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Abstract. Let Y be a hyperbolic surface and let φ be a Laplacian eigenfunction having eigenvalue
−1/4 − τ2 with τ > 0. Let N(φ) be the set of nodal lines of φ. For a fixed analytic curve γ of
finite length, we study the number of intersections between N(φ) and γ in terms of τ . When Y is
compact and γ a geodesic circle, or when Y has finite volume and γ is a closed horocycle, we prove
that γ is “good” in the sense of [TZ]. As a result, we show that the number of intersections between
N(φ) and γ is O(τ). This bound is sharp.

1. Introduction

Let Y be a hyperbolic surface (a Riemannian surface with constant curvature −1) and let
1 be the Laplace–Beltrami operator on Y . Let φ ∈ L2(Y ) be a real valued eigenfunction
for 1 with eigenvalue −(1/4+ τ 2), that is,

1φ = −(1/4+ τ 2)φ.

Let N(φ) denote the zero set of φ on Y . Since Y is an analytic manifold and φ is an
analytic function, N(φ) is a union of analytic curves on Y . Therefore, for an analytic
segment γ of finite length, either φ vanishes on γ , or γ ∩N(φ) consists of a finite number
of points.

It has been shown in several ways that N(φ) shares common properties with the zero
set of a polynomial of degree τ for large τ > 0 (see [DF], [S3], and [Z]). Accordingly we
expect that

|γ ∩N(φ)| �Y,γ τ

will hold for all φ which do not vanish on γ . Here and elsewhere A �ω B means
|A| < CB for some constant C > 0 depending only on ω. Unless otherwise stated,
in what follows, we assume that τ > 0 is sufficiently large (say τ > 100).

The main result of the article is:

Theorem 1.1. Assume either one of the following:
• Y is a compact surface and γ is a geodesic circle,
• Y is a noncompact surface of finite volume and γ is a closed horocycle.
Then N(φ) ∩ γ consists of a finite number of points and we have

|N(φ) ∩ γ | �Y,γ τ. (1.1)
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We remark that, in spite of its appearance, (1.1) is not a local feature of the eigenfunc-
tions on hyperbolic surfaces. That is, without any assumptions on Y , the assertions in
Theorem 1.1 are not true in general. We give two examples to emphasize the role of the
global geometry of Y .

1. Let Y = 00\H where 00 =
{(

1 n
0 1

) ∣∣ n ∈ Z
}
. Let the horocycle γ be given by

{x + i | x ∈ R}. Consider a one-parameter family of eigenfunctions

fτ (x + iy) =
√
y Kiτ (2πy) cos 2πx.

Since there are infinitely many τ ∈ R such that Kiτ (2π) = 0, we can find a sequence
of eigenfunctions fτn with τn→∞ such that they all vanish on γ .

2. Let Y be as above and let γ be an analytic curve which is not part of a vertical line.
For n > 0, let

fn(x + iy) =
√
y Ki(2πny) cos 2πnx

be a sequence of eigenfunctions having eigenvalue −5/4. Then for all sufficiently
large n, N(fn) does not vanish identically on γ and we have

|N(fn) ∩ γ | � n.

In fact, if one assumes Y has finite volume, then a nonzero eigenfunction φ in L2(Y )

cannot vanish either on a horocycle or on a geodesic circle. Let us sketch a proof for the
horocycle case; the other case can be treated similarly.

Without loss of generality, assume that Y = 0\H where 0 is reduced at∞. We further
assume that γ is given by {x + iy0 | x ∈ R} for some y0 > 0. Say the Fourier expansion
of the eigenfunction φ ∈ L2(Y ) at∞ is given by

φ(x + iy) =
∑
n6=0

aφ(n)
√
y Kiτ (2π |n|y)e2πinx .

If φ vanishes on γ , then∫ 1

0
|φ(x + iy0)|

2 dx =
∑
n 6=0

|aφ(n)|
2y0Kiτ (2π |n|y0)

2
= 0.

Since Kiτ (2π |n|y0) = 0 for only finitely many n, this implies that aφ(n) = 0 for all but
finitely many n. Now recall that the horocycle becomes equidistributed on Y when one
increases the length of the horocycle [S1]. (For the geodesic circle, the first equidistribu-
tion result is due to Delsarte [D]. We give a short proof of the result when Y is compact
in the appendix.) Therefore, we have

‖φ‖2
L2(Y )

= lim
y→0

∫ 1

0
|φ(x + iy)|2 dx = lim

y→0

∑
n 6=0

|aφ(n)|
2yKiτ (2π |n|y)2.

