initial data (see Remark 1.1) for the unmodified irrota-
tional Euler–Einstein system (3.47a)–(3.47b) [which by definition satisfy the constraints
(3.32a)–(3.32b) and dβ̊ = 0]. Let (gµν |t=0, ∂tgµν |t=0, 9̊, ∂j 8̊) (µ, ν = 0, 1, 2, 3) be the
initial data for the modified equations (5.15a)–(5.15d) that are constructed from the data
for the unmodified irrotational Euler–Einstein system as described in Section 5.3. In par-
ticular, we recall that the construction of Section 5.3 leads the fact thatQµ|t=0 = 0 where
Qµ is defined in (5.2). Assume that the data for the modified system satisfy the hypotheses
of Theorem 5.2, and let ((T−, T+) × T3, gµν, ∂µ8) be the corresponding solution to the
modified equations provided by the theorem. Then Qµ = 0 in (T−, T+)× T3.

Proof. First, using definition (5.3), we compute that for a solution of the modified equa-
tion (5.5a), the following identity holds:

Ricµν − 1
2Rgµν +3gµν − T

(scalar)
µν = −

1
2 (DµQν +DνQµ)+

1
2 (D

αQα)gµν

− Iµν +
1
2g
αβIαβgµν . (5.22)

Note that the left-hand side of (5.22) is the difference of the left and right sides of the
unmodified Einstein equations (3.31a). We then apply Dν to each side of (5.22) and use
the Bianchi identity Dν(Ricµν − 1

2Rgµν) = 0, equation (3.25), and the curvature relation
DµD

αQα = D
αDµQα − Ric αµ Qα to deduce that Qµ satisfies the following hyperbolic

system:

gαβDαDβQµ + Ric αµ Qα + 2gαβDαIµβ − gαβDµIαβ = −4I∂8Dµ8, (5.23)

where Iµν and I∂8, which depend linearly on the Qµ, are defined in (5.6a)–(5.6d).
Since (5.23) is a system of wave equations and is of hyperbolic character, the fact that

Qµ = 0 in (T−, T+) × T3 would follow from a standard uniqueness theorem for such
systems (see e.g. [Hör97, Ch. VI], [Tay97, Ch. 16]), together with the knowledge that
bothQµ|6̊ = 0 and ∂tQµ|6̊ = 0 hold. However, in constructing the data for the modified
equations, we have already exhausted our gauge freedom. Although the construction of
Section 5.3 has led to the condition Qµ|6̊ = 0, it seems that we have no way to enforce
the condition ∂tQµ|6̊ = 0. The remarkable fact, first exploited by Choquet-Bruhat in
[CB52], is that the construction of the modified data carried out in Section 5.3 necessarily
implies that ∂tQµ|6̊ = 0. The remainder of the proof is dedicated to proving this fact.

Since the left-hand side of (5.22) is the difference of the left and right sides of the Ein-
stein equations (3.31a), and since the initial data (6̊, g̊, K̊, 9̊, β̊) for the Einstein equa-
tions are assumed to satisfy the constraints (3.32a)–(3.32b), it follows that the left-hand
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side of (5.22) is equal to 0 at t = 0 after contracting against N̂µN̂ν or N̂µXν . Here, N̂µ

is the future-directed unit normal to 6̊ and Xµ is any vector tangent to 6̊ (in fact, one
derives the constraint equations by assuming that these contractions are 0 at t = 0). Fur-
thermore, since Qµ|t=0 = 0, it follows from definitions (5.6a)–(5.6d) that Iµν |t=0 = 0
(µ, ν = 0, 1, 2, 3), and I∂8|t=0 = 0. Using these facts and (5.22), we conclude that the
following equations hold:{

−
1
2 (DµQν +DνQµ)+

1
2 (D

αQα)gµν
}∣∣
t=0N̂

µN̂ν
= 0, (5.24a){

−
1
2

(
DµQν +DνQµ

)
+

1
2 (D

αQα)gµν
}∣∣
t=0N̂

µXν = 0. (5.24b)

Recalling that N̂µ
= δ

µ
0 is the future-directed unit normal to 6̊, setting Xν(j) = δ

ν
j ,

and using the facts that Qµ|t=0 = 0, (Xν(j)∂νQµ)|t=0 = 0, and g0j |t=0 = 0, we deduce
from (5.24b) that

0 = − 1
2 N̂

µXν(j)(∂µQν + ∂νQµ)|t=0 = −
1
2∂tQj |t=0 (j = 1, 2, 3). (5.25)

Similarly, we use (5.25), the facts that Qµ|t=0 = 0, g00|t=0 = −1, and g0µ
|t=0 = −δ

µ
0 ,

and (5.24a) to conclude that

∂tQ0|t=0 = 0. (5.26)

From (5.25) and (5.26), we conclude that the data for the system (5.23) are trivial. ut

6. Norms and energies

In this section, we define the Sobolev norms and energies that will play a central role in
our global existence theorem of Section 11. Let us make a few comments on them. First,
we remark that in Section 10, we will show that if the norms are sufficiently small, then
they are equivalent to the energies; i.e., the energies can be used to control Sobolev norms
of solutions. The reason that we introduce the energies is that their time derivatives can
be estimated with the help of integration by parts. Next, we recall that the background so-
lution fluid one-form ∂8̃ satisfies ∂t8̃ = 9̄e−κ�, ∂8̃ = 0, where 9̄ > 0 is the constant
defined in (4.14). The quantity S∂8;N , which is introduced below in (6.2e), measures the
difference between the perturbed variable (∂t8, ∂8) and the background (∂t8̃, 0). We
also follow Ringström [Rin08] by introducing scalings by eα�, where α is a number,
in the definitions of the norms and energies. The effect of these scalings is that in our
proof of global existence, a convenient and viable bootstrap assumption to make for these
quantities is that they are ≤ ε, where ε is sufficiently small. Finally, we remark that the
small positive constant q that appears in this section and throughout this article is defined
in (8.5) below, and we remind the reader that hjk := e−2�gjk (j, k = 1, 2, 3).

6.1. Norms for g and ∂8

In this section, we introduce the weighted Sobolev norms that will be used in Section 9
to estimate the terms appearing in the modified equations. The weights are designed in
order to make the bootstrap argument of Section 11 easy to close.
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Definition 6.1. Let N ≥ 1 be an integer. We define the norms Sg00+1;N (t), Sg0∗;N (t),

Sh∗∗;N (t), Sg;N (t), S∂8;N (t), Sg00+1;N (t), Sg0∗;N (t), Sh∗∗;N (t), Sg;N (t), S∂8;N (t), and
SN (t) as follows:

Sg00+1;N := e
q�
‖∂tg00‖HN + e

q�
‖g00 + 1‖HN +

3∑
i=1

e(q−1)�
‖∂ig00‖HN , (6.1a)

Sg0∗;N :=

3∑
j=1

(
e(q−1)�

‖∂tg0j‖HN + e
(q−1)�

‖g0j‖HN

)
+

3∑
i,j=1

e(q−2)�
‖∂ig0j‖HN ,

(6.1b)

Sh∗∗;N :=

3∑
j,k=1

eq�‖∂thjk‖HN +

3∑
i,j,k=1

(
‖∂ihjk‖HN−1 + e

(q−1)�
‖∂ihjk‖HN

)
, (6.1c)

S∂8;N := ‖e
κ�∂t8− 9̄‖HN + e

(κ−1)�
3∑
i=1

‖∂i8‖HN , (6.1d)

Sg00+1;N (t) := sup
0≤τ≤t

Sg00+1;N (τ ), (6.2a)

Sg0∗;N (t) := sup
0≤τ≤t

Sg0∗;N (τ ), (6.2b)

Sh∗∗;N (t) := sup
0≤τ≤t

Sh∗∗;N (τ ), (6.2c)

Sg;N := Sg00+1;N + Sg0∗;N + Sh∗∗;N , (6.2d)
S∂8;N (t) := sup

0≤τ≤t
S∂8;N (τ ), (6.2e)

SN := Sg;N + S∂8;N . (6.2f)

6.2. Energies for the metric g

6.2.1. The building block energy for g. The energies for the metric components will be
built from the quantities defined in the following lemma. They are designed with equa-
tions (5.15a)–(5.15c) in mind.

Lemma 6.2 (Properties of the building blocks of energies for the metric; [Rin08, Lemma
15]). Let v be a solution to the scalar equation

�̂gv = αH∂tv + βH 2v + F, (6.3)

where �̂g = gλκ∂λ∂κ , α > 0 and β ≥ 0 are constants, and define E(γ,δ)[v, ∂v] ≥ 0 by

E2
(γ,δ)[v, ∂v] :=

1
2

∫
T3

{
−g00(∂tv)

2
+ gab(∂av)(∂bv)− 2γHg00v∂tv + δH 2v2} d3x.

(6.4)
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Then there exist constants η > 0, C > 0, C(β) ≥ 0, γ ≥ 0, and δ ≥ 0 such that

|g00
+ 1| ≤ η (6.5)

implies that

E2
(γ,δ)[v, ∂v] ≥ C

∫
T3

{
(∂tv)

2
+ gab(∂av)(∂bv)+ C(β)v

2} d3x. (6.6)

The constants γ and δ depend on α and β, while η, C, and C(β) depend on α, β, γ,
and δ. Furthermore, C(β) = 0 if β = 0 and C(β) = 1 if β > 0. In addition, if β = 0,
then γ = δ = 0, while if β > 0, then we can arrange for γ > 0 and δ > 0. Finally,

d

dt
(E2
(γ,δ)[v, ∂v])

≤ −ηHE2
(γ,δ)[v, ∂v] +

∫
T3

{
−(∂tv + γHv)F +4E;(γ,δ)[v, ∂v]

}
d3x, (6.7)

where

4E;(γ,δ)[v, ∂v] = −γH(∂ag
ab)v∂bv − 2γH(∂ag0a)v∂tv − 2γHg0a(∂av)(∂tv)

− (∂ag
0a)(∂tv)

2
− (∂ag

ab)(∂bv)(∂tv)−
1
2 (∂tg

00)(∂tv)
2

+
( 1

2∂tg
ab
+Hgab

)
(∂av)(∂bv)− γH(∂tg

00)v∂tv

− γH(g00
+ 1)(∂tv)2. (6.8)

Proof. The proof is a standard integration by parts argument that begins with the multi-
plication of both sides of equation (6.3) by −(∂tv+ γHv); see Lemma 15 of [Rin08] for
the details. For later use, we quote the following identity from Ringström’s proof:

d

dt
(E2
(γ,δ)[v, ∂v]) =

∫
T3

{
−(α− γ)H(∂tv)

2
+ (δ− β− γα)H 2v∂tv − βγH 3v2

− (1+ γ)Hgab(∂av)(∂bv)− (∂tv + γHv)F +4E;(γ,δ)[v, ∂v]
}
d3x. ut

6.2.2. Energies for the components of g. In this section, we will use rescaled versions of
energies of the form (6.4) to construct energies for the components of g.

Definition 6.3. We define the nonnegative energies Eg00+1;N (t), Eg0∗;N (t), Eh∗∗;N (t),

Eg;N (t), Eg00+1;N (t), Eg0∗;N (t), Eh∗∗;N (t), and Eg;N (t) as follows:

E2
g00+1;N :=

∑
|Eα|≤N

e2q�E2
(γ00,δ00)

[∂Eα(g00 + 1), ∂(∂Eαg00)], (6.9a)

E2
g0∗;N

:=

∑
|Eα|≤N

3∑
j=1

e2(q−1)�E2
(γ0∗,δ0∗)

[∂Eαg0j , ∂(∂Eαg0j )], (6.9b)

E2
h∗∗;N

:=

∑
|Eα|≤N

{ 3∑
j,k=1

e2q�E2
(0,0)[0, ∂(∂Eαhjk)] +

1
2

∫
T3
cEαH

2(∂Eαhjk)
2 d3x

}
, (6.9c)

Eg;N := Eg00+1;N + Eg0∗;N + Eh∗∗;N , (6.9d)
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Eg00+1;N (t) := sup
0≤τ≤t

Eg00+1;N (τ ), (6.10a)

Eg0∗;N (t) := sup
0≤τ≤t

Eg0∗;N (τ ), (6.10b)

Eh∗∗;N (t) := sup
0≤τ≤t

Eh∗∗;N (τ ), (6.10c)

Eg;N := Eg00+1;N + Eg0∗;N + Eh∗∗;N , (6.10d)
where

hjk := e
−2�gjk (j, k = 1, 2, 3), (6.11a)

cEα := 0 if |Eα| = 0, (6.11b)
cEα := 1 if |Eα| > 0, (6.11c)

and (γ00, δ00), (γ0∗, δ0∗), and (γ∗∗, δ∗∗) are the constants generated by applying Lemma
6.2 to equations (5.15a)–(5.15c) respectively [note that (γ∗∗, δ∗∗) = (0, 0) in definition
(6.9c)].

In the next lemma, we provide a preliminary estimate of the time derivative of these
energies.

Lemma 6.4 (A first differential inequality for the metric energies). Assume that
(gµν, ∂µ8) (µ, ν = 0, 1, 2, 3) is a solution to the modified equations (5.15a)–(5.15c),
and let Eg00+1;N , Eg0∗;N , and Eh∗∗;N be as in Definition 6.3. Let [�̂g, ∂Eα] denote the
commutator of the operators �̂g and ∂Eα. Then under the assumptions of Lemma 6.2, the
following differential inequalities are satisfied, where 4E;(γ,δ)[·, ∂(·)] is defined in (6.8),
the constants (γ00, δ00), (γ0∗, δ0∗), and (γ∗∗, δ∗∗) [note that (γ∗∗, δ∗∗) = (0, 0)] are the
constants from Definition 6.3, and η00, η0∗, η∗∗ are the positive constants “η” produced
by applying Lemma 6.2 to each of the equations (5.15a)–(5.15c) respectively:
d

dt
(E2

g00+1;N ) ≤ (2q − η00)HE
2
g00+1;N + 2q(ω −H)E2

g00+1;N

−

∑
|Eα|≤N

∫
T3
e2q�
{∂t∂Eα(g00 + 1)+ γ00H∂Eα(g00 + 1)}

× {∂Eα400 + [�̂g, ∂Eα](g00 + 1)} d3x

+

∑
|Eα|≤N

∫
T3
e2q�
4E;(γ00,δ00)[∂Eα(g00 + 1), ∂(∂Eαg00)] d

3x,

d

dt
(E2

g0∗;N
) ≤ [2(q − 1)− η0∗]HE

2
g0∗;N

+ 2(q − 1)(ω −H)E2
g0∗;N

−

∑
|Eα|≤N

3∑
j=1

∫
T3
e2(q−1)�

{∂t∂Eαg0j + γ0∗H∂Eαg0j }

× {−2H∂Eα(gab0ajb)+ ∂Eα40j + [�̂g, ∂Eα]g0j } d
3x

+

∑
|Eα|≤N

3∑
j=1

∫
T3
e2(q−1)�

4E;(γ0∗,δ0∗)[∂Eαg0j , ∂(∂Eαg0j )] d
3x, (6.12a)
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d

dt
(E2

h∗∗;N
) ≤ (2q − η∗∗)H

∑
|Eα|≤N

3∑
j,k=1

e2q�E2
(0,0)[0, ∂(∂Eαhjk)]

+ 2q(ω −H)
∑
|Eα|≤N

3∑
j,k=1

e2q�E2
(0,0)[0, ∂(∂Eαhjk)]

−

∑
|Eα|≤N

3∑
j,k=1

∫
T3
e2q�(∂t∂Eαhjk){∂Eα4jk + [�̂g, ∂Eα]hjk} d

3x

+

∑
|Eα|≤N

3∑
j,k=1

∫
T3
e2q�
4E;(0,0)[0, ∂(∂Eαhjk)] d3x

+

∑
1≤|Eα|≤N

3∑
j,k=1

∫
T3
H 2(∂Eα∂thjk)(∂Eαhjk) d

3x. (6.12b)

Proof. Lemma 6.4 follows easily from definitions (6.9a)–(6.10d), and from (6.7). ut

The following corollary follows easily from Lemma 6.4, definitions (6.9a)–(6.9c), and the
Cauchy–Schwarz inequality for integrals.

Corollary 6.5. There exists a constant C > 0 such that under the assumptions of Lemma
6.4, we have

d

dt
(E2

g00+1;N ) ≤ (2q − η00)HE
2
g00+1;N + 2q(ω −H)E2

g00+1;N

+ CSg00+1;Ne
q�
‖400‖HN

+ CSg00+1;N
∑
|Eα|≤N

eq�‖[�̂g, ∂Eα](g00 + 1)‖L2

+

∑
|Eα|≤N

e2q�
‖4E;(γ00,δ00)[∂Eα(g00 + 1), ∂(∂Eαg00)]‖L1 , (6.13a)

d

dt
(E2

g0∗;N
) ≤ [2(q − 1)− η0∗]HE

2
g0∗;N

+ 2(q − 1)(ω −H)E2
g0∗;N

+ CSg0∗;N

3∑
j=1

e(q−1)�
‖gab0ajb‖HN

+ CSg0∗;N

3∑
j=1

e(q−1)�
‖40j‖HN

+ CSg0∗;N

∑
|Eα|≤N

3∑
j=1

e(q−1)�
‖[�̂g, ∂Eα]g0j‖L2

+

∑
|Eα|≤N

3∑
j=1

e2(q−1)�
‖4E;(γ0∗,δ0∗)[∂Eαg0j , ∂(∂Eαg0j )]‖L1 , (6.13b)
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d

dt
(E2

h∗∗;N
) ≤ (2q − η∗∗)H

∑
|Eα|≤N

3∑
j,k=1

e2q�E2
(0,0)[0, ∂(∂Eαhjk)]

+ 2q(ω −H)E2
h∗∗;N

+ CSh∗∗;N

3∑
j,k=1

eq�‖4jk‖HN

+ CSh∗∗;N
∑
|Eα|≤N

3∑
j,k=1

eq�‖[�̂g, ∂Eα]hjk‖L2

+

∑
|Eα|≤N

3∑
j,k=1

e2q�
‖4E;(0,0)[0, ∂(∂Eαhjk)‖L1 + Ce

−q�S2
h∗∗;N

, (6.13c)

where the norms Sg00+1;N , Sg0∗;N , Sh∗∗;N are defined in Definition 6.1.

6.3. Energies for the fluid one-form ∂8

In this section, we define the energies that we will use to analyze solutions to the irrota-
tional fluid equation (5.15d). We begin by stating their definitions.

Definition 6.6. Let 9̄ be the positive constant defined in (4.14). We define the nonnega-
tive energies E∂8;N (t), E∂8;N (t) for ∂8 as follows:

E2
∂8;N :=

1
2

∫
T3

{
(eκ�∂t8− 9̄)

2
+ e2κ�(m−1)ab(∂a8)(∂b8)

}
d3x

+
1
2

∑
1≤|Eα|≤N

∫
T3

{
e2κ�(∂t∂Eα8)

2
+ e2κ�(m−1)ab(∂a∂Eα8)(∂b∂Eα8)

}
d3x,

(6.14a)

E∂8;N (t) := sup
0≤τ≤t

E∂8;N (τ ). (6.14b)

In the next lemma, we provide a preliminary estimate of d
dt
(E2

∂8;N
(t)).

Lemma 6.7 (A first differential inequality for the fluid energy). Assume that ∂8 satisfies

�̂m8 = κω(t)∂t8+4∂8, (6.15)

where
�̂m := −∂

2
t + 2(m−1)0a∂t∂a + (m

−1)ab∂a∂b

is the reduced wave operator corresponding to the reciprocal acoustical metric (m−1)µν

[see (5.17a)–(5.17c)], and

κ =
3

1+ 2s
= 3c2

s .

