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Abstract. We study the null controllability of the parabolic equation associated with the Grushin-
type operator A = ∂2

x + |x|
2γ ∂2

y (γ > 0) in the rectangle � = (−1, 1)× (0, 1), under an additive
control supported in an open subset ω of �. We prove that the equation is null controllable in any
positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1. In
the transition regime γ = 1 and when ω is a strip ω = (a, b) × (0, 1) (0 < a, b ≤ 1), a positive
minimal time is required for null controllability. Our approach is based on the fact that, thanks to the
particular geometric configuration of�, null controllability is closely linked to the one-dimensional
observability of the Fourier components of the solution of the adjoint system, uniformly with respect
to the Fourier frequency.

Keywords. Null controllability, degenerate parabolic equations, Carleman estimates

1. Introduction

1.1. Main result

We consider the Grushin-type equation{
∂tf − ∂

2
xf − |x|

2γ ∂2
yf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0,∞)×�,

f (t, x, y) = 0, (t, x, y) ∈ (0,∞)× ∂�,
(1)

where � := (−1, 1)× (0, 1), ω ⊂ �, and γ > 0. Problem (1) is a linear control system
in which

• the state is f ,
• the control u is supported in the subset ω.

It is a degenerate parabolic equation, since the coefficient of ∂2
yf vanishes on the line

{x = 0}. We will investigate the null controllability of (1).
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Definition 1 (Null controllability). Let T > 0. System (1) is null controllable in time T
if, for every f0 ∈ L

2(�), there exists u ∈ L2((0, T )×�) such that the solution of
∂tf − ∂

2
xf − |x|

2γ ∂2
yf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )×�,

f (t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�,
f (0, x, y) = f0(x, y), (x, y) ∈ �,

(2)

satisfies f (T , ·, ·) = 0.
System (1) is null controllable if there exists T > 0 such that the system is null

controllable in time T .

The main result of this paper is the following one.

Theorem 1. Let ω be an open subset of (0, 1)× (0, 1).

1. If γ ∈ (0, 1), then system (1) is null controllable in any time T > 0.
2. If γ = 1 and ω = (a, b)× (0, 1) where 0 < a < b ≤ 1, then there exists T ∗ ≥ a2/2

such that
• for every T > T ∗ system (1) is null controllable in time T ,
• for every T < T ∗ system (1) is not null controllable in time T .

3. If γ > 1, then (1) is not null controllable.

By duality, the null controllability of (1) is equivalent to an observability inequality for
the adjoint system{

∂tg − ∂
2
xg − |x|

2γ ∂2
yg = 0, (t, x, y) ∈ (0,∞)×�,

g(t, x, y) = 0, (t, x, y) ∈ (0,∞)× ∂�.
(3)

Definition 2 (Observability). Let T > 0. System (3) is observable in ω in time T if there
exists C > 0 such that, for every g0 ∈ L

2(�), the solution of
∂tg − ∂

2
xg − |x|

2γ ∂2
yg = 0, (t, x, y) ∈ (0, T )×�,

g(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�,
g(0, x, y) = g0(x, y), (x, y) ∈ �,

(4)

satisfies ∫
�

|g(T , x, y)|2 dx dy ≤ C

∫ T

0

∫
ω

|g(t, x, y)|2 dx dy dt.

System (3) is observable in ω if there exists T > 0 such that the system is observable
in ω in time T .

Theorem 2. Let ω be an open subset of (0, 1)× (0, 1).

1. If γ ∈ (0, 1), then system (4) is observable in ω in any time T > 0.
2. If γ = 1 and ω = (a, b)× (0, 1) where 0 < a < b ≤ 1, then there exists T ∗ ≥ a2/2

such that
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• for every T > T ∗ system (4) is observable in ω in time T ,
• for every T < T ∗ system (4) is not observable in ω in time T .

3. If γ > 1, then system (4) is not observable in ω.

Remark 1. When γ = 1, the geometric restriction on the control domain ω only affects
our positive result. Indeed, Theorem 1 trivially implies that (1) fails to be null controllable
(if γ = 1 and T is small) when ω is any connected open set at positive distance from the
degeneracy region {x = 0}. It is also straightforward to observe that, if ω contains a strip
containing {x = 0}, then null controllability holds for any γ > 0 thanks to standard
localization arguments (see the Appendix).

1.2. Motivation and bibliographical comments

1.2.1. Null controllability of the heat equation. The null and approximate controllability
of the heat equation are essentially well understood subjects for both linear and semilinear
equations, and for bounded or unbounded domains (see, for instance, [15], [19], [21], [22],
[23], [27], [31], [32], [36], [39], [40], [45], [46]). Let us summarize one of the existing
main results. Consider the linear heat equation ∂tf −1f = u(t, x)1ω(x), (t, x) ∈ (0, T )×�,

f (t, x) = 0, (t, x) ∈ (0, T )× ∂�,
f (0, x) = f0(x), x ∈ �,

(5)

where� is an open subset of Rd , d ∈ N∗, and ω is a subset of�. The following theorem is
due, for the case d = 1, to H. Fattorini and D. Russell [20, Theorem 3.3], and, for d ≥ 2,
to O. Imanuvilov [29], [30] (see also the book [25] by A. Fursikov and O. Imanuvilov)
and G. Lebeau and L. Robbiano [32] (see also [33]).

Theorem 3. Let� be a bounded connected open set with boundary of class C2 and ω be
a nonempty open subset of �. Then the control system (5) is null controllable in any time
T > 0.

So, the heat equation on a smooth bounded domain is null controllable

• in arbitrarily small time;
• with an arbitrarily small control support ω.

Recently, null controllability results have also been obtained for uniformly parabolic op-
erators with discontinuous (see, e.g., [16], [4], [5], [42]) or singular ([43] and [18]) coef-
ficients.

It is then natural to wonder whether null controllability also holds for degenerate
parabolic equations such as (1). Let us compare the known results for the heat equation
with the results proved in this article. The first difference concerns the geometry of �:
a more restrictive configuration is assumed in Theorem 1 than in Theorem 3. The sec-
ond difference concerns the structure of the controllability results. Indeed, while the heat
equation is null controllable in arbitrarily small time, the same result holds for the Grushin



70 K. Beauchard et al.

equation only when degeneracy is not too strong (i.e. γ ∈ (0, 1)). On the contrary, when
degeneracy is too strong (i.e. γ > 1), null controllability does not hold any more. Of
special interest is the transition regime (γ = 1), where the ‘classical’ Grushin operator
appears: here, both behaviors live together, and a positive minimal time is required for
null controllability.

1.2.2. Boundary-degenerate parabolic equations. The null controllability of parabolic
equations degenerating on the boundary of the domain in one space dimension is well-
understood, much less so in higher dimension. Given 0 < a < b < 1 and γ > 0, let us
consider the 1D equation

∂tw + ∂x(x
2γ ∂xw) = u(t, x)1(a,b)(x), (t, x) ∈ (0,∞)× (0, 1),

with suitable boundary conditions. Then it can be proved that null controllability holds if
and only if γ ∈ (0, 1) (see [12, 13]), while, for γ ≥ 1, the best result one can show is “re-
gional null controllability” (see [11]), which consists in controlling the solution within the
domain of influence of the control. Several extensions of the above results are available
in one space dimension; see [1, 37] for equations in divergence form, [10, 9] for nondi-
vergence form operators, and [8, 24] for cascade systems. Fewer results are available for
multidimensional problems, mainly in the case of two-dimensional parabolic operators
which simply degenerate in the normal direction to the boundary of the space domain
(see [14]). Note that, similarly to the above references, also for the Grushin equation null
controllability holds if and only if the degeneracy is not too strong.

1.2.3. Parabolic equations degenerating inside the domain. In [38], the authors study
linearized Crocco type equations ∂tf + ∂xf − ∂vvf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× (0, L)× (0, 1),

f (t, x, 0) = f (t, x, 1) = 0, (t, x) ∈ (0, T )× (0, L),
f (t, 0, v) = f (t, L, v), (t, v) ∈ (0, T )× (0, 1).

For a given open subset ω of (0, L) × (0, 1), they prove regional null controllability.
Notice that, in the above equation, diffusion (in v) and transport (in x) are decoupled.

In [3], the authors study the Kolmogorov equation

∂tf + v∂xf − ∂vvf = u(t, x, v)1ω(x, v), (x, v) ∈ (0, 1)2, (6)

with periodic type boundary conditions. They prove null controllability in arbitrarily
small time, when the control region ω is a strip parallel to the x-axis. We note that the
above Kolmogorov equation degenerates on the whole space domain, unlike Grushin’s
equation. However, differently from the linearized Crocco equation, transport (in x at
speed v) and diffusion (in v) are coupled. This is why the null controllability results are
also different for these equations.

1.2.4. Unique continuation and approximate controllability. It is well-known that, for
evolution equations, approximate controllability can be equivalently formulated as unique
continuation (see [44]). The unique continuation problem for the elliptic Grushin-type
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operator
A = ∂2

x + |x|
2γ ∂2

y

has been widely investigated. In particular, in [26] (see also the references therein) unique
continuation is proved for every γ > 0 and every open set ω. For the parabolic Grushin-
type operator studied in this paper, unique continuation holds for every γ > 0, T > 0,
and any open set ω ⊂ � (see Proposition 3).

1.2.5. Null controllability and hypoellipticity. It could be interesting to analyze the con-
nections between null controllability and hypoellipticity. We recall that a linear differen-
tial operator P with C∞ coefficients in an open set � ⊂ Rn is called hypoelliptic if, for
every distribution u in �, we have

sing supp u = sing suppPu,

that is, umust be aC∞ function in every open set where so is Pu. The following sufficient
condition (which is also essentially necessary) for hypoellipticity is due to Hörmander
(see [28]).