By interchanging the limit and the finite summation, we see that the above equals∑
n 6=0

|aφ(n)|
2 lim
y→0

yKiτ (2π |n|y)2 = 0,

which contradicts the assumption φ 6= 0.



Sharp bounds for the intersection of nodal lines with certain curves 275

It is noteworthy that Theorem 1.1 does not require any arithmetic assumptions. With
such an assumption, when γ is a closed horocycle for instance, the following strong result
for the lower bound of the restricted L2 norm is known [GRS]:

‖φ‖L2(γ ) �ε τ
−ε .

Therefore, by Lemma 4.2, we have the second part of Theorem 1.1. However, as shown
in [TZ], a much weaker lower bound

‖φ‖L2(γ ) � e−Bτ , (1.2)

for some constant B, yields the same conclusion. In [TZ], they call a curve on a surface
satisfying this lower bound “good.” The main result of this paper can be rephrased as:

(1) any closed horocycle on a hyperbolic surface of finite volume is “good,” and
(2) any geodesic circle on a compact hyperbolic surface is “good.”

We obtain such lower bounds by using purely analytic and geometric techniques. The
main observation for our proof is Lemma 2.3 below. From this, to deduce Theorem 1.1,
we note that it suffices to find a large Fourier coefficient (bφ(n) as in (3.1) and aφ(n) =
bφ,1(n) in (3.2)) in the range c1τ < |n| < c2τ for certain constants c1 and c2.

When γ is a geodesic circle and Y is compact, one can study the partial sum S(X) =∑
|n|<X |bφ(n)|

2 by integrating |φ|2 on a region bounded by two concentric geodesic
circles that contains multiple copies of Y . By quantifying the lower bound and the upper
bound of S(X), we get

S(c2τ)− S(c1τ)� 1

for appropriate constants c1 and c2 (Lemma 5.1).
However, when Y is noncompact and γ is either a geodesic circle or a closed horo-

cycle, the same method only yields |N(φ) ∩ γ | � τ log2 τ . Here the discrepancy be-
tween� τ log2 τ and the desired bound� τ is closely related to the hypothetical phe-
nomenon, known as “escape of mass” of the eigenfunctions. Hence we have to use a
different method for noncompact surfaces.

When γ is a closed horocycle, we use the theory of Eisenstein series and their analytic
continuation. By integrating |φ|2 against an Eisenstein series and using the functional
equation for the Eisenstein series, we can study the Fourier coefficients aφ(n) by using
the approximate functional equation. After choosing an appropriate test function in the
approximate functional equation, we deduce Lemma 6.3.

2. Special functions

We begin our discussion with the uniform approximation formulas for some special func-
tions. Let us define

K̃iτ (x) =
1

|0(1/2+ iτ )|
Kiτ (x) (x > 0),
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and
Cτ (m, x) =

|0(1/2+m+ iτ )|
|0(1/2+ iτ )|

P−m
−1/2+iτ (x) (x > 1)

for a nonnegative integer m. Here Kτ (z) is the modified Bessel function of the second
kind and Pmτ (z) is the associated Legendre function of the first kind.

Lemma 2.1 ([E]). 1. When x > τ > 0, put cos θ = τ/x where θ ∈ (0, π/2). Then

K̃iτ (x) =

√
π/2+O(1/x)
(x2 − τ 2)1/4

e−(sin θ−θ cos θ)x .

2. When τ > x > 0, put ψ(τ, x) = τ cosh−1(τ/x)−
√
τ 2 − x2 + π/4. Then

K̃iτ (x) =

√
2π

(τ 2 − x2)1/4

(
sin(ψ(τ, x))+O

(
min

{
1
x
,
x2

τ

}))
3. When |τ − x| < τ 1/3, put C0 = 2−2/33−1/6π0(1/3). Then

K̃iτ (x) ≈ C0x
−1/3
+O(x−2/3)

Lemma 2.2. 1. When β := τ/m� 1, m > 0, and x > 1, we have ([Du, p. 325])

Cτ (m, x) =

(
2
π

)1/2(
β2
− η

x2β2 − 1− β2

)1/4

K̃iτ (m
√
η)

(
1+O

(√
η

m

))
.

