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Abstract. Inspired by several works on jet schemes and motivic integration, we consider an ex-
tension to singular varieties of the classical definition of discrepancy for morphisms of smooth
varieties. The resulting invariant, which we call Jacobian discrepancy, is closely related to the jet
schemes and the Nash blow-up of the variety. This notion leads to a framework in which adjunc-
tion and inversion of adjunction hold in full generality, and several consequences are drawn from
these properties. The main result of the paper is a formula measuring the gap between the dualizing
sheaf and the Grauert–Riemenschneider canonical sheaf of a normal variety. As an application, we
give characterizations for rational and Du Bois singularities on normal Cohen–Macaulay varieties
in terms of Jacobian discrepancies. In the case when the canonical class of the variety is Q-Cartier,
our result provides the necessary corrections for the converses to hold in theorems of Elkik, of
Kovács, Schwede and Smith, and of Kollár and Kovács on rational and Du Bois singularities.

Keywords. Discrepancy, Jacobian, adjunction, Nash blow-up, jet scheme, multiplier ideal, rational
singularity, Du Bois singularity

1. Introduction

The main result of the paper is a formula quantifying the difference between the dualizing
sheaf and the Grauert–Riemenschneider canonical sheaf of a normal variety, and is stated
below in Theorem C. As a motivation of this more technical result, we begin by first
describing its implications to the study of rational and Du Bois singularities.

Rational singularities, first introduced and studied in dimension two as a generaliza-
tion of Du Val singularities [Art66, Lip69b], can be thought of as those singularities that
do not contribute to the cohomology of the structure sheaf of the variety. The connection
with the singularities in the minimal model program was discovered by Elkik [Elk81]. Du
Bois singularities [DB81, Ste83] form a wider, more mysterious class which arises natu-
rally from the point of view of Hodge theory and satisfies good vanishing properties; see
for instance [GKKP11]. The link between Du Bois singularities and log canonical singu-
larities is a recent achievement first established in the Cohen–Macaulay case in [KSS10]
and then, unconditionally, in [KK10]. For both classes of singularities, the connection
with the singularities in the minimal model program appears to be unidirectional, as most
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rational and Du Bois singularities do not seem at first to satisfy any reasonable condition
from the point of view of valuations and discrepancies.

As we shall see, there is in fact a deeper connection going the other way around which
provides characterizations of these singularities when the variety is Cohen–Macaulay.

The precise connection depends on the tension between two closely related ideals at-
tached to the singularities. The first one is the lci-defect ideal dX of X. This object is very
natural from the point of view of liaison theory and is related to the Nash transformation
of X with respect to the dualizing sheaf ωX. In concrete terms, dX is the ideal generated
by the equations of the residual intersections with all the reduced, locally complete inter-
section schemes V ⊃ X of the same dimension. The second ideal, called the lci-defect
ideal of level r of X and denoted by dr,X, is defined when the canonical class KX is
Q-Cartier and depends on the integer r such that rKX is Cartier. The two ideals agree
when r = 1. In general, both ideals vanish precisely on the locus where X is not locally
complete intersection.

In the following theorem we make the necessary correction for the converse to hold in
the aforementioned results of [Elk81, KSS10, KK10]. Restricting to the Cohen–Macaulay
case, the result yields a characterization of rational and Du Bois singularities in terms of
discrepancies. In particular, since rational singularities are Cohen–Macaulay, the result
provides a discrepancy characterization of all rational singularities.

Theorem A. LetX be a normal variety, and assume that rKX is Cartier for some positive
integer r .

(a) If X has rational singularities then the pair (X, d1/r
r,X · d

−1
X ) is canonical.

(b) If X has Du Bois singularities then the pair (X, d1/r
r,X · d

−1
X ) is log canonical.

Moreover, the converse holds in both cases whenever X is Cohen–Macaulay.

In either case, the Cohen–Macaulay condition is essential for the converse to hold (see
Example 7.6). If however the assumptions on the singularities of the pair is strengthened
by removing the contribution of d−1

X , then one obtains sufficient conditions for rational
and Du Bois singularities holding in a much more general setting.

We arrive at the above result by considering a quite different set of questions that lead
us to study an extension to arbitrary varieties of the notion of discrepancy of a divisorial
valuation over a smooth variety.

The candidate is an integer that simply measures the difference between the Jacobian
of the transformation (which gives the discrepancy in the smooth case) and the Jacobian
of the singularity. Specifically, given a resolution of singularities f : Y → X of a complex
variety X, we define the Jacobian discrepancy of a prime divisor E ⊂ Y over X to be the
integer

k�E(X) := ordE(jf )− ordE(jX),

where jf ⊂ OY is the Jacobian ideal of the morphism f and jX ⊂ OX is the Jacobian
ideal of X.

Jacobian discrepancies are closely related to Mather discrepancies, where only the
contribution coming from jf is taken into account. The latter are the main ingredient of
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the change-of-variables formula in motivic integration [DL99] and are determined by the
Nash blow-up of the variety. Geometric properties of Mather discrepancies were investi-
gated in [dFEI08], and the recent work of Ishii [Ish11] is devoted to a study of singularities
from the point of view of Mather discrepancies. When X is Q-Gorenstein (that is, X is
normal and its canonical class is Q-Cartier), the relationship between Jacobian discrep-
ancies, Mather discrepancies and usual discrepancies is implicit in the works [Kaw08,
EM09, Eis10].

Like Mather discrepancies, Jacobian discrepancies can be read off from the jet
schemes of the variety. In the following result, one should notice that not just the topology
but also the scheme structure of the spaces of jets is relevant to this end.

Theorem B. For every prime divisor E ⊂ Y over a variety X we have

k�E(X)+ 1 = 2n(m+ 1)− dimC(T Xm|ηE,m) for all m ≥ 2 ordE(jX),

where Xm is the m-th jet scheme of X, TXm is the tangent space to Xm, and ηE,m ∈ Xm
is the generic point of the image of the set of m-th jets in Y having order of contact one
with E.

Using Jacobian discrepancies, one can formulate in a completely natural way a framework
for singularities that runs parallel to the usual theory of singularities of Q-Gorenstein
varieties considered in the minimal model program. In particular, this leads to the notions
of J-canonical and log J-canonical singularities, of minimal log J-discrepancy, and of
log J-canonical threshold. This framework moves in a different direction with respect to
the one proposed in [dFH09], where the asymptotic nature of the theory on Q-Gorenstein
varieties is instead taken into account. These invariants capture interesting new geometry
of the singularities and we believe that they deserve investigation.

The theory is tailored to satisfy adjunction and inversion of adjunction (see Proposi-
tion 4.9 and Theorem 4.10). The latter, independently proven also by Ishii [Ish11], extends
the main theorems of [EMY03, EM04, Kaw08, EM09] to the setting considered here, and
has a number of consequences that were previously obtained in [Mus01, EM04, dFEM10]
for normal, locally complete intersection varieties. These include the semicontinuity of
minimal log J-discrepancies (see Corollaries 4.15 and 4.14, see also [Ish11]) and the fact
that the set of all log J-canonical thresholds in any fixed dimension satisfies the ascending
chain condition (see Corollary 4.13). Theorem B and inversion of adjunction also yield
characterizations of the singularities of a variety that involve jet schemes and their tangent
spaces (see Corollary 5.4).

The main application of the above viewpoint on singularities regards the Grauert–
Riemenschneider canonical sheaf of a variety X, defined to be f∗ωY where f : Y → X is
any resolution of singularities [GR70]. This is the natural generalization of the canonical
line bundle of a manifold from the point of view of Kodaira vanishing and plays, for
instance, a central role in Lipman’s proof to resolution of singularities in dimension two
[Lip78]. This sheaf agrees with the dualizing sheaf if X has rational singularities. In
general there is an inclusion f∗ωY ⊂ ωX and our aim is to provide a measure of the gap.

To this end, we introduce the natural generalization of multiplier ideals to the above
framework. Given a normal variety X, for any non-zero ideal a ⊂ OX and every real
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number c we use Jacobian discrepancies to define the Jacobian multiplier ideal J �(ac).
This is in general a fractional ideal sheaf; it is an ideal sheaf if either c ≥ 0 or a is trivial
in codimension one. This agrees with the usual multiplier ideal if X is locally complete
intersection.

The core result of the paper is the following formula which expresses the colon ideal
of f∗ωY by ωX as a Jacobian multiplier ideal.

Theorem C. If f : Y → X is a resolution of singularities of a normal variety, then

(f∗ωY : ωX) = J �(d−1
X ),

where the left-hand side is the colon of the sheaves viewed as OX-modules.

In light of this theorem and its ‘twisted’ version (stated below in Theorem 6.15), one can
view the Grauert–Riemenschneider vanishing theorem and its generalizations as Nadel-
type vanishings for Jacobian multiplier ideals.

More importantly, using Kempf’s characterization of rational singularities on normal
Cohen–Macaulay varieties and the analogous result on Du Bois singularities established
in [KSS10], we deduce from Theorem C that, given any normal variety X,
(a) if X has rational singularities then the pair (X, d−1

X ) is J-canonical,
(b) if X has Du Bois singularities then the pair (X, d−1

X ) is log J-canonical,
and in both cases the converse holds if X is Cohen–Macaulay. This result appears in the
main body of the paper as Corollary 7.2. When X is Q-Gorenstein, this implies Theo-
rem A.

As mentioned before, the Cohen–Macaulay condition is necessary for the converse to
hold. If however one imposes stronger conditions on discrepancies, then a simple argu-
ment brought out to our attention by Mustaţă shows that the results of [Kaw98, KK10], in
combination with inversion of adjunction, imply that any variety with J-canonical (resp.,
log J-canonical) singularities has rational (resp., Du Bois) singularities (see Theorem 7.7).
This last result is in fact well-known to specialists if the hypotheses on the singularities
are expressed in terms of the jet schemes of the variety.

We work over the field of complex numbers. Unless otherwise stated, we use the word
scheme to refer to a separated scheme of finite type over C. The word variety will refer to
an irreducible reduced scheme.

2. Nash blow-up

The notions of discrepancy that will be defined in the paper are naturally related to the
Nash blow-up. In this section we review the basic theory of this blow-up, and explore a
modification of the construction, the blow-up of the dualizing sheaf.

2.1. Jacobian ideals

The Jacobian ideal sheaf of a reduced scheme X, denoted jX ⊂ OX, is the smallest
non-zero Fitting ideal of the cotangent sheaf �X. If X is of pure dimension n, then jX =
Fittn(�X), the n-th Fitting ideal.
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If Y is a smooth scheme and f : Y → X is a morphism to a scheme X, the Jacobian
ideal of f is the 0-th Fitting ideal jf = Fitt0(�Y/X) of �Y/X. If Y is equidimensional of
dimension n, then �nY is invertible and the image of the map induced at the level of top
differentials f ∗�nX → �nY can be written as jf ⊗�nY .