Theorem 4. Let P be a second order differential operator of the form

P =

r∑
j=1

X2
j +X0 + c,

where X0, . . . , Xr denote first order homogeneous differential operators in an open set
� ⊂ Rn with C∞ coefficients, and c ∈ C∞(�). Assume that there exist n operators
among

Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], . . . , [Xj1 , [Xj2 , [Xj3 , [. . . , Xjk ] . . . ]]],

where ji ∈ {0, 1, . . . , r}, which are linearly independent at any given point in �. Then P
is hypoelliptic.

Hörmander’s condition is satisfied by the Grushin operator A = ∂2
x + |x|

2γ ∂2
y for every

γ ∈ N∗ (for other values of γ , the coefficients are not C∞). Indeed, set

X1(x, y) :=

(
1
0

)
, X2(x, y) :=

(
0
xγ

)
.

Then

[X1, X2](x, y) =

(
0

γ xγ−1

)
, [X1, [X1, X2]](x, y) =

(
0

γ (γ − 1)xγ−2

)
, . . .

Thus, if γ = 1, Hörmander’s condition is satisfied with X1 and [X1, X2]. In general, if
γ ≥ 1, then γ iterated Lie brackets are required.

Theorem 1 emphasizes that hypoellipticity is not sufficient for null controllability:
Grushin’s operator is hypoelliptic for all γ ∈ N∗, but null controllability holds only when
γ = 1.

A general result which relates null controllability to the number of iterated Lie brack-
ets that are necessary to satisfy Hörmander’s condition would be very interesting, but
remains—for the time being—a challenging open problem.
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1.2.6. Sensitivity to singular lower order terms. In [7], the authors study the Laplace–
Beltrami operator on a 2D compact manifold endowed with a 2D almost Riemannian
structure. Under very general assumptions, they prove that this operator is essentially
selfadjoint. In the particular case of the Grushin metric, their result implies that any solu-
tion of

∂tf − ∂
2
xf − x

2∂2
yf −

1
x
∂xf = 0, x ∈ R, y ∈ T,

such that f (0, ·, ·) is supported in R∗+ × T stays supported in this set. As a consequence,
with a distributed control as a source term in the right hand side, supported in R∗+ × T,
this system is not null controllable. This example shows that the control result studied in
this article is sensitive to the addition of singular lower order terms.

1.3. Structure of the article

Section 2 is devoted to general results about Grushin’s equation: well posedness in Section
2.1, Fourier decomposition of solutions and unique continuation in Section 2.2, dissipa-
tion rate of the Fourier components in Section 2.3.

Section 3 is devoted to the proof of the negative statements of Theorem 2, (and, equiv-
alently, of Theorem 1), when γ > 1 or γ = 1 and T is small. In Section 3.1 we present
the strategy for the proof, which relies on uniform observability estimates with respect
to Fourier frequencies. Then we show the negative statements of Theorem 2, thanks to
appropriate test functions to falsify uniform observability, in Section 3.2 for γ > 1 and in
Section 3.3 for γ = 1.

Section 4 is devoted to the proof of the positive statements of Theorem 1, (and equiv-
alently of Theorem 2) when γ ∈ (0, 1) or γ = 1 and T is large. In Section 4.1 we prove
a useful Carleman inequality for 1D heat equations with parameters. In Section 4.2, we
obtain observability for such equations, uniformly with respect to the parameter. In Sec-
tion 4.3, we prove Theorem 2 when γ > 1. Then, in Section 4.4, we conclude the proof
of Theorem 2.

Finally, in Section 5, we briefly outline some open problems related to this paper. An
appendix devoted to the case of {x = 0} ⊂ ω completes the analysis.

2. Well posedness and Fourier decomposition

2.1. Well posedness of the Cauchy problem

Let H := L2(�), and denote by 〈·, ·〉 and ‖ · ‖H , respectively, the scalar product and
norm in H . Define the product

(f, g) :=

∫
�

(fxgx + |x|
2γ fygy) dx dy (7)

for every f , g in C∞0 (�), and set V = C∞0 (�)
| · |V , where |f |V := (f, f )1/2.
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Observe that H 1
0 (�) ⊂ V ⊂ H , thus V is dense in H . Consider the bilinear form a

on V defined by

a(f, g) = −(f, g) ∀f, g ∈ V. (8)

Moreover, set

D(A) = {f ∈ V : ∃c > 0 such that |a(f, h)| ≤ c‖h‖H ∀h ∈ V }, (9)
〈Af, h〉 = a(f, h) ∀h ∈ V. (10)

Then we can apply a result by Lions [35] (see also Theorem 1.18 in [44]) to conclude
that (A,D(A)) generates an analytic semigroup S(t) of contractions on H . Note that A
is selfadjoint on H , and (10) implies that

Af = ∂2
xf + |x|

2γ ∂2
yf a.e. in �.

So, system (2) can be recast in the form

{
f ′(t) = Af (t)+ u(t), t ∈ [0, T ],
f (0) = f0,

(11)

where T > 0, u ∈ L2(0, T ;H) and f0 ∈ H .
Let us now recall the definition of weak solutions to (11).

Definition 3 (Weak solution). Let T > 0, u ∈ L2(0, T ;H) and f0 ∈ H . A function
f ∈ C([0, T ];H) ∩ L2(0, T ;V ) is a weak solution of (11) if for every h ∈ D(A) the
function 〈f (t), h〉 is absolutely continuous on [0, T ] and for a.e. t ∈ [0, T ],

d

dt
〈f (t), h〉 = 〈f (t), Ah〉 + 〈u(t), h〉. (12)

Note that, as showed in [34], condition (12) is equivalent to the definition of solution
by transposition, that is,

∫
�

[f (t∗, x, y)ϕ(t∗, x, y)− f0(x, y)ϕ(0, x, y)] dx dy

=

∫ t∗

0

∫
�

{f (∂tϕ + ∂
2
xϕ + |x|

2γ ∂2
yϕ)+ uϕ} dx dy dt

for every ϕ ∈ C2([0, T ] ×�) and t∗ ∈ (0, T ).
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Let us recall that, for every T > 0 and u ∈ L2(0, T ;H), the mild solution of (11) is
defined as

f (t) = S(t)f0 +

∫ t

0
S(t − s)u(s) ds, t ∈ [0, T ]. (13)

From [2], we know that the mild solution to (11) is also the unique weak solution in the
sense of Definition 3. The following existence and uniqueness result follows.

Proposition 1. For every f0 ∈ H , T > 0 and u ∈ L2(0, T ;H), there exists a unique
weak solution of the Cauchy problem (11). This solution satisfies

‖f (t)‖H ≤ ‖f0‖H +
√
T ‖u‖L2(0,T ;H) ∀t ∈ [0, T ]. (14)

Moreover, f (t) ∈ D(A) and f ′(t) ∈ H for a.e. t ∈ (0, T ).

Proof. (14) follows from (13). Moreover, since S(·) is analytic, t 7→ S(t)f0 belongs to
C1((0, T ];H)∩C0((0, T ];D(A)), and t 7→

∫ t
0 S(t−s)u(s) ds belongs toH 1(0, T ;H)∩

L2(0, T ;D(A)). In particular f (t) ∈ D(A) and f ′(t) ∈ H for a.e. t ∈ (0, T ) (see,
e.g., [6]). ut

2.2. Fourier decomposition and unique continuation

Let us consider the solution of (4) in the sense of Definition 3, that is, the solution of sys-
tem (11) with u = 0. Since g belongs to C([0, T ];L2(�)), the function y 7→ g(t, x, y)

belongs to L2(0, 1) for a.e. (t, x) ∈ (0, T )× (−1, 1), thus it can be developed in Fourier
series with respect to y as follows:

g(t, x, y) =
∑
n∈N∗

gn(t, x)ϕn(y), (15)

where
ϕn(y) :=

√
2 sin(nπy) ∀n ∈ N∗

and

gn(t, x) :=

∫ 1

0
g(t, x, y)ϕn(y) dy ∀n ∈ N∗. (16)

Proposition 2. For every n ≥ 1, gn is the unique weak solution of
∂tgn − ∂

2
xgn + (nπ)

2
|x|2γ gn = 0, (t, x) ∈ (0, T )× (−1, 1),

gn(t,±1) = 0, t ∈ (0, T ),
gn(0, x) = g0,n(x), x ∈ (−1, 1),

(17)

where g0,n ∈ L
2(−1, 1) is given by g0,n(x) :=

∫ 1
0 g0(x, y)ϕn(y) dy.

For the proof we need the following characterization of the elements of V . We denote
by L2

γ (�) the space of all square-integrable functions with respect to the measure dµ =
|x|2γ dx dy.
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Lemma 1. For every g ∈ V there exist ∂xg ∈ L2(�), ∂yg ∈ L2
γ (�) such that∫

�

(g(x, y)∂xφ(x, y)+ |x|
2γ g(x, y)∂yφ(x, y)) dx dy

= −

∫
�

(∂xg(x, y)+ |x|
2γ ∂yg(x, y))φ(x, y) dx dy (18)

for every φ ∈ C∞0 (�).

Proof. Let g ∈ V , and consider a sequence (gn)n≥1 in C∞0 (�) such that gn → g in V ,
that is, ∫

�

[(gn − g)2x + |x|
2γ (gn − g)2y] dx dy → 0 as n→∞.