Here the variable η is given by:

ξ =
1

x2 − 1
,∫ η

β2

(s − β2)1/2

2s
ds =

∫ ξ

β2

(s − β2)1/2

2s(1+ s)1/2
ds when ξ > β2,∫ η

β2

(β2
− s)1/2

2s
ds =

∫ ξ

β2

(β2
− s)1/2

2s(1+ s)1/2
ds when ξ < β2.

2. When α := m/τ � 1, m ≥ 0, and x > 1, we have ([Du, p. 314])

Cτ (m, x) =

(
ζ − α2

x2 − α2 − 1

) 1
4
Jm(τ

√
ζ )

(
1+O

(
1
τ

))
.

Here the variable ζ is given by:

f (α, s) =
1+ α2

− s2

(s2 − 1)2
,

xα =
√

1+ α2,∫ ζ

α2

(s − α2)1/2

2s
ds =

∫ x

xα

(−f (α, s))1/2 ds when x > xα,∫ ζ

α2

(α2
− s)1/2

2s
ds =

∫ x

xα

f (α, s)1/2 ds when x < xα.



Sharp bounds for the intersection of nodal lines with certain curves 277

From these formulas we observe:

Lemma 2.3. For any fixed x > 0, we can find a constant c1 > 0 with the following
property: For any constant c2 > c1, there exists a constant A > 0 depending on c2 such
that

Cτ (m, cosh x) > e−Am

for any c1τ < m < c2τ , for all sufficiently large τ > 0. The same statement is true for
K̃iτ (mx).

3. Analysis on hyperbolic surfaces

3.1. Upper half-plane

In order to study eigenfunctions on the hyperbolic surface Y , we identify Y with a quotient
space 0\H for some discrete subgroup 0 ⊂ SL(2,R). Here H = {z = x + iy | y > 0} is
the upper half-plane with the line element ds2

= y−2( dx2
+ dy2). Let 1 = 1H be the

Laplace–Beltrami operator on H and let dA = y−2 dxdy be the volume element.
By a function on 0\H, we mean a function on H which is invariant under 0. Let F

be a fundamental domain for the action of 0 on H. For 1 ≤ p <∞, we let Lp(0\H) be
the space of measurable functions on 0\H such that

‖f ‖
p

Lp(0\H) :=

∫
F
|f (z)|p dA <∞.

We recall two theorems regarding eigenfunctions on the upper half-plane.

Lemma 3.1 ([T, p. 142]). Fix a point z0 ∈ H and consider geodesic polar coordinates
(r, θ) centered at z0. For any bounded function φ on H that satisfies

−1φ(z) = (1/4+ τ 2)φ(z),

there exist constants cφ(m) such that

φ(r, θ) =
∑
m∈Z

cφ(m)Cτ (|m|, cosh r)eimθ .

Lemma 3.2 ([T, p. 136]). Assume φ is a function on H satisfying the conditions

−1φ(z) = (1/4+ τ 2)φ(z), φ(z) = φ(z+ a),

for some constant a > 0. Assume further that there exist constants C > 0 and A > 0
such that

|φ(x + iy)| < CyA for y > 1.
Then there exist constants αφ , βφ , and cφ(m) such that

φ(x + iy) = αφy
1/2+iτ

+ βφy
1/2−iτ

+

∑
m 6=0

cφ(m)
√
y K̃iτ (2π |m|y)e2πimx/a .

Note that in both lemmas, it is the growth condition of the eigenfunction which determines
the choice of the special functions appearing in the equations. In general, without the
growth condition, the associated Legendre function of the second kind and the modified
Bessel function of the first kind will appear.
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3.2. Compact surface

Let Y = 0\H be a compact hyperbolic surface. Fix a point z0 ∈ H and let (r, θ) be the
geodesic polar coordinates centered at z0. Note that any geodesic circle centered at z0 is
given by γ = {(r, θ) | r = r0} for some r0. Fix a fundamental domain F containing z0
which has diameter equal to the diameter of Y .

Lemma 3.3. Let d be the diameter of Y and let f ∈ L2(Y ) be an L2(Y ) normalized
function. For any a, b ∈ R+ with 2d < b − a,∫ b

a

∫ 2π

0
|f (r, θ)|2 sinh r dθ dr >

2π
Area(Y )

(cosh(b − d)− cosh(a + d)).