Let [�̂m, ∂Eα] denote the commutator of the operators �̂m and ∂Eα. Then
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d

dt
(E2

∂8;N ) = −

∫
T3
(∂a(m

−1)0a)(eκ�∂t8− 9̄)
2 d3x

−

∑
1≤|Eα|≤N

∫
T3
e2κ�(∂a(m

−1)0a)(∂t∂Eα8)
2 d3x

−

∫
T3
eκ�(∂a(m

−1)ab)(eκ�∂t8− 9̄)(∂b8) d
3x

−

∑
1≤|Eα|≤N

∫
T3
e2κ�(∂b(m

−1)ab)(∂t∂Eα8)(∂b∂Eα8) d
3x

−

∫
T3
eκ�(4∂8)(e

κ�∂t8− 9̄) d
3x

−

∑
1≤|Eα|≤N

∫
T3
e2κ�(∂Eα4∂8)∂t∂Eα8d

3x

−

∑
1≤|Eα|≤N

∫
T3
e2κ�([�̂m, ∂Eα]8)∂t∂Eα8d

3x

+
1
2

∑
|Eα|≤N

∫
T3
e2κ�
{∂t (m

−1)ab + 2κω(m−1)ab}(∂a∂Eα8)(∂b∂Eα8) d
3x. (6.16)

Proof. This is a standard integration by parts lemma that can be proved using the ideas
of Lemma 6.2. We provide a sketch of the proof. We begin by differentiating under the
integral in the definition of E2

∂8;N
to conclude that

d

dt
(E2

∂8;N ) =
∑
|Eα|≤N

∫
T3
[∂Eα(e

κ�∂t8− 9̄)]∂t∂Eα(e
κ�∂t8) d

3x

+

∑
|Eα|≤N

∫
T3
e2κ�(m−1)ab(∂t∂a∂Eα8)(∂b∂Eα8) d

3x

+
1
2

∑
|Eα|≤N

∫
T3
e2κ�
{∂t (m

−1)ab + 2κω(m−1)ab}(∂a∂Eα8)(∂b∂Eα8) d
3x. (6.17)

For each fixed Eα, we will now eliminate the highest derivatives of 8 in (6.17) (i.e., the
derivatives of order |Eα| + 2). To this end, we first differentiate equation (6.15) using ∂Eα
and multiply both sides of the equation by eκ�, which allows us to express the resulting
equality as

−∂t∂Eα(e
κ�∂t8− 9̄)+ e

κ�(m−1)ab∂a∂b∂Eα8 = e
κ�∂Eα4∂8 + e

κ�
[�̂m, ∂Eα]8

− 2eκ�(m−1)0a∂t∂a∂Eα8. (6.18)

We then multiply both sides of (6.18) by −∂Eα(eκ�∂t8 − 9̄), integrate over T3, and
integrate by parts. Inserting the resulting identity into (6.17), we arrive at (6.16). ut

We now state the following corollary, which follows easily from definition (6.1d), Lemma
6.7, and the Cauchy–Schwarz inequality for integrals.
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Corollary 6.8. Under the hypotheses of Lemma 6.7, we have

d

dt
(E2

∂8;N ) ≤ S
2
∂8;N‖∂a(m

−1)0a‖L∞ + S
2
∂8;N

3∑
b=1

e�‖∂a(m
−1)ab‖L∞

+ S∂8;Ne
κ�
‖4∂8‖HN + S∂8;N

∑
1≤|Eα|≤N

eκ�‖[�̂m, ∂Eα]8‖L2

+
1
2S

2
∂8;N

3∑
a,b=1

e2κ�
‖∂t (m

−1)ab + 2ω(m−1)ab‖L∞

+ (κ − 1)ω
∑
|Eα|≤N

∫
T3
e2κ�(m−1)ab(∂a∂Eα8)(∂b∂Eα8) d

3x, (6.19)

where S∂8;N is defined in (6.1d).

6.4. The total energy EN
Definition 6.9. Let Eg;N and E∂8;N be the metric and fluid energies defined in (6.10d)
and (6.14b) respectively. We define EN , the total energy associated to (gµν, ∂µ8) (µ, ν =
0, 1, 2, 3), as follows:

EN := Eg;N + E∂8;N . (6.20)

7. Linear-algebraic estimates of gµν, gµν, and (m−1)µν

In this section, we provide some linear-algebraic estimates of gµν, gµν, and (m−1)µν . In
addition to providing some rough L∞ estimates that we will use in Sections 9 and 10,
the lemmas will guarantee that gµν is a Lorentzian metric and that (m−1)µν is an inverse
Lorentzian metric. We remark that we already made use of these facts in our statement of
the conclusions of Theorem 5.2.

Lemma 7.1 (The Lorentzian nature of gµν ; [Rin08, Lemmas 1 and 2]). Let gµν be a
symmetric 4×4 matrix of real numbers. Let (g[)jk be the 3×3 matrix defined by (g[)jk =
gjk, and let (g−1

[ )jk be the 3 × 3 inverse of (g[)jk. Assume that g00 < 0 and (g[)jk is
positive definite. Then gµν is a Lorentzian metric with inverse gµν, g00 < 0, and the 3×3
matrix (g#)jk defined by (g#)jk := gjk is positive definite. Furthermore,

g00
=

1
g00 − d2 , (7.1a)

g00

g00 − d2 (g
−1
[ )abXaXb ≤ (g

#)abXaXb ≤ (g
−1
[ )abXaXb, ∀(X1, X2, X3) ∈ R3,

(7.1b)

g0j
=

1
d2 − g00

(g−1
[ )ajg0a (j = 1, 2, 3), (7.1c)

where
d2
= (g−1

[ )abg0ag0b. ut
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The next lemma requires the following rough bootstrap assumptions, which we will im-
prove during our global existence argument.

Rough bootstrap assumptions for gµν: We assume that there are constants η > 0 and
K1 ≥ 1 such that

|g00 + 1| ≤ η, (7.2a)

K−1
1 δabX

aXb ≤ e−2�gabX
aXb ≤ K1δabX

aXb, ∀(X1, X2, X3) ∈ R3, (7.2b)
3∑
a=1

|g0a|
2
≤ ηK−1

1 e2(1−q)�. (7.2c)

For our global existence argument, we will assume that η = ηmin, where ηmin is defined
in Section 8.2.

Lemma 7.2 (First estimates of gµν ; [Rin08, Lemma 7]). Let gµν be a symmetric 4 × 4
matrix of real numbers satisfying (7.2a)–(7.2c), where � ≥ 0 and 0 ≤ q < 1. Then gµν
is a Lorentzian metric, and there exists a constant η0 > 0 such that 0 ≤ η ≤ η0 implies
that the following estimates hold for its inverse gµν:

|g00
+ 1| ≤ 4η, (7.3a)√√√√ 3∑

a=1

|g0a|2 ≤ 2K1e
−2�

√√√√ 3∑
a=1

|g0a|2, (7.3b)

|g0ag0a| ≤ 2K1e
−2�

3∑
a=1

|g0a|
2, (7.3c)

2
3K1

δabXaXb ≤ e
2�gabXaXb ≤

3K1

2
δabXaXb, ∀(X1, X2, X3) ∈ R3. (7.3d)

ut

The next lemma provides criteria that are sufficient to ensure that the reciprocal acoustical
metric (m−1)µν is finite and Lorentzian. It is needed to fully justify the conclusions of the
continuation principle (Theorem 5.4).

Lemma 7.3 (The Lorentzian nature of (m−1)µν). Let gµν be a symmetric 4 × 4 matrix
of real numbers satisfying the assumptions of Lemma 7.1. Assume further that σ > 0.
Let (m−1)µν denote the reciprocal acoustical metric defined in (5.17a)–(5.17c). Then
(m−1)µν is an inverse Lorentzian metric of signature (−,+,+,+). Furthermore, if ξ is
any timelike covector (i.e., gαβξαξβ < 0), then (m−1)αβξαξβ < 0.

Proof. It is straightforward to verify using (5.7d) and (5.17a)–(5.17c) that the assump-
tions of the lemma and the conclusions of Lemma 7.1 imply that

(m−1)µν = P(n−1)µν, (7.4)

(n−1)µν = gµν − 2sσ−1(gµα∂α8)(g
νβ∂β8), (7.5)
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where P > 0. The fact that (m−1)αβξαξβ < 0 whenever gαβξαξβ < 0 now follows
trivially from the expression (7.5). To show that (m−1)µν is Lorentzian, we set T µ =
gµα∂α8. The assumptions of the lemma guarantee that T µ is timelike relative to g (i.e.,
gαβT

αT β = −σ < 0), and Lemma 7.1 ensures that gµν and gµν are Lorentzian. Set
T̂ µ = σ−1/2T µ, so that gαβ T̂ αT̂ β = −1. It follows that we can choose spacelike (relative
to g) vectorsXµ(1), X

µ

(2), X
µ

(3) such that {T̂ , X(1), X(2), X(3)} is a g-orthonormal basis. Let

X
(j)
µ := gµαX

α
(j) (j = 1, 2, 3). It follows from (7.5) that

(n−1)αβ T̂αT̂β= −(1+ 2s), (7.6)

(n−1)αβ T̂αX
(j)
β = 0 (j = 1, 2, 3), (7.7)

(n−1)αβX(j)α X
(k)
β = δ

jk (j, k = 1, 2, 3), (7.8)

where δjk is the standard Kronecker delta. Thus, (n−1)µν is an inverse Lorentzian met-
ric of signature (−,+,+,+). Since P > 0, it follows that (m−1)µν is also an inverse
Lorentzian metric of signature (−,+,+,+). ut

8. The bootstrap assumption for SN and the definition of N,ηmin and q

In this short section, we define the quantities N,ηmin, and q. We then introduce some
bootstrap assumptions that will be used in our derivation of the estimates of Sections 9
and 10.

8.1. The definition of N and the assumption SN ≤ ε

For the remainder of the article, we will assume that N is an integer subject to one of the
following requirements:

N ≥ 3 (this is large enough for the validity of all of our results
except for some of the conclusions of Theorem 12.1), (8.1)

N ≥ 5 (this is large enough for all of our results to be valid). (8.2)

We requireN to be of this size to ensure that various Sobolev embedding results are valid;
see also Remark 12.2.

In our global existence argument, we will make the following bootstrap assumption:

SN ≤ ε, (8.3)

where SN is defined in (6.2f), and ε is a sufficiently small positive number. Observe that
SN measures how much (g, p, u) differs from the FLRW solution (g̃, p̃, ũ) derived in
Section 4. In particular, SN ≡ 0 for the FLRW solution.

8.2. The definitions of ηmin and q

Definition 8.1. Let η00, η0∗, η∗∗ be the positive constants appearing in the conclusions
of Lemma 6.4. Furthermore, let η0 be the constant from Lemma 7.2. We now define the
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positive quantities (recalling that 0 < κ < 1 when 0 < cs <
√

1/3) ηmin and q by

ηmin :=
1
8 min{1,η0,η00,η0∗,η∗∗}, (8.4)

q := 2
3 min{ηmin,κ, 1− κ}. (8.5)

We remark that ηmin and q have been chosen to be small enough so that the bootstrap
argument for global existence given in Section 11.2 will close. In particular, inequality
(7.3a), with η ≤ ηmin, guarantees that the energies E(γ,δ)[·, ∂(·)] for solutions to (5.15a)–
(5.15c) have the coerciveness property (6.6).

Remark 8.2. If ε is sufficiently small, then inequalities (7.2a) and (7.2c) (for η ≤ ηmin)
are implied by the definition of SN , the bootstrap assumption SN ≤ ε, and Sobolev
embedding.

9. Sobolev estimates

In this section, we use the bootstrap assumptions of Sections 7 and 8 to derive estimates of
all of the terms appearing in the modified equations (5.15a)–(5.15d) in terms of the norms
defined in Section 6.1. The main goal is to show that the error terms are small compared
to the principal terms, which is the main step in closing the bootstrap argument in our
proof of future-global existence (Theorem 11.5). More specifically, in Section 11.1, the
estimates of this section will be coupled with the energy inequalities of Corollaries 6.5
and 6.8 in order to derive a system of energy integral inequalities for the solution.

We divide the analysis into two propositions: Proposition 9.1 provides basic estimates
for g and ∂8, while Proposition 9.3 provides estimates for the nonlinearities and er-
ror terms. In particular, Proposition 9.1 provides estimates for the ratio Zj := ∂j8/∂t8
(j = 1, 2, 3) that are crucial for closing the bootstrap argument of Theorem 11.5. The
main tools for proving the propositions are standard Sobolev–Moser product-type esti-
mates, which we have collected together in the Appendix for convenience.

9.1. Estimates of the basic metric and fluid variables

In this section, we state and prove the first proposition that will be used to deduce the
energy inequalities of Section 11.1.

Proposition 9.1 (Estimates of the basic metric and fluid variables). Let N ≥ 3 be an
integer and assume that the bootstrap assumption (7.2b) holds on the spacetime slab
[0, T )× T3 for some constant K1 ≥ 1. Assume further that 0 < cs <

√
1/3. Then there

exist a constant ε′ > 0 and a constant C > 0, where C depends on N and K1, such
that if SN (t) ≤ ε′ on [0, T ), then the following estimates also hold on [0, T ), where
hjk = e

−2�gjk:

‖g00
+ 1‖HN ≤ Ce

−q�Sg;N , (9.1a)

‖gjk‖L∞ ≤ Ce
−2�, (9.1b)
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‖∂gjk‖HN−1 ≤ Ce
−2�Sg;N , (9.1c)

‖g0j
‖HN ≤ Ce

−(1+q)�Sg;N , (9.1d)

‖∂tgjk − 2ωgjk‖HN ≤ Ce
(2−q)�Sh∗∗;N , (9.2a)

‖∂tgjk‖C1
b
≤ Ce2�, (9.2b)

‖gaj∂tgak − 2ωδjk‖HN ≤ Ce
−q�Sg;N , (9.3)

‖∂tg
jk
+ 2ωgjk‖HN ≤ Ce

−(2+q)�Sg;N , (9.4a)

‖∂tg
00
‖HN ≤ Ce

−q�Sg;N , (9.4b)

‖∂tg
0j
‖HN ≤ Ce

−(1+q)�Sg;N , (9.4c)

‖∂tg
jk
‖L∞ ≤ Ce

−2�. (9.4d)

The following estimates for the term gab0ajb from the right-hand side of (5.15b) hold on
[0, T ):

‖gab0ajb‖HN ≤ Ce
(1−q)�Sh∗∗;N , (9.5a)

‖gab0ajb‖HN−1 ≤ CSh∗∗;N . (9.5b)

The following estimates for Zj = ∂j8/∂t8 hold on [0, T ), where κ = 3c2
s :

‖Zj‖HN ≤ Ce
�S∂8;N , (9.6a)

‖Zj‖HN−1 ≤ Ce
κ�S∂8;N . (9.6b)

The following estimates for σ = −gαβ(∂α8)(∂β8) and for the FLRW quantity σ̃ :=
−g̃αβ(∂α8̃)(∂β8̃) = e

−2κ�9̄2 hold on [0, T ):

‖e2κ�σ −

9̄2︷ ︸︸ ︷
e2κ�σ̃ ‖HN ≤ CSN . (9.7)

In the above estimates, the norms Sh∗∗;N , Sg;N , S∂8;N , and SN are defined in Defini-
tion 6.1.

Proof. Most of these estimates can be found in the statements and proofs of Lemmas 9,
11, 18, and 20 of [Rin08]. The exceptions are (9.4c), (9.4d), and (9.6a)–(9.7). For brevity,
we do not repeat all of the details of the estimates that are proved in [Rin08].

Remark 9.2. Throughout all of the remaining proofs in this article, we freely use the
results of Lemma 4.2, the definitions of the norms from Section 6.1, the definitions (8.4),
(8.5) of ηmin and q, and the Sobolev embedding resultHM+2(T3) ↪→ CMb (T

3) (M ≥ 0).
We also freely use the assumption that SN , which is defined in (6.2f), is sufficiently
small without explicitly mentioning it every time. Furthermore, the smallness is ad-
justed as necessary at each step in the proof. To avoid overburdening the paper with
details, we do not give explicit estimates for how small SN must be. We also remark that
as discussed in Section 2.5, the constants c, C,C∗ that appear throughout the article can
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be chosen uniformly (however, they may depend on N, cs, and 3) as long as SN is suffi-
ciently small. Finally, we prove statements in logical order, rather than the order in which
they are stated in the proposition.

Proofs of (9.1b) and the preliminary estimates ‖g00
+1‖L∞+‖g00

+1‖L2 ≤ Ce−q�Sg;N
and ‖g0j

‖L∞+‖g
0j
‖L2 ≤ Ce−(1+q)�Sg;N . TheL∞ estimate (9.1b), as well as the afore-

mentioned preliminary estimates, which we will need shortly, follow from the definition
(6.2d) of Sg;N , the assumption (7.2b), Lemma 7.1, and Lemma 7.2.

Proofs of (9.1c)–(9.1d). These proofs begin with the fact that when 1 ≤ |Eα| ≤ N, ∂Eαgµν

is a linear combination of terms of the form

gλ1µgλ2κ1 · · · gλnκn−1gνκn(∂Eα1gλ1κ1) · · · (∂Eαngλnκn), (9.8)

where Eα1+· · ·+Eαn = Eα and each |Eαi | > 0.We remark that (9.8) can be shown inductively
via the identity ∂αgµν = −gµκgνλ∂αgκλ.

To prove (9.1d), we first recall that the bound ‖g0j
‖L2 ≤ Ce−(1+q)�Sg;N was shown

above. Therefore, it remains to estimate (9.8) in L2 for 1 ≤ |Eα| ≤ N, with µ, ν in (9.8)
equal to 0, j. To this end, we first bound the terms gλ10gλ2κ1 · · · gλnκn−1gjκn in L∞, and
then estimate the remaining product (∂Eα1gλ1κ1) · · · (∂Eαngλnκn) inL2 using Proposition B.2.
The L∞ terms are bounded using (9.1b) and the preliminary estimates ‖g00

+ 1‖L∞ ≤
Ce−q�Sg;N and ‖g0j

‖L∞ ≤ Ce
−(1+q)�Sg;N shown above. The L2 norm of the product

is controlled by Proposition B.2 and the definition (6.2d) of Sg;N . The only difficulty is
keeping track of the powers of e�, which Ringström accomplishes inductively through
a counting argument that is analogous to the Counting Principle estimate (9.33) that we
provide below; the details can be found in the proof of Lemma 9 of [Rin08]. The proof of
(9.1c) is similar.

Proof of (9.1a). The estimate (9.1a) follows from the identity g00
+ 1 = 1

g00
[(g00+ 1)−

g0ag0a], Corollary B.3 with v = g00 and F(g00) = 1/g00 in the corollary, Proposition
B.5, the definition (6.2d) of Sg;N , and (9.1d).

Proofs of (9.2a)–(9.2b). The estimate (9.2a) follows directly from the definition (6.2c)
of Sh∗∗;N and the observation that ∂thjk = e−2�(∂tgjk − 2ωgjk). Inequality (9.2b) then
follows from the assumption (7.2b) and (9.2a).

Proof of (9.3). Note the identity δjk = g
0jg0k+g

ajgak. From this fact, the estimate (9.3)
follows from Proposition B.5, the definition (6.2d) of Sg;N , and (9.1a)–(9.2a).

Proofs of (9.4a)–(9.4d). To prove (9.4a), we first note the identity ∂tg
jk
=

−gαjgβk∂tgαβ .We then use Proposition B.5, the definition (6.2d) of Sg;N , (9.1a)–(9.1d),
and (9.3) to conclude that

‖∂tg
jk
+ 2ωgjk‖HN ≤ ‖g

bk(gaj∂tgab − 2ωδjb )‖HN + ‖g
0jgbk∂tg0b‖HN

+ ‖gajg0k∂tg0a‖HN + ‖g
0jg0k∂tg00‖HN

≤ Ce−(2+q)�Sg;N , (9.9)
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which gives (9.4a). Inequality (9.4d) then follows from (9.1b) and (9.4a). The proofs of
(9.4b) and (9.4c) are similar, and we omit the details.

Proofs of (9.5a)–(9.5b). To prove (9.5a), we first use Proposition B.5 to conclude that

‖gab0ajb‖HN ≤ C{‖g
ab
‖L∞ + ‖∂g

ab
‖HN−1}‖0ajb‖HN . (9.10)

Recalling that 0ajb = 1
2 (∂agbj + ∂bgaj − ∂jgab) and that gjk = e2�hjk, and using (9.1b),

(9.1c), the definitions (6.2c) and (6.2f) of Sh∗∗;N and SN , and Sobolev embedding, we
deduce that the right-hand side of (9.10) is bounded from above by Ce(1−q)�Sh∗∗;N . This
proves (9.5a). The proof of (9.5b) is similar.

Proofs of (9.6a)–(9.6b). To prove (9.6a), we first express

Zj =
eκ�∂j8

eκ�∂t8
. (9.11)

Then applying Corollary B.3 (with v = eκ�∂t8 and F(v) = v−1) and Proposition B.5
to the right-hand side of (9.11), and using the definition of S∂8;N , we deduce that

‖Zj‖HN ≤ C‖e
κ�∂j8‖HN

(∥∥∥∥ 1
eκ�∂t8

∥∥∥∥
L∞
+

∥∥∥∥∂( 1
eκ�∂t8

)∥∥∥∥
HN−1

)
≤ Ce�S∂8;N

(9.12)

as desired.
To prove (9.6b), we first note that by the definition of S∂8;N , we have

‖∂t∂Eα8‖L2 ≤ e
−κ�S∂8;N (1 ≤ |Eα| ≤ N). (9.13)

Integrating (9.13) from 0 to t, using the fact that e−κ�(t) is integrable over the interval
t ∈ [0,∞), using the initial condition ‖∂t∂Eα8‖L2 |t=0 ≤ S∂8;N (0), and using the fact
that S∂8;N (t) is increasing, we deduce

‖∂Eα8‖L2 ≤ CS∂8;N (t) (1 ≤ |Eα| ≤ N). (9.14)

We now revisit the proof of (9.12) and use the estimate (9.14) to deduce the desired bound

‖Zj‖HN−1 ≤ Ce
κ�S∂8;N . (9.15)

Proof of (9.7). We first decompose e2κ�σ − e2κ�σ̃ as follows:

e2κ�σ − e2κ�σ̃ = (eκ�∂t8− 9̄)(e
κ�∂t8+ 9̄)− (g

00
+ 1)(eκ�∂t8)2

− 2g0a(eκ�∂t8)
2Za − g

ab(eκ�∂t8)
2ZaZb. (9.16)

Inequality (9.7) now follows from Proposition B.5, the definition (6.2f) of SN , Sobolev
embedding, (9.1a)–(9.1d), (9.6a), and the fact that e2κ�σ̃ = 9̄2. ut
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9.2. Estimates of the nonlinearities and error terms

In this section, we state and prove the second proposition that will be used to deduce the
energy inequalities of Section 11.1.