Thus, (∂xgn)n≥1 is a Cauchy sequence in L2(�) and (∂ygn)n≥1 is a Cauchy sequence in
L2
γ (�). So, there exist h ∈ L2(�) and k ∈ L2

γ (�) such that ∂xgn → h in L2(�) and
∂yg

n
→ k in L2

γ (�). Hence,∫
�

(gn∂xφ + |x|
2γ gn∂yφ) dx dy = −

∫
�

(∂xg
nφ + |x|2γ ∂yg

nφ) dx dyy y∫
�

(g∂xφ + |x|
2γ g∂yφ) dx dy = −

∫
�

(hφ + |x|2γ kφ) dx dy

as n→∞. This yields the conclusion with ∂xg = h and ∂yg = k. ut

For any n ≥ 1, system (17) is a first order Cauchy problem that admits the unique weak
solution

g̃n ∈ C
0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H 1

0 (−1, 1))

which satisfies

d

dt

(∫ 1

−1
g̃n(t, x)ψ(x) dx

)
+

∫ 1

−1

[
g̃n,x(t, x)ψx(x)+ (nπ)

2
|x|2γ g̃n(t, x)ψ(x)

]
dx = 0 (19)

for every ψ ∈ H 1
0 (−1, 1).

Proof of Proposition 2. In order to verify that the nth Fourier coefficient of g, defined by
(16), satisfies system (17), observe that

gn(0, ·) = g0,n(·), gn(t,±1) = 0 ∀t ∈ (0, T )

and
gn ∈ C

0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H 1
0 (−1, 1)).
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Thus, it is sufficient to prove that gn fulfills condition (19). Indeed, using the identity (16),
for all ψ ∈ H 1

0 (−1, 1) we obtain, for a.e. t ∈ [0, T ],

d

dt

(∫ 1

−1
gnψ dx

)
+

∫ 1

−1
(gn,xψx + (nπ)

2
|x|2γ gnψ) dx

=

∫ 1

−1

∫ 1

0
{gtϕnψ + gxϕnψx + (nπ)

2
|x|2γ gϕnψ} dy dx. (20)

Observe that Proposition 1 ensures gt (t, ·)∈L2(�) and g(t, ·)∈D(A) for a.e. t ∈ (0, T ).
So, multiplying gt −Ag by h(x, y) = ψ(x)ϕn(y) ∈ V and integrating over � we obtain,
for a.e. t ∈ (0, T ),

0 =
∫ 1

0

∫ 1

−1
(gt − Ag)ψϕn dx dy

=

∫ 1

0

∫ 1

−1
gtψϕn dx dy +

∫ 1

0

∫ 1

−1
(gxψxϕn + |x|

2γ gyψϕn,y) dx dy

=

∫ 1

0

∫ 1

−1
gtψϕn dx dy +

∫ 1

0

∫ 1

−1
(gxψxϕn + (nπ)

2
|x|2γ gψϕn) dx dy, (21)

where (in the last identity) we have used Lemma 1. Combining (20) and (21) completes
the proof. ut

Proposition 3. Let T > 0, γ > 0, let ω be a bounded open subset of (0, 1)× (0, 1), and
let g ∈ C([0, T ];H) ∩ L2(0, T ;V ) be a weak solution of (3). If g ≡ 0 on (0, T ) × ω,
then g ≡ 0 on (0, T )×�.

Proof. Let ε > 0 be such that ω ⊂ (ε, 1)× (0, 1). By unique continuation for uniformly
parabolic 2D equations, we deduce that g ≡ 0 on (0, T )×(ε, 1)×(0, 1). Thus, gn ≡ 0 on
(0, T )×(ε, 1) for every n ∈ N∗. Then, by unique continuation for the uniformly parabolic
1D equation (17), we deduce that gn ≡ 0 on (0, T )× (−1, 1) for every n ∈ N∗. ut

2.3. Dissipation speed

Let us introduce, for every n ∈ N∗, γ > 0, the operator An,γ defined on L2(−1, 1) by

D(An,γ ) := H
2
∩H 1

0 (−1, 1), An,γ ϕ := −ϕ
′′
+ (nπ)2|x|2γ ϕ. (22)

The smallest eigenvalue of An,γ is given by

λn,γ = min
{∫ 1
−1[v

′(x)2 + (nπ)2|x|2γ v(x)2] dx∫ 1
−1 v(x)

2 dx
: v ∈ H 1

0 (−1, 1), v 6= 0
}
. (23)

We are interested in the asymptotic behavior (as n → ∞) of λn,γ , which quantifies the
dissipation speed of the solution of (17).
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Lemma 2. Problem{
−v′′n,γ (x)+ (nπ)

2
|x|2γ vn,γ (x) = λn,γ vn,γ (x), x ∈ (−1, 1),

vn,γ (±1) = 0,
(24)

admits a unique positive solution with L2(−1, 1)-norm one. Moreover, vn,γ is even.

Proof. Since (24) is a Sturm–Liouville problem, it is well-known that its first eigenvalue
is simple, and the associated eigenfunction has no zeros. Thus, we can choose vn,γ to be
strictly positive everywhere. Moreover, by normalization, we can find a unique positive
solution satisfying the condition ‖vn,γ ‖L2(−1,1) = 1. Finally, vn,γ is even. Indeed, if it is
not, let us consider the function w(x) = vn,γ (|x|). Then w still belongs to H 1

0 (−1, 1), it
is a weak solution of (24) and it does not increase the functional in (23), i.e.∫ 1

−1[w
′(x)2 + (nπ)2|x|2γw(x)2] dx∫ 1

−1w(x)
2 dx

≤

∫ 1
−1[v

′
n,γ (x)

2
+ (nπ)2|x|2γ vn,γ (x)

2
] dx∫ 1

−1 vn,γ (x)
2 dx

.

The coefficients of the equation in (24) being regular, we deduce that w is a classical
solution of (24). Since λn,γ is simple, it follows vn,γ (x) = vn,γ (|x|). ut

The following result turns out to be a key point of the proof of Theorem 1.

Proposition 4. For every γ > 0, there are constants c∗ = c∗(γ ), c∗ = c∗(γ ) > 0 such
that

c∗n
2/(1+γ )

≤ λn,γ ≤ c
∗n2/(1+γ )

∀n ∈ N∗.

Proof. First, we prove the lower bound. Let τn := n1/(1+γ ). With the change of variable
φ(x) =

√
τn ϕ(τnx), we get

λn,γ = inf
{∫ 1

−1
(φ′(x)2+(nπ)2|x|2γφ(x)2) dx : φ ∈ C∞c (−1, 1), ‖φ‖L2(−1,1) = 1

}
= τ 2

n inf
{∫ τn

−τn

(ϕ′(y)2+π2
|y|2γ ϕ(y)2) dy : ϕ ∈ C∞c (−τn, τn), ‖ϕ‖L2(−τn,τn)

= 1
}

≥ c∗τ
2
n

where

c∗ := inf
{∫

R
(ϕ′(y)2 + π2

|y|2γ ϕ(y)2) dy : ϕ ∈ C∞c (R), ‖ϕ‖L2(R) = 1
}

is positive (see [41] for the case of γ = 1).
Now, we prove the upper bound in Proposition 4. For every k > 1 let us consider the

function ϕk(x) := (1 − k|x|)+, which belongs to H 1
0 (−1, 1). Easy computations show

that∫ 1

−1
ϕk(x)

2 dx =
2

3k
,

∫ 1

−1
ϕ′k(x)

2 dx = 2k,
∫ 1

−1
|x|2γ ϕk(x)

2 dx = 2c(γ )k−1−2γ ,
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where
c(γ ) :=

1
2γ + 1

−
1

γ + 1
+

1
2γ + 3

.

Thus, λn,γ ≤ fn,γ (k) := 3[k2
+ (πn)2c(γ )k−2γ

] for all k > 1. Since fn,γ attains its
minimum at k̄ = c̃(γ )n1/(γ+1), we have λn,γ ≤ fn,γ (k̄) = C(γ )n2/(γ+1). ut

3. Proof of the negative statements of Theorem 2

The goal of this section is the proof of the following results:

• if γ = 1, ω ⊂ (a, 1) × (0, 1) for some a > 0 and T < a2/2, then system (4) is not
observable in ω in time T ,
• if γ > 1 and T > 0, then system (4) is not observable in ω in time T .

Without loss of generality, one may assume that ω = (a, b)× (0, 1) with 0 < a < b < 1.

3.1. Strategy for the proof

Let g be the solution of (4). Then g can be represented as in (15), and we emphasize that,
for a.e. t ∈ (0, T ) and every −1 ≤ a1 < b1 ≤ 1,∫

(a1,b1)×(0,1)
|g(t, x, y)|2 dx dy =

∞∑
n=1

∫ b1

a1

|gn(t, x)|
2 dx

(Bessel–Parseval equality). Thus, in order to prove Theorem 2, it is sufficient to study the
observability of system (17) uniformly with respect to n ∈ N∗.

Definition 4 (Uniform observability). Let 0 < a < b ≤ 1 and T > 0. System (17) is
observable in (a, b) in time T uniformly with respect to n ∈ N∗ if there exists C > 0 such
that, for every n ∈ N∗ and g0,n ∈ L

2(−1, 1), the solution of (17) satisfies∫ 1

−1
|gn(T , x)|

2 dx ≤ C

∫ T

0

∫ b

a

|gn(t, x)|
2 dx.

System (17) is observable in (a, b) uniformly with respect to n ∈ N∗ if there exists
T > 0 such that the system is observable in (a, b) in time T uniformly with respect to
n ∈ N∗.

The negative parts of the conclusion of Theorem 2 follow from the result below.

Theorem 5. Let 0 < a < b ≤ 1.

