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Abstract. For a smooth curve I' and a set A in the plane R2, let AC(T"; A) be the space of finite
Borel measures in the plane supported on I', absolutely continuous with respect to arc length and
whose Fourier transform vanishes on A. Following [12], we say that (I, A) is a Heisenberg unique-
ness pair if AC(I'; A) = {0}. In the context of a hyperbola I', the study of Heisenberg uniqueness
pairs is the same as looking for uniqueness sets A of a collection of solutions to the Klein—-Gordon
equation. In this work, we mainly address the issue of finding the dimension of AC(I'; A) when it
is nonzero. We will fix the curve I to be the hyperbola xjx, = 1, and the set A = Ay g to be the
lattice-cross
Ag,p = (@Z x {0} U ({0} x Z),

where «, § are positive reals. We will also consider I', the branch of x;xp = 1 where x; > 0. In
[12], it is shown that AC(T'; Ay, g) = {0} if and only if o8 < 1. Here, we show that for ¢ > 1, we
get a rather drastic “phase transition”: AC(I'; Ay, g) is infinite-dimensional whenever af > 1. It is
shown in [13] that AC(I'1; Ay g) = {0} if and only if @ < 4. Moreover, at the edge aff = 4, the
behavior is more exotic: the space AC(I'y; Ay, g) is one-dimensional. Here, we show that the di-
mension of AC(I'; Ay, g) is infinite whenever ¢ > 4. Dynamical systems, and more specifically
Perron—Frobenius operators, play a prominent role in the presentation.

Keywords. Trigonometric system, inversion, Perron—Frobenius operator, Koopman operator, in-
variant measure, Klein—-Gordon equation, ergodic theory

1. Introduction

1.1. Background: the Heisenberg uncertainty principle

The Heisenberg uncertainty principle asserts that it is not possible to have completely
accurate information about the position and the momentum of a particle at the same time.
If ¢ is the spatial wave-function, which describes the position of the particle in question,
and it is known that v is concentrated in a small region, then the deviation of the mo-
mentum wave-function of ¢ from its mean must be large. The momentum wave-function
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is essentially the Fourier transform of the spatial wave-function. So, we may consider
the Heisenberg uncertainty principle as the mathematical statement that a function and its
Fourier transform cannot both be too concentrated simultaneously; cf. [2], [10], and [11].

1.2. Heisenberg uniqueness pairs

Let I" be a finite disjoint union of smooth curves in the plane and A a subset of the plane.
Let AC(I"; A) be the space of bounded Borel measures p in the plane supported on I,
absolutely continuous with respect to arc length and whose Fourier transform

A, x0) = / RO Gy ) (k1 x) € R (L1)
I

vanishes on A. Following [12], we say that (I, A) is a Heisenberg uniqueness pair if
AC(T; A) = {0}

When I' is an algebraic curve, that is, the zero locus of a polynomial p in two variables
with real coefficients, the requirement that the support of © be contained in I' means that
1t solves the partial differential equation

p<% %)ﬁzo. (1.2)

wi i

So, there is a natural interplay between the Heisenberg uniqueness pairs and the theory of
partial differential equations (PDE) (cf. [12]). The most natural examples appear when we
consider quadratic polynomials p corresponding to the standard conic sections: line, two
parallel lines, two crossing lines, hyperbola, ellipse, and parabola. The natural invariance
of Heisenberg uniqueness pairs under affine transformations of the plane allows us to
reduce to the canonical models for these curves (cf. [12]). The case when T is either
one line or the union of two parallel lines was solved completely for general A C R?
in [12]. In this direction, Blasi-Babot has solved particular cases when I" is the union of
three parallel lines (see [4]). The case when I is a circle (which also covers the ellipse
case after an affine mapping) was recently studied independently by Lev and by Sjolin in
[25], [20], where, e.g., circles and unions of straight lines are considered as sets A. Also
subsets of unions of straight lines were considered, and a connection with the Beurling—
Malliavin theory was made. More recently, Sjolin [26] has investigated the case of a
parabola. However, very little seems to be known when I" is the union of two intersecting
lines.

1.3. Heisenberg uniqueness pairs for the hyperbola
The case of the hyperbola I : x;x» = 1 and the lattice-cross
Ag,p = (@Z x {0}) U ({0} x BZ)

for given positive reals «, B was considered in [12], where the following result was ob-
tained.

Theorem A (Hedenmalm, Montes-Rodriguez). Let I be the hyperbola x1xy = 1. Then
(I, A) is a Heisenberg uniqueness pair if and only if aff < 1.
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When one of the branches of the hyperbola is considered, the critical density changes
(see [13]).

Theorem B (Hedenmalm, Montes-Rodriguez). Let I'y be the branch of the hyperbola
x1x2 = 1 where x; > 0. Then AC(I'y; Ay g) = {0} if and only if aff < 4. Moreover,
when aff =4, AC(I'y; Ay, g) is one-dimensional.

For subcritical density of the lattice-cross, we have the following two theorems, corre-
sponding to the hyperbola and a branch of the hyperbola.

Theorem 1.1. Let I" be the hyperbola x1x2 = 1. Then AC(I'; Ay, g) is infinite-dimen-
sional for aff > 1.

Theorem 1.2. Let T' be the branch of the hyperbola x1x, = 1 with x; > 0. Then the
space AC(I'1; Ay p) is infinite-dimensional for aff > 4.

Although the proofs of Theorem 1.1 and 1.2 exhibit a certain parallelism, the proof of
Theorem 1.1 is more delicate. Mainly, the difference is that at the edge o8 = 4, the
Perron—Frobenius operator which appears in the context of Theorem 1.2, induced by the
classical Gauss map, has a spectral gap [acting on the space of functions of bounded vari-
ation], while the Perron—Frobenius operator associated to the edge case «ff = 1 in the
context of Theorem 1.1 does not have such a gap; this is so because the Gauss-type trans-
formation which defines the Perron—Frobenius operator has an indifferent fixed point.

The basic invariance properties of Heisenberg uniqueness pairs allow us to take o« = 1
and we may appeal to duality and reformulate Theorem A as follows (cf. [12]).

Theorem A Let Mg be the linear subspace of L°°(R) spanned by the functions x
M and x v ""P/* where m, n range over the integers and B is a fixed positive real.

Then Mg is weak-star dense in L (R) if and only if B < 1.
The analogous reformulation of Theorem 1.1 is as follows:

Theorem 1.3. Let Mg be the linear subspace of L (R) spanned by the functions x +—>
MY and x > e"PIX where m, n range over the integers. Then the weak-star closure
of Mg in L*°(R) has infinite codimension in L°°(R) for g > 1.

If we instead take o = 2, we may reformulate Theorems B and 1.2 as follows.

Theorem B'. Let Ng be the linear subspace of L>°(R.) spanned by the functions x +—
2T and x > ¢"PIX where m, n range over the integers and B is a fixed positive real.
Then Ng is weak-star dense in L°(R.) if and only if B < 2. Moreover, the weak-star
closure of Ng in L (Ry.) has codimension 1 in L*(Ry.) for p = 2.

Theorem 1.4. Let N g be the linear subspace of L>°(R) spanned by the functions x
M and x +— "P/* | ywhere m, n range over the integers and B is a fixed positive
real. Then the weak-star closure of Ng has infinite codimension in L*°(R4.) for > 2.
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By general functional analysis, the codimension of the weak-star closure of Mg equals
the dimension of its pre-annihilator space

My = {f eL'®R): / f(x)e"™ dx = f f)e"™B/x gy = 0foralln € Z.
R R

(1.3)
Likewise, the codimension of the weak-star closure of N, s equals the dimension of its
pre-annihilator space

NG = {f e L'(Ry): / F)e?mr dx = / F)e"BIX gy = 0foralln € Z}.
Ry R,

(1.4)
If f eN L then it is easy to see that the function g(x) = f (%x), extended to vanish

along the negative semi-axis R_, belongs to M%ﬁ. So, Theorems 1.3 and 1.4 show that
there are elements in M é with support on the positive semi-axis precisely when § > 4.

Corollary 1.5. In the pre-annihilator M7 there exists a nontrivial element that vanishes
onR_ ifand only if B > 4. Moreover, if B = 4, there is only a one-dimensional subspace
of such elements, while if B > 4, there is an infinite-dimensional subspace with this
property.

Remark 1.6. In the context of Theorems 1.3 and 1.4, we actually construct rather con-
crete infinite-dimensional subspaces of Mfg‘ and N7, respectively; cf. Theorems 8.2
and 8.6.

1.4. Discussion about harmonic extension and the codimension problem

If T is the hyperbola x;x, = 1, then for 8 > 1 the bounded harmonic extensions to the
upper half-plane of the functions x > ¢”™* and x > ¢""P/* where m, n range over
the integers Z, fails to separate all the points of the upper half-plane C; := {z € C :
Im z > 0}. Indeed, if we consider

21 :=m+i,/£—1, 70 = —m+i,/£—l, where m,n € Z, mn < 8,
mn mn

then f(z1) = f(z2) for every f € Mg, so that the differences of the Poisson kernels
P;, — P,, are in the pre-annihilator space M. If we use the Cauchy kernel in place of
the Poisson kernel here we also obtain elements of the pre-annihilator. But there are only
finitely many combinations of m,n € Z with mn < B, which corresponds to finitely
many differences of Poisson or Cauchy kernels. This would lead us to suspect that that
the pre-annihilator Mfg‘ might be finite-dimensional. Theorem 1.3 shows that this is far
from being true.

