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Abstract. Complex braid groups are the natural generalizations of braid groups associated to arbi-
trary (finite) complex reflection groups. We investigate several methods for computing the homol-
ogy of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field
for one large series of such groups, and compute the second integral cohomology group for all of
them. As a consequence we get non-isomorphism results for these groups.
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1. Introduction

1.1. Presentation

The aim of this paper is to provide homological results and tools for the generalized braid
groups associated to complex (pseudo-)reflection groups. Recall that a complex reflec-
tion group W is a finite subgroup of some GLr(C) generated by (pseudo-)reflections,
i.e. finite-order endomorphisms of GLr(C) which leave invariant some hyperplane in Cr .
The collection A of hyperplanes associated to reflections of W is a central hyperplane
arrangement in Cr . We let X = Cr \

⋃
A denote the corresponding hyperplane comple-

ment. The generalised braid group B = π1(X/W) is an extension of W by P = π1(X).
When W is a finite Coxeter group, B is an Artin group of finite Coxeter type.
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Every W can be decomposed as a direct product of so-called irreducible groups
(meaning that their natural linear action is irreducible), and B decomposes accordingly.
For homological purposes, by the Künneth formula we can thus assume that W is irre-
ducible.

The irreducible complex reflection groups have been classified in 1954 by Shephard
and Todd [ST54]: there is an infinite series G(de, e, r) with three integer parameters,
and 34 exceptions, labelled G4, . . . ,G37. Their braided counterparts however are far less
understood. It is for instance an open problem to decide the lack of injectivity ofW 7→ B.
Indeed, two non-isomorphic reflection groups W1 and W2 can provide isomorphic braid
groups B1 ' B2, to the extent that any possible braid group B arises from a 2-reflection
group, that is, a complex reflection group W whose reflections have order 2.

Recall that X and X/W are K(π, 1)-spaces by work of [FN62, Bri73, Del72, Ban76,
Nak83, OT92, Bes07]. From this, by general arguments, one can however prove that both
the rank r of W and the number |A/W | of W -orbits in A is detected by B:

Proposition 1.1. The homological dimension of B is equal to the rank of W . Moreover
H1(B,Z) is a free module of dimension |A/W |.

Proof. It is known that X/W is an affine variety of (complex) dimension r , homotopi-
cally equivalent to a finite CW-complex of dimension r . Moreover, the r-th cohomology
group with trivial coefficients of P = Ker(B � W) is non-zero. Indeed, the Poincaré
polynomial of X is (1 + c1t) . . . (1 + cr)t (see [OT92, Cor. 6.62]) where the ci are pos-
itive numbers, called the co-exponents of W . In particular, H r(P,Q) = H r(X,Q) 6= 0,
and since P < B, B has homological dimension at least r , hence exactly r , which proves
the first part. The second part is proved in [BMR98]. ut

As opposed to the case of Artin groups of finite Coxeter type, for which there are uni-
form ‘simplicial’ theories and homological methods, it seems that different methods
have to be used in order to deal with these complex braid groups in general. Due to
some of the coincidences mentioned above, the groups B provided by the 3-parameter
series G(de, e, r) actually arise from two a priori disjoint series with two parame-
ters, G(2e, e, r) and G(e, e, r), of 2-reflection groups. The corresponding braid groups
B(2e, e, r) = B(de, e, r) for d > 1 and B(e, e, r) seem to belong to distinct worlds. The
first ones can be better understood as subgroups of the usual braid groups, or semidirect
products of Z with an Artin group of affine type, whereas the second ones might be better
understood as the groups of fractions of suitable monoids with similar (Garside) proper-
ties to the usual braid group; it should be noted for instance that the groups G(e, e, r) are
generated by r reflections, hence belong to the class of well-generated groups, for which
there is a uniform generalization of the Garside approach (see [Bes07]). Moreover, using
a specific Garside monoid recently introduced by Corran and Picantin [CP] to deal with
the groups B(e, e, r), our work on parabolic subgroups suggests that the filtrations classi-
cally used in the homology computations for usual braid groups might well be extended
to this more general setting.

Before proceeding to the exposition of our main results, we recall the results obtained
earlier by G. Lehrer on the rational homology of B for the general series.
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Theorem 1.2 ([Leh04]). The Poincaré polynomial for the cohomologyH ∗(B(e, e, r),Q)
is

P(B(e, e, r), t) =
{

1+ t if either e or r is odd,
1+ t + t r−1

+ t r otherwise.

The Poincaré polynomial for the cohomology H ∗(B(2e, e, r),Q) is

P(B(2e, e, r), t)

=

{
(1+ t)(1+ t + t2 + · · · + t r−1) if either e or r is odd,
(1+ t)(1+ t + t2 + · · · + t r−1)+ (t r−1

+ t r) otherwise. ut

1.2. Main results

By combining several methods, we are able to compute the low-dimensional integral
homology of these groups. We use the notation Zn or Z/n for Z/nZ.

First consider the case of B(e, e, r). The case r = 2 is when G(e, e, 2) is a dihedral
group, and this case is known by [Sal94]: H2(B,Z) = 0 if e is odd, and H2(B,Z) = Z if
e is even.

In Section 6 we prove the following result, by using a complex defined by Dehornoy
and Lafont [DP99] for Garside monoids and a convenient monoid defined by Corran and
Picantin [CP] for the groups G(e, e, r) (of which we prove some additional properties):

Theorem 1.3 (Theorem 6.4). Let B = B(e, e, r) with r ≥ 3.

• When r = 3, H2(B,Z) ' Ze.
• When r = 4 and e is odd, H2(B,Z) ' Ze × Z2 ' Z2e.
• When r = 4 and e is even, H2(B,Z) ' Ze × Z2

2.
• When r ≥ 5, H2(B,Z) ' Ze × Z2.

In Section 4 (Theorems 4.9, 4.15), we compute the homology of complex braid groups of
type B(2e, e, r) with coefficients in a finite field, using filtrations of the Salvetti complex
for the Artin group of type Br (recall that the homology of this group has first been
computed by Goryunov [Gor81]). With a little additional computation (see Section 4.7),
we prove as a corollary:

Theorem 1.4. Let B = B(2e, e, r) with r ≥ 2.

• When r = 2 and e is odd, H2(B,Z) ' Z.
• When r = 2 and e is even, H2(B,Z) ' Z2.
• When r = 3, H2(B,Z) ' Z2.
• When r = 4 and e is odd, H2(B,Z) ' Z2

× Z2.
• When r = 4 and e is even, H2(B,Z) ' Z2

× Z2
2.

• When r ≥ 5, H2(B,Z) ' Z2
× Z2.

We also get a stabilization property for the groups B(2e, e, r) similar to the classical
one for the usual braid groups (see Corollaries 4.17, 4.18); it turns out that their stable
homology does not depend on e, and is thus the same as the stable homology of the Artin
group of type B. The description of the stable homology is the following:
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Theorem 1.5 (Corollary 4.17). The homology H∗(B(2e, e,∞),F2) of the group
B(2e, e,∞) is isomorphic to the direct limit lim

−→
rH∗(B(2e, e, r),F2) and is given by

F2[w1, x1, x2, x3, . . .]

where dimw1 = 1 and dim xi = 2i − 1. Moreover the canonical morphism to the direct
limit

Hi(B(2e, e, r),F2)→ Hi(B(2e, e,∞),F2)

is an isomorphism for r > 2i.

Theorem 1.6 (Corollary 4.18). For p an odd prime, the homologyH∗(B(2e, e,∞),Fp)
is isomorphic to the direct limit lim

−→
rH∗(B(2e, e, r),Fp) and is given by the tensor prod-

uct of
Fp[w1, y1, y2, y3, . . .]

and the exterior algebra
3[x0, x1, x2, . . .].

Here dimw1 = 1, dim xi = 2pi − 1 and dim yi = 2pi − 2. Moreover the canonical
morphism to the direct limit

Hi(B(2e, e, r),Fp)→ Hi(B(2e, e,∞),Fp)

is an isomorphism for r > (i − 1) p
p−1 + 2.

Theorem 1.7 (Proposition 4.24). For any e the homologyH∗(B(2e, e,∞),Z) is isomor-
phic to the direct limit lim

−→
rH∗(B(2e, e, r),Z) and is given by

H∗(B(2e, e,∞),Z) ' H∗(B(2, 1,∞),Z) ' H∗(�2S3
×�S1,Z).

In particular the integral homology of B(2e, e,∞) has no p2-torsion. Moreover the
canonical morphism to the direct limit

Hi(B(2e, e, r),Z)→ Hi(B(2e, e,∞),Z)

is an isomorphism for r > 2i + 2.

Unfortunately, these computations do not suffice in general to get the full integral homol-
ogy groups. Indeed, we show in Section 4.7 that, in contrast to what happens for Artin
groups, the integral homology groups may contain p2-torsion. This phenomenon appears
for the exceptional groups as well.

The reader will notice that the cell complex that we use for the G(e, e, r), obtained
by combining the Dehornoy–Lafont complex and the Corran–Picantin monoid, shares
similarities with the Salvetti complex, and actually specializes to it for the usual braid
group, in the case e = 1. It is then likely that this complex can be filtered by a chain
of parabolic subcomplexes, paving the way for the methods we use here for the groups
B(2e, e, r) in order to get the higher homology groups. The differential of the complex is
inherited from the work of Kobayashi [Kob90]. The problem is that the behaviour of this
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differential under the simplest operations, like taking the direct product of two monoids or
restricting to a parabolic submonoid, is not yet understood. As a consequence, plausible
analogues of formulas of the form ‘∂0A = (∂A)B + (−1)|A|A0(∂B)’ (see Section 4.1)
are hard to prove.

In Section 7 we compute the integral homology for all exceptional groups, except
for G34, for which we are able to compute only H2(B,Z) and H3(B,Z) (see Table
11). As a consequence, we get a complete determination of the groups H2(B,Z) for all
complex braid groups. Notice that, since H1(B,Z) is a finitely generated free Z-module,
H2(B,Z) determines the cohomology group H 2(B,C×) ' Hom(H2(B,Z),C×), which
contains the relevant obstruction classes to the linearization of the projective representa-
tions of B—and thus deserves the name ‘Schur multiplier’ usually restricted to the theory
of finite groups. We show in Section 7.1 that the Schur multiplier of B always contains
the Schur multiplier of W , and that this latter group can most of the time be identified to
the 2-torsion subgroup of H2(B,Z).

Finally, at least when W has one conjugacy class of hyperplanes, there is a well-
defined sign morphism ε : W → {±1} and a corresponding sign representation Zε . We
determine in general the groupH1(B,Zε), which is closely related to the abelianization of
the group Ker ε of ‘even braids’, whose structure remains largely unexplored in general.

Remark 1.8. It should be noted that even the rational homology is not yet known for
W = G34, due to the large size of W and of its large rank. For instance, formulas involv-
ing the lattice (like [OT92, Cor. 6.17]) seem to fail because of the size of the hyperplane
arrangement. The methods of [Leh04] could lead to the (possibly computer-aided) count-
ing of points in some F6

p, but only if we can get a nice form of the discriminant equation,
for which we are able to decide which primes p do satisfy the arithmetic-geometric re-
quirements of [Leh04]. As far as we know, this problem has not been settled yet. Another
method would be to use [Leh95], which provides information on H ∗(P,Q) as a G34-
module. Indeed, the methods of [Leh95] enable one to compute the trace of the reflections
and of so-called regular elements on this module, but it is so huge (the Poincaré polyno-
mial of P is 1+ 126t + 6195t2+ 148820t3+ 1763559t4+ 8703534t5+ 7082725t6) that
this does not allow one to determine the dimensions of the invariant subspaces leading to
H ∗(B,Q).

1.3. Distinction of complex braid groups

As we noticed before, we can assume thatW is a 2-reflection group. We recall that, under
the Shephard–Todd parametrization, we have the duplication G(1, 1, 4) = G(2, 2, 3).
Also notice that the groups B originating from irreducible groups W are distinguishable
from the groups originating from non-irreducible ones by the property Z(B) = Z (see
[DMM11, Theorem 1.1]).

It has been noted by Bannai that G13 and G(6, 6, 2) have the same braid group, and
that the B(2e, e, 2) depend only on the parity of e. In [Ban76] it is stated without proof
(see Remark 6 there) that these are the only coincidences in rank 2. This gives a complete
classification of isomorphism types for braid groups of rank 2. We provide a proof that
uses our computations.
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Proposition 1.9. On irreducible 2-reflection groups of rank 2, the Bannai isomorphisms
are the only coincidences under W 7→ B.

Proof. According to our results, H2(B,Z) is a free Z-module of rank 0, 1 or 2. The
case H2(B,Z) = Z2 holds only for the B(2e, e, 2) with e even. If H 2(B,Z) = Z, then
either it is B(2e, e, r), or it is a group B(e, e, 2) with e even. The fact that the groups
B(e, e, 2), that is, the Artin groups of type I2(e), are distinct groups is proved in [Par04],
and B(2e, e, 2) is the only group of rank 2 with H1(B,Z) = Z3. If H 2(B,Z) = 0, then
W is either G12, G22 or G(e, e, 2) with e odd. In these cases, there is only one non-
trivial morphism ε : B � Z2, so we can compare the groups H1(B,Zε) determined in
Section 7.2. They are Z3 for G12, 0 for G22, and Z for the B(e, e, 2). Once again, the
groups B(e, e, 2) can be distinguished following [Par04], which concludes the proof. ut

In order to distinguish the exceptional groups, we need to prove a couple of indepen-
dent results by ad-hoc methods. We let B23, B24, . . . denote the complex braid groups
associated to G23,G24, . . . .

Lemma 1.10. (1) There is no surjective morphism from B24 to the alternating group A5.
(2) B24 is not isomorphic to B23.
(3) There is no surjective morphism from B(3, 3, 4) to the symmetric group S6.
(4) B31 is not isomorphic to B(3, 3, 4).

Proof. Recall that B24 has a presentation with generators s, t, u and relations stst = tsts,
tutu = utut , sus = usu, tstustu = stustus. We check by computer that none of
the 603 tuples (s, t, u) ∈ A3

5 can generate A5 and satisfy these relations at the same
time, which proves (1). This implies (2), as G23/Z(G23) ' A5 (see [BMR98]). We
proceed in the same way for (3), using the presentation in [BMR98] for B(3, 3, 4), namely
with generators s, t, u, v and relations sts = tst, stustu = ustust, sus = usu, tut =

utu, vuv = uvu, vs = sv, vt = tv. By computer we find that there exist 9360 4-tuples
in S6 satisfying these relations, none of them generating S6, which proves (3). Then (4)
is a consequence of (3), becauseG31/Z(G31) admits for quotient S6 (contrary to what is
stated in [BMR98], it is actually a non-split extension of S6 by a 2-subgroup of order 16;
see [Bon02] for more details) ut

In rank at least 3, using H2(B,Z) and H1(B,Z), we can separate the groups B(2e, e, r)
from the rest, as they are the only groups with H1(B,Z) = Z2 and infinite H2(B,Z). All
exceptional groups of rank at least 3 have |A/W | = 1, that is, H1(B,Z) = Z, except
G28 = F4.

Theorem 1.11. The correspondence W 7→ B is injective on the 2-reflection groups with
a single conjugacy class of reflections, that is, with |A/W | = 1.

Proof. Note that the assumption |A/W | = 1, which is equivalent to H1(B,Z) = Z,
implies thatW is irreducible. It also implies that there exists a unique surjective morphism
ε : B � Z2, so that H1(B,Zε) is well-defined. In rank 2, the statement to prove is a
consequence of the above, so we can assume that the rank r is at least 3. Then the only
cases with infinite H2(B,Z) are the exceptional rank 3 groups G23, G24, G27. The H2
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being in these cases Z,Z,Z3 ×Z, only G23 and G24 need to be distinguished, and this is
done in Lemma 1.10.

We can now assume that H2(B,Z) is finite. Since all exceptional groups have been
taken care of in rank 3, and H2(B(e, e, 3),Z) = Ze and H2(B(1, 1, 4),Z) = Z2 with
G(1, 1, 4) ' G(2, 2, 3),W 7→ B is injective in rank 3 and we can assume that the rank is
at least 4. In rank 4 and for W = G(e, e, 4), e is odd exactly when H2(B,Z) is cyclic, so
all such B(e, e, 4) are distinguished byH2(B,Z). Moreover, sinceH2(B29,Z) = Z2×Z4
is neither cyclic nor isomorphic to a group of the form Ze × Z2

2, it does not appear as the
H2 of a B(e, e, 4). We have H2(B30,Z) = Z2 ' Ze × Z2 if e = 1, but G(1, 1, 4) ' S4
has rank 3. We thus only need to distinguish B31 from B(3, 3, 4). This can be done either
by usingH1(B,Zε) or by using the argument in Lemma 1.10 above. When r ≥ 5, we have
H2(B(e, e, r),Z) = Ze × Z2, and H1(B,Zε) = Z3 when e ≥ 2. Now H1(B33,Zε) =
H1(B34,Zε) = 0, H2(B33,Z) = H1(B34,Z) = Z6, so this distinguishes B33 and B34. It
only remains to distinguish the Artin groups B35, B36, B37 of types E6, E7, E8 from the
usual braid groups B(1, 1, r), and this is done in [Par04]. ut

In the family of groups B(2e, e, r), there are many isomorphisms, and we only get partial
results in Section 2.

For the convenience of the reader we summarize as a theorem the results that we have
obtained about the classification of complex braid groups.

Theorem 1.12. For any finite complex reflection group W the associated complex braid
group B is a product of the following groups:

B12,B22,B23,B24,B27,B28,B29,B30,B31,B33,B34,

B(e, e, r) for r ≥ 2, (e, r) 6= (2, 3), B(2e, e, r).

Moreover the groups from this list belong to the following classes:

(a) B(1, 1, 2) = Z is the only cyclic group;
(b) the groups B12,B22,B23,B(e, e, 2) for e ≥ 2, B(2e, e, 2) for e = 1, 2 are the only

groups of homological dimension 2 and are all pairwise non-isomorphic; for general
e the groups B(2e, e, 2) belong to this list as B(2e, e, 2) = B(2, 1, 2) for e odd and
B(2e, e, 2) = B(4, 2, 2) for e even;

(c) the groups B12,B22,B23,B24,B27,B29,B30,B31,B33,B34,B(e, e, r) except the
case r = 2 and e even are associated to reflection groups with |A/W | = 1 and
are characterized by H1(B,Z) = Z; they are pairwise non-isomorphic;

(d) the groups B28,B(2e, e, r), r ≥ 3, are the groups with homological dimension ≥ 3
associated to reflection groups with |A/W | = 2, that is, with H1(B,Z) = Z2; they
are all distinct from the groups in the lists (a), (b) and (c); moreover we know that
B(2e, e, r) ' B(2e′, e′, r) for e ≡ ±e′ mod r , and B(2e, e, r) 6= B(2e′, e′, r ′) for
r 6= r ′ and for r ∧ e 6= r ′ ∧ e′; finally B28 is not isomorphic to any of the groups
B(2e, e, r).

Proof. (a) is clear because it is the only case of homological dimension 1; (b) comes
from Proposition 1.9, (c) from Theorem 1.11; for (d) see Section 2 for the isomorphisms



110 Filippo Callegaro, Ivan Marin

between the B(2e, e, r)’s, and see the low-dimensional homology computed in Tables 3
and 12 to distinguish B28 from the B(2e, e, r). ut

It is still an open problem whether two groups B(2e, e, r) and B(2e′, e′, r) with e 6≡
±e′ mod r and r ∧ e = r ∧ e′ are isomorphic or not.

2. Isomorphism and non-isomorphism results for B(2e, e, r)

In this section we study the groups of type B(de, e, r) for d > 1 in order to get some
isomorphism and non-isomorphism results.