1. If γ = 1 and T < a2/2, then system (17) is not observable in (a, b) in time T
uniformly with respect to n ∈ N∗.

2. If γ > 1, then system (17) is not observable in (a, b) uniformly with respect to n ∈ N∗.

The proof of Theorem 5 relies on the use of appropriate test functions that falsify uniform
observability. This is proved thanks to a well adapted maximum principle (see Lemma 3)
and explicit supersolutions (see (28)) for γ > 1, and thanks to direct computations for
γ = 1.
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3.2. Proof of Theorem 5 for γ > 1

Let γ ∈ [1,∞) be fixed and T > 0. For every n ∈ N∗, we denote by λn (instead of λn,γ )
the first eigenvalue of the operator An,γ defined in Section 2.3, and by vn the associated
positive eigenvector of norm one, which satisfies

−v′′n(x)+ [(nπ)
2
|x|2γ − λn]vn(x) = 0, x ∈ (−1, 1), n ∈ N∗,

vn(±1) = 0, vn ≥ 0,
‖vn‖L2(−1,1) = 1.

Then, for every n ≥ 1, the function

gn(t, x) := vn(x)e
−λnt ∀(t, x) ∈ R× (−1, 1)

solves the adjoint system (17). Let us note that∫ 1

−1
gn(T , x)

2 dx = e−2λnT ,∫ T

0

∫ b

a

gn(t, x)
2 dx dt =

1− e−2λnT

2λn

∫ b

a

vn(x)
2 dx.

So, in order to prove that uniform observability fails, it suffices to show that

e2λnT

λn

∫ b

a

vn(x)
2 dx → 0 as n→∞. (25)

The above convergence will be obtained by comparing vn with an explicit supersolution
of the problem on a suitable subinterval of [−1, 1].

Lemma 3. Let 0 < a < b < 1. For every n ∈ N∗, set

xn :=

(
λn

(nπ)2

)1/(2γ )

(26)

and let Wn ∈ C
2([xn, 1],R) be a solution of
−W ′′n (x)+ [(nπ)

2x2γ
− λn]Wn(x) ≥ 0, x ∈ (xn, 1),

Wn(1) ≥ 0,
W ′n(xn) < −

√
xn λn.

(27)

Then there exists n∗ ∈ N∗ such that, for every n ≥ n∗,∫ b

a

vn(x)
2 dx ≤

∫ b

a

Wn(x)
2 dx.
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Proof. First, observe that, thanks to Proposition 4, xn→ 0 as n→∞. In particular, there
exists n∗ ≥ 1 such that xn ≤ a for every n ≥ n∗. Now, let us prove that |v′n(xn)| ≤

√
xn λn

for all n ≥ n∗. Indeed, by Lemma 2, we have vn(x) = vn(−x), thus v′n(0) = 0. Hence,
thanks to the Cauchy–Schwarz inequality and the relation ‖vn‖L2(−1,1) = 1,

|v′n(xn)| =

∣∣∣∣∫ xn

0
v′′n(s) ds

∣∣∣∣ = ∣∣∣∣∫ xn

0
[(nπ)2|s|2γ − λn]vn(s) ds

∣∣∣∣
≤

(∫ xn

0
[(nπ)2|s|2γ − λn]

2 ds

)1/2(∫ xn

0
vn(s)

2 ds

)1/2

≤
√
xn λn.

Furthermore, we claim that vn(x) ≤ Wn(x) for every x ∈ [xn, 1], n ≥ n∗. Indeed, if not,
there would exist x∗ ∈ [xn, 1] such that

(Wn − vn)(x∗) = min{(Wn − vn)(x) : x ∈ [xn, 1]} < 0.

Since (Wn − vn)(1) ≥ 0 and (Wn − vn)
′(xn) < 0, we have x∗ ∈ (xn, 1). Moreover, the

functionWn−vn has a minimum at x∗, thus (Wn−vn)
′(x∗) = 0 and (Wn−vn)

′′(x∗) ≥ 0.
Therefore,

−(Wn − vn)
′′(x∗)+ [(nπ)

2
|x∗|

2γ
− λn](Wn − vn)(x∗) < 0,

which is a contradiction. Our claim follows and the proof is complete. ut

In order to apply Lemma 3, we need an explicit supersolution Wn of (27) of the form

Wn(x) = Cne
−µnx

γ+1
, (28)

where Cn, µn > 0. Notice that, in particular, Wn(1) ≥ 0.

First step: Let us prove that, for an appropriate choice of µn, the first inequality of (27)
holds. Since

W ′n(x) = −µn(γ + 1)xγWn(x),

W ′′n (x) = [−µnγ (γ + 1)xγ−1
+ µ2

n(γ + 1)2x2γ
]Wn(x),

the first inequality of (27) holds if and only if, for every x ∈ (xn, 1),

[(nπ)2 − µ2
n(γ + 1)2]x2γ

+ µnγ (γ + 1)xγ−1
≥ λn. (29)

In particular, it holds when
µn ≤

nπ

γ + 1
(30)

and
[(nπ)2 − µ2

n(γ + 1)2]x2γ
n + µnγ (γ + 1)xγ−1

n ≥ λn. (31)

Indeed, in this case, the left hand side of (29) is an increasing function of x. In view of
(26), and after several simplifications, inequality (31) can be recast as

µn ≤
γ

γ + 1

(
(nπ)2

λn

)1/2+1/(2γ )

.
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So, recalling (30), in order to satisfy the first inequality of (27) we can take

µn := min
{
nπ

γ + 1
,

γ

γ + 1

(
(nπ)2

λn

)1/2+1/(2γ )}
. (32)

For the following computations, it is important to notice that, thanks to (32) and Proposi-
tion 4, for n large enough µn is of the form

µn = C1(γ )n. (33)

Second step: let us prove that, for an appropriate choice of Cn, the third inequality of
(27) holds. Since

W ′n(xn) = −Cnµn(γ + 1)xγn e−µnx
γ+1
n ,

the third inequality of (27) is equivalent to

Cn >
λne

µnx
γ+1
n

(γ + 1)µnx
γ−1/2
n

.

Therefore, it is sufficient to choose

Cn :=
2λneµnx

γ+1
n

(γ + 1)µnx
γ−1/2
n

. (34)

Third step: Let us prove condition (25). Thanks to Lemma 3, (28), (33) and (34), for
every n ≥ n∗,

e2λnT

λn

∫ b

a

vn(x)
2 dx ≤

e2λnT

λn

∫ b

a

Wn(x)
2 dx ≤

e2λnT

λn
Wn(a)

2

≤
e2λnT

λn
C2
ne
−2µna1+γ

≤
e2λnT

λn

4λ2
ne

2µnx
γ+1
n

(γ + 1)2µ2
nx

2γ−1
n

e−2µna1+γ
.

By identities (26), (33) and Proposition 4, we have

µnx
γ+1
n ≤ C2(γ ) ∀n ∈ N∗,

thus
e2λnT

λn

∫ b

a

vn(x)
2 dx ≤ e2n( λn

n
T−C1(γ )a

1+γ ) 4λne2C2(γ )

(γ + 1)2µ2
nx

2γ−1
n

. (35)

Since γ > 1, we deduce from Proposition 4 that

λn/n→ 0 as n→∞.

So, for every T > 0, there exists n] ≥ n∗ such that, for every n ≥ n],

λn

n
T − C1(γ )a

1+γ < −
1
2
C1(γ )a

1+γ . (36)

Then inequality (35) yields condition (25) (since the term that multiplies the exponential
behaves like a rational fraction of n).
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3.3. Proof of Theorem 5 for γ = 1

In this section, we take γ = 1 and keep the abbreviated forms λn, vn for λn,γ , vn,γ
introduced in Section 2.3. Moreover, given two real sequences αn ≥ 0 and βn > 0, we
write αn ∼ βn to mean that limn αn/βn = 1.

With the above notation in mind, we have the following result.

Lemma 4. Let a and b be real numbers such that 0 < a < b ≤ 1. Then

λn ∼ nπ (37)

and ∫ b

a

vn(x)
2 dx ∼

e−a
2nπ

2aπ
√
n

as n→∞. (38)

When T < a2/2, we can easily deduce from the above lemma that (25) holds; thus,
system (17) is not observable in (a, b) uniformly with respect to n ∈ N∗.

Proof of Lemma 4. The proof relies on the explicit expression

G(x) :=
e−x

2/2

4
√
π

of the first eigenvector of the harmonic oscillator on the whole line, i.e.,{
−G′′(x)+ x2G(x) = G(x), x ∈ R,∫
RG(x)

2 dx = 1.

First step: Let us construct an explicit approximation, kn, of vn. Fix ε > 0 with

1+ (1− ε)2 > 2a2, (39)

and let θ ∈ C∞(R) be such that

θ(±1) = 1 and supp(θ) ⊂ (−1− ε,−1+ ε) ∪ (1− ε, 1+ ε). (40)

Define

kn(x) =
4
√
nπ G(

√
nπx)− 4

√
n e−nπ/2θ(x)

Cn
, x ∈ [−1, 1],

where Cn > 0 is such that ‖kn‖L2(−1,1) = 1. Note that C2
n = Cn,1 + Cn,2 + Cn,3 where

Cn,1 =
√
n

∫ 1

−1
e−nπx

2 dx
= 1+O

(
e−nπ
√
n

)
,

Cn,2 =
√
n e−nπ

∫ 1

−1
θ(x)2 dx,

Cn,3 = −2
√
n e−nπ/2

∫ 1

−1
e−nπx

2/2θ(x) dx = O(
√
n e−

nπ
2 (1+(1−ε)

2)).
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Thus,

Cn = 1+O(
√
n e−

nπ
2 [1+(1−ε)

2
]). (41)

We have {
−k′′n(x)+ (nπx)

2kn(x) = nπkn(x)+ En(x), x ∈ (−1, 1),
kn(±1) = 0,

where

En(x) :=
4
√
n e−nπ/2

Cn

[
θ ′′(x)− (nπx)2θ(x)+ nπθ(x)

]
.