1.5. Structure of the paper

In Section 2, we take a closer look at the link between Theorem 1.1 and the Klein—Gordon
and Dirac equations. In order to make the paper accessible to a wider audience, we present
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in Section 3 the elementary aspects of the theory of dynamical systems and the standard
notation for Perron-Frobenius operators needed here. In Section 4, we show how the
theory of Perron—Frobenius operators is the natural tool to analyze Heisenberg uniqueness
pairs for the hyperbola I" and for one of its branches I'y. In particular, the famous Gauss—
Kuzmin—-Wirsing operator corresponds to the critical density case for I';. In Section 5,
we state some more involved results of the theory of Perron—-Frobenius operators which
are needed later on. In Section 6, we study the structure of the pre-annihilator space M }JB-
associated with I". In Section 7, we show the existence and uniqueness of a absolutely
continuous invariant measure for certain transformations acting on the interval [—1, 1].
This is the key point in the proof of Theorem 1.3, presented in Section 8. We end Section 8
by sketching the proof of Theorem 1.4, which turns out to be much simpler than that of
Theorem 1.3. Finally, in Section 9, we apply our results to a problem involving the linear
span of powers of two atomic singular inner functions in the Hardy space of the unit
disk. In conclusion, we can say that the study of Heisenberg uniqueness pairs related
to the Klein—Gordon equation leads to new and interesting problems involving Perron—
Frobenius operators.

2. Further motivation. The Klein—-Gordon and Dirac equations

2.1. The Dirac equation in three spatial dimensions

In quantum mechanics the evolution of the position wave-function ¥ associated to a phys-
ical system can be modelled by certain partial differential equations (PDE). According to
the theory of spin, in the general setting, ¥ has four components,

Y = (Y1, Y2, V3, Ya),

which should be thought of as written in column form, where each ¥; = v; (¢, x1, x2, x3)
is a mapping between an open set in R* and a prescribed Hilbert space. Thus, these
PDEs have to be understood as a system of equations for four separate wave-functions.
The necessity of working with multiple-component wave-functions was pointed out by
Pauli in order to understand the intrinsic angular momentum (spin) of atoms. There is no
general equation whose solutions reflect faithfully the evolution of a given system from
the relativistic point of view. Depending on the features of the system one must choose
one or another type of equation. For instance, for a relativistic spin-0 particle with rest-
mass mq we have the Klein—Gordon equation. Written in natural units it takes the form
(07 — 07, — 95, — 9%, +mg)y =0.

3

Another example, perhaps the most important in this context, is the Dirac equation. It is
used to describe the wave-function of the electron, although it remains valid when applied
to a general relativistic spin—% particle. In natural units it takes the form

(—iy8 —iy'dy, —iy?dy, — iy s +mo)y =0,

commonly abbreviated as (—i § + mo)y = 0, where y°, y!, 2, 33, the Dirac matrices,
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are the 4 x 4 matrices given by

10 0 0 0 0 0 1
o o1 0 o o o 10
VZ1o o -1 ol V= lo -1 0o0]

00 0 -1 1 0 00

0 0 0 —i 0 01 0
> o o o s [ o 00 1
1o i o o Y |l-1 00 o

i 00 0 0 1.0 0

The algebraic properties of the matrices ¥°, !, 2, ¥3 allow us to obtain the following
factorization of the Klein—Gordon equation:

(07 — 35, — 35, — 05, +mp)¥ = (i # +mo)(—i # +mo)y = 0.

Hence a solution to the Dirac equation is always a solution to the Klein—-Gordon equation.
The converse statement is not true.

2.2. The Dirac equation in one spatial dimension

As before, let I' be the hyperbola x;x; = 1, and suppose u € AC(I'; Ay, g) for some
positive reals «, 8. Then, in view of (1.2), the Fourier transform 1 given by (1.1) solves
the partial differential equation

(0,0, +77)E =0

in the sense of distribution theory. If we write ¥ (¢, x) := ﬁ(%(r + x), %(t - x)), then
solves the one-dimensional Klein—Gordon equation for a particle of mass r,

(32 — 32 + 72y = 0. 2.1)

Theorem 1.1 asserts that if ¢ > 1, then there exists an infinite-dimensional space of
solutions ¥ to (2.1) of the given form, subject to vanishing on the set

A}, 5 = {(ma,ma) e R* :m € ZYU {(nB, —np) € R* :n € Z}.
The corresponding Dirac equation in this context is
(—io%d, —iclo, + m)Y =0, (2.2)

0 o! are the 2 x 2 matrices given by

o_(1 O 1_ (0 1
a_<0_1 ando—_lo.

where o
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Here, ¢ = (¥1, ¥») in column form, and (2.2) may be written out more explicitly as the
system

=0 — i Y2 + 7w =0,
10,y +i0x Y1 +myp = 0.

The question pops up whether the Dirac equation (2.2) has an infinite-dimensional space
of solutions ¥ = (1, ¥») that vanish on A;’ P for B > 1. As both i1, ¥ automatically
solve the Klein—Gordon equation (this is a consequence of the factorization we mentioned
previously in the context of three spatial dimensions), the natural requirement is that both
Y1, Yp are Fourier transform of measures in AC(I", A:x, /3). Here, I'" is the hyperbola
2
t

2.3)

= x2 + 1, which corresponds to I after the change of variables. From the assumptions
made on ¥, Y», we have

00
Wj (t,x) = / f}(v) ei%ﬂ[v(l+x)+v_'(t—x)] dv, j= 1,2,
—00

where f1, f> belong to Mé‘ (this subspace of L! (R) is defined by (1.3)). Note that in the
last step, we tacitly imposed the normalizing assumption that « = 1. As we implement
this representation of 1, ¥ into (2.3), we find that

/ T+ D) + @ — v ()l TR 0T gy g

—00

and
o0 .1 —1
/ {4+ v =2) L) + (v — v fi()}e 2T PUHOTED] gy — g,
—00

When we plug in t = x, we see from the uniqueness theorem for the Fourier transform
that the above two equations are equivalent to having

W+v '+ i)+ w—v HHW) =0, veR,

and
w—v HA+@+v'=2)H0) =0, veR,

in the almost-everywhere sense. These requirements are compatible, as each corresponds

to having

1
H) = :Z fiv), vekR.

This means that we have reduced the study of the dimension of the space of solutions to
the Dirac equation (2.2) subject to vanishing on A&y P (with ¢ = 1) plus the condition in
terms of the Fourier transform to simply analyzing the dimension of the space

{f e My 1+ )1 —x)7" f(x)is in M5},

To answer this dimension question we would need to better understand the structure of
the pre-annihilator space Mé



38 Francisco Canto-Martin et al.

3. Perron-Frobenius operators

3.1. Dynamical systems

The theory of dynamical systems deals with the time evolution of a system of points under
a fixed change rule. An important feature of a dynamical system is its attractors, sets of
points towards which the points of the system converge. A dynamical system is a four-
tuple (I, G, u, t), where (I, G, u) is a measure space and 7 : I — [ is a measurable
transformation. The measure p is always positive and o -finite; if it has finite total mass
we renormalize and assume that the mass is 1, so that 4 becomes a probability measure.
We denote by 79 the identity map and write 7 = " loz forn = 1, 2, ... . The evolution
of a point x € [ is described by its orbit under 7, i.e., the sequence

{Tn(x)};.,o:()-

In a concrete situation, the actual expression for the iterates t” tends to explode already
for rather modest values of n, which makes it extremely difficult to extract substan-
tial information based on a direct approach. The most convenient approach is then the
measure-theoretic one based on Perron—Frobenius operators. If we have a random vari-
able X : I — R distributed according to a density p, then the random variable X o t will
be distributed according to a new density, which is denoted by P, p. Instead of the orbits
7" (x), we focus on the sequence of density functions

{PIp}ny.

The key point here is that, while T may be nonlinear and discontinuous, the operator P
is linear and bounded on the space L! (I, &, ) of integrable functions on I. The operator
P. is known as the Perron—Frobenius operator associated to the transformation 7. It turns
out that in most situations the sequence of density functions P} p converges to certain
densities of measures on / that provide valuable information about the attractors of the
system, which are known as invariant measures. More precisely, a o -finite Borel measure
v on [ is said to be invariant under 7 if v(z =1 (A)) = v(A) for every A € G. The densities
of the p-absolutely continuous invariant measures can be recovered as eigenfunctions of
the Perron—Frobenius operator corresponding to the eigenvalue A = 1. Perron—Frobenius
operators appear in many branches of pure and applied mathematics, such as stochas-
tic processes, statistical mechanics, resonances, ordinary differential equations, thermo-
dynamics, diffusion problems, positive matrices, and algorithms associated with contin-
ued fractions expansions. For background on Perron—Frobenius operators, we refer the
reader to, e.g., [3], [5], [9]. In this work, we shall see how Perron—Frobenius operators
are intimately related to the Heisenberg uniqueness pairs associated with the hyperbola
x1x2 = 1. This leads to new and interesting questions concerning this important class of
operators.

3.2. Perron—Frobenius operators on bounded intervals

In our situation, the dynamical systems involved are of the form (I, B, m, t), where I is
a closed bounded interval of the real line, m is the Lebesgue measure defined on 8/, the
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Borel o-algebra of 1, and t denotes a measurable map from [ into itself. For 1 < p < oo,
the Banach space L?(I) consists of those (equivalence classes of) measurable complex-
valued functions f defined on I for which the norm

||f||lL]1r(1) = /I |f1P dm

is finite. The space L°°(I) consists of the essentially bounded measurable complex-valued
functions f supplied with the essential supremum norm. We shall use the following stan-
dard bilinear dual action:

(f.8)E 1=/Efgdm, (3.1

provided f, g are Borel measurable, and fg € L'(E). Here, E C R is a Borel set with
positive linear measure, m(E) > 0. For instance, if f € L'(E) and g € L*(E), the dual
action is well-defined. When needed, we shall think of functions in L? (E) as extended to
all of R by setting them equal to O off E.

We shall need the following concepts.

Definition 3.1. The map t : I — 1 is said to be a filling C?-smooth piecewise monotonic
transformation if there exists a countable collection {/,},<z4 of pairwise disjoint open
intervals such that

(i) the set I\ (J{I, : u € U} has linear Lebesgue measure 0,
(ii) for any u € U, the restriction of 7 to I, is strictly monotonic and extends to a C2-
smooth function on the closure of I, denoted 7, and 7,, # 0 in the interior of I,,,
(iii) for every u € U, t, maps the closure of I, onto 1.

Definition 3.2. If, in the setting of Definition 3.1, all conditions are fulfilled, except that
(iii) is replaced by the weaker condition (iii’) below, we say that T is a partially filling
C?-smooth piecewise monotonic transformation; the alternative condition is

(iii’) there exists a 8 > 0 such that for every u € U, the interval 7 (1) has length > §.

