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Abstract. Let Mn be the class of all multiloop algebras of finite-dimensional simple Lie algebras
relative to n-tuples of commuting finite order automorphisms. It is a classical result that M1 is the
class of all derived algebras modulo their centres of affine Kac–Moody Lie algebras. This com-
bined with the Peterson–Kac conjugacy theorem for affine algebras results in a classification of the
algebras in M1. In this paper, we classify the algebras in M2, and further determine the relation-
ship between M2 and two other classes of Lie algebras: the class of all loop algebras of affine Lie
algebras and the class of all extended affine Lie algebras of nullity 2.
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1. Introduction

Suppose that k is an algebraically closed field of characteristic 0. Affine Kac–Moody
algebras over k comprise one of the most widely studied and applied classes of infinite-
dimensional Lie algebras. Kac’s realization theorem is of fundamental importance in this
area as it provides an explicit construction of affine algebras from finite dimensional
simple algebras. More precisely, the version of this theorem that we use states that the
algebras of the form g′ := g′/Z(g′), where g is an affine algebra and g′ is its derived
algebra, are the same up to isomorphism as the loop algebras of the form L(ġ, σ ) where
ġ is a finite-dimensional simple and σ a diagram automorphism of ġ. (See Section 4.2
below for the definition of a loop algebra.)

Now finite-dimensional simple algebras and affine algebras can be regarded as nul-
lity 0 and nullity 1 Lie algebras, in the sense that the additive group generated by the
isotropic roots is free of rank 0 or 1 respectively. Taking this point of view, it is irresistible
to look for higher nullity analogues of these algebras, and to hope that loop algebras in
some form will provide constructions of algebras of increasing nullity.
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A considerable amount of interesting work has been done on higher nullity algebras
in recent years using a number of different approaches. These approaches have included:
axiomatic characterizations; realizations as multiloop algebras, iterated loop algebras, or
matrix algebras over nonassociative coordinate algebras; constructions by means of gen-
erators and relations determined by root systems; constructions of representations; and
the study of higher nullity algebras as forms of untwisted loop algebras and their relation
to torsors over Laurent polynomial rings.

In this paper, we will focus on three of these approaches (although some of the other
approaches will also be mentioned), namely the construction of higher nullity algebras us-
ing multiloop algebras and iterated loop algebras, and the axiomatic description of higher
nullity algebras. To outline our main results, we now introduce three classes of algebras
Mn, In and En, which depend on a nonnegative integer n, and we say that the algebras in
these classes have nullity n. In each case, we mention a sample of papers which deal with
these topics. There are many other interesting related articles, several of which are listed
in the bibliography.

• Multiloop algebras and Mn [EMY, vdL, GP1, ABFP1, ABFP2, Na]. There is a nat-
ural generalization of the loop construction that produces a multiloop algebra L(g, σ )
from a Lie algebra g using an n-tuple σ = (σ1, . . . , σn) of commuting finite order au-
tomorphisms of g (see Section 4.1). We denote by Mn the class of all Lie algebras that
are isomorphic to multiloop algebras of the form L(ġ, σ ), where ġ is finite-dimensional
and simple and σ = (σ1, . . . , σn) is as indicated. By convention, M0 is the class of all
finite-dimensional simple Lie algebras.
• Iterated loop algebras and In [W, Po, ABP1, ABP2, ABP2.5]. Let I0 be the class of

all finite-dimensional simple Lie algebras; and, for n ≥ 1, let In be the class of all Lie
algebras that are isomorphic to loop algebras of the form L(g, σ ), where g ∈ In−1 and
σ is a finite order automorphism of g.
• EALAs and En [Sai, H-KT, BGK, AABGP, Neh2, Neh3]. An extended affine Lie

algebra, or EALA for short, is an algebra g that satisfies a list of natural axioms that
are modeled on well known properties of finite-dimensional simple Lie algebras and
affine algebras (see Section 5.1 below). One of the axioms requires that the rank of the
group generated by the isotropic roots of g be finite, and this rank is called the nullity
of g. Further, the subalgebra gc of g generated by the root spaces corresponding to
nonisotropic roots is called the core of g. (In general gc ⊆ g′, and these algebras are
equal in the affine case.) We denote by En the class of all algebras that are isomorphic
to algebras of the form gc/Z(gc) for some EALA g of nullity n.

It is not difficult to show that M0 = I0 = E0, and that this is the class of finite-
dimensional simple Lie algebras (Proposition 5.4.3). Of course the classification of these
algebras is well known. Also, we will see using Kac’s realization theorem that M1 =

I1 = E1 and that this is the class of derived algebras modulo their centres of affine alge-
bras (Corollary 6.3.3). Moreover, the Peterson–Kac conjugacy theorem for affine algebras
provides a classification of the algebras in M1 (Corollary 6.3.7). In general Mn ⊆ In (see
4.4.2), but no other containments hold, even for n = 2.
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This paper concludes a sequence [ABP1], [ABP2], [ABP2.5], [ABFP1], [ABFP2] of
papers devoted to the study of the three classes Mn, In, En. The preceding five articles
contain a number of general results about these classes, and in this paper, we apply these
results to the case n = 2. Our results provide the following:

• A complete understanding of the relationship between the classes M2, I2 and E2.
• A classification, up to isomorphism, of the algebras in M2.