According to [BMR98], for d > 1 the group B(d, 1, r) is the subgroup of the classical
braid group

Br(r + 1) = 〈ξ1, . . . , ξr | ξiξi+1ξi = ξi+1ξiξi+1, ξiξj = ξj ξi if |i − j | 6= 1〉

generated by the elements ξ2
1 , ξ2, . . . , ξr . This is isomorphic to the Artin group of type Br ,

ABr , with corresponding generators σ 1, σ2, . . . , σr and Dynkin diagram as in Table 1.

Table 1. Dynkin diagram for the Artin group of type Br .

σ 1

4
σ2 σ3 σr−1 σr

The group B(de, e, r) is isomorphic to the subgroup of B(d, 1, r) generated by

ξ2e
1 , ξ

2
1 ξ2ξ

−2
1 , ξ2, . . . , ξr ,

hence it corresponds to the kernel of the map

φe,r : ABr → Z/e,
{
σ 1 7→ 1,
σi 7→ 0 for i > 1.

We can give another presentation for ABr (see [IP02]). We define τ = σ 1σ2 · · · σr and
σ1 = τ

−1σ2τ . It is easy to check that

τσiτ
−1
= σi+1

where the indices are considered in Z/r .
The group ABr has a presentation with generators G = {τ, σi : i ∈ Z/r} and relations

R = {σiσj = σjσi for i 6= j±1, σiσi+1σi = σi+1σiσi+1, τσiτ
−1
= σi+1}

With this presentation the map φe,r maps τ 7→ 1, σi 7→ 0 for all i.
We notice that the subgroup of ABr generated by the elements σ1, . . . , σr is the Artin

group of type Ãr−1, AÃr−1
. Hence, if we write Zτ e for the infinite cyclic group generated

by τ e, where τ acts on AÃr−1
as before, we can write the following semidirect product

decompositions:
B(d, 1, r) = Zτ n AÃr−1

and
B(de, e, r) = Zτ e n AÃr−1

. (1)
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According to [IP02] and [BMR98] the centre of B(de, e, r) is generated by β(de, e, r)
= (τ e)r/r∧e. Hence it follows that in the quotient B(de, e, r)/Z(B(de, e, r)) there is an
element, namely (τ e), that has order at most r/r ∧ e and is the image of a root of the
generator of the centre of B(de, e, r). Now let us consider the map

λ : B(de, e, r)→ Z/(r/r ∧ e)

given by (τ e) 7→ 1 and σi → 1 for all i. This map passes to the quotient

λ : B(de, e, r)/Z(B(de, e, r))→ Z/(r/r ∧ e)

and hence the order of (τ e) in the quotient B(de, e, r)/Z(B(de, e, r)) is exactly r/r ∧ e.
The length function in B(de, e, r) tells us also that the generator β(de, e, r) of the centre
cannot have roots of order higher than r/r ∧ e. We have proved the following:

Proposition 2.1. The groups B(de, e, r) and B(de′, e′, r) are not isomorphic if

r ∧ e 6= r ∧ e′. ut

From equation (1) it is possible to deduce the following elementary result:

Proposition 2.2. The group B(2e, e, r) is isomorphic to B(2e′, e′, r) if e ≡ ±e′ mod r .
Proof. This is straightforward since the Dynkin diagram of Ãr−1 is an r-gon and we
can suppose without loss of generality that the vertices are numbered counterclockwise.
Hence the element τ acts by conjugation rotating the r-gon by 2π/r , and the subgroup of
Inn(AÃr−1

) generated by τ is cyclic of order r . It follows that conjugation by τ e is equiva-

lent to conjugation by τ e
′

if e ≡ e′ mod r . Moreover we can consider the automorphism ς

of AÃr−1
given by ς(σi) = σr+1−i . The map ς induces an isomorphism

ς : Zτ e n AÃr−1
→ Zτ−e n AÃr−1

given by ς(n,w) = (−n, ς(w)). ut

3. Homology of the classical braid group

In what follows we often deal with bigraded modules M =
⊕

n,d Mn,d . The first grad-
ing function is denoted by deg and refers to an indexed family of objects. The sec-
ond grading function is denoted by dim and refers to homological dimension. We write
Mn,d = Mdeg=n,dim=d for the corresponding homogeneous summand of M with fixed
degree and dimension.

Let Br(n) be the classical Artin braid group on n strands. We recall the description
of the homology of these groups according to the results of [Coh76, Fuk70, Vaı̆78]. We
shall adopt the notation coherent with [DPS01] (see also [Cal06]) for the description of
the algebraic complex and the generators. Let F be a field. The direct sum of the homology
of Br(n) for n ∈ N = Z≥0 is considered as a bigraded ring

⊕
d,nHd(Br(n),F) where the

product structure

Hd1(Br(n1),F)×Hd2(Br(n2),F)→ Hd1+d2(Br(n1 + n2),F)

is induced by the map Br(n1)×Br(n2)→ Br(n1+n2) that juxtaposes braids (see [Coh88,
Cal06]).
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3.1. Braid homology over Q

The homology of the braid group with rational coefficients has a very simple description:

Hd(Br(n),Q) = (Q[x0, x1]/(x
2
1))deg=n,dim=d

where deg xi = i+1 and dim xi = i. In the Salvetti complex for the classical braid group
(see [Sal94, DPS01]) the element x0 is represented by the string 0, and x1 is represented
by the string 10. In the representation of a monomial xa0x

b
1 we drop the last 0.

For example the generator of H1(Br(4),Q) is the monomial x2
0x1 and we can also

write it as a string in the form 001 (instead of 0010, dropping the last 0).
We denote by A(Q) the module Q[x0, x1]/(x

2
1)[t
±1
].

3.2. Braid homology over F2

With coefficients in F2 we have

Hd(Br(n),F2) = F2[x0, x1, x2, x3, . . .]deg=n,dim=d

where the generator xi , i ∈ N, has degree deg xi = 2i and homological dimension
dim xi = 2i − 1.

In the Salvetti complex the element xi is represented by a string of 2i−1 1’s followed
by one 0. In the representation of a monomial xi1 . . . xik we drop the last 0.

We denote by A(F2) the module F2[x0, x1, x2, x3, . . . ][t
±1
].

3.3. Braid homology over Fp, p > 2

With coefficients in Fp with p an odd prime, we have

Hd(Br(n),Fp) = (Fp[h, y1, y2, y3, . . .] ⊗3[x0, x1, x2, x3, . . .])deg=n,dim=d

where the second factor in the tensor product is the exterior algebra over the field Fp with
generators xi , i ∈ N. The generator h has degree deg h = 1 and homological dimension
dimh = 0. The generator yi , i ∈ N, has deg yi = 2pi and dim yi = 2pi − 2. The
generator xi , i ∈ N has deg xi = 2pi and dim xi = 2pi − 1.

In the Salvetti complex the element h is represented by the string 0, the element xi is
represented by a string of 2i − 1 1’s followed by one 0. We remark that the term d(xi)

is divisible by p. In fact, with generic coefficients (see [Cal06]), the differential d(xi)
is given by a sum of terms with coefficients all divisible by the cyclotomic polynomial
ϕ2pi (q). Specializing to the trivial local system with integer coefficients, all terms are
divisible by ϕ2pi (−1) = p. The element yi is represented by the following term (the
differential is computed over the integers and then, after dividing by p, we consider the
result modulo p):

d(xi)

p
.

Hence we can associate a string to a monomial xi1 · · · xikh
iyj1 · · · yjl juxtaposing the

strings associated to each single factor and dropping the last 0. Here the indices vary with
i1 < · · · < ik and j1 ≤ · · · ≤ jl .
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We denote by A(Fp) the module

Fp[h, y1, y2, y3, . . .] ⊗3[x0, x1, x2, x3, . . .][t
±1
].

We write simply A instead of A(Q), A(F2) or A(Fp) when the field we are considering
is understood.

4. Homology of B(2e, e, r)

4.1. Preliminary computations

In this section we always assume d > 1. Recall (from [BMR98]) that in that case we have
B(de, e, r) = B(2e, e, r). The case d = 1 will be treated in Section 6.

We want to understand the homology of B(∗e, e, r) = B(2e, e, r) with coefficients
in Fp.

We start by computing the homology of the group B(2e, e, r) with coefficients in the
field F. In what follows F will be mainly a prime field Fp, but we will also be interested
to obtain again the results of Lehrer for rational coefficients in order to have a description
of the generators.

Let us recall from Section 2 the isomorphisms

B(d, 1, r) = ABr and B(de, e, r) = Kerφe,r

where φe,r maps B(d, 1, r)→ Z/e.
We can consider the group rings F[Z/e] = F[t]/(1 − (−t)e) and F[Z] = F[t±1

] as
ABr -modules through the maps φe,r and φr : ABr → Z that maps σ 1 7→ 1 and σi 7→ 0
for i > 1.

Applying the Shapiro Lemma (see [Bro82]) we find that

H∗(B(de, e, r),F) = H∗(ABr ,F[t]/(1− (−t)
e)).

Notice that this statement is also true when F is an arbitrary ring. In order to compute the
right term of the equality we begin by studying the homologyH∗(ABr ,F[t±1

]), where the
local system is determined by the map φr . To do this we consider the algebraic Salvetti
complex for the Artin group of type Br , C∗(r) = C∗(ABr ) (see [Sal94]), with coefficients
in the group ring F[t±1

]. We order the generators of ABr as in the diagram of Table 1. We
filter the complex C∗(r) as follows:

FiC∗(r) = 〈AB〉

where 〈AB〉 is the F[t±1
]-submodule of C∗(r) generated by all the strings of type AB,

with A a string of 0’s and 1’s of length i with at least one 0. It follows that we have an
isomorphism

Fi+1C∗(r)/FiC∗(r)
ι
' C∗(AAr−i−1)[i, i + 1]

between the quotient of two consecutive filtrated terms and the Salvetti complex for the
Artin group of type Ar−i−1, that is, the braid group Br(r − i) on r − i strands. The
first index in square brackets means dimension shifting by i and the second index means
degree shifting by i + 1. The complex Fi+1C∗(r)/FiC∗(r) is generated by strings of
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the form 1i0B. Moreover the string 1i0B corresponds, through the isomorphism ι, to the
string B in the complex C∗(AAr−i−1)[i, i + 1].

We consider the direct sum

C∗ =

∞⊕
r=0

C∗(r)

and we study the first quadrant spectral sequence {Eki,j , d
k
}k induced by the filtration F

on the complex C∗. The complex C∗ is bigraded with

|S| = dim S = the number of 1’s of the string S

and
deg S = the length of the string S.

The first observation is that we get a first quadrant spectral sequence and in the E0

term we have

E0
i,j = FiCi+j/Fi−1Ci+j =

∞⊕
r=0

Cj (AAr−i−1).

We can now study the first differential of the spectral sequence, that is, d0. Because
of the chosen filtration, on each column of the spectral sequence the differential d0 cor-
responds to the boundary map of the complex C∗(AAr−i−1) with trivial local system. This
yields

Proposition 4.1. The E1 term of the first quadrant spectral sequence defined above is
given as follows (i, j ≥ 0):

E1
i,j =

∞⊕
r=0

Hj (AAr−i−1 ,F[t
±1
]) =

∞⊕
r=0

Hj (Br(r − i),F[t±1
])

=

∞⊕
r=0

Hj (Br(r − i),F)⊗ F[t±1
]

since the t-local system is trivial on Br(r − i).

Notation: We denote by Br(0) and Br(1) the trivial group with one element, while Br(i)
is empty for i < 0. Hence H∗(Br(1),F) = H∗(Br(0),F) = F and both modules are
concentrated in dimension 0, while Hj (Br(i),F) is the trivial summand for i < 0.

Remark 4.2. Proposition 4.1 actually gives us an infinite family of spectral sequences.
Using the previous argument we can define, for every index r ∈ N, a spectral sequence
{Eki,j (r), d

k(r)}k with first term

E1
i,j (r) = Hj (Br(r − i),F)⊗ F[t±1

]

which converges to the homology group H∗(ABr ,F[t±1
]).

Notice that each column of the E1 term of the spectral sequence of Proposition 4.1
is isomorphic to the bigraded module A(F) defined in Section 3. The correspondence
between an element x ∈ A(F) and an element in the i-th column of the spectral sequence
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is the following: if x is a monomial, which corresponds to a string of 0’s and 1’s, we lift
it to the same string preceded by the sequence

i︷ ︸︸ ︷
1 · · · 1 0.

For a generic element x we extend the correspondence by linearity. We denote the lifted
element by zix.

Our interest now is to study the higher differentials of the spectral sequence. Since
they are induced by the boundary map of the complex C∗(r), we give a description of this
complex according to [Sal94] and [CMS08].

We recall the definition of the following q-analog and q, t-analog polynomials:

[0]q := 1, [m]q := 1+ q + · · · + qm−1
=
qm − 1
q − 1

for m ≥ 1,

[m]q ! :=

m∏
i=1

[m]q ,

[
m

i

]
q

:=
[m]q !

[i]q ![m− i]q !
,

[2m]q,t := [m]q(1+ tqm−1), [2m]q,t !! :=
m∏
i=1

[2i]q,t = [m]q !
m−1∏
i=0

(1+ tqi),

[
m

i

]′
q,t

:=
[2m]q,t !!

[2i]q,t !![m− i]q !
=

[
m

i

]
q

m−1∏
j=i

(1+ tqj ).

In our computations, since we consider a local system that maps the generator as-
sociated to the first node of the Dynkin diagram Br to a non-trivial action (i.e. (−t)-
multiplication) and the other generators to a trivial action, we will specialize our polyno-
mials to q = −1 (see [Sal94]).

By an easy computation with cyclotomic polynomials, combined with some result
that appears in [Cal06], we can easily prove the following lemma, which will be useful in
further computations. We will write [∗]−1 for the q-analog [∗] evaluated at q = −1.

Lemma 4.3. For q = −1, the polynomial
[
m
i

]
q

evaluated over the integers is zero if and
only if m is even and i is odd.

Evaluated modulo 2, it is non-zero if and only if, when we write i and m as sums of
powers of 2 without repetitions, all the terms in the sum for i appear in the sum for m.
Let h be the number of integers k such that there is a 1 in the binary decomposition of i
or m − i at the k-th position, but not in the binary decomposition for m. Then 2h is the
highest power of 2 that divides the integer

[
m
i

]
−1.

Evaluated modulo a prime p > 2, the expression
[
m
i

]
−1 is non-zero if and only if

when we write i and m− i as sums of terms of the form

i = l0 +

s∑
k=1

lk2pk−1, m− i = l′0 +

s∑
k=1

l′k2p
k−1,
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with 0 ≤ l0, l′0 ≤ 1, 0 ≤ lk, l′k < p for k = 1, . . . , s, we have l0 + l′0 < 2 and lk + l′k < p

for all k = 1, . . . , s. Moreover, if

m = l′′0 +

s∑
k=1

l′′k 2pk−1

with 0 ≤ l′′0 ≤ 1, 0 ≤ l′′k < p for k = 1, . . . , s, then the integer h defined as

h := ]{k ∈ N | l′′h < lh + l
′

h}

is the greatest exponent such that ph divides
[
m
i

]
−1.

Proof. Let us sketch the idea of the proof. The main point is to study the divisibility of
the polynomial

[
m
i

]
q

by the cyclotomic polynomials ϕj (q). Moreover we need to recall
that ϕj (−1) 6= 0 if j 6= 2 and for any prime p, ϕ2pj (−1) = p for j > 0, and in all
the other cases ϕj (−1) = 1. The number h is the number of digits that we carry over in
the sum between i and m − i written respectively in base 2 and in the base associated to
an odd prime p, corresponding to the sums of the last part of the statement. The integer
h actually counts the number of times a factor of the form ϕ2pj , p > 0, divides the
q-analog

[
m
i

]
q
. ut

Finally we present the boundary maps for the complex C∗(AAr ) and C∗(r), which we
write ∂ and ∂ . Recall that the complex C∗(AAr ) over a module M is the direct sum⊕

|x|=r

M.x

of one copy of M for each string x, made of 0’s and 1’s, of length r . Notice that these
strings are in 1-to-1 correspondence with the parts of a set of r elements (in particular
with the set of nodes of the Dynkin diagram of type Ar ). A 1 in the j -th position of the
string means that the j -th element belongs to the subset, while a 0 means it does not. The
complex is graded as follows: the dimension of a non-zero element m ∈ M.x is given by
the number of 1’s in the string x, that is, the cardinality of the corresponding subset.

The complex C∗(r) = C∗(ABr ) has the same description (as a graded module) as
C∗(AAr ), but they differ in the boundary. Since in the Dynkin diagram of type Br the first
node is special, we change our notation slightly for the string representing the generators
of C∗(r) using 0 or 1 in the first position, according to whether or not the first element
belongs to the subset of nodes.

We consider the nodes of the Dynkin diagram of type Ar ordered as in Table 2.

Table 2. Dynkin diagram for the Artin group of type Ar .

1 2 3 r−1 r

Let x be the string
i1︷ ︸︸ ︷

1 · · · 1 0

i2︷ ︸︸ ︷
1 · · · 1 0 · · · 0

ik︷ ︸︸ ︷
1 · · · 1 .



Homology computations for complex braid groups 117

We write it in more compact notation as

x = 1i101i20 · · · 01ik .

The boundary of x in the complex C∗(AAr ) is given by the following sum:

∂x =

k∑
j=1

ij−1∑
h=0

(−1)i1+...+ij−1+h

[
ij + 1
h+ 1

]
−1

1i1 0 · · · 01ij−101h01ij−h−101ij+10 · · · 01ik .

In a simpler way (see [DPS01, DPSS99]) we can say that the boundary is zero on the
string made of all 0’s; moreover,

∂1l =
l∑

h=0

−1(−1)h
[
l + 1
h+ 1

]
−1

1h01l−h−1
;

and if A and B are two strings,

∂A0B = (∂A)0B + (−1)|A|A0∂B.

In the complex C∗(r) the boundary ∂x is given as follows:

∂0A = 0∂A,

∂ 11l−1
=

[
l

0

]′
−1

01l−1
+

l−1∑
h=1

(−1)h
[
l

h

]′
−1

11h−101l−h−1

∂A0B = (∂A)0B + (−1)|A|A0∂B.

We can use the given description of the algebraic complex to compute explicitly the
differential d1 in the spectral sequence. This is a first tutorial step in the computation
of the whole spectral sequence of Proposition 4.1. Recall that d1 is a homomorphism of
bidegree (−1, 0) and maps

d1
i,j (r) : E

1
i,j (r)→ E1

i−1,j (r).

A representative of a generator of E1
i,j (r) is of the form 11i−10x = zix where x is a

representative of a homology class in Hj (Br(r − i),F). Since x is already a cycle, we
need to consider only the part of the boundary ∂1i0x starting with 1i−10, that is,

d1
i,j (r) : zix 7→ [i]−1(1+ t (−1)i−1)zi−10x.

Since the coefficient [i]−1 is 0 for even i’s and 1 otherwise, we get

d1
i,j (r)zix =

{
0 if i is even,
(1+ t)zi−10x if i is odd.

When we work on the prime field Fp, with p = 2 we write also zi−1x0x for zi−10x and
when p > 2 we write zi−1hx for zi−10x. Each odd column injects in the even column on
its left. The E2 term of the spectral sequence easily follows from the description of the
differential d1. We can briefly state this as:
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Proposition 4.4. In the E2 term of the first quadrant spectral sequence of Proposition
4.1 each column in even position is isomorphic to the quotient ring A(F2)/((1 + t)x0)

(resp.A(Fp)/((1+t)h) orA(Q)((1+t)x0)) for F = F2 (resp. F = Fp, p > 2 or F = Q).
All the columns in odd position are zero.