2.2. The classical Nash blow-up

The Nash blow-up of a reduced scheme X of pure dimension n is a surjective morphism

ν : X̂→ X

satisfying the following universal property: a proper birational morphism of schemes
f : Y → X factors through ν if and only if the sheaf f ∗�X has a locally free quo-
tient of rank n. In general, if a resolution f : Y → X factors through the Nash blow-up
of X, then the associated Jacobian ideal jf is locally principal.

The Nash blow-up of X is unique up to isomorphism, and can be constructed by tak-
ing the restriction of the projection Gr(�X, n) → X to the closure X̂ ⊂ Gr(�X, n) of
the natural isomorphism Xreg → Gr(�Xreg , n). Here, for a coherent sheaf F on X, we
denote by Gr(F , n) the Grassmannian of locally free quotients of F of rank n. IfX is em-
bedded in a smooth variety M , the natural quotient �M |X → �X induces and inclusion
i : Gr(�X, n) ↪→ Gr(�M , n), and X̂ is the closure of the natural embedding of Xreg in
Gr(�M , n) given by i. Alternatively, using the Plücker embedding Gr(�X, n) ⊂ P(�nX),
one can also view the Nash blow-up X̂ inside P(�nX) as the closure of the natural isomor-
phism Xreg ∼= P(�nXreg

). Denoting for short

ω̂X := �
n
X/torsion,

X̂ can also be viewed as the closure of Xreg in P(ω̂X) since the latter is closed in P(�nX)
and contains P(�nXreg

).

Remark 2.1. Since X is reduced, ωX is torsion free (cf. Proposition (2.8) of [AK70])
and the canonical map �nX → ωX (cf. Proposition 9.1 of [EM09]) factors through an
inclusion ω̂X ↪→ ωX.

Note that the tautological line bundle OP(�nX)(1) of P(�nX) restricts to the tautological
line bundle OP(ω̂X)(1) of P(ω̂X). Following the terminology introduced in [dFEI08], we
refer to the restriction OX̂(1) := OP(ω̂X)(1)|X̂ as the Mather canonical line bundle of X,
and to any Cartier divisor K̂X on X̂ such that OX̂(K̂X)

∼= OX̂(1) as a Mather canonical
divisor of X.

Remark 2.2. The above terminology is motivated by the relationship with Mather–Chern
classes (see Remark 1.5 of [dFEI08] for a discussion). Note that in [dFEI08] the sym-
bol K̂X was used to denote the Mather canonical line bundle.

Remark 2.3. If X ⊂ X′ is the inclusion between two reduced equidimensional schemes
of the same dimension and we denote by ν : X̂ → X and ν′ : X̂′ → X′ the respective
Nash blow-ups, then X̂ ⊂ X̂′, ν = ν′|X̂ and OX̂(1) = OX̂′(1)|X̂.
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The Nash blow-up naturally relates to the blow-up of the Jacobian ideal of the scheme.
Lemma 1 of [Lip69a] implies that for any reduced equidimensional scheme X, the blow-
up of the Jacobian ideal of X factors through the Nash blow-up of X; see also [OZ91]
for a detailed discussion of this property. A direct computation in local coordinates shows
that when X is locally complete intersection the Nash blow-up of X is isomorphic to the
blow-up of the Jacobian ideal of X (see [Nob75, OZ91]). One can use Remark 2.3 to see
that in general, ifX is a reduced equidimensional scheme and V ⊃ X is a reduced, locally
complete intersection scheme of the same dimension, then the Nash blow-up ν : X̂→ X

is isomorphic to the blow-up of the ideal jV |X. Since the natural map �nX → ωV |X has
image

Im[�nX → ωV |X] = jV |X ⊗ ωV |X

(see for instance [OZ91, EM09]), this fact also follows from the discussion given in the
following subsection.

Proposition 2.4. Let X be a reduced equidimensional scheme. Then, for every reduced,
locally complete intersection scheme V ⊃ X of the same dimension, there is a natural
isomorphism

jV |X ·OX̂
∼= OX̂(1)⊗ ν

∗(ω−1
V |X).

Proof. We view ν : X̂ → X as the blow-up of jV |X. Since by generic smoothness the
kernel of the natural map �nX → ωV |X is the torsion of �nX, there is an isomorphism

P(ω̂X) = P(jV |X ⊗ ωV |X)
α
−→ P(jV |X).

This implies that
OP(ω̂X)(1) ∼= α

∗OP(jV |X)(1)⊗ π
∗ωV |X

where π : P(ω̂X)→ X is the projection map. On the other hand, by the universal property
of P(jV |X), the blow-up X̂→ X of jV |X factors through P(jV |X)→ X, and OP(jV |X)(1)
pulls back to jV |X · OX̂. Since the map X̂→ P(jV |X) is an isomorphism onto its image,
we obtain OX̂(1) ∼= (jV |X ·OX̂)⊗ ν

∗ωV |X. ut

2.3. The blow-up of the dualizing sheaf

Let X be a reduced equidimensional scheme. We denote by C(X) the sheaf of rational
functions on X. Following the general definition given in [Kle79], this sheaf is given by
the push-forward of the restriction of OX to the associated primes, which in our case are
just the generic points of the irreducible components of X.

In the construction of the Nash blow-up, one can replace the sheaf of differentials
by any coherent sheaf F which is locally free of some rank r in an open dense subset
of X. This idea was developed in detail in [OZ91], where it received the name of Nash
transformation of X relative to F .

The main result from [OZ91] that we will use is a description of the ideal whose
blow-up gives the Nash transformation: it is the image of the composition∧r F →

∧r F ⊗OX
C(X)

∼=
−→ C(X),
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where the second arrow is induced by any trivialization of
∧r F at each of the generic

points of X. Notice that different choices of trivialization give different ideals, but they
differ by a Cartier divisor, so they give rise to the same blow-up. Also, for an arbitrary
trivialization the ideal is possibly fractional, but there is always a choice that clears all the
denominators.

For example, in the case of the classical Nash blow-up one is led to consider the
natural sequence

ω̂X → ωX → ωV |X → �nC(X)/C,

where V is some reduced locally complete intersection n-dimensional scheme contain-
ing X. Since ωV |X is a line bundle, one can use it to trivialize �nC(X)/C, and we see that
the classical Nash blow-up is given by the ideal a for which the image of ω̂X in ωV |X is
a⊗ ωV |X, namely, the ideal jV |X.

For our purposes, it will be interesting to consider a second Nash transformation, this
time relative to the dualizing sheaf. It is a proper birational morphism

µ : X̃→ X,

which is universal among those proper birational morphisms for which the pull-back
of ωX admits a line bundle quotient. Analogous to the case of the classical Nash blow-up,
X̃ can be constructed as the closure in P(ωX) of Xreg ' P(ωXreg).

Our interest in X̃ arises from the ideals whose blow-up gives µ. After picking some
locally complete intersection V as above, one sees that µ is the blow-up of X along the
ideal dX,V for which the image of the inclusion of ωX inside ωV |X is given by

Im[ωX → ωV |X] = dX,V ⊗ ωV |X.

Note that µ is an isomorphism if and only if ωX is invertible. One implication is obvious,
and conversely, if µ is an isomorphism then dX,V is locally principal and hence ωX =
dX,V ⊗ ωV |X is invertible.

Different choices of V give different ideals dX,V , but their blow-up is always X̃. These
ideals are easy to describe (cf. [OZ91, EM09]). One embeds V in a smooth variety M ,
and considers the ideals IX and IV of X and V in M . Then, as OV -modules, one has

ωX ⊗ ω
−1
V = HomOV

(OX,OV ) = (IV : IX)/IV ,

and therefore
dX,V = ((IV : IX)+ IX)/IX.

In other words, if we write V = X ∪ X′, where X′ is the residual part of V with respect
to X (given by the ideal (IV : IX)), then dX,V is the ideal defining the intersection X∩X′

in X. We may think of dX,V as giving the residual intersection of V with X.
As V varies, so does the residual intersection dX,V . Thinking of this collection of

intersections as a linear series inX, it is natural to consider its base locus, which is clearly
supported on the points where X is not locally complete intersection. This motivates the
next definition.
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Definition 2.5. The lci-defect ideal of X is defined to be

dX :=
∑
V

dX,V ,

where the sum is taken over all reduced, locally complete intersection schemes V ⊃ X of
the same dimension.

In the case of the classical Nash blow-up, the analogous object is the Jacobian ideal jX,
which is spanned by the ideals jV |X as V varies in any fixed embedding M of X. If we
restrict the sum in the above definition to those schemes V varying in one fixed embed-
dingM , the resulting ideal, which we denote by dX/M , depends a priori on the embedding.
Its integral closure however does not depend on M .

Proposition 2.6. For any fixed embedding X ⊂ M , we have dX/M = dX.

Proof. Since
dX =

∑
M⊃X

dX/M ,

it suffices to prove that the integral closure of dX/M is independent of the embedding. Fix
any embedding X ⊂ M . If OX̃(1) denotes the tautological quotient of µ∗ωX associated
to the Nash transformation, then

Im[µ∗ω̂X → µ∗ωX → OX̃(1)] = n⊗OX̃(1)

for some ideal n ⊂ OX̃. On the other hand, we have

Im[µ∗ω̂X → µ∗ωV |X] = (jV |X ·OX̃)⊗ µ
∗(ωV |X).

By the same arguments of the proof of Proposition 2.4 there is a natural isomorphism

(dX,V ·OX̃)⊗ µ
∗(ωV |X) ∼= OX̃(1),

and we see that n · (dX,V · OX̃) = jV |X · OX̃. By taking the sum as V varies, we obtain
n·(dX/M ·OX̃) = jX ·OX̃. This proves that the integral closure of dX/M ·OX̃ is independent
of M . ut

Remark 2.7. For the purpose of this paper, the integral closure of dX is the only thing
we need to control, and thus with slight abuse of notation one can always pretend that dX
is determined from any embedding of X.