Proposition 9.3 (Estimates of the nonlinearities and error terms). Let N ≥ 3 be an in-
teger, and assume that 0 < cs <

√
1/3. Let (gµν, ∂µ8) (µ, ν = 0, 1, 2, 3) be a solution

to the modified equations (5.15a)–(5.15d) on the spacetime slab [0, T )×T3, and assume
that the bootstrap assumption (7.2b) holds on the same slab for some constant K1 ≥ 1.
Then there exist a constant ε′′ > 0 and a constant C > 0, where C depends onN andK1,

such that if SN (t) ≤ ε′′ on [0, T ), then the following estimates also hold on [0, T ) for the
quantities 4A,µν,4C,00, and 4C,0j , defined in (A.13a)–(A.13c) and (A.15a)–(A.15b):

‖4A,00‖HN ≤ Ce
−2q�S2

N , (9.17a)

‖4A,0j‖HN ≤ Ce
(1−2q)�S2

N , (9.17b)

‖4A,jk‖HN ≤ Ce
(2−2q)�S2

N , (9.17c)

‖4C,00‖HN ≤ Ce
−2q�S2

N , (9.17d)

‖4C,0j‖HN ≤ Ce
(1−2q)�S2

N . (9.17e)

Additionally, for the quantities 4Rapid,µν defined in (A.7a)–(A.7c), we have the following
estimates on [0, T ):

‖4Rapid,00‖HN ≤ Ce
−(3+3c2

s )�SN , (9.18a)

‖4Rapid,0j‖HN ≤ Ce
−(2+3c2

s )�SN , (9.18b)

‖4Rapid,jk‖HN ≤ Ce
−(3+3c2

s )�SN . (9.18c)

For the quantities 4µν defined in (A.4a)–(A.4c), we have the following estimates on
[0, T ):

‖400‖HN ≤ Ce
−2q�SN , (9.19a)

‖40j‖HN ≤ Ce
(1−2q)�SN , (9.19b)

‖4jk‖HN ≤ Ce
−2q�SN . (9.19c)

For the commutator terms from Corollary 6.5, we have the following estimates on [0, T ):

‖[�̂g, ∂Eα](g00 + 1)‖L2 ≤ Ce
−2q�SN (|Eα| ≤ N), (9.20a)

‖[�̂g, ∂Eα]g0j‖L2 ≤ Ce
(1−2q)�SN (|Eα| ≤ N), (9.20b)

‖[�̂g, ∂Eα]hjk‖L2 ≤ Ce
−2q�SN (|Eα| ≤ N). (9.20c)

For the terms from Corollary 6.5, where 4E;(γ,δ)[v, ∂v] is defined in (6.8), we have the
following estimates on [0, T ):

e2q�
‖4E;(γ00,δ00)[∂Eα(g00 + 1), ∂(∂Eαg00)]‖L1 ≤ Ce

−q�Sg00+1;NSN (|Eα| ≤ N),

(9.21a)
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e2(q−1)�
‖4E;(γ0∗,δ0∗)[∂Eαg0j , ∂(∂Eαg0j )]‖L1 ≤ Ce

−q�Sg0∗;NSN (|Eα| ≤ N),

(9.21b)

e2q�
‖4E;(0,0)[0, ∂(∂Eαhjk)]‖L1 ≤ Ce

−q�Sh∗∗;NSN (|Eα| ≤ N).

(9.21c)

For the error terms (A.17a)–(A.17f) corresponding to the fully raised Christoffel symbols
of Lemma A.7, we have the following estimates on [0, T ):

‖4
000
(0)‖HN ≤ Ce

−q�SN , (9.22a)

‖4
j00
(0)‖HN ≤ Ce

−(1+q)�SN , (9.22b)

‖4
0j0
(0)‖HN ≤ Ce

−(1+q)�SN , (9.22c)

‖4
0jk
(0)‖HN ≤ Ce

−(2+q)�SN , (9.22d)

‖4
j0k
(0)‖HN ≤ Ce

−(2+q)�SN , (9.22e)

‖4
ijk

(0)‖HN ≤ Ce
−(3+q)�SN . (9.22f)

For the fluid wave equation error terms2 and4∂8, defined in (A.6d) and (A.4d) respec-
tively, we have the following estimates on [0, T ):

‖2‖HN ≤ Ce
−q�SN , (9.23a)

eκ�‖4∂8‖HN ≤ Ce
−q�SN . (9.23b)

For the reciprocal acoustical metric error terms4(m),4
0j
(m), and4jk(m), defined in (A.6a),

(A.6b), and (A.6c) respectively, we have the following estimates on [0, T ):

‖4(m)‖HN ≤ Ce
−q�SN , (9.24a)

‖4
0j
(m)‖HN ≤ Ce

−�SN , (9.24b)

‖4
jk

(m)‖HN ≤ Ce
−(2+q)�SN . (9.24c)

For the reciprocal acoustical metric components (m−1)0j and (m−1)jk defined in (5.17b)
and (5.17c), we have the following estimates on [0, T ):

‖(m−1)0j‖HN ≤ Ce
−�SN , (9.25a)∥∥∥∥(m−1)jk −

1
2s + 1

gjk
∥∥∥∥
HN

≤ Ce−(2+q)�SN , (9.25b)

‖(m−1)jk‖L∞ ≤ Ce
−2�, (9.25c)

C−1δabXaXb ≤ e
2�(m−1)abXaXb ≤ Cδ

abXaXb, ∀(X1, X2, X3) ∈ R3, (9.25d)

‖∂(m−1)jk‖HN−1 ≤ Ce
−2�SN . (9.25e)

For the commutator terms from Corollary 6.8, we have the following estimates on [0, T ),
where κ = 3c2

s :

‖[�̂m, ∂Eα]8‖L2 ≤ Ce
−(1+κ)�SN , (|Eα| ≤ N). (9.26)
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For the time derivatives of the fluid-related and reciprocal acoustical metric-related quan-
tities, we have the following estimates on [0, T ):

‖∂t [e
κ�∂t8]‖HN−1 ≤ Ce

−q�SN , (9.27a)

‖∂tZj‖HN−1 ≤ Ce
κ�SN , (9.27b)

‖∂t4(m)‖HN−1 ≤ Ce
−q�SN , (9.27c)

‖∂t4
0j
(m)‖HN−1 ≤ Ce

−(1+q)�SN , (9.27d)

‖∂t4
jk

(m)‖HN−1 ≤ Ce
−(2+q)�SN , (9.27e)

‖∂t (m
−1)0j‖HN−1 ≤ Ce

−(1+q)�SN , (9.27f)

‖∂t (m
−1)jk + 2ω(m−1)jk‖HN−1 ≤ Ce

−(2+q)�SN , (9.27g)

‖∂t (m
−1)jk‖L∞ ≤ Ce

−2�. (9.27h)

In the above estimates, the norms Sg00+1;N , Sg0∗;N , Sh∗∗;N , and SN are defined in Defi-
nition 6.1.

The proof of Proposition 9.3 is located in the next section. As we will see, many of the
estimates in the proposition can be essentially reduced to counting spatial indices. This
motivates the following definition, in which we introduce three classes of quantities that
have slightly different properties with regard to spatial indices.

Definition 9.4 (The sets GM , HM , and ZN ). Let N ≥ 3 be an integer and assume that
M = N − 1 or M = N. Let v be a function on T3, and let A denote its number of
downstairs spatial indices minus its number of upstairs spatial indices (e.g. A = −1
when v = ∂igjk). We write v ∈ GM if there exists a constant C > 0 such that

‖v‖HM ≤ Ce
−q�eA�SN (9.28)

for all t ≥ 0 whenever SN is sufficiently small. Above, q is the small positive constant that
is defined in Section 8.2 and that appears in the definition of the norms (i.e., Definition
6.1).

We write v ∈ HM if there exists a constant C > 0 such that either

‖v‖HM ≤ Ce
A�SN (9.29)

for all t ≥ 0 whenever SN is sufficiently small, or

‖v‖L∞ ≤ Ce
A�, (9.30)

‖∂v‖HM−1 ≤ Ce
A�SN (9.31)

for all t ≥ 0 whenever SN is sufficiently small.
In the case M = N only, we write v ∈ ZN if v = Zj (j = 1, 2, 3).

Remark 9.5. Note that v ∈ GM ⇒ v ∈ HM . Also, by (9.6a) and (9.6b), v ∈ ZN ⇒
v ∈ GN−1 ∩HN whenever N ≥ 3.
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Remark 9.6. The main idea of the above definition is that if v ∈ GM ∪ HM , then up
to correction factors, various norms of v can be estimated by counting its net number of
spatial indices. This idea is made precise in Lemma 9.7. The point of introducing the sets
G is that their elements are “good” in the sense that they decay by a factor of e−q� faster
than the rate predicted by counting spatial indices.

Observe that the definition of SN (for N ≥ 3) and the estimates of Proposition 9.1
imply the following estimates, which will implicitly be used many times in our proof of
Proposition 9.3:

g00 + 1, g0j , g
00
+ 1, g0j , ∂tg00, ∂tg0j , ∂tgjk − 2ωgjk︸ ︷︷ ︸

e2�∂thjk

, ∂tg
00, ∂tg

0j , ∂tg
jk
− 2ωgjk,

(9.32a)
∂ig00, ∂ig0j , ∂igjk, 0000, 0j00, 00j0, 0ijk ∈ GN ,
∂g00, ∂g0j , ∂t∂g00, ∂t∂g0j , ∂t∂gjk − 2ω∂gjk︸ ︷︷ ︸

e2�∂t∂hjk

, ∂i∂g00, ∂i∂g0j , ∂i∂gjk, Zj ∈ GN−1,

(9.32b)

gjk, g
jk, ∂tgjk, ∂tg

jk, 0j0k, 0jk0, e
κ�∂t8,Zj ∈ HN , (9.32c)

∂gjk, ∂g
jk
∈ HN−1. (9.32d)

Note that, for example, ∂gjk in (9.32d) is counted as having only two spatial indices.
In our proof of Proposition 9.3, we will often use the following lemma.

Lemma 9.7 (Counting Principle). LetN ≥ 3 be an integer and assume thatM = N−1
or M = N. Let l ≥ 1 be an integer, and suppose that v(i) ∈ GM ∪ HM for 1 ≤ i ≤ l.
Assume further that v(j) satisfies (9.29) for some j satisfying 1 ≤ j ≤ l (i.e., at least one
of the v(i) is in L2 and is controlled by SN ). Then there exist constants ε > 0 and C > 0
such that if SN ≤ ε, then

∥∥∥ l∏
i=1

v(i)

∥∥∥
HM
≤ Ce−n(GM )q�e−n∗(ZM )q�entotal�SN (9.33)

for all t ≥ 0. In inequality (9.33),

• ntotal is the total number of downstairs spatial indices minus the total number of up-
stairs spatial indices in the product (e.g. ntotal = −1 for gjaZa).
• n(GM) is the number of the v(i) that belong to GM (e.g. n(GN ) = 0 and n(GN−1) = 1

for gjaZa).
• In the case M = N − 1, n∗(ZN−1) := 0, and the factor e−n∗(ZN−1)q� is therefore

absent; in this case, the quantities Zj (j = 1, 2, 3), are counted as elements of GN−1
(see Remark 9.5).
• In the case M = N, n∗(ZN ) := 0 if none of the v(i) belong to ZN , and n∗(ZN ) is the

number of the v(i) that belong to ZN minus one if at least one of the v(i) belongs to
ZN (e.g. n∗(ZN ) = 0 for gjaZa and n∗(ZN ) = 1 for gabZaZb).
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Remark 9.8. Note that since hjk = e−2�gjk, estimates involving hjk need to be mod-
ified by a factor of e−2�. That is, e2�hjk ∈ HN , e

2�∂thjk ∈ GN , and e2�∂ihjk ∈ GN ,
etc.

Proof of Lemma 9.7. Without loss of generality, we assume that v(l) ∈ L2.By Proposition
B.5, we have∥∥∥ l∏

i=1

v(i)

∥∥∥
HM
≤ C

{
‖v(l)‖HM

l−1∏
i=1

‖v(i)‖L∞ +

l−1∑
i=1

‖∂v(i)‖HM−1

∏
j 6=i

‖v(j)‖L∞
}
. (9.34)

The estimate (9.33) follows easily from (9.34), Sobolev embedding, and the definition
of HM , GM , and ZN . Note that in the case M = N, if more than one element of ZN
is present in

∏l
i=1 v(i), then in each product on the right-hand side of (9.33), all but at

most one of these elements of ZN are bounded in the L∞ norm. Hence, by (9.6b) and
the Sobolev embedding estimate ‖Zj‖L∞ ≤ C‖Zj‖HN−1 ≤ Ceκ�SN ≤ Ce(1−q)�SN ,
these elements contribute the additional decay factor e−n∗(ZN )q� to the right-hand side of
(9.33). ut

9.3. Proof of Proposition 9.3

Proof of Proposition 9.3. We prove statements in logical order, rather than in the order
in which they are listed in the conclusions of the proposition. See Remark 9.2 for some
conventions that we use throughout the proof.

Proofs of (9.17a)–(9.17e) and (9.22a)–(9.22f). To prove (9.17a)–(9.17e), we apply the
Counting Principle estimate (9.33) to the right-hand sides of (A.13a)–(A.13c) and (A.15a)
–(A.15b). Note that every product on the right-hand side of the expression for 4A,µν has
the same net number of spatial indices as 4A,µν . Furthermore, by inspection, we see that
these right-hand sides are quadratic in the elements of GN (i.e., n(GN ) ≥ 2); this results
in the presence of the e−2q� factor on the right-hand sides of (9.17a)–(9.17e). The same
reasoning allows us to deduce (9.22a)–(9.22f), but in this case, some of the corresponding
products on the right-hand sides of (A.17a)–(A.17f) are only linear in elements of GN
(which results in a single e−q� decay factor).

Proofs of (9.18a)–(9.18c). All products on the right-hand sides of (A.7a)–(A.7c) except
two are of the form F(Q(1),Q(2))θµν, where F is a smooth function of its arguments,
Q(1), Q(2) ∈ {e

3(1+c2
s )�(ω−H), ω+H,ω, eκ�∂t8, e2κ�σ }, θµν is a product of elements

of GN ∪HN , and each product contains at least one element of GN ∪ZN . Hence, θµν can
be bounded in HN by counting spatial indices and using (9.33):

‖θµν‖HN ≤ Ce
ntotal�SN . (9.35)

Above, ntotal refers to θµν, i.e., ntotal = 0 for θ00, ntotal = 1 for θ0j , and ntotal = 0 for θjk
(we made the adjustment involving e−2� mentioned in Remark 9.8 when computing ntotal
for θjk). The remaining two terms [the last term on the right-hand side of (A.7a) and
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the next-to-last term on the right-hand side of (A.7c)] are, up to constants, of the form(
F(Q(1),Q(2)) − F(Q̃(1), Q̃(2))

)
ξµν, where F and the Q(i) are as before, Q̃(i) is equal

to Q(i) evaluated at the FLRW background (and thus Q̃(i) is either constant or depends
only on t), and ξµν ∈ HN (specifically, ξ00 = 1 and ξjk = hjk). Hence by (9.33), we have

‖ξµν‖L∞ ≤ Ce
ntotal�, (9.36)

‖∂ξµν‖HN−1 ≤ Ce
ntotal�SN , (9.37)

where ntotal is as above. We claim that: (i) ‖Q(i)‖L∞ ≤ C and ‖∂Q(i)‖HN−1 ≤ CSN ;
and (ii) ‖Q(i) − Q̃(i)‖HN ≤ CSN . When Q(i) = e3(1+c2

s )�(ω − H) or Q(i) = ω + H

or ω, (i) and (ii) follow from Lemma 4.2. When Q(i) = e
κ�∂t8, they follow from the

definition of SN . When Q(i) = e2κ�σ, they follow from (9.7). Consequently, we can
invoke Corollary B.4 to deduce that

‖F(Q(1),Q(2))‖L∞ ≤ C, ‖∂[F(Q(1),Q(2))]‖HN−1 ≤ CSN , (9.38)

‖F(Q(1),Q(2))− F(Q̃(1), Q̃(2))‖HN ≤ CSN . (9.39)

Now by Proposition B.5, all of the terms on the right-hand sides of (A.7a)–(A.7c) can be
respectively bounded in HN by one of

C‖θµν‖HN

(
‖F(Q(1),Q(2))‖L∞ + ‖∂[F(Q(1),Q(2))]‖HN−1

)
, (9.40)

C(‖ξµν‖L∞ + ‖∂ξµν‖HN−1)‖F(Q(1),Q(2))− F(Q̃(1), Q̃(2))‖HN . (9.41)

Thus, using (9.35)–(9.37), (9.38)–(9.39), and (9.40)–(9.41), we conclude that all products
on the right-hand sides of (A.7a)–(A.7c) are bounded in HN by

Centotal�SN . (9.42)

This yields the desired estimates (9.18a)–(9.18c).

Proofs of (9.19a)–(9.19c). The estimates (9.19a)–(9.19b) follow trivially from the def-
initions (A.4a)–(A.4b) and the estimates (9.17a)–(9.17e), (9.18a)–(9.18c). The esti-
mate (9.19c) follows similarly, but we also have to estimate the −2ωg0a∂ahjk =

−2e−2�ωg0a∂agjk term from (A.4c); the Counting Principle estimate (9.33) with
n(GN ) = 2 immediately yields e−2�ω‖g0a∂agjk‖HN ≤ Ce−2q�SN as desired.

Proofs of (9.21a)–(9.21c). We first rewrite equation (6.8) as follows:

4E;(γ,δ)[v, ∂v] = −γH(∂ag
ab)v∂bv − 2γH(∂ag0a)v∂tv − 2γHg0a(∂av)(∂tv)

− (∂ag
0a)(∂tv)

2
− (∂ag

ab)(∂bv)(∂tv)−
1
2 (∂tg

00)(∂tv)
2

+
( 1

2∂tg
ab
+ ωgab

)
(∂av)(∂bv)+ (H − ω)g

ab(∂av)(∂bv)

− γH(∂tg
00)v∂tv − γH(g00

+ 1)(∂tv)2. (9.43)

We now claim that the following inequality holds for any function v for which the
right-hand side is finite:

‖4E;(γ,δ)[v, ∂v]‖L1 ≤ Ce
−q�
{‖∂tv‖

2
L2 + e

−2�
‖∂v‖2

L2 + C(β)‖v‖
2
L2}, (9.44)
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where C(β) is defined in (6.6) (recall that C(β) = γ = 0 when β = 0). To obtain (9.44),
we use the Cauchy–Schwarz inequality for integrals, (9.1a)–(9.1d), (9.4a), and (9.4b).
Inequalities (9.21a)–(9.21c) now easily follow from definitions (6.1a)–(6.2f) and (9.44).

Proofs of (9.24a)–(9.24c). These estimates (9.24a)–(9.24c) all follow from the Counting
Principle estimate (9.33). Note that all products on the right-hand side of (A.6a) and
(A.6c) either contain a factor belonging to GN (i.e., n(GN ) ≥ 1) or are quadratic in ZN
(i.e., n∗(ZN ) ≥ 2 − 1 = 1); hence, the estimates (9.24a) and (9.24c) feature an e−q�

factor. In contrast, the right-hand side of (A.6b) features the term g00gajZa (for which
n(GN ) = n∗(ZN ) = 0), which results in the lack of an e−q� factor on the right-hand side
of (9.24b).

Proof of (9.23a). We first note that (9.22a)–(9.22f) show that4µνλ(0) ∈ GN . Consequently,
it follows by inspection that all products on the right-hand side of the expression (A.6d)
for 2 either contain an element of GN as a factor (i.e., n(GN ) ≥ 1) or are quadratic in
ZN (i.e., n∗(ZN ) ≥ 2 − 1 = 1). By the Counting Principle estimate (9.33), the estimate
(9.23a) thus follows.