For a more advanced study of the spectral sequence and of its other terms, we need to
split our analysis, considering separately the case F = Q and the cases F = Fp, with
p = 2 and p > 2.

4.2. Homology of B(2e, e, r) with rational coefficients

We continue the study of the spectral sequence of Proposition 4.4. We only need to com-
pute the differential of the E2 term of the spectral sequence, since the spectral sequence
is concentrated in the first two rows, hence all the other differentials are zero and the
spectral sequence collapses at E3.

The differential
d2
i,j (r) : E

1
i,j (r)→ E1

i−2,j+1(r)

acts as follows:

d2
i,j (r) : zix 7→

[
i

2

]
−1
(1− t2)zi−2x1x.

The coefficient
[
i
2

]
−1 is always non-zero, hence we can define the quotient

A0(Q) = A0 = A(Q)/((1+ t)x0, (1− t2)x1)

and in the E∞ term we have:

A0 0 A0 0 A0 0 · · ·

The terms of the form z2ix
j

0 lift, in H∗(ABr ,Q[t±1
]), to the cycle

ω2i,j,0 =
∂(z2i+1x

j−1
0 )

1+ t

while the terms of the form z2ix
j

0x1 for j > 1 lift to

ω2i,j,1 =
∂(z2i+1x

j−1
0 x1)

1+ t

and for j = 0 to

ω2i,0,1 =
∂(z2i+2)

1− t2
.
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We can then compute the homologyH∗(B(2e, e, r),Q)=H∗(ABr ,Q[t]/(1− (−t)e))
by means of the homology long exact sequence associated to the short exact sequence

0→ Q[t±1
]
(1−(−t)e)
−−−−−−→ Q[t±1

]
π
−→ Q[t±1

]/(1− (−t)e)→ 0. (2)

We consider the following cycles in the complex for H∗(ABr ,Q[t]/(1− (−t)e)):

ω2i,j,0 =
(1− (−t)e)z2i+1x

j−1
0

1+ t
,

ω2i,j,1 =
(1− (−t)e)z2i+1x

j−1
0 x1

1+ t
,

ω2i,0,1 =
(1− (−t)e)z2i+2

1− t2
.

Let δ be the differential of the long exact homology sequence associated to the short
exact sequence (2); it is clear that

δ(ω2i,j,k) = ω2i,j,k.

Moreover the cycles ω2i,j,k have (1 + t)-torsion if (j, k) 6= (0, 1), and (1 − t2)-torsion
otherwise. This proves that the cycles ω and π∗(ω) are the generators of the homology
H∗(B(2e, e, r),Q) confirming the Poincaré polynomial already given by Lehrer [Leh04].

4.3. H∗(ABr ,F2[t
±1
])

We can now compute the differential in the E2 term of the spectral sequence. The bound-
ary map tells us that the differential

d2
i,j (r) : E

1
i,j (r)→ E1

i−2,j+1(r)

acts as follows:

d2
i,j (r) : zix 7→

[
i

2

]
−1
(1+ t)2zi−2x1x.

The coefficient
[
i
2

]
−1, which we consider only for even values of i, is zero if 4 | i, other-

wise it is non-zero and the kernel of the differential is generated by the element x0. Hence
the picture of the spectral sequence for E3

= E4 (note that the differential d3 must be
zero) is as follows: if i is a multiple of 4, then the i-th column is isomorphic to the quo-
tient A(F2)/((1 + t)x0, (1 + t)2x1), and if i is even, but 4 - i, then the i-th column is
isomorphic to the submodule quotient x0A(F2)/((1 + t)x0) ' A(F2)/(1 + t) (this is an
isomorphism, but not a bigraded-isomorphism); all the other columns are zero.

In order to give a description of the general behaviour of the spectral sequence we
need the following definitions.

For a ∈ N we define the following ideals of A = A(F2) (also for these definitions we
drop the notation referring to the prime p = 2 when it is understood):

Ja(F2) = Ja = ((1+ t)x0, (1− t2)x1, . . . , (1− t2)2
a−1
xa).
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We also define the quotients

Aa(F2) = Aa = A(F2)/Ja(F2)

and the ideals of Aa :

Ia(F2) = Ia = (x0, x1, . . . , xa) ⊂ Aa(F2).

Moreover we define

J∞(F2) = J∞ =

∞⋃
a=0

Ja(F2) and A∞(F2) = A∞ = A/J∞.

With this notation the page E3
= E4 of the spectral sequence looks as follows:

A1 0 I0 0 A1 0 · · ·

This result gives a description of the general behaviour of the spectral sequence:

Theorem 4.5. The k-th term of the spectral sequence described in Proposition 4.1 com-
puting the homology H∗(ABr ,F2[t

±1
]) is as follows:

• If k = 2a the i-th column is isomorphic to:

– 0 if i is odd;
– Ih if 2h+1

| i and 2h+2 - i, with h+ 1 < a;
– Aa−1 if 2a | i.

The differential d2a is as follows: if 2a | i and 2a+1 - i we have the map

dki,j : zix 7→

[
i

2a

]
−1
(1+ t)2

a

zi−2axax

where the q-analog coefficient is invertible; all the other differentials are trivial.
• If 2a < k < 2a+1 then Ek = E2a+1

and the differential dk is trivial.

In the E∞ term of the spectral sequence the i-th column is isomorphic to:

• 0 if i is odd;
• Ih if 2h+1

| i and 2h+2 - i;
• A∞ if i = 0.

The homology H∗(ABr ,F2[t
±1
]) is isomorphic to the graded module associated to

the E∞ term.

Proof. We prove the first part of the statement by induction on a. The second part will
follow from the first.

We already have a description of the E4 term, so we can use a = 2 as a starting point
for the induction.
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In order to prove the inductive step, it is useful to give a more precise statement with
an explicit description of the generators in the Ek term of the spectral sequence.

Let 2a−1 < k ≤ 2a and let Ih be an ideal in the i-th column (hence 2h+1
| i and

2h+2 - i, h + 1 < a). The generators x0, . . . , xh of the ideal Ih are the images of the
elements zix0, . . . , zixh of the E0 term of the spectral sequence. A generic monomial of
the ideal Ih is m = xsxs1 · · · xsn with 0 ≤ s ≤ h, s ≤ s1 ≤ · · · ≤ sn. The monomial m is
the image of the element zixsxs1 · · · xsn in the E0 term of the spectral sequence. Its lifting
to the Ek term of the spectral sequence is given by

αi,0 =
∂(zi+1xs1 · · · xsn)

1+ t
for s = 0 and

αi,s =
∂(zi+2sxs1 · · · xsn)

(1− t2)2s−1

for s > 0. In particular these terms lift to cycles, hence all the further differentials in the
spectral sequence map them to zero.

The differential ∂(z2l(2m+1)xs1 · · · xsn) is given by a sum of the form[
2l(2m+ 1)

2l

]′
−1
z2l+1mxlxs1 · · · xsn + · · ·

where the remaining terms start with factors zr with r < 2l+1m, hence they belong to a
higher degree of the filtration with respect to the first term written above.

We note that the coefficient
[ 2l(2m+1)

2l
]′
−1 is non-zero. In particular[

2l(2m+ 1)
2l

]′
−1
=

[
2l(2m+ 1)

2l

]
−1
(1− t2)l−1

and the coefficient
[ 2l(2m+1)

2l
]
−1 is invertible, as proved in Lemma 4.3.

Now let Aa−1 be the module in the column i with 2a | i. A monomial w in Aa−1 is
of the form w = xs1 · · · xsn with s1 ≤ · · · ≤ sn (of course n may be 0, that is, m = 1).
The monomial m is the image of the element zixs1 · · · xsn in the E0 term of the spectral
sequence. By what we have just observed, zixs1 · · · xsn will survive in the spectral se-
quence until page E2a . If 2a+1

| i then the differential d2aw will be zero. Otherwise, if
i = 2a(2m+ 1), then

d2aw = d2az2a(2m+1)xs1 · · · xsn =

[
2a(2m+ 1)

2a

]′
−1
z2a+1mxaxs1 · · · xsn ,

that is, up to invertible factors,

d2aw = d2az2a(2m+1)xs1 · · · xsn = (1− t
2)a−1z2a+1mxaxs1 · · · xsn .

This means that the differential d2a is as described in the statement of the theorem:

dki,j : zix 7→

[
i

2a

]
−1
(1+ t)2

a

zi−2axax.
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The kernel of dki,j : Aa−1 → Aa−1 is the ideal of Aa−1 generated by those monomials
that are killed by multiplication by (1+ t)2

a
xa , that is, the ideal (x0, . . . , xa) = Ia .

The cokernel of dki,j : Aa−1 → Aa−1 is the quotient of Aa−1 by the ideal generated
by (1+ t)2

a
xa , that is, Aa . ut

Remark 4.6. The proof of Theorem 4.5 gives us a precise description of the generators
of the E∞ term:

• The module Ih in the [2h+1(2m+ 1)]-th column is generated by the terms

α2h+1(2m+1),0 =
∂(z2h+1(2m+1)+1)

1+ t
, α2h+1(2m+1),i =

∂(z2h+1(2m+1)+2i )

(1− t2)2i−1

for i = 1, . . . , h, corresponding to the generators x0, x1, . . . , xh of Ih; the generator
corresponding to the monomial xixi1 · · · xik (ij ≥ i for all j) is

α2h+1(2m+1),0xi1 · · · xik =
∂(z2h+1(2m+1)+1xi1 · · · xik )

1+ t
for i = 0 and

α2h+1(2m+1),ixi1 · · · xik =
∂(z2h+1(2m+1)+2ixi1 · · · xik )

(1− t2)2i−1

for i > 0.
• The module A∞ in the 0-th column is generated by z0.

These generators are actually cycles in the algebraic complex C∗(r) and naturally lift
to generators of the homology H∗(ABr ,F2[t

±1
]) which inherits the structure of an

A(F2)[t
±1
]-module.

Note. When we use the notation
∂x

a(t)

we mean that we consider the boundary of the element x computed in the complex
C∗(r) = C∗(ABr ) with coefficients in the ring of Laurent polynomials over the inte-
gers Z[t±1

], then we divide exactly by the polynomial a(t) and finally we consider the
quotient as a class in the coefficients we are using (for example, F2[t

±1
] in the case of

Remark 4.6).

4.4. Homology of B(2e, e, r), p = 2

The result of Theorem 4.5 together with the description of the generators of the mod-
ules in the spectral sequence allows us to compute the homology H∗(B(2e, e, r),F2) =

H∗(ABr ,F2[t]/(1+ te)). We only need to study the long exact homology sequence asso-
ciated to the short exact sequence

0→ F2[t
±1
]
(1+te)
−−−→ F2[t

±1
]
π
−→ F2[t

±1
]/(1+ te)→ 0 (3)

of the coefficients. We can state the following technical result:
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Proposition 4.7. We have a decomposition of the F2[t
±1
]-module

Hi(ABr ,F2[t]/(1+ te)) = hi(r, e)⊕ h′i(r, e)

such that the long exact homology sequence associated to the short exact sequence (3)
splits:

0→ h′i+1(r, e)
δ
→ Hi(ABr ,F2[t

±1
])

(1+te)
−−−→ Hi(ABr ,F2[t

±1
])

π∗
−→ hi(r, e)→ 0. (4)

Proof. In order to prove this splitting, for each generator x of the module Hi(ABr ,F2[t])

we provide an element x̃ ∈ Hi+1(ABr ,F2[t]/(1 + te)) that maps to x and we prove that
x̃ has right torsion, with respect to the ring F2[t

±1
], in order to generate a submodule of

Hi(ABr ,F2[t]/(1+ te)) isomorphic to

Ker
(
F2[t

±1
]x

(1+te)
−−−→ F2[t

±1
]x
)
.

Let 2a be the greatest power of 2 that divides e. We observe that the following equivalence
holds:

1+ te ≡ 1+ t2
a

≡ (1+ t)2
a

mod 2.

It turns out that the kernel and the cokernel of the map

F2[t
±1
]/(1+ t)2

i (1+te)
−−−→ F2[t

±1
]/(1+ t)2

i

are both isomorphic to the quotient

F2[t
±1
]/(1+ t2

min(i,a)
).

We are going to prove that every direct summand of the F2[t
±1
]-module Hi(ABr ,F2[t])

of the form F2[t
±1
]/(1+t)2

i
gives rise to two copies of the module F2[t

±1
]/(1+t2

min(i,a)
),

one in the same dimension, one in one dimension higher. In particular the generator αc,i ,
where c = 2h+1(2m+ 1), i ≤ h, determines the two generators

α̃c,i = (1+ t)2
a
−2min(i,a)

zc+2i

and

π∗

(
1

(1+ t)2min(i,a) δ(̃αc,i)

)
= π∗(αc,i) =

∂(zc+2i )

(1+ t)2i
.

Given a generic monomial x = αc,ixi1 · · · xik (again c = (2m + 1)2h+1, i ≤ h) its
projection is given by the cycle

π∗(αc,ixi1 · · · xik ) =
∂(zc+2ixi1 · · · xik )

(1+ t)2i
.

We remark that, given two elements x = αc,ixjxi1 · · · xik and x′ = αc,jxixi1 · · · xik , since
they correspond to the lifting of the same element in the spectral sequence, they repre-
sent the same homology class in H∗(ABr ,F2[t

±1
]) (and hence their projections π(x) and

π(x′) are homologous). Hence we can suppose that the monomial x = αc,ixjxi1 · · · xik is
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written in the form such that i ≤ i1 ≤ · · · ≤ ik . We define

x̃ = (1+ t)2
a
−2min(i,a)

zc+2ixi1 · · · xik .

With this definition it is straightforward to check that δ(̃x) generates the submodule

Ker
(
F2[t

±1
]x

(1+te)
−−−→ F2[t

±1
]x
)

and that (1 + t)2
min(i,a)

x̃ = 0. Hence we have proved the splitting in (4). The proof
also gives a description of the generators of the homology Hi(ABr ,F2[t]/(1 + te)) as
an F2[t

±1
]-module. ut

Remark 4.8. As pointed out by the referee, an interesting question would be to get a
direct description of the splitting given here and in the proof of Proposition 4.14.

As a consequence we can give a description of the homology of B(2e, e, r). Let us
define for an integer n the value hp(n) such that php(n) | n and php(n)+1 - n. For a bigraded
module M , with degree deg and dimension dim, we use the notation M[n,m] for the
moduleM ′ isomorphic toM , but with bigrading shifted such that deg′ = deg+n, dim′ =
dim+m. Finally, let M{n} = M ⊕M[0, 1] ⊕ · · · ⊕M[0, n− 1]

We can state the result as follows:

Theorem 4.9. The sum of the homology groups⊕
r≥0

H∗(B(2e, e, r),F2) =
⊕
r≥0

H∗(ABr ,F2[t]/(1+ te))

is given by the sum

A∞[1, 0] ⊗ F2[t]/(1+ te){2} ⊕
∞⊕
n=1

Ih2(n)[2n+ 1, 2n] ⊗ F2[t]/(1+ te){2}. ut

We can write explicitly the Poincaré polynomial of the homology H∗(B(2e, e, r),F2). If
we write P2(B(2e, e, r), u) =

∑
∞

i=0 dimF2 Hi(B(2e, e, r),F2)u
i for that polynomial, it

is more convenient to consider the series in two variables

P2(B(2e, e, ∗), u, v) =
∞∑
r=0

P2(B(2e, e, r), u)vr .

The Poincaré series for the bigraded ring A∞/(1+ t)e is given by

PA∞(F2),e(u, v) = e +

∞∑
i=0

(
2min(h2(e),i)u2i−1v2i

∏
j≥i

1

1− u2j−1v2j

)
and the Poincaré series of the ideal Ia ⊗ F2[t]/(1+ te) is given by

PIa(F2),e(u, v) =

a∑
i=0

(
2min(h2(e),i)u2i−1v2i

∏
j≥i

1

1− u2j−1v2j

)
.
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Hence we obtain the following result:

Corollary 4.10. The Poincaré polynomial of the homology of the groups B(2e, e, r) with
F2 coefficients is given by

P2(B(2e, e, ∗), u, v) = vPA∞(F2),e(u, v)(1+u)+
∞∑
n=1

v2n+1u2nPIh2(n)(F2),e(u, v)(1+u).

ut

As an example of these computations we give in Tables 3 and 4 the first homology groups
of B(2e, e, r) with coefficients in the field F2 and the stable part up to homological di-
mension 5.

Table 3. dimH∗(B(2e, e, r),F2), r < 8.

r 2 3 4 5 6 7

e mod (m) 0(2) 1(2) any 0(4) 2(4) 1(2) any 0(2) 1(2) any

dimH0 1 1 1 1 1 1 1 1 1 1

dimH1 3 2 2 2 2 2 2 2 2 2

dimH2 2 1 1 4 4 3 3 3 3 3

dimH3 0 0 7 5 3 3 6 5 5

dimH4 0 0 4 2 1 2 6 4 3

dimH5 0 0 0 1 5 3 4

dimH6 0 0 0 0 2 1 3

dimH7 0 0 0 0 0 1

Table 4. dimH∗(B(2e, e, r),F2), r = 8 and stable part up to H5.

r 8 ≥ 9

e mod (m) 0(8) 4(8) 2(4) 1(2) any

dimH0 1 1 1 1 1

dimH1 2 2 2 2 2

dimH2 3 3 3 3 3

dimH3 5 5 5 5 5

dimH4 6 6 6 5 5

dimH5 8 8 8 6 6

dimH6 11 11 9 6

dimH7 15 11 7 4

dimH8 8 4 2 1

Remark 4.11. As pointed out by the referee, our computations here and below give sev-
eral direct sum decompositions and it would be interesting to make them appear as natural
topological decompositions, such as stable decompositions of X/W .
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4.5. H∗(ABr ,Fp[t±1
])

As in the case p = 2 we start by computing the differential in the E2 term of the spectral
sequence. Again, the starting point is the result in Proposition 4.4. The differential

d2
i,j (r) : E

1
i,j (r)→ E1

i−2,j+1(r)

acts as follows:

d2
i,j (r) : zix 7→

[
i

2

]
−1
(1− t2)zi−2x1x.

The coefficient
[
i
2

]
−1 is zero for p | i. Recall in fact that we are considering only even

columns, hence even values of i. So for p | i, we have ϕ2p(q) |
[
i
2

]
q

and when we evaluate
the polynomial for q = −1 we get ϕ2p(−1) = p.

Hence we can give the picture of the E3 page of the spectral sequence: all the odd
columns are zero; if i is an even multiple of p, then the i-th column is isomorphic to
the quotient A(Fp)/((1 + t)h, (1 − t2)x0); if i + 2 is a multiple of p, then the i-th
column is isomorphic to the submodule of A(Fp)/((1 + t)h) generated by h and x0.
If i, i + 2 are not multiples of p, then the i-th column is isomorphic to the submodule of
A(Fp)/((1+ t)h, (1− t2)x0) generated by h and x0.

As in the case of the prime p = 2, we need to define some ideals of A = A(Fp):

J2a+1(Fp) = J2a+1

= ((1+ t)h, (1− t2)x0, (1− t2)p−1y1, (1− t2)px1, . . . , (1− t2)p
a

xa),

J2a(Fp) = J2a

= ((1+ t)h, (1− t2)x0, (1− t2)p−1y1, (1− t2)px1, . . . , (1− t2)(p−1)pa−1
ya).

We define the quotients

Aa(Fp) = Aa = A(Fp)/Ja(Fp)

and the ideals

I2a+1(Fp) = I2a+1 = (h, x0, y1, x1, . . . , ya, xa) ⊂ A2a+1,

I2a(Fp) = I2a = (h, x0, y1, x1, . . . , ya, xa) ⊂ A2a,

K2a(Fp) = K2a = (h, x0, y1, x1, . . . , xa−1, ya) ⊂ A2a .