2.4. The Q-Gorenstein case

When X is Q-Gorenstein, one can exploit this property to give another scheme structure
to the locus where X is not locally complete intersection, as explained in [EM09]. We
review here this alternative theory, as it will be useful later to compare the new notions of
discrepancy with the classical one.
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Recall that a variety X is said to be Q-Gorenstein if it is normal and its canonical
class KX is Q-Cartier. Assume X is Q-Gorenstein, and let r be a positive integer such
that rKX is Cartier. For any reduced, locally complete intersection scheme V ⊃ X of the
same dimension, we consider the ideal dr,X,V ⊂ OX such that the image of the natural
map from OX(rKX) to (ωV |X)⊗r is given by

Im[OX(rKX)→ (ωV |X)
⊗r
] = dr,X,V ⊗ (ωV |X)

⊗r .

Note that dr,X,V is a locally principal ideal since OX(rKX) is a line bundle.

Definition 2.8. With the above assumptions, we define the lci-defect ideal of level r ofX
to be

dr,X :=
∑
V

dr,X,V ,

where the sum is taken over all V as above.

Note also that, like dX, the ideal dr,X vanishes exactly whereX is not locally complete
intersection. If we fix an embedding X ⊂ M then the ideal dr,X/M obtained by restricting
the sum in the above definition to schemes V ⊂ M depends a priori on the embedding.

To better understand these ideals, for every V as above we consider the natural se-
quence

ω̂⊗rX → ω⊗rX → OX(rKX)→ (ωV |X)
⊗r . (2.1)

Using again the fact that OX(rKX) is a line bundle, we see that the image of the canonical
map from ω̂⊗rX to OX(rKX) is given by

Im[ω̂⊗rX → OX(rKX)] = nr,X ⊗OX(rKX)

for some ideal sheaf nr,X ⊂ OX.

Definition 2.9. In accordance with the terminology introduced in [EM09], we call nr,X
the Nash ideal of level r of X.

Proposition 2.10. With the above notation, there are inclusions

nr,X · dr,X/M ⊂ nr,X · dr,X ⊂ jrX

which induce identities on integral closures. In particular, for every embedding X ⊂ M
we have dr,X/M = dr,X.

Proof. Since the image of ω̂X in ωV |X is given by jV |X, we have nr,X · dr,X,V = (jV |X)r ,
and hence ∑

V⊂M

(jV |X)
r
= nr,X · dr,X/M ⊂ nr,X · dr,X =

∑
V

(jV |X)
r
⊂ jrX,

and both inclusions become equalities once integral closures are taken. The last assertion
is a direct consequence of the first part. ut
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Remark 2.11. With the above notation, the ideal dr,X has the same integral closure as
the colon ideals J ′r := ( jrX : nr,X ) and Jr := ( jrX : nr,X ). First notice that there is
a chain of inclusions dr,X ⊂ J ′r ⊂ Jr , the first one following by Proposition 2.10 and
the latter by the inclusion jrX in its integral closure. Therefore it suffices to check that
dr,X = Jr . This follows by combining Proposition 2.10, which gives nr,X · dr,X = jrX,
with Proposition 9.4 of [EM09], which gives nr,X · Jr = jrX. In [EM09], the ideal Jr is
chosen as a measure of the locus where X is not locally complete intersection, and the
scheme it defines is called the non-lci subscheme of level r of X. For the purpose of this
paper, there is no significant difference between the two ideals as we only need to take
into consideration the valuative contributions of these ideals, which are equivalent.

Proposition 2.12. With the above notation, we have drX ⊂ dr,X.

Proof. By the definitions and the sequence (2.1) we have an inclusion drX,V ⊂ dr,X,V , and
hence

∑
V drX,V ⊂ dr,X. One concludes by observing that drX is contained in the integral

closure of
∑
V drX,V . ut

Remark 2.13. If ωX is invertible then we can take r = 1, and it follows from the defi-
nitions that dX = d1,X. In general however the inclusion drX ⊂ dr,X might be strict (cf.
Remark 7.4 below).

3. Discrepancies

In this section we introduce the main invariants that we will study throughout the paper.

3.1. Mather and Jacobian discrepancies

We focus on the case of a reduced equidimensional scheme X. To fix terminology, by a
resolution of a reduced equidimensional scheme X we intend a morphism f : Y → X

from a smooth scheme Y that restricts to a proper birational map over each irreducible
component ofX and such that every irreducible component of Y dominates an irreducible
component of X. In particular, if f : Y → X is a resolution and X has irreducible com-
ponents Xi , then Y decomposes as a disjoint union of smooth varieties Yi and f restricts
to resolutions fi : Yi → Xi .

We say that E is a prime divisor over X if E is a prime divisor on some resolution
f : Y → X, and that it is exceptional if f is not an isomorphism at the generic point
of E. The center cX(E) of E in X is the generic point of the image of E in X. If Yi
is the component of Y containing E and fi : Yi → Xi is the induced resolution of the
corresponding irreducible component ofX, then associated toE one defines the divisorial
valuation ordE on the function field C(Xi): for any nonzero element φ ∈ C(Xi), ordE(φ)
is the order of vanishing (or pole) of f ∗i (φ) at the generic point of E ⊂ Yi .

If a ⊂ OX is an ideal sheaf on X, then we denote ordE(a) := ordE(a|Xi ). Equiva-
lently, we have ordE(a) = ordE(a · OY ) where the right-hand side denotes the integer
a for which the image of a · OY in the discrete valuation ring OY,E is the a-th power of
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the maximal ideal. Note that ordE(a) = ∞ if and only if a vanishes identically along the
irreducible component Xi of X dominated by the component of Y containing E.

Definition 3.1. Let X be a reduced equidimensional scheme. Given a resolution
f : Y → X, if E is a prime divisor over X, the Mather discrepancy and the Jacobian
discrepancy of E over X are respectively defined by

k̂E(X) := ordE(jf ) and k�E(X) := ordE(jf )− ordE(jX).

The relative Mather canonical divisor and the relative Jacobian canonical divisor of f
are, respectively,

K̂Y/X :=
∑
E⊂Y

k̂E(X) · E and K�Y/X :=
∑
E⊂Y

k�E(X) · E,

where the sum runs over all prime divisors E on Y .

Remark 3.2. If X is smooth, then k̂E(X) = k�E(X) = kE(X), the usual discrepancy of
E over X, and K̂Y/X = K�Y/X = KY/X, the usual relative canonical divisor.

If X is a reduced equidimensional scheme and f : Y → X is a resolution factoring
through the Nash blow-up of X, then

jf ·OY = OY (−K̂Y/X),

and K̂Y/X is the unique f -exceptional divisor linearly equivalent to KY − f̂ ∗K̂X for
a choice of a canonical divisor KY on Y and of a Mather canonical divisor K̂X (see
Proposition 1.7 of [dFEI08]). Furthermore, if f : Y → X factors through the blow-up
of jX, and we write jX ·OY = OY (−B) for some effective divisor B on Y , then

K�Y/X = K̂Y/X − B.

One deduces the following property.

Proposition 3.3. Let f : Y → X be a resolution of a reduced equidimensional scheme
X that factors through the blow-up of the Jacobian ideal jX. If f ′ : Y ′ → X is another
resolution factoring through f via a morphism h : Y ′→ Y , then

K̂Y ′/X = KY ′/Y + h
∗K̂Y/X and K�Y ′/X = KY ′/Y + h

∗K�Y/X.

3.2. Discrepancies over Q-Gorenstein varieties

Suppose that X a Q-Gorenstein variety. In this case one defines the relative canonical
divisor of a resolution f : Y → X as the Q-divisor KY/X = KY − f ∗KX where KY is a
canonical divisor on Y ,KX = f∗KY , and f ∗KX is defined as the pull-back of a Q-Cartier
divisor. If E is a prime divisor on Y , we denote by kE(X) := ordE(KY/X). This is the
usual discrepancy of E over X.

The relation between Mather and Jacobian discrepancies and the usual discrepancies
defined for this class of varieties is implicit in the works [Kaw08, EM09, Eis10], and is
made explicit in the following statement.
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Proposition 3.4. LetX be a Q-Gorenstein variety. Let r be any positive integer such that
rKX is Cartier, let nr,X be the Nash ideal of level r of X, and let dr,X be the lci-defect
ideal of level r of X. Then for every prime divisor E over X we have

k̂E(X) = kE(X)+
1
r

ordE(nr,X) and k�E(X) = kE(X)−
1
r

ordE(dr,X).

Proof. Let f : Y → X be a log resolution of X such that E is a divisor on Y and both
nr,X · OY and jf are locally principal. Fix a canonical divisor KY on Y such that f∗KY
= KX, and let D be an effective divisor on Y such that rKY/X + D ≥ 0. Consider the
composition γ of the maps

f ∗(�nX)
⊗r α
−→ OY (f

∗(rKX))
β
−→ OY (rKY +D)

∼=
−→ (�nY )

⊗r
⊗OY (D),

where β is induced by a global section of OY (rKY/X + D). The maps α, β and γ have
images, respectively,

Im(α) = (nr,X ·OY )⊗OY (f
∗(rKX)),

Im(β) = OY (−rKY/X −D)⊗
(
(�nY )

⊗r
⊗OY (D)

)
,

Im(γ ) =
(
jrf ⊗OY (−D)

)
⊗
(
(�nY )

⊗r
⊗OY (D)

)
.

By comparing images, we see that

jrf = nr,X ·OY (−rKY/X).

Since the ideals jrX and nr,X · dr,X have the same integral closure (see Proposition 2.10),
we conclude that

ordE(jf ) = ordE(KY/X)+ 1
r

ordE(nr,X)

= ordE(KY/X)+ ordE(jX)− 1
r

ordE(dr,X),

and both formulas follow. ut

Corollary 3.5. If X is a locally complete intersection variety and f : Y → X is a reso-
lution of singularities, then K�Y/X = KY/X.

Proof. By Proposition 3.4, since dr,X is trivial if X is locally complete intersection. ut

4. Singularities

This section is devoted to the study of singularities of pairs from the point of view of
Jacobian discrepancies. We refer to [KM98] for an introduction to singularities of pairs
in the usual setting.

4.1. Pairs and singularities

Throughout the paper, a pair (X,A) will always consist of a reduced equidimensional
scheme X and a proper R-ideal A =

∏
k a

ck of X, namely, a finite formal product, with
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real exponents ck , of ideal sheaves ak ⊂ OX such that ak|Xi 6= (0) on every irreducible
component Xi of X. The R-ideal A, and the pair itself, are said to be effective if ck ≥ 0
for all k. They are said to be effective in codimension one if ck ≥ 0 for all k such that
dimZ(ak) = dimX − 1, where in general Z(a) ⊂ X denotes the subscheme defined by
an ideal sheaf a ⊂ OX. The vanishing locus of A is the union of the supports of the Z(ak).