Second step: Let us prove (37). As in the proof of Proposition 4, we have λn ≥ nπ .
Moreover,

λn ≤

∫ 1

−1
[k′n(x)

2
+ (nπx)2kn(x)

2
] dx = nπ +

∫ 1

−1
kn(x)En(x) dx

≤ nπ +O(n9/4e−nπ/2),

which proves (37).

Third step: Let us prove that ∫ b

a

kn(x)
2 dx ∼

e−a
2nπ

2aπ
√
n
. (42)

Indeed, the left hand side of (42) is the sum of three terms (Ij )1≤j≤3 that satisfy, thanks
to (41),

I1 :=
1

√
π C2

n

∫ b
√
nπ

a
√
nπ

e−y
2
dy =

e−a
2nπ

2aπ
√
n
+O

(
e−a

2nπ

n3/2

)
,

I2 :=

√
n e−nπ

C2
n

∫ b

a

θ(x)2 dx = O(
√
n e−nπ ),

I3 := −
2
√
n e−nπ/2

C2
n

∫ b

a

e−nπx
2
θ(x) dx = O(

√
n e−

nπ
2 [1+(1−ε)

2
]).

So, (42) follows thanks to (39).

Fourth step: Let us prove that

‖vn − kn‖
2
L2(−1,1) = O(n

9/2e−nπ ), (43)

which ends the proof of (38). Let An be the operator defined by

D(An) = H
2
∩H 1

0 (−1, 1), Anϕ(x) := −ϕ
′′(x)+ (nπx)2ϕ(x),
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and let (λjn)j∈N∗ be its eigenvalues, with associated eigenvectors (vjn)j∈N∗ , that is,Anv
j
n =

λ
j
nv
j
n . We have kn =

∑
∞

j=1 zjv
j
n where zj = 〈En, v

j
n〉/(λ

j
n − nπ) for all j ≥ 2. Thus,

∞∑
j=2

z2
j ≤ C‖En‖

2
L2(−1,1) = O(n

9/2e−nπ )

and

z1 =
(

1−
∞∑
j=2

z2
j

)1/2
= 1+O(n9/2e−nπ ).

We can then recover (43) since ‖vn − kn‖2L2(−1,1) = (1− z1)
2
+
∑
∞

j=2 z
2
j . ut

4. Proof of the positive statements of Theorem 1

The goal of this section is the proof of the following results:

• if γ ∈ (0, 1), then system (1) is null controllable in any time T > 0,
• if γ = 1 and ω = (a, b) × (0, 1), with 0 < a < b ≤ 1, then there exists T1 > 0 such

that system (1) is null controllable in any time T > T1 or, equivalently, system (3) is
observable in ω in any time T > T1.

The proof of these results relies on a new global Carleman estimate for solutions of (17),
stated and proved in the next section.

4.1. A global Carleman estimate

For n ∈ N∗, we introduce the operator

Png :=
∂g

∂t
−
∂2g

∂x2 + (nπ)
2
|x|2γ g.

Proposition 5. Let γ ∈ (0, 1] and let a, b ∈ R be such that 0 < a < b ≤ 1. Then
there exist a weight function β ∈ C1([−1, 1];R∗+) and positive constants C1, C2 such that
for every n ∈ N∗, T > 0, and g ∈ C0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H 1

0 (−1, 1)) the
following inequality holds:

C1

∫ T

0

∫ 1

−1

(
M

t(T − t)

∣∣∣∣∂g∂x (t, x)
∣∣∣∣2 + M3

(t (T − t))3
|g(t, x)|2

)
e
−
Mβ(x)
t (T−t) dx dt

≤

∫ T

0

∫ 1

−1
|Png|2e−

Mβ(x)
t (T−t) dx dt +

∫ T

0

∫ b

a

M3

(t (T − t))3
|g(t, x)|2e

−
Mβ(x)
t (T−t) dx dt (44)

where M := C2 max{T + T 3/2, nT 2
}.

Remark 2. In the case of γ ∈ [1/2, 1], our weight β will be the classical one (see (46)–
(49)). On the other hand, for γ ∈ (0, 1/2) we will follow the strategy of [1, 10, 37],
adapting the weight β to the nonsmooth coefficient |x|2γ (see (78)–(79)).
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Proof of Proposition 5. Without loss of generality, we may assume that b < 1. Let a′, b′

be such that a < a′ < b′ < b. All the computations of the proof will be made assuming,
first, g ∈ H 1(0, T ;L2(−1, 1)) ∩ L2(0, T ;H 2

∩ H 1
0 (−1, 1)). Then the conclusion of

Proposition 5 will follow by a density argument.

First case: γ ∈ [1/2, 1]. Consider the weight function

α(t, x) :=
Mβ(x)

t (T − t)
, (t, x) ∈ (0, T )× R, (45)

where β ∈ C2([−1, 1]) satisfies

β ≥ 1 on (−1, 1), (46)

|β ′| > 0 on [−1, a′] ∪ [b′, 1], (47)

β ′(1) > 0, β ′(−1) < 0, (48)

β ′′ < 0 on [−1, a′] ∪ [b′, 1], (49)

and M = M(T, n, β) > 0 will be chosen later on. We also introduce the function

z(t, x) := g(t, x)e−α(t,x), (50)

which satisfies
e−αPng = P1z+ P2z, (51)

where

P1z := −
∂2z

∂x2 + (αt − α
2
x)z+ (nπ)

2
|x|2γ z− αxxz,

P2z :=
∂z

∂t
− 2αx

∂z

∂x
.

(52)

We develop the classical proof (see [25]), taking the L2(Q)-norm in the identity (51),
then developing the double product, which leads to∫

Q

P1zP2z dx dt ≤
1
2

∫
Q

|e−αPng|2 dx dt, (53)

where Q := (0, T ) × (−1, 1) and we compute precisely each term, paying attention to
the behavior of the different constants with respect to n and T .

Terms involving −∂2
xz: Integrating by parts, we get

−

∫
Q

∂2z

∂x2
∂z

∂t
dx dt =

∫
Q

∂z

∂x

∂2z

∂t∂x
dx dt =

∫ T

0

1
2
d

dt

∫ 1

−1

∣∣∣∣ ∂z∂x
∣∣∣∣2 dx dt = 0, (54)



86 K. Beauchard et al.

because ∂tz(t,±1) = 0 and z(0) ≡ z(T ) ≡ 0, which is a consequence of assumptions
(50), (45) and (46). Moreover,

∫
Q

∂2z

∂x2 2αx
∂z

∂x
dx dt = −

∫
Q

∣∣∣∣ ∂z∂x
∣∣∣∣2αxx dx dt

+

∫ T

0

(
αx(t, 1)

∣∣∣∣ ∂z∂x (t, 1)
∣∣∣∣2 − αx(t,−1)

∣∣∣∣ ∂z∂x (t,−1)
∣∣∣∣2) dt. (55)

Terms involving (αt − α2
x)z: Again integrating by parts, we have∫

Q

(αt − α
2
x)z

∂z

∂t
dx dt = −

1
2

∫
Q

(αt − α
2
x)t |z|

2 dx dt. (56)

Indeed, the boundary terms at t = 0 and t = T vanish because, thanks to (50), (45), (46),

|(αt − α
2
x)|z|

2
| ≤

1
[t (T − t)]2

e
−M
t(T−t) |M(T − 2t)β + (Mβ ′)2| · |g|2

tends to zero when t → 0 and t → T , for every x ∈ [−1, 1]. Moreover,

−2
∫
Q

(αt − α
2
x)zαx

∂z

∂x
dx dt =

∫
Q

[(αt − α
2
x)αx]x |z|

2 dx dt, (57)

by integration by parts in the space variable.

Terms involving (nπ)2|x|2γ z: First, since z(0) ≡ z(T ) ≡ 0,∫
Q

(nπ)2|x|2γ z
∂z

∂t
dx dt =

1
2

∫ T

0

d

dt

∫ 1

−1
(nπ)2|x|2γ |z|2 dx dt = 0. (58)

Furthermore, by integration by parts in the space variable,

−2
∫
Q

(nπ)2|x|2γ zαx
∂z

∂x
dx dt =

∫
Q

[n2π2
|x|2γ αx]xz

2 dx dt. (59)

Terms involving −αxxz: Integrating by parts, we get

−

∫
Q

αxxz
∂z

∂t
dx dt =

∫
Q

1
2
αxxt |z|

2 dx dt. (60)

The second term involving −αxxz is∫
Q

2z
∂z

∂x
αxxαx dx dt. (61)
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Combining (53)–(61) we conclude that∫
Q

|z|2
{
−

1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x + n

2π2
[|x|2γ αx]x +

1
2αxxt

}
dx dt

−

∫
Q

∣∣∣∣ ∂z∂x
∣∣∣∣2αxx dx dt + ∫

Q

2z
∂z

∂x
αxxαx dx dt

+

∫ T

0

(
αx(t, 1)

∣∣∣∣ ∂z∂x (t, 1)
∣∣∣∣2 − αx(t,−1)

∣∣∣∣ ∂z∂x (t,−1)
∣∣∣∣2) dt ≤ 1

2

∫
Q

|e−αPng|2 dx dt.

In view of (48), we have αx(t, 1) ≥ 0 and αx(t,−1) ≤ 0. Moreover,∫
Q

2αxxαxz
∂z

∂x
dx dt ≥

∫
Q

(
−

1
2 |αxx |

∣∣∣∣ ∂z∂x
∣∣∣∣2 − 2|αxx |α2

x |z|
2
)
dx dt.