Finally, as for p = 2, we define

J∞(Fp) = J∞ =
∞⋃
a=0

Ja(Fp) and A∞(Fp) = A∞ = A/J∞.

With this notation the E3 page of the spectral sequence looks as in Table 5 (at the
bottom we give the number of the column).

It turns out that in the following terms the differential until 2p − 2 is zero, so E3

= E2p−2.
Here we have a general description of the spectral sequence in the analogue of Theo-

rem 4.5 for odd primes:
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Table 5. The E3 page of the spectral sequence for p odd.

A1 0 I1 · · · I1 0 I0 0 A1 · · ·

0 1 2 ··· 2p−4 2p−3 2p−2 2p−1 2p

Theorem 4.12. The k-th term of the spectral sequence described in Proposition 4.1 com-
puting the homology H∗(ABr ,Fp[t±1

]) is as follows:

• If k = 2pa the i-th column is isomorphic to:

– 0 if i is odd;
– I2h+1 if 2ph | i and 2ph+1 - i, 2ph+1 - i + 2ph with h < a;
– K2h if 2ph+1

| i + 2ph with h < a;
– A2a if 2pa | i.

The differential d2pa is as follows: if 2pa | i and 2pa+1 - i we have the map

dki,j : zix 7→

[
i

2pa

]
−1
(1− t2)p

a

zi−2paxax

where the q-analog coefficient is invertible; all the other differentials are trivial.
• If k = 2pa(p − 1) the i-th column is isomorphic to:

– 0 if i is odd;
– I2h+1 if 2ph | i and 2ph+1 - i, 2ph+1 - i + 2ph with h ≤ a;
– I2h if 2pa+1

| i + 2pa

– K2h if 2ph+1
| i + 2ph with h < a;

– A2a+1 if 2pa+1
| i.

The differential d2pa(p−1) is as follows: if 2pa+1
| i + 2pa we have the map

dki,j : zixax 7→ (1− t2)p
a(p−1)zi−2pa(p−1)ya+1x

and all the other differentials are trivial.
• If 2pa < k < 2pa(p − 1) then Ek = E2pa(p−1) and the differential dk is trivial.
• If 2pa(p − 1) < k < 2pa+1 then Ek = E2pa+1

and the differential dk is trivial.

In the E∞ term of the spectral sequence the i-th column is isomorphic to:

• 0 if i is odd;
• I2h+1 if 2ph | i and 2ph+1 - i, 2ph+1 - i + 2ph;
• K2h if 2ph+1

| i + 2ph;
• A∞ if i = 0.

The homology H∗(ABr ,Fp[t±1
]) is isomorphic to the graded module associated to

the E∞ term.
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Proof. As for the case of p = 2, we prove the first part of the statement by induction
on a, and the second part will follow from the first.

We start with the description of E3 that we gave in Table 5. In order to work by
induction, we will give an explicit description of the generators in the Ek term of the
spectral sequence.

Let 2pa < k and let I2h+1 be an ideal in the i-th column. Hence 2ph | i and 2ph+1 - i,
2ph+1 - i + 2ph. The generators h, x0, y1, x1, . . . , yh, xh are the images of the elements
zih, zix0, ziy1, zix1, . . . , ziyh, zixh in the E0 term. We consider these generators of the
ideal I2h+1 ordered as we wrote them, so h will be the smallest generator and xh will be
the biggest. Let m be a generic monomial in the ideal I2h+1. We write its factors ordered
from the smallest to the biggest. It is the image of the element zim in the E0 term of the
spectral sequence. Its lifting in the Ek term is

∂(zi+1m
′)

1+ t

if the smallest factor of m is h and m = hm′, and

∂(zi+2psm
′)

(1− t2)ps

if the smallest factor of m is xs and m = xsm′. Note that we must have s ≤ h and hence
2ph+1 - i + 2ps . This implies that the coefficient of zixsm′ in ∂(zi+2psm

′) is non-zero.
If the smallest factor of m is ys and we let m = ysm′, we need to define the following

element. Let ∂[p](zi+2psm
′) be the sum of all terms that appear in ∂(zi+2psm

′) with a co-
efficient that is divisible by p (when we consider the boundary with integer coefficients).
Notice that, with respect to the filtration F of the complex, the highest term that does not
appear in the sum is (1− t2)p

s
zixsm

′. We define

γ [p](zi+2psm
′) =

∂[p](zi+2ps )m
′

p(1− t2)ps−1

and we find that the lifting of zim is

∂(γ [p](zi+2psm
′))

(1− t2)(p−1)ps−1 .

In fact it is clear that the difference

γ [p](zi+2psm
′)

(1− t2)(p−1)ps−1 − ziysm
′

projects to a boundary in the quotient Fi+1C∗(r)/FiC∗(r). Notice that the quotient

γ [p](zi+2psm
′)

(1− t2)(p−1)ps−1
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is not defined in an Fp[t±1
]-module but still we can define it if we consider only the

summands of γ [p](zi+2psm
′) that are not in FiC∗(r). Hence we can use the first term of

the difference, instead of the second, to lift the class of zim to a representative in Ek .
Since all the liftings that we have defined are global cycles, all the following differen-

tials in the spectral sequence map these terms to zero.
We now give a description of the generators of the ideal I2h appearing in the i-th

column of theEk term of the spectral sequence. We must have 2pa+1
| i+2pa . As before,

the ideal I2h is generated by the terms h, x0, y1, x1, . . . , yh, xh that are the images of the
elements zih, zix0, ziy1, zix1, . . . , ziyh, zixh in the E0 term.

Given a monomial m with smallest factor different from xh, it is easy to verify that
the lifting is the same as in the previous description of the ideal I2h+1.

Let now m have smallest term xh, with m = xhm
′. Let d = h + d ′ be such that

2pd | i + 2ph and 2pd+1 - i + 2ph. One can verify that (1 − t2)p
h
zixhm

′ is the first
non-zero element in

∂[pd
′

](zi+2ph)m
′

pd
′

since all the previous summands in ∂[pd
′

](zi+2ph)m
′ (when we consider the boundary

with integer coefficients) have a coefficient divisible by pd
′
+1. The first term missing in

the sum ∂[pd
′

](zi+2ph)m
′ is the monomial (1− t2)p

h+1
zi−(p−1)phxh+1m

′. It follows that

we can take as a lifting of xhm′ in E2ph(p−1) the element

∂[pd
′

](zi+2ph)m
′

pd
′
(1− t2)ph

and hence its differential with respect to the map d2ph(p−1) is

∂
∂[pd

′

](zi+2ph)m
′

pd
′
(1− t2)ph

that is homologous, by what we have seen before, to the element

(1− t2)p
h(p−1)zi−(p−1)phyh+1m

′

as stated in the theorem.
Hence the differential d2ph(p−1) maps xhm′ 7→ (1− t2)p

h(p−1)yh+1m
′ and is zero for

all the other elements. Clearly the kernel is the ideal K2h.
For what concerns the ideal K2h, generated by h, x0, y1, x1, . . . , yh, the description

of the generators given before can be repeated and all the generators lift to global cycles
as soon as k > 2ph(p − 1).

Finally we consider the modulesA2h andA2h+1 that appear in column i of the spectral
sequence. Each monomial m of A2h or A2h+1 corresponds to a monomial zim in the E0

term of the spectral sequence. If 2pa | i then the monomial zim will survive until the
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E2pa term of the spectral sequence, since all the first summands of the differential ∂zim
are zero. The first summand that can be non-zero is

dki,j : zix 7→

[
i

2pa

]
−1
(1− t2)p

a

zi−2paxax,

which is actually non-zero if and only if 2pa | i and 2pa+1 - i. The kernel of the map
d2pa

: A2a → A2a is the ideal I2a and the quotient of the kernel by the image of d2pa ,
when the image is non-zero, is the module A2a+1. Hence all the other differentials are
forced to be zero and the behaviour of the spectral sequence is as described in the theorem.

ut

Remark 4.13. From the proof we can read off the description of the generators of theE∞

term:

• The module I2h+1 in the 2phn-th column with n 6≡ 0,−1 modp is generated by the
terms

β2phn,h =
∂(z2phn+1)

1+ t
,

β2phn,xi =
∂(z2phn+2pi )

(1− t2)pi
,

β2phn,yi =
∂(γ2phn,yi )

(1− t2)(p−1)pi−1

where we set

γ2phn,yi =
∂(z2phn+2pi )−

∑
2phn,yi (p)

p(1− t2)pi−1 ,

and
∑

2phn,yi (p) is the sum of the terms in ∂(z2phn+2pi ) that have a coefficient not

divisible by p. Notice that the first of these terms is (1− t2)p
i
z2phnxi .

• The module K2h in the 2ph(pn− 1)-th column is generated by the terms

β2ph(pn−1),h =
∂(z2ph(pn−1)+1)

(1+ t)
,

β2ph(pn−1),xi =
∂(z2ph(pn−1)+2pi )

(1− t2)pi
,

β2ph(pn−1),yi =
∂(γ2ph(pn−1),yi )

(1− t2)(p−1)pi−1

with, for i < h,

γ2ph(pn−1),yi =
∂(z2ph(pn−1)+2pi )−

∑
2ph(pn−1),yi (p)

p(1− t2)pi−1 ,
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while for i = h we set

γ2ph(pn−1),yh =
∂(z2ph+1n)−

∑
2ph(pn−1),yh(p

2)

p2(1− t2)ph−1

where
∑

2ph(pn−1),yh(p
2) is the sum of the terms in ∂(z2ph+1n) that have coefficients

not divisible by p2. Notice that the first of these terms is p(1− t2)p
h
z2ph(pn−1)xh.

• The module A∞ in the 0-th column is generated by z0.

4.6. Homology of B(2e, e, r), p > 2

Now we compute H∗(B(2e, e, r),Fp) = H∗(ABr ,Fp[t]/(1 − (−t)e)) by means of the
long exact homology sequence associated to the short exact sequence

0→ Fp[t±1
]
(1−(−t)e)
−−−−−−→ Fp[t±1

]
π
−→ Fp[t±1

]/(1− (−t)e)→ 0. (5)

As in the previous section, we have a splitting result:

Proposition 4.14. We have a decomposition of the Fp[t±1
]-module

Hi(ABr ,Fp[t]/(1− (−t)
e)) = hi(r, e)⊕ h

′

i(r, e)

such that the long exact homology sequence associated to the short exact sequence in (3)
splits:

0→ h′i+1(r, e)
δ
−→ Hi(ABr ,Fp[t

±1
])

(1+te)
−−−→ Hi(ABr ,Fp[t

±1
])

π∗
−→ hi(r, e)→ 0. (6)

Proof. We start by observing that, since 1+ t and 1− t are co-prime in Fp[t±1
], we can

split any module of the form Fp[t±1
]/(1− t2)l as a direct sum

Fp[t±1
]/(1+ t)l ⊕ Fp[t±1

]/(1− t)l

of two modules, generated respectively by (1− t)l and (1+ t)l .
Moreover we consider the following properties of 1− (−t)e in Fp[t±1

]:

(1− t, 1− (−t)e) =
{
(1− t) if e is even,
(1) if e is odd,

and

(1+ t, 1− (−t)e) =
{
(1+ t) if e is even or if p - e,
(1+ t)p

i
if e is odd and pi | e, but pi+1 - e.

The second equality follows from the fact that the polynomial 1+t divides the cyclotomic
polynomial ϕ2pi with order exactly φ(pi) = (p− 1)pi−1 (in Fp[t±1

]) and is co-prime to
all the other cyclotomic polynomials.

Now, let us fix the value of e. When we study the exact sequence (6) we need to
consider only the highest power of p that divides e, and whether e is even or odd.
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Let us consider the monomial x = z2mh
ry
si1
i1
· · · y

sin
in
xk1 · · · xkm in Hi(ABr ,Fp[t±1

]).
We suppose that the indices are ordered so that i1 < · · · < in and k1 < · · · < km. We want
to define a lifting x̃ of x in Hi(ABr ,Fp[t]/(1 − (−t)e)). To do this we have to consider
different cases.

First consider the case of e even. We define

x̃ =



1− (−t)e

1+ t
z2m+1h

r−1y
si1
i1
· · · y

sin
in
xk1 · · · xkm if r > 0,

1− (−t)e

1− t2
z2m+2pi0y

si1
i1
· · · y

sin
in
xk2 · · · xkm if r = 0 and k1 < i1,

1− (−t)e

1− t2
γ2m,yi1

y
si1−1
i1

y
si2
i2
· · · y

sin
in
xk2 · · · xkm if i1 ≤ k1.

Now we suppose e is odd and let j be an integer such that pj | e and pj+1 - e. Then
set again

x̃ =



1−(−t)e

1+ t
z2m+1h

r−1y
si1
i1
· · · y

sin
in
xk1 · · · xkm if r > 0,

1−(−t)e

(1+ t)pmin(j,i0)
z2m+2pi1y

si1
i1
· · · y

sin
in
xk2 · · · xkm if r = 0 and k1 < i1,

1−(−t)e

(1+ t)min(pj ,(p−1)pi1−1)
γ2m,yi1

y
si1−1
i1

y
si2
i2
· · · y

sin
in
xk2 · · · xkm if i1 ≤ k1.

It is clear from the definitions that δ(̃x) = x and that the Fp[t±1
]-module generated

by x̃ is isomorphic to the submodule

Ker
(
Fp[t±1

]x
(1−(−t)e)
−−−−−−→ Fp[t±1

]x
)

of Hi(ABr ,Fp[t±1
]). Hence the same argument of Proposition 4.7 holds: the map

δ : Hi(ABr ,Fp[t]/(1− (−t)
e))→ Ker

(
Hi(ABr ,Fp[t

±1
])

(1−(−t)e)
−−−−−−→ Hi(ABr ,Fp[t

±1
])
)

has a section and the statement of the proposition holds, with h∗(r, e) generated by all
elements of type π∗(x) and h′∗(r, e) generated by all elements of type x̃. ut

We can state the result for the Fp-homology of B(2e, e, r) as follows:

Theorem 4.15. Let p be an odd prime. Then

H∗(AB∗ ,Fp[t]/(1− (−t)
e)) = (M1 ⊕M2 ⊕M3)⊗ Fp[t]/(1− (−t)e){2}

where

M1 = A∞[1, 0],
M2 =

⊕
n≥1

K2hp(n)[2(pn− p
hp(n))+ 1, 2(pn− php(n))],

M3 =
⊕
n≥1

I2hp(n)+1[2n+ 1, 2n]
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and the direct sum in M3 is over n such that hp(n) = hp(n + php(n)), that is, n is not of
the form ph−1s with p - s. ut

We can now give the Poincaré polynomial of H∗(B(2e, e, r),Fp), denoted by
Pp(B(2e, e, r), u) =

∑
∞

i=0 dimFp Hi(B(2e, e, r),Fp)ui . We can consider the series in
two variables

Pp(B(2e, e, ∗), u, v) =
∞∑
r=0

Pp(B(2e, e, r), u)vr .

The Poincaré series for the bigraded ring A∞/(1− (−t)e) is given by

PA∞(Fp),e(u, v) =


1

1− v

∏
i≥1

1

1− u2pi−2v2pi

∏
j≥0

(1+ u2pj−1v2pj ) for e odd,

∏p

0
+

∞∑p

1
0

(e)+

∞∑p

2
0

(e) for e even,

where we define the following terms:∏p

0
= v

1
1− v

∏
i≥1

1

1− u2pi−2v2pi

∏
j≥0

(1+ u2pj−1v2pj ),

k2∑p

1
k1

(e) =

k2∑
r=k1

2pmin(hp(e),r)u2pr−1v2pr
∏
i≥r+1

1

1− u2pi−2v2pi

∏
j≥r

(1+ u2pj−1v2pj ),

k2∑p

2
k1

(e) =

k2∑
r=k1

2min(php(e), (p − 1)pr−1)u2pr−2v2pr

×

∏
i≥r

1

1− u2pi−2v2pi

∏
j≥r

(1+ u2pj−1v2pj ).

The Poincaré series of the ideal I2a+1 ⊗ Fp[t]/(1+ te) is given by

PI2a+1(Fp),e(u, v) =


∏p

0
+

a∑p

1
0

(1)+
a∑p

2
1

(1) for e odd,

∏p

0
+

a∑p

1
0

(e)+

a∑p

2
1

(e) for e even.

The Poincaré series of the ideal K2a ⊗ Fp[t]/(1+ te) is given by

PK2a(Fp),e(u, v) =



∏p

0
+

a−1∑p

1
0

(1)+
a∑p

2
1

(1) for e odd,

∏p

0
+

a−1∑p

1
0

(e)+

a∑p

2
1

(e) for e even.

Hence we obtain:
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Corollary 4.16. Let p be an odd prime. The Poincaré polynomial of the homology of the
groups B(2e, e, r) with Fp coefficients is

Pp(B(2e, e, ∗), u, v) = (1+ v)(A+ B + C)

where

A = vPA∞(Fp),e(u, v),

B =
∑
n≥1

v2(pn−php(n))+1u2(pn−php(n))PK2hp(n)(Fp),e(u, v),

C =
∑
n≥1

v2n+1u2nPI2hp(n)+1(Fp),e(u, v),

and the sum in C is over n such that hp(n) = hp(n+ php(n)), that is, n is not of the form
ph−1s with p - s. ut

As an example of these computations we give in Table 6 the first homology groups of
B(2e, e, r) with coefficients in the field F3 and the stable part up to homological dimen-
sion 5. For a prime p≥5 there is no p-torsion in the integral homologyH∗(B(2e, e, r),Z)
for r ≤ 8. Actually, for p an odd prime, the first p-torsion in H∗(B(2e, e, r),Z) ap-
pears for r = 2p, as it comes from the classes associated to the generators x1, y1 in
H∗(B(2e, e, r),Fp).

Table 6. dimH∗(B(2e, e, r),F3), r < 8.

r 2 3 4 5 6 7 8 ≥ 9

emod(m) 0(2) 1(2) any 0(2) 1(2) any 0(6) 2, 4(6) 1(2) any 0(2) 1(2) any

dimH0 1 1 1 1 1 1 1 1 1 1 1 1 1

dimH1 3 2 2 2 2 2 2 2 2 2 2 2 2

dimH2 2 1 2 2 2 2 2 2 2 2 2 2 2

dimH3 0 1 3 2 2 2 2 2 2 2 2 2

dimH4 0 0 2 1 2 6 4 3 3 3 3 3

dimH5 0 0 0 1 11 7 4 4 6 5 5

dimH6 0 0 0 0 6 4 2 2 7 5

dimH7 0 0 0 0 0 1 5 3

4.7. An example of the computation of torsion in integral homology

We are not able to compute the whole integral homology of the groups B(2e, e, r), but we
provide a simple Bockstein computation in order to complete the proof of Theorem 1.4.

According to the notation in the proof of Proposition 4.7, the homology module
H2(B(2e, e, r + 4),F2) is generated by the cycles

π∗(z2x
2+r
0 ), x̃2+r

0 x1, π∗(x
r
0x

2
1).
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It is straightforward to check that the classes in H2(B(2e, e, r + 4),Z) corresponding

to π∗(z2x
2+r
0 ) and x̃2+r

0 x1 project to generators of H2(B(2e, e, r + 4),Q), hence they
generate torsion-free Z-modules.

The generator π∗(xr0x
2
1) is the image of an element ρ ∈ H2(B(2e, e, r + 4),Z). We

claim that ρ has 2-torsion. In order to prove this we will use the Bockstein exact sequence
associated to the extension

0→ Z2
2
−→ Z4 → Z2 → 0.

In particular, we show that the Bockstein differential β2 maps π∗(xr0x2) 7→ π∗(x
2
0x

2
1).