To discuss this in more detail, note first that by Kac’s realization theorem, the algebras
in I2 are, up to isomorphism, the algebras of the form

L(g′, σ ) with g affine and σ a finite order automorphism of g′. (1)

We show in Section 10 that an algebra of this form is in M2 if and only if σ is of first kind.
(The notions of first and second kind for finite order automorphisms of g′ are recalled in
§7.) In fact, our first main theorem, Theorem 10.1.1, shows that the algebras in M2 are,
up to isomorphism, the algebras of the form

L(g′, σ ) with g affine and σ a diagram automorphism of g′; (2)

or equivalently of the form

L(g′, σ ) with g untwisted affine and σ a diagram automorphism of g′. (3)

Using this theorem we are able in Section 10 to describe the relationship between the
classes M2, I2 and E2 in a sequence of corollaries. This information is summarized in
Figure 1.

Our second main theorem, Theorem 13.3.1, which provides a classification theorem
for algebras in M2, is proved by determining when two algebras of the form (3) are iso-
morphic. Two key invariants that are used for this are the relative and absolute types of
an algebra L ∈M2; these are defined to be the relative and absolute types respectively of
the central closure of L, which is finite-dimensional and simple over its centroid. The ab-
solute type of L is easy to compute (see 4.4.5), but the relative type requires considerably
more work.

We now outline the structure of the paper, and briefly discuss some of our other results
and methods. First, after some preliminaries in Section 2, we record in Sections 3, 4
and 5 the basic definitions and results we need about relative and absolute type, multiloop
algebras, iterated loop algebras and EALAs.

In Section 6, we obtain an erasing theorem, Theorem 6.2.2, for loop algebras of
symmetrizable Kac–Moody Lie algebras. This theorem is an extension of a theorem in
[ABP2], which allows us to replace an arbitrary σ in (1) by an outer automorphism, just
as Kac did for loop algebras of finite-dimensional simple algebras in [K2, Prop. 8.5].

In Section 7, we discuss automorphisms of g′, where g is affine. In particular, we
show that the kind of a finite order automorphism σ is determined by the structure of the
centroid of L(g′, σ ).

In Sections 8 and 9, we study in detail the structure of a loop algebra as in (2). Sec-
tion 8 considers the rotation case when g is of type A(1)` and σ is a rotation of the Dynkin
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diagram; we see in this case that L(g′, σ ) is a special linear algebra over a quantum torus.
Section 9 considers the nontransitive case when σ is not transitive on the Dynkin dia-
gram; in this case we obtain a description of the relative type of L(g′, σ ) in terms of a
projection of the root system of g.

As indicated previously, Section 10 contains our results about the relationship be-
tween M2, I2 and E2.

In Sections 11 and 12, we study the isomorphism problem for loop algebras as in (2).
In Section 11, we solve the problem in the rotation case, using calculations involving
cyclic algebras over the field of rational functions in two variables. In Section 12, we use
projections of affine root systems to compute the relative type of L(g′, σ ) in the transi-
tive case. For this we use methods of Fuchs, Schellekens and Schweigert [FSS] and of
Bausch [Bau].

Section 13 contains the classification theorem for algebras in M2. The algebras are
listed and assigned labels in Table 2. The list consists of 14 infinite families and 9 excep-
tional algebras.

In the last section, Section 14, we establish links with some work of other researchers
by calculating the index of each algebra L in M2 and the Saito extended affine root system
[Sai] of each isotropic algebra L in M2 (see Table 4). Here the index of L is defined
to be the index, in the sense of [T], of the connected component of the identity in the
automorphism group of the central closure of L over its centroid; whereas the SEARS of
L is defined to be the set of nonisotropic roots of a certain EALA of nullity 2 whose core
modulo its centre is L.

It turns out that by the classification theorem there is only one infinite family of alge-
bras L ∈M2 that satisfy the following condition:

(AA) The absolute type of L is Ak for some k ≥ 1 and the relative type of L is Ar for
some r ≥ 0.

(Saying that L has relative type A0 means that L is anisotropic. See Definition 3.2.1.)
Moreover, we see in Sections 13 and 14 that with the exception of these algebras, an al-
gebra in M2 is determined up to isomorphism by its relative and absolute type (together),
or by its index, or by its SEARS. The second of these facts was conjectured in [GP1].

To conclude this introduction, we make a brief comment on the title of this article.
Originally this project was envisaged as a sequence of three papers, beginning with
[ABP1] and [ABP2], on covering algebras, an intentionally imprecise term describing
the various incarnations of loop algebras that occur in the study of EALAs. (See the in-
troduction to [ABP1].) For this reason our working title was Covering algebras III: Clas-
sification of nullity 2 multiloop Lie algebras. However, as the sequence expanded and our
topic broadened, we decided that the present title more accurately reflects the content of
the paper.

2. Preliminaries

In this short section, we establish some notation and conventions that we will use in this
work.
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We suppose throughout the paper that k is an algebraically closed field of character-
istic 0.