For any map g : X′ → X we denote A ·OX′ :=
∏
k(ak ·OX′)

ck . If g is an inclusion,
then we also set A|X′ := A · OX′ . For any real number λ, we write Aλ :=

∏
k a

λck
k . If E

is a prime divisor over X, then we denote ordE(A) :=
∑
k ck ordE(ak).

Definition 4.1. Let (X,A) be a pair, and let E be a prime divisor over X. The log Jaco-
bian discrepancy (or log J-discrepancy) of E over (X,A) is the number

a�E(X,A) := k
�

E(X)+ 1− ordE(A).

The pair (X,A) is said to be log J-canonical (resp., log J-terminal) if a�E(X,A) ≥ 0
(resp., a�E(X,A) > 0) for all prime divisors E over X. The pair (X,A) is said to be J-
canonical (resp., J-terminal) if a�E(X,A) ≥ 1 (resp., a�E(X,A) > 1) for all exceptional
prime divisors E over X. If A = OX, then we just drop it from the notation. In particular,
we say that X is J-canonical or log J-canonical if so is the pair (X,OX).

Remark 4.2. If one defines the log Mather discrepancy of E over (X,Z) to be âE(X,A)
:= k̂E(X) + 1 − ordE(A), then a�E(X,A) = âE(X,A · jX). This invariant is studied in
[Ish11].

Definition 4.3. Let (X,A) be a pair. If (X,A) is log J-canonical, then the log J-canonical
threshold of (X,A) is

lct�(A) := sup{ λ ≥ 0 | (X,Aλ) is log J-canonical } ∈ [0,∞].

Here we set lct�(A) = 0 if ak|Xi = (0) for some i and some k such that ck > 0. For any
Grothendieck point η ∈ X, the minimal log J-discrepancy of (X, T ) at η is

mld�η(X,A) := inf
cX(E)=η

a�E(X,A).

If ηXi is the generic point of an irreducible component Xi of X, then we set by definition
mld�ηXi (X,A) = 0. If T ⊂ X is a closed set, then we denote

mld�T (X,A) := inf
η∈T

mld�η(X,A).

Remark 4.4. If X is locally complete intersection, then the above invariants agree with
the usual analogous invariants: a�E(X,A) = aE(X,A), lct�(X,A) = lct(X,A), and
mld�T (X,A) = mldT (X,A), the usual log discrepancy, log canonical threshold, and min-
imal log discrepancy.
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Remark 4.5. Let (X,A) be any pair as above. Let X′ → X be the normalization, and
let cX := HomOX

(OX′ ,OX) be the conductor ideal; this is the largest ideal sheaf in OX

which is also an ideal sheaf in OX′ . By Theorem 2.4 of [Yas07], there is an inclusion
jX ⊂ cX, and hence for every prime divisor E over X one has

âE(X,A · jX) ≤ âE(X
′,A′ · cX)

where A′ := A ·OX′ . In the special case where X is a simple normal crossing divisor in
a smooth variety M of dimension n + 1, we actually have an equality jX = cX, and thus
if Xi is the irreducible component of X over which E lies then

a�E(X,A) = aE(Xi,A|Xi · cX|Xi ).

Definition 4.6. A log resolution of a pair (X,A) consists of a log resolution f : Y → X

of X such that ak · OY is locally principal for every k and the union of their vanishing
loci, together with the vanishing locus of jX · OY and the exceptional locus Ex(f ), form
a simple normal crossing divisor.

The existence of log resolutions follows from Hironaka’s resolution of singularities
[Hir64]. Note that the above definition of log resolution differs slightly from the usual one
(it is more restrictive) in that we also impose conditions on the pull-back of the Jacobian
ideal of X. Note that, according to our definition, every log resolution factors through the
blow-up of the Jacobian ideal of X, and thus through the Nash blow-up of X.

Minimal log J-discrepancies of a pair (X,A) are trivial at the generic point of X and
are easy to compute at points of codimension one. Note also that since the normalization
of X gives a log resolution of (X,A) in codimension one, minimal log J-discrepancies in
codimension one are computed on any log resolution of the pair.

Proposition 4.7. Let (X,A) be a pair as above, and let T ⊂ X be a closed subset of
codimension ≥ 1.

(a) If (X,A) is log J-canonical in a neighborhood of T , then mld�T (X,A) is realized on
any given log resolution f : Y → X of (X,A ·IT ) as the log J-discrepancy a�E(X,A)
of some prime divisor E on Y .

(b) If (X,A) is not log J-canonical in any neighborhood of T and dimX ≥ 2, then
mld�T (X,A) = −∞.

Proof. Using Proposition 3.3, the proof is the same as the one of the analogous properties
for usual minimal log discrepancies on Q-Gorenstein varieties. ut

4.2. Adjunction

Let X be a reduced equidimensional scheme, embedded in a smooth variety M . Let A
be a proper R-ideal on M such that A|X is a proper R-ideal on X. We denote by jX,M
⊂ OM the ideal defining the scheme Z(jX) viewed as a subscheme ofM . We will use the
following version of embedded resolution.
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Definition 4.8. An embedded log resolution of (X,A|X) in (M,A) consists of a log res-
olution g : N → M of (M,A · jX,M) satisfying the following properties:

(i) g is an isomorphism at the generic point of each irreducible component Xi of X;
(ii) the restriction of g to the proper transform Y of X gives a log resolution f : Y → X

of (X,A|X);
(iii) Y is transverse to the simple normal crossing divisor given by the union of Ex(g)

and the vanishing locus of (A · jX,M) ·ON .

If A = OX, then we just say that f is an embedded log resolution of X in M . An
embedded log resolution is said to be factorizing if, furthermore, we have IX · ON =

IY ·ON (−G) where G is a divisor on N .

The existence of factorizing resolutions is established in [BV03]. The following ad-
junction formula holds. For the proof we refer to Lemma 4.4 of [Eis10].

Proposition 4.9. Let X be a reduced subscheme of pure codimension e of a smooth va-
riety M . Let g : N → M be a factorizing embedded log resolution of X in M , and write
IX · ON = IY · ON (−G), where Y is the proper transform of X and G is a divisor in N
supported on the exceptional locus. Then

K�Y/X = (KN/M − eG)|Y .

4.3. Inversion of adjunction

The next theorem generalizes the inversion of adjunction formula for Q-Gorenstein vari-
eties proved in [EM09] and [Kaw08].

Theorem 4.10. Let X be a reduced subscheme of pure dimension n ≥ 2 and codimen-
sion e of a smooth variety M . Then for every proper, effective R-ideal A on M not con-
taining any irreducible component of X is its vanishing locus, and every closed subset
T ⊂ X, we have

mld�T (X,A|X) = mldT (M,A · IeX).

The theorem has been proven independently by Ishii [Ish11]. The line of arguments pre-
sented here is slightly different from (although equivalent at the core to) that given in
[Ish11], which follows more closely [EM09].

The proof uses the jet schemesXm and the space of arcsX∞ ofX. We refer the reader
to [DL99, EM09] for the basic definitions and properties of the theory. We will use the
description of divisorial valuations and discrepancies given in [ELM04] in the smooth
case and then extended in [dFEI08] to the singular case. Since here we allow X to be
reducible, the only further extension we need is that of the notion of quasi-cylinder and
codimension. So, we say that a subset C ⊂ X∞ is a quasi-cylinder of codimension k if
C is contained in the arc space (Xi)∞ of some irreducible component Xi of X and is a
quasi-cylinder of codimension k there. Since X is equidimensional, this implies that if
ψm : X∞→ Xm is the truncation map, then k = n(m+ 1)− dim(ψm(C)) for all m� 1,
where n = dimX.
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Proof of Theorem 4.10. For every generic point ηXi of an irreducible componentXi ofX
we have mld�ηXi (X,A|X) = 0 = mldηXi (M,A · I

e
X). We can therefore reduce to the case

in which T has codimension ≥ 1 in X.
To prove one inequality, we take a factorizing embedded log resolution g : N → M

of (X,A|X) in (M,A), and let f : Y → X be the induced log resolution. Since every
g-exceptional divisor that meets Y intersects it transversely, if F is any such divisor and
E is the divisor cut out by F on Y , then ordE(A|X) = ordF (A). Using Proposition 4.9,
it follows by direct comparison along the g-exceptional divisors meeting Y and having
center inside T that either (X,A|X) is not log J-canonical, in which case (M,A · IeX)
is not log canonical and both minimal log (J-)discrepancies are −∞, or the first pair is
log J -canonical and

mld�T (X,A|X) ≥ mldT (M,A · IeX).
Here we are using the fact that if (X,A|X) is J-canonical then its minimal log J-discrep-
ancy is computed on any given log resolution of (X,A|X) (see Proposition 4.7).

The reverse inequality follows from the following claim.

Claim 4.11. For every prime divisor F over M with center inside X, there is a prime
divisor E over X with center contained in the center of F , and an integer q ≥ 1, such
that

q · a�E(X,A|X) ≤ aF (M,A · I
e
X). (4.1)

To see that this implies the inequality mld�T (X,A|X) ≤ mldT (M,A · IeX), note that if
mldT (M,A · IeX) ≥ 0 then we get the statement by dividing by q in (4.1), whereas if
mldT (M,A · IeX) < 0 then the formula only implies that mld�T (X,A|X) < 0, but then
one deduces immediately that mld�T (X,A|X) = −∞ by Proposition 4.7.

It remains to prove Claim 4.11. We consider the maximal divisorial set

W = W 1(F ) ⊂ M∞,

where M∞ is the space of arcs of M . By definition, W is the closure in M∞ of the
set of arcs of N having order of contact one with F (cf. [ELM04]). The set W is an
irreducible cylinder inM∞. By the results of [ELM04], the valuation valW determined by
the vanishing order along the generic arc in W agrees with the divisorial valuation ordF ,
and moreover

codim(W,M∞) = kF (M)+ 1.

The intersection W ∩ X∞ ⊂ X∞ is a cylinder in X∞ and is not contained in the
arc space of the singular locus of X, by Lemma 8.3 of [EM09]. Let C be an irreducible
component of W ∩ X∞ that is not contained in the arc space of the singular locus of X.
ThenC is a quasi-cylinder inX∞. By Propositions 3.10 and 2.12 of [dFEI08], we can find
a prime divisor E over X, and an integer q ≥ 1, such that the valuation valC associated to
the quasi-cylinderC is equal to the divisorial valuation q ordE , and moreover the maximal
divisorial set W q(E) ⊂ X∞ is a quasi-cylinder of codimension

codim(W q(E),X∞) = q · (̂kE(X)+ 1),

where k̂E(X) is the Mather discrepancy of E over X.
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We have the following chain of inequalities:

q · (̂kE(X)+ 1) = codim(W q(E),X∞) ≤ codim(C,X∞)
≤ codim(W,M∞)+ q · ordE(jX)− e ordF (IX).