In the context of the above two definitions, each interval I, is known as a fundamental
interval, and 1, is said to be a branch. It is an important observation that each iterate
", withn = 1,2, ..., has the same basic structure as the transformation t itself. The
fundamental intervals associated with t” are given by

—1
I&],...,u,,) ={xel:xel,,tx)ely, ..., 7" " (x) €Ly},  (W1,....un) € ng’,
where Ug consists of those elements (u;,...,u,) € U™ such that the above inter-
val I(’;l tty) becomes nonempty. The corresponding branch on I(’,’ll tty) is denoted
t(':“ ..... W) = Tun © O Tuy-

The Koopman operator associated with t is the composition operator which acts on
L (1) by the formula C; g = got. Clearly, C; is linear and norm-contractive on L*°(I).
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The Perron—Frobenius operator P, : L'(I) — L!(I) associated with 7 is just the pre-
adjoint of C;. Therefore, P; is a norm contraction on L! (1) with

(P f.8)1 = (f.Ceg)r,  felL'l), geL™U). (3.2)

It is immediate from (3.2) that an absolutely continuous measure duy = f dm has the
invariance property

wr(t71(A) = u(A) forall A € By

if and only if
P.f=7 (3.3)
It is clear that C?! = Cqn, so by duality we have
P!=Pn, n=12,.... 34
Using (3.2), we find that
P @) = D @) f( @), n=1.2..., (3.5)
ueld

where J, > 0 is the function on / that equals |(z, Y | on 7(I,) and vanishes elsewhere.
The map J, is well defined, since t is piecewise strictly monotonic. By (3.5) we see that
P, f > 0for f > 0and |P; |l = || fll1. As P; acts contractively on L' (1), its spectrum
o (P;) is contained in the closed unit disk D.

4. Perron-Frobenius operators for Gauss-type maps and invariant measures

4.1. The Gauss-type maps and the corresponding Perron—Frobenius operators

The study of Heisenberg uniqueness pairs for a hyperbola (or a branch of it) involves the
study of eigenfunctions of certain operators, which we introduce below.

For t € R, let {t}; be the number in [0, 1[ such that t — {t}; € Z. We also need
the quantity {r},, which is in ]—1, 1] and is uniquely determined by the requirement ¢ —
{t}2 € 27Z. For fixed 0 < y < oo, let 6, : [0, 1[ — [0, I[ be the mapping defined by
Oy (x) :=={y/x}h forx # 0and 6, (0) :==0.For I <y < oo, welet Cy, : L0, 1)) —
L*([0, 1[) be the Koopman operator

Co,g(x) :=goby(x), xe€l0,1]

while for0 < y < 1, we let ng : L%°([0, 1) — L°°([0, 1]) be the weighted Koopman
operator

ngg(x) = lj0,y[(x) g 06, (x), xe€[0,1[.

Here and below, we write 1 g for the characteristic function of aset E C R, which equals 1
on E and vanishes elsewhere. The definition for 0 < y < 1 is motivated by the applica-
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tions in [13] in the context of Heisenberg uniqueness pairs for a branch of the hyperbola.
The pre-adjoint to ng is the operator ng - LY([0, 1D = L0, 1)) given by

Y %
P = E , 0, 11, 4.1
I = <j+x>2f<j+x> relo @D

with the understanding that f vanishes off [0, I[. The operator Py, is a Perron—Frobenius
operator when 1 < y < oo. Note that for y > 2, it is possible to begin the summation in
(4.1) from the integer part of y, as the terms with lower summation index do not contribute
to the sum. It is easy to see that the eigenfunction equation

Po, f=Af, =1,

fails to have a solution f in L'([0, 1[) for 0 < y < 1, which implies that (I'., Agp) is
a Heisenberg uniqueness pair for ¢ < 4. In the case y = 1, Py, is the famous Gauss—
Kuzmin—Wirsing operator, which is connected with the continued fraction algorithm. It is
known that Py, f = Af with |A| = 1 has a nontrivial solution only for A = 1, in which
case the solution f is unique (up to a scalar multiple). These observations are basic in the
proof of Theorem B (or, which is the same, Theorem B’); the natural parameter choices
area =2 and g =2y.

For 0 < B < oo, let g : |1, 1[ — ]—1, 1] be the mapping defined by 74(x) :=
{—=B/x}2 for x # 0 and 74(0) := 0. For 1 < 8 < oo, we let Ctﬁ  L*°(-1,1) —
L*(]—1, 1]) be the Koopman operator

Crpgx) :=gorp(x), xel-1,1],
while for 0 < B < 1, we let Cy; L*®(-1,1]) — L*(-1,1]) be the weighted
Koopman operator
Cfﬂg(x) = 1]_/3,,3](x)g o rﬂ(x), x € ]-1,1].

The definition for 0 < B < 1 is motivated by the applications in [12] in the context
of Heisenberg uniqueness pairs for the hyperbola. The pre-adjoint to C;, is the operator
P, : L'(]-1, 1) — L'(J—1, 1]) given by

_ B < B )
Pr = ; ; , —1, 1 s 4.2
S (1) je§zx oo \5=x) xe-t 4.2)

with the understanding that f vanishes off the interval ]—1, 1]. Here, we write Z* :=
Z \ {0}. The operator P, is a Perron-Frobenius operator for 1 < B < oo. A rather
elementary argument shows that the eigenfunction equation

P, f=xrf =1,

fails to have a solution f in L'(Q-1,1]) for 0 < B < 1, which implies that (I', Ay g)
is a Heisenberg uniqueness pair for 8 < 1. For § = 1, the transformation t1(x) =
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{—1/x}, is related to the continued fraction algorithm with even partial quotients (cf.
[18], [27]). The map t1(x) = {—1/x}> has an indifferent fixed point at 1. This entails that
the invariant absolutely continuous density has infinite total mass; in this case, the density
is given explicitly by (1 —x2)~!. Using some ergodicity properties, it is easy to show that
the equation P, f = Af does not have a solution f € L'(]—1, 1)) for any A € C with
L] = 1. These observations are basic to the proof of Theorem A (or, which is the same,
Theorem A’).

4.2. Discrete and singular invariant measures for the Gauss map

It is well-known that the Gauss map 0;(x) := {1/x}; on the unit interval [0, 1[ [with
01(0) := 0] has infinitely many essentially different invariant measures. However, up to
a constant multiple, there is only one that is absolutely continuous: (1 + x)~! dx. As we
shall see, the discrete finite invariant measures of #; have an explicit characterization. We
write §, for the Dirac measure at point a. We shall need the set of fixed points of iterates
of the Gauss map 6y :

Sii={ael0,1[:0{ (@) =a}, Zo:=|]J %k
k=1

For a € ¥, there exists a minimal £ > 1 such that 9{‘ (a) = a; we write k(a) for this k.
We put
| K-l

Pa ‘= m ; 80'|/(a)’ a€ Y.

Theorem 4.1. Let 1 be a discrete finite invariant measure for the Gauss map 601. Then

there is a function & : Yoo — C with Zaezoo |&(a)| < oo, such that

p= ) §@pa 43)

A€X o
Proof. That the measure p is invariant means that

fo0i(x)du(x) =/ J(x)du(x)
[ [0.11

[0,1
for every f integrable with respect to |u|. It is trivial to check that all measures of the
given form are invariant. In the other direction, it is well-known that every discrete in-
variant measure i may be decomposed into irreducible (ergodic) parts (see, e.g., [8, pp.
16-18]). We just need to show that up to a multiplicative constant, each irreducible part is
of the form p,. So, let p be an ergodic discrete invariant probability measure on [0, 1[. Let
E C [0, 1[ be the minimal countable set which carries the mass of p. By the Birkhoff—
Khinchin Ergodic Theorem, for each xg € E we have

n—1
lZf(elj(xO)) — / fdo asn— oo.
n =0 E

In particular, if we let f equal the characteristic function of the one-point set {xo}, and
observe that from the minimality of E, we have p({xo}) > 0, we find that approximately
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a p({xo}) proportion of the time on the interval 0 < j < n — 1, we have 6){ (x0) = xo.
This means that xo € X . We may also conclude by picking other functions f that E
equals the orbit of xq:

E = {0)(x0) : 0 < j < k(x) — 1},

By measure invariance, each point of £ must have equal mass, so that p = p, with
a = xo. This completes the proof. O

Remark 4.2. (a) The proof of Theorem 4.1 did not really use the fact that we are dealing
with the Gauss map. In particular, the corresponding assertion holds for the transforma-
tion 71 (x) = {—1/x}, in place of the Gauss map.

(b) The set X, consists of the reciprocals of the reduced quadratic irrationals plus the
origin.

(c) The discrete measures provided by Theorem 4.1 above extend in a natural fashion
to the positive half-axis R4. These extensions lift to the hyperbola branch I where
x1x2 = 1 and x; > 0, and the lifted measures on ' have Fourier transforms that vanish
on the lattice-cross Ay g with @ = B = 2. Indeed, this is the only way to obtain such
discrete measures on I'.

4.3. The Minkowski measure

The most studied singular continuous measure for the Gauss—Kuzmin—Wirsing operator is
the Minkowski measure. It belongs to a family of singular probability measures which we
call Markovian measures (see below). The Minkowski question mark function was first
introduced by Minkowski in 1904. Let {a, (x)}7 | be the sequence of positive integers in
the continued fraction expansion of x. Salem [23] proved that the question mark function

can be defined by o (_pyiH
"W =) e 0S¥

j=

where the series is finite for rational x. Then ? is a strictly increasing continuous singular
function. It takes rational numbers to dyadic numbers and quadratic surds to rationals.
The Riemann-Stieltjes measure d? on [0, 1] is then a singular continuous probability
measure, which can be shown to be invariant for the Gauss map 6;(x) = {1/x};. The
numbers a;(x) € Z4 are the successive remainders which we throw away as we iterate
the Gauss map at a point x. Let us say that a probability measure @ on [0, 1] is Markovian
with respect to the Gauss map if there are numbers g (j) with 0 < ¢g(j) < 1 and

Y ah=1
j=1

such that the p-mass of the “cylinder set”
{[xel0,1[:aj(x) =b;for j=1,...,k}

equals

k
[Ta®p.
j=1
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Then the Minkowski measure is Markovian with g(j) = 27J. Problem (d) in [12] could
be settled in the negative if we could find a singular continuous measure on I', the Fourier
transform of which tends to zero at infinity, while it vanishes along Ay g witha = 8 = 1.
A perhaps easier task is to find a singular invariant measure on [0, 1] with respect to the
Gauss map such that the Fourier transform tends to zero at infinity (measures whose
Fourier transforms decay to 0 at infinity are called Rajchman measures). The Markovian
measures are all invariant and singular continuous. E.g., the Minkowski measure is of this
type. But it is not known if it is Rajchman. Indeed, this question is a well-known problem
raised by Salem [23].