Proof. Let S be the set of γ ∈ 0 such that γF ⊂ {(r, θ) | a < r < b}. Observing that
{(r, θ) | a + d < r < b − d} ⊂ SF ,∫ b

a

∫ 2π

0
|f (r, θ)|2 sinh r dθ dr ≥

∫
SF
|f (r, θ)|2 dA =

1
Area(Y )

∫
SF

dA

>
1

Area(Y )

∫ b−d

a+d

∫ 2π

0
sinh r dθ dr =

2π
Area(Y )

(cosh(b − d)− cosh(a + d)). ut

Let φ be an eigenfunction for 1 on 0\H with eigenvalue −(1/4 + τ 2). We assume that
φ is L2(Y ) normalized. Since Y is compact, φ is a bounded function on H. Hence we can
find constants bφ(m) such that

φ(r, θ) =
∑
m∈Z

bφ(m)Cτ (|m|, cosh r)eimθ . (3.1)

Lemma 3.4. We have ∑
|m|<X

|bφ(m)|
2
� X + τ.

Proof. From the asymptotics of Cτ (m, x), one proves∫ R

1
|Cτ (|m|, x)|

2 dx �
1
τ

for |m| < τ
√
R2 − 1 and 1� R. Therefore,

B(R) :=

∫ cosh−1 R

0

∫ 2π

0
|φ(r, θ)|2 sinh r dθ dr =

∑
m∈Z
|bφ(m)|

2
∫ R

1
|Cτ (|m|, x)|

2 dx

�
1
τ

∑
|m|<τ
√
R2−1

|bφ(m)|
2

for R > τ . By using the same argument as in Lemma 3.3, we prove that B(R) � R.
Therefore ∑

|m|≤τ
√
R2−1

|bφ(m)|
2
� τR,
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and substituting τ
√
R2 − 1 = X gives∑

|m|≤X

|bφ(m)|
2
�

√
X2 + τ 2 < X + τ. ut

3.3. Noncompact surfaces and Eisenstein series

In this section we state the results regarding noncompact hyperbolic surfaces and Eisen-
stein series. For a detailed treatment of the subject, see [CS], [Ku], and [Se].

Assume that Y = 0\H is a noncompact hyperbolic surface which has finite volume.
Let {κ1, . . . , κh} be a complete set of inequivalent cusps of 0. Note that if κ is a cusp of 0,
then there exists a σ ∈ SL(2,R) such that σκ = ∞ and σ−10κσ = 00. Here 0κ ⊂ 0 is
the stabilizer subgroup of κ and 00 =

{(
1 n
0 1

) ∣∣ n ∈ Z
}
. This is equivalent to saying that

σ−10σ is reduced at∞. We fix our choice of such σj for each κj . Note that any closed
horocycle on Y is given by

{σjz | Im(z) = y0}

for some fixed y0 > 0 and for some 1 ≤ j ≤ h.
Let φ(z) be a L2(Y ) normalized real eigenfunction corresponding to the eigenvalue

−(1/4+ τ 2) with τ ≥ 0. Say the Fourier expansion of φ at κj is given by

φ(σjz) =
∑
n6=0

bφ,j (n)
√
y K̃iτ (2π |n|y)e2πinx (3.2)

for some constants bφ,j (n) for each j = 1, . . . , h. Note that the constant terms in Lemma
3.2 do not appear since φ ∈ L2(Y ) and τ ≥ 0. Also, because φ(z) is assumed to be real,
bφ,j (n) = bφ,j (−n) for all n 6= 0.

Lemma 3.5. For any j ∈ {1, . . . , h},∑
|n|<X

|bφ,j (n)|
2
� X + τ.

Proof. This is a slight generalization of [IS, p. 316], using the discreteness of 0 and the
Bruhat decomposition of 0. ut

Now let Ej (z, s) be the Eisenstein series corresponding to κj .

Theorem 3.6. Let 8(s) =
(
ϕij (s)

)
be the constant term matrix of Ei(z, s). Then each

Ei(z, s) has a meromorphic continuation to the whole s-plane and the column vector
E (z, s) = t (E1, . . . , Eh) satisfies the functional equation

E (z, s) = 8(s)E (z, 1− s).