The first inequality follows from the fact that, as explained in the proof of Proposi-
tions 3.10 of [dFEI08], C is contained inW q(E), and the second by applying Lemma 8.4
in [EM09] as in the proof of Theorem 8.1 of [EM09].

Observe that, for any proper ideal b ⊂ OM not vanishing on any component of X,
we have valC(b|X) ≥ valW (b) by the inclusion C ⊂ W and the fact that if γ ∈ C then
ordγ (b|X) = ordγ (b). In particular, this implies that

q · ordE(A|X) ≥ ordF (A)

since A is effective. Since k�E(X) = k̂E(X)− ordE(jX), we deduce that

q · (k�E(X)+ 1) ≤ kF (M)+ 1− e ordF (IX).

Claim 4.11 follows by combining these inequalities. ut

Remark 4.12. With the same notation as in Theorem 4.10, suppose that X has dimen-
sion one. In this case most of the arguments of the proof go through, the only problem
being that it is no longer true in general that mld�T (X,A|X) is −∞ whenever it is nega-
tive, and one concludes in this case that either mld�T (X,A|X) = mldT (M,A · IeX) ≥ 0 or
0 > mld�T (X,A|X) ≥ mldT (M,A · IeX), and the latter is −∞ if e ≥ 1. These inequal-
ities will suffice, however, in the applications of inversion of adjunction to the proofs of
Corollary 5.4 and Theorem 7.7.

4.4. ACC and semicontinuity

Inversion of adjunction has several implications regarding the properties of the invariants
of singularities related to J-discrepancies, which generalize analogous properties known
for normal varieties with locally complete intersection singularities.

The first application gives the ACC property for the sets of log J-canonical thresholds
in any fixed dimension. The problem arises from a conjecture of Shokurov for log canon-
ical thresholds in the usual setting [Sho92], which has recently being solved for certain
classes of singularities in [dFEM10, dFEM11]. In the framework considered in this paper
we obtain the following unconditional result.

Corollary 4.13. For every integer n, the set of log J-canonical thresholds in dimension n

{lct�(a) | a ⊂ OX, X log J-canonical of pure dimension n}

satisfies the ascending chain condition. That is, every increasing sequence in the set is
eventually constant.
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The proof of this property is a straightforward extension of the corresponding proof given
in [dFEM10] in the case of normal varieties with locally complete intersection singular-
ities. In short, it goes as follows. The same argument of the proof of Proposition 6.3 of
[dFEM10] shows that if X is a reduced equidimensional scheme with log J-canonical
singularities then dim TpX ≤ 2 dimX for every p ∈ X. Then, using this bound on the
embedded dimension in combination with inversion of adjunction (Theorem 4.10) one de-
duces the above ACC property directly from the analogous property of mixed log canon-
ical thresholds on smooth varieties, which is established in Theorem 6.1 of [dFEM10].

The second application of inversion of adjunction regards the semicontinuity of min-
imal log J-canonical discrepancies and the characterization of regular points in terms of
these invariants. Once more, the question originates from a conjecture of Shokurov in
the usual setting of minimal log discrepancies, later made more precise by Ambro; for a
discussion of this we refer to [Amb99] and the references therein. Again, we have uncon-
ditional results in our setting. The first statement appears also in [Ish11].

Corollary 4.14. For every effective pair (X,A) where X is a reduced equidimensional
scheme, the function on closed points

mld�−(X,A) : X→ {−∞} ∪ R≥0, p 7→ mld�p(X,A),

is lower semicontinuous in the Zariski topology.

Corollary 4.15. Let X be a reduced equidimensional scheme. For every Grothendieck
point η ∈ X we have

mld�η(X) ≤ codim(η,X),

and equality holds if and only if X is smooth at η.

Remark 4.16. Since mld�η(X) ∈ Z ∪ {−∞}, it follows that X is regular at η if and only
if mld�η(X) > codim(η,X)− 1.

Once inversion of adjunction is in place, the proofs of these results are standard. The
proof of Corollary 4.14 follows step by step the arguments of the corresponding result
in [EM04]. Regarding Corollary 4.15 one uses induction on the embedded codimension
of X at η, as explained for instance in Remark 4.2 of [dFE10] for the locally complete
intersection case.

Remark 4.17. On a completely different topic, one also sees from inversion of ad-
junction that the bound on Castelnuovo–Mumford regularity proven in Corollary 1.4 of
[dFE10] holds for every reduced equidimensional projective scheme V ⊂ Pn with log
J-canonical singularities.

5. Jet schemes

It is known that Mather discrepancies can be computed using the codimension of certain
sets in the arc space. We now give an analogous description for Jacobian discrepancies
which involves the tangent space to the arc space. Throughout the section, let X be a
reduced scheme of pure dimension n.
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5.1. Mather discrepancies

Recall that to a divisor E ⊂ Y over X one associates its maximal divisorial set W 1(E),
namely, the closure in X∞ of the image of the set of arcs on Y having order of contact
one with E. It is an irreducible quasi-cylinder in the arc space X∞, and its codimension
measures the Mather log discrepancy

k̂E(X)+ 1 = codim(W 1(E),X∞)

(see [dFEI08] for details). More precisely, if ψm : X∞→ Xm is the truncation map, then
it follows by Lemma 3.4 of [DL99] (cf. Lemma 3.8 and the argument in the proof of The-
orem 3.9 of [dFEI08]) that W 1(E) is the closure of a quasi-cylinder over a constructible
subset of Xm0 where m0 = 2 ordE(jX), and thus we have

k̂E(X)+ 1 = n(m+ 1)− dim(ψm(W 1(E))) for all m ≥ 2 ordE(jX).

These formulas are the geometric manifestation of the change-of-variables formula in
motivic integration [DL99].

5.2. Jacobian discrepancies

To obtain an analogous description for Jacobian discrepancies, we need to consider the
total spaces of the tangent sheaves of the arc space and of the jet schemes. We denote
them by TX∞ and TXm. These spaces are schemes, and their functors of points are easy
to describe; note however that TX∞ is not of finite type. For example, when X is affine
the C-valued points are given by

TX∞(C) = Hom
(
SpecC[[t]][ε]/(ε2), X

)
,

T Xm(C) = Hom
(
SpecC[t, ε]/(tm+1, ε2), X

)
.

We have natural projections

π∞ : TX∞→ X∞, πm : TXm→ Xm

from the tangent spaces to their bases. Given an arc α ∈ X∞ and a liftable jet β ∈
ψm(X∞) ⊂ Xm, we are interested in the restrictions of the tangent spaces over these
points, which we denote by

TX∞|α := π
−1
∞ (α), T Xm|β := π

−1
m (β).

Proposition 5.1. Let X be a reduced scheme of pure dimension n. Consider a liftable jet
β ∈ ψm(X∞), and let L = C(β) be the field of definition of β. Then

dimL(T Xm|β) = n(m+ 1)+ ordβ(jX) for all m ≥ ordβ(jX).

Proof. Let α ∈ X∞ be a lift of β. We can assume X is affine, and embedded in M =
An+e. We denote by x1, . . . , xn+e the coordinates in M , and let IX = (f1, . . . , fr) be the
equations ofX. Then the arc α is given by a vector (α1, . . . , αn+e)with entries αi = αi(t)
in the power series ring L[[t]]. Since α is in X∞, we know that fj (α) = 0 for all j .
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The restriction TM∞|α can be thought of as a free module over L[[t]] of rank n + e.
Specifically, every element ξ ∈ TM∞|α can be written in the form

ξ = α + vε,

where v = (v1, . . . , vn+e) is a vector with coefficients in L[[t]] and ε is a fixed variable
satisfying ε2

= 0. The tangent vector ξ belongs to TX∞|α if fj (ξ) = 0 for all j . Using
the Taylor expansion, we get

fj (ξ) = fj (α)+

n+e∑
i=1

∂fj

∂xi
(α)viε.

Let J =
( ∂fj
∂xi

)
be the Jacobian matrix. Since fj (α) = 0, we see that

ξ ∈ TX∞|α ⇔ J (α)v = 0.

In other words, TX∞|α can be computed inside of TM∞|α as the kernel of J (α).
Analogous statements hold for the jet β. In this case, TMm|β is a free module over

L[t]/(tm+1), also of rank n+ e, and TXm|β is the kernel of J (β):

β + wε ∈ TXm|β ⇔ J (β)w = 0 (mod tm+1).

The goal is therefore to compute the dimension of the kernel of J (β), and this can be
done easily by diagonalizing the matrix. In our case, we can diagonalize both J (β) and
J (α) simultaneously. More precisely, the structure theorem for finitely generated modules
over PIDs tells us that we can find invertible matrices A and B with coefficients in L[[t]]
such that

A · J (α) · B = D

whereD is a diagonal matrix. Notice thatD is not a square matrix: by diagonal we mean
that all of its entries dij are zero except when i = j . We can also assume that D is of the
form

D = diag(ta1 , . . . , tas , 0, . . . , 0)

with 0 ≤ a1 ≤ · · · ≤ as .
Notice that J (β) is the truncation of J (α) to orderm, so if we denote by Am, Bm, and

Dm the truncations of A, B, and D, we have

Am · J (β) · Bm = Dm.

The matrices Am and Bm are also invertible, so in particular J (β) and Dm have isomor-
phic kernels. The matrix Dm is given by

Dm = diag(ta1 , . . . , tal , 0, . . . , 0),

where l ≤ s is picked so that ak > m for k > l. Its kernel is

(tm+1−a1)/(tm+1)⊕ · · · ⊕ (tm+1−al )/(tm+1)⊕ (L[t]/(tm+1))n+e−l,

which has dimension a1 + · · · + al + (n+ e − l)(m+ 1) over L.
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Recall that the matrix J gives a presentation for the module of differentials�X. There-
fore, the k-th Fitting ideal Fittk(�X) is generated by the minors of J of size n+ e− k. In
particular, the orders of vanishing

ordα(Fittk(�X)), ordβ(Fittk(�X))

are the smallest order of vanishing of a minor of size n+ e − k of J (α) and J (β). Since
A, Am, B, and Bm are invertible, these orders can be computed using D and Dm, and we
see that

ordα(Fittk(�X)) =

{
a1 + · · · + an+e−k if n+ e − k ≤ s,
∞ if n+ e − k > s,

and

ordβ(Fittk(�X)) =

{
min(a1 + · · · + an+e−k, m+ 1) if n+ e − k ≤ l,
m+ 1 if n+ e − k > l.