5. Further properties of Perron—-Frobenius operators

5.1. The spectral decomposition of Perron—Frobenius operators

Let I be a closed bounded interval. The total variation of a complex-valued function
h:I— Cis

n—1
vary (h) = sup[Z [h(tiv1) — h(tj)|]»

j=1

where the supremum is taken over all #,...,#, € [ with#; < --- < t,. The function
h is said to be of bounded variation when vary(h) < oo. We will denote by BV(/) the
subspace of L!(I) functions which have representatives of bounded variation. The space
BV(I) becomes a Banach space when supplied, e.g., with the norm

IllBy = IRl + ;ni; vary(h), heBV(I), (.1

where the infimum is taken over all elements in the equivalence class of 4 (so that h=h
except on a Lebesgue null set). It is well-known that for each 2 € BV(I) there is a right-
continuous function in the class of & where the infimum in the definition of ||4|gy in
(5.1) is attained. In particular, BV (/) is a subspace of L°°(I) (see [16]). A perhaps more
precise description of BV (/) is that these are the primitive functions of finite complex-
valued Borel measures on /.

Let T = {z € C : |z| = 1} denote the unit circle in C and let o;,(P;) denote the
point spectrum of P, where the Perron—Frobenius operator P; is thought of as acting on
L'(I). As a consequence of the Tonescu-Tulcea and Marinescu theorem (see [5] and [16,
Section 5.3]), the following spectral decomposition holds for P,. We recall the notions of
filling and partially filling C2-smooth monotonic transformations in Definitions 3.1 and
3.2.

Theorem C. Suppose © : I — I is a partially filling C?-smooth piecewise monotonic
transformation with the following properties:

(i) [uniform expansiveness]| There exist an integer m > 1 and a positive real € such that
[(c™) (x)| = 1+ e€eforallx e | J{I, :u € L{g"}.
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(ii) [second derivative condition] There exists a positive constant M such that |t"(x)| <
M|t'(x))? forall x € \J{I, : u € U}.

Then A; := op(P;) N'T is finite and nonempty, say A = {A1, ..., Ap}. Here, one of the
eigenvalues is the point 1, say .1 = 1. If E; denotes the eigenspace of Py corresponding
to i, then E; is finite-dimensional and E; C BV (I). In addition,

)4
P'h = ZA?P,,ih +Z'h, hel'(),n=1.2,...,

i=1

where the operators P ; are (Banach space) projections onto E;, and the operator Z.
acts boundedly on L' (I) as well as on BV (I). Moreover; the spectrum of Z. as an oper-
ator acting on BV (1) is contained in the open unit disk D, i.e., Z, acting on BV(I) has
spectral radius < 1.

Remark 5.1. (a) It is a by-product of Theorem C that P, acts boundedly on BV (7). In
fact, the way things work is that this rather elementary observation is the beginning of the
analysis that leads up to Theorem C.

(b) Since 1 is an eigenvalue of P, a corresponding eigenfunction (which is then in
BV(1)) is the density for an invariant measure. If there are several such eigenfunctions
for A1 = 1, then one of them is > 0, which we can normalize so that we get an absolutely
continuous invariant probability measure with density in BV(/); compare with the proof
of Theorem 7.2.

(c) The formulation of the Ionescu-Tulcea and Marinescu theorem in [16] initially
assumes that t is “filling”, but it is later remarked that the theorem holds for “partially
filling” transformations (cf. Definitions 3.1 and 3.2); see [16, p. 214], and also [6] and [8,
p- 169].

(d) When considered as an operator on L'(I), the Perron—Frobenius operator P,
will usually have eigenvalues at all points of the open disk, with eigenfunctions in
L®([—1, 1]) (cf. [17D).

Remark 5.2. From the presentation in [16, Section 5.3], it is clear that if 7 is “filling”,
we have a stronger assertion in Theorem C: A; = 1 is the only eigenvalue of P; on T,
and the t-invariant absolutely continuous probability measure is unique, with a density
that is bounded from above and below by two positive constants. Cf. also [8, p. 172],
where it is shown that under the given assumptions, t is mixing. We briefly outline the
argument, following the presentation in [16, Section 5.3]. We write f, := 7, ' : [ — I,
for the inverse branches (# € U). The assumptions (i) and (ii) of Theorem C correspond
to the conditions (E,,) and (A) of [16, pp. 191-192]. Next, by [16, Proposition 5.3.3],
(En) forces | f,)(x)| to be uniformly bounded in x € I and u € U. In view of Condition
(A) of [16, p. 192], we also know that | f;/ (x)]| is uniformly bounded in x € I and u € U.
In particular, then, f,; is absolutely continuous for all u € U. Next, by [16, Proposition
5.3.4], we use this absolute continuity together with condition (E,,) of [16, p. 191], to
see that condition (C) [Rényi’s distortion estimate] holds as well. Next, by [16, Theorem
5.3.5], we use condition (C) to find that there is a unique ergodic t-invariant absolutely
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continuous probability measure, and that its density is bounded from above and below by
positive constants. This means that there is only one eigenvalue, namely 1. We mention
here that the condition (BV) of [16, p. 200]—which requires the sum of the variations
of f; over u € U to be bounded—is a trivial consequence of condition (A), because the
sum of the variations of f,, over u € U amounts to summing the lengths of the intervals 7,,,
which add up to the length of 1.

5.2. The folklore theorem (Adler’s theorem)

We shall be interested in partially filling C?-smooth monotonic transformations of a
closed bounded interval /. In view of Remark 5.1(c), we can be sure that Theorem C also
holds in this more general situation. Moreover, Remark 5.1(b) tells us that there exists a
T-invariant absolutely continuous probability measure, but it might not be unique. To get
uniqueness, we need to make stronger assumptions on 7. In this direction we have Adler’s
theorem, also known as the folklore theorem (see [5]).

Theorem D (Adler’s theorem). Lett : I — I be a partially filling C?-smooth piecewise
monotonic transformation with the following properties:

(i) [uniform expansiveness] There exist an integer m > 1 and a positive real € such

that |(z™)' (x)| > 1+ € forallx € | {I, : u € Zx{é’}.

(ii) [second derivative condition] There exists a positive constant M such that |t" (x)| <
M|t ()| forall x € \J{I, - u € U).

(iii) [Markov property 1] For every u € U there is n = n(u) > 1 such that clos[t" (1,)]
=1

(iv) [Markov property 2] Whenever t(1,) N I, # @ for some two indices u, v € U, then
©(Iy) D I.

Then t admits a unique absolutely continuous invariant probability measure dp = o dm.
Moreover, the density o is bounded from above and below by positive constants.
Remark 5.3. (a) A transformation 7 satisfying (iii)—(iv) above is said to be a Markov
map.

(b) A well-known result which preceded Adler’s theorem is the Lasota and Yorke
theorem [19].

5.3. Dynamical properties of Gauss-type maps
We first consider the transformation 74 of the interval ]—1, 1] defined by 74(0) := 0 and
p(x) = {—B/xh.  x #0. (5.2)

Here, we recall that for ¢t € R, {t}, denotes the unique number in |—1, 1] with r — {t}»
in 2Z. We restrict our attention to B > 1 only. Let the index set U = Up be the subset of
the nonzero integers u for which the corresponding branch interval is nonempty:

|2 p _
Iu._LMH,zu_l[m] 1,1[ # 0. (5.3)
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We put ug = uo(B) := %(ﬂ — {B}2), which is an integer > 1. We note that if 8 is an odd

integer, then
p p
I, = , , U, 54

u ]2u+12u—1 “e 4

and U consists of all u € Z* with |u| > %(,3 + 1). In this case, the “filling” requirement
is fulfilled: tg(/,) = ]—1, 1[ for all u € U. More generally, when g is not an odd integer,
then U consists of all u € Z* with |u| > ug, and we have

| B B
I”_]2u+1’2u—1[’ u €U\ xuol, -5
so that
() =1-1,1[, wuel\ {Fuo}.

We see that the deviation from the “filling” requirement is rather slight (just two branches
fail).
Next, we quickly calculate the derivative of 7g:

) =p/x>=p>1, xeJl:ueld) (5.6)
so the uniform expansiveness condition is met already by tg (with m = 1). Moreover,

ltg(Ol 2x|
TAGE < 5 <2, xeUll,:uel},
so we also have the second derivative control. Unfortunately, we cannot rely on Theorem
C to give us the uniqueness of the absolutely continuous invariant measure for 4 (al-
though Remark 5.2 says that in the “filling” case we really do have uniqueness). We can-
not rely on Adler’s theorem either, as 7g is not necessarily a Markov map. We will show
that condition (iii) of Adler’s theorem holds for all sufficiently large n, say n > n(u); this
has the interpretation of “strong mixing”.
We are also interested in the Gauss-type map 6,, of [0, 1[ defined by ), (0) := 0 and

Oy (x) :=={y/xh, x#0. (5.7

Here, we recall that {r}; is the fractional part of r € R, with values in [0, 1[ and # — {t};
€ Z. We restrict our attention to y > 1 only. Let the index set V = V), be the subset of
the positive integers v for which the corresponding branch interval is nonempty:

_|rYr v
T '_]v+1’ v|:ﬁ]0,1[7é®.

We note that if y is an integer, then V consists of all positive integers v with v > y, and

Yy v
o= [——, =, ev.
! ]v—}—l v|: Y



48 Francisco Canto-Martin et al.

More generally, if vg = vo(y) :=y — {y} € Z, then

_lr v
Jv_j|v+lvv[v UEV\{UO}a

and
ey(-]v) =10, 1[, ueV\ {vo}.