We remark that each ϕij (s) can be represented as the ratio of two holomorphic functions
of finite order ([K, p. 89] and [Se]), and that on Re(s) ≥ 1/2, the functions ϕij (s) and
Ei have only finite number of poles lying in (1/2, 1]. Therefore we may fix a set of
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holomorphic functions f (s), f1(s), . . . , fh(s) of finite order such that

f (s)E1(z, s) =

h∑
j=1

fj (1− s)Ej (z, 1− s) (3.3)

with f (s)E1(z, s) having a simple pole only at s = 1 and fj (s)Ej (z, s) holomorphic in
the region Re(s) ≥ 1/2.

Following the standard Rankin–Selberg method, we obtain

Lemma 3.7. Define Lj (s, φ) =
∑
∞

n=1 |bφ,j (n)|
2/ns whenever the series is absolutely

convergent. There exist constants ej 6= 0 depending only on the choice of σj such that∫
Y

Ej (z, s)|φ(z)|
2 dA = ej coshπτ F(s, τ )Lj (s, φ)

where

F(s, τ ) = π−s
02(s/2)0(s/2− iτ )0(s/2+ iτ )

0(s)
.

From Lemma 3.5, the defining series of Lj (s, φ) is absolutely convergent and Lj (s, φ)�
|ζ(s)|+τ for Re(s) > 1. Note that Lj (s, φ) has a meromorphic continuation to the whole
complex plane by Theorem 3.6.

In the rest of the section, we study the growth of F(σ + it, τ )Lj (σ + it, φ) at infinity
for fixed σ ≥ 1/2 and “fixed φ.” The only aim of this discussion is to take care of the
technical convergence issues for the integrations in the proof of Lemma 6.1.

Using the Maass–Selberg relation, we have

Lemma 3.8. Fix a fundamental domain Yj for the action of σ−1
j 0σj on H so that it is

contained in a strip of width 1 and contains a strip Yj (X) determined by Im(z) > X for
sufficiently large X > 0. Define EXj by

EXj (σjz, s) :=

{
Ej (σjz, s)− y

s if Im(z) > X,

Ej (σjz, s) otherwise.

for z in the fundamental domain. Then we have the inner product formula

(EXj (σjz, s), E
X
j (σjz, s̄

′)) =
Xs+s

′
−1

s + s′ − 1
+ ϕjj (s

′)
Xs−s

′

s − s′
− ϕjj (s)

X−s+s
′

s − s′

where Re(s) > 1, Re(s′) > 1, and s 6= s′.

Because of the location of the poles of the Eisenstein series, this inner product formula is
valid for all s and s′ in the region {s ∈ C | Re(s) > 1/2, s /∈ (1/2, 1]} [Ku, p. 32]. Since
EXj (·, s) ∈ L

2(Yj ) [CS, p. 23] for any s in region, taking the limit s′ → s on the right
hand side yields

(EXj (σjz, s), E
X
j (σjz, s̄)) =

X2s−1

2s − 1
+ 2 logXϕjj (s)+ ϕ′jj (s).
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Let us denote the characteristic function of Yj (X) by χX(z). Then∫
Yj

Ej (σjz, s)|φ(σjz)|
2 dA =

∫
Yj

(EXj (σjz, s)+ χX(z)y
s)|φ(σjz)|

2 dA

� ‖EXj (·, s)‖L2(Yj )
‖φ‖2

L4(Yj )
+

∫
Yj (X)

ys |φ(σjz)|
2 dA.

Note that φ decays exponentially in y and ϕjj (σ + it) has moderate growth at infinity for
any fixed σ > 1/2 [Ku, p. 28]. Then by Lemma 3.8, we see that F(σ+it, τ )Lj (σ+it, φ)
grows no faster than e|t | at infinity for any fixed σ > 1/2. For σ = 1/2, by [S2] we have∫

Yj

Ej (σjz, 1/2+ it)|φ(σjz)|2dz�φ |t |
Be−π |t |/2

for some B ∈ R. To summarize:

Lemma 3.9. For any fixed σ ≥ 1/2 and for |t | > 1,

F(σ + it, τ )Lj (σ + it, φ)�φ e
|t | for j = 1, . . . , h.

4. Complexification

Let Dε be an annulus on the complex plane given by {q | e−ε < |q| < eε}. We first recall
a lemma from [TZ].

Lemma 4.1. Let h be a holomorphic function defined on Dε . Normalize h so that∫ 1

0
|h(e2πix)|2 dx = 1.

Then for any ε > 0 there exists a constant C(ε) > 0 such that the number of zeros of h
in Dε/2, which we denote by nε(h), is bounded by

C(ε)max
z∈Dε

log |h(z)|.