2.1. Algebras

Unless indicated otherwise, algebra will mean algebra over k.
Many of the algebras that we will consider have natural gradings, for example by Zn

or by a root lattice. Nevertheless, unless specified to the contrary, two algebras will be
regarded as isomorphic if there is an ungraded isomorphism between them.

If F is a unital commutative associative k-algebra and L1 and L2 are algebras over F ,
we write L1 'F L2 to mean that L1 and L2 are isomorphic as algebras over F . If F = k
we simply write L1 ' L2.

If L is an algebra, the automorphism group of L over k is denoted by Autk(L), or
simply Aut(L).

If L is a Lie algebra, the derived algebra of L is (unless indicated otherwise) denoted
by L′ and the centre of L is denoted by Z(L).

If n is a positive integer, we let

Rn = k[t±1
1 , . . . , t±1

n ]

denote the algebra of Laurent polynomials in the variables t1, . . . , tn over k.

2.2. Matrix Lie algebras

Suppose that A is a unital associative algebra. We use the notation A− for the Lie alge-
bra A under the commutator product [x, y] = xy − yx.

If g ≥ 1, let Mg(A) denote the associative algebra of n× n-matrices over A. We then
let glg(A) = Mg(A)

− and slg(A) = glg(A)
′. It is well known (and easily checked) that

slg(A) = {x ∈ glg(A) | tr(x) ∈ [A,A]},

where tr(x) denotes the sum of the diagonal entries of x. In particular sl1(A) = [A,A]
under the commutator product. Finally, if u is a unit in Mg(A), we define Ad(u) ∈
Aut(Mg(A)) by Ad(u)x = uxu−1 for x ∈ Mg(A). Then Ad(u) is also an automorphism
of glg(A), and we denote its restriction to slg(A) also by Ad(u).

2.3. Root systems

If g is a Lie algebra and h is an ad-diagonalizable abelian subalgebra of g, then we have
the root space decomposition g =

⊕
α∈h∗ gα of g with respect to h, where h∗ is the dual

space of h and gα = {x ∈ g | [h, x] = α(h)x for h ∈ h}. An element α ∈ h∗ will be
called a root of g relative to h if gα 6= 0, and the set {α ∈ h∗ | gα 6= 0} is called the root
system of g relative to h. We emphasize that with this definition, 0 is a root of g relative
to h unless g = {0}.

We use the standard definition of finite (not necessarily reduced) root system, except
that we regard 0 is an element of the system. Thus, in this article a finite root system is
a finite subset 1 of a vector space over k such that 0 ∈ 1 and 1 \ {0} is a finite root
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system as defined in [Bo2, Chap. VI, §1, Def. 1]. Our notation for the type of a reduced
irreducible finite root system is standard and follows [Bo2, Plates I-IX]. As usual we
identify A1 = B1 = C1, B2 = C2 and A3 = D3. In addition we will use the notation BCk
for the type of the unique nonreduced irreducible finite root system of rank k ≥ 1 [Bo2,
Chap. VI, §4, no. 14].

2.4. Symmetrizable Kac–Moody Lie algebras

Here we establish the notation we will use for symmetrizable Kac–Moody Lie algebras.
The reader can consult [K2, Chapters 1–4], [MP, Chapter 4] or [KW, §4] for any necessary
background regarding these algebras.

Suppose that A = (aij )i,j∈I is an indecomposable symmetrizable GCM (generalized
Cartan matrix), where I is a finite subset of Z. The (symmetrizable) Kac–Moody Lie
algebra determined by A is the Lie algebra g = g(A) generated by h and the symbols
{ei}i∈I and {fi}i∈I subject to the relations

[h, h] = {0}, [ei, fj ] = δijα∨i , [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi,

ad(ei)1−aij (ej ) = ad(fi)1−aij (fj ) = 0 (i 6= j),

where (h,5,5∨) = (h, {αi}i∈I, {αi}∨i∈I) is a realization of A.
Let 1 be the set of roots (including 0) of g relative to h, let Q = Q1 =

∑
i∈I Zαi be

the root lattice of g, let g =
⊕

α∈Q gα be the root space decomposition of g, let W be the
Weyl group of g, and let 1re

=
⋃
i∈IWαi be the set of real roots of g.

Let g′ be the derived algebra of g, in which case Z(g) = Z(g′) = {h ∈ h : αi(h) = 0
for i ∈ I}. We set

g′ := g′/Z(g′),
and let − : g′→ g′ be the canonical map. We also let

h′ := h ∩ g′ =
∑
i∈I

kα∨i .

(Of course, contrary to our convention, h′ is not the derived algebra of h.) Note that
g′ =

⊕
α∈Q(g

′)α and g′ =
⊕

α∈Q(g
′)α are Q-graded algebras with

(g′)α = gα ∩ g and (g′)α = (g′)α

for α ∈ Q.
Our main interest is in the special cases when A is of finite type or A is of affine type.

If A is of finite type, g is a split simple Lie algebra with splitting Cartan subalgebra h, and
hence 1 is an irreducible reduced finite root system.

If A is of affine type, g is an affine Kac–Moody Lie algebra. We label A using Tables
Aff1–Aff3 of [K2, Chapter 4].1 If A has label X(m)k using this system, we say that g (or A)
has type X(m)k . We say that g (orA) is untwisted (resp. twisted) ifm = 1 (resp.m 6= 1). We
will recall some more (standard) notation for affine algebras when needed in Section 7.1.