Since X has pure dimension n, we know that Fittn−1(�X) = 0, so α vanishes along
it with order ∞, and we find that e + 1 > s. Recall that Fittn(�X) = jX. Using the
hypothesis that ordβ(jX) ≤ m, we get e ≤ l. Therefore e = l = s, and

ordβ(jX) = a1 + · · · + ae.

Finally, this implies that the kernel of Dm has dimension ordβ(jX)+ n(m+ 1) over L, as
required. ut

Remark 5.2. It is essential in Proposition 5.1 that the jet β is liftable (that is, in the image
of X∞). In the proof, one cannot use the fact that Fittn−1(�X) = 0 to show directly that
e + 1 > l. This is due to the presence of the min in the formula for the order of β.

Given a prime divisorE overX, we denote by ηE,m the generic point of the truncation
ψm(W

1(E)) of the maximal divisorial set W 1(E) ⊂ X∞, and consider the restriction
TXm|ηE,m of the tangent space of Xm over this point.

Theorem 5.3. With the above notation, for every E we have

k�E(X)+ 1 = 2n(m+ 1)− dimC(T Xm|ηE,m) for all m ≥ 2 ordE(jX).

Proof. For m ≥ ordE(jX), the order of E along jX is computed by the jet ηE,m, and the
previous proposition gives

− ordE(jX) = n(m+ 1)− dimC(ηE,m)(T Xm|ηE,m).

On the other hand, the description of Mather discrepancies in terms of the codimension
of W(E) gives

k̂E(X)+ 1 = n(m+ 1)− dimC(ηE,m)

for all m ≥ 2 ordE(jX). The assertion then follows by combining the two formulas. ut
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Since 2n(m+1) is the dimension of the irreducible component of TXm dominatingX, one
can consider the right-hand side in the formula in the theorem as a ‘virtual codimension’
of TXm|ηE,m , although not with respect to the full TXm but rather in relation to this
distinguished component.

It would be interesting to find a way to read the condition characterizing Jacobian
discrepancies in Theorem 5.3 all the way up, on the tangent space of X∞, similarly to
Mather discrepancies which are detected by the codimension of certain quasi-cylinders.
Unfortunately this seems difficult, as in general the map TX∞|ηE → TXm|ηE,m is not
dominant.

5.3. Jet interpretation of singularities

One more application of inversion of adjunction regards the characterization of J-canon-
ical and log J-canonical singularities in terms of the dimensions of the jet schemes. In a
similar fashion, Theorem 5.3 yields a characterization in terms of the dimension of the
tangent spaces of the jet schemes. The next result extends and generalizes the analogous
properties established for locally complete intersection varieties in [Mus01, EM04].

Corollary 5.4. Let X be a reduced scheme of pure dimension n. For any prime divisor E
overX and anym, we denote by ηE,m the image inXm of the generic point of the maximal
divisorial set W 1(E) ⊂ X∞. Then the following are equivalent:

(a) X is log J-canonical.
(b) dimXm = n(m+ 1) for every m.
(c) dim TXm|ηE,m ≤ 2n(m+ 1) for all E and any m ≥ 2 ordE(jX).

Similarly, the following are equivalent:

(a′) X is J-canonical.
(b′) dimXm = n(m+1) for everym, and every irreducible component ofXm of maximal

dimension dominates an irreducible component of X.
(c′) dim TXm|ηE,m < 2n(m+ 1) for all E and any m ≥ 2 ordE(jX).

Moreover, in (b) and (b′) is enough to check the condition for all m such that m + 1 is
sufficiently divisible, and in (c) and (c′) it is enough to check the condition just for the
prime divisors E1, . . . , Ek appearing in a log resolution of X.

Proof. The equivalences (a)⇔(b) and (a′)⇔ (b′) come from inversion of adjunction. The
argument is quite standard. Let S ⊂ X denote the singular locus of X. By definition X is
log J-canonical if and only if mld�S(X) ≥ 0 (resp., mld�S(X) ≥ 1). If X is embedded in a
smooth variety M , then by Theorem 4.10 (see Remark 4.12 if dimX = 1) this is equiva-
lent to mldS(M, eX) ≥ 0 (resp., mldS(M, eX) ≥ 1), where e = codim(X,M). Therefore
the equivalences follow from the straightforward generalization of Theorems 3.1 and 3.2
of [Mus01] to reduced equidimensional schemes. Note that these theorems also imply that
it is enough to check the conditions in (b) and (b′) when m+ 1 is sufficiently divisible.

The equivalences (a)⇔(c) and (a′)⇔(c′) and the last assertion are a straightforward
consequence of the definitions of singularities, Theorem 5.3, and Proposition 4.7. ut
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Remark 5.5. While the original proofs in [Mus01] make explicit use of motivic inte-
gration, it is now well understood by experts that the results only need the underlying
geometric properties of the jet schemes, and one obtains quicker proofs using for instance
the point of view of maximal divisorial sets developed in [ELM04].

6. Multiplier ideals

In this section we introduce multiplier ideals in our framework, and use them to measure
the gap between the dualizing sheaf of a normal variety and its Grauert–Riemenschneider
canonical sheaf. We refer to [Laz04] for an introduction to multiplier ideals in the usual
setting.

6.1. Mather and Jacobian multiplier ideals

In the following, let X be a normal variety. Consider a proper R-ideal A =
∏
k a

ck
k

on X, and let f : Y → X be a log resolution of the pair (X,A). For short, we denote
by Z(A ·OY ) :=

∑
k ck · Z(ak ·OY ) the divisor determined by A on Y .

Definition 6.1. The Mather multiplier ideal of (X,A) is the coherent sheaf of fractional
ideals

Ĵ (A) := f∗OY (K̂Y/X − bZ(A ·OY )c).

and the Jacobian multiplier ideal sheaf of (X,A) is the coherent sheaf of fractional ideals

J �(A) := f∗OY (K
�

Y/X − bZ(A ·OY )c).

A standard argument using Proposition 3.3 shows that the definition of Mather and
Jacobian multiplier ideals is independent of the particular log resolution. The proof fol-
lows the exact same lines of the proof of the analogous statement for multiplier ideals on
smooth varieties (see Theorem 9.2.18 of [Laz04]). If X is locally complete intersection,
then by Corollary 3.5 we have J �(A) = J (A), the usual multiplier ideal. IfX is smooth,
then we also have Ĵ (A) = J (A).
Remark 6.2. Since clearly J �(A) = Ĵ (A · jX), the two theories of multiplier ideals
are equivalent as long as one allows non-effective pairs. If one restricts the setting to
effective pairs, then Jacobian multiplier ideals can be regarded as a special case of Mather
multiplier ideals.

Proposition 6.3. On a normal variety, both Mather and Jacobian multiplier ideals define
an ideal sheaf (as opposed to a fractional ideal sheaf ) if the pair is effective in codimen-
sion one.
Proof. By the previous remark, it is enough to check this property for Mather multiplier
ideals. Given a log resolution f : Y → X of a pair (X,A), write

K̂Y/X − bZ(A ·OY )c = P −N

where P and N are effective divisors with no common components, and consider the
exact sequence

0→ OY (−N)→ OY (P −N)→ OP (P −N)→ 0.
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If the pair is effective in codimension one, then P is an exceptional divisor and
f∗OP (P − N) ⊂ f∗OP (P ) = 0 by a well-known lemma of Fujita (see Lemma 1-3-2
of [KMM87]). This implies that

Ĵ (A) = f∗OY (P −N) = f∗OY (−N) ⊂ OX. ut

Mather and Jacobian multiplier ideals have similar properties to the usual multiplier ideals
on smooth varieties. We list here a few, leaving to the reader the details of the proofs.

Proposition 6.4. Let X be a normal variety.

(a) If A =
∏
k a

ck
k , then Ĵ (A) = Ĵ (A) and J �(A) = J �(A).

(b) If B =
∏
k b

dk
k with bk ⊂ ak and dk ≥ ck for all k, then Ĵ (B) ⊂ Ĵ (A) and

J �(B) ⊂ J �(A).
(c) a ⊂ Ĵ (a) for every ideal sheaf a ⊂ OX. In particular, Ĵ (OX) = OX.
(d) a · J �(OX) ⊂ J �(a) for every ideal sheaf a ⊂ OX.

The proof of the next proposition is essentially the same as that of the transformation
rule for the usual multiplier ideals (see Proposition 9.2.32 of [Laz04]). We outline it for
the convenience of the reader. A similar property holds for Jacobian multiplier ideals: the
same proof goes through, or equivalently one can deduce it from the case treated below
using Remark 6.2.

Proposition 6.5. Suppose that the R-ideal A =
∏
i a
ci
i has integral exponents ci ∈ Z. Let

f : Y → X be a resolution of X factoring through the blow-up of the Jacobian ideal jX,
and write ai ·OY = bi ·OY (−Di) where bi ⊂ OY and Di is a divisor. Let B =

∏
i b
ci
i

and D =
∑
i ciDi . Then

Ĵ (A) = f∗
(
J (B)⊗OY (K̂Y/X −D)

)
.

Proof. Let f ′ : Y ′→ X be a log resolution of (X,A) factoring through f and a morphism
g : Y ′ → Y . Write ai · OY ′ = OY ′(−Ai) and bi · OY ′ = OY ′(−Bi), and let A =∑
i ciAi and B =

∑
i ciBi . Note that A = B + g∗D. By definition, we have J (B) =

g∗OY ′(KY ′/Y − B), and therefore

Ĵ (A) = f ′∗OY ′(K̂Y ′/X − A) = f
′
∗

(
OY ′(KY ′/Y − B)⊗ g

∗OY (K̂Y/X −D)
)

= f∗
(
J (B)⊗OY (K̂Y/X −D)

)
by the projection formula and Proposition 3.3. ut

The following characterizations of singularities come directly from the definitions.

Proposition 6.6. Let X be a normal variety.

(a) X is J-canonical if and only if J �(OX) = OX.
(b) X is log J-canonical if and only if J �(j−λX ) = OX for all λ > 0.

Remark 6.7. The same notion of multiplier ideals has been independently introduced
and studied in [EIM11].
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6.2. Grauert–Riemenschneider canonical sheaf of a variety

Next we discuss how the canonical sheaf ωX of a normal varietyX relates to the Grauert–
Riemenschneider canonical sheaf of X, which, we recall, is defined by

ωGR
X := f∗ωY

for any resolution f : Y → X (see [GR70]). There is a natural inclusion ωGR
X ⊂ ωX and

our goal is to give a measure of the gap between the two sheaves.
When X is locally complete intersection (or, more generally, when ωX is invertible)

we have
ωGR
X
∼= ωX ⊗ J (OX).