It follows by a standard argument that π∗(x
2
0x

2
1) generates a Z2-torsion class

in H2(B(2e, e, r + 4),Z4) and hence, by the Universal Coefficients Theorem, in
H2(B(2e, e, r + 4),Z).

In order to compute β2(π∗(x
r
0x2)) recall that the class of the element π∗(xr0x

2
1) in

H2(B(2e, e, r + 4),F2) is 
∂(z2x1)

1− t2
for r = 0,

∂(z1x
r−1
0 x2

1)

1+ t
for r > 0,

and the class of π∗(xr0x2) in H3(B(2e, e, r + 4),F2) is
∂(z4)

(1− t2)2
for r = 0,

∂(z1x
r−1
0 x2)

1+ t
for r > 0.

Their liftings to the complex with Z4 coefficients are

∂(z4)− 2z2x1

(1− t2)2
and

∂(z1x
r−1
0 x2)− 2z1x

r−1
0 x2

1
1+ t

,

respectively. Now the claim about the Bockstein map follows since it is clear that the dif-
ferential calculated for the chosen liftings gives exactly the double of the cycle π∗(xr0x

2
1).

Our next purpose is to show that in general there can be p2-torsion in the integral
homology of B(2e, e, r). We will actually prove that there is a class of 4-torsion in
H7(B(16, 8, 8),Z).

We consider the homology class x̃3 ∈ H8(B(16, 8, 8),F2) that is represented by
π∗(z8). It generates an F2[t

±1
]-module isomorphic to F2[t

±1
]/(1 − t2)4. We want to

compute the Bockstein β2 of x̃3.
With the description given in Section 4.1 we can compute, with coefficients in Z[t±1

],

∂z8 = ∂(117) =

[
8
2

]
−1
(1− t2)11501+

[
8
4

]
−1
(1− t2)2113013

+

[
8
6

]
−1
(1− t2)311015

+

[
8
8

]
−1
(1− t2)4017.
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Then, considering this chain with coefficients in Z4[t
±1
]/(1− t2)4, we get

∂z8 = 2(1− t2)2z4x2 + 2t4(1+ t4)x3,

and dividing by two we get the following cycle in H7(B(16, 8, 8),F2):

β2(̃x3) = x̃
2
2 + t

4(1− t2)2π∗(x3).

Notice that both x̃2
2 and t4(1 − t2)2π∗(x3) generate a submodule of H7(B(16, 8, 8),F2)

that is isomorphic to F2[t
±1
]/(1− t2)2. It follows that the kernel of the map

β2 : H8(B(16, 8, 8),F2)→ H7(B(16, 8, 8),F2)

is generated by the cycle (1 − t2)2x̃3 and hence kerβ2|H8
' F2[t

±1
]/(1 − t2)2

is an F2 vector space of dimension 4. Now recall that, according to Theorem 1.2,
dimH8(B(16, 8, 8),Q) = 2. The Bockstein spectral sequence then implies that there
should be an element in H7(B(16, 8, 8),Z) that has at least 4-torsion.

4.8. Stabilization

There is a natural inclusion jr : B(2e, e, r) ↪→ B(2e, e, r + 1). The map jr is induced by
the embedding of diagrams. Moreover it is induced by the analogous natural stabilization
map for the Artin groups of type Br as we have the commuting diagram

B(2e, e, r) �
� jr //

� _

��

B(2e, e, r + 1)� _

��
ABr
� � //

φe,r

��

ABr+1

φe,r+1

��
Z/e ' // Z/e

Hence the direct limit B(2e, e,∞) := lim
−→

rB(2e, e, r) is a natural union of groups.
The inclusion map jr corresponds to the inclusion map for the algebraic complexes, hence
we can compute the homology of the group B(2e, e,∞) using the direct limit of the
complexes for B(2e, e, r). It is easy to describe, as a corollary of Theorems 4.9 and 4.15,
the homology of the group B(2e, e,∞). It turns out that the stable homology does not
depend on the parameter e.

Let
sA∞(F2) = F2[x1, x2, x3, . . .]

be the ring of polynomials in the variables xi , considered as an F2[t
±1
]-module, where t

acts trivially, and graded by dim xi = 2i − 1. For an odd prime p we define

sA∞(Fp) = Fp[y1, y2, y3, . . .] ⊗3[x0, x1, x2, . . .],
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the tensor product of the ring of polynomials in the variables yi and the exterior algebra in
the variables xi , considered as an Fp[t±1

]-module, where t acts by (−1)-multiplication,
and graded by dim xi = 2pi − 1, dim yi = 2pi − 2.

Note that the ring F2[x1, x2, x3, . . .] (resp. Fp[y1, y2, y3, . . .]⊗3[x0, x1, x2, . . .] for
p > 2) is isomorphic to the stable homology of the braid group, H∗(Br(∞),F2) (resp.
H∗(Br(∞),Fp)). The ring structure is induced by the map

Br(n1)× Br(n2)→ Br(n1 + n2).

From the presentation of the groups B(de, e, r) and Br(r) one can define in a similar way
an injective homomorphism

B(de, e, r1)× Br(r2 + 1)→ B(de, e, r1 + r2) (7)

induced by the standard inclusion B(de, e, r1) ↪→ B(de, e, r1 + r2) and by the map

Br(r2 + 1)→ B(de, e, r1 + r2)

defined on the generators by ξi 7→ ξr1+i , according to the presentations given in Section
4.1. The homomorphism (7) induces on H∗(B(2e, e,∞),Fp) a natural module structure
over the ring H∗(Br(∞),Fp) for any prime p.

The description of the stable homology is the following:

Corollary 4.17. The homologyH∗(B(2e, e,∞),F2) is isomorphic, as a module over the
ringH∗(Br(∞),F2), to the direct limit lim

−→
rH∗(B(2e, e, r),F2) and is given by the tensor

product
sA∞(F2)⊗ F2[w1]

where w1 is an element of (homological) dimension 1. Moreover the homology groups
H∗(B(2e, e, r),F2) stabilize and the canonical morphism to the direct limit

Hi((B(2e, e, r),F2)→ Hi(B(2e, e,∞),F2)

is an isomorphism for r > 2i. ut

Corollary 4.18. Let p be an odd prime. The homology H∗(B(2e, e,∞),Fp) is isomor-
phic, as a module over the ring H∗(Br(∞),Fp), to lim

−→
rH∗(B(2e, e, r),Fp) and is given

by the tensor product
sA∞(Fp)⊗ Fp[w1]

wherew1 is an element of dimension 1. Moreover the groupsH∗(B(2e, e, r),Fp) stabilize
and the canonical morphism to the direct limit

Hi(B(2e, e, r),Fp)→ Hi(B(2e, e,∞),Fp)

is an isomorphism for r > (i − 1) p
p−1 + 2. ut

Similar considerations leads to an analogous result for stabilization of rational homology:
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Corollary 4.19. The homology H∗(B(2e, e,∞),Q) is isomorphic, as a module over the
ring H∗(Br(∞),Q), to

3[x1] ⊗Q[w1]

where x1 and w1 are elements of dimension 1. Moreover the groups H∗(B(2e, e, r),Q)
stabilize and the canonical morphism to the direct limit

Hi(B(2e, e, r),Q)→ Hi(B(2e, e,∞),Q)

is an isomorphism for r > i + 1. ut

Remark 4.20. We recall that the homology groups H∗(B(2e, e, r),Fp) given in Corol-
laries 4.17–4.19 should not be considered as rings, as we describe them only as
H∗(Br(∞),Fp)-modules. Moreover these groups have a natural structure of coalgebra,
dual to the ring structure in cohomology given by the cup product, but we have not been
able to compute it.

We can then write the Poincaré polynomial for the stable homology. We define

PsA∞(F2)(u) :=
∏
j≥1

1

1− u2j−1
,

PsA∞(Fp)(u) :=
∏
i≥1

1

1− u2pi−2

∏
j≥0

(1+ u2pj−1).

Corollary 4.21. For any prime p the Poincaré polynomial for H∗(B(2e, e,∞),Fp) is

PsA∞(Fp)(u)
1

1− u
.

The Poincaré polynomial for H∗(B(2e, e,∞),Q) is

1+ u
1− u

. ut

In [Seg73] Segal proved that the spaces K(Br(∞), 1) and �2
0S

2
' �2S3 have the same

homology:

Theorem 4.22 ([Seg73]). There exists a map K(Br(∞), 1) → �2
0S

2 inducing the fol-
lowing isomorphism in homology:

H∗(Br(∞),G) ' H∗(�2S3,G)

for any group G of coefficients with trivial action of Br(∞). ut

In the same way [Fuk74] Fuks discovered the following analog of Segal’s theorem for
the Artin groups of type B and D. We denote by S3

{2} the homotopy fibre of a map of
degree 2 from S3 to itself.
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Theorem 4.23 ([Fuk74]). There exist maps

K(AB∞ , 1)→ �2S3
×�S2 and K(AD∞ , 1)→ �2S3

× S3
{2}

that induce homology isomorphisms. ut

The homology of the spaces �2S3, �S2 and S3
{2} is well known. In particular, the inte-

gral homology of �2S3, �S2 has no p2-torsion for any prime p.
The result of Fuks about AB∞ agrees with our computation for the homology of

B(2, 1,∞) and we can use it in order to provide more information on the integer ho-
mology of B(2e, e,∞).

Proposition 4.24. For any e we have the following isomorphism:

H∗(B(2, 1,∞),Z) ' H∗(B(2e, e,∞),Z).

In particular the integral homology of B(2e, e,∞) has no p2-torsion. Moreover the ho-
mology groupsH∗(B(2e, e, r),Z) stabilize and the canonical morphism to the direct limit

Hi(B(2e, e, r),Z)→ Hi(B(2e, e,∞),Z)

is an isomorphism for r > 2i + 2.

Proof. Let us fix i > 0 and e > 1. We shall prove the isomorphism

Hi(B(2, 1,∞),Z) ' Hi(B(2e, e,∞),Z).

To do this we shall provide an isomorphism between the free (abelian) quotients by the
torsion subgroups and another one between the p-parts for any prime p. (We define the
p-part of an abelian group M to be the subgroup {m ∈ M | ∃k ∈ N, pkm = 0}.) As
Hi(B(2, 1,∞),Z) is finitely generated, this will prove thatHi(B(2e, e,∞),Z) is finitely
generated too, hence that the two groups are isomorphic. In the process we shall prove
that the stabilization maps for the Hi(B(2e, e, r),Z) are isomorphisms on the torsion
subgroups and on the free quotient for r > 2i + 2.

Recall from Proposition 2.2 that we have the isomorphisms

B(2e, e, r) ' B(2(r ± e), r ± e, r).

We assume that we choose r large enough that, for any a and for any prime p,
Hi(B(2a, a, r),Fp), Hi(B(2a, a, r),Q) and Hi(B(2, 1, r),Z) stabilize. This means
that the maps Hi(B(2a, a, r),Fp) → Hi(B(2a, a, r ′),Fp), Hi(B(2a, a, r),Q) →
Hi(B(2a, a, r ′),Q) and Hi(B(2, 1, r),Z) → Hi(B(2, 1, r ′),Z), with r ′ > r , are iso-
morphisms. For this it is enough to take r > 2i + 2.

We start by considering the maps

(jr)∗ : Hi(B(2e, e, r),Z)→ Hi(B(2e, e, r + 1),Z).

We fix x, y generating a maximal free subgroup Z2
⊂ Hi(B(2e, e, r),Z). Moreover

we choose a collection of maximal free subgroups Z2
⊂ Hi(B(2e, e, r + 1),Z) with

generators w, z such that the image of x, y lies inside the group generated by w, z.
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The restriction of (jr)∗ to 〈x, y〉 = Z2 defines a map

(jr)
(0)
∗ : Z

2
→ Z2

whose image lies in the group 〈w, z〉 = Z2. This map is injective by stabilization of
the rational homology. We claim that this map is also surjective. Otherwise, let d be the
determinant of (jr)

(0)
∗ and let p be a prime that divides d . Let x, y be the images of

x, y through the natural homomorphism Hi(B(2e, e, r),Z) → Hi(B(2e, e, r),Fp). The
commuting diagram

Hi(B(2e, e, r),Z)
(jr )∗ //

��

Hi(B(2e, e, r + 1),Z)

��
Hi(B(2e, e, r),Fp)

(jr )∗ // Hi(B(2e, e, r + 1),Fp)

implies that the map (jr)∗ : Hi(B(2e, e, r),Fp)→ Hi(B(2e, e, r + 1),Fp) is not injec-
tive, and this is a contradiction. As a consequence we can choose a maximal free subgroup
Fs ⊂ Hi(B(2e, e, s),Z) for each s ≥ r with js(Fs) ⊂ Fs+1, which induces isomorphisms

Hi(B(2e, e, s),Z)/torsion
'
−→ Hi(B(2e, e, s + 1),Z)/torsion ' Z2,

hence Hi(B(2e, e,∞),Z)/torsion ' Z2.
Now we can consider the following composition of an inclusion and isomorphisms:

B(2e, e, r)
'
−→ B(2(e+r), e+r, r) ↪→ B(2(e+r), e+r, e+r−1)

'
−→ B(2, 1, e+r−1).

In a similar way consider the composition

B(2, 1, r) ↪→ B(2, 1, r ′ − e + 1)
'
−→ B(2(r ′ − e), r ′ − e, r ′ − e + 1) ↪→ B(2(r ′ − e), r ′ − e, r ′)

'
−→ B(2e, e, r ′)

where r ′ is large enough that r ′ − e + 1 ≥ r .
In particular we can assume that we have maps B(2, 1, r) → B(2e, e, r ′) and

B(2e, e, r ′) → B(2, 1, r ′′) that induce isomorphisms for Hi with coefficients in Fp. It
follows that also the composition

B(2, 1, r)→ B(2e, e, r ′)→ B(2, 1, r ′′)

induces an isomorphism Hi(B(2, 1, r),Fp) ' Hi(B(2, 1, r ′′),Fp) and hence an isomor-
phism between the p-parts ofHi(B(2, 1, r),Z) andHi(B(2, 1, r ′′),Z). From the previous
description and because we know that there is no p2-torsion in the integral homology of
B(2, 1,∞) we can assume that Hi(B(2, 1, r),Z) ' Hi(B(2, 1, r ′′),Z) ' Zkp ⊕ Z2

⊕ Tr
where Tr is a finite group without p-torsion. Moreover we have

Hi(B(2e, e, r ′),Z) '
k⊕
h=1

Zplh ⊕ Z
2
⊕ T ′r
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for some collection lh of positive integers and T ′r a finite group without p-torsion.

The maps Hi(B(2, 1, r),Z)
f1
−→ Hi(B(2e, e, r ′),Z) and Hi(B(2e, e, r ′),Z)

f2
−→

Hi(B(2, 1, r ′′),Z) induce homomorphisms between the p-parts

f
(p)

1 : Zkp →
k⊕
h=1

Zplh and f
(p)

2 :

k⊕
h=1

Zplh → Zkp.

As f (p)2 ◦ f
(p)

1 is an isomorphism, it follows that for all h = 1, . . . , k we have lh = 1 and
hence Zkp '

⊕k
h=1 Zplh .

As the map (jr)∗ : Hi(B(2e, e, r),Fp) → Hi(B(2e, e, r + 1),Fp) is an isomor-
phism induced by (jr)∗ : Hi(B(2e, e, r),Z) → Hi(B(2e, e, r + 1),Z), it follows that
(jr)∗ is injective on the p-part of Hi(B(2e, e, r),Z). Since the p-parts of both sides are
finite and have the same cardinality, (jr)∗ induces an isomorphism on the p-parts. It fol-
lows that the p-part of Hi(B(2e, e,∞),Z) is isomorphic to Zkp, that is, to the p-part of
Hi(B(2, 1,∞),Z). The result follows. ut

Remark 4.25. We point out that in general the isomorphism for stable homology given
in Proposition 4.24 is not induced by the natural inclusion

B(2e, e, r) ↪→ B(2, 1, r). (8)

We can prove this by considering homology with coefficients in a finite field Fp. First we
recall that from the Shapiro Lemma the morphism

(πe)∗ : H∗(B(2e, e, r),Fp)→ H∗(B(2, 1, r),Fp)

induced by the inclusion (8) corresponds to the morphism

H∗(ABr ,Fp[t]/(1− (−t)
e))→ H∗(ABr ,Fp[t]/(1+ t))

induced by the natural projection

πe : Fp[t]/(1− (−t)e)→ Fp[t]/(1+ t).

Now consider the following commuting diagram, where the horizontal lines are exact:

0 // Fp[t±1
]

1−(−t)e//

[e]−t

��

Fp[t±1
] //

'

��

Fp[t]/(1− (−t)e) //

πe

��

0

0 // Fp[t±1
]

1+t // Fp[t±1
] // Fp[t]/(1+ t) // 0

where we recall the notation [e]−t = 1 + (−t) + · · · + (−t)e−1. Now assume that
r and i are such that the homology groups Hi(ABr ,Fp[t±1

]), Hi−1(ABr ,Fp[t±1
]),

Hi(B(2e, e, r),Fp) andHi(B(2, 1, r),Fp) are stable. In particular−t acts trivially, hence
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multiplication by 1+ t and by 1− (−t)e are zero maps, while multiplication by [e]−t cor-
responds to multiplication by e.

The following induced diagram for homology

0 // Hi(ABr ,Fp[t±1
]) //

'

��

Hi(B(2e, e, r),Fp) //

(πe)∗

��

Hi−1(ABr ,Fp[t±1
]) //

e

��

0

0 // Hi(ABr ,Fp[t±1
]) // Hi(B(2, 1, r),Fp) // Hi−1(ABr ,Fp[t±1

]) // 0

shows that when p | e and the groupHi−1(ABr ,Fp[t±1
]) is non-trivial, the map (πe)∗ has

non-trivial kernel.

5. Complexes from Garside theory

We recall a few homological constructions from the theory of Garside monoids and
groups. Recall that a Garside group G is the group of fractions of a Garside monoid M ,
where Garside means that M satisfies several conditions for which we refer to [DP99].
In particular, M admits (left) lcm’s, and contains a special element, called the Garside
element. We denote by X the set of atoms in M , assumed to be finite. The homology of
G coincides with the homology of M . Garside theory provides two useful resolutions of
Z by free ZM-modules.

The first one was defined in [CMW04]. Another one, with more complicated differ-
ential but a smaller number of cells, has been defined in [DL03].

5.1. The Dehornoy–Lafont complex

Let M be a Garside monoid with a finite set X of atoms. We choose an arbitrary linear
order < on X . For m ∈ M , denote by md(m) the smaller element in X which divides m
on the right (m = amd(m) for some a ∈ M). Recall that lcm(x, y) for x, y ∈ M denotes
the least common multiple on the left, that is, v = gx = hy implies v = j lcm(x, y) for
some j ∈ M . If A = (x, B) is a list of elements in M we define inductively lcm(A) =
lcm(x, lcm(B)).

An n-cell is an n-tuple [x1, . . . , xn] of elements in X such that x1 < · · · < xn and
xi = md(lcm(xi, xi+1, . . . , xn)). Let Xn denote the set of all such n-cells. By convention
X0 = {[∅]}. The set Cn of n-chains is the free ZM-module with basis Xn. The differential
∂n : Cn→ Cn−1 is defined recursively through two auxiliary Z-module homomorphisms
sn : Cn → Cn+1 and rn : Cn → Cn. Let [α,A] be an (n+ 1)-cell, with α ∈ X and A an
n-cell. We let α/A denote the unique element in M such that (α/A) lcm(A) = lcm(α,A).
The defining equations for ∂ and r are

∂n+1[α,A] = α/A[A] − rn(α/A[A]), rn+1 = sn ◦ ∂n+1, r0(m[∅]) = [∅].
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In order to define sn, we say that x[A] for x ∈ M and A an n-cell is irreducible if x = 1
and A = ∅, or if α = md(x lcm(A)) coincides with the first coefficient in A. In that case,
we let sn(x[A]) = 0, and otherwise

sn(x[A]) = y[α,A] + sn(yrn(α/A[A])) with x = yα/A.