Proof of (9.23b). We first multiply each side of equation (A.4d) by eκ� to deduce that

eκ�4∂8 = 3ω[eκ�∂t8]{F(4(m))− F(0)} − [eκ�∂t8]{F(4(m))− F(0)}2

− F(0)[eκ�∂t8]2, (9.45)

where

F(4(m)) := [(1+ 2s)+4(m)]−1, (9.46)

and 4(m) and 2 are defined in (A.6a) and (A.6d). By Corollary B.4, with v = 4(m) and
v̄ = 0 in the corollary, and (9.24a), it follows that

‖F(4(m))− F(0)‖HN + ‖∂[F(4(m))]‖HN−1 ≤ C‖4(m)‖HN ≤ Ce
−q�SN . (9.47)

Therefore, by definition, F(4(m)) − F(0) ∈ GN and F(4(m)) ∈ HN . Note that eκ�∂t8
∈ HN and that (9.23a) implies 2 ∈ GN . Thus, all terms on the right-hand side of (9.45)
are products of elements of GN ∪HN and each product contains an element of GN (i.e.,
n(GN ) ≥ 1). By the Counting Principle estimate (9.33), the estimate (9.23b) thus follows.

Proofs of (9.25a)–(9.25e). We first use (5.17c) to decompose

(m−1)jk −
1

2s + 1
gjk = −

1
2s + 1

4
jk

(m) +
(
F(4(m))−

1
2s+1︷︸︸︷
F(0)

)
(gjk −4

jk

(m)), (9.48)

where F(·) is defined in (9.46). The estimates (9.1b), (9.1c), (9.24c), and (9.47) show that
gjk ∈ HN and 4jk(m), F (4(m)) − F(0) ∈ GN . Thus, both terms on the right-hand side of
(9.48) contain an element of GN (i.e., n(GN ) ≥ 1) and have two upstairs spatial indices.
Therefore, the Counting Principle estimate (9.33) implies that∥∥∥∥(m−1)jk −

1
2s + 1

gjk
∥∥∥∥
HN

≤ Ce−(2+q)�SN . (9.49)
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Furthermore, it easily follows from (9.1b), (9.1c), and (9.49) that

‖(m−1)jk‖L∞ ≤ Ce
−2�, (9.50)

‖∂(m−1)jk‖HN−1 ≤ Ce
−2�SN . (9.51)

We have thus proved (9.25b), (9.25c), and (9.25e). Inequality (9.25d) now follows from
(7.3d) and (9.25b).

Inequality (9.25a) can be proved using ideas similar to the ones we used to prove
(9.25b)–(9.25e); we omit the details.

Proofs of (9.20a)–(9.20c). Let χ00 = g00 + 1, χ0j = g0j , χjk = hjk. We rewrite
equations (5.15a)–(5.15c) in the form

∂2
t χµν = (g

00)−1(gab∂a∂bχµν + 2g0a∂t∂aχµν − fµν), (9.52)

where the fµν are the terms on the right-hand sides of (5.15a)–(5.15c). By (9.1a) and
Corollary B.4, with v = g00, v̄ = −1, and F(v) = v−1 in the corollary, it follows that

‖(g00)−1
‖L∞ ≤ C, (9.53)

‖∂[(g00)−1
]‖HN−1 ≤ Ce

−q�SN . (9.54)

Hence, by definition, (g00)−1
∈ HN ⊂ HN−1; we will use these estimates below.

Let us first consider the cases χ00 = g00 + 1, χ0j = g0j . In these cases, we see by
inspection of the right-hand sides of (5.15a)–(5.15c) that (g00)−1fµν is a sum of products
of elements of HN−1 and an element of GN−1. To justify this claim, we are also using
(9.19a)–(9.19b), which show that 4µν ∈ GN−1 in these cases. Furthermore, the same
claim is true for the term (g00)−1(gab∂a∂bχµν+2g0a∂t∂aχµν) from (9.52) in these cases;
this claim relies on (9.32b), which shows that ∂a∂bχµν, ∂t∂aχµν ∈ GN−1 (more precisely,
(9.32b) implies that e�∂a∂bχµν, e�∂t∂aχµν ∈ GN−1, but we do not make use of the
“extra” factor e� in this argument). In total, we have shown the right-hand side of (9.52)
is a sum of products of elements of HN−1 and GN−1, and that all products contain an
element of GN−1. Since each product has the same net number of spatial indices as χµν,
the Counting Principle estimate (9.33) (with n(GN−1) ≥ 1 for all products) implies that

‖∂2
t g00‖HN−1 ≤ Ce

−q�SN , (9.55a)

‖∂2
t g0j‖HN−1 ≤ Ce

(1−q)�SN . (9.55b)

In the case χjk = hjk, we can apply a similar strategy. However, in this case, we take into
account the adjustment mentioned in Remark 9.8. That is, the counting estimate (9.33) is
modified by a factor of e−2�:

‖∂2
t hjk‖HN−1 ≤ Ce

−q�SN (9.55c)

(note that this adjustment has also been accounted for in the estimates (9.32a) and (9.19c),
which show that e2�fjk = 3He2�∂thjk + e

2�
4jk ∈ GN−1).
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Now by Proposition B.7, the following commutator estimate holds for |Eα| ≤ N :

‖[�̂g, ∂Eα]χµν‖L2 ≤ C‖g
00
+ 1‖HN ‖∂

2
t χµν‖HN−1 + C‖g

0a
‖HN ‖∂tχµν‖HN

+ C

3∑
a,b,c=1

∥∥∂gab‖HN−1‖∂cχµν‖HN . (9.56)

Let us first discuss the cases of χ00 and χ0j . We define ntotal = 0 for χ00 and ntotal = 1
for χ0j . In these cases, our previous estimates have shown that ∂gab ∈ HN−1 and
g00
+ 1, g0a, ∂tχµν, ∂cχµν ∈ GN , while (9.55a)–(9.55b) show that ∂2

t χµν ∈ GN−1. Thus,
the ‖g00

+ 1‖HN ‖∂2
t χµν‖HN−1 term is quadratic in norms of elements of GN and GN−1

and can therefore be bounded from above [via the Counting Principle estimate (9.33)] by
Ce−2q�entotal�SN . The ‖g0a

‖HN ‖∂tχµν‖HN term is also quadratic in norms of elements
of GN , but it has an additional upstairs spatial index compared to the first product, and
it can therefore be bounded from above by Ce−(1+2q)�entotal�SN ≤ Ce−2q�entotal�SN
as desired. The

∥∥∂gab‖HN−1‖∂cχµν‖HN term is only linear in ∂cχµν ∈ GN , but like the
second product, it has an additional upstairs spatial index compared to the first product.
Therefore, it can be bounded from above by Ce−(1+q)�entotal�SN ≤ Ce−2q�entotal�SN as
desired.

In the case χjk = hjk, we can apply a similar strategy. However, in this case, we
take into account the adjustment mentioned in Remark 9.8, i.e., all counting estimates
are modified by a factor of e−2� (this is possible since we have already shown that
e2�∂2

t hjk ∈ GN−1, and e2�∂thjk, e
2�∂ihjk ∈ GN ).

Proof of (9.26). We first note the identity

eκ�∂a8 = [e
κ�∂t8]Za . (9.57)

We then use Propositions B.5 and B.7 and the fact that (m−1)00
= −1 to deduce

eκ�‖[�̂m, ∂Eα]8‖L2 ≤ C

3∑
a=1

‖(m−1)0a‖HN ‖[e
κ�∂t8] − 9̄‖HN

+ C‖∂(m−1)ab‖HN−1(|9̄| + ‖[e
κ�∂t8] − 9̄‖HN )‖Za‖HN .

(9.58)

Using (9.25a), (9.25c), and (9.25e), we see that all terms on the right-hand side of (9.58)
are products of norms of elements of HN−1 and HN and are quadratic in quantities that
are controlled by SN . Since there is one net upstairs spatial index in each product, the
right-hand side of (9.58) can be bounded from above [via the Counting Principle estimate
(9.33)] by Ce−�SN ; this yields the desired estimate (9.26).

Proof of (9.27a). To prove (9.27a), we first solve for ∂t [eκ�∂t8] using (5.15d) and
(9.57):

∂t [e
κ�∂t8] = 2(m−1)0a∂a[e

κ�∂t8] + (m
−1)ab∂a([e

κ�∂t8]Zb)− e
κ�
4∂8. (9.59)
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Using Propositions B.5 and B.7, we deduce that

‖∂t [e
κ�∂t8]‖HN−1 ≤ C

3∑
a=1

‖(m−1)0a‖HN ‖[e
κ�∂t8] − 9̄‖HN

+ C

3∑
b=1

(
‖(m−1)ab‖L∞ + ‖∂(m

−1)ab‖HN−1
)(
|9̄| + ‖[eκ�∂t8] − 9̄‖HN

)
‖Za‖HN

+ C‖eκ�4∂8‖HN−1 . (9.60)

The last term on the right-hand side of (9.60) was bounded in (9.23b). Using (9.25a),
(9.25c), and (9.25e), we see that the terms under the 6’s are quadratic/cubic in norms of
elements of HN , feature one net spatial index upstairs, and are at least linear in quantities
that are controlled by SN .Hence, the Counting Principle estimate (9.33) implies that these
terms can be bounded from above by Ce−�SN . The result (9.27a) thus follows.

Proof of (9.27b). Since Zj =
eκ�∂j8
eκ�∂t8

, it follows that

∂tZj = κωZj − Zj
∂t [e

κ�∂t8]

eκ�∂t8
. (9.61)

Hence, by Corollary B.4 (with v = eκ�∂t8, v̄ = 9̄, and F(v) = v−1) and Proposition
B.5, we have

‖∂tZj‖HN−1 ≤ C‖Zj‖HN−1

+ C‖Zj‖HN−1(|9̄|
−1
+ ‖[eκ�∂t8] − 9̄‖HN )‖∂t [e

κ�∂t8]‖HN−1 . (9.62)

Using (9.6b) and (9.27a), we conclude that the right-hand side of (9.62) is ≤ Ceκ�SN .
This is the desired estimate (9.27b).

Proofs of (9.27c)–(9.27e). The proof of (9.27c) is similar to the proof of (9.24a). More
precisely, we note that the estimates (9.6b) and (9.27b) show that Zj , ∂tZj ∈ GN−1. Thus,
when we differentiate (A.6a) with ∂t ,we observe that all products contain a factor belong-
ing to GN−1. Hence, the Counting Principle estimate (9.33) guarantees the availability of
the factor e−q� on the right-hand side of (9.27c). The proofs of (9.27d) and (9.27e) are
identical.

Proof of (9.27f). We differentiate equation (5.17b) with ∂t to deduce

∂t (m
−1)0j = −F(0)∂t4

0j
(m) + (F (0)− F(4(m)))∂t4

0j
(m) −4

0j
(m)∂t [F(4(m))], (9.63)

where F(4(m)) is defined in (9.46). We next use Corollary B.4, Proposition B.5, (9.24a),
and (9.27c) to deduce that

‖∂t [F(4(m))]‖HN−1 ≤ ‖F
′(0)∂t4(m)‖HN−1 + ‖(F

′(0)− F ′(4(m)))∂t4(m)‖HN−1

≤ Ce−q�SN . (9.64)
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The estimates (9.24a), (9.24b), (9.47), (9.27d), and (9.64) show that 40j
(m) ∈ HN−1 and

4(m), F (4(m))−F(0), ∂t4
0j
(m), ∂t [F(4(m))] ∈ GN−1. By the Counting Principle estimate

(9.33) [with n(GN−1) ≥ 1 for all products in (9.63)], the desired estimate (9.27f) thus
follows.

Proofs of (9.27g)–(9.27h). From the decomposition (9.48), we deduce that

∂t (m
−1)jk + 2ω(m−1)jk =

1
2s + 1

(∂tg
jk
+ 2ωgjk)−

2ω
2s + 1

4
jk

(m)

+ 2ω(F(4(m))− F(0))(gjk −4
jk

(m))−
1

2s + 1
∂t4

jk

(m) + (∂t [F(4(m))])(g
jk
−4

jk

(m))

+ (F (4(m))− F(0))∂tgjk − (F (4(m))− F(0))∂t4
jk

(m), (9.65)

where F(4(m)) is defined in (9.46). The estimates (9.4a), (9.24c), (9.47), (9.27e), and
(9.64) show that ∂tgjk + 2ωgjk, 4jk(m), F (4(m)) − F(0), ∂t4

jk

(m), ∂t [F(4(m))] ∈ GN−1.

Thus, all terms on the right-hand side of (9.3) are products of elements of GN−1 ∪HN−1,

and each product has two upstairs spatial indices and contains an element of GN−1. By
the Counting Principle estimate (9.33) [with n(GN−1) ≥ 1 for all products in (9.3)], we
deduce the estimate (9.27g). The estimate (9.27h) follows from (9.25c) and (9.27g).

This concludes our proof of Proposition 9.3. ut

10. The equivalence of Sobolev and energy norms

As is typical in the theory of nonlinear hyperbolic PDEs, our global existence proof is
based on showing that the energies of Section 6 remain finite (they happen to be uniformly
bounded for t ≥ 0 in the problem studied here). However, the boundedness of the energies
does not in itself preclude the possibility of blow-up; to show that the blow-up scenarios
from the conclusions of Theorem 5.4 do not occur, we will control appropriate Sobolev
norms of ∂g and ∂8. In this short section, we supply the bridge between the energies and
the norms. More specifically, in the following proposition, we prove that under suitable
bootstrap assumptions, the Sobolev-type norms and energies defined in Section 6 are
equivalent.

Proposition 10.1 (Equivalence of Sobolev norms and energy norms). Let N ≥ 3 be
an integer and assume that the bootstrap assumption (7.2b) holds on the spacetime slab
[0, T ) × T3 for some constant K1 ≥ 1. Let (γ, δ) be any of the pairs of constants from
Definition 6.3, and let C(β) be the corresponding constant from Lemma 6.2. Then there
exist constants ε′′′ > 0 and C > 0, depending on N, K1, γ, and δ, such that if SN ≤ ε′′′,
then the following inequalities hold on the interval [0, T ) for the norms and energies
defined in (6.2a)–(6.2f), (6.4), (6.10a)–(6.10d), (6.14b), and (6.20):

C−1
{‖∂tv‖L2 + C(β)‖v‖L2 + e

−�
‖∂v‖L2} ≤ E(γ,δ)[v, ∂v]

≤ C{‖∂tv‖L2 + C(β)‖v‖L2 + e
−�
‖∂v‖L2}, (10.1a)
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C−1Eg00+1;N ≤ Sg00+1;N ≤ CEg00+1;N , (10.1b)

C−1Eg0∗;N ≤ Sg0∗;N ≤ CEg0∗;N , (10.1c)

C−1Eh∗∗;N ≤ Sh∗∗;N ≤ CEh∗∗;N , (10.1d)

C−1Eg;N ≤ Sg;N ≤ CEg;N , (10.1e)

C−1E∂8;N ≤ S∂8;N ≤ CE∂8;N , (10.1f)

C−1EN ≤ SN ≤ CEN . (10.1g)

Analogous inequalities hold if we make the replacements

(Eg00+1;N , Eg0∗;N , Eh∗∗;N , Eg;N , E∂8;N )→ (Eg00+1;N , Eg0∗;N , Eh∗∗;N , Eg;N , E∂8;N ),

(Sg00+1;N , Sg0∗;N , Sh∗∗;N , Sg;N , S∂8;N )→ (Sg00+1;N , Sg0∗;N , Sh∗∗;N , Sg;N , S∂8;N ).

Proof. The inequalities in (10.1a) follow from the definition (6.4) of E(γ,δ)[v, ∂v], the
definition (6.2f) of SN , (6.6), and (7.3d). The inequalities in (10.1b)–(10.1d) then follow
from definitions (6.2a)–(6.2c), definitions (6.10a)–(6.10c), and (10.1a). The inequalities
in (10.1f) follow from definitions (6.2e) and (6.14b), and from (9.25d). Finally, (10.1e)
and (10.1g) follow trivially from definitions (6.2d), (6.2f), (6.10d), and (6.20), and from
the previous inequalities. ut

11. Future-global existence

In this section, we use the estimates derived in Sections 9 and 10 to prove two main
theorems. In the first theorem, we show that the modified system (5.15a)–(5.15d) has
future-global solutions for initial data near that of the FLRW background solution (g̃, ∂8̃)
on [0,∞) × T3, which was derived in Section 4. As described in Section 5.6, if the
Einstein constraint equations and the wave coordinate condition Qµ = 0 (µ = 0, 1, 2, 3)
are both satisfied along the Cauchy hypersurface 6̊ = {x ∈ M | t = 0}, then the
solution to the modified equations is also a solution to the irrotational Euler–Einstein
system. The main idea of the proof is to show that the energies satisfy a system of integral
inequalities that forces them (via Gronwall-type estimates) to remain uniformly small
on the time interval of existence. Since Proposition 10.1 shows that the norms of the
solution must also remain small, the Continuation Principle (Theorem 5.4) can be applied
to conclude that the solution exists globally in time. In the second theorem, we provide
for convenience a proof of Propositions 3 and 4 of [Rin08], which provide criteria for
the initial data that are sufficient to ensure that the spacetime they launch is a future
geodesically complete solution to the irrotational Euler–Einstein system.

11.1. Integral inequalities for the energies

In this section, we derive the system of integral inequalities that was mentioned in the
previous paragraph.

Proposition 11.1 (Integral inequalities). Let N ≥ 3 be an integer and assume that the
bootstrap assumption (7.2b) holds on the spacetime slab [0, T ) × T3 for some constant
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K1 ≥ 1. Assume further that 0 < cs <
√

1/3. Assume that on the same slab, (gµν, ∂µ8)
(µ, ν = 0, 1, 2, 3) is a classical solution to the modified system (5.15a)–(5.15d). Then
there exist constants ε′′′′ > 0 and C > 0, where C depends on N and K1, such that if
SN (t) ≤ ε′′′′ on [0, T ) and t1 ∈ [0, T ), then the following system of integral inequalities
is also satisfied for t ∈ [t1, T ):

E2
∂8;N (t) ≤ E

2
∂8;N (t1)+ C

∫ t

t1

e−qHτE2
N (τ ) dτ, (11.1a)

E2
g00+1;N (t) ≤ E

2
g00+1;N (t1)+ C

∫ t

t1

e−qHτE2
N (τ ) dτ, (11.1b)

E2
g0∗;N

(t) ≤ E2
g0∗;N

(t1)+

∫ t

t1

{−4qHE2
g0∗;N

(τ )+ CEh∗∗;N (τ )Eg0∗;N (τ )} dτ

+ C

∫ t

t1

e−qHτEN (τ )Eg0∗;N (τ ) dτ, (11.1c)

E2
h∗∗;N

(t) ≤ E2
h∗∗;N

(t1)+ C

∫ t

t1

e−qHτE2
N (τ ) dτ. (11.1d)

Proof. We apply Corollary 6.8, using (9.23b), (9.25a), (9.25e), (9.26), and (9.27g) to
estimate the terms on the right-hand side of (6.19), using Proposition 10.1 to bound the
norms with corresponding energies, and dropping the term

(κ − 1)ω
∑
|Eα|≤N

∫
T3
e2κ�(m−1)ab(∂a∂Eα8)(∂b∂Eα8) d

3x (11.2)

on the right-hand side of (6.19), which by (9.25d) is nonpositive for κ < 1, thereby
arriving at the following inequality:

d

dt
(E2

∂8;N (t)) ≤ Ce
−qHtE2

N (t). (11.3)

Integrating (11.3) from t1 to t gives (11.1a).
To prove (11.1c), we apply Corollary 6.5, using (9.5a), (9.19b), (9.20b), and (9.21b)

to estimate the terms on the right-hand side of (6.13b), using Proposition 10.1 to bound
the norms with corresponding energies, and using definition (8.5) to deduce that 2(q − 1)
− η0∗ ≤ −4q, thereby arriving at the following inequality:

d

dt
(E2

g0∗;N
(t)) ≤ −4qHE2

g0∗;N
(t)+ CEh∗∗;NEg0∗;N (t)+ Ce

−qHtEN (t)Eg0∗;N (t).

(11.4)

Inequality (11.1c) now follows by integrating from t1 to t. Inequalities (11.1b) and (11.1d)
can be proved similarly; we omit the details. ut

Remark 11.2. The term CEh∗∗;NEg0∗;N in inequality (11.1c) arises from the
CSg0∗;N

∑3
j=1 e

(q−1)�
‖gab0ajb‖HN term on the right-hand side of (6.13b). This term
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is dangerous in the sense that it does not contain an exponentially decaying factor, and
looks like it could lead to the growth of Eg0∗;N . However, as we shall see in the proof of
Theorem 11.5, there is a partial decoupling in the integral inequalities in the sense that
the CEh∗∗;N factor in the dangerous term can be effectively controlled from inequality
(11.1d) alone. We will then insert this information into (11.1c), and also make use of the
negative term −4qHE2

g0∗;N
to obtain a bound for Eg0∗;N .