Thus,∫
Q

|z|2
{
−

1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x + n

2π2
[|x|2γ αx]x +

1
2αxxt − 2|αxx |α2

x

}
dx dt

+

∫
Q

∣∣∣∣ ∂z∂x
∣∣∣∣2{−αxx − 1

2 |αxx |
}
dx dt ≤

1
2

∫
Q

|e−αPng|2 dx dt. (62)

Now, in the left hand side of (62) we separate the terms on (0, T )× (a′, b′) and those on
(0, T )× [(−1, a′) ∪ (b′, 1)]. One has

−αxx(t, x)−
1
2 |αxx(t, x)| ≥

C1M

t(T − t)
∀x ∈ [−1, a′] ∪ [b′, 1], t ∈ (0, T ),∣∣−αxx(t, x)− 1

2 |αxx |
∣∣ ≤ C2M

t(T − t)
∀x ∈ [a′, b′], t ∈ (0, T ),

(63)

where C1 = C1(β) :=
1
2 min{−β ′′(x) : x ∈ [−1, a′] ∪ [b′, 1]} is positive thanks to the

assumption (49) and C2 = C2(β) :=
3
2 sup{|β ′′(x)| : x ∈ [a′, b′]}. Moreover,

−
1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x +

1
2αxxt − 2|αxx |α2

x

=
1

(t (T − t))3

{
Mβ(3T t − T 2

− 3t2)+Mβ ′′t (T − t)(t − T/2)

+M2(2t − T )(β ′′β + 2β ′2)+M3(−3β ′′ − 2|β ′′|)β ′2
}
.

Hence, owing to (47) and (49), there exist m1 = m1(β) > 0, C3 = C3(β) > 0 and
C4 = C4(β) > 0 such that, for every M ≥ M1 and t ∈ (0, T ),

−
1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x +

1
2αxxt − 2|αxx |α2

x

≥
C3M

3

[t (T − t)]3
∀x ∈ [−1, a′] ∪ [b′, 1],

∣∣− 1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x +

1
2αxxt − 2|αxx |α2

x

∣∣ ≤ C4M
3

[t (T − t)]3
∀x ∈ [a′, b′]

(64)



88 K. Beauchard et al.

where
M1 = M1(T , β) := m1(β)(T + T

3/2). (65)

Using (62)–(64), we deduce, for every M ≥ M1,

∫ T

0

∫
(−1,a′)∪(b′,1)

C1M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 dx dt

+

∫ T

0

∫
(−1,a′)∪(b′,1)

[
C3M

3

(t (T − t))3
|z|2 + (nπ)2[|x|2γ αx]x |z|

2
]
dx dt

≤

∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C4M

3

(t (T − t))3
|z|2 − (nπ)2[|x|2γ αx]x |z|

2
]
dx dt

+
1
2

∫
Q

|e−αPng|2 dx dt. (66)

Moreover, for every x ∈ (−1, 1), we have

|(nπ)2[|x|2γ αx]x | =
M(nπ)2

t (T − t)

∣∣2γ sign(x)|x|2γ−1β ′(x)+ |x|2γ β ′′(x)
∣∣ ≤ C5n

2M

t(T − t)

where C5 = C5(β) := π
2 max{2γ |x|2γ−1

|β ′(x)| + |x|2γ |β ′′(x)| : x ∈ [−1, 1]} is finite
because 2γ − 1 ≥ 0. Let M2 = M2(T , n, β) be defined by

M2 = M2(T , n, β) :=
√

2C5/C3 n(T /2)2. (67)

From now on, we take

M = M(T, n, β) := C2 max{T + T 2, nT 2
} (68)

where
C2 = C2(β) := max{m1,

√
C5/(8C3)}

so that M ≥ M1,M2 (see (65) and (67)). From M ≥ M2, we deduce that

|(nπ)2[|x|2γ αx]x | ≤
C3M

3

2[t (T − t)]3
∀(t, x) ∈ Q.

We have∫ T

0

∫
(−1,a′)∪(b′,1)

(
C1M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C3M

3

2(t (T − t))3
|z|2

)
dx dt

≤

∫ T

0

∫ b′

a′

(
C2M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C6M

3

(t (T − t))3
|z|2

)
dx dt

+
1
2

∫
Q

|e−αPng|2 dx dt, (69)
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where C6 = C6(β) := C4 + C3/2. For every ε > 0, we have

C1M

t(T − t)

∣∣∣∣∂g∂x − αxg
∣∣∣∣2 + C3M

3

2(t (T − t))3
|g|2

≥

(
1−

1
1+ ε

)
C1M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 + M3

(t (T − t))3

(
C3

2
− εC1(β

′)2
)
|g|2. (70)

Hence, choosing

ε = ε(β) :=
C3

4C1‖β ′‖2∞
,

from (69), (70) and (50) we deduce that∫ T

0

∫
(−1,a′)∪(b′,1)

(
C7M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 + C3M

3
|g|2

4(t (T − t))3

)
e−2α dx dt

≤

∫ T

0

∫ b′

a′

(
C9M

3
|g|2

(t (T − t))3
+

C8M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2)e−2α dx dt

+
1
2

∫
Q

|e−αPng|2 dx dt, (71)

where C7 = C7(β) := [1 − 1/(1 + ε)]C1, C8 = C8(β) := 2C2 and C9 = C9(β) :=

C6 + 2C2 sup{β ′(x)2 : x ∈ [a′, b′]}. So, adding the same quantity to both sides,∫
Q

(
C7M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 + C3M

3
|g|2

4(t (T − t))3

)
e−2α dx dt ≤

1
2

∫
Q

|e−αPng|2 dx dt

+

∫ T

0

∫ b′

a′

(
C11M

3
|g|2

(t (T − t))3
+

C10M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2)e−2α dx dt, (72)

where C10 = C10(β) := C8+C7 and C11 = C11(β) := C9+C3/4. Let us prove that the
third term of the right hand side may be dominated by terms similar to the other two. We
consider ρ ∈ C∞(R;R+) such that 0 ≤ ρ ≤ 1 and

ρ ≡ 1 on (a′, b′), (73)
ρ ≡ 0 on (−1, a) ∪ (b, 1). (74)

We have∫
Q

(Png)
gρe−2α

t (T − t)
dx dt =

∫ T

0

∫ 1

−1

[
∂g

∂t
−
∂2g

∂x2 + (nπ)
2
|x|2γ g

]
gρe−2α

t (T − t)
dx dt.

Integrating by parts with respect to time and space, we obtain∫
Q

1
2
∂(g2)

∂t

ρe−2α

t (T − t)
dx dt =

∫
Q

1
2 |g|

2ρ

(
2αt

t (T − t)
+

T − 2t
(t (T − t))2

)
e−2α dx dt



90 K. Beauchard et al.

and

−

∫
Q

∂2g

∂x2
gρe−2α

t (T − t)
dx dt =

∫
Q

ρe−2α

t (T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 dx dt

−

∫
Q

|g|2e−2α

2t (T − t)

(
ρ′′ − 4ρ′αx + ρ(4α2

x − 2αxx)
)
dx dt. (75)

Thus,∫
Q

Png
gρe−2α

t (T − t)
dx dt ≥

∫
Q

ρe−2α

t (T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 dx dt

−

∫
Q

|g|2e−2α

2t (T − t)

(
ρ′′ − 4ρ′αx + ρ

(
4α2

x − 2αxx − 2αt −
T − 2t
t (T − t)

))
dx dt. (76)

Therefore,∫ T

0

∫ b′

a′

C10M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2e−2α dx dt ≤

∫
Q

C10Mρ

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2e−2α dx dt

≤

∫
Q

Png
C10Mgρe

−2α

t (T − t)
dx dt

+

∫
Q

C10M|g|
2e−2α

2t (T − t)

(
ρ′′ − 4ρ′αx + ρ

(
4α2

x − 2αxx − 2αt −
T − 2t
t (T − t)

))
dx dt

≤

∫
Q

|Png|2e−2α dx dt +

∫ T

0

∫ b

a

C12M
3
|g|2e−2α

(t (T − t))3
dx dt

for some constant C12 = C12(β, ρ) > 0. Combining (72) with the previous inequality,
we get

∫
Q

(
C7M

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 + C3M

3
|g|2

4(t (T − t))3

)
e−2α dx dt

≤
3
2

∫
Q

|e−αPng|2 dx dt +
∫ T

0

∫ b

a

C13M
3
|g|2

(t (T − t))3
e−2α dx dt, (77)

where C13 = C13(β, ρ) := C11 + C12. Then the global Carleman estimate (44) holds
with

C1 = C1(β) :=
min{C7, C3/4}
max{3/2, C13}

.

Second case: γ ∈ (0, 1/2). The previous strategy does not apply to γ ∈ (0, 1/2) be-

cause the term (nπ)2[|x|2γ αx]x (that diverges at x = 0) in (66) can no longer be bounded
by C3M

3

(t (T−t))3
(which is bounded at x = 0). Note that both terms are of the same order
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as M3, because of the dependence of M on n in (68). In order to deal with this difficulty,
we adapt the choice of the weight β and the dependence of M on n.