Indeed, by definition J (OX) = f∗OY (KY/X) ∼= f∗ωY ⊗ ω
−1
X where f : Y → X is any

log resolution of X. We can rewrite this formula using the Mather multiplier ideal of the
Jacobian. The observation is that, ifX is locally complete intersection and Y → X is a log
resolution, then KY/X = K�Y/X and thus J (OX) = J �(OX) = Ĵ (jX) (see Corollary 3.5
and Remark 6.2). Therefore the formula can be written as

ωGR
X
∼= ωX ⊗ Ĵ (jX).

Remark 6.8. Since ω̂X ∼= ωX ⊗ jX when X is locally complete intersection, there is in
this case a correspondence between the chain of inclusions ω̂X ⊂ ωGR

X ⊂ ωX and the
inclusions jX ⊂ Ĵ (jX) ⊂ OX, determined by tensoring by ω−1

X .

In general, when X is not locally complete intersection, we pick a reduced, locally
complete intersection scheme V containing X, of the same dimension. If f : Y → X is
a log resolution of (X, jV |X) and f̂ : Y → X̂ is the induced map on the Nash blow-up
of X, then we have jV |X ·OY

∼= OY (f̂
∗K̂X)⊗ f

∗(ω−1
V |X) by Proposition 2.4. This gives

Ĵ (jV |X) ∼= f∗ωY ⊗ ω−1
V |X, and therefore

ωGR
X
∼= ωV |X ⊗ Ĵ (jV |X). (6.1)

Remark 6.9. For any V as above, there is a correspondence between the inclusions ω̂X ⊂
ωGR
X ⊂ ωV |X and the inclusions jV |X ⊂ Ĵ (jV |X) ⊂ OX, given by tensoring by ω−1

V |X.

The idea now is to assemble the isomorphisms given in (6.1) by letting V vary. The
next theorem is the main result of this section. The key ingredient is the lci-defect ideal dX
of X, which was defined in Section 2 by

dX :=
∑
V

dX,V

where dX,V is the ideal determined by the image of ωX → ωV |X. Note that since X is
normal, dX is trivial in codimension one and thus J �(d−1

X ) is an ideal sheaf by Proposi-
tion 6.3.
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Theorem 6.10. For every normal variety X, we have

(ωGR
X : ωX) = J �(d−1

X ).

Remark 6.11. Using Lemma 6.13 below and Remark 6.2, the formula in the theorem
can be rewritten in the following equivalent ways:

(ωGR
X : ωX) = (J

�(OX) : dX) = (Ĵ (jX) : dX).

Proof of Theorem 6.10. Since the question is local, we can assume that X is affine. We
fix an embedding of X in a smooth affine variety M , and denote e = codim(X,M).

Let T be an irreducible algebraic family parametrizing reduced, complete intersec-
tions V ⊂ M of codimension e containing X. The family is constructed as an open
set of the Grassmannian of e-tuples of linear combinations among a fixed set of gen-
erators of the ideal IX of X in M . We have ωX = dX,V ⊗ ωV |X by definition and
ωGR
X = Ĵ (jV |X)⊗ ωV |X by (6.1), and hence

(ωGR
X : ωX) =

(
Ĵ (jV |X)⊗ ωV |X : dX,V ⊗ ωV |X

)
= (Ĵ (jV |X) : dX,V )

since ωV |X is invertible. Using Lemma 6.13 below, we get

(ωGR
X : ωX) = Ĵ (jV |X · d−1

X,V ).

Therefore, in order to prove the theorem we are reduced to proving the following identity:

Ĵ (jV |X · d−1
X,V ) = Ĵ (jX · d−1

X ). (6.2)

Since the left-hand side does not depend on V , we can assume that V is general in T .
Let f : Y → X be a log resolution of (X, jX · d−1

X ), and write

jX ·OY = OY (−A), dX ·OY = OY (−B).

We have jX =
∑
V∈T jV |X, and dX has the same integral closure of dX/M =

∑
V∈T dX,V

(see Proposition 2.6). Therefore, if V is sufficiently general then by Lemma 6.14 below
we have

jV |X ·OY = aV ·OY (−A), dX,V ·OY = bV ·OY (−B),

where aV , bV ⊂ OY do not vanish along any exceptional divisor. Moreover, we have∑
V∈T

aV = OY .

This follows again from the fact that, since
∑
V∈T jV |X = jX, for every divisorial valua-

tion ν we can find a V in T such that ν(jV |X) = ν(jX).
By taking V = X ∪ X′ general, we can assume by Bertini that X′ intersects X trans-

versely in codimension one (recall that X is normal, hence smooth in codimension one).
In particular, it follows that aV and bV agree in codimension one. Indeed, since these
sheaves do not vanish on exceptional divisors, this becomes a computation on X, and it
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is easy to see that if X′ intersects X transversely in codimension one, then at the generic
point of each irreducible component of X ∩X′ both ideals are reduced.

Note on the other hand that jV |X · OY is locally principal, since f factors through
the blow-up of jX and hence through the Nash blow-up of X, which is isomorphic to
the blow-up of jV |X. Therefore aV is locally principal, and hence there is an inclusion
bV ⊂ aV that is an identity in codimension one. This implies that

J (aV · b−1
V ) = OY .

Using Proposition 6.5, we get

Ĵ (jV |X · d−1
V,X) = f∗

(
J (aV · b−1

V ) ·OY (K̂Y/X − A+ B)
)

= f∗OY (K̂Y/X − A+ B) = Ĵ (jX · d−1
X ).

This proves the identity (6.2). ut

Remark 6.12. If in the proof one takes f so that it also factors through the Nash trans-
formation ofX relative to ωX, then dX,V ·OY is locally principal too and hence aV = bV .
This step is however not necessary in the proof.

Lemma 6.13. On a normal variety X, for any two ideals a, b ⊂ OX we have

(Ĵ (a) : b) = Ĵ (a · b−1).

Proof. Let f : Y → X be a log resolution of (X, a · b), and write a ·OY = OY (−A) and
b ·OY = OY (−B). Then

x ∈ (Ĵ (a) : b) ⇔ x · b ⊂ Ĵ (a) ⇔ f ∗x ·OY (−B) ⊂ OY (K̂Y/X − A)

⇔ f ∗x ∈ OY (K̂Y/X − A+ B) ⇔ x ∈ Ĵ (a · b−1). ut

Lemma 6.14. On a variety M , let at ⊂ OM , t ∈ T , be an algebraic family of ideal
sheaves, and let a =

∑
t∈T at . Then for every divisorial valuation ν of OM there is a

non-empty open set Tν ⊂ T such that ν(aν) = ν(a) for every ν ∈ Tν .

Proof. For every ν we have ν(a) = mint∈T ν(at ), and hence the assertion follows from
the semicontinuity of the function at 7→ ν(at ). ut

6.3. Grauert–Riemenschneider canonical sheaf of a pair

Let A =
∏
k a

ck
k be a proper R-ideal on a normal varietyX. Associated to the pair (X,A),

we consider the sheaf
ωGR
(X,A) := f∗ωY (−bZ(A ·OY c)

where f : Y → X is any log resolution of (X,A). We call ωGR
(X,A) the Grauert–Riemen-

schneider canonical sheaf of the pair.
It is well-known that the definition of ωGR

(X,A) is independent of the choice of log
resolution. If (X,A) is effective in codimension one, then ωGR

(X,A) is a subsheaf of ωGR
X and
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thus of ωX. Motivated by an analogous definition in positive characteristic due to Smith
[Smi95], this sheaf has been considered before with the name of multiplier submodule
by several authors (see in particular [HS03, Bli04, ST08]). We however prefer to view
ωGR
(X,A) as a ‘perturbation’ of the Grauert–Riemenschneider canonical sheaf of X, hence

the terminology and notation adopted here.
Theorem 6.10 generalizes as follows.

Theorem 6.15. For every proper R-ideal A on a normal variety X, we have

(ωGR
(X,A) : ωX) = J �(A · d−1

X ).

Proof. The proof proceeds along the lines of that of Theorem 6.10. Using

ωGR
(X,A) = Ĵ (A · jV |X)⊗ ωV |X,

which is a straightforward generalization of (6.1), we get this time

(ωGR
(X,A) : ωX) = Ĵ (A · jV |X · d−1

V,X).

It is therefore enough to prove that

Ĵ (A · jV |X · d−1
V,X) = Ĵ (A · jX · d−1

X ).

This follows by the same arguments leading to (6.2) in the proof of Theorem 6.10. ut

Remark 6.16. When ωX is invertible, the theorem implies that J �(A · d−1
X ) = J (X,A)

for every proper R-ideal A onX, since in this case ωGR
(X,A)

∼= ωX⊗J (X,A). In particular,

X is canonical (resp., log canonical) if and only if the pair (X, d−1
X ) is J-canonical (resp.,

log J-canonical). Both properties can also be deduced directly from Proposition 3.4 as in
this case dX = d1,X.

Remark 6.17. Grauert and Riemenschneider proved that the Kodaira vanishing theorem
holds on any normal projective variety X if one considers the sheaf ωGR

X in place of the
canonical sheaf ωX [GR70]. More generally, a standard application of the Kawamata–
Viehweg vanishing theorem implies the following general vanishing property. Let A =∏
i a
ci
i be an effective proper R-ideal on X, and suppose that, for every i, Di is a Cartier

divisor on X such that OX(Di)⊗ ai is globally generated. Then for every Cartier divisor
L such that L−

∑
i ciDi is a nef and big R-divisor, we have

H j (ωGR
(X,A) ⊗OX(L)) = 0 for all j > 0.

In view of Theorem 6.15, such vanishing can be interpreted as a Nadel-type vanishing
theorem for the Jacobian multiplier ideal J �(A · d−1

X ).

7. Rational and Du Bois singularities

As an application of the main results of the paper, we give in this section necessary and
sufficient conditions for rational and Du Bois singularities on normal varieties and provide
a characterization for these classes of singularities in the Cohen–Macaulay case.
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We recall that a variety X has rational singularities if given a resolution of singulari-
ties f : Y → X such that f∗OY = OX andRif∗OY = 0 for i > 0, or in other words, such
that the natural map OX → Rf∗OY is a quasi-isomorphism. The original definition of Du
Bois singularities is more complicated, and we will not recall it here. Several alternative
definitions were given by many authors throughout the years, and we will adopt here the
one given in [Sch07] for which a reduced schemeX embedded in a smooth varietyM has
Du Bois singularities if and only if, given a log resolution g : N → M of (M, IX) (note:
not an embedded log resolution of X) that is an isomorphism away from X, and denoting
by F = (g−1(X))red the reduced pre-image of X, the natural map OX → Rg∗OF is
a quasi-isomorphism. For more generalities on these classes of singularities, we refer to
[KM98, Sch07, KSS10, KK10] and the references therein.