For completeness, we state the following version of Gronwall’s inequality; we omit
the simple proof. We will use it in Section 11.2.

Lemma 11.3 (Basic Gronwall estimate). Let b(t) ≥ 0 be a continuous function on the
interval [t1, T ], and let B(t) be an anti-derivative of b(t). Suppose that A ≥ 0 and that
y(t) ≥ 0 is a continuous function satisfying the inequality

y(t) ≤ A+

∫ t

t1

b(τ)y(τ ) dτ (11.5)

for t ∈ [t1, T ]. Then for t ∈ [t1, T ], we have

y(t) ≤ A exp[B(t)− B(t1)]. (11.6)

In addition, in our proof of Theorem 11.5, we will apply the following integral estimate
to inequality (11.1c) in order to estimate the energy Eg0∗;N (t).

Lemma 11.4 (An integral estimate). Let b(t) > 0 be a continuous nondecreasing func-
tion on the interval [0, T ], and let ε > 0. Suppose that for each t1 ∈ [0, T ], y(t) ≥ 0 is
a continuous function satisfying the inequality

y2(t) ≤ y2(t1)+

∫ t

t1

{−b(τ)y2(τ )+ εy(τ )} dτ (11.7)

for t ∈ [t1, T ]. Then for any t1, t ∈ [0, T ] with t1 ≤ t, we have

y(t) ≤ y(t1)+
ε

b(t1)
. (11.8)

Proof. Let C be the “highest” curve in the (t, y) plane on which the integrand in (11.7)
vanishes; i.e., C = {(t, y) | y = ε/b(t)}. Then by (11.7), above C (i.e., for larger y
values), y(t) is strictly decreasing. Let y(t) achieve its maximum at tmax ∈ [t1, T ]. We
separate the proof of (11.8) into two cases. In case (i) we assume that tmax = t1. Then
y(t) ≤ y(tmax) = y(t1) for t ∈ [t1, T ], which implies (11.8). In case (ii) we assume
that tmax ∈ (t1, T ]. We claim that y(tmax) ≤ ε/b(tmax). Indeed, otherwise the point
(tmax, y(tmax)) lies above C. Since y(t) is then strictly decreasing in a neighborhood of
tmax, it follows that there are times t∗ < tmax, with t∗ ∈ (t1, T ), at which y(t∗) > y(tmax).

This contradicts the definition of tmax. Using also the fact that 1/b(t) is nonincreasing,
we deduce that y(t) ≤ y(tmax) ≤ ε/b(tmax) ≤ ε/b(t1); this concludes the proof of (11.8).

ut

11.2. The future-global existence theorem

In this section, we state and prove our main theorem, which provides global existence
criteria for the modified system (5.15a)–(5.15d).
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Theorem 11.5 (Future-global existence). Let N ≥ 3 be an integer, and assume that
0 < cs <

√
1/3, where cs denotes the speed of sound. Let (g̊µν, K̊µν, 9̊, ∂j 8̊ = β̊j )

(j = 1, 2, 3; µ, ν = 0, 1, 2, 3) be initial data (see Remark 1.1) on the manifold T3

(not necessarily satisfying the wave coordinate condition or the Einstein constraints but
satisfying dβ̊ = 0) for the modified system (5.15a)–(5.15d), and let SN := Sg00+1;N +

Sg0∗;N + Sh∗∗;N + S∂8;N be the norm defined in (6.2f). Assume that there is a positive
constant K1 ≥ 2 such that

2
K1
δabX

aXb ≤ g̊abX
aXb ≤

K1

2
δabX

aXb, ∀(X1, X2, X3) ∈ R3. (11.9)

Then there exist a small constant ε0, with 0 < ε0 < 1, and a large constant C∗ > 0,
both depending on K1 and N, such that if ε ≤ ε0 and SN (0) ≤ C−1

∗ ε, then the classical
solution (gµν, ∂µ8) provided by Theorem 5.2 exists on [0,∞)× T3, and

SN (t) ≤ ε (11.10)

for all t ≥ 0. Furthermore, the time Tmax from the hypotheses of Theorem 5.4 is infinite.

Proof. See Remark 9.2 for some conventions that we abide by during this proof. To prove
future-global existence, we will use a standard bootstrap argument to prove that SN (t)
remains uniformly small for all time and that the 3×3 matrix gjk remains positive definite;
the theorem will then follow from the continuation principle (Theorem 5.4).

To begin, we use Theorem 5.2, which implies that if SN (0) ≤ 1
2ε and ε > 0 is suf-

ficiently small, then there is a maximal time T > 0 such that a unique local solution
(gµν, ∂µ8) exists on the slab [0, T )× T3 and such that the following bootstrap assump-
tions hold (we are using the continuity of SN (t) and Sobolev embedding):

SN (t) ≤ ε, (11.11)

K−1
1 δabX

aXb ≤ e−2�gabX
aXb ≤ K1δabX

aXb, ∀(X1, X2, X3) ∈ R3. (11.12)

Note that by Remark 8.2, (11.11) implies that the rough bootstrap assumptions (7.2a)
and (7.2c) are satisfied with room to spare (for η ≤ ηmin) if ε is sufficiently small. Fur-
thermore, we note that (11.12) is precisely the rough bootstrap assumption (7.2b). By
“maximal,” we mean that

T := sup{t ≥ 0 | the solution exists on [0, t)× T3, and (11.11)–(11.12) hold}.
(11.13)

We may assume that T <∞, since otherwise the theorem follows. The remainder of this
proof is dedicated to reaching a contradiction if ε is small enough and C∗ is large enough.
For the remainder of the proof, we assume that ε is small enough so that Propositions 9.1,
9.3, 10.1, and 11.1 are valid on [0, T ). We will make repeated use of Proposition 10.1
throughout this proof without explicitly mentioning it each time. We remark that q > 0
[see definition (8.5)] is essential for many of the estimates we derive; this is where we use
the assumption 0 < cs <

√
1/3.
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As a first step toward deriving a contradiction, we will show that inequality (11.12)
can be improved. By (11.11) and the definition of SN , we have

‖∂t (e
−2�gjk)‖L∞ = ‖∂thjk‖L∞ ≤ Cεe

−qHt . (11.14)

Integrating ∂t (e−2�gjk) in time from t = 0 and using inequality (11.14), we deduce

‖e−2�gjk(t, ·)− g̊jk(·)‖L∞ ≤ Cε. (11.15)

By (11.9) and (11.15), we conclude that if ε is small enough, then on [0, T ) × T3, the
following improvement of (11.12) holds:

3
2K1

δabX
aXb ≤ e−2�gabX

aXb ≤
2K1

3
δabX

aXb, ∀(X1, X2, X3) ∈ R3. (11.16)

To complete our proof of the theorem, we will show that if ε is small enough and C∗
is large enough, then the bootstrap assumption (11.11) can be improved; the primary tool
for deducing an improvement is Proposition 11.1. For the remainder of the proof, we use
the notation ε̊ := SN (0), and we assume ε̊ ≤ ε/C∗, where the constant C∗ will be chosen
near the end of the proof. To begin our proof of an improvement of (11.11), we use a very
nonoptimal application of Proposition 11.1 with t1 = 0, deducing that on [0, T ), we have

E2
N (t) ≤ E2

N (0)+
∫ t

0
cE2

N (τ ) dτ. (11.17)

Applying Lemma 11.3 (Gronwall’s inequality) to (11.17), using SN (0) = ε̊, and using
Proposition 10.1, we conclude that the following preliminary “Cauchy stability” estimates
hold on [0, T ):

SN (t) ≤ Cε̊ect , (11.18)
EN (t) ≤ Cε̊ect . (11.19)

Remark 11.6. By modifying the argument in the last paragraph of this proof, Theorem
5.4 and inequality (11.18) can be used to deduce that T is at least of order c−1 ln(C∗/C)
if ε is sufficiently small and C∗ is sufficiently large.

We now fix a time t1 ∈ [0, T ); t1 will be adjusted at the end of the proof. Roughly
speaking, it will play the role of a time that is large enough so that the exponentially
damped terms on the right-hand sides of the inequalities of Proposition 11.1 are of size
� ε. To estimate E∂8;N (t) for t ∈ [t1, T ), we simply use (11.11) and (11.19) to estimate
the two terms on the right-hand side of (11.1a):

E2
∂8;N (t) ≤ E

2
∂8;N (t1)+ Cε

2
∫ t

t1

e−qHτ dτ ≤ C{ε̊ect1 + εe−qHt1/2}2. (11.20)

Using (11.19) again to estimate E∂8;N (t) on [0, t1], and then taking the sup over the
interval [0, t), we thus conclude that the following inequality is valid for t ∈ [0, T ):

E∂8;N (t) ≤ C{ε̊e
ct1 + εe−qHt1/2}. (11.21)
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Applying similar reasoning to inequalities (11.1b) and (11.1d), we also have the fol-
lowing inequalities on [0, T ):

Eg00+1;N (t) ≤ C{ε̊e
ct1 + εe−qHt1/2}, (11.22)

Eh∗∗;N (t) ≤ C{ε̊e
ct1 + εe−qHt1/2}. (11.23)

To estimate Eg0∗;N (t), we use (11.1c), the bootstrap assumption (11.11), and (11.23)
to arrive at the following inequality valid for t ∈ [t1, T ):

E2
g0∗;N

(t) ≤ E2
g0∗;N

(t1)+

∫ t

t1

[
−4qHE2

g0∗;N
(τ )+ C{ε̊ect1 + εe−qHt1/2}Eg0∗;N (τ )

]
dτ.

(11.24)

Applying Lemma 11.4 to (11.24), with y(τ) = Eg0∗;N (τ ) and b(τ) = 4qH in the lemma,
and also using (11.19), we conclude that the following inequality holds on [0, T ):

Eg0∗;N (t) ≤ C{ε̊e
ct1 + εe−qHt1/2}. (11.25)

Adding (11.21), (11.22), (11.23), and (11.25), referring to definitions (6.2f) and
(6.20), and using Proposition 10.1, we deduce that the following inequality holds on
[0, T ):

SN (t) ≤ C{ε̊ect1 + εe−qHt1/2} ≤
C

C∗
εect1 + Cεe−qHt1/2. (11.26)

We now choose t1 sufficiently large such that Ce−qHt1/2 ≤ 1/4, and then C∗ sufficiently
large such that (C/C∗)ect1 ≤ 1/4.Consequently, the following inequality holds on [0, T ):

SN (t) ≤ 1
2ε. (11.27)

We remark that in order to guarantee that the solution exists long enough (i.e., that T is
large enough) so that t1 ∈ [0, T ), we may have to further shrink ε and enlarge C∗; see
Remark 11.6.

We now claim that T = ∞. We argue by contradiction, assuming that T <∞. Then
by combining (11.16) and (11.27), it follows that none of the four existence-breakdown
scenarios stated in the conclusions of Theorem 5.4 occur: (1) is ruled out by the Sobolev
embedding result ‖g00 + 1‖L∞ ≤ Ce−q�SN ; (2) is ruled out by (11.16); (3) is ruled out
by (9.7); and (4) is ruled out by the Sobolev embedding results ‖g00+1‖C2

b
+‖∂tg00‖C1

b
≤

Ce−q�SN ,
∑3
j=1(‖g0j‖C2

b
+ ‖∂tg0j‖C1

b
) ≤ Ce(1−q)�SN ,

∑3
j,k=1 ‖∂gjk‖C1

b
≤ Ce2�SN ,

‖eκ�∂t8− 9̄‖L∞ ≤ CSN , and
∑3
j=1 ‖∂j8‖L∞ ≤ Ce

(1−κ)�SN , together with inequal-
ities (11.16) and (9.2b). By the continuity of SN (t), it thus follows from Theorem 5.4
that there exists a δ > 0 such that the solution can be extended to the interval [0, T + δ)
on which the estimates (11.11)–(11.12) hold. This contradicts the maximality of T ; we
therefore conclude that T = ∞. ut



The nonlinear future stability of the FLRW family 2437

11.3. On the breakdown of the proof for cs ≥
√

1/3 (i.e., s ≤ 1,κ ≥ 1)

In this short section, we give a brief example of how our proof breaks down when cs ≥√
1/3. If κ ≥ 1, we cannot use our previous reasoning to bound the following term,

which is the last term on the right-hand side of (6.16):

1
2

∑
|Eα|≤N

∫
T3
e2κ�(∂t (m−1)ab + 2κω(m−1)ab

)
(∂a∂Eα8)(∂b∂Eα8) d

3x. (11.28)

Previously, we had split this term into two pieces, one of which is

(κ − 1)ω
∑
|Eα|≤N

∫
T3
(m−1)ab(∂a∂Eα8)(∂b∂Eα8) d

3x, (11.29)

which, as is explained in our proof of Proposition 11.1, could be discarded from the
energy inequality (11.1a) because it is nonpositive when κ < 1. Obviously, we can no
longer discard this term when κ > 1. Furthermore, even in the case κ = 1, inequality
(9.6b) is weakened to

‖∂t (m
−1)jk + 2ω(m−1)jk‖L∞ ≤ C{e

−2�S2
N + positive terms}. (11.30)

Ultimately, this fact can be traced to the fact that the L∞ estimate for Zj from (9.6b) must
be replaced with ‖Zj‖L∞ ≤ Ce�SN .

With the help of Proposition 10.1, it can be shown that the net result in both the case
κ = 1 and the case κ > 1 is that the term (11.28) leads to (as in our proof of Proposition
11.1) an integral inequality of the form

E2
∂8;N (t) ≤ E

2
∂8;N (t1)+ positive terms+ Cε

∫ t

t1

E2
N (τ ) dτ. (11.31)

Inequality (11.31) allows for the possible growth of E∂8;N (t); i.e., unlike the case 0 <
cs <
√

1/3, there is no e−qHτ factor with q > 0 in the integrand. Therefore, this inequal-
ity does not provide a means of improving the bootstrap assumption SN (t) ≤ ε.

11.4. Future causal geodesic completeness

In this section, we prove our second main theorem, which provides criteria for the ini-
tial data under which the global solutions provided by Theorem 11.5 are future causally
geodesically complete. The theorem and its proof are based on Propositions 3 and 4 of
[Rin08].

Theorem 11.7 (Future causal geodesic completeness). Let N ≥ 3 be an integer,
and assume that 0 < cs <

√
1/3, where cs denotes the speed of sound. Let

([0,∞) × T3, g̃µν, ∂µ8̃) (µ, ν = 0, 1, 2, 3) be one of the FLRW background so-
lutions derived in Section 4. Let (g̊µν, K̊µν, 9̊, ∂j 8̊ = β̊j ) (j = 1, 2, 3; µ, ν =
0, 1, 2, 3) be initial data for the modified irrotational Euler–Einstein system (5.15a)–
(5.15d) on the manifold T3 (see Remark 1.1) that are constructed from initial data
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(T3, g̊jk, K̊jk, 9̊, ∂j 8̊ = β̊j ) (j, k = 1, 2, 3) for the unmodified system (3.47a)–(3.47b)
[which by definition satisfy the constraints (3.32a)–(3.32b) and dβ̊ = 0] as described
in Section 3.2.2. Let SN be the norm defined in (6.2f), and assume that the data for the
modified system are near the FLRW data in the sense that SN (0) ≤ C−1

∗ ε0, where ε0
and C∗ are the constants from the conclusion of Theorem 11.5. Also assume that the per-
turbed data satisfy the inequality (11.9), so that all of the hypotheses of Theorem 11.5 are
satisfied. Let ([0,∞) × T3, gµν, ∂µ8) be the future-global solution to both the modified
system and the unmodified system guaranteed by Theorem 11.5 and Proposition 5.6, and
let γ (s) be a future-directed causal curve in M with domain s ∈ [s0, smax) such that
γ 0(s0) = 0. Let γ µ denote the coordinates of this curve in the universal covering space
of the spacetime (i.e., [0,∞) × R3). Then there exist constants C > 0 and ε1, where
0 < ε1 ≤ ε0, such that if SN (0) ≤ C−1

∗ ε and ε < ε1, then γ̇ 0(s) > 0 for s ∈ [s0, smax)

and furthermore, the length of the spatial part of the curve as measured by the metric
g̊jk = g̊jk satisfies ∫ smax

s0

√
g̊ab(π ◦ γ )γ̇ a γ̇ b ds ≤ C, (11.32)

where π denotes projection onto spatial indices, i.e., π j ◦ γ := γ j . The constants C
and ε1 can be chosen to be independent of γ. Additionally, if γ is future-inextendible,
then γ 0(s) ↑ ∞ as s ↑ smax.

Finally, the spacetime-with-boundary ([0,∞)×T3, g) is future causally geodesically
complete. In particular, if (M, g′, ∂8′) denotes the maximal globally hyperbolic devel-
opment of the data, then relative to our wave coordinate system, the portion of M lying
to the future of {0} × T3

[i.e., D+({0} × T3)] is exactly [0,∞)× T3.

Remark 11.8. It is possible to restate the stability criteria in terms of quantities that
manifestly depend only on the closeness of the initial data (T3, g̊jk, K̊jk, 9̊, β̊j ) for the
unmodified system to the corresponding data for the FLRW background solution (g̃, ∂8̃).
For example, a sufficient condition for future-global existence and future causal geodesic
completeness would be

3∑
j,k=1

‖g̊jk − a
2(0)δjk‖HN+1 +

3∑
j,k=1

‖K̊jk − ω(0)a2(0)δjk‖HN

+ ‖aκ(0)9̊ − 9̄‖HN +

3∑
j=1

‖β̊j‖HN ≤ ε, (11.33)

where ε is sufficiently small. This is because the condition (11.33) implies that SN (0) ≤
Cε and furthermore (by Sobolev embedding) that a condition of the form (11.9) holds
(i.e., that the hypotheses of Theorem 11.7 hold).

To see that SN (0) ≤ Cε follows from (11.33), we first use the definition (6.2f) of
SN (0), the construction of the modified data described in Section 5.3, and the triangle
inequality to deduce that
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SN (0) ≤ 2‖3ω(0)− g̊abK̊ab‖HN +

3∑
j,k=1

‖∂g̊jk‖HN + 2a−2(0)
3∑

j,k=1

‖ω(0)g̊jk − K̊jk‖HN

+

3∑
j=1

∥∥g̊ab(∂a g̊bj − 1
2∂j g̊ab

)∥∥
HN +‖a

κ(0)9̊ − 9̄‖HN +

3∑
j=1

‖β̊j‖HN

≤ 2‖(g̊ab− a−2(0)δab)K̊ab‖HN + 2a−2(0)‖δab(K̊ab−ω(0)a2(0)δab)‖HN

+ a−2(0)
3∑

j,k=1

‖∂g̊jk‖HN + 2ω(0)a−2(0)
3∑

j,k=1

‖g̊jk − a
2(0)δjk‖HN

+ 2a−2(0)
3∑

j,k=1

‖ω(0)a2(0)δjk − K̊jk‖HN +

3∑
j=1

∥∥g̊ab(∂a g̊bj − 1
2∂j g̊ab

)∥∥
HN

+‖aκ(0)9̊ − 9̄‖HN +

3∑
j=1

‖β̊j‖HN . (11.34)

Now using Corollary B.4, Proposition B.5, and Sobolev embedding, we deduce that if
(11.33) holds and if ε is sufficiently small, then the right-hand side of (11.34) is ≤ Cε.

Proof of Theorem 11.7. See Remark 9.2 for some conventions that we use throughout
this proof. The conclusions of Theorem 11.5 imply that SN (t) ≤ ε for all t ≥ 0; we will
make repeated use of this estimate throughout the proof.