Fix γ to be either a geodesic circle or a closed horocycle. Say we are given the Fourier
expansion for an eigenfunction on γ so that

φ|γ (x) =
∑
n∈Z

aφ(n)e
inx .

From the asymptotics of special functions and by Lemmas 3.4 and 3.5, in either case we
can find some constant c > 1 depending only on γ such that

|aφ(n)| �

{
τ if |n| < cτ,

e−|n| if |n| ≥ cτ,

where the implied constants depend only on c and γ .
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Define ψ(q) by the relations q = eix and ψ(q) = φ|γ (x). If q is in D1/2, then

|ψ(q)| �
∑
|n|<cτ

τe|n|/2 +
∑
|n|>cτ

e−|n|/2 � ecτ .

Therefore ψ(q) is holomorphic on D1/2, and applying Lemma 4.1 to ψ(q), we obtain

Lemma 4.2. Let Y be a hyperbolic surface which is compact (or has finite volume). Let
γ be a fixed geodesic circle (or a fixed closed horocycle). Then

|N(φ) ∩ γ | �Y,γ log
ecτ

‖φ‖L2(γ )

for some c > 1 depending only on Y and γ . Here ‖f ‖L2(γ ) is the restricted L2 norm of f
on γ .

Now, we are going to prove ‖φ‖L2(γ ) is not too small, from which Theorem 1.1 will
follow.

5. Geodesic circle

Assume Y = 0\H is compact and γ is a fixed geodesic circle. Without loss of generality,
we assume

γ = {(r, θ) | r = r0}

in the geodesic polar coordinates centered at some point z0 ∈ H. Let bφ(m) be constants
such that

φ(r, θ) =
∑
m∈Z

bφ(m)Cτ (|m|, cosh r)e2πimθ

in the same coordinate system.

Lemma 5.1. For any c1 > 0, there exists c2 greater than c1 such that for all sufficiently
large τ , there exists m such that c1τ < |m| < c2τ and 1/τ � |bφ(m)|2.

Proof. If α = m/τ ≤ c1, then by Lemma 2.2,

|Cτ (m, x)|
2
�

(
ζ − α2

x2 − α2 − 1

)1/2

Jm(τ
√
ζ )2.

From the asymptotics of Bessel functions ([E]), for any x such that
√
ζ > 2α,

|Cτ (m, x)|
2
�

(
ζ − α2

x2 − α2 − 1

)1/2 1
τ
√
ζ
.

Note that, because α is bounded by c1,
√
ζ > 2α is ensured when x is greater than some

sufficiently large constant C1 depending only on c1. From the defining equation of ζ , we
observe that ζ < x2

− 1 whenever ζ > α2. Since ζ−α2

ζ
is an increasing function in ζ , we

have
|Cτ (m, x)|

2
�

1

τ
√
x2 − 1

�
1
xτ
.
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Now let R > C1 and a > 1 be constants which will be determined later. In Lemma 2.2,
note that if x is bounded from above by aR, then ξ > 1

a2R2−1 . Pick c2 large enough so
that

1
a2R2 − 1

>
1
c2

2
> 0

and ∫ 1/(a2R2
−1)

1/c2
2

(s − 1/c2
2)

1/2

2s(1+ s)1/2
ds >

1
c2

∫ 4

1

(s − 1)1/2

2s
ds.

Then it follows from the defining equation of η that η > 4β2 for any β ≤ 1/c2. We also
deduce from the same equation that there exists some constant ε > 0 depending only
on a and R such that η > ε. Therefore, if x < aR and m ≥ c2τ , then the asymptotics of
K̃iτ (x) implies

|Cτ (m, x)|
2
� e−Bm

for some constant B > 0, depending only on a and R.
Now set |dφ(m)|2 = |bφ(m)|2 + |bφ(−m)|2 for m > 0, and dφ(0) = bφ(0). We have

B(a,R) :=

∫ cosh−1 aR

cosh−1 R

∫ 2π

0
|φ(r, θ)|2 sinh r dθ dr

=

∞∑
m=0

|dφ(m)|
2
∫ cosh−1 aR

cosh−1 R
|Cτ (m, cosh r)|2 sinh r dr

=

∞∑
m=0

|dφ(m)|
2
∫ aR

R

|Cτ (m, x)|
2 dx.