So, the deviation from the “filling” requirement is rather slight (only one branch fails).
Next, we calculate the derivative of ,:

0 =y/x*=B>1, xeU{l:vel)

so the uniform expansiveness condition is met already by 6g (with m = 1). Moreover,

"

19y ()| < 2_x <2, xeUJy:veV},

0,0 =y
so we also have the second derivative control. Again, we cannot unfortunately rely on
Theorem C to give us the uniqueness of the absolutely continuous invariant probability
measure for 6, (although Remark 5.2 says that in the “filling” case we have unique-
ness). We cannot rely on Adler’s theorem either, as 6, is not necessarily a Markov map.
However, it appears that here, it is nevertheless known that the absolutely continuous
0y -invariant probability measure is unique and has strictly positive density almost every-
where. One way to see this is to show that condition (iii) of Adler’s theorem is fulfilled
for all n > n(u), and proceed in an analogous fashion as we do for 7g, with 8 > 1 (cf.
Lemma 7.1 and Theorem 7.2). Actually, once the “strong mixing” property of condition
(iii) of Adler’s theorem has been verified, the proof of Theorem 7.2 applies more or less
verbatim, and gives the asserted properties. Also compare with [8, pp. 168—177].

5.4. The explicit calculation of invariant measures

In general, the computation of the absolutely continuous invariant measures for tg (as
well as for 6,) is intractable. Only in a few particular cases is it possible to supply ex-
plicit expressions for the corresponding densities. They all correspond to values of the
parameters for which we are dealing with Markov maps. For instance, when 8 > 1 is an
odd integer, g is “filling” [i.e., we have complete branches], and the unique tg-invariant
probability measure on [—1, 1] is given by

c(B)

Tx/ﬂ)zl[il'l](x)dx’ where

1 ! d 1

— :/ = N B
cB)  Jal-©u/p) p—1

It is more interesting that it is possible to obtain the Tg-invariant probability density in
a more complicated situation, when 8 = 3/2. The uniqueness and ergodicity of that
measure will be obtained in Section 7.
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Proposition 5.4 (8 = 3/2). The density of the unique ergodic t32-invariant absolutely
continuous probability measure is given by

3/4 ]
(I —Ix1/3)(1 4 2|x[/3)

00(x) = Co{ Li—1/2,1/21(x)+ [—1,1]\[—1/2,1/2]()6)},

1
1 — (2x/3)2
where ¢! = 3log5 — 3 log2.

Proof. To simplify the notation, we write 01 (x) := ¢, lgo (x), so that o (x) stands for the
bracketed expression. We note that both pg, o1 are even functions. We need to check that

3/2 3/2
> & —x)2Q1<2j _x) =o1(x), xe[-1,1], (5.8)
Jjez*

where this equality should be understood in the almost-everywhere sense. Since

3/2
2j —x

el[-1/2.1/2] for|jl=2 xe[~1.1],

we may evaluate the sum of all but two terms on the left-hand side of (5.8), as most of the
terms cancel:

3/2 < 3/2 )_ 5 3/2 1
Ci-02\2j=x) " e, 0= T T ]

Jiljl=2 - o=y
_ 2{: 3/2 3 EE: [ 1 1 }
- Di_2_1 4 —— — 5
Jiljl=2 (2‘] X) 1 4j1|j|22 2] X 1 2] x+1
3 1 n 1 1/2 CL)
—_ - o , x _ , )
43-x  34x] 1-G/3?
Next, we see that
3/2

e]l/2, 1], xel-1,1/2],

and that this expression is in ]1, 3/2] for x € ]1/2, 1]. Here, we may of course replace x
by —x if we make the necessary adjustments. It follows that

3/2 32\ 32 3/2 3/2 3/2
<2j—x>291(2j—x>_(2—x>291(2—x)+(2+x)291<_2+x>

Jiljl=1
3/2 3/4
_ 3/ S X 1/2/ T
Q=027 (1-12)(1+ 1)
3/2 3/4
+ 1j—
(24 x)? X (1—%)(1+ﬁ) [—1/2.11(x)
_ 1/4 L )
T a —2x/3)(1—x/3)1[71,1/2](x)+ (1+2x/3)(1+x/3)1[,]/2,1](x) xel-1 1L
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We may now express the whole sum in (5.8) as
3/2 3/2
> Tl b

) /4 1/4 1
[—1,1/21(x) + (1+2x/3)(1 4+x/3)

R AR T,
_Ir o1 1 1 2 1 |
T 4|1-x/3 + 1+x/3] +1[1_2x/3 - 1—x/3:| [—1.1/2](X)

2 1
1 ~ 1
+4|:1+2x/3 1+x/3] (=1/2.10)
1 S 1 ()+l L 2 | (x)
= — _ X _ X
A T=2x/3 " T3 DAV T T2 " T3] AN

i 1 2
+ 2[1 23 T —2x/3]1]_1’_1/2[(x)
1/2
T 1= (2x/3)?2

—1/2,11(x)

I—1/2,1/21(%)

3/4 . _
+ A= /312013 -1, m=1/2,121x) = 01(x), x€]-1,1[

The constant cg is determined by the requirement that we should have a probability den-
sity, and is easily computed. The proof is complete. O

Remark 5.5. (a) It is possible to establish with similar means the tg-invariant absolutely
continuous probability measure for 8 = n(2n + 1)/(n + 1), where n is a positive integer.

(b) We mention here that the analogous 6, -invariant absolutely continuous probability
measures are known explicitly for y € Z, (see e.g. [7]):

dx
1+x/y

c(y)
1+x/y

1 1
Lioy(x)dx, where — = [ =ylog(l+1/y) (y=1,2,...).
cy) Jo

6. Characterization of the pre-annihilator space M é

6.1. Purpose of the section; some notation

In this section we provide a characterization of the subspace M# in terms of certain
operators. We proceed in a fashion somewhat similar to that used in the proof of Lemma
5.2 in [12]. We recall from Subsection 3.2 that the Koopman operator for 75 is denoted
by C¢;, and recall from Subsection 4.1 that the corresponding Perron—Frobenius operator
is P, : L'([—1,1]) — L'([—1, 1]), given by

P h(x)= ) (ijx)2h( P ) x e[-1,1],

jezx 2j—x
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with the understanding that & € LY([—1, 1]) vanishes off [—1, 1]. Following the notation
of [12], we denote by L;’O(R) the subspace of L°°(R) of 2-periodic functions, which is
the same as the weak-star closure of

span{e!"™* : n € Z}.
Likewise, we let L<°§> (R) be the weak-star closure of
span{e"™P/* . n € 7},

which also has a characterization in terms of periodicity [ f € L°°) (R) if and only if the
function f(B/x)isin L°(R)]. LetS : L*([~1, 1]) — L (R \ [~1, 1]) be the operator
defined by

Sg(x) = g({x}), xeR\[-1,1], 6.1
andlet T : L (R\ [—8, B]) — L°°([—B, B]) be the operator given by
B
T =gl———), -8B, 0}. 6.2
g(x) g( {_ﬁ/m) x € [-B. B\ (0} 62)

It is clear that S and T are linear operators and that they both have norm 1 on the L™
spaces where they are defined. As a consequence, their pre-adjoints S* and T* are norm
contractions on the corresponding L' spaces. The way things are set up, we have

L@R) ={g+8Sg:geL™-11} (6.3)
LigR) ={g+Tg:geL*R\[-B.BD}. 6.4)

We need the following restriction operators (recall that 8 > 1):

Ry LPR\ [-1, 1) — LR\ [-8, B,

Ry : L®([=B, B) — L=(~1, 1]),

Ry : L¥([=B, ) — L=(=B, BI\ [-1, 1]),

Ry : L¥R\[-1,1]) — L=(=8, BI\ [-1, 1]D.
These operators just restrict the given function to a subset, which makes each a norm
contraction. The corresponding pre-adjoints R, for i = 1, 2, 3, 4, act on the correspond-
ing L! spaces, and just extend the given function to a larger set by setting it equal to

zero where it was previously undefined. As 8 > 1, we easily check that C3 = R,TR;S.
Taking the pre-adjoint of both sides, we get

P%ﬂ = S*RIT*R}. (6.5)

6.2. The characterization of the pre-annihilator space Mé‘

We now supply the criterion which characterizes when a given f € L'(R) belongs
to M.
B
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Proposition 6.1 (1 < 8 < 00). Let f € LY(R) be written as

f=hn+rhHh+1
where fi € L'([=1,1]), f» € L'([—B, B1\ [~1,1]), and f3 € L' (R \ [-B, B]). Then
fe /\/lé if and only if
@ I—P) fi = S*(-R} + R{T'RY) 2,
(ii) f3=-T"R} fi —T'R} f2,
where 1 is the identity on L' ([—1, 1]).

Proof. In view of the definition (1.3) of ML and the representations (6.3) and (6.4) of
L3°(R) and Lf/g) (R), we see that f = f] + fo + fzisin M; if and only if

(flg+Sglr=(fi+ 2+ f3.g+Sgr=0, geL>(-11D,
(Lh+Thr =(fi+ fa+ f3,h+Thir =0, heL™R\[-8,B)).
Here, it is assumed that all functions fi, f>, f3 are understood to vanish outside their
domain of definition. We see that the above equations simplify to
(fi, &) —1.n+ (fo+ f3,88)r\[-1,11 =0, g e L>(-1,1],
(f3. m\-p.p1 + (f1 + fo, ThYy—ppy =0, h e LCR\[-B, B].

These equations are equivalent to having

fi==-S*(f2+ f3),
fi =-T*(fi + f2).