Let γ (s) be a future-directed causal curve in M with domain s ∈ [s0, smax) such that
γ 0(s0) = 0.We first show that γ̇ 0(s) > 0 for s ∈ [s0, smax),where γ̇ µ(s) := d

ds
γ µ(s). To

this end, we note that since γ is causal and future-directed, and since ∂t is future-directed
and timelike, we have

gαβ γ̇
α γ̇ β ≤ 0, (11.35)

g0α γ̇
α < 0. (11.36)

Our first goal is to prove that if ε is small enough, then the following estimates hold:

gabγ̇
a γ̇ b ≤ C(γ̇ 0)2, (11.37)

δabγ̇
a γ̇ b ≤ Ce−2�(γ̇ 0)2. (11.38)

To this end, we use the Cauchy–Schwarz inequality and the estimate (11.16) to deduce

|2g0a γ̇
0γ̇ a| ≤ Cεe(1−q)�|γ̇ 0

|

3∑
a=1

|γ̇ a| ≤ Cε(γ̇ 0)2 + Cεe−2q�gabγ̇
a γ̇ b. (11.39)

Combining (11.35) and (11.39), we have

gabγ̇
a γ̇ b ≤ −g00(γ̇

0)2+ |2g0a γ̇
0γ̇ a| ≤ (1+Cε)(γ̇ 0)2+Cεe−2q�gabγ̇

a γ̇ b. (11.40)

From (11.40), it follows that if ε is small enough, then there exists a constant C > 0 such
that (11.37) holds. Inequality (11.38) then follows from the estimates (11.16) and (11.37).
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We now claim that |γ̇ 0
| > 0. For if |γ̇ 0

| = 0, then inequality (11.38) shows that∑3
α=0 |γ̇

α
| = 0, which contradicts (11.36). We may therefore divide each side of (11.39)

by |γ̇ 0
| and use (11.37) to arrive at the following inequality:

|g0a γ̇
a
| ≤ Cε|γ̇ 0

|. (11.41)

Using (11.41) and the estimate |g00| ≥ 1−Cε, we conclude that if ε is sufficiently small,
then

sgn(g0α γ̇
α) = sgn(g00γ̇

0), (11.42)

where sgn(y) = 1 if y > 0, and sgn(y) = −1 if y < 0. Since (11.36) implies that the
left-hand side of (11.42) is negative, and since g00 < 0, we conclude that γ̇ 0 > 0.

We now show the estimate (11.32). First, from the assumption (11.9), the fact that
g̊jk = g̊jk, and the estimate (11.16), it follows that

g̊abγ̇
a γ̇ b ≤

K1

2
δabγ̇

a γ̇ b ≤ Ce−2�gabγ̇
a γ̇ b. (11.43)

Integrating the square root of each side of (11.43) from s0 to smax, recalling that e−�(γ
0(s))

≤ Ce−Hγ
0(s), and using (11.37), γ̇ 0(s) > 0, and γ 0(s0) = 0, we have∫ smax

s0

√
g̊ab(π ◦ γ )γ̇ a γ̇ b ds ≤

∫ smax

s0

Ce−Hγ
0(s)γ̇ 0(s) ds

= −
C

H

∫ smax

s0

(
d

ds
e−Hγ

0(s)

)
ds ≤

C

H
, (11.44)

which proves (11.32).
We now show that the additional assumption that γ is future-inextendible necessarily

implies that γ 0(s) ↑ ∞ as s ↑ smax. Since γ̇ 0 > 0, it follows that either γ 0(s) converges
to infinity as s ↑ smax, which is the desired result, or that γ 0(s) converges to a finite
number. In the latter case, by (11.38), we also conclude that the γ j (s) converge to finite
numbers as s ↑ smax. Thus, in this case, the curve γ can be extended towards the future,
which contradicts the definition of future-inextendibility.

To show that ([0,∞)×T3, gµν) is future causally geodesically complete, we consider
a future-directed causal geodesic γ. We recall that the geodesic equations (for a geodesic
γ parameterized by affine parameter s) are γ̈ µ(s) + 0 µ

α β γ̇
α(s)γ̇ β(s) = 0, which in the

case of µ = 0 reads
γ̈ 0
+ 0 0

α β γ̇
α γ̇ β = 0. (11.45)

We assume that [s0, smax) is the maximal interval of existence for γ (i.e., γ |[s0,smax) is
future-inextendible). To analyze solutions to equation (11.45), we will use the following
estimates for the Christoffel symbols:

|0 0
0 0| ≤ Cεe

−qHt , (11.46)

|0 0
0 j | ≤ Cεe

(1−q)Ht , (11.47)
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|0 0
j k − ωgjk| ≤ Cεe

(2−q)Ht . (11.48)

We will prove the estimate (11.48); the estimates (11.46)–(11.47) can be shown similarly.
To begin, we use the definition (3.2d) of 0 0

j k and the triangle inequality to obtain

|0 0
j k − ωgjk| ≤

1
2 |g

00
| |∂jg0k + ∂kg0j | +

1
2 |g

00
+ 1| |∂tgjk| + 1

2 |∂tgjk − 2ωgjk|

+
1
2 |g

0a
| |∂jgak + ∂kgja − ∂agjk|. (11.49)

Inequality (11.48) now follows easily from (11.49), the estimate SN < ε, Sobolev em-
bedding, (9.1a), (9.1d), (9.2a), and (9.2b).

We now use (11.37), (11.38), and (11.46)–(11.48) to arrive at

|0 0
0 0|(γ̇

0)2 + 2|0 0
0 a γ̇

0γ̇ a| + |0 0
a b − ωgab|γ̇

a γ̇ b ≤ Cεe−qHγ
0(s)(γ̇ 0)2, (11.50)

where it is understood that both sides of (11.50) are evaluated along the curve γ (s). From
(11.45), (11.50), and the negative definiteness of the 3× 3 matrix −gjk, it follows that

γ̈ 0
= −0 0

0 0(γ̇
0)2 − 20 0

0 a γ̇
0γ̇ a − 0 0

a bγ̇
a γ̇ b

≤ |0 0
0 0|(γ̇

0)2 + 2|0 0
0 a γ̇

0γ̇ a| + |0 0
a b − ωgab|γ̇

a γ̇ b ≤ Cεe−qHγ
0(s)(γ̇ 0)2. (11.51)

Since we have already shown above that γ̇ 0 > 0 if ε is small enough, we may divide
inequality (11.51) by γ̇ 0 and integrate:

ln
(
γ̇ 0(s)

γ̇ 0(s0)

)
=

∫ s

s0

γ̈ 0(s′)

γ̇ 0(s′)
ds′ ≤ Cε

∫ s

s0

e−qHγ
0(s′)γ̇ 0(s′) ds′

= −
C

qH
ε

∫ s

s0

d

ds′
e−qHγ

0(s′) ds′ ≤
C

qH
e−qHγ

0(s). (11.52)

Using also the fact that γ 0(s0) ≥ 0 (since t ≥ 0 in (0,∞) × T3), we therefore conclude
that γ̇ 0(s) is bounded from above for s ∈ [s0, smax):

γ̇ 0(s) ≤ C. (11.53)

Integrating (11.53) from s0 to s, we have

γ 0(s)− γ 0(s0) =

∫ s

s0

γ̇ 0(s′) ds′ ≤ C|s − s0|. (11.54)

Since we have already shown that γ 0(s) ↑ ∞ as s ↑ smax, it follows from (11.54) that
smax = ∞.

Finally, thanks to the future-causal geodesic completeness of the spacetime-with-
boundary ([0,∞)×T3, g), Proposition 3.7 implies that D+({0}×T3), the future Cauchy
development of {0} ×T3 in the maximal globally hyperbolic development (M, g′, ∂8′),

is exactly [0,∞)× T3. ut



2442 Igor Rodnianski, Jared Speck

12. Asymptotics

In this section, we strengthen the conclusions of Theorem 11.5. More precisely, we show
that suitably time-rescaled versions of the components gµν, gµν, ∂µ8 (µ, ν = 0, 1, 2, 3)
and various coordinate derivatives of the rescaled quantities converge as t →∞. Because
our strategy is to integrate bounds for time derivatives (with spatial derivative terms on the
right-hand side of the inequality), we will lose some differentiability in our convergence
estimates. Furthermore, we note that although our bootstrap assumptions were sufficient
to close the global existence argument, they are far from optimal from the point of view of
decay rates. Thus, at the cost of a few more derivatives, we will also revisit the modified
equations and derive improved rates of decay compared to what can be directly concluded
from the estimate SN ≤ ε. In particular, the Counting Principle estimate (9.33) is not
precise enough to detect these refinements. These results should be viewed as an initial
investigation of the asymptotics; it is clear that more information could be extracted at the
expense of more work. This theorem is analogous to [Rin08, Proposition 2].

Theorem 12.1 (Asymptotics). Assume that the initial data (see Remark 1.1)
(g̊µν, K̊µν, 9̊, ∂j 8̊ = β̊j ) (j = 1, 2, 3;µ, ν = 0, 1, 2, 3) for the modified system (5.15a)–
(5.15d) satisfy the assumptions of Theorem 11.5, including the smallness assumption
SN (0) ≤ C−1

∗ ε, where 0 ≤ ε ≤ ε0. Let g̊µν denote the inverse of g̊µν . Assume in ad-
dition that N ≥ 5, and let (gµν, ∂µ8) be the future-global solution launched by the data.
Then there exist a constant ε2 satisfying 0 < ε2 ≤ ε0 and a large constant C > 0 such
that if ε ≤ ε2, then there exist a Riemannian metric g(∞)jk , with corresponding Christoffel

symbols 0(∞)ijk (i, j, k = 1, 2, 3) and inverse gjk(∞) on T3, a function 9(∞) on T3, and a

one-form β
(∞)
j on T3 such that g(∞)jk − g̊jk ∈ H

N , g
jk

(∞)− g̊
jk
∈ HN , 9(∞)−9̄ ∈ H

N−1

[where 9̄ is defined in (4.14)] and β(∞)j ∈ HN−1, and such that the following estimates
hold for all t ≥ 0:

‖g
(∞)
jk − g̊jk‖HN ≤ Cε, (12.1a)

‖g
jk

(∞) − g̊
jk
‖HN ≤ Cε, (12.1b)

‖e−2�gjk − g
(∞)
jk ‖HN ≤ Cεe

−qHt , (12.2a)

‖e−2�gjk − g
(∞)
jk ‖HN−2 ≤ Cεe

−2Ht , (12.2b)

‖e2�gjk − g
jk

(∞)‖HN ≤ Cεe
−qHt , (12.2c)

‖e2�gjk − g
jk

(∞)‖HN−2 ≤ Cεe
−2Ht , (12.2d)

‖e−2�∂tgjk − 2ωg(∞)jk ‖HN ≤ Cεe
−qHt , (12.2e)

‖e−2�∂tgjk − 2ωg(∞)jk ‖HN−2 ≤ Cεe
−2Ht , (12.2f)

‖e2�∂tg
jk
+ 2ωgjk(∞)‖HN ≤ Cεe

−qHt , (12.2g)

‖e2�∂tg
jk
+ 2ωgjk(∞)‖HN−2 ≤ Cεe

−2Ht , (12.2h)
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‖g0j −H
−1gab(∞)0

(∞)
ajb ‖HN−3 ≤ Cεe

−qHt , (12.3a)

‖∂tg0j‖HN−3 ≤ Cεe
−qHt , (12.3b)

‖g00 + 1‖HN ≤ Cεe
−qHt , (12.4a)

‖g00 + 1‖HN−2 ≤ Cε(1+ t)e−2Ht , (12.4b)

‖∂tg00‖HN ≤ Cεe
−qHt , (12.4c)

‖∂tg00 + 2ω(g00 + 1)‖HN−2 ≤ Cεe
−2Ht , (12.4d)

‖e−2�Kjk − ωg
(∞)
jk ‖HN−1 ≤ Cεe

−qHt , (12.5a)

‖e−2�Kjk − ωg
(∞)
jk ‖HN−2 ≤ C(1+ t)εe−2Ht . (12.5b)

In the above inequalities, Kjk is the second fundamental form of the hypersurface {t =
const}. Furthermore,

‖eκ�∂t8−9(∞)‖HN−1 ≤ Cεe
−qHt , (12.6a)

‖eκ�∂t8−9(∞)‖HN−2 ≤ Cεe
−2(1−κ)Ht , (12.6b)

‖9(∞) − 9̄‖HN−1 ≤ Cε, (12.6c)

‖∂j8− β
(∞)
j ‖HN−1 ≤ Cεe

−κHt , (12.6d)

‖β
(∞)
j ‖HN−1 ≤ Cε. (12.6e)

Remark 12.2. We assume that N ≥ 5 so that we can use standard Sobolev–Moser esti-
mates during our proofs of the improved rates of decay.

Proof of Theorem 12.1. See Remark 9.2 for some conventions that we use throughout this
proof. In our proofs below, we will introduce new energies, and the differential inequali-
ties that we will derive for them are valid only under the assumption that the energies are
sufficiently small; we do not explicitly mention the smallness assumption each time we
make it. In the interest of brevity, we will only sketch the proofs of the estimates involving
the improved decay rates. We also remind the reader of the conclusion (11.10) of Theo-
rem 11.5, which is that SN := Sg00+1;N + Sg0∗;N + Sh∗∗;N + S∂8;N satisfies SN (t) ≤ ε
for t ≥ 0.

Proofs of (12.1a), (12.1b), (12.2a), (12.2c), (12.2e), and (12.2g). It follows from the
definition (6.2f) of SN that

‖∂thjk‖HN ≤ Cεe
−qHt . (12.7)

Integrating ∂thjk and using (12.7), it follows that for t1 ≤ t2, we have

‖hjk(t2)− hjk(t1)‖HN ≤ Cεe
−qHt1 . (12.8)

From (12.8) and the fact that hjk = e−2�gjk, it easily follows that there exist functions
g
(∞)
jk (x1, x2, x3) such that
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‖e−2�gjk − g
(∞)
jk ‖HN ≤ Cεe

−qHt , (12.9)

‖g
(∞)
jk − g̊jk‖HN ≤ Cε. (12.10)

We have thus shown (12.1a) and (12.2a) . Inequality (12.2e) follows from (12.2a) and
(12.7).

To obtain the asymptotics for gjk, we use (9.4a), which implies that

‖∂t (e
2�gjk)‖HN ≤ Cεe

−qHt . (12.11)

From (12.11) and the estimates (9.1b), (9.1c) at t = 0, it follows as in the previous
argument that there exist functions gjk(∞)(x

1, x2, x3) such that

‖e2�gjk − g
jk

(∞)‖HN ≤ Cεe
−qHt , (12.12)

‖g
jk

(∞) − g̊
jk
‖HN ≤ Cε, (12.13)

‖∂g
jk

(∞)‖HN−1 ≤ Cε, (12.14)

‖g
jk

(∞)‖L
∞ ≤ C, (12.15)

where g̊jk := gjk|t=0. This proves (12.1b) and (12.2c). (12.2g) then follows from (12.2c)
and (12.11). Furthermore, since the identity gajgak + g0jg0k = δ

j
k , Proposition B.5,

SN ≤ ε, (9.1b), (9.1c), (9.1d), (12.2a), and (12.2c) imply that

‖g
aj

(∞)g
(∞)
ak − δ

j
k‖HN ≤ ‖(g

aj

(∞)− g
aj )g

(∞)
ak ‖HN +‖g

aj (g
(∞)
ak − gak)‖HN +‖g

0jg0k‖HN

≤ Cεe−2qHt , (12.16)

it follows that g(∞)jk are the components of a Riemannian 3-metric g(∞) and that gjk(∞) are

the components of its inverse g−1
(∞).

Proofs of (12.4a) and (12.4c). The estimates (12.4a) and (12.4c) follow trivially from
definition (6.2a).

Proofs of (12.6a), (12.6d), and (12.6e). To prove (12.6a), we first recall equation (5.15d),
which can be re-expressed as follows:

∂t (e
κ�∂t8− 9̄) = e

κ�
4
′

∂8, (12.17)

where 9̄ is defined in (4.14) and

4
′

∂8 = (m
−1)ab∂a∂b8+ 2(m−1)0a∂a∂t8−4∂8. (12.18)

From Proposition B.5, the definition (6.2f) of SN , Sobolev embedding, (9.23b), (9.25c),
(9.25e), and (9.25a), it follows that

‖eκ�4′∂8‖HN−1 ≤ Cεe
−qHt . (12.19)
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As in our proof of (12.9), it easily follows from (12.17), (12.19), and the initial condi-
tion ‖eκ�(0)∂t8(0, ·) − 9̄‖HN ≤ Cε that there exists a function 9(∞)(x1, x2, x3) with
9(∞) − 9̄ ∈ H

N−1 such that

‖eκ�∂t8(t, ·)−9(∞)‖HN−1 ≤ Cεe
−qHt , (12.20)

‖9(∞) − 9̄‖HN−1 ≤ Cε, (12.21)

which proves (12.6a) and (12.6c).
Furthermore, the bound SN (t) ≤ ε implies that

‖∂t∂j8‖HN−1 ≤ Cεe
−κHt . (12.22)

It follows easily from (12.22) and the initial condition ‖∂j8(0, ·)‖HN ≤ Cε that there
exists a one-form β

(∞)
j (x1, x2, x3) satisfying β(∞)j ∈ HN−1 such that

‖∂j8(t, ·)− β
(∞)
j ‖HN−1 ≤ Cεe

−κHt , (12.23)

‖β
(∞)
j ‖HN−1 ≤ Cε, (12.24)

which proves (12.6d) and (12.6e).

Proof of (12.5a). We first observe that N̂, the future-directed normal to the hypersurface
{t = const}, can be expressed in components as

N̂µ
= −(−g00)−1/2g0µ. (12.25)

Using the relationKjk = gαk∂j N̂α
+0jkαN̂

α, the relations 20jk0 = ∂tgjk+∂jgk0−∂kgj0
and ∂thjk = e−2�(∂tgjk − 2ωgjk), and Proposition B.5, we have

‖Kjk − ωgjk‖HN−1 ≤ ‖∂[(−g
00)−1/2g0α

]‖HN−1(‖gαk‖L∞ + ‖∂gαk‖HN−1)

+ ‖(−g00)−1/2g0a0jka‖HN−1 + ‖[g
00
− 1]0jk0‖HN−1

+ ‖[(−g00)−1/2
− 1]g000jk0‖HN−1 +

1
2‖∂jgk0 − ∂kgj0‖HN−1

+
1
2e

2�
‖∂thjk‖HN−1 . (12.26)

By Corollary B.4 (with v = g00
+1, v̄ = 0, and F(v) = (1−v)−1/2

−1 = (−g00)−1/2
−1

in the corollary), we have (−g00)−1/2
− 1 ∈ GN (see Definition 9.4). Therefore, every

product on the right-hand side of (12.26) is a product of elements of HN−1 and GN−1 and
contains at least one element of GN−1. Hence, by the Counting Principle estimate (9.33)
[with n(GN−1) ≥ 1 for all products on the right-hand side of (12.26)], we have

‖e−2�Kjk − ωe
−2�gjk‖HN−1 ≤ Cεe

−qHt . (12.27)

Inequality (12.5a) now follows from combining (12.2a) and (12.27). ut

Proofs of (12.3a)–(12.3b). The proofs are based on two refined versions of the energy
inequality (11.1c). The main point is that even though the energy Eg0∗;N defined in (6.9b)
allows us to efficiently close the bootstrap argument of Theorem 11.5, there is room for
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improvement. In particular, Theorem 11.5 only allows us to conclude that Eg0∗;N ≤

CSN ≤ Cε, which implies that ‖∂tg0j‖HN ≤ εe(1−q)Ht and ‖g0j‖HN ≤ εe(1−q)Ht .

As we will see, it is possible to improve these estimates by a factor of e(q−1)H t . This is
a preliminary step that we will need in our remaining proofs. This improvement will be
based in part on the following simple matrix identity:

g0j
= −

1
g00

gajg0a . (12.28)

We begin our proof of the improvement by defining a new energy EEg0∗;N−1 for the
g0j (j = 1, 2, 3) by

EE 2
g0∗;N−1 :=

∑
|Eα|≤N−1

3∑
j=1

E2
(γ0∗,δ0∗)

[∂Eαg0j , ∂(∂Eαg0j )], (12.29)

where E2
(γ0∗,δ0∗)

[∂Eαg0j , ∂(∂Eαg0j )] is defined in (6.4), and the constants γ0∗, δ0∗ are de-
fined in Definition 6.3. Note that the scaling in (12.29) differs from the scaling used in
definition (6.9b) by a factor of e(1−q)�. Furthermore, we are using an (N − 1)st order
energy rather than an N th order energy because we will make use of the improved rates
of decay for lower derivatives that are already discernible from the fact that SN ≤ ε

[compare e.g. (9.5a) and (9.5b)]. Now using (10.1a), we have the following comparison
estimate:

C−1EEg0∗;N−1 ≤

3∑
j=1

{
‖∂tg0j‖HN−1 + e

−�
‖∂g0j‖HN−1 + ‖g0j‖HN−1

}
≤ CEEg0∗;N−1.