We split this summation into three pieces and apply the above estimations to obtain

B(a,R)�
log a
τ

∑
m≤c1τ

|dφ(m)|
2
+R(a− 1)

∑
c1τ<m<c2τ

|dφ(m)|
2
+

∑
c2τ≤m

|dφ(m)|
2e−Bm,

where we used the trivial bound Cτ (m, x) � 1 for the second summation. Applying
Lemma 3.4, we see that

B(a,R)� log a + R(a − 1)
∑

c1τ<m<c2τ

|dφ(m)|
2
+

∑
c2τ≤m

me−Bm.

On the other hand, by Lemma 3.3, we have

B(a,R) >
2π

Area(F )

(
cosh(cosh−1(aR)− d)− cosh(cosh−1(R)+ d)

)
� aR.

Therefore by choosing a and R large enough and then τ large, we find bφ(m) with the
desired property. ut
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Note that Parseval’s theorem implies

‖φ‖2
L2(γ )

=

∑
|bφ(m)|

2
|Cτ (m, cosh r0)|2.

Hence by Lemmas 2.3 and 5.1, we obtain

‖φ‖L2(γ ) �Y,γ e
−Bτ

for some constant B > 0. Therefore from Lemma 4.2, we deduce the first case of Theo-
rem 1.1.

6. Closed horocycle

Let Y = 0\H and let γ be a fixed horocycle. With notation as in Section 3.3, we assume
without loss of generality that 0 is reduced at∞ (that is, κ1 = ∞ and σ1 = Id) and that
γ is given by

γ = {x + iy | y = y0}

for some y0 > 0. Set aφ(n) = bφ,1(n).

6.1. Approximate functional equation

First note that Theorem 3.6, Lemma 3.7, and equation (3.3) imply

f (s)F (s, τ )L1(s, φ) =

h∑
j=1

ejfj (1− s)F (1− s, τ )Lj (1− s, φ). (6.1)

By our choice of f, f1, . . . , fh, on Re(s) ≥ 1/2, f (s)L1(s, φ) has a simple pole at s = 1
and fj (s)Lj (s, φ) is holomorphic. With this functional equation, we introduce a variation
of the approximate functional equation ([IK, p. 98]).

Lemma 6.1. For a sufficiently large integer m, define ψ by

ψ(X) =
1

2πi

∫
(2)
f (s)F (s, τ )s

(
1+

s2

4τ 2

)
X−se−s

4m
ds.

Then for X > 0, we have
∞∑
n=1

|aφ(n)|
2ψ

(
n

X

)
=

(
1+

1
4τ 2

)
c

coshπτ
X +

τ 2

coshπτ
O

(
1
X

)
,

for some constant c depending only on f (s).

Proof. For simplicity, set

3(s, φ) = f (s)F (s, τ )L1(s, φ),

3j (s, φ) = ejfj (s)F (s, τ )Lj (s, φ),

Hm(s, τ ) = s

(
1+

s2

4τ 2

)
e−s

4m
.
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By shifting the contour and using the functional equation (6.1), we obtain
∞∑
n=1

|aφ(n)|
2ψ

(
n

X

)
=

1
2πi

∫
(2)
3(s)Hm(s, τ )X

s ds

=

(
1+

1
4τ 2

)
c

coshπτ
X+

1
2πi

∫
(1/2)

3(s)Hm(s, τ )X
s ds

=

(
1+

1
4τ 2

)
c

coshπτ
X+

h∑
j=1

1
2πi

∫
(1/2)

3j (s)Hm(1−s, τ )X1−s ds

=

(
1+

1
4τ 2

)
c

coshπτ
X+

h∑
j=1

1
2πi

∫
(2)
3j (s)Hm(1−s, τ )X1−s ds

=

(
1+

1
4τ 2

)
c

coshπτ
X+R(φ)

for some constant c depending only on f (s). From

Lj (2+ it, φ)� τ, F (2+ it, τ )�
τ

coshπτ
et ,

we get R(φ) = τ 2

coshπτO
( 1
X

)
.

We complete the proof by observing that we can choose m large enough to make all
the summations and integrations converge absolutely, since every holomorphic function
that appears in the computation is of finite order (by our choice of f, f1, . . . , fh and
Lemma 3.9). ut

Lemma 6.2. For X > 1, we have

ψ(X)�
1

coshπτ
1

X log2X

and for X > 0, we have

ψ(X)�
X

coshπτ
.