A more precise formulation is
fi = =S*R} fo — S'R} f3, (6.6)
f3=-T'R3 fi —=T'R} f2. (6.7)

We note first that (6.7) is the same as (ii). Next, we substitute (6.7) into (6.6) and take into
account (6.5); the result is (i). This completes the proof. ]

7. Exterior spectrum of the Perron—Frobenius operator for a Gauss-type map on
[_ 1 ) 1]

7.1. Purpose of the section

In this section we will show that 4} = 1 is a simple eigenvalue of P,. This corresponds to
having a unique absolutely continuous invariant probability measure for 74 with 8 > 1.
We will also prove that o, (Pr;) N 9D = {1}. In view of Theorem C, these properties
correspond to Tg possessing strong mixing, with exponential decay of correlations (cf.
[22, p. 122]; also, compare with weak mixing [8, p. 22, p. 29], and [16, p. 203]). Another
useful reference is [1].
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7.2. The iterates of an interval
We need the following lemma.

Lemma 7.1 (1 < B < o0). Let Jy be a nonempty open interval contained in [—1, 1].
Then, for large enough positive integers n, say n > ngy, we have tlg'(Jo) O 1-1,1[

Proof. We begin with the observation that if rg(Jo) D ]—1, 1] holds for n = ng, then
it also holds for all n > ng, as most of the branches are complete (at most two may be
incomplete).

Case I: B is an odd integer. Then tg is “filling”, that is, all branches are complete; cf.
Subsection 5.3. This case is well-understood, but it helps our presentation to review it.
We recall from Subsection 5.3 that the fundamental intervals are given by (5.4) with U
being the set of all nonzero integers u with |u| > %(,6 + 1). We note that by (5.6), 15
is expansive: as long as an interval J is contained in one of the fundamental intervals
I, u € U, the image t4(J) is an interval of length at least B times the length of J. We
observe that if our given interval Jy contains one of the fundamental intervals [,,, u € U,
then we are done, because t4(Jo) C |—1, 1] in this case. There are two other possibilities:

(a) The interval Jy is contained in I, for some u € U: In this case tg(Jo) is an interval
of length at least fm(Jyp), by (5.6).

(b) The interval Jy has nonempty intersection with two neighboring fundamental intervals
Iy, Iy, and Jo C clos[I, U I,/]: In this case the length of the intersection of Jy with one
of the two fundamental intervals, say I,, is at least %m(]o). So, we have

m(tg(Jo)) = m(tg(Jo N 1)) > §M(Jo)~ (7.1)

In particular, 74(Jo) contains an interval 7g(Jo N I,,) of length at least % Bm(Jp).

We see that in both cases (a)-(b), the image 74(Jp) contains an interval J; of length
at least %ﬂ m(J). We note that % B> % as B > 1 is an odd integer. By running the same
argument starting from J; in place of Jy, we see that unless J; contains a fundamental
interval (in which case we are done), we obtain an interval J, contained in t5(J;) C
té(]o) of length at least (% ﬂ)zm(.]o). Continuing, we find intervals Ji, J>, ... of length

> (%,B)Im(.lo) with J; C t5(J1—1) C 7:;3(]0), and we stop only when the interval J;
contains a fundamental interval. For a large enough / we must stop, at least because the
length of J; will eventually exceed twice the maximum length of a fundamental interval,

and for that / we have rf;l(Jo) S5 1-1, 1.

Case II: B is not an odd integer. Then we have —1 < {8}, < 1, and with ugy :=
%(ﬂ — {B}2) € Z4, the set U consists of all integers u with |u] > ug. We see that
B =2up+ {B}2 € 12up — 1, 2ug + 1[. The fundamental intervals I, are given by (5.4)
foru € U \ {£up}, while (cf. (5.3))

B B
I, = |——, 1, I.,, =|-1— .
1o :|2u() +1 1o 2ug + 1

On a fundamental interval /,,, the transformation 74 is given by x — 2u — B/x.




54 Francisco Canto-Martin et al.

Case II-A: Jy is an edge fundamental interval, i.e., Jo = I, or Jo = I_,,. When
Jo = 1_y,, we have

18(Jo) = 18(I—uy) = 18 — 2up, 1[ D IM20+1 = ],3 — 2uop, Ym0 1 [ (7.2)
If B —2up < B/Qugp + 3), we have
B B
) =16 =20, 103 T i|2uo T3 T 1|l

so that
T5(Iuy) D Tp(Lugs1) = 1—1, 1[.
It remains to treat the case when 8/(2up + 3) < B8 — 2uy, so that 130+1 C Iyy+1 and in

particular 8 —2ug € I,,,+1. We first claim that there exists a constant 8’ with 1 < g’ < 8,
which only depends on 8, such that

p / B
m(fﬂ (]y o+ 1 D) > pm(y, 1), ye IJOH = [m B — 2u0]. (7.3)

Here, it is clear that ]L}0+1 C Iyy+1, and since g is given by x + 2up +2 — B/x on

Io+1, we have
B
, — f— 2 2— ,1 .
fﬂ(}y Yo i1 2up+2—8/y, 1l

We note that the estimate (7.3) is equivalent to having

By+B/y=2u+1+p. yel, . (74)

The function f(y) = B’'y+ B/y is strictly decreasing in ]0, 1], so it suffices to check (7.4)
at the right endpoint of Iulo 41 Itis a straightforward exercise to verify that (7.4) holds at
y = B —2ug = {B}2 provided that B’ is chosen sufficiently close to 1; it helps to observe
that 8 > 2 because 8/Qug + 3) < B — 2ug. So, (7.4) is valid for B’ > 1 close enough
to 1. If we put J; := t5(I_,,) = 18 —2up, 1[ and J; := t,g(1u20+1) = |tg(B —2up), 1[in
accordance with (7.2), then, in view of (7.2) and (7.3),

B Ctg(J1) and  m(Jr) = B'm(Jy).

If T4(B — 2ug) < B/Quo + 3), then J D I, 41 and so 15(J2) D ]—1, 1] and hence
3 . .

L (I—uy) D 1—1,1[. If not, then we rerun the argument and get ever bigger intervals

whose right endpoint is 1, so eventually the interval must contain I, 1, and we are done.

The case J = I, is analogous and therefore omitted.

Case II-B: Jj is a general nonempty open subinterval of [—1, 1]. We put
= Quo+ 1B
O 2upQuo+ D + B

The point xp belongs to the fundamental interval I, and has

P g
T8 <:| 2uo + 1,xoD =1, and 1 <:| —X0, —mD = Iy,. (7.5)
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A little calculation shows that
Th(x) = B/x§ > 2. x €[—xo.x0l N ULy 1 u €U} (7.6)

Next, put 8”7 := min(B, B8/ (2x§)), so that 8”7 > 1. We have a general nonempty sub-
interval Jy of [—1, 1], and want to show that ré’(]o) covers ]—1, 1[ for some large
enough n. We do this by showing that the length of rg(.lo) must otherwise continue
growing geometrically. We observe that if Jy contains one of the fundamental intervals
I,,u € U, then tg(Jo) D ]-1, 1[ with n = 1 for |u| > ug, and with a possibly large n if
lu| = ug by Case II-A above. If Jy does not contain a fundamental interval, then we are
left with the following two possibilities:

(a) The interval Jy is contained in a fundamental interval I, for some u € U. Then
Ji := 18(Jo) is an interval of length at least 8”m(Jp), by (5.6).

(b) The interval Jy has nonempty intersection with two neighboring fundamental intervals
I, 1, and Jo C clos[I, U I,/]. In this case we have two subcases.

(bl) The interval Jy is contained in [—x¢, xo]. Then one of the two intervals, say I,,, meets
Jo in a subinterval of length at least %m(]o), and J; := 14(Jo N I,) is an open interval
contained in 74 (Jo) of length (cf. (7.6))

pmJo) _
xé -

m(J1) =m(zg(Jo N 1,)) = B"m(Jo).

(b2) The interval Jy is not contained in [—xg, xo]. Then

B B
JoNly D| ——, JoNI_y, D|—x0, — )
0 ug |:21,{0 T ] X0 or 0 ug X0 2M0 + 1

so by (7.5), we have 14(J) D Iy, or 15(J) D Iy,.
If (b2) happens, we are done, because after one iteration of T4 we cover one of the edge
fundamental intervals. If (a) or (b1) takes place, then the set T5(Jp) contains an interval J

of length at least 8”m(Jy). We may then consider J; in place of Jy, and we gain that J; is
longer. Unless we stop, which occurs when the set contains a fundamental interval, we get

a sequence of sets Jo, J1, J2, ..., and their lengths grow geometrically. This is possible
only finitely many times, which means that we eventually cover a fundamental interval.
The proof is complete. O

7.3. Exterior spectrum of the Perron—Frobenius operator

For a real-valued function f, we use the standard convention to write f* = max{f, 0}
and f~ = max{—f,0},sothat f = f+ — f~.

Theorem 7.2 (1 < 8 < 00). Let P,ﬁ be the Perron—Frobenius operator associated to tg
acting on L' ([—1, 11). Then Ay = 1 is a simple eigenvalue of P, and is the only one with
modulus one. Moreover, the eigenfunctions for eigenvalue 1 are nonzero scalar multiples
of 00, where oo dm is the unique ergodic tg-invariant absolutely continuous probability
measure. Also, oo > 0 almost everywhere.
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Proof. To simplify the notation, we write P in place of Pr,. The transformation 7 :
1—1,1] — ]—1, 1] is a partially filling C 2_smooth piecewise monotonic transformation,
which meets the conditions (i) [with m = 1] and (ii) of Theorem C, so that by Remark
5.1(c), the assertion of Theorem C is valid also for 7g. Consequently, A; = 1 is an eigen-
value of P and so there is an eigenfunction o9 € BV([—1, 1]) corresponding to it. From
(3.5) together with the triangle inequality, we see that |Pog| < P|og| pointwise. Since
Poog = 00, we then have

/ IQoldm=/ IPQOIdMS/ P|Q0|dm=/ ol dm.
[—1,1] [—1,1] [—1,1] [—1,1]

This means that we must have [Pog| = P|og| almost everywhere on [—1, 1], and so in
particular P|og| = |ool|. But then |gg| is another eigenfunction for A; = 1. We might as
well replace g by |oo|, which amounts to assuming that oo > 0, and after multiplication
by a suitable positive constant we can assume that

(00, DNi=1,11 = / oodm = 1.
[—1,1]

‘We consider the set
Ay ={x e[—1,1]:00(x) > 0}.