1 A different system is used in [MP] to label affine matrices. We will see in Remark 6.3.6 that
the system we are using from [K2] is related to the absolute type of g′, whereas the system in [MP]
is related to the relative type of g′.
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3. Relative and absolute type

In this section, we discuss some isomorphism invariants for Lie algebras that will play a
crucial role in our work on classification.

3.1. The centroid

We begin by recalling the definition of the centroid. Since we will work with associative
algebras as well as Lie algebras later in the paper, we make the initial definitions for
arbitrary (not necessarily Lie) algebras.

Definition 3.1.1. If L is an arbitrary algebra, the centroid of L is the subalgebra of
Endk(L) defined by

C(L) = Ck(L) := {e ∈ Endk(L) | e(xy) = e(x)y = xe(y) for x, y ∈ L}.

If L is perfect (LL = L), then C(L) is commutative. Note that L is naturally a left C(L)-
module, and, if L is perfect, L is an algebra over C(L). Moreover L is said to be fgc if L
is finitely generated as a left C(L)-module. Finally, L is said to be central if C(L) = k1.

3.1.2. If L is a simple algebra and F = C(L), then F is a field and L is central simple as
an algebra over F . Conversely, if F is an extension of k and L is a central simple algebra
over F , then L is a simple algebra over k with centroid naturally isomorphic to F . (See
[J, §X.1] for these facts.)

3.1.3. If L1 and L2 are algebras and σ : L1 → L2 is an isomorphism, then the map
C(σ ) : C(L1)→ C(L2) defined by C(σ )(e) = σeσ−1 is an algebra isomorphism.

3.2. Relative and absolute type for simple fgc Lie algebras

Definition 3.2.1. Suppose that L is a simple fgc Lie algebra, and let F = C(L). Then,
by 3.1.2, L is a finite-dimensional central simple Lie algebra over F . Choose a MAD
F -subalgebra T of L, by which we mean a maximal ad-diagonalizable (necessarily
abelian) F -subalgebra of L. We say that L is isotropic (resp. anisotropic) if T 6= 0
(resp. T = 0). If L is isotropic, the root system of L relative to the adjoint action of
T is a (possibly nonreduced) irreducible finite root system [Se2, §I.2], and the type of that
root system is called the relative type of L. If L is anisotropic we define the relative type
of L to be A0 (which is not the type of an irreducible finite root system). These notions
are well-defined since AutF (L) acts transitively on the MAD F -subalgebras of L [Se2,
§I.3, Thm. 2]. Also, by [J, §X.1, Lemma 1], L ⊗F F̄ is a finite-dimensional (central)
simple Lie algebra over F̄ , where F̄ is an algebraic closure of F . We define the absolute
type of L to be the type of the root system of L⊗F F̄ relative to a MAD F̄ -subalgebra of
L⊗F F̄ . In other words, the absolute type of L is the relative type of L⊗F F̄ .

3.2.2. We emphasize that the absolute type of a simple fgc Lie algebra K is always re-
duced, whereas the relative type may not be. For example, K could have absolute type A2
and relative type BC1.
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Remark 3.2.3. Suppose that g is a finite-dimensional simple Lie algebra. Since k is al-
gebraically closed, it follows that g is central [J, Lemma X.1]. So, the relative type of g
equals the absolute type, and as usual we call this the type of g.

3.3. Relative and absolute type for prime perfect fgc Lie algebras

3.3.1. Recall that a Lie algebra L is said to be prime if L 6= 0 and, for all ideals I and J

of L, [I, J] = 0 implies that I = 0 or J = 0.

Proposition 3.3.2. Suppose that L is a prime perfect fgc Lie algebra. Then C(L) is an
integral domain and

L̃ := L⊗C(L) C̃(L)

is a simple fgc Lie algebra with centroid naturally isomorphic to C̃(L), where C̃(L)
denotes the quotient field of C(L). Moreover, the map x 7→ x ⊗ 1 identifies L as a C(L)-
subalgebra of L̃.
Proof. It is easy to see (and well known) that C(L) is an integral domain. It is proved in
[ABP2.5, Prop. 8.7] that L̃ is a finite-dimensional central simple Lie algebra over C̃(L),
so L̃ is simple over k by 3.1.2. The last statement follows from [ABP2.5, Lemma 3.3(i)].

ut

Definition 3.3.3. Suppose that L is a prime perfect fgc Lie algebra. We call the Lie al-
gebra L̃ in Proposition 3.3.2 the central closure of L. We define the relative type and the
absolute type of L to be the relative type and the absolute type respectively of the Lie al-
gebra L̃. We say that L is isotropic (resp. anisotropic) if L̃ is isotropic (resp. anisotropic).

The following tells us that the notions just defined are isomorphism invariants.