5.2. The Charney–Meyer–Wittlesey complex

Let again G denote the group of fractions of a Garside monoid M , with Garside ele-
ment 1. Let D denote the set of simple elements in M , that is, the (finite) set of proper
divisors of 1. We let Dn denote the set of n-tuples [µ1| . . . |µn] such that each µi as well
as the product µ1 · · ·µn lie in D. The differential from the free ZM-modules ZMDn to
ZMDn−1 is given by

∂n[µ1| . . . |µn]

= µ1[µ2| . . . |µn] +

n−1∑
i=1

(−1)i[µ1, . . . , µiµi+1, . . . , µn] + (−1)n[µ1| . . . |µn−1].

This complex in general has larger cells than the previous one. Its main advantage for us
is that the definition of the differential is simpler, and does not involve many recursion
levels. Both complexes will be used in Section 5.3 below.

5.3. Application to the exceptional groups

WhenW is well-generated, meaning that it can be generated by n reflections, where n de-
notes the rank ofW , then B is the group of fractions of (usually) several Garside monoids
that generalize the Birman–Ko–Lee monoid of the usual braid groups. These monoids
have been introduced by D. Bessis [Bes07] and called there dual braid monoids. They
are determined by the choice of a so-called Coxeter element c. Such an element is regu-
lar, meaning that it admits only one eigenvalue different from 1 with the corresponding
eigenvector outside the reflection hyperplanes. A Coxeter element is a regular element
with eigenvalue exp(2iπ/h), where h denotes the (generalized) Coxeter number for W ,
namely its highest degree as a reflection group.

The corresponding Garside monoid Mc is then generated by some set Rc of braided
reflections with relations of the form rr ′ = r ′r ′′ (see [Bes07] for more details). The above
Charney–Meyer–Wittlesey complexes for these monoids have been implemented by Jean
Michel and the second author, using the (development version of) the CHEVIE package
for GAP3 (see [Mic]). The chosen Coxeter elements are indicated in Table 7, in terms of
the usual presentations of these groups (see [BMR98] for an explanation of the diagrams).

Using the HAP package for GAP4 we then obtained the homologies described in
Table 11 (we recall in Table 12 the ones obtained earlier by Salvetti for the Coxeter
groups) except for the groups G12,G13,G22,G31, which are not well-generated, as well
as H3(B,Z) of type G33. When W has type G13, the group B is the same as whenW has
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Table 7. Coxeter elements for dual monoids.

Group G24 G27 G29 G33 G34

Diagram ©
s

4
©
t

�
©u

��
©
s

4
©
t

5�
©u

�
©
s
©
t

←−©
u

�
©v

�
©
s
©
t

6
←−©

v

�
©u

�
©
w
©
s
©
t

6
←−©

v

�
©u

�
©
w
©
x

Coxeter element stu uts stvu wvtsu xwuvts

Coxeter type I2(6), and the result is known. For G12 and G22 one can use the Garside
monoids introduced by M. Picantin [Pic00].

A complex forG31 can be obtained from the theory of Garside categories by consider-
ing it as the centralizer of some regular element in the Coxeter group E8. This viewpoint
was used in [Bes07] to prove that the corresponding spaces X and X/W are K(π, 1).
More precisely, a simplicial complex (reminiscent of the Charney–Meyer–Wittlesey com-
plex described above) is constructed in [Bes07], which is homotopically equivalent to
X/W . From this construction, we got a complex from an implementation by Jean Michel
in CHEVIE.

However, forG31,G33 andG34, the complexes obtained are too large to be dealt with
completely through usual computers and software. Those missing for G31 and G33 are
the middle homology H2(B,Z) for G31 and H3(B,Z) for G33. The Dehornoy–Lafont
complex for G33 is however computable in reasonable time, and its small size enables
one to compute the whole homology by standard methods. For G31, for which there is so
far no construction analogous to the Dehornoy–Lafont complex, we used the following
method for computing H2(B,Z).

We first get H2(B,Q) = 0 by computing the second Betti number from the lattice.
Indeed, recall from [OT92, Cor. 6.17, p. 223] that the Betti numbers of X/W can be in
principle computed from the lattice of the arrangement. More precisely, the second Betti
number ofX/W is given by

∑
Z∈T2
|HZ/WZ|−1 where Ti is a system of representatives

modulo W of codimension i subspaces in the arrangement lattice; for Z such a subspace,
HZ = {H ∈ A | H ⊃ Z}, WZ = {w ∈ W | w(Z) = Z}. More generally, the i-th Betti
number is given by

(−1)i
∑
Z∈Ti

∑
σ∈UZ

(−1)d(σ )

whereUZ is the set of classes moduloW of the set of simplices of the augmented Folkman
complex of the lattice Az, and d(σ ) denotes the dimension of a cell. The Folkman complex
of a lattice is defined (see [OT92]) as the complex of the poset obtained by removing
the minimal and maximal elements of the lattice; when the maximal codimension of the
lattice is 1, then the Folkman complex is empty. The augmented Folkman complex is
defined by adding to the Folkman complex one G-invariant simplex of dimension −1. In
the case of G31 the computation of this formula is doable and we get 0 for the second
Betti number.

We then reduce our original complex mod pr , for pr small enough so that we can
encode each matrix entry inside one byte. Then we wrote a C program to compute
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H2(B,Z4) = H2(B,Z2) = Z2, H2(B,Z9) = H2(B,Z3) = Z3 and H2(B,Z5) = 0
(the matrix of d3 has size 11065× 15300). Since G31 has order 210

· 32
· 5 and H∗(P ) is

torsion-free, for p 6∈ {2, 3, 5} we haveH2(B,Zp) = H2(P,Zp)W = (H2(P,Z)W )⊗Zp.
But 0 = H2(B,Q) = H2(P,Q)W = H2(P,Z)W ⊗ Q, whence H2(P,Z)W = 0 and
H2(B,Zp) = 0. Now H1(B,Z) = Z is torsion-free, hence H2(B,Zn) ' H2(B,Z)⊗ Zn
for any n by the Universal Coefficients Theorem. Since H2(B,Z) is a Z-module of finite
type this yields H2(B,Z) = Z6 and completes the computation for G31.

5.4. Embeddings between Artin-like monoids

We end this section by proving a few lemmas concerning submonoids, which will be
helpful in computing differentials in concrete cases.

We consider Garside monoids with set of generators S and endowed with a length
function, that is, a monoid morphism ` : M → N = Z≥0 such that `(x) = 0 ⇔ x = 1
and `(s) = 1 for all s ∈ S. We consider the divisibility relation on the left (that is, U |V
means ∃m V = Um) and recall that such a monoid admits lcm’s (on the left).

Let M,N be two such monoids, and ϕ : M → N a monoid morphism such that

(1) ∀s ∈ S ϕ(s) 6= 1,
(2) ∀s, t ∈ S lcm(ϕ(s), ϕ(t)) = ϕ(lcm(s, t)).

The following results on such morphisms are basically due to J. Crisp [Cri99], who proved
them in the case of Artin groups of finite Coxeter type.

Lemma 5.1. Let U,V ∈ M . If ϕ(U) |ϕ(V ) then U |V .

Proof. By induction on `(V ). Since `(ϕ(s)) ≥ 1 = `(s) for all s ∈ S, we have `(ϕ(U)) ≥
`(U). Since ϕ(U) |ϕ(V ), we have `(ϕ(U)) ≤ `(ϕ(V )), hence `(U) ≤ `(ϕ(V )). Hence
ϕ(V ) = 1 implies `(U) = 0 and U = 1, which settles the case `(V ) = 0.

We now assume `(V ) ≥ 1. The case U = 1 being clear, we can assume U 6= 1. Then
there exist s, t ∈ S with s |U and t |V . It follows that ϕ(t) |ϕ(V ) and ϕ(s) |ϕ(U) |ϕ(V ),
hence lcm(ϕ(s), ϕ(t)) |ϕ(V ).

Now lcm(s, t) = tm for some m ∈ M and V = tV ′ for some V ′ ∈ M , hence
ϕ(t)ϕ(m) |ϕ(V ) = ϕ(t)ϕ(V ′) and this implies ϕ(m) |ϕ(V ′) by cancellability in M .
Since `(V ′) < `(V ), from the induction assumption follows that m |V ′ hence tm |V
that is lcm(s, t) |V . In particular we get s |V . Writing V = sV ′′ and U = sU ′ for some
V ′′, U ′ ∈ M , the assumption ϕ(U) |ϕ(V ) implies ϕ(U ′) |ϕ(V ′′) by cancellability, and
then U ′ |V ′′ by the induction assumption. It follows that U |V , which proves the claim.

ut

The lemma has the following consequence.

Lemma 5.2. The morphism ϕ : M → N is injective. If GM , GN denote the groups of
fractions of M,N , then ϕ can be extended to ϕ̃ : GM ↪→ GN .

Proof. Let U,V ∈ M with ϕ(U) = ϕ(V ). By the lemma we get U |V and V |U . This
implies `(U) = `(V ), hence U = V . Composing ϕ : M → N with the natural morphism
N ↪→ GN yields a monoid morphism M → GN . Since GN is a group, this morphism
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factors through the morphism M → GM , and this provides ϕ̃ : GM → GN . Let g ∈
Ker ϕ̃. Since g ∈ GM there exist a, b ∈ M with g = ab−1, hence ϕ(a) = ϕ(b), a = b
and g = 1. ut

We can now identify M,N,GM to subsets of GN . We consider the following extra as-
sumption. We assume that, for all m ∈ M,n ∈ N , if n divides m in N then n ∈ M .

Lemma 5.3. Under this assumption, U,V in M have the same lcm in M and in N .
Moreover, M = N ∩GM .

Proof. Since lcmM(U, V ) divides U,V in N , it follows that lcmN (U, V ) divides
lcmM(U, V ) in N . Conversely, since lcmN (U, V ) divides U in N and U ∈ M , by the
assumption we get lcmN (U, V ) ∈ M . From Lemma 5.1 we thus infer that lcmN (U, V )

divides U and V in M , hence lcmM(U, V ) divides lcmN (U, V ) in N . It follows that
lcmM(U, V ) = lcmN (U, V ).

We have M ⊂ N ∩GM . Let n ∈ N ∩GM . Since n ∈ GM there exist a, b ∈ M with
n = ab−1, hence nb = a ∈ M . Hence n ∈ N divides a ∈ M in M . By the assumption
we get n ∈ M and the conclusion. ut

6. The groups B(e, e, r)

6.1. The Corran–Picantin monoid

We denote by B(e, e, r) for e ≥ 1 and r ≥ 2 the braid group associated to the com-
plex reflection group G(e, e, r). Then B(e, e, r) is the group of fractions of a Garside
monoid introduced by R. Corran and M. Picantin (see [CP]). This monoid, which we
denote M(e, e, r), has generators (atoms) t0, t1, . . . , te−1, s3, s4, . . . , sr and relations

(1) ti+1ti = tj+1tj , with the convention te = t0,
(2) s3tis3 = tis3ti ,
(3) skti = tisk for k ≥ 4,
(4) sksk+1sk = sk+1sksk+1 for k ≥ 3,
(5) sksl = slsk when |l − k| ≥ 2.

6.2. Link with the topological definition

The connection between this monoid and the group B(e, e, r) defined as a fundamental
group is quite indirect. In [BMR98] a first presentation is obtained by combining em-
beddings into usual braid groups, fibrations and coverings. The presentation used here is
deduced from that one in a purely algebraic manner, by adding generators in order to get
a Garside presentation. Although it is folklore, the description of all generators as braided
reflections does not appear in the literature (see however [BC06] for a statement without
proof in a related context).

In order to provide this connection, we need to recall the way these generators are
constructed. For clarity, we stick to the notation of [BMR98]; in that paper, the authors
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introduce four different spaces,

M(r + 1) = {(z0, . . . , zr) ∈ Cr+1
| zi 6= zj },

M#(m, r) = {(z1, . . . , zr) ∈ Cr | zi 6= 0, zi/zj 6∈ µm},
M(e, r) = {(z1, . . . , zr) ∈ Cr | zi 6∈ µezj },

M#(r) = {(z1, . . . , zr) ∈ Cr | zi 6= 0},

where µn denotes the set of n-th roots of 1 in C. We have a Galois covering r :

M#(m, r) → M#(r) = M#(m, r)/(µm)
r , a locally trivial fibration p : M(r + 1) →

M#(r) with fibre C given by (z0, . . . , zr) 7→ (z0 − z1, . . . , z0 − zr), and a natural action
of Sr on M(r + 1) that leaves the (r + 1)-st coordinate fixed. We choose a fixed point
x ∈ M(r + 1)/Sr , and a lift p̃(x) of p(x) ∈ M#(r)/Sr in M#(d, r)/G(d, 1, r) =
(M(d, r)/(µm)

r)/Sr . We get an isomorphism ψ : π1(M#(d, r)/G(d, 1, r), p̃(x)) →
π1(M(r + 1)/Sr , x) by composing the isomorphisms induced by r and p:

π1(M#(d, r)/G(d, 1, r), p̃(x))

r

'

**

ψ // π1(M(r + 1)/Sr , x)

p

'

uu
π1(M#(r)/Sr , p(x))

Since π1(M#(d, r)/G(d, 1, r)) = B(d, 1, r), ψ identifies the latter group with
π1(M(r + 1)/Sr). The generators of B(d, 1, r) are then obtained in [BMR98] by taking
the preimages under ψ and the covering of M(r + 1)/Sr →M(r + 1)/Sr+1. Note that
this covering provides an injection between fundamental groups, hence an embedding
ψ̃ : B(d, 1, r) ↪→ Br(r + 1), where Br(r + 1) denotes the usual braid group on r + 1
strands. We choose for base point in M(r + 1) the point x = (0, x1, . . . , xr) with the
xi in R and xi+1 � xi , and for generators of the usual braid group M(r + 1)/Sr+1 the
elements ξ0, ξ1, . . . , ξr−1 as described below:

✵xxx 123 ✵xxx 123 ✵xxx 123

x x x
1 20

Then (see [BMR98]) the group π1(M(r + 1)/Sr) is generated by ξ2
0 , ξ1, . . . , ξr−1. The

element ξ2
0 is the class in M(r + 1) of the loop ( x1

2 (1− e
2iπt ), x1

2 (e
2iπt
+ 1), x2, . . . , xr).

Taking its image under p provides a loop based at (−x1,−x2, . . . ,−xr) described by
(−x1e

2iπt , x1
2 (1 − e

2iπt ) − x2, . . . ,
x1
2 (1 − e

2iπt ) − xr). Since |xi | � |xi+1|, this path
is homotopic to (−x1e

2iπt ,−x2, . . . ,−xr), both in M#(r) and in M#(r)/Sr . Letting
ai = −xi , we have 0 < a1 < a2 < · · · < ar , and we choose y = p̃(x) to be
y = (a

1/d
1 , . . . , a

1/d
r ). The above loop thus lifts under r to the path (a1e

2iπt/d , a2, . . . , ar)

in M#(d, r). By definition of ψ , the class of this path is σ = ψ−1(ξ2
0 ). Similarly, we can

determine ψ−1(ξi) when i ≥ 1: the image of ξi under p is a path in M#(r) homo-
topic to
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i i+11
a0 a a2p/d

On the open cone described in the picture, the map z 7→ zd is a positive homeomorphism,
and this enables one to lift this path to

i i+11
a0 a a

1/d 1/d 1/d

meaning that τi = ψ−1(ξi) is the class of this path, from (a
1/d
1 , . . . , a

1/d
i , a

1/d
i+1, . . . , a

1/d
r )

to (a1/d
1 , . . . , a

1/d
i+1, a

1/d
i , . . . , a

1/d
r ). We recall that B(de, e, r) is defined to be the group

π1(M#(de, r)/G(de, e, r)) when d > 1. If moreover e = 1, then B(d, 1, r) is generated
by σ, τ1, . . . , τr−1; in general, it is generated by σ e, τ1, . . . , τr−1. Now, the morphism ψ̃ :

B(d, 1, r) ↪→ Br(r + 1) = π1(M(r + 1)/Sr+1) commutes with the natural morphisms

B(d, 1, r) //

��

Br(r + 1)

��
G(d, 1, r) //

$$

Sr+1

Sr

::

Letting as in [BMR98] ξ ′1 = ξ
2
0 ξ1ξ

−2
0 ∈ π1(M(r + 1)/Sr , x), we have τ ′1 = ψ

−1(ξ ′1) ∈

π1(M#(d, r)/G(d, 1, r), y). As before we let ζ = exp(2iπ/d) and gi ∈ G(d, 1, r) being
defined by gi .(z1, . . . , zr) = (z1, z2, . . . , ζ zi, . . . , zr). We let bi = a

1/d
i .

(b1, . . . , br)

ξ−2
0
��

g−1
1 s1

((
g−1

1 s1g1

**

ξ ′1

tt

(ζ−1b1, b2, . . . , br)

g−1
1 .ξ1

��
(ζ−1b2, b1, . . . , br)

g−1
1 s1.ξ

2
0

��
(ζ−1b2, ζb1, . . . , br)
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In order to generate B(e, e, r) = π1(M(e, r)/Sr , x), and letting e = d , we only need to
take the image of τ ′1, τ1, . . . , τr−1 under i∗ where i :M#(e, r)→M(e, r) is the natural
inclusion. We will use the following definition.

Definition 6.1. Let X be the complement of a hyperplane arrangement A in Cl , and
v, v′ ∈ X. A line segment from v to v′ is t 7→ (1 − t)v + tv′ for t ∈ [0, 1]. If this line
segment crosses exactly one hyperplane of A at one point, a positive detour from v to v′

is a path of the form γ (t) = (1− t)v + tv′ + it (1− t)(v − v′)ε for ε > 0 small enough
so that it and similar paths γ ′ for 0 < ε′ < ε do not cross any hyperplane in A. All such
detours are clearly homotopic to each other. A negative detour is defined similarly with i
replaced by −i.

Note that, for v ∈ M(e, r) and s a reflection in G(e, e, r), if there exists a positive
detour from the base point b = (b1, . . . , br) to w.b, then it provides a braided reflection
in the hyperplane attached to s.