Using (3.2), we see that 74(A;) = A (the dot over the equality sign means that the
sets are equal up to Lebesgue null sets). As an element of BV([—1, 1]), the function gg
can be assumed right-continuous. Then A will contain some nontrivial open interval .
By iteration, we find that rg (Ay) =A4 forn =1,2,..., soin particular, A} contains
‘L'g (o) (up to null sets). From Lemma 7.1 we know that for large enough n, t” (1y) covers
1—1, 1[, and so g9 > 0 almost everywhere on [—1, 1].

Next, we show that the eigenspace for A; = 1 is one-dimensional. We argue by con-
tradiction, and suppose that there exists a nontrivial n; € LY([—1, 1]) such that 00, 171 are
linearly independent and P51 = 1. From Theorem C we know that n; € BV([—1, 1]).
We consider the function

f=1{n, D=,y 00 — m € BV([—1, 1]),

which has (f, 1)[—1,17) = 0and Pf = f. By replacing n; by its real or imaginary part (this
is possible since P preserves real-valuedness), we may assume that 7 is real-valued, so
that f is real-valued. We can also assume that f € BV([—1, 1]) is right-continuous. We
now write f = fT — f~, and observe that £+, £~ are also right-continuous functions
in BV([—1, 1]). Unless one of f +, f~ vanishes almost everywhere, both must be posi-
tive on some open intervals Iy, I_, respectively. In view of (3.5), forn = 1,2, ..., the
functions P” T, P" f~ are then positive almost everywhere on the sets T (1), (1),
respectively. Lemma 7.1 then entails that there exists a positive integer ng such that
P"0 £+ P" £~ are both positive almost everywhere on [—1, 1]. Since P* f = f for all
n=1,2,..., we must then have

Lf g =P fllgr = 1P fF =P f 7l < [POfTHP N = fllp, (77
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where the L! norm is with respect to the interval [—1, 1]. This contradiction shows that at
least one of f*, f~ must be identically zero (almost everywhere). But as ( f, 1)[-1.1] = 0,
both T, £~ must then be the 0 function. This implies that 1 is a scalar multiple of oo,
a contradiction. We conclude that Ay = 1 is a simple eigenvalue (i.e., it has a one-
dimensional eigenspace).

Next, we turn to the assertion that g dm is the unique ergodic tg-invariant abso-
lutely continuous probability measure. This is a consequence of Proposition A.2.5 in
[16], since oo dm is an absolutely continuous measure with o9 > 0 almost everywhere
and Pop = 0.

Finally, we show that P has no other eigenvalues than 1 on the unit circle T. Suppose A,
with |A| = 1 and A # 1, is an eigenvalue of P, and #, € L'([—1, 1]) is the nontrivial
eigenfunction corresponding to A, which we may normalize: ||72]/;1 = 1. From (3.5)
together with the triangle inequality, we have |Pny| < P|n>| pointwise, and so, since
Py = Ana,

/ In2l dm =f |A 2| dm =/ |Pna| dm Sf Plna|dm
[—1,1] [-1,1] [-1,1] [—1,1]

=/ il dm.
[—1,1]

This means that we must have |Pn;| = P|n;| almost everywhere on [—1, 1], and con-
sequently P|na| = |n2|. But then |n2| = o, as the eigenspace for Ay = 1 was one-
dimensional and spanned by gg. We write 1, = x 09, where the function x € L*°([—1, 1])
has | x| = 1 almost everywhere. When we take another look at the argument we just used
involving equality in the triangle inequality, we realize that y must have the property

X(Tp(x) = Ax(x), xe[-1,1],
in the almost-everywhere sense. By iteration, we get
X)) =2"xx), xel-1,1,n=12,.... (7.8)

We pick a point xg where pg(xg) > 0, and by right-continuity there exists a nonempty
(short) interval ]xg, x1[ where pg, 72 are both very close to the value at xg, so that y is
close to its value at xg as well: say, for some small € > 0,

[x(x) — x(x0)| <€, x € lxg, x1[.

Next, let n be such that rg (Ix0, x1[) D ]—1, 1[. Then, by (7.8),

Ix(tg(x)) — A" x (x0)| <€, x € Jxo, x1l,
so that
Ix() —A"x(xo)l <€, yel-1,1[
This means that x is within distance € of a constant function. As € can be made as small

as we like, the only possibility is that x is equal to a constant. But then (7.8) is impossible
unless A = 1, contrary to assumption. The proof is complete. O
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Remark 7.3 (1 < B < 00). A dynamical system (I, S, u, ), where u is finite and
invariant under t, is said to be exact when

Jim p(2"(A) = w(D), A€6.

It is known that 7 is strong mixing whenever (I, G, u, t) is exact [22, p. 125]. If g¢ stands
for the density of the unique absolutely continuous tg-invariant probability measure, then

([-1, 11, B(—1,1], 0o dm, 1)
is exact. In particular,

Jim m(tg(A)) =m(=1.1D), A€ By

This can be obtained from Lemma 7.1 directly, by localizing around a point of A with
density 1 and using the distortion control available from the control on the second deriva-
tive; cf. [14]. This suggests another (shorter) way to obtain the assertion of Theorem 7.2.
We deduce that T4 possesses strong mixing from exactness, and then only the eigenvalue
1 can occur and it must be simple.

8. Proofs of the main results

8.1. Proof of Theorem 1.3

To prove Theorem 1.3, we will need to consider the space BV([—8, 8] \ [—1, 1]) of
complex-valued integrable functions defined on [—8, —1] U [1, ] whose restrictions to
[—B, —1] belong to BV([—8, —1]) and whose restrictions to [1, 8] belong to BV([1, 8]).

Lemma 8.1 (1 < B < 00). The operator —S*R} + S*RIT*R; maps BV([—8, B] \
[—1, 1]) into BV([—1, 1]).
Proof. Let f, € BV([—B, BI\[—1, 1]). The operator S* : L' (R\[—1, 1]) — L'([—1, 1])
is given by
S*h(x) = Y h(x+2k), xe[-11].
keZ*
As
Ri:L'(=B, BIN[-1,1D) — L'®R\ [=1, 1])
extends the function by letting it vanish where it was previously undefined, the function
S*Rj /> is just a finite sum of functions of bounded variation, so that we have

S*R} f» € BV([—1, 1]). 8.1

On the other hand, we can easily check that C? = TR;SR,, where C = Cfﬁ is the
Koopman operator associated to the transformation 7g : [—8, B] — [—p, B] given by
7(0) = 0 and

Tp(x) = {-B/x}2, x €[4, BI\ {0}
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IfP = Pz, : L'([-B, B) — L' ([—B, B)) is the corresponding Perron-Frobenius opera-
tor, whose adjoint is C, we find that

P> = RIS*RIT*. (8.2)

We easily check that T4 satisfies conditions (i) (with m = 2) and (ii) of Theorem C.
Although T is only “partially filling”, Theorem C remains nevertheless valid in view of

Remark 5.1. In particular, P transforms BV ([—28, B]) into itself. Since R’3‘ and R; act as
extension by zero, it follows from (8.2) that

S*RIT*R;] f» € BV([—1, 1]). (8.3)

Adding up, we see from (8.1) and (8.3) that
—S*R} > + S'RIT*R} f>» € BV([—1, 1])

for every fo € BV([—8, B]\ [—1, 1]). The proof is complete. O
We have now developed the tools needed to obtain Theorem 1.3. Actually, we formulate
a more precise result.
Theorem 8.2 (1 < B < 00). There exists a bounded operator E : BV([—8, B] \
[—1, 1]) = LY(R) with the following properties:

(i) E is an extension operator, in the sense that E f (x) = f(x) almost everywhere on

[=B. BI\[=1.1] forall f € BV([=B, ]\ [=1. 1].

(ii) The range of E is infinite-dimensional, and contained in ./\/lfg‘

Proof. To simplify the notation, we write P, C in place of Pr,, Cry, respectively. By
Theorem C (valid by Remark 5.1(c)) together with Theorem 7.2, we have the following
representation for the iterates of P:

P'h = {(h, po)-1.11} 00 +Z"h, h e LY(-1,1),n=1,2,..., (8.4)

where we write Z in place of Z,ﬁ, and ¢9 € L*°([—1, 1]) has (0o, ¢0)1—1,11 = 1. Here,
0o > 0 is the density of the absolutely continuous 7g-invariant probability measure on
[—1, 1]; we have g9 € BV([—1, 1]). The operator Z acts on BV([—1, 1]) and its spectral
radius is < 1. Since oo is invariant under P, we must have Zpy = 0. We now argue that
¢o = 1 (the constant function). Indeed, for each h € BV([—1, 1]), (8.4) gives

(h, )i—1,11 = (h, C"){—1,11 = (P"h, 1)[_1,1
= (h, ¢o)[-1,11(00, D—1,11 + (Z"h, 1)[_1,11
= (h, ¢o)[-1,0 + (Z"h, 1)—1,1] = (h, do)[=1.1] (8.5)

as n — oo, since Z"h — 0 exponentially. Here, we used that {(0g, 1)[—1,1] = 1, which
follows since gy is the density of a probability measure. Finally, as BV([—1, 1]) is dense
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in L1([—1, 1]), we conclude from (8.5) that ¢o = 1 a.e. on [—1, 1]. The formula (8.4) is
now even simpler:

P'h = {(h, )j—1.n}00 +Z"h, he L'(-1,1),n=1,2,.... (8.6)
We may now read off from (8.5) that
(Z'h, 1)[=1.11=0, he L'(-1,1),n=1,2,..., 8.7

if we observe that the calculation preceding the limit in the last step of (8.5) works for
general h € LY([—1, 1]). Let us take an arbitrary element f € BV([—8, 8]\ [—1, 1]).
From Lemma 8.1 above, we know that

—S*R} f + S*RIT*R; f € BV([—1, 1]).
Since Z has spectral radius < 1 on BV([—1, 1]), the Neumann series
A-ZH ' =1+72>+7Z* + - -.
converges to a bounded operator on BV([—1, 1]), and we may put
E\f:= (- Z)7'S*{-R}f + RIT*R} f} € BV([—1, 1]). (8.8)
We observe that
(=S"Ryf + S'RIT*RS £, )—1,11 = (. Di—g.pni-1.11 — (f, Di=p.pni-1.11 =0,
and so, by (8.7) and (8.8),
(E1f, D=1, = (A= ZHE( f, 1){—1,1] = 0. (8.9)
Finally, we put
Eif = —-T*(R3E; +R)) f € L'(R\ [-8. B]). (8.10)
We define the operator E to be the mapping
E:BV(—B.BI\[-1.1) » L'®), [+ f+Eif +Esf,

with the understanding that each of the functions f, E; f, E; f is extended to R by putting
it equal to 0 where it was previously undefined. Then E is clearly bounded and linear,
and has the property (i). In view of (8.9) and (8.6), we have P"E| f = Z"E| f forn =
1,2, .... This means that in condition (i) of Proposition 6.1, we may replace P2 by 72,
and we just obtain the condition (i) of Proposition 6.1 rather immediately from (8.8). The
condition (ii) of Proposition 6.1 is immediate from (8.10). By Proposition 6.1, we have

imE c M7,

which proves (ii), since the range of E must be infinite-dimensional (the restriction to
[—B, B]\ [—1, 1] of the range is infinite-dimensional, being the space of all functions of
bounded variation). This completes the proof of Theorem 8.2. O
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Proof of Theorem 1.3. This is immediate from Theorem 8.2(ii). O

The next theorem shows that the range of E constructed in in the proof of Theorem 1.3 is
a subspace of the weighted space L?(R, ), where »(x) := 1 4+ x2, with norm

|m@®@=4u%mn

Proposition 8.3. The range of E is contained in L*(R, w).