Lemma 3.3.4. Suppose that L1 and L2 are prime perfect fgc Lie algebras that are iso-
morphic (as k-algebras). Then L1 and L2 have the same relative type and the same
absolute type.
Proof. It is easy to check using 3.1.3 that the central closures of L1 and L2 are isomor-
phic. So, replacing Li by L̃i , we can assume that Li is a simple fgc algebra for i = 1, 2.
Let Fi = C(Li) and let F̄i for a algebraic closure of Fi for i = 1, 2. Again using 3.1.3, it
is easy to see that L1⊗F1 F̄1 and L2⊗F2 F̄2 are isomorphic. Thus, it suffices to prove the
statement about relative type. Suppose that ϕ : L1 → L2 is a k-algebra isomorphism, and
let γ = C(ϕ) : F1 → F2 be the induced isomorphism. Let T1 be a MAD F1-subalgebra
of L1, and set T2 = ϕ(T1). Then it is straightforward to check that T2 is a MAD
F2-subalgebra of L2, and that the map α 7→ γ ◦ α ◦ ϕ−1 is an isomorphism of the
root system of L1 with respect to T1 onto the root system of L2 with respect to T2. ut

Proposition 3.3.5. Suppose that L is a prime perfect fgc Lie algebra. Then L is aniso-
tropic if and only if the only ad-nilpotent element of L is 0.
Proof. Let L̃ be the central closure of L. It is well known that L̃ is anisotropic if and only
if the only ad-nilpotent element of L̃ is 0. (This follows from the fact that any nonzero
ad-nilpotent element of L̃ is part of an sl2-triple [J, Thm. III.17].) Since the ad-nilpotent
elements of L̃ are precisely the C̃(L)-multiples of the ad-nilpotent elements of L, the
conclusion follows. ut
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4. Multiloop algebras, loop algebras and the classes Mn and In

For the rest of the paper we fix a compatible family {ζm}m≥1 of roots of unity in k; this
means that ζm is a primitive mth root of unity for m ≥ 1 and

ζ kmk = ζm

for all k,m ≥ 1. For each positive integer m, we let Zm = Z/mZ = {k̄ | k ∈ Z} be the
ring of integers modulo m, where k̄ = k +mZ for k ∈ Z.

In this section, we recall the definition of multiloop algebras and loop algebras, and
discuss some of their properties. Some of these definitions and properties will be stated
for arbitrary algebras.

4.1. Multiloop algebras

Suppose that n is a positive integer. Let

Sn = k[z±1
1 , . . . , z±1

n ] =

∑
k∈Zn

kzk

be the Zn-graded algebra of Laurent polynomials over k, where zk = z
k1
1 . . . z

kn
n for

k = (k1, . . . , kn) ∈ Zn.
Suppose that g is an arbitrary algebra over k, m = (m1, . . . , mn) is an n-tuple of

positive integers, σ = (σ1, . . . , σn) is an n-tuple of commuting automorphisms of g such
that σm = 1 (that is, σmii = 1 for 1 ≤ i ≤ n), and θ = (θ1, . . . , θn) is an n-tuple of
elements of k such that θi has order mi in k× for 1 ≤ i ≤ n.

Definition 4.1.1 (Multiloop algebra). Let Znm=Zm1⊕· · ·⊕Zmn and let k=(k1, . . . , kn)

7→ k̄ = (k̄1, . . . , k̄n) be the canonical group homomorphism from Zn onto Znm. For
k = (k1, . . . , kn) ∈ Zn, let

gk̄ = {u ∈ g | σju = θ
kj
j u for 1 ≤ j ≤ n}, (4)

in which case g =
∑
k̄∈Znm gk̄ is a Znm-graded algebra. The multiloop algebra of g relative

to σ , m and θ is the Zn-graded subalgebra

Lm(g, σ , θ) =
∑
k∈Zn

gk̄ ⊗ zk

of g⊗k Sn. In particular, we set

Lm(g, σ ) := Lm(g, σ , (ζm1 , . . . , ζmn))

and call Lm(g, σ ) the multiloop algebra of g relative to σ and m.2

2 In [ABP2.5], [ABFP1] and [ABFP2], the notation Mm(g, σ )was used in place of Lm(g, σ ). We
have changed notation here to be compatible with the usual notation when n = 1. (See Definition
4.2.1 below.)
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Lemma 4.1.2. (a) If ϕ ∈ Aut(g), then Lm(g, ϕσϕ−1, θ) ' Lm(g, σ , θ) as Zn-graded
algebras, where ϕσϕ−1

= (ϕσ1ϕ
−1, . . . , ϕσnϕ

−1).
(b) If ri, si ∈ Z are relatively prime to mi and risi ≡ 1 (modmi) for 1 ≤ i ≤ n, then

Lm(g, σ , (θ
r1
1 , . . . , θ

rn
n )) = Lm(g, (σ

s1
1 , . . . , σ

sn
n ), θ) as Zn-graded algebras.

(c) If r = (r1, . . . , rn) is an n-tuple of integers such that σ r
= 1 and ri |mi for 1 ≤

i ≤ n, then Lr(g, σ , (θ
m1/r1
1 , . . . , θ

mn/rn
1 )) ' Lm(g, σ , θ).

Proof. (a)&(b) For the case n = 1, see [ABP2]. The general case is easily established
along similar lines.