The elements i∗(τk) are now easy-to-describe braided reflections, as the positive de-
tours from b to their images under the corresponding reflections. In case e = 2, the
given monoid is then clearly the classical Artin monoid of type Dr , so we can assume
e ≥ 3. The paths corresponding to ξ2

0 and to its translates are homotopic to a line segment
in M(e, r). The fact that τ ′1 is a braided reflection essentially amounts to the fact that
i∗(g−1

0 .τ1) is a braided reflection in π1(M(e, r)/G(e, e, r), g−1
0 .y), and this holds true

because τ1 is a braided reflection in M#(e, r)/G(e, e, r).
We consider the plane P defined by the equations zi = bi for i = 3, . . . , r , and

identify it with C2 through (z1, z2). We let P 0
= C2

\
⋃
{z2 = z1η | η ∈ µe} =

P ∩M(e, r). Then τ1, τ
′

1 lie in the plane P , and τ ′1 is homotopic in P 0 to

✷✭❜ ✱❜ ✮✶ ✭ ❜ ✱❜ ✮z
✲✶

✭ ❜ ✱❜ ✮z
✲✶

✶ ✶✷ ✷ ✭ ❜ ✱ ❜ ✮z
✲✶

z
✷ ✶

where the half-circle represents the positive detour from (ζ−1b1, b2) to (ζ−1b2, b1). We
let now t0 = τ1, t1 = τ ′1, ti+1 = t

−1
i ti−1ti for 1 ≤ i ≤ e − 2. A way to understand paths

in P ' C2 is to use the projection C2
→ P1(C) given by (z1, z2) 7→ z2/z1. Note for

example that two paths γ1, γ2 in P with the same endpoints whose images are homotopic
in P1(C) \ µe are homotopic in P 0 as soon as, writing γi(t) = (xi(t), yi(t)), the set
x1([0, 1])∪ x2([0, 1]) is contained in some simply connected subspace of C \ {0}. We let
α = b2/b1 � 1. Then the positive detour t0 is mapped to a path from α to α−1 close
to the line segment, with image in the positive half-plane. The line segments of the form
γ (t) = (z1, z2(t)) are mapped to line segments, and lines γ (t) = (z1(t), z2) are mapped
to images of a line under z 7→ 1/z, which is the composite of the complex conjugation
with the geometric inversion with respect to the unit circle; they are thus mapped to a line
if the original line passes through 0, and otherwise to a circle passing through the origin.
The induced action of G(e, e, r) is given by s1 : z 7→ 1/z, g1 : z 7→ ζ−1z, g2 : z 7→ ζz.
The images of t1 and t2 are depicted in Figure 1. The images of t2 and of the positive
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Fig. 1. Images of t1 and t2 in P1(C).
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Fig. 2. t2 and the positive detour in P1(C).

detour from (b1, b2) to (ζ−2b2, ζ
2b1) are then clearly homotopic (see Figure 2), and the

first coordinate of both paths is easily checked to remain in a simply connected region of
C \ {0}. With the same argument, using the relation ti+1 = t−1

i t0t1 and possibly using
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Fig. 3. Comparison between t1t0t
−1
1 and the positive detour in P1(C).

(z1, z2) 7→ z1/z2 instead of (z1, z2) 7→ z2/z1, we conclude that each ti is (homotopic to)
the positive detour from (b1, b2) to (ζ−ib2, ζ

ib1). We thus get the following

Proposition 6.2. Let b = (b1, . . . , br) ∈ M(e, r) with 0 < b1 � b2 � · · · � br .
Then B(e, e, r) = π1(M(e, r)/G(e, e, r), b) is generated by braided reflections
t0, . . . , te−1, s3, . . . , sr which are positive detours from b to their images under the cor-
responding reflection. Under B(e, e, r)� G(e, e, r), ti is mapped to (z1, z2, . . . , zr) 7→

(ζ−iz2, ζ
iz1, . . . , zr), and t0, s3, . . . , sr are mapped to the successive transpositions of

Sr in that order. These generators provide a presentation of B(e, e, r) with the relations
(2)–(5) of page 146, and with (1) replaced by ti ti+1 = tj tj+1.

We notice that the slight change in the presentation is meaningless in monoid-theoretic
terms, as both monoids are isomorphic under ti 7→ t−i , but it is not in topological terms,
as t1t0t−1

1 is not homotopic to a detour from b to its image (see Figure 3).

Proposition 6.3. Let S0 = {ti, s3, . . . , sr}. Than the subgroup of B(e, e, r) =
π1(M(e, r)/G(e, e, r)) generated by S0 is a parabolic subgroup in the sense of
[BMR98], and can be naturally identified with the braid group on r strands as the fun-
damental group of {(z1, . . . , zr) | zi 6= zj , z1 + · · · + zr = 0}/Sr , with base point
(−ζ−i(b1 + b2 + · · · + br), b2, . . . , br), in such a way that the elements of S0 are identi-
fied with positive detours.

Proof. The parabolic subgroup of G(e, e, r) defined as the fixer of (ζ i, 1, 1, . . . , 1) is
obviously conjugate to the one fixing (1, 1, . . . , 1), the latter being the natural Sr ⊂

G(e, e, r). We thus need only consider the case i = 0. Let α = −(b1 + · · · + br) � 0,
b0 = (α, b2, . . . , br),X =M(e, r) andX0 = {(z1, . . . , zr) | zi 6= zj , z1+· · ·+zr = 0}.
By [BMR98] we get an embedding π1(X0/Sr , b0) ↪→ π1(X/G(e, e, r), b), natural only
up to the choice of a path from b to b0 in Y . The line segment γ from b to b0 provides
such a natural choice.

We now need to prove that composing the positive detours from b with this path
provides the positive detours from b0, up to homotopy in Y = {(z1, . . . , zr) | zi 6= zj }.
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For s3, . . . , sr this is true because the first component of the first path can be homotoped
to the second one in (R≤b1 , b1). For t0 we let σ0 and σ denote the positive detours in
P 0 from (b1, b2) to (b2, b1) and from (α, b2) to (b2, α), respectively. Let γ, γ ′ denote
the line segments (b1, b2) → (α, b2) and (b2, α) → (b2, b1). We need to prove that σ0
is homotopic to γ ′σγ in {(z1, z2) ∈ C2

| z1 6= z2}, the other coordinates z3, . . . , zr
being the same for both paths. Since b1 − b2 and α − b2 have the same (negative) sign,
we can homotope γ ′σγ to a path with the same real part (for both coordinates), and
with imaginary part the same as σ , up to possibly diminishing the chosen factor ε in the
definition of the detours. Choosing then a homotopy in R2

≤b2
between the real parts of

these two paths provides a homotopy between them in Y . ut

6.3. Parabolic submonoids

We apply the results of Section 5.4 on submonoids to the monoid N = M(e, e, r), with
generators S = {t0, . . . , te−1, s3, . . . , sr}. Let C = {t0, . . . , te−1}. For S0 ⊂ S, let M(S0)

be the monoid generated by S0 with the defining relations of M(e, e, r) which involve
only elements of S0. We get a natural morphism ϕ : M(S0) → M(S) = M(e, e, r). We
make the following extra assumption on S0:

S0 ∩ C ∈ {∅, C, {ti}} for some i ∈ {0, 1, . . . , e − 1}.

In other terms, S0 contains none, all or exactly one of the ti’s. Note that all the correspond-
ing monoids are known to be Garside and are endowed with a suitable length function.

This condition implies the extra condition on ϕ in Section 5.4, namely that if n
inM(S) divides ϕ(m) for somem ∈ M(S0), then n ∈ ϕ(M(S0)). Indeed, if we have such
n,m, then n ∈ ϕ(M(S0)) unless n can be written as a word containing some x ∈ S \ S0.
But in that case ϕ(m) can also be written as a word in S containing x. Now note that the
defining relations involving such an x cannot make it disappear, except when x ∈ C. By
contradiction this settles the cases S0 ∩ C = ∅ and S0 ⊃ C. In case S0 ∩ C = {ti}, we
can assume x = tj for j 6= i, and would get equality in M(S) of two words on S, one
involving ti and no other element of C, and the other involving tj . But we check on the
defining relations that all relations involving ti either involve only ti and no other ele-
ments of C in which case they preserve that property and do not make the ti’s disappear,
or they involve several elements of C and cannot be applied to the first word. This leads
to a contradiction, which proves this property.

This condition also implies the property (2) for ϕ. For this we need to compute the
lcm’s of two elements x, y of S. We need to prove the following inM(S0), for any S0 ⊂ S

satisfying the above condition that contains x and y:

• lcm(si, sj ) = sisj = sj si if |j − i| ≥ 2,
• lcm(si, si+1) = sisi+1si = si+1sisi+1,
• lcm(ti, tj ) = t1t0 = ti ti−1 = tj tj−1,
• lcm(ti, s3) = tis3ti = s3tis3,
• lcm(ti, sj ) = tisj = sj ti if j ≥ 4.
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The identities with length two are clear, as the lcm exist and cannot have length 1. For the
ones of length 3, namely {x, y} = {si, si+1} and {x, y} = {ti, s3}, we use that {x, y} ⊂
S0 ⊂ S satisfies our condition. Since the lcm of x, y in M(S0) should divide xyx = yxy,
it should then come from M({x, y}), meaning that it should be a word in x and y, of
length at most 2. Thus only few possibilities remain, all of them easily excluded.

Using the previous section, we thus get injective monoid morphismsM(S0)→ M(S)

= M(e, e, r). Let B(S0) be the group of fractions of M(S0). It is proved in [CP] that
B(S) = B(e, e, r). We call the B(S0) the parabolic submonoids of B(e, e, r). Crucial
examples of such submonoids are described below.

6.3.1. Second homology group. We order the atoms so that sr < sr−1 < · · · < s3 < t0 <

t1 < · · · < te−1. By the above construction, the parabolic submonoid M(e, e, r − 1) =
M({sr−1, . . . , s3, t0, . . . , te−1}) is indeed a submonoid of M(e, e, r), and the lcm of a
family of elements in M(e, e, r − 1) is also its lcm in M(e, e, r). The same holds true for
the following submonoids:

• generated by s3, ti , which is an Artin monoid of type A2;
• generated by sk, ti , k ≥ 4, which is an Artin monoid of type A1 × A1;
• generated by s4, s3, ti , which is an Artin monoid of type A3;
• generated by sk, s3, ti , k ≥ 5, which is an Artin monoid of type A1 × A2;
• generated by sk, sl, ti , k ≥ l+2, l ≥ 4, which is an Artin monoid of typeA1×A1×A1;
• generated by sk, sl, sr , which is an Artin monoid of the type given by the obvious

subdiagram (of type A1 × A1 × A1, A2 × A1, A1 × A2 or A3).

We first compute the differentials of the top cell for the corresponding Artin monoids
(see Table 8), and then use this remark computing the differentials of the 2-cells and 3-
cells. We let dn = ∂n ⊗ZM Z : Cn ⊗ZM Z → Cn−1 ⊗ZM Z denote the differential with
trivial coefficients.

The 2-cells are the following: [t0, ti] for 1 < i < e, [s3, ti], [sk, ti] for k ≥ 4 and
[sk, sl] for k < l. From Table 8 we get

d2[t0, ti] = [ti] + [ti+1] − [t0] − [t1],

d2[s3, ti] = [ti] − [s],

d2[sk, ti] = 0 if k ≥ 4,
d2[sk, sl] = 0 if l > k + 2 ≥ 4,

d2[sk, sk+1] = [sk+1] − [sk].

We let δ2 = t1t0 denote the Garside element of M(e, e, 2) and we assume e > 1. For
3-cells, we also need to compute

∂3[s, t0, tj ] = (sδ2s − tj+2tj+1s + tj+2s)[t0, tj ] − tj+2stj+1[s, tj ]

+ (tj+2 − stj+2)[s, tj+1] + (s − tj+2s − 1)[t0, tj+1] + (st2 − t2)[s, t1]

+ (t2s + 1− s)[t0, t1] + [s, tj+2] + t2st1[s, t0] − [s, t2]



154 Filippo Callegaro, Ivan Marin

when j 6≡ −1 mod e, and

∂3[s, t0, t−1] = (sδ2s − t1t0s + t1s)[t0, t−1] − t1st0[s, t−1] + (1− t2 + st2)[s, t1]
+ (1+ t2s − s)[t0, t1] + (t1 − st1)[s, t0] + t2st1[s, t0] − [s, t2].

This means d3[s, t0, t−1] = [t0, t−1] − [s, t−1] + [s, t1] + [t0, t1] + [s, t0] − [s, t2] and
d3[s, t0, tj ] = [t0, tj ] − [s, tj ] − [t0, tj+1] + [t0, t1] + [s, tj+2] + [s, t0] − [s, t2] for j 6≡
1 mod e.

Table 8. Top cells for monoids of small type.

Type Atoms Relations Differential of top cell

M(e, e, 2) t0 < · · · < tr ti ti+1 = tj tj+1 ∂2[t0, ti ] = ti+1[ti ]+[ti+1]−t1[t0]−[t1]

M(e, e, 2)×A1 s < t0 < · · · < tr ti ti+1 = tj tj+1 ∂2[s, t0, ti , ] = (s−1)[t0, ti ]−ti+1[s, ti ]
tis = sti + t1[s, t0]−[s, ti+1]+[s, t1]

A2 s < t sts = tst ∂2[s, t] = (ts+1−s)[t]+(t−st−1)[s]

A1×A1 s < u su = us ∂2[s, u] = (s−1)[u]−(u−1)[s]

A3 s < t < u sts = tst ∂3[s, t, u] = (u+stu−tu−1)[s, t]−[s, u]
su = us + (su−u−s+1−tsu)t[s, u]
tut = utu + (s−1−ts+uts)[t, u]

A2×A1 s < t < u tu = ut ∂3[s, t, u] = (1−s+ts)[t, u]
su = us + (t−1−st)[s, u]
sts = tst + (u−1)[s, t]

A1×A2 s < t < u st = ts ∂3[s, t, u] = (1+tu−u)[s, t]
su = us + (t−1−ut)[s, u]
tut = utu + (s−1)[t, u]

A1×A1×A1 s < t < u su = us ∂3[s, t, u] = (1−t)[s, u]
st = ts + (u−1)[s, t]
tu = ut + (s−1)[t, u]

We now compute the second homology group, starting with Ker d2. Let

vi = [t0, ti] + [s, t0] + [s, t1] − [s, ti] − [s, ti+1] ∈ Ker d2

for 1 ≤ i ≤ e − 1. Let K1 denote the submodule of Ker d2 spanned by the vi . It is
easy to show that K1 is free on the vi , and K1 = Ker d2 for r = 3; if r > 3 we have
Ker d2 = K1 ⊕K2 where K2 is the free Z-module with basis the [sk, ti] for k ≥ 4 and, if
r ≥ 5, the [sl, sk] for l ≥ k + 2, k ≥ 3.

Now decompose ZX3 = C1⊕C2 where C1 has for basis the [s3, t0, ti] and C2 has for
basis the other 3-cells. By the above computations we get d3(C1) ⊂ K1 and d3(C2) ⊂ K2.
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Thus H2(B,Z) = (K1/d3(C1))⊕ (K2/d3(C2)). We first compute K1/d3(C1). We have

d3[s3, t0, tj ] = vj − vj+1 + v1 if 0 < j < e − 1,
d3[s3, t0, te−1] = ve−1 + v1 + v1.

We denote ui = [s3, t0, ti] for 1 ≤ i ≤ e − 1, and let wi = ui + ui+1 + · · · + ue−1.
Then d3wi = vi + (e − i)v1. In the Z-basis (wi) and (vi), d3 is in triangular form, and
the only diagonal coefficient that differs from 1 is e, since d3w1 = ev1. It follows that
K1/d3(C1) ' Ze. Since H2(B,Z) = K1/d3(C1) for r = 3, we can now assume r ≥ 4.

First assume r = 4. In K2/d3(C2) we have 2[s4, ti] ≡ 0, because d3[s4, s3, ti] =

−2[s4, ti]. Since d3[s4, t0, ti] = −[s4, ti] + [s4, t0] − [s4, ti+1] + [s4, t1], we get [s4, ti] +
[s4, ti+1] ≡ [s4, t0] + [s4, t1] when i > 0. In particular, [s4, ti] + [s4, ti+1] ≡ [s4, ti+1] +

[s4, ti+2], that is, [s4, ti] ≡ [s4, ti+2], at least if 0 < i < e− 1. From d3[s4, t0, t1] ≡ 0 we
deduce [s4, t2] ≡ [s4, t0], and from d3[s4, t0, te−1] ≡ 0 we deduce [s4, te−1] ≡ [s4, t1].
Thus [s4, ti] ≡ [s4, ti+2] for every i. When e is odd, K2/d3(C3) is spanned by the class
of [s4, t0]. From the other relations one easily sees that this class is non-zero, and since
2[s4, ti] ≡ 0 we get K2/d3(C2) ' Z2. When e is even, this quotient is spanned by the
classes of [s4, t0] and [s4, t1], and we get similarly K2/d3(C2) ' Z2

2.
We now assume r ≥ 5. Then d3([s5, s3, ti]) = [s5, s3]−[s5, ti]whence a := [s5, t0] ≡

[s5, ti] for all i, regardless whether e is even or odd. From d3[s5, s4, ti] = [s4, ti]− [s5, ti]

we get [s4, ti] ≡ a and from [sk+1, sk, ti] = [sk, ti] − [sk+1, ti] we deduce by induction
[sk, ti] ≡ a. The only remaining relation involving a is then as before 2a ≡ 0.

On the other hand, we have [s5, s3] ≡ a. Assume we have [sl, sk] ≡ a for some
l, k with l ≥ k + 2. From d3[sl, sk+1, sk] = [sl, sk+1] − [sl, sk] for l ≥ k + 3 we get
[sl, sk′ ] ≡ a for all k′ with l − 2 ≥ k′ ≥ 3, and therefore [sl′ , sk′ ] ≡ a for all l′, k′ with
l′ − 2 ≥ k′ ≥ 3. We thus get K2/d3C2 ' Z/2Z.

As a consequence, we get the following result.

Theorem 6.4. Let B = B(e, e, r) with r ≥ 3 and e ≥ 2.

• When r = 3, H2(B,Z) ' Ze.
• When r = 4 and e is odd, H2(B,Z) ' Ze × Z2 ' Z2e.
• When r = 4 and e is even, H2(B,Z) ' Ze × Z2

2.
• When r ≥ 5, H2(B,Z) ' Ze × Z2.

The case r = 2 is when W is a dihedral group, and this case is known by [Sal94]: we
have H2(B,Z) = 0 if e is odd, H2(B,Z) = Z if e is even.

7. Low-dimensional homology

7.1. The second homology group

The computations above provide the second integral homology group H2(B,Z). In the
case of the finite group W , the group H2(W,Z) can be identified with the Schur multi-
plier H 2(W,C×), which is relevant for dealing with projective representations. We use
the determination of the H2(B,Z) to show a direct connection between the two groups
H 2(B,C×) and H 2(W,C×). We start with a lemma.
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Lemma 7.1. Let W be an irreducible finite complex 2-reflection group, and B the asso-
ciated braid group. The inflation morphism H 2(W,C×)→ H 2(B,C×) is injective.

Proof. The Hochschild–Serre exact sequence associated to 1→ P → B → W → 1 is

0→ H 1(W,C×)→ H 1(B,C×)→ H 1(P,C×)W → H 2(W,C×)→ H 2(B,C×).

Now H 1(P,C×) = Hom(P ab,C×)W = Hom((P ab)W ,C×) and H 1(B,C×) =
Hom(Bab,C×). Now P ab

= H1(P,Z) and Bab (see [BMR98, Thm. 2.17]) are torsion-
free, with Bab

' Zr where r denotes the number of hyperplane orbits, and (P ab)W can
be identified with (2Z)r . The induced map Hom(Zr ,C×) → Hom((2Z)r ,C×) is then
onto, since C is algebraically closed. By the Hochschild–Serre exact sequence above the
conclusion follows. ut

Remark 7.2. Another proof of the lemma can be given using projective representations
instead of the Hochschild–Serre exact sequence. Let α ∈ Z2(W,C×) with zero image
in H 2(B,C×), choose some projective representation R of W with 2-cocycle α, and
consider its lift R̃ to B. By assumption, it is linearizable to some linear representation S̃.
Choosing one generator of the monodromy σi in X/W for each hyperplane orbit (see
[BMR98, Appendix A]) we find that S̃(σ 2

i ) = λi ∈ C×. By [BMR98, Theorem 2.17]
there exists a morphism ϕ : B → C× with ϕ(σi) = 1/λi , and then T̃ = S̃ ◦ ϕ is a linear
representation of B that factors through W and linearizes R, thus proving that α has zero
image in H 2(W,C×).