(12.30)

From the definition of EEg0∗;N−1 and the comparison estimate (12.30), it follows that
the energy inequality (6.13b) can be replaced with

d

dt
(EE 2
g0∗;N−1) ≤ −η0∗HEE 2

g0∗;N−1 + CEEg0∗;N−1

3∑
j=1

‖gab0ajb‖HN−1

+ CEEg0∗;N−1 + CEEg0∗;N−1

3∑
j=1

‖40j‖HN−1 +

∑
|Eα|≤N−1

3∑
j=1

‖[�̂g, ∂Eα]g0j‖L2

+

∑
|Eα|≤N−1

3∑
j=1

‖4E;(γ0∗,δ0∗)[∂Eαg0j , ∂(∂Eαg0j )]‖L1 . (12.31)

We now claim that the following improvements of (9.17b), (9.17e), (9.19b), (9.20b),
and (9.21b) hold for |Eα| ≤ N − 1:

‖4A,0j‖HN−1 ≤ Cεe
−qHtEEg0∗;N−1 + Cεe

−qHt , (12.32)

‖4C,0j‖HN−1 ≤ Cεe
−qHtEEg0∗;N−1, (12.33)

‖40j‖HN−1 ≤ Ce
−qHtEEg0∗;N−1 + Cεe

−qHt , (12.34)
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‖[�̂g, ∂Eα]g0j‖L2 ≤ Cεe
−qHtEEg0∗;N−1 + Cεe

−qHt , (12.35)

‖4E;(γ0∗,δ0∗)[∂Eαg0j , ∂(∂Eαg0j )]‖L1 ≤ Ce
−qHtEE 2

g0∗;N−1. (12.36)

These improved estimates can be derived using methods similar to the ones we used in
our proofs of the original estimates, together with the identity (12.28). More specifically,
in our proofs of (9.17b), (9.17e), (9.19b), (9.20b), and (9.21b), we used the Counting
Principle type estimates ‖∂tg0j‖HN ≤ e(1−q)�Sg0∗;N , ‖g0j‖HN ≤ e(1−q)�Sg0∗;N , and
‖∂g0j‖HN ≤ e(2−q)�Sg0∗;N , which follow directly from the definition of Sg0∗;N , to-
gether with (9.1d), which reads ‖g0j

‖HN ≤ Ce−(1+q)�Sg;N . However, whenever it is
convenient, these estimates can be replaced with

‖∂tg0j‖HN−1 ≤ CEEg0∗;N−1, (12.37)
‖g0j‖HN−1 ≤ CEEg0∗;N−1, (12.38)

‖∂g0j‖HN−1 ≤ Ce
�EEg0∗;N−1, (12.39)

‖g0j
‖HN−1 ≤ Ce

−2�EEg0∗;N−1 (12.40)

respectively, where (12.37)–(12.39) follow from (12.30), while (12.40) follows from
applying (12.30), Proposition B.5, Sobolev embedding, (9.1b), and (9.1c) to the iden-
tity (12.28). We remark that the Ce−qHtEEg0∗;N−1 term on the right-hand side of
(12.34) arises from e.g. the (ω − H)∂tg0j term on the right-hand side of (A.4b). Sim-
ilarly, the Ce−qHtEE 2

g0∗;N−1 term on the right-hand side of (12.36) arises from e.g. the
(H − ω)gab(∂av)(∂bv) term on the right-hand side of (6.8). See [Rin08, Section 14] for
additional details on these improved estimates.

Now using (9.5b), (12.31) and (12.34)–(12.36), we argue as in our proof of (11.4) to
deduce the following inequality:

d

dt
(EE 2
g0∗;N−1) ≤ −η0∗HEE 2

g0∗;N−1 + Ce
−qHtEE 2

g0∗;N−1 + CεEEg0∗;N−1, (12.41)

where the last term on the right-hand side arises from applying inequality (9.5b) to the
second term on the right-hand side of (12.31). Integrating (12.41) from 0 to t, using the
smallness condition EEg0∗;N−1(0) ≤ Cε for small t, and applying Lemma 11.4 for large
t (the Ce−qHtEE 2

g0∗;N−1 term is dominated by the −η0∗HEE 2
g0∗;N−1 term for large t), we

conclude that the following bound holds for all t ≥ 0:

EEg0∗;N−1 ≤ Cε. (12.42)

This completes the proof of our preliminary improved estimate.
We are now ready for the proofs of (12.3a) and (12.3b). Defining

vj := g0j −H
−1gab(∞)0

(∞)
ajb , (12.43)

and using equation (5.15b), we compute that vj is a solution to

�̂gvj = 3H∂tvj + 2H 2vj +4j , (12.44)

where

4j = 40j + 2H(gab(∞)0
(∞)
ajb − g

ab0ajb)−H
−1glm∂l∂m(g

ab
(∞)0

(∞)
ajb ). (12.45)
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To estimate vj (j = 1, 2, 3), we will use the energy

EE 2
v∗;N−3 := e

2qHt
∑

|Eα|≤N−3

3∑
j=1

E2
(γ0∗,δ0∗)

[∂Eαvj , ∂(∂Eαvj )], (12.46)

where E2
(γ0∗,δ0∗)

[∂Eαvj , ∂(∂Eαvj )] is defined in (6.4), and the constants γ0∗, δ0∗ are defined
in Definition 6.3. Note that in response to the last term on the right-hand side of (12.45),
we have further reduced the number of derivatives in the definition of our energy by two.
From (10.1a), it follows that

C−1EEv∗;N−3 ≤

3∑
j=1

{
eqHt‖∂tvj‖HN−3 + C(γ0∗)e

qHt
‖vj‖HN−3 + e

(q−1)H t
‖∂vj‖HN−3

}
≤ CEEv∗;N−3. (12.47)

Arguing as in our proof of (12.31), we have

d

dt
(EE 2
v∗;N−3) ≤ (2q − η0∗)HEE 2

v∗;N−3 + Ce
qHtEEv∗;N−3

3∑
j=1

‖4j‖HN−3

+ CeqHtEEv∗;N−3
∑

|Eα|≤N−3

3∑
j=1

‖[�̂g, ∂Eα]vj‖L2

+ e2qHt
∑

|Eα|≤N−3

3∑
j=1

‖4E;(γ0∗,δ0∗)[∂Eαvj , ∂(∂Eαvj )]‖L1 . (12.48)

Note that the inequality (12.48) does not have a term corresponding to the ‖gab0ajb‖HN−1

term in (12.31); the remnants of this term are present in ‖4j‖HN−3 .

We will now estimate ‖4j‖HN−3 , our goal being to show that it is bounded by
Cεe−qHt . We begin by estimating the term 2H(gab(∞)0

(∞)
ajb − g

ab0ajb) from the right-
hand side of (12.45). Let us first recall the definitions of the lowered Christoffel symbols
0
(∞)
ijk and 0µαν corresponding to g(∞) and g respectively:

0
(∞)
ijk :=

1
2 (∂ig

(∞)
jk + ∂kg

(∞)
ij − ∂jg

(∞)
ik ), (12.49)

0µαν :=
1
2 (∂µgαν + ∂νgµα − ∂αgµν). (12.50)

Using Proposition B.5, the definition (6.2f) of SN , Sobolev embedding, (12.1a), (12.1b),
(12.2a), (12.2c), (12.15), (12.49), and (12.50), we conclude that

‖gab(t, ·)0ajb(t, ·)− g
ab
(∞)0

(∞)
ajb ‖HN−1

≤ ‖e2�gab(t, ·)− gab(∞)‖HN−1‖e
−2�0ajb(t, ·)‖HN−1

+ (‖gab(∞)‖L∞ + ‖∂g
ab
(∞)‖HN−2)‖e

−2�0ajb(t, ·)− 0
(∞)
ajb ‖HN−1

≤ Cεe−qHt , (12.51)

‖gab(∞)0
(∞)
ajb ‖HN−1 ≤ Cε. (12.52)
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We now estimate the term H−1glm∂l∂m(g
ab
(∞)0

(∞)
ajb ) from the right-hand side of

(12.45). By Proposition B.5, (9.1b), (9.1c), and (12.52), it follows that

‖glm∂l∂m(g
ab
(∞)0

(∞)
ajb )‖HN−3 ≤ Cεe

−2Ht . (12.53)

Applying the estimates (12.34), (12.42), (12.51), and (12.53) to the terms in (12.45), we
deduce the desired estimate for ‖4j‖HN−3 :

‖4j‖HN−3 ≤ Cεe
−qHt . (12.54)

In addition, we argue as in our proof of (12.35) and (12.36) and in particular make
use of the improved estimates (12.37)–(12.40) and (12.42), thus arriving at the following
inequalities:

‖[�̂g, ∂Eα]vj‖L2 ≤ Cεe
−qHtEEv∗;N−3 + Cεe

−qHt (|Eα| ≤ N − 3), (12.55)

‖4E;(γ0∗,δ0∗)[∂Eαvj , ∂(∂Eαvj )]‖L1 ≤ Ce
−3qHtEE 2

v∗;N−3 (|Eα| ≤ N − 3). (12.56)

From (12.48), (12.54), (12.55), and (12.56), it follows that
d

dt
(EE 2
v∗;N−3) ≤ (2q − η0∗)HEE 2

v∗;N−3 + Ce
−qHtEE 2

v∗;N−3 + CεEEv∗;N−3. (12.57)

Using the fact that 2q − η0∗ < 0, we argue as in our proof of (12.42) to conclude that,
for all t ≥ 0,

EEv∗;N−3 ≤ Cε. (12.58)

Inequalities (12.3a) and (12.3b) now follow from the comparison estimate (12.47) and
from (12.58).

Proofs of (12.2b), (12.2d), (12.2f), (12.2h), (12.4b), and (12.4d). We begin by using
equations (A.1a) and (A.1c), together with the identity g00

+ 1 = g00(g00 + 1)+ g0ag0a
to derive the following equations:

∂2
t [e

2�(g00 + 1)] = −ω∂t [e2�(g00 + 1)] + 2
(
d

dt
ω

)
e2�(g00 + 1)+ e2�

4
′

00, (12.59)

∂t [e
2�∂thjk] = −ωe

2�∂thjk + e
2�
4
′

jk, (12.60)

where
4
′

00 = −(g
00)−1

{2g0a∂a∂tg00 + g
ab∂a∂bg00}

+ 5ω(g00)−1
{g00(g00 + 1)+ g0ag0a}∂tg00

+ 6ω2(g00)−1
{g00(g00 + 1)2 + g0ag0a(g00 + 1)}

+ 2(g00)−1
{4A,00 +4C,00 +4

′

Rapid,00}, (12.61)

4
′

jk = −(g
00)−1

{2g0a∂a∂thjk + g
ab∂a∂bhjk}

+ 3ω(g00)−1
{g00(g00 + 1)+ g0ag0a}∂thjk

+ 2(g00)−1
{e−2�

4A,jk +4
′

Rapid,jk − ωg
0a∂ahjk}, (12.62)

where 4′Rapid,00 is obtained by setting all terms that explicitly involve the factor ω − H
equal to 0 in the expression (A.7a) for 4Rapid,00, and similarly for 4′Rapid,jk.
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Using the fact that SN ≤ ε, the improved estimates (12.37)–(12.40) and (12.42)
(whenever they are convenient), and the Sobolev–Moser type inequalities in the Ap-
pendix, we derive the following inequalities:

‖4
′

00‖HN−2 ≤ Cεe
−2�
+ Cεe−qHt {‖g00 + 1‖HN−2 + ‖∂tg00‖HN−2 + ‖∂thjk‖HN−2},

(12.63)

‖4
′

jk‖HN−2 ≤ Cεe
−2�
+ Cεe−qHt‖∂thjk‖HN−2 . (12.64)

Since the derivation of the above inequalities is similar to many other estimates proved
in this article, we have left the tedious details to the reader. However, we remark that the
εe−qHt‖g00+1‖HN−2 term on the right-hand side of (12.63) arises from e.g. the first term
on the right-hand side of (A.15a), that the εe−qHt‖∂tg00‖HN−2 term on the right-hand
side of (12.63) arises from e.g. the first term on the right-hand side of (A.13a), that the
εe−qHt‖∂thjk‖HN−2 term on the right-hand side of (12.63) arises from e.g. the last term
on the right-hand side of (A.13a), and that the εe−qHt‖∂thjk‖HN−2 term on the right-
hand side of (12.64) arises from e.g. terms on the fifth, sixth and seventh lines of (A.13c).
Furthermore, we remark that we are using HN−2 norms because of the presence of the
terms on the right-hand sides of (12.61)–(12.62) that contain second spatial derivatives,
e.g. the term ∂a∂bg00; by examining e.g. the definition (6.1a), we see that theHN−2 norm
of such a term has a more favorable rate of decay than its HN−1 norm. We need this
additional decay to deduce (12.63)–(12.64).

Now in order to derive our desired inequalities, it is convenient to introduce the fol-
lowing nonnegative energies:

EE 2
e2�(g00+1);N−2 :=

∑
|Eα|≤N−2

∫
T3
(∂Eα[e

2�(g00+1)])2 d3x = ‖e2�(g00+1)‖2
HN−2 ,

(12.65a)

EE 2
∂t [e2�(g00+1)];N−2 :=

∑
|Eα|≤N−2

∫
T3
(∂Eα∂t [e

2�(g00+1)])2 d3x = ‖∂t [e
2�(g00+1)]‖2

HN−2 ,

(12.65b)

EE 2
e2�∂th∗∗;N−2 :=

∑
|Eα|≤N−2

3∑
j,k=1

∫
T3
e4�(∂Eα∂thjk)

2 d3x =

3∑
j,k=1

‖e2�∂thjk‖
2
HN−2 .

(12.65c)

Observe the following simple consequence of the definitions (12.65a) and (12.65b):

e2�
‖∂tg00‖HN−2 ≤ C{EEe2�(g00+1);N−2 + EE∂t [e2�(g00+1)];N−2}. (12.66)

Now from (12.63) and (12.64), and (12.66), it follows that

e2�
‖4
′

00‖HN−2

≤ Cε + Cεe−qHt {EEe2�(g00+1);N−2 + EE∂t [e2�(g00+1)];N−2 + EEe2�∂th∗∗;N−2}, (12.67)

e2�
‖4
′

jk‖HN−2 ≤ Cε + Cεe
−qHtEEe2�∂th∗∗;N−2. (12.68)
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We may therefore use equations (12.59)–(12.60) together with (12.67)–(12.68) to de-
rive the following system of differential inequalities, which is valid if EEe2�(g00+1);N−2,
EE∂t [e2�(g00+1)];N−2, and EEe2�∂th∗∗;N−2 are sufficiently small:

d

dt
(EE 2
e2�(g00+1);N−2) ≤ 2EEe2�(g00+1);N−2EE∂t [e2�(g00+1)];N−2, (12.69a)

d

dt
(EE 2
∂t [e2�(g00+1)];N−2) ≤ −2ωEE 2

∂t [e2�(g00+1)];N−2 + 2e2�EE∂t [e2�(g00+1)];N−2‖4
′

00‖HN−2

+ 4
∣∣∣∣ ddt ω

∣∣∣∣EEe2�(g00+1);N−2EE∂t [e2�(g00+1)];N−2

≤ −2ωEE 2
∂t [e2�(g00+1)];N−2

+ Ce−qHtEEe2�(g00+1);N−2EE∂t [e2�(g00+1)];N−2

+ CεEE∂t [e2�(g00+1)];N−2

+ Cεe−qHtEE∂t [e2�(g00+1)];N−2EEe2�∂th∗∗;N−2, (12.69b)
d

dt
(EE 2
e2�∂th∗∗;N−2) ≤ −2ωEE 2

e2�∂th∗∗;N−2 + 2e2�EEe2�∂th∗∗;N−2‖4
′

jk‖HN−2

≤ −2ωEE 2
e2�∂th∗∗;N−2 + CεEEe2�∂th∗∗;N−2

+ Cεe−qHtEE 2
e2�∂th∗∗;N−2. (12.69c)

We remark that (12.69a) follows from a simple application of the Cauchy–Schwarz in-
equality, after bringing the time derivative under the integral over T3. Using the initial
conditions EEe2�(g00+1);N−2(0) ≤ Cε,EE∂t [e2�(g00+1)];N−2(0) ≤ Cε, and EEe2�∂th∗∗;N−2(0)
≤ Cε, and assuming that ε is sufficiently small, we apply a Gronwall-type inequality to
the system (12.69a)–(12.69c), concluding that, for all t ≥ 0,

EEe2�(g00+1);N−2 ≤ Cε(1+ t), (12.70a)

EE∂t [e2�(g00+1)];N−2 ≤ Cε, (12.70b)

EEe2�∂th∗∗;N−2 ≤ Cε. (12.70c)

Inequalities (12.4b) and (12.4d) now follow from (12.70a) and (12.70b). Similarly,
(12.70c) implies that

‖∂thjk‖HN−2 ≤ Cεe
−2�, (12.71)

from which (12.2b) and (12.2f) easily follow.
To obtain (12.2d), we first use the improved estimates (12.37)–(12.40), (12.42), and

(12.71) to modify inequality (9.4a) as follows:

‖∂tg
jk
+ 2ωgjk‖HN−2 ≤ Cεe

−4�. (12.72)

(12.2d) then follows from (12.72) as in our proof of (12.2c). (12.2h) then follows from
(12.2d) and (12.72).
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Proof of (12.5b). We use the identity g00
+1 = 1

g00
[(g00+1)−g0ag0a] and the improved

estimates (12.4b), (12.4d), (12.37)–(12.40), (12.42), and (12.71) to modify inequalities
(12.26)–(12.27) as follows:

‖e−2�Kjk − ωe
−2�gjk‖HN−2 ≤ Cε(1+ t)e−2Ht . (12.73)

Combining (12.2b) and (12.73), we deduce (12.5b) [as in our proof of (12.5a)].

Proof of (12.6b). We use the improved estimates (12.4b), (12.4d), (12.37)–(12.40),
(12.42), and (12.71) to modify inequality (12.19) as follows:

‖eκ�4′∂8‖HN−2 ≤ Cεe
−2(1−κ)H t . (12.74)

(12.6b) then follows from (12.74), as in our proof of (12.6a).

Appendices

A. Derivation of the modified system

In Appendix A, we sketch a derivation of the modified system (5.15a)–(5.15d).

Proposition A.1 (Decomposition of the modified equations). Equations (5.7a)–(5.7d)
can be written as follows ( for j, k = 1, 2, 3):

�̂g(g00 + 1) = 5H∂tg00 + 6H 2(g00 + 1)+400, (A.1a)

�̂gg0j = 3H∂tg0j + 2H 2g0j − 2Hgab0ajb +40j , (A.1b)

�̂ghjk = 3H∂thjk +4jk, (A.1c)

�̂m8 = κω∂t8+4∂8, (A.1d)

where H :=
√
3/3, ω(t), which is uniquely determined by the parameters 3 > 0,

ρ̄ > 0, and ς = 3(1+ c2
s ), is the function from (4.21), κ := 3

1+2s = 3c2
s ,

�̂m := −∂
2
t + 2(m−1)0a∂t∂a + (m

−1)ab∂a∂b (A.2)

is the reduced wave operator corresponding to the reciprocal acoustical metric (m−1)µν

(µ, ν = 0, 1, 2, 3), and the components of m−1 are given by

(m−1)00
= −1, (A.3a)

(m−1)0j = −
4

0j
(m)

(1+ 2s)+4(m)
, (A.3b)

(m−1)jk =
gjk −4

jk

(m)

(1+ 2s)+4(m)
. (A.3c)
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The error terms4µν,4∂8,4(m),4
0j
(m), and4jk(m) above can be decomposed as follows:

1
2400 = 4A,00 +4C,00 +4Rapid,00, (A.4a)
1
240j = 4A,0j +4C,0j +4Rapid,0j , (A.4b)
1
24jk = e

−2�
4A,jk +4Rapid,jk − 2ωg0a∂ahjk, (A.4c)

4∂8 = ω(∂t8)

{
3

(1+ 2s)+4(m)
−

3
1+ 2s︸ ︷︷ ︸

κ

}
− (∂t8)

{
1

(1+ 2s)+4(m)

}
2, (A.4d)

where

Zj :=
∂j8

∂t8
, (A.5)

4(m) = (1+ 2s)(g00
+ 1)(g00

− 1)+ 2(1+ 2s)g00g0aZa

+ (g00gab + 2sg0ag0b)ZaZb, (A.6a)

4
0j
(m) = g

00g0j (1+ 2s)+ 2[(s + 1)g0jg0a
+ sg00gaj ]Za

+ (g0jgab + 2sgajg0b)ZaZb, (A.6b)

4
jk

(m) = (g
00
+ 1)gjk + 2sg0jg0k

+ 2(gjkg0a
+ sg0kgaj + sg0jgak)Za

+ (gjkgab + 2sgajgbk)ZaZb, (A.6c)

2 = 3ω(g00
+ 1)+ 6ωg0aZa + (3− 2s)ωgabZaZb

+ 2s{4000
(0) + 64(a00)

(0) Za + 64(0ab)(0) ZaZb +4
abc
(0)ZaZbZc}, (A.6d)

(a00) and (0ab) denote symmetrization, the4µαν(0) (µ, α, ν = 0, 1, 2, 3) are defined below
in Lemma A.7,

e3(1+c2
s )�4Rapid,00 = 3[e3(1+c2

s )�(ω −H)][ω +H ](g00 + 1)

+
5
2 [e

3(1+c2
s )�(ω −H)]∂tg00 −

s

s + 1
[e2κ�σ ]s+1(g00 + 1)

− [f̃ ](g00 + 1)+ [f̃ − f ], (A.7a)

e3(1+c2
s )�4Rapid,0j = [e

3(1+c2
s )�(ω −H)][ω +H ]g0j +

3
2 [e

3(1+c2
s )�(ω −H)]∂tg0j

− [e3(1+c2
s )�(ω −H)]gab0ajb +

s − 1
2(s + 1)

[e2κ�σ̃ ]s+1g0j

−
s

s + 1
[e2κ�σ ]s+1g0j − 2[e2κ�σ ]s[eκ�∂t8]

2Zj , (A.7b)

e3(1+c2
s )�4Rapid,jk =

3
2 [e

3(1+c2
s )�(ω −H)]∂thjk + [e

2κ�σ̃ ]s+1(g00
+ 1)hjk

+
s

s + 1

[
[e2κ�σ̃ ]s+1

− [e2κ�σ ]s+1]hjk
− 2e−2�

[e2κ�σ ]s[eκ�∂t8]
2ZjZk, (A.7c)
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f = 2[e2κ�σ ]s[eκ�∂t8]
2
−

s

s + 1
[e2κ�σ ]s+1, (A.7d)

f̃ = 2[e2κ�σ̃ ]s[eκ�∂t8̃]
2
−

s

s + 1
[e2κ�σ̃ ]s+1

=
s + 2
s + 1

[eκ�∂t8̃]
2(s+1), (A.7e)

the 4A,µν are defined in (A.13a)–(A.13c), and the 4C,00,4C,0j in (A.15a)–(A.15b). In
the above expressions, quantities associated to the FLRW background solution of Sec-
tion 4 are decorated with the symbol ˜.
Remark A.2. As discussed in Section 1.2, the variable Zj has been introduced to facili-
tate our analysis of the ratio of the size of the spatial derivatives of8 to its time derivative.