Let β ∈ C1([−1, 1]) ∩ C2([−1, 0) ∪ (0, 1]) be such that

β ′′ < 0 on [−1, 0) ∪ (0, a′] ∪ [b′, 1] (78)

and β has the following form on a neighborhood (−ε, ε) of 0:

β(x) = C0 −

∫ x

0

√
sign(s)|s|2γ + C1 ds ∀x ∈ (−ε, ε), (79)

where C0, C1 are large enough to ensure that β(x) ≥ 1, and sign(s)|s|2γ + C1 ≥ 0 on
(−ε, ε). Notice that

β ′(x) = −

√
sign(x)|x|2γ + C1 ∀x ∈ (−ε, ε), (80)

thus β ′′ diverges at x = 0. Performing the same computations as in the previous case, we
get inequality (62). Notice that one obtains (59) even if γ ∈ (0, 1/2): the boundary terms
vanish and x 7→ |x|2γ−1 is integrable at x = 0. Then, owing to (47) and (78), there exist
m1 = m1(β) > 0, C3 = 1/2 and C4 = C4(β) > 0 such that, for every M ≥ M1 and
t ∈ (0, T ),

−
1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x +

1
2αxxt − 2|αxx |α2

x

≥
C3M

3

[t (T − t)]3
|β ′′(x)|β ′(x)2 ∀x ∈ [−1, 0) ∪ (0, a′] ∪ [b′, 1],

and

∣∣− 1
2 (αt − α

2
x)t + [(αt − α

2
x)αx]x +

1
2αxxt − 2|αxx |α2

x

∣∣ ≤ C4M
3

[t (T − t)]3
∀x ∈ [a′, b′],

where M1 = M1(T , β) is defined by (65). In view of (62) and (78), for every M ≥ M1,

∫ T

0

∫
(−1,a′)∪(b′,1)

M|β ′′|

2t (T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 dx dt

+

∫ T

0

∫
(−1,a′)∪(b′,1)

[
C3M

3
|β ′′|β ′2

(t (T − t))3
+ (nπ)2(|x|2γ αx)x

]
|z|2 dx dt

≤
1
2

∫
Q

|e−αPng|2 dx dt +
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C4M

3

(t (T − t))3
|z|2

]
dx dt

− (nπ)2
∫ T

0

∫ b′

a′
(|x|2γ αx)x |z|

2 dx dt. (81)
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Moreover,

|(nπ)2(|x|2γ αx)x | = (nπ)
2 M

t(T − t)
|2γ sign(x)|x|2γ−1β ′(x)+|x|2γ β ′′(x)|

≤
C5n

2M

t(T − t)

(
|x|2γ−1

|β ′(x)|+ |x|2γ |β ′′(x)|
)
∀x ∈ (−1, 0)∪ (0, 1),

where C5 = π
2(2γ +1).

From now on, we take

M = M(T, n, β) := C2 max{T + T 3/2, nT 2
}, (82)

where
C2 = C2(β) := max{m1, 1/λ}

and λ = λ(β) is a (small enough) constant, to be chosen later on. From M ≥ nT 2/λ, we
deduce that, for every x ∈ (−1, 0) ∪ (0, 1),

|(nπ)2(|x|2γ αx)x | ≤
C6λ

2M3

(t (T − t))3

(
|x|2γ−1

|β ′(x)| + |x|2γ |β ′′(x)|
)
,

where C6 = C6(γ ) > 0. Let us verify that, for λ = λ(β) > 0 small enough and for every
x ∈ (−1, 0) ∪ (0, a′) ∪ (b′, 1), we have

C6λ
2M3

(t (T − t))3
|x|2γ−1

|β ′(x)| ≤
C3M

3

4(t (T − t))3
|β ′′(x)|β ′(x)2,

C6λ
2M3

(t (T − t))3
|x|2γ |β ′′(x)| ≤

C3M
3

4(t (T − t))3
|β ′′(x)|β ′(x)2,

or, equivalently, for every x ∈ (−1, 0) ∪ (0, a′) ∪ (b′, 1),

C6λ
2
|x|2γ−1

≤
C3

4
|β ′′(x)| · |β ′(x)|, C6λ

2
|x|2γ ≤

C3

4
β ′(x)2. (83)

The second inequality is easy to satisfy for λ = λ(β) small enough, because |β ′| > 0 on
[−1, a′] ∪ [b′, 1]. Thanks to (80), for every x ∈ (−ε, ε),

β ′(x)2 = sign(x)|x|2γ + C1,

so
β ′′(x)β ′(x) = γ |x|2γ−1.

Therefore, for every x ∈ (−ε, ε) \ {0}, the first inequality in (83) is equivalent to

C6λ
2
≤
C3

4
γ,
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which is trivially satisfied when λ = λ(β) is small enough. Moreover, the first inequality
of (83) holds for every x ∈ [−1,−ε] ∪ [ε, a′] ∪ [b′, 1] when λ = λ(β) is small enough,
since |β ′′β ′| > 0 on this compact set. Finally, we have∫ T

0

∫
(−1,a′)∪(b′,1)

[
M|β ′′|

2t (T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C3M

3
|β ′′|β ′2

2(t (T − t))3
|z|2

]
dx dt

≤
1
2

∫
Q

|e−αPng|2 dx dt +
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C5M

3

(t (T − t))3
|z|2

]
dx dt, (84)

where C5 = C5(β) > 0. The functions |β ′′|β ′2 and β ′′ are bounded from below by
positive constants on [−1, a′] ∪ [b′, 1], thus∫ T

0

∫
(−1,a′)∪(b′,1)

[
C6M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C7M

3

(t (T − t))3
|z|2

]
dx dt

≤
1
2

∫
Q

|e−αPng|2 dx dt +
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∣ ∂z∂x
∣∣∣∣2 + C5M

3

(t (T − t))3
|z|2

]
dx dt, (85)

where Cj = Cj (β) > 0 for j = 6, 7. The rest of the proof goes as for γ ∈ [1/2, 1]. ut

4.2. Uniform observability

The Carleman estimate of Proposition 5 allows us to prove the following uniform observ-
ability result.

Proposition 6. Let γ ∈ (0, 1) and let a, b ∈ R be such that 0 < a < b < 1. Then there
exists C > 0 such that for every T > 0, n ∈ N∗, and g0,n ∈ L

2(−1, 1) the solution of
(17) satisfies∫ 1

−1
gn(T , x)

2 dx ≤ T 2eC(1+T
−(1+γ )/(1−γ ))

∫ T

0

∫ b

a

gn(t, x)
2 dx dt.

Let us recall that explicit bounds on the observability constant of the heat equation with a
potential are already known.

Theorem 6. Let −1 < a < b < 1. There exists c > 0 such that, for every T > 0,
α, β ∈ L∞((0, T )× (−1, 1)), g0 ∈ L

2(−1, 1), the solution of
∂tg − ∂

2
xg + β∂xg + αg = 0, (t, x) ∈ [0, T ] × (−1, 1),

g(t,±1) = 0, t ∈ [0, T ],
g(0, x) = g0(x), x ∈ (−1, 1),

satisfies ∫ 1

−1
|g(T , x)|2 dx ≤ ecH(T ,‖α‖∞,‖β‖∞)

∫ T

0

∫ b

a

|g(t, x)|2 dx dt,

where H(T ,A,B) := 1+ 1/T + TA+ A2/3
+ (1+ T )B2.
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For the proof of the above result we refer the reader to [22, Theorem 1.3] in the case of
β ≡ 0, and to [15, Theorem 2.3] for β 6≡ 0. The optimality of the power 2/3 of A in
H(T ,A,B) has been proved in [17].

Proposition 6 may be seen as an improvement of the above estimate (relative to the
asymptotic behavior as n→∞), in the special case of (17).

Proof of Proposition 6. We derive an explicit observability constant from the Carleman
estimate of Proposition 5. For t ∈ (T /3, 2T/3), we have

4
T 2 ≤

1
t (T − t)

≤
9

2T 2 and
∫ 1

−1
g(T , x)2 dx ≤

∫ 1

−1
g(t, x)2 dx e−λnT/3.

Thus,

C1
64M3

T 6 e
−

9Mβ∗

2T 2
T

3
eλnT/3

∫ 1

−1
g(T , x)2 dx ≤ C3

∫ T

0

∫ b

a

g(t, x)2 dx dt

where β∗ := max{β(x) : x ∈ [−1, 1]}, β∗ := min{β(x) : x ∈ [−1, 1]} and C3 :=

max{x3e−β∗x}. Using the inequality M ≥ C2[T + T
2
] and Proposition 4, we get∫ 1

−1
g(T , x)2 dx ≤ C4T

2ec1M/T
2
−c2n

2/(1+γ )T

∫ T

0

∫ b

a

g(t, x)2 dx dt (86)

for some constants c1, c2, C4 > 0 (independent of n, T and g).

First case: n < 1+ 1/T . Then M = C2(T + T
2) and thus∫ 1

−1
g(T , x)2 dx ≤ C4T

2ec1C2(1+1/T )
∫ T

0

∫ b

a

g(t, x)2 dx dt.

Second case: n ≥ 1 + 1/T . Then M = C2nT
2. The maximum value of the function

x 7→ c1C2x − c2x
2/(1+γ )T on (0,∞) is of the form c3T

−(1+γ )/(1−γ ) for some constant
c3 > 0 (independent of T ). Thus,∫ 1

−1
g(T , x)2 dx ≤ C4T

2ec3T
−(1+γ )/(1−γ )

∫ T

0

∫ b

a

g(t, x)2 dx dt.

This gives the conclusion. ut

In the case of γ = 1, we also have the following result.

Proposition 7. Assume γ = 1. Let a, b ∈ R be such that 0 < a < b < 1. Then there
exists T1 > 0 such that, for every T > T1, system (17) is observable in (a, b) in time T
uniformly with respect to n ∈ N∗.
Proof. One can follow the lines of the previous proof until (86). Then, for n ≥ 1+ 1/T ,
we have M = C2nT

2. Thus,∫ 1

−1
g(T , x)2 dx ≤ C4T

2e[c1C2−c2T ]n

∫ T

0

∫ b

a

g(t, x)2 dx dt.

This proves the proposition with T1 := c1C2/c2. ut
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4.3. Construction of the control function for γ ∈ (0, 1)

The goal of this section is the proof of null controllability in any time T > 0 for γ ∈
(0, 1). Our construction of the control steering the initial state to zero is the one of [5],
which is in turn inspired by [32] (see also [33]).