Proof. The first assertion follows after shifting the contour to Re(s) = 1 and using in-
tegration by parts. For the second assertion, note that F(s, τ )s(1 + s2

4τ 2 ) has no pole for
Re(s) > −2. Now shift the contour to Re(s) = −1.

In both cases we have used

∂k

∂tk
(F (σ + it, τ ))�k,σ

τmax{σ−1,0}

coshπτ
et (σ > −2, k ≥ 0),

which follows from Stirling’s formula. ut

6.2. Lower bound for ‖φ‖L2(γ )

Lemma 6.3. For any c1 > 0, there exists c2 greater than c1 such that for all sufficiently
large τ , we can find some n with c1τ < n < c2τ which satisfies 1� |aφ(n)|2.
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Proof. From Lemma 6.1, we have

∞∑
n=1

|aφ(n)|
2ψ

(
n

X

)
=

(
1+

1
4τ 2

)
c

2 coshπτ
X +

τ 2

coshπτ
O

(
1
X

)
.

Let c2 > 1 and β be the constants to be determined such that 0 < c1 < β < c2. Put
X = βτ . Split the summation into three ranges:

∞∑
n=1

|aφ(n)|
2ψ

(
n

X

)
=

∑
n<c1τ

+

∑
c1τ≤n≤c2τ

+

∑
c2τ<n

.

Call these sums I1, I2, and I3 respectively. For I1, we use Lemmas 3.5 and 6.2 to obtain

|I1| �
c1(c1 + 1)

β

τ

coshπτ
.

For I2, we use Lemma 6.2 to obtain

|I2| �
1

coshπτ
c2

c1

∑
c1τ≤n≤c2τ

|aφ(n)|
2.

For I3, we use Lemmas 3.5 and 6.2 and summation by parts to obtain

|I3| �
∑
c2τ<n

|aφ(n)|
2

coshπτ

(
n

X
log2 n

X

)−1

�
τ

coshπτ
β

log c2 − logβ
.

These estimates imply that there exists a fixed constant C > 0 such that∑
c1τ≤n≤c2τ

|aφ(n)|
2 >

c1

c2

(
β

C
−

1
β
−
c1(c1 + 1)

β
−

β

log c2 − logβ

)
τ

uniformly in c1, c2, β, and τ . Therefore for any given c1 > 0, we can choose β and then
c2 so that ∑

c1τ≤n≤c2τ

|aφ(n)|
2
�c1 τ

uniformly in τ . ut

By Parseval’s theorem, we have

‖φ‖2
L2(γ )

=

∑
n 6=0

|aφ(n)|
2y0K̃iτ (2π |n|y0)

2.

Hence by Lemmas 2.3 and 6.3, we find a constant B > 0 such that

‖φ‖L2(γ ) �Y,γ e
−Bτ .

Therefore, from Lemma 4.2, we deduce the second case of Theorem 1.1.
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7. Appendix

7.1. Equidistribution of the geodesic circles

Let Y be a compact hyperbolic surface and fix a point z0 ∈ Y . In this section we prove
that the geodesic circle centered at z0 becomes equidistributed on Y when we increase the
radius of the circle. Accordingly, for any fixed continuous function f on Y , we prove

lim
r→∞

1
2π

∫ 2π

0
f (θ, r) dθ =

∫
Y

f dA (7.1)

where (r, θ) are the geodesic polar coordinates centered at z0. Since f is continuous and Y
is compact, f is a bounded function, hence in L2(Y ). Therefore by the spectral expansion
of f in terms of the Laplacian eigenfunctions on Y , it is sufficient to prove (7.1) for the
eigenfunctions.

Assume f ∈ L2(Y ) satisfies

1f = s(1+ s)f

with s(1+ s) < 0. Then by Lemma 3.1,

1
2π

∫ 2π

0
f (θ, r) dθ = cfP

0
s (cosh r) = cfPs(cosh r)

for some constant cf , and by the orthogonality of the eigenfunctions,∫
Y

f dA = 0.

Therefore (7.1) is equivalent to

lim
r→∞

Ps(cosh r) = 0.

When s = −1/2 + iτ for some τ > 0, this follows from Lemma 2.2, and when −1 <
s < 0, we use the integral representation ([L, p. 172])

Ps(cosh r) =
1
π

∫ π

0
(cosh r + sinh r cos θ)s dθ.
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