(c) The linear extension of x⊗zk1
1 . . . z

kn
n 7→ x⊗z

m1
r1
k1

1 . . . z
mn
rn
kn

n is an injective algebra
endomorphism of g⊗k Sn which maps Lr(g, σ , (θ

m1/r1
1 , . . . , θ

mn/rn
1 )) onto Lm(g, σ , θ).

ut

4.1.3. By Lemma 4.1.2(b), any graded algebra of the form Lm(g, σ , θ) is equal to a
graded algebra of the form Lm(g, τ ) for some τ . Thus, there is no loss of generality in
considering only graded algebras of the form Lm(g, σ ). For the most part, we will do this
in what follows.

4.1.4. By Lemma 4.1.2(c), Lm(g, σ ) does not depend up to (ungraded) isomorphism on
the period m. Therefore, when we are regarding Lm(g, σ ) as an ungraded algebra, we
often denote it simply by L(g, σ ). An algebra of the form L(g, σ ) for some σ as above,
will be called an n-fold multiloop algebra of g.

4.1.5. An n-fold multiloop algebra of g is a Lie algebra (resp. an associative algebra) if
and only if g is a Lie algebra (resp. an associative algebra).

4.1.6. Using the n-tuple m, we may identify Rn = k[t±1
1 , . . . , t±1

n ] as a subalgebra of
Sn = k[z±1

1 , . . . , z±1
n ] by setting

ti = z
mi
i

for 1 ≤ i ≤ n. Now g ⊗ Sn is an algebra over Sn and hence also an algebra over Rn.
Furthermore, Lm(g, σ , θ) is an Rn-subalgebra of g ⊗ Sn, and in this way Lm(g, σ , θ)
is an algebra over Rn. So we have a natural homomorphism of Rn into the centroid of
Lm(g, σ , θ).

Since k is algebraically closed, finite-dimensional simple algebras are central simple
[J, Lemma X.1]. Thus, by [ABP2.5, Thm. 6.2 and Cor. 6.6] (see also [GP1, Lemmas 4.1.2
and 4.6.3]), we have:

Proposition 4.1.7 (The centroid of a multiloop algebra). If g is finite-dimensional and
simple, then the natural homomorphism from Rn into C(Lm(g, σ , θ)) is an isomorphism
(which we often treat as an identification).

The following simple properties of multiloop algebras will also be useful.
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Lemma 4.1.8. Suppose b is an ideal of g with σi(b) = b for 1 ≤ i ≤ n. Let σ |b denote
the n-tuple of automorphisms of b obtained by restricting σ , and let σ̄ denote the n-tuple
of automorphisms of ḡ = g/b induced by σ . Then Lm(b, σ |b) is a Zn-graded ideal of
Lm(g, σ ) and Lm(g, σ )/Lm(b, σ |b) is graded isomorphic to Lm(ḡ, σ̄ ).

Proof. Let − : g → ḡ be the canonical homomorphism. Then the map ψ : a ⊗ zk to
ā⊗zk is a surjective graded homomorphism of Lm(g, σ ) onto Lm(ḡ, σ̄ ). Also Lm(b, σ |b)
is contained in Ker(ψ); and, since Ker(ψ) is graded, the reverse inclusion is clear. ut

Lemma 4.1.9. Suppose that g is a Lie algebra. Then

(a) Lm(g, σ )′ = Lm(g′, σ |g′).
(b) Z(Lm(g, σ )) = Lm(Z(g), σ |Z(g)).
(c) Lm(g, σ )′/Z(Lm(g, σ )′) is graded isomorphic to Lm(g′/Z(g′), σ |g′ ).

Proof. (a) and (b) are clear since the left hand sides are Zn-graded. (c) now follows using
(a), (b) (applied to g′) and Lemma 4.1.8. ut

Finally, we recall the following result on the permanence of absolute type for multiloop
algebras from [ABP2.5, Thm. 8.16].

Proposition 4.1.10. Suppose that L is an n-fold multiloop algebra of a Lie algebra g. If
g is prime, perfect and fgc, then so is L. Moreover, in that case, the absolute type of L is
equal to the absolute type of g.

4.2. Loop algebras

The special case of Definition 4.1.1 when n = 1 is of particular importance.

Definition 4.2.1 (Loop algebra). Suppose that g is an algebra over k, m is a positive
integer, σ ∈ Aut(g) with σm = 1, and θ ∈ k× has orderm. The loop algebra of g relative
to σ , m and θ is the Z-graded subalgebra

Lm(g, σ, θ) =
∑
k∈Z

gk̄ ⊗ zk1

of g ⊗ S1, where S1 = k[z±1
1 ] and gk̄ = {u ∈ g | σu = θku} for k ∈ Z. We mainly

consider the special case
Lm(g, σ ) := Lm(g, σ, ζm),

which is called the loop algebra of g relative to σ and m. When we regard Lm(g, σ ) as
an ungraded algebra, we often denote it by L(g, σ ). An algebra of the form L(g, σ ) for
some σ ∈ Aut(g) of finite order will be called a loop algebra of g.