For n ∈ N∗, we define

ϕn(y) :=
√

2 sin(nπy) and Hn := L
2(−1, 1)⊗ ϕn,

which is a closed subspace of L2(�). For j ∈ N, we define Ej :=
⊕

n≤2j Hn and denote
by 5Ej the orthogonal projection onto Ej .

Proposition 8. Let γ ∈ (0, 1), and let a, b, c, d ∈ R be such that 0 < a < b < 1 and
0 < c < d < 1. Then there exists a constant C > 0 such that for every T > 0, every
j ∈ N∗, and every g0 ∈ Ej the solution of (4) satisfies

∫
�

g(T , x, y)2 dx dy ≤ T 2eC(2
j
+T −(1+γ )/(1−γ ))

∫ T

0

∫
ω

g(t, x, y)2 dx dy dt

where ω := (a, b)× (c, d).

For the proof of Proposition 8 we shall need the following inequality obtained in [32] (see
also [33]).

Proposition 9. Let c, d ∈ R be such that c < d . There exists C > 0 such that, for every
L ∈ N∗ and (bk)1≤k≤L ∈ RL,

L∑
k=1

|bk|
2
≤ eCL

∫ d

c

∣∣∣ L∑
k=1

bkϕk(y)

∣∣∣2 dy.
Proof of Proposition 8. Let (g0,n)1≤n≤2j ∈ L

2(−1, 1)2
j

be such that

g0(x, y) =

2j∑
n=1

g0,n(x)ϕn(y).

Then the solution of (4) is given by

g(t, x, y) =

2j∑
n=1

gn(t, x)ϕn(y)

where, for every n ∈ N∗, gn is the solution of (17). Applying Propositions 6 and 9, and
recalling that (ϕn)n∈N∗ is an orthonormal sequence of L2(0, 1), we deduce
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∫
�

g(T , x, y)2 dx dy =

2j∑
n=1

∫ 1

−1
gn(T , x)

2 dx

≤ T 2eC(1+T
−(1+γ )/(1−γ ))

2j∑
n=1

∫ T

0

∫ b

a

gn(t, x)
2 dx dt

≤ T 2eC(2
j
+T −(1+γ )/(1−γ ))

∫ T

0

∫ b

a

∫ d

c

∣∣∣ 2j∑
n=1

gn(t, x)ϕk(y)

∣∣∣2 dy dx dt
= T 2eC(2

j
+T −(1+γ )/(1−γ ))

∫ T

0

∫
ω

g(t, x, y)2 dx dy dt,

where the constant C may change from line to line. ut

Let T > 0 and f0 ∈ L
2(�). We now proceed to construct a control u ∈ L2(0, T ;L2(�))

such that the solution of (2) satisfies f (T , ·) ≡ 0. Fix ρ ∈ R with

0 < ρ <
1− γ
1+ γ

(87)

and let K = K(ρ) > 0 be such that K
∑
∞

j=1 2−jρ = T . Let (aj )j∈N be defined by{
a0 = 0,
aj+1 = aj + 2Tj , j ≥ 0,

where Tj := K2−jρ for every j ∈ N. We now define the control u in the following way.
On [aj , aj + Tj ], we apply a control u such that 5Ej f (aj + Tj , ·) = 0 and

‖u‖L2(aj ,aj+Tj ;L2(�)) ≤ Cj‖f (aj , ·)‖L2(�)

where, in view of Proposition 8,

Cj := eC(2
j
+T
−(1+γ )/(1−γ )
j )

.

Observe that, in light of (14),

‖f (aj + Tj , ·)‖L2(�) ≤ (1+
√
Tj Cj )‖f (aj , ·)‖L2(�).

Then, on the interval [aj +Tj , aj+1] we apply no control in order to take advantage of the
natural exponential decay of the solution, thus obtaining

‖f (aj+1, ·)‖L2(�) ≤ e
−λ2j Tj ‖f (aj + Tj , ·)‖L2(�),

where λn is defined in (23). Combining the above inequalities, we conclude that

‖f (aj+1, ·)‖L2(�) ≤ exp
( 2j∑
k=1

[ln(1+
√
Tk Ck)− C(2k)2/(1+γ )Tk]

)
‖f0‖L2(�).

The choice of ρ ensures that the sum in the exponential diverges to −∞ as j → ∞,
forcing f (T , ·) ≡ 0. The fact that u ∈ L2(0, T ;L2(�)) can be checked by similar argu-
ments. ut
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4.4. End of the proof of Theorems 1 and 2

Let ω be an open subset of (0, 1)× (0, 1). There exist a, b, c, d ∈ R with 0 < a < b < 1,
0 < c < d < 1 such that (a, b)× (c, d) ⊂ ω.

The first (resp. third) statement of Theorem 2 has been proved in Section 4.3 (resp.
Section 3); let us prove the second one.

Let us consider γ = 1 and ω = (a, b) × (0, 1). From Proposition 7, we deduce that
(3) is observable in ω in any time T > T1. From Theorem 5, we deduce that for any time
T < a2/2, (3) is not observable in ω in time T . Thus, the quantity

T ∗ := inf{T > 0 : system (3) is observable in ω in time T }

is well defined and belongs to [a2/2,∞). Clearly, observability in some time T] implies
observability in any time T > T], so

• for every T > T ∗, (4) is observable in ω in time T ,
• for every T < T ∗, (4) is not observable in ω in time T .

5. Conclusion and open problems

In this article we have studied the null controllability of the Grushin type equation (1), in
the rectangle � = (−1, 1)× (0, 1), with a distributed control localized on an open subset
ω of (0, 1)× (0, 1). We have proved that null controllability:

• holds in any positive time when degeneracy is not too strong, i.e. γ ∈ (0, 1),
• holds only in large time when γ = 1 and ω is a strip parallel to the y-axis,
• does not hold when degeneracy is too strong, i.e. γ > 1.

Null controllability when γ = 1, T is large enough, and the control region ω is
more general is an open problem. When γ = 1, it would be interesting to characterize
the minimal time T ∗ required for null controllability and possibly connect it with the
associated diffusion process. We conjecture that T ∗ = a2/2.

The technique of this paper should possibly extend to higher dimensional cylindrical
domains of the form (−1, 1)× (0, 1)m. However, the generalization of this result to other
muldimensional configurations (including x ∈ (−1, 1)n, y ∈ (0, 1)m with m, n ≥ 1) or
boundary controls, is widely open.

Appendix. The case when {x = 0} ⊂ ω

In this appendix we briefly explain why null controllability holds when degeneracy occurs
inside the control region. Consider the control system

∂tf − ∂
2
xf − |x|

2γ ∂2
yf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )×�,

f (t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�,
f (0, x, y) = f0(x, y), (x, y) ∈ �,

(88)
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with ω = (−a, a) × (0, 1), 0 < a ≤ 1. Fix b ∈ (0, a) and choose cut-off functions
ξi ∈ C

∞(R), i = 0, 1, 2, such that 0 ≤ ξi ≤ 1 and
ξ0 + ξ1 + ξ2 ≡ 1,
ξ0(x) = 1 if |x| ≤ b, ξ0(x) = 0 if |x| ≥ a,
ξ1(x) = 0 if x ≤ b, ξ0(x) = 1 if x ≥ a,
ξ2(x) = 1 if x ≤ −a, ξ2(x) = 0 if x ≥ −b.

(89)

Let ω1 = (b, a) × (0, 1) and let �1 = (b, 1) × (0, 1). There exists a control u1 ∈

L2((0, T )×�1) such that the solution f1 of
∂tf − ∂

2
xf − |x|

2γ ∂2
yf = u1(t, x, y)1ω1(x, y), (t, x, y) ∈ (0, T )×�1,

f (t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�1,

f (0, x, y) = f0(x, y), (x, y) ∈ �1,

satisfies f1(T , ·) ≡ 0 on �1. Similarly, let ω2 = (−a,−b) × (0, 1) and let u2 ∈

L2((0, T )×�2), where �2 = (−1,−b)× (0, 1), be such that the solution f2 of
∂tf − ∂

2
xf − |x|

2γ ∂2
yf = u2(t, x, y)1ω2(x, y), (t, x, y) ∈ (0, T )×�2,

f (t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�2,

f (0, x, y) = f0(x, y), (x, y) ∈ �2,

satisfies f2(T , ·) ≡ 0 on �2. Finally, let �0 = (−a, a)× (0, 1) and let f0 be the solution
of 

∂tf − ∂
2
xf − |x|

2γ ∂2
yf = 0, (t, x, y) ∈ (0, T )×�0,

f (t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂�0,

f (0, x, y) = ξ0(x)f0(x, y), (x, y) ∈ �0.

Then

f (t, x, y) := ξ1(x)f1(t, x, y)+ ξ2(x)f2(t, x, y)+
T − t

T
f0(t, x, y)

satisfies (88) for a suitable control u, as well as f (T , ·) ≡ 0 on �.
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[15] Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of
parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control
Optim. 42, 798–819 (2002) Zbl 1038.93041 MR 1939871

[16] Doubova, A., Osses, A., Puel, J.-P.: Exact controllability to trajectories for semilinear heat
equations with discontinuous diffusion coefficients. ESAIM Control Optim. Calc. Var. 8,
621–661 (2002) Zbl 01967387 MR 1932966

[17] Duyckaerts, T., Zhang, X., Zuazua, E.: On the optimality of the observability inequalities
for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Analyse Non
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[27] González-Burgos, M., de Teresa, L.: Some results on controllability for linear and nonlinear
heat equations in unbounded domains. Adv. Differential Equations 12, 1201–1240 (2007)
Zbl 1170.93007 MR 2372238
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