It is known by work of Read [Rea76] and van der Hout [vdH77] that H 2(W,C×) '
H2(W,Z) is a free Z2-module in all cases. A nice property that follows from our compu-
tation is that the part of H 2(B,C×) that comes from H 2(W,C×) is exactly the 2-torsion
(except for two exceptional cases). Indeed, sinceH1(B,Z) is torsion-free andC× is divis-
ible, by the Universal Coefficients Theorem we get H 2(B,C×) ' Hom(H2B,C×) and
the proposition below is a consequence of our computation ofH2(B,Z) (see Table 10 for
the exceptional groups, Theorems 1.4 and 6.4 for the G(2e, e, r) and the G(e, e, r)) and
of the work of Read and van der Hout on W . We recall their computation of H2(W,Z)
in Table 10 for the exceptional groups, and the rank over Z2 for the other ones in Ta-
ble 9.

Table 9. Rank of H2(W,Z) as a Z2-module (after Reid).

r e G(e, e, r) G(2e, e, r)
2 odd 0 1

even 1 2
3 odd 0 2

even 1 2
4 odd 1 3

even 3 4
5 odd 1 3

even 2 3
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Table 10. The second integral homology groups.

W H2W H2B W H2W H2B

G12 0 0 G30 Z2 Z2
G13 Z2 Z G31 Z2 Z6
G22 0 0 G33 0 Z6
G23 Z2 Z G34 0 Z6
G24 Z2 Z G35 Z2 Z2
G27 Z2 Z3 × Z G36 Z2 Z2
G28 (Z2)

2 Z2 G37 Z2 Z2
G29 (Z2)

2 Z2 × Z4

Proposition 7.3. Except for W = G33 and W = G34, H 2(W,C×) coincides with the
2-torsion of H 2(B,C×).

7.2. First homology in the sign representation

If r = |A/W | denotes the number of hyperplane classes, the abelianization Bab is iso-
morphic to Zr . There are thus 2r − 1 non-zero morphisms B � Z2, which define 2r − 1
subgroups of even braids. When r = 1, there is only one such morphism ε : B → Z2 and
group B(2) = Ker ε. We investigate here two abelian invariants of B which are naturally
attached to this group: the abelianization B(2)ab of B(2) and H1(B,Zε).

Lemma 7.4. Let u ∈ B \B(2). The groupH1(B,Zε) is isomorphic to the quotient of B(2)ab
by the relations [u2

] ≡ 0 and [hu] ≡ −[h] for h ∈ B(2)ab , where hu = u−1hu.

Proof. We start from the bar resolution C2 → C1 → C0, where Ci is a free ZB-module
with basis the [g1, . . . , gi] for gi ∈ B, and we have d1([g]) = (g − 1)[∅], d2([g1, g2]) =

g1[g2] − [g1g2] + [g1]. Denoting by dεi the differential with coefficients in Zε and Cεi =
Ci ⊗ZB Zε with Z-basis the [g1, . . . , gi], we find that Ker dε1 is the direct sum ZB(2) ⊕ I
where I = {

∑
g 6∈B(2) xg[g] | xg ∈ Z,

∑
xg = 0}. Choose some u ∈ B \ B(2). The image

of dε2 is spanned by the [g1g2] − ε(g1)[g2] − [g1]. Among them we find

(1) [u2
] + [u] − [u] = [u2

],
(2) [h1h2] − [h1] − [h2] for h1, h2 in B(2),
(3) [uh] − [u] + [h] for h ∈ B(2),
(4) [hu] + [h] for h ∈ B(2).

Indeed, the element (4) is the difference of two elements clearly in Im dε2 , [hu]−[u]−[h]
and [uhu]+[hu]−[u], where hu = u−1hu, since uhu = hu. By (3), and since I is spanned
by the [hu]−[u] for h ∈ B(2), we see thatH1(B,Zε) is generated by the images of the [h]
for h ∈ B(2). It is easy to check that the relations of the form dε2 ([g1, g2]) ≡ 0 are conse-
quences of (1)–(4), henceH1(B,Zε) is the quotient ofB(2)ab by the relations (1) and (4). ut

The computation of B(2) can be done for exceptional groups by using the Reidemeister–
Schreier method (see [MKS66]) and the presentations of [BMR98] and [BM04]. Note
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that they are known to provide presentations of B for all groups, including the exceptional
group G31 by [Bes07]. We start from one of these standard presentations of B by braided
reflections σ1, . . . , σn and use {1, σ1} for Schreier transversal. Then generators for B(2)

are given by σ 2
1 , σ1σ2, σ1σ3, . . . , σ1σn and σ2σ

−1
1 , σ3σ

−1
1 , . . . , σnσ

−1
1 . We then apply

the Reidemeister–Schreier process and find a presentation of B(2) from the relations R,
σ1Rσ

−1
1 whereR runs over the relations forB. The presentations obtained for exceptional

groups are tabulated in Figure 4 (the column ‘ST’ refers to the Shephard–Todd number of
the group). It is then easy to abelianize these relations. We choose u = σ1.

In order to get H1(B,Zε) from B
(2)
ab we start by adding the relation [σ 2

1 ] ≡ 0. Note
that σ1(σiσ

−1
1 )σ−1

1 = (σ1σi)(σ
−2
1 ), hence −[σiσ−1

1 ] ≡ [σ1σi] − [σ
2
1 ] ≡ [σ1σi], and that

σ1(σ1σi)σ
−1
1 = σ 2

1 .σiσ
−1
1 , hence −[σ1σi] ≡ [σiσ

−1
1 ]. The relations defining H1(B,Zε)

from B
(2)
ab thus boil down to −[σ1σi] ≡ [σiσ

−1
1 ] and [σ 2

1 ] ≡ 0.
In order to getH1(B,Zε) for the groupsG(∗e, e, r), instead of using the complicated

presentations of B afforded by [BMR98], we use the semidirect product decomposition
described in Section 2. Recall that B = Z n Ã where we denote by A the affine Artin
group of type Ãr−1. Then A has Artin generators σ1, . . . , σr and the semidirect product
is defined by τσiτ−1

= σi+e where addition is considered modulo r . From the split exact
sequence 1→ A→ B → Z→ 1 we get the Hochschild–Serre short exact sequence

0 = H2(Z, H0(A,Zε))→ H0(Z, H1(A,Zε))→ H1(B,Zε)
→ H1(Z, H0(A,Zε))→ 0

with H2(Z, H0(A,Zε)) = 0 since Z has homological dimension 1. Since A acts on Zε
through σi 7→ −1 we haveH0(A,Zε) = Z/2Z = Z2; since τ acts trivially onH0(A,Zε)
we thus get H1(Z, H0(A,Zε)) ' H1(Z,Z2) ' Z2. The short exact sequence thus boils
down to 0 → H0(Z, H1(A,Zε)) → H1(B,Zε) → Z2 → 0 and our task is reduced to
computing H1(A,Zε) while keeping track of the action of τ .

In order to compute H1(A,Zε) we apply the above process. Generators for A(2) are
given by u = σ 2

1 , xi = σ1σi and yi = σiσ
−1
1 for 2 ≤ i ≤ r , and relations are given

by rewriting R and σ1Rσ
−1
1 with R running over the braid relations for A. These braid

relations are the following (where |j − i| ≥ 2 actually means that j, i are not connected
in the braid diagram):

(R) 1 6∈ {i, i+1} σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1  yixi+1yiy
−1
i+1x

−1
i y−1

i+1
|j− i| ≥ 2, 1 6∈ {i, j} σiσjσ−1

i σ−1
j  yixjx

−1
i y−1

j

σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2  x2y

−1
2 u−1y−1

2
σ1σrσ1σ

−1
r σ−1

1 σ−1
r  xry

−1
r u−1y−1

r

i 6∈ {2, r} σ1σiσ
−1
1 σ−1

i  xiu
−1y−1

i

(σ1Rσ
−1
1 ) 1 6∈ {i, i+1} σ1σiσi+1σiσ

−1
i+1σ

−1
i σ−1

i+1σ
−1
1  xiyi+1xix

−1
i+1y

−1
i x−1

i+1
|j− i| ≥ 2, 1 6∈ {i, j} σ1σiσjσ

−1
i σ−1

j σ−1
1  xiyjy

−1
i x−1

j

σ1σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2 σ−1

1  uy2ux
−1
2 x−1

2
σ1σ1σrσ1σ

−1
r σ−1

1 σ−1
r σ−1

1  uyrux
−1
r x−1

r

i 6∈ {2, r} σ1σ1σiσ
−1
1 σ−1

i σ−1
1  uyix

−1
i
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ST Presentations for the group of even braids

12 vbu=awv, uaw=vbua, vbu=buaw, uaw=wvb

13 buaw=awv,wvb=vbua, vbua=buaw, uawv=wvbu

22 vbua=awvb, uawv=vbuaw, vbua=buaw, uawv=wvbu

23 auaua=vv, vvv=uauau, bu=w,w=ub, bvb=awa,waw=vbv

24 vv=auau, uaua=vv, awaw=bvbv, vbvb=wawa,w=bub, ubu=ww,

auawvb=vbuaw, vvbuaw=uawvbu

27 w=bub, ubu=ww, vv=auau, uaua=vv, awawa=bvbvb, vbvbv=wawaw,

bvwaua=waubv,waubvv=ubvwau

28 aua=v, vv=uau, bu=w,w=ub, bvbv=awaw,wawa=vbvb, cu=x, x=uc, cv=ax,

cv=ax, xa=vc, cwc=bxb, xbx=wcw

29 v=aua, uau=vv, axa=cvc, vcv=xax, bxb=cwc,wcw=xbx, awaw=bvbv,

vbvb=wawa,w=bu, ub=w, x=cu, uc=x, cwaxbv=bvcwax, xbvcwa=waxbvc

30 auaua=vv, vvv=uauau, bu=w,w=ub, bvb=awa,waw=vbv, cu=x, x=uc,

cv=ax, xa=vc, cwc=bxb, xbx=wcw

31 x=cuc, ucu=xx, axa=cvc, vcv=xax, dwd=byb, yby=wdw, aya=dvd, vdv=yay,

vb=aw, uaw=vbu, aw=bua, vbu=wv, y=du, ud=y, bx=cw,wc=xb, dx=cy,

yc=xd

33 v=aua, uau=vv, bvb=awa,waw=vbv, cvc=axa, xax=vcv, cwc=bxb, xbx=wcw,

cyc=dxd, xdx=ycy,w=bu, ub=w, x=cu, uc=x, y=du, ud=y, ay=dv, vd=ya,

by=dw,wd=yb, cvbxaw=bxawcv, xawcvb=wcvbxa

34 v=aua, uau=vv, bvb=awa,waw=vbv, cvc=axa, xax=vcv, cwc=bxb, xbx=wcw,

cyc=dxd, xdx=ycy,w=bu, ub=w, x=cu, uc=x, y=du, ud=y, ay=dv, vd=ya,

by=dw,wd=yb, dzd=eye, yey=zdz, z=eu, ue=z, az=ev, ve=za, bz=ew,

we=zb, cz=ex, xe=zc, cvbxaw=bxawcv, xawcvb=wcvbxa

35 au=v, v=ua, bub=w,ww=ubu, bv=aw,wa=vb, cu=x, x=uc, cvc=axa,

xax=vcv, cwc=bxb, xbx=wcw, du=y, y=ud, dv=ay, ya=vd, dw=by, yb=wd,

dxd=cyc, ycy=xdx, eu=z, z=ue, ev=az, za=ve, ew=bz, zb=we,

ex=cz, zc=xe, eye=dzd, zdz=yey

36 au=v, v=ua, bub=w,ww=ubu, bv=aw,wa=vb, cu=x, x=uc, cvc=axa,

xax=vcv, cwc=bxb, xbx=wcw, du=y, y=ud, dv=ay, ya=vd, dw=by,

yb=wd, dxd=cyc, ycy=xdx, eu=z, z=ue, ev=az, za=ve, ew=bz, zb=we,

ex=cz, zc=xe, eye=dzd, zdz=yey, f u=x2, x2=uf, f v=ax2, x2a=vf,
fw=bx2, x2b=wf, f x=cx2, x2c=xf, fy=dx2, x2d=yf, f zf =ex2e, x2ex2=zf z

37 au=v, v=ua, bub=w,ww=ubu, bv=aw,wa=vb, cu=x, x=uc, cvc=axa,

xax=vcv, cwc=bxb, xbx=wcw, du=y, y=ud, dv=ay, ya=vd, dw=by,

yb=wd, dxd=cyc, ycy=xdx, eu=z, z=ue, ev=az, za=ve, ew=bz, zb=we,

ex=cz, zc=xe, eye=dzd, zdz=yey, f u=x2, x2=uf, f v=ax2, x2a=vf,
fw=bx2, x2b=wf, f x=cx2, x2c=xf, fy=dx2, x2d=yf, f zf =ex2e,
x2ex2=zf z, gu=y2, y2=ug, gv=ay2, y2a=vg, gw=by2, y2b=wg, gx=cy2,
y2c=xg, gy=dy2, y2d=yg, gz=ey2, y2e=zg, gx2g=fy2f, y2fy2=x2gx2

Fig. 4. Presentations for even braid groups of exceptional types.
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Abelianizing and dividing out by the relations yi = −xi yields an abelian presentation
for H1(A,Zε) by generators u, xi for 2 ≤ i ≤ r and relations

1 6∈ {i, i + 1} 3xi+1 = 3xi
|j − i| ≥ 2, 1 6∈ {i, j} 2xj = 2xi

3x2 = 0
3xr = 0

i 6∈ {2, r} 2xi = 0

Thus, for r = 3, H1(A,Zε) = 〈x2, x3 | 3x2 = 3x3 = 0〉 = Z3x2 ⊕ Z3x3 ' Z2
3, while for

r = 4,

H1(A,Zε) = 〈x2, x3, x4 | 3x2 = 3x4 = 0, 2x3 = 0, 2x2 = 2x4, 3x3 = 3x2 = 3x4〉,

hence H1(A,Zε) = 〈x2, x4 | 3x2 = 3x4 = 0, x2 = x4〉 = Z3x2 ' Z3. When r ≥ 5,
H1(A,Zε) is generated by x2, . . . , xr , and we have 3x2 = 3xr = 0. We have 2 < 3 <
r − 1 < r . Then 2x3 = 2xr−1 = 0 but 0 = 3x2 = 3x3 and 0 = 3xr = 3xr−1. It follows
that x3 = 0 and xr−1 = 0. Since 2x3 = 2xr and 2x2 = 2xr−1 we get x2 = xr−1 and
x3 = xr , hence xi = 0 for all i and H1(A,Zε) = 0.

For r ∈ {3, 4} it remains to compute the action of τ on H1(A,Zε). We have τ.σi =
σi+e, hence τ.(σ1σi) = σ1+eσi+e = σ1+eσ

−1
1 σ1σi+e. For e ≡ 0 mod r we have τ.xi = xi

and H0(Z, H1(A,Zε)) ' H1(A,Zε). For r = 3, e ≡ 1 mod 3, τ.x2 = σ2σ3 ≡ y2 + x3 ≡

−x2 + x3 and τ.x3 = σ2σ1 = σ2σ
−1
1 σ 2

1 ≡ −x2. It follows that H0(Z, H1(A,Zε)) ' Z3.
For r = 4, e ≡ 1 mod 4, τ.x2 = σ2σ3 = σ2σ

−1
1 σ1σ3 ≡ y2 + x3 ≡ −x2 + x3 ≡ −x2,

henceH0(Z, H1(A,Zε)) = 0. For r = 4, e ≡ 2 mod 4, τ.x2 = σ3σ4 = σ3σ
−1
1 σ1σ4 ≡ x2,

hence H0(Z, H1(A,Zε)) = H1(A,Zε). Altogether, this yields

Proposition 7.5. For B = B(∗e, e, r), and r ≥ 3,

H1(B,Zε) ' Z2 for r ≥ 5,
H1(B,Zε) ' Z6 for r = 4, e ≡ 0, 2 mod 4,
H1(B,Zε) ' Z2 for r = 4, e ≡ 1 mod 4,
H1(B,Zε) ' Z3 ⊕ Z3 ⊕ Z2 for r = 3, e ≡ 0 mod 4,
H1(B,Zε) ' Z6 for r = 3, e ≡ 1 mod 4.

Finally, for groups of type G(e, e, r), we use the Dehornoy–Lafont complex associated
to the Corran–Picantin monoid. The 1-cells [s] are mapped to (ε(s) − 1)[∅] = −2[∅],
hence the 1-cycles are spanned by the [s] − [t] for s, t two atoms. We have dε[sj , si] =
2(sj − si) when |j − i| ≥ 2, dε[t0, ti] = −ti + ti+1 + t0 − t1, dε[s3, ti] = 3ti − 3s3,
dε[si, t0] = 2(si − t0) for i ≥ 4, and dε[si+1, si] = 3(si+1 − si). Since a basis of the
1-cycles is given by the ti − t0, t0 − s3, s3 − s4, . . . , sr−1 − sr , H1(B,Zε) is spanned
by t1 − t0, t0 − s3, . . . , sr−1 − sr , each of these elements being annihilated by 3. From
dε[si, t0] = 2(si − t0) for i ≥ 4 we get s4− s3 ≡ s3− t0, from dε[s5, s3] = 2(s5− s3) we
get s5 − s4 ≡ s4 − s3, and so on. Finally, from

dε[t1, s4] = 2(t1 − s4) = 2(t1 − t0)+ 2(t0 − s3)+ 2(s3 − s4) ≡ 2(t − 1− t0)+ (t0 − s3)
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Table 11. Homology of exceptional groups.

H0 H1 H2 H3 H4 H5 H6

G12 Z Z 0
G13 Z Z2 Z
G22 Z Z 0
G24 Z Z Z Z
G27 Z Z Z3 × Z Z
G29 Z Z Z2 × Z4 Z2 × Z Z
G31 Z Z Z6 Z Z
G33 Z Z Z6 Z6 Z Z
G34 Z Z Z6 Z6 ? ? ?

Table 12. Homology of exceptional Artin groups (after Salvetti).

H0 H1 H2 H3 H4 H5 H6 H7 H8

I2(2m) Z Z2 Z
I2(2m+ 1) Z Z 0
H3 = G23 Z Z Z Z
H4 = G30 Z Z Z2 Z Z
F4 = G28 Z Z2 Z2 Z2 Z
E6 = G35 Z Z Z2 Z2 Z6 Z3 0
E7 = G36 Z Z Z2 Z2

2 Z2
6 Z3 × Z6 Z Z

E8 = G37 Z Z Z2 Z2 Z2 × Z6 Z3 × Z6 Z2 × Z6 Z Z

Table 13. Abelianization of even braids and H1(B,Zε).

ST B
(2)
ab H1(B,Zε)

12 Z3 × Z Z3
13 Z× Z Z2
22 Z 0
23 Z 0
24 Z 0
27 Z 0
28 Z× Z Z2
29 Z 0
30 Z 0
31 Z 0
33 Z 0
34 Z 0
35 Z 0
36 Z 0
37 Z 0
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we get t1− t0 ≡ t0−s3. It follows that, for r ≥ 4,H1(B,Zε) is generated by t1− t0, hence
H1(B,Zε) ' Z3; for r = 3, it is generated by t1−t0 and t0−s3 andH1(B,Zε) ' Z3⊕Z3;
and it is generated by t1 − t0 for r = 2.

The case e = 1 (that is, of the usual braid group) follows the same pattern. On the
whole, we get the following.

Proposition 7.6. For the groups B(e, e, r) with e ≥ 2, H1(B,Zε) ' Z3 if r ≥ 4. If
r = 3 then H1(B,Zε) ' Z3 ⊕ Z3. If r = 2 then H1(B,Zε) ' Z. When e = 1, we have
H1(B,Zε) = 0 for r = 2 or r ≥ 5, and H1(B,Zε) = Z3 if r = 3 or r = 4.
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