Remark 4.2.2. When n ≥ 2, we have

Lm(g, σ , θ) ' Lmn(Lm′(g, σ
′, θ ′), σn ⊗ 1, θn),

where m′, σ ′ and θ ′ are obtained from m, σ and θ respectively by deleting the last entry,
and σn ⊗ 1 denotes the restriction of σn ⊗ 1 ∈ Aut(g⊗ Sn−1) to Lm′(g, σ ′, θ ′) [ABP2.5,
Example 5.4]. Thus multiloop algebras can be constructed by a sequence of loop con-
structions.
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4.3. The class Mn, n ≥ 0

4.3.1. By convention, we will regard an algebra as a 0-fold multiloop algebra of itself.

Definition 4.3.2. If n is a nonnegative integer, we let Mn be the class of all algebras that
are isomorphic to n-fold multiloop algebras of finite-dimensional simple Lie algebras.
Note in particular that M0 is the class of all finite-dimensional simple Lie algebras. We
write L ∈Mn to mean that L is an algebra in the class Mn. Algebras in Mn will be called
nullity n multiloop algebras.

4.4. The class In, n ≥ 0

Definition 4.4.1. Let n ≥ 0. We define the class of Lie algebras In inductively. First let
I0 = M0 be the class of finite-dimensional simple Lie algebras. Second, if n ≥ 1, we let
In be the class of algebras isomorphic to loop algebras of algebras in In−1. Algebras in In
will be called nullity n iterated loop algebras.

4.4.2. It follows by induction using Remark 4.2.2 that

Mn ⊆ In;

that is, every algebra in the class Mn is in In.

The following propositions follow from Proposition 4.1.10 and Remark 3.2.3.

Proposition 4.4.3. Any algebra L in In is a prime perfect fgc Lie algebra, and hence its
relative and absolute types are defined.

Proposition 4.4.4. If L is isomorphic to an n-fold multiloop algebra of a finite-dimen-
sional simple Lie algebra ġ, then the absolute type of L is equal to the type of ġ.

4.4.5. Proposition 4.4.4 tells us how to compute the absolute type of an algebra in Mn.
The determination of the relative type of an algebra in Mn is a more difficult problem. In
fact, in later sections, a lot of work will be devoted to the solution of this problem when
n = 1 (see Corollary 6.3.4) and most especially when n = 2 (see Corollary 8.3.2 and
Theorem 12.2.1).

4.5. An example: the quantum torus Q(θ)

Quantum tori, which are constructed from matrices q = (qij ) ∈ Mn(k) with qijqji =
qii = 1 [Ma, §4.6.1], play a fundamental role in the study of extended affine Lie algebras
and multiloop algebras (see for example [BGK] and §8.3 below). In this section, we
consider the special case that will be important for our purposes: the case when n = 2.
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4.5.1. If θ ∈ k×, let Q(θ) be the unital associative algebra presented by the genera-
tors x1, x2, x

−1
1 , x−1

2 subject to the inverse relations x1x
−1
1 = x−1

1 x1 = 1, x2x
−1
2 =

x−1
2 x2 = 1, and the relation

x1x2 = θx2x1.

Q(θ) has a Z2-grading Q(θ) =
⊕

k∈Z2 Q(θ)k with Q(θ)(k1,k2) = kxk1
1 x

k2
2 . We call

Q(θ) the quantum torus determined by θ , and we call x1, x2, x
−1
1 , x−1

2 the distinguished
generators of Q(θ) over k.

4.5.2. For the rest of the section, assume that θ is an element of k× of finite order m.

4.5.3. It is easy to check that the centre Z(Q(θ)) ofQ(θ) is the algebra generated by x±m1
and x±m2 . Thus we can identify

R2 = k[t±1
1 , t±2

2 ] = Z(Q(θ))

by setting
t1 = x

m
1 and t2 = x

m
2 .

In particular, Q(θ) is an algebra over R2. Moreover, Q(θ) is a free R2-module with basis
{x
k1
1 x

k2
2 | 0 ≤ k1, k2 ≤ m− 1}.

To describe Q(θ) as a multiloop algebra, we need some notation (which will also be
used later in Section 8).

4.5.4 (Pauli matrices). If F is a commutative associative unital k-algebra, u is a unit
in F , and m ≥ 1, we let

dm(u) = diag(1, u, u2, . . . , um−1) and pm(u) =


0 . . . 0 u

1
. . . 0

...
. . .

. . .
...

0 . . . 1 0


in Mm(F ). (If m = 1, we interpret d1(u) = [1] and p1(u) = [u].) Now dm(u) and pm(u)
are units in Mm(F ), so we can set

Dm(u) = Ad(dm(u)) and Pm(u) = Ad(pm(u))

in the automorphism group of Mm(F ), glm(F ) or slm(F ). (See Section 2.2 for the nota-
tion Ad.) Note that pm(u)m = uI , so Pm(u)m = I . Also, if um = 1, then dm(u)m = 1
and Dm(u)m = 1.