Remark A.3. In Section 9, we show that under suitable bootstrap assumptions, vari-
ous norms of the quantities in brackets [·] in equations (A.7a)–(A.7c) are either ≤ C or
≤ CSN .

Proof of Proposition A.1. The proof involves a series of tedious computations, some of
which are contained in Lemmas A.4–A.7 below. We sketch the proof of (A.1c) and leave
the derivation of the remaining equations to the reader.

To obtain (A.1c), we first use equation (5.7c), Lemma A.4, and Lemma A.5 to obtain
the following equation for hjk = e−2�gjk:

�̂ghjk = 3ω∂thjk − 2(g00
+ 1)

(
d

dt
ω

)
hjk − 4ωg0a∂ahjk

+ 2[e−2�
4A,jk − 2e−2�σ s(∂j8)(∂k8)]

+ 2
{(

3ω2
−3+

d

dt
ω

)
hjk −

s

s + 1
σ s+1hjk

}
. (A.8)

We now use (4.17a)–(4.17b) to substitute in equation (A.8) for 3ω2
−3 and d

dt
ω in terms

of σ̃ , thus arriving at the following equation:

�̂ghjk = 3ω∂thjk + 2(g00
+ 1)̃σ s+1hjk − 4ωg0a∂ahjk

+ 2[e−2�
4A,jk − 2e−2�σ s(∂j8)(∂k8)]

+ 2
s

s + 1
(̃σ s+1

− σ s+1)hjk. (A.9)

Equation (A.1c) now easily follows from (A.9) via straightforward algebraic manipulation
and the definition Zj = ∂j8/∂t8.We remark that the proofs of (A.1a) and (A.1b) require
the use of Lemma A.6, and the proof of (A.1d) requires the use of Lemma A.7. To obtain
(A.1d), it is also helpful to note that −(∂t8)2{(1 + 2s) + 4(m)} is the coefficient of the
differential operator ∂2

t in (5.7d). ut

We now state the following four lemmas, which are needed for the proof of Proposi-
tion A.1.
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Lemma A.4 ([Rin08, Lemma 4]). The modified Ricci tensor from (5.3) can be decom-
posed as follows:

R̂icµν = − 1
2 �̂ggµν +

3
2 (g0µ∂νω + g0ν∂µω)+

3
2ω∂tgµν + Aµν (µ, ν = 0, 1, 2, 3),

(A.10)

where

Aµν = g
αβgκλ[(∂αgνκ)(∂βgµλ)− 0ανκ0βµλ] (µ, ν = 0, 1, 2, 3). (A.11)

ut

Lemma A.5 ([Rin08, Lemma 5]). The term Aµν (µ, ν = 0, 1, 2, 3) defined in (A.11)
can be decomposed into principal terms and error terms 4A,µν as follows:

A00 = 3ω2
− ωgab∂tgab + 2ωgab∂ag0b +4A,00, (A.12a)

A0j = 2ωg00∂tg0j − 2ω2g00g0j − ωg
00∂jg00 + ωg

ab0ajb +4A,0j (j = 1, 2, 3),
(A.12b)

Ajk = 2ωg00∂tgjk − 2ω2g00gjk +4A,jk (j, k = 1, 2, 3), (A.12c)

where

4A,00 = (g
00)2{(∂tg00)

2
− (0000)

2
}

+ g00g0a
{2(∂tg00)(∂tg0a + ∂ag00)− 40000000a}

+ g00gab{(∂tg0a)(∂tg0b)+ (∂ag00)(∂bg00)− 2000a000b}

+ g0ag0b
{2(∂tg00)(∂ag0b)+ 2(∂tg0b)(∂ag00)− 200000a0b − 2000b000a}

+ gabg0l
{2(∂tg0a)(∂lg0b)+ 2(∂bg00)(∂ag0l)− 4000a0l0b}

+ gabglm(∂ag0l)(∂bg0m)+
1
2g
lm( gab∂tgal − 2ωδbl︸ ︷︷ ︸

e2�gab∂thal−2ωg0bg0l

)(∂bg0m + ∂mg0b)

−
1
4g
abglm(∂ag0l + ∂lg0a)(∂bg0m + ∂mg0b)

−
1
4 ( g

ab∂tgal − 2ωδbl︸ ︷︷ ︸
e2�gab∂thal−2ωg0bg0l

)( glm∂tgbm − 2ωδlb︸ ︷︷ ︸
e2�glm∂thbm−2ωg0lg0b

), (A.13a)

4A,0j = (g
00)2{(∂tg00)(∂tg0j )− 000000j0}

+ g00g0a
{(∂tg00)(∂tgaj + ∂ag0j )+ (∂tg0j )(∂tg0a + ∂ag00)}

− 2g00g0a
{000000ja + 00j0000a}

+ g00( gab∂tgbj − 2ωδaj︸ ︷︷ ︸
e2�gab∂thbj−2ωg0ag0j

)(∂tg0a −
1
2∂ag00)+

1
2g

00gab(∂ag00)(∂bg0j + ∂jg0b)

+ g0ag0b
{(∂tg00)(∂agbj )+ (∂tg0b)(∂ag0j )+ (∂ag00)(∂tgbj )+ (∂ag0b)(∂tg0j )}

− g0ag0b
{00000ajb + 2000b00ja + 0a0b00j0}
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+ gabg0l
{(∂tg0a)(∂lgbj )+ (∂lg0a)(∂tgbj )+ (∂bg00)(∂aglj )+ (∂bg0l)(∂ag0j )}

− gabg0l
{2000a0ljb + (∂lg0a + ∂ag0l)00jb −

1
2 (∂tgla)(∂bg0j − ∂jg0b)}

+ ωg0a(∂tgaj − 2ωgaj︸ ︷︷ ︸
e2�∂thaj

)+ 1
2g

0l( gab∂tgla − 2ωδbl︸ ︷︷ ︸
e2�gab∂thla−2ωg0bg0l

)∂tgbj

+ gabglm{(∂ag0l)(∂bgmj )−
1
2 (∂ag0l + ∂lg0a)0bjm}

+
1
2g
ab( glm∂tgla − 2ωδma︸ ︷︷ ︸

e2�glm∂thla−2ωg0mg0a

)0bjm, (A.13b)

4A,jk = (g
00)2{(∂tg0j )(∂tg0k)− 00j000k0}

+ g00g0a
{(∂tg0j )(∂tgak + ∂ag0k)+ (∂tg0k)(∂tgaj + ∂ag0j )}

− g00g0a
{200j000ka + 200k000ja}

+ g00gab{(∂ag0j )(∂bg0k)−
1
2 (∂ag0j − ∂jg0a)(∂bg0k − ∂kg0b)}

−
1
2g

00( gab∂tgaj − 2ωδbj︸ ︷︷ ︸
e2�gab∂thaj−2ωg0bg0j

)(∂bg0k − ∂kg0b)

−
1
2g

00( gab∂tgbk − 2ωδak︸ ︷︷ ︸
e2�gab∂thbk−2ωg0ag0k

)(∂ag0j − ∂jg0a)

+ ωg00(gbkg
ab
− δak︸ ︷︷ ︸

−g0kg0a

)∂tgaj +
1
2g

00( gab∂tgaj − 2ωδbj︸ ︷︷ ︸
e2�gab∂thaj−2ωg0bg0j

)(∂tgbk − 2ωgbk︸ ︷︷ ︸
e2�∂thbk

)

+ g0ag0b
{(∂tg0j )(∂agbk)+ (∂tgbj )(∂ag0k)+ (∂ag0j )(∂tgbk)+ (∂agbj )(∂tg0k)}

− g0ag0b
{00j00akb + 200jb00ka + 0ajb00k0}

+ gabg0l
{(∂tgaj )(∂lgbk)+ (∂lgaj )(∂tgbk)+ (∂bg0j )(∂aglk)+ (∂bglj )(∂ag0k)}

− gabg0l
{200ja0lkb + 20lja00kb}

+ gabgml{(∂aglj )(∂bgmk)− 0ajl0bkm}. (A.13c)

ut

Lemma A.6 ([Rin08, Lemma 6]). The sums A00 + I00 and A0j + I0j (j = 1, 2, 3)
can be decomposed into principal terms and error terms as follows, where I00, I0j are
defined in (5.6a)–(5.6b); A00, A0j are defined in (A.11); and 4A,00,4A,0j are defined in
(A.13a)–(A.13b):

A00 + 2ω00
− 6ω2

= ω∂tg00 + 3ω2(g00 + 1)+ 3ω2g00 +4A,00 +4C,00, (A.14a)

A0j + 2ω(3ωg0j − 0j ) = 4ω2g0j − ωg
ab0ajb +4A,0j +4C,0j , (A.14b)

where
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4C,00 = −6(g00)
−1ω2
{(g00 + 1)2 − g0ag0a} − ω(g

00
+ 1)( gab∂tgab − 6ω︸ ︷︷ ︸

e2�gab∂thab−2ωg0ag0a

)

+ 2ω(g00
+ 1)gab∂ag0b + ω(g

00
+ 1)(g00

− 1)∂tg00

+ 2ωg00g0a(00a0 + 2000a)+ 4ωg0ag0b00ab + 2ωgabg0l0alb, (A.15a)

4C,0j = 2ω2(g00
+ 1)g0j − 2ωg0a

{(∂tgaj − 2ωgaj︸ ︷︷ ︸
e2�∂thaj

)+ ∂ag0j − ∂jg0a}. (A.15b)

ut

Lemma A.7. The fully raised Christoffel symbols 0µαν (µ, α, ν = 0, 1, 2, 3) can be
decomposed into principal terms and error terms 4µαν(0) as follows:

0000
= 4

000
(0) , (A.16a)

0j00
= 000j

= 4
j00
(0) (j = 1, 2, 3), (A.16b)

00j0
= 4

0j0
(0) (j = 1, 2, 3), (A.16c)

00jk
= 0kj0

= −ωgjk +4
0jk
(0) (j, k = 1, 2, 3), (A.16d)

0j0k
= 0k0j

= ωgjk +4
j0k
(0) (j, k = 1, 2, 3), (A.16e)

0ijk = 4
ijk

(0) (i, j, k = 1, 2, 3), (A.16f)

where

4
000
(0) =

1
2 (g

00)3∂tg00+
1
2 (g

00)2g0a(2∂tg0a+∂ag00)

+
1
2g

00g0ag0b(∂tgab+2∂ag0b)+
1
2g

0ag0bg0l∂agbl, (A.17a)

4
j00
(0) =

1
2 (g

00)2(g0j∂tg00+g
aj∂ag00)+g

00g0jg0a∂tg0a+
1
2g

0jg0ag0b∂tgab

+g00gajg0b∂ag0b+
1
2g
ajg0bg0l∂agbl, (A.17b)

4
0j0
(0) =

1
2 (g

00)2(g0j∂tg00+2gaj∂tg0a−g
aj∂ag00)

+g00(gajg0b∂tgab+g
0ag0j∂ag00+g

0agbj∂ag0b−g
ajg0b∂ag0b)

+
1
2g

0ag0jg0b(2∂ag0b−∂tgab)

+g0agbjg0l∂agbl−
1
2g

0agbjg0l∂bgal, (A.17c)

4
0jk
(0) =

1
2g

00
{g0jg0k∂tg00+g

0jgak∂ag00}

+
1
2g

00
{gajg0k(2∂tg0a−∂ag00)+g

ajgkb(∂bg0a−∂ag0b)}

+
1
2g

0a
{g0jg0k∂ag00+g

0jgbk(∂ag0b+∂bg0a−∂tgab)}

+
1
2g

0a
{gbjg0k(∂tgab+∂ag0b−∂bg0a)+g

bjglk(∂agbl+∂lgab−∂bgal)}

+
1
2g

00( gajgbk∂tgab−2ωgjk︸ ︷︷ ︸
gbk(e2�gaj ∂thab−2ωg0jg0b)

)+ω(g00
+1)gjk, (A.17d)



2458 Igor Rodnianski, Jared Speck

4
j0k
(0) =

1
2g

00
{g0jg0k∂tg00+g

0jgak∂ag00+g
ajg0k∂ag00+g

ajgbk(∂ag0b+∂bg0a)}

+
1
2g

0a
{g0jg0k(2∂tg0a−∂ag00)+g

0jgbk(∂tgab+∂bg0a−∂ag0b)}

+
1
2g

0a
{gbjg0k(∂tgab+∂bg0a−∂ag0b)+g

bjglk(∂bgal+∂lgab−∂agbl)}

−
1
2g

00( gajgbk∂tgab−2ωgjk︸ ︷︷ ︸
gbk(e2�gaj ∂thab−2ωg0jg0b)

)−ω(g00
+1)gjk, (A.17e)

4
ijk

(0) =
1
2g

0ig0jg0k∂tg00+
1
2 (g

aig0jg0k
+g0ig0jgak−g0igajg0k)∂ag00+g

0igajg0k∂tg0a

+
1
2 (g

aigbjg0k
+gaig0jgbk+gbig0jgak+g0igbjgak−gbigajg0k

−g0igajgbk)∂ag0b

+
1
2 (g

0igajgbk+gaigbjg0k
−gaig0jgbk)∂tgab

+
1
2 (g

aigbjglk+gbigljgak−gbigajglk)∂agbl . (A.17f)

Proof. The proof is again a series of tedious computations that follow from the formula
0µαν = 1

2g
µκgαλgνσ (∂κgλσ + ∂σgκλ − ∂λgκσ ). ut

B. Sobolev–Moser inequalities

In Appendix B, we provide some standard Sobolev–Moser type estimates that play a
fundamental role in our analysis of the nonlinear terms in our equations. The propositions
and corollaries stated below can be proved using methods similar to those used in [Hör97,
Chapter 6] and in [KM81]. The proofs given in the literature are commonly based on a
version of the Gagliardo–Nirenberg inequality [Nir59], which we state as Lemma B.1,
together with repeated use of Hölder’s inequality and/or Sobolev embedding. Throughout
this appendix, we abbreviate Lp = Lp(T3) and HM

= HM(T3).

Lemma B.1. IfM,N are integers such that 0 ≤ M ≤ N, and v is a function on T3 such
that v ∈ L∞ and ‖∂(N)v‖L2 <∞, then

‖∂(M)v‖L2N/M ≤ C(M,N)‖v‖
1−M/N
L∞ ‖∂(N)v‖

M/N

L2 . (B.1)

Proposition B.2. LetM ≥ 0 be an integer. If {va}1≤a≤l are functions such that va ∈ L∞,
‖∂(M)va‖L2 <∞ for 1 ≤ a ≤ l, and Eα1, . . . , Eαl are spatial derivative multi-indices with
|Eα1| + · · · + |Eαl | = M, then

‖(∂Eα1v1) · · · (∂Eαlvl)‖L2 ≤ C(l,M)

l∑
a=1

(
‖∂(M)va‖L2

∏
b 6=a

‖vb‖L∞
)
. (B.2)

Corollary B.3. Let M ≥ 1 be an integer, let K be a compact set, and let F ∈ CMb (K)
be a function. Assume that v is a function such that v(T3) ⊂ K and ∂v ∈ HM−1. Then
∂(F ◦ v) ∈ HM−1, and

‖∂(F ◦ v)‖HM−1 ≤ C(M)‖∂v‖HM−1

M∑
l=1

|F (l)|K‖v‖
l−1
L∞ . (B.3)
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Corollary B.4. Let M ≥ 1 be an integer, let K be a compact, convex set, and let F ∈
CMb (K) be a function. Assume that v is a function such that v(T3) ⊂ K and v− v̄ ∈ HM ,

where v̄ ∈ K is a constant. Then F ◦ v − F ◦ v̄ ∈ HM , and

‖F ◦ v − F ◦ v̄‖HM ≤ C(M)
{
|F (1)|K‖v − v̄‖L2 + ‖∂v‖HM−1

M∑
l=1

|F (l)|K‖v‖
l−1
L∞

}
.

(B.4)

Proposition B.5. Let M ≥ 1, l ≥ 2 be integers. Suppose that {va}1≤a≤l are functions
such that va ∈ L∞ for 1 ≤ a ≤ l, that vl ∈ HM , and that ∂va ∈ HM−1 for 1 ≤ a ≤ l−1.
Then

‖v1 · · · vl‖HM ≤ C(l,M)
{
‖vl‖HM

l−1∏
a=1

‖va‖L∞ +

l−1∑
a=1

‖∂va‖HM−1

∏
b 6=a

‖vb‖L∞
}
. (B.5)

Remark B.6. The significance of this proposition is that only one of the functions,
namely vl, is estimated in L2.

Proposition B.7. Let M ≥ 1 be an integer, let K be a compact, convex set, and let F ∈
CMb (K) be a function. Assume that v1 is a function such that v1(T3) ⊂ K, ∂v1 ∈ L

∞, and
∂(M)v1 ∈ L

2. Assume that v2 ∈ L
∞ and ∂(M−1)v2 ∈ L

2, and let Eα be a spatial derivative
multi-index with |Eα| = M. Then ∂Eα ((F ◦ v1)v2)− (F ◦ v1)∂Eαv2 ∈ L

2, and

‖∂Eα((F ◦ v1)v2)− (F ◦ v1)∂Eαv2‖L2

≤ C(M)
{
|F (1)|K‖∂v1‖L∞‖∂

(M−1)v2‖L2 + ‖v2‖L∞‖∂v1‖HM−1

M∑
l=1

|F (l)|K‖v1‖
l−1
L∞

}
.

(B.6)

Remark B.8. The significance of this proposition is that the M th order derivatives of v2
do not play a role in the conclusions.
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spaces. Ann. Henri Poincaré 6, 801–820 (2005) Zbl 1100.83004 MR 2219857

[BZ09] Bieri, L., Zipser, N. (eds.): Extensions of the Stability Theorem of the
Minkowski Space in General Relativity. Amer. Math. Soc., Providence, RI (2009)
Zbl 1172.83001 MR 2531716

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.83004&format=complete
http://www.ams.org/mathscinet-getitem?mr=2219857
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1172.83001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2531716


2460 Igor Rodnianski, Jared Speck

[BMW+92] Boggess, N. W., Mather, J. C., Weiss, R., Bennett, C. L., Cheng, E. S., Dwek, E.,
Gulkis, S., Hauser, M. G., Janssen, M. A., Kelsall, T., Meyer, S. S., Moseley, S. H.,
Murdock, T. L., Shafer, R. A., Silverberg, R. F., Smoot, G. F., Wilkinson, D. T.,
Wright, E. L.: The COBE mission: Its design and performance two years after the
launch. Astrophys. J. 392, 420–429 (1992)

[BRR94] Brauer, U., Rendall, A., Reula, O.: The cosmic no-hair theorem and the non-linear sta-
bility of homogeneous Newtonian cosmological models. Classical Quantum Gravity
11, 2283–2296 (1994) Zbl 0815.53092 MR 1296335

[Car01] Carroll, S. M.: The cosmological constant. Living Rev. Relativ. 4, 2001–1, 80 pp.
(2001) Zbl 1023.83022 MR 1810924

[Cha61] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Int. Ser. Monographs
Phys., Clarendon Press, Oxford (1961) Zbl 0142.44103 MR 0128226
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[KN03] Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progr. Math.
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