7.1. Necessary condition and characterization on Cohen–Macaulay varieties

It is a well-known result of Kempf [KKMS73] that a normal variety X has rational sin-
gularities if and only if it is Cohen–Macaulay and f∗ωY = ωX. An analogous property
proven more recently by Kovács, Schwede and Smith says that a normal Cohen–Macaulay
variety X has Du Bois singularities if and only if f∗ωY (E) = ωX where f : Y → X is
a log resolution and E is the reduced exceptional divisor (see Theorem 1.1 of [KSS10]).
Furthermore, it follows by Theorem 3.8 of [KSS10] that the identity f∗ωY (E) = ωX
holds for all normal varieties with Du Bois singularities, regardless of whether or not they
are Cohen–Macaulay.

These facts motivate the following result.

Theorem 7.1. Let X be a normal variety, and let dX ⊂ OX be the lci-defect ideal of X.
Let f : Y → X be a log resolution ofX, and denote by E the reduced exceptional divisor.
Then the following properties hold:

(a) The pair (X, d−1
X ) is J-canonical if and only if f∗ωY = ωX.

(b) The pair (X, d−1
X ) is log J-canonical if and only if f∗ωY (E) = ωX.

Proof. Recall that f∗ωY = ωGR
X . By Theorem 6.10, ωGR

X = ωX if and only if J �(d−1
X )

= OX, which is equivalent to (X, d−1
X ) being J-canonical. This proves (a).

To prove (b), first note that if f is an isomorphism over the regular locus of X and λ
is a sufficiently small positive number, then bZ(j−λX ·OY )c = −E, and thus

f∗ωY (E) = ω
GR
(X,j−λX )

for 0 < λ� 1.

Therefore (X, d−1
X ) is log J-canonical if and only if ωGR

(X,j−λX )
= ωX for every suffi-

ciently small λ > 0. On the other hand, by definition of multiplier ideal and the fact
that the radical of dX contains jX, we have that (X, d−1

X ) is log J-canonical if and only if
J �(j−λX · d

−1
X ) = OX for every λ > 0. Therefore (b) follows from Theorem 6.15. ut
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Corollary 7.2. Let X be a normal variety, and let dX ⊂ OX be the lci-defect ideal of X.

(a) If X has rational singularities then (X, d−1
X ) is J-canonical.

(b) If X has Du Bois singularities then (X, d−1
X ) is log J-canonical.

Moreover, the converse holds in both cases whenever X is Cohen–Macaulay.

In the special case whenX is Q-Gorenstein, we obtain the result stated in the Introduction
as Theorem A.

Corollary 7.3. With the same assumptions of Corollary 7.2, suppose that rKX is Cartier
for some positive integer r , and let dr,X be the lci-defect ideal of level r of X.

(a) If X has rational singularities then (X, d1/r
r,X · d

−1
X ) is canonical.

(b) If X has Du Bois singularities then (X, d1/r
r,X · d

−1
X ) is log canonical.

Moreover, the converse holds in both cases whenever X is Cohen–Macaulay.

If ωX is invertible then we can take r = 1, and since in this case d1,X = dX the corollary
recovers the well-known characterization of rational singularities and Du Bois singulari-
ties on Gorenstein varieties.

In general, assuming a priori that the variety is Cohen–Macaulay, Corollary 7.3 gives
new proofs to the facts that a variety with log terminal (resp., log canonical) singularities
has rational (resp., Du Bois) singularities, which we know from the results of [Elk81,
KSS10, KK10]. To see this, first notice that (X, d1/r

r,X · d
−1
X ) is canonical if and only if it is

log terminal, since for every prime divisor E over X,

aE(X, d
1/r
r,X · d

−1
X ) = a�E(X, d

−1
X ) ∈ Z

by Proposition 3.4. Since drX ⊂ dr,X by Proposition 2.12, we have aE(X, d
1/r
r,X · d

−1
X ) ≥

aE(X), and thus the aforementioned properties follow, under the Cohen–Macaulay hy-
pothesis, from the corollary.

More interestingly, the corollary provides the necessary correction on discrepancies
for the converses of such results to hold.

Remark 7.4. One should think of the difference between dX and d
1/r
r,X , from a valuation-

theoretic point of view, as the cause of failure of the converses in the theorems in [Elk81,
KSS10, KK10]. Any Q-Gorenstein variety with rational singularities that is not log ter-
minal (for instance, the cone over an Enriques surface embedded by a sufficiently positive
line bundle) gives an instance where the inclusion drX ⊂ dr,X is strict.

7.2. On the Cohen–Macaulay condition

We discuss here an example showing that the Cohen–Macaulay hypothesis cannot be
dropped in the closing assertions of the above corollaries. The example is known to ex-
perts. For the convenience of the reader, we first review some facts about cone singulari-
ties.
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To fix notation, let S be a smooth projective variety of dimension n−1 ≥ 2, embedded
in a projective space by a projectively normal ample line bundle OS(1). Let then X =
Spec

⊕
m≥0H

0(OS(m)) be the cone over S, and let f : Y → X be the resolution given
by the total space of OS(−1). The zero section of that line bundle is the exceptional
divisor E of f . Note that X is normal. Let x ∈ X be the vertex of the cone.

We have

ωX ∼=
⊕
m∈Z

H 0(ωS(m)) and f∗ωY ∼=
⊕
m>0

H 0(ωS(m))

by Theorem (2.8) of [Wat81] and Proposition (1.6) of [Wat83], and therefore f∗ωY = ωX
if and only if H 0(ωS(m)) = 0 for m ≤ 0. One can similarly see that f∗ωY (E) = ωX if
and only if H 0(ωS(m)) = 0 for m < 0, but we will not use this fact.

It is well-known thatX is Cohen–Macaulay if and only ifH i(OS(m)) = 0 for n−1 >
i > 0 andm ≥ 0, and the singularity is rational if and only if the same vanishing holds for
i > 0 and m ≥ 0. It was proven by Du Bois [DB81] (see also [Ste83]) that x ∈ X is a Du
Bois singularity if and only if the natural map Rif∗OY → Rif∗OE is an isomorphism
for all i > 0, or equivalently, if and only if Rif∗OY (−E) = 0 for i > 0. We will use the
following consequence of this property, which we learned from Karl Schwede.

Lemma 7.5. With the above notation, if X has Du Bois singularities then H i(OS(m))

= 0 for all n > i > 0 and m > 0.

Proof. By Lemma (2.3) of [Wat83],

H i+1
x (OX) ∼=

⊕
m∈Z

H i(OS(m)).

Note that H i+1
x (OX) ∼= H i+1

x (m), where m = f∗OY (−E) ⊂ OX is the maximal ideal
of x. The vanishing of the higher direct images of OY (−E) gives the degeneration of
the appropriate Leray spectral sequence, and thus using duality (see Proposition (11.6)
of [Kol97]) in combination with the relative version of the Grauert–Riemenschneider
vanishing theorem, we have

H i+1
x (OX) ∼= H

i+1
E (OY (−E))

dual
∼ Rn−i−1f∗ωY (E) ∼= R

n−i−1f∗ωY
dual
∼ H i

E(OY )

∼= H
i(OS).

The assertion follows by comparing the two formulas. ut

We are now ready to discuss the example.

Example 7.6. Let C be a non-hyperelliptic curve of genus g. Fix a non-special divisor B
on C such that degB ≥ 2g + 1 (note that the linear system |2(B − KC)| is very ample
and thus contains smooth elements), and let E = OC ⊕ ωC(−B). Following [FP05], the
ruled surface π : S = PC(E)→ C is a canonical geometrically ruled surface. Moreover,
if H = C0 + π

∗B where C0 is the section determined by the quotient E → OC , then
the linear system |H | determines a projectively normal embedding of S as a canonical
scroll in some PN (see Theorem 6.16 of [FP05]). Let X be the cone over S ⊂ PN . Since
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H 1(OS(1)) ∼= H 1(C, E) 6= 0, the singularity is not Du Bois (and thus not rational)
by Lemma 7.5. On the other hand we have H 0(ωS(m)) = 0 for all m ≤ 0, and so
f∗ωY = ωX. We conclude that the pair (X, d−1

X ) is J-canonical (and thus log J-canonical)
by Theorem 7.1.

7.3. A general sufficient condition

Using inversion of adjunction and the results of [Kaw98, KK10] in place of Theorem 6.10,
one obtains the following general sufficient condition. The argument was brought to our
attention by Mircea Mustaţă.

Theorem 7.7. Let X be a reduced equidimensional scheme.
(a) If X is J-canonical, then X is the disjoint union of its irreducible components, each

of which is log terminal in the sense of [dFH09] and has rational singularities. In
particular, X is normal and Cohen–Macaulay.

(b) IfX is log J-canonical, thenX has Du Bois singularities. In particular,X is seminor-
mal.

Proof. We can assume thatX is embedded in a smooth varietyM , with codimension e. If
X is J-canonical then by Theorem 4.10 (see Remark 4.12 if dimX = 1) the pair (M, eX)
is canonical, and thus each irreducible component ofX is an isolated log canonical center
of the pair. Since intersections of log canonical centers are log canonical centers, it fol-
lows in particular that X is the disjoint union of its irreducible components. Moreover, it
follows by the main result of [Kaw98] that each irreducible component of X has rational
singularities and is log terminal in the sense of [dFH09]. If X is only log J-canonical,
then (M, eX) is log canonical (again by Theorem 4.10 and Remark 4.12) and X is a log
canonical center of (M, eX), so the result follows in this case by Theorem 1.4 of [KK10].
Regarding the last assertion in (b), see Remark 1.11 of [KK10]. ut

The above theorem is well-known to specialists once the assumptions on the singular-
ities of X are expressed in terms of the jet schemes of Xm. Indeed, by Corollary 5.4,
the result can be rephrased by saying that if dimXm = n(m + 1) for every m, then X
has Du Bois singularities, and if moreover every irreducible component of maximal di-
mension n(m+ 1) of Xm dominates an irreducible component of X, then X has rational
singularities.

Acknowledgments. We would like to thank Lawrence Ein, Shihoko Ishii and Mircea Mustaţă for
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