4.5.5. Now let
m = (m,m) and θ = (θ, θ).

We have seen in 4.1.6 that for any algebra g and any pair σ = (σ1, σ2) of commuting pe-
riodm automorphisms of g, the multiloop algebra Lm(g, σ , θ) is naturally an R2-algebra,
where R2 = k[t±1

1 , t±1
2 ] with t1 = zm1 and t2 = zm2 . With this in mind we have:
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Lemma 4.5.6. Suppose θ ∈ k× has order m and let σ = (σ1, σ2), where

σ1 = Dm(θ) and σ2 = Pm(1)

in Aut(Mm(k)). Let g be a positive integer and identify Mgm(k) = Mg(Mm(k)) in the
usual fashion. With this identification, let σ̃ = (σ̃1, σ̃2) be the pair of automorphisms of
Mgm(k) induced by σ acting on the m×m-blocks. Then

(a) Q(θ) 'R2 Lm(Mm(k), σ , θ).
(b) Mg(Q(θ)) 'R2 Lm(Mgm(k), σ̃ , θ).
(c) glg(Q(θ)) 'R2 Lm(glgm(k), σ̃ , θ) and under this isomorphism

slg(Q(θ)) 'R2 Lm(slgm(k), σ̃ |slgm(k), θ). (5)

(d) glg(Q(θ)) = R21⊕ slg(Q(θ)) as Lie algebras over R2.
(e) If gm > 1, the natural homomorphism R2 7→ C(slg(Q(θ))) is an isomorphism.

Proof. (a) Let p = pm(1) and d = dm(θ)−1 in Mm(k). Then one checks that pd = θdp,

σ1(p) = θp, σ2(p) = p, σ1(d) = d and σ2(d) = θd.

So x̃1 := p ⊗ z1 and x̃2 := d ⊗ z2 are units in Lm(Mm(k), σ , θ) satisfying x̃1x̃2 =

θx̃2x̃1. Thus we have an algebra homomorphism ϕ : Q(θ) → Lm(Mm(k), σ , θ) such
that xi 7→ x̃i for i = 1, 2. Using the well known fact that {pk1dk2 | 0 ≤ k1, k2 ≤ m− 1}
is a basis for Mm(k), it is easy to check that ϕ is an isomorphism (see the argument in
[ABP2.5, Example 9.8]). Moreover, under ϕ we have xm1 7→ x̃m1 = p

m
⊗ zm1 = 1 ⊗ t1

and xm2 7→ x̃m2 = d
m
⊗ zm2 = 1⊗ t2, so ϕ is R2-linear.

(b) This follows from (a).
(c) The first isomorphism in (c) follows from (b); and then (5) follows from Lemma

4.1.9(a).
(d) Now glgm(k) = k1 ⊕ slgm(k). So we have Lm(glgm(k), σ̃ , θ) = R21 ⊕

Lm(slgm(k), σ̃ |slgm(k), θ), and (d) follows using (c).
(e) This follows from (5) using Proposition 4.1.7. ut

Remark 4.5.7. Parts (d) and (e) of the lemma can be proved without using multiloop
algebras. In particular, if g > 1, the Lie algebra slg(Q(θ)) is graded by the root system
Ag−1, and hence (e) follows from [BN, Thm. 5.15].

Proposition 4.5.8. Suppose g is a positive integer and θ ∈ k× has order m.

(a) If gm > 1, then slg(Q(θ)) ∈M2.
(b) If m > 1, then sl1(Q(θ)) has relative type A0; that is, sl1(Q(θ)) is anisotropic.

Proof. (a) follows from (5) since slgm(k) is simple. For (b), let L = sl1(Q(θ)), and
suppose for contradiction (see Lemma 3.3.5) that L contains a nonzero ad-nilpotent el-
ement x. Now L is a Z2-graded subalgebra of Q(θ)−, so the homogeneous components
of x lie in L. Replacing x by its component of highest degree (using the lexicographic
order), we can assume that x is homogeneous. But since L ∈M2 is prime by Proposition
4.4.3, L has trivial centre. Hence, [x, y] 6= 0 for some nonzero homogeneous y ∈ L.
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Since the homogeneous components of Q(θ) are each spanned by a unit, it follows that
[x, y] = axy for some a ∈ k×. But then, by induction, we have ad(x)ry = arxry for
r ≥ 1, giving a contradiction. ut

4.5.9. Proposition 4.5.8 is a special case of a more general result about quantum tori.
Indeed, let kq be the quantum torus constructed from q = (qij ) ∈ Mn(k) with qijqji =
qii = 1 [Ma, §4.6.1], and suppose that each qij has finite order in k×. If either g > 1 or
some qij 6= 1, then slg(kq) ∈Mn. Moreover, sl1(kq) is anisotropic if some qij 6= 1. Our
proof of these statements uses [ABFP1, Thm. 9.2.1] as well as the argument above. We
omit the details since we will not use these facts.

5. Extended affine Lie algebras and the class En

In this section, we recall some background on extended affine Lie algebras.

5.1. The definition

Following [Neh2] and [Neh3, §6.11], we have the following:

Definition 5.1.1 (EALA). Let g be a Lie algebra satisfying the following axioms:

(EA1) g has a nondegenerate invariant symmetric bilinear form ( | ).
(EA2) g contains a nontrivial finite-dimensional self-centralizing ad-diagonalizable sub-

algebra h.

Let g =
⊕

α∈h∗ gα be the root space decomposition of g with respect to h, and let

8 := {α ∈ h∗ | gα 6= 0}

be the root system of g relative to h. The form ( | ) restricted to h is nondegenerate, and
hence, as usual, we can transfer ( | ) to a nondegenerate symmetric bilinear form