Proof. Let f € BV([—8, 8]\ [—1, 1]). Following the proof of Theorem 8.2, we see
that E{ f € BV([—1, 1]), so that the restriction of Ef to the interval [—8, 8] has
bounded variation. In particular, E f is bounded on [—J8, 8], so we just need to estimate
the weighted L?-norm integral on R \ [—8, B]. The restriction of Ef to R \ [—8, ]

equals E3 f, given by (8.8), which we understand as E3f = —T*h. The operator
T : L'([—B, B]) = L' (R \ [—B, B]) is given explicitly by
2
T = 3 —L 2h( P ) @.11)
= (B+2jx)* \B+2jx
JjEZ
with the understanding that 4 vanishes off [— 8, ]. We write
Bx ) B
hi(x) =h , e R\ [-5, B]
i) <ﬁ+%x(ﬂ+%w2 reRALEA A

As h is bounded, it is clear from (8.11) that E3 f is bounded on R \ [—S, B]. Since E3 f
is also summable, we must have

f |E3 f (x)]? dx < oo.
R\[-B.6]

Hence, it is enough to show that

2
/ [E3 £ (x)[>x% dx :/ ‘ > hj(x)‘ x% dx < oo. (8.12)
R\[B.5] R\[-B.81' ez
A straightforward computation shows that
B B
2.2 2j-1 2.2 2 2=t 5

/ |hj(x)| x“dx Z/ﬂ |h(x)| x“dx = ||h||L°°([7ﬂ,/3])/‘ﬁ x“dx
R\[-8,8] T 21

B
< S Il q—p.pp-

As a consequence, we obtain

172
Z {/ |h.,-()c)|2)c2 dx} < 00,
jezx WR\[=B.f]

which entails (8.12). The proof is complete. O
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Remark 8.4. The range of the operator E is a proper subspace of M7+, even if we con-
sider the closure of the range. Actually, if in the context of Proposition 6.1 we plug in
f1 := 0o (notation as in Theorem 7.2) and f> := 0, and put f3 := —T*R00, then we
obtain a function ¥ := f1 + f2 + f3 = 00 — T*Rz00 which is in the annihilator .Mé,
but v is not in the closure of the range of E. So a natural question is whether

span{yo} & clos[imE] = ./\/lfg‘

This would be quite reasonable from the point of view of the proof of Proposition 6.1.

8.2. Proof of Theorem 1.4

We turn to the proof of Theorem 1.4. We know from [13] that AV, é‘ is one-dimensional for
B = 2. We shall write 8 = 2y, and suppose that y > 1. We need the operators

S4 1 L([0, 1) — L¥([1, 00[), Sig(x) = g({x}1),

and

T, : L[y, 00) = L=([0,y]D), Tigx):= 8( Y )
{v/xh

Their pre-adjoints map contractively
St L'((1,00D) — L'(0, 1), T% : L'([0, y]) — L' (Ly. ooD).
We need the following restriction operators:
Rs : L*([1, oo[) — L*=([y, ool),
R : L([0, y1) — L=([0, 1]),
R7 1 L([0, y]) — L*=([1, ¥ D),
Rg : L([1, 00[) — L=([1, ¥])

and their pre-adjoints R3, R¢, R%, Rg, which act on the corresponding L'-spaces. We let
P, := Py, denote the Perron—Frobenius operator associated to the Gauss-type transfor-
mation 6, : [0, 1[ — [0, 1[, where 6,,(0) := 0 and 6, (x) := {y/x}; for x € 0, 1[; cf.
Section 4. The analogue of (6.5) in this context is

2
P, =SIRIT.R;. (8.13)
We also have an analogue of Proposition 6.1.
Proposition 8.5 (1 < y < 00). Let f € L'([0, oo|) be written as
f=h+f+f

where fi € L'([0, 1)), f> € L'([1, y), and f3 € L'([y, oo[). Then f € Njy if and only
if

@) I —P3) fi = S5.(—R§ + RETLRY) o,
(i) f3=-TiRg fi — TR} f>,
where 1 is the identity on L'([0, 1)).
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The proof is completely analogous to that of Proposition 6.1, and we omit it. Since y > 1,
the transformation 0, is uniformly expansive, and if we analyze its spectral properties on
BV([0, 1]), we see that P, has a spectral gap. More precisely, in the context of Theorem C
[valid by Remark 5.1(c)], we can show that o (P_) N'T = {1} and that the eigenvalue 1 is
simple. This leads to the following assertion, analogous to Theorem 8.2. Again, we omit
the proof.

Theorem 8.6 (1 < y < 00). There exists a bounded operator E4 : BV([1, y]) —
LY([0, co[) with the following properties:

(i) E+ is an extension operator, in the sense that E f (x) = f(x) almost everywhere on

(L, y] forall f € BV([1, y].
(i1) The range of E_ is infinite-dimensional, and contained in NZJ}‘,

Proof of Theorem 1.4. This is immediate from Theorem 8.6(ii). m]

9. Final remarks

9.1. A related problem in the Hardy space of the unit disk

An algebra of inner functions in the Hardy spaces H? of the unit disk was considered
by Matheson and Stessin [21]. This algebra depends on a parameter § > 0, and can be
assumed to be

Ag = span{e ™" 1% e FEE Lm0 =0,1,2,.. ), ©.1)

where the span is in the sense of finite linear combinations. The main result of [21] asserts
that for any finite p, Ag is dense in H” for 8 < 1, while it fails to be dense for 8 > 1.1t
is natural to also consider the (smaller) space

Sp = spanfe ™" ¢TI L0 =0,1,2,..). 9.2)
Forn =0,1,2,..., let ¢" denote the function
¢"(2) == T 67”"’3%2, z € D.
Then we clearly have the decomposition
Ap =S+ ¢Sp+¢*Sp+ -+,

in the sense of finite sums. As a consequence of the main result in [12], Theorem A,
we know that S is dense in the weak-star topology of BMOA, and hence in the norm
topology in H? for all finite p. It would appear rather plausible that the codimension of
the H”-closure of .Ag might be finite for 8 > 1, as there are only finitely many points
in the unit disk which are not separated by the generating inner functions. However, so
far, we cannot provide an answer to this question. With the aid of Theorem 1.3 we can
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however prove that the H2-closure of the space Sp has infinite codimension for 8 > 1.
An outline of the argument is provided below.
We assume 8 > 1, and pick an arbitrary natural number N > 1. By Theorem 8.2, we

can pick linearly independent elements fi,..., fx € Mé in the range of E, which all
vanish on some proper subinterv~al of [1, B], say on [1, B'], where 1 < B’ < B. We define
linearly independent functions f;, j =1, ..., N, on the unit circle T as follows:

1 ~(1+ix ] )
fj( )=(1+lx)fj(X), j=1,...,N.

1 —ix 1 —ix

Next, by Proposition 8.3, the functions fj belong to L?(T) and they all vanish on a certain
arc of T. Let Q : L?(T) — H? denote the orthogonal (Szego) projection.

We claim that the projected functions Q f; j =1,..., N, are linearly independent.
Indeed, a relation of the form

N

ZCijj = O, Cj (S (C,

j=1
implies that the function fyum := Z]N:l Cj f] belongs to L>(T) & H? = conj H?, where
“conj” means complex conjugation, and HO2 is the subspace of H? of functions that vanish
at the origin. Now the function fyun is in conj Hg and vanishes along an arc of the circle T,
so by e.g. Privalov’s theorem, fsum = O on all of T. From this and the linear independence
of the functions fi,..., fy, we obtainc; = O forall j = 1,..., N. So, the projected
functions Q fj, j =1,..., N,are linearly independent, as claimed. Finally, we claim that
Qf, Jj=1,..., N, belong to the ortho-complement of Sg in H2.1f (-, -) g2 denotes the
sesquilinear inner product of H 2. we calculate that form =0, 1,2, ...,

= —mrmi=z 1 r . *ﬂmﬂ
(QF. e ™), = E/TQf,-(oconJ(e ) d|

1 - e 1 .
= —/ fj(¢) conj(e” ™" ) | dg | = —/ fi(x)e™ dx =0,

27 J1 T JR

where we use fj € ./\/lfg- In an analogous fashion, we find that forn =0, 1,2, ...,
B 1 x ., —mBn L

(@ e ™) o = 5 /Tij(C)COHJ(e L) |dg |

1 z . —mpnitE 1 —imfn/x

=— | fi@©conj(e ") (3¢ = = [ fi(x)e dx =0,
2w Jr T JR

where we we again use f; € M é It follows that the codimension of the H>-closure of

Sp must be > N. As N was arbitrary, this means that the H 2_closure of Sp must have
infinite codimension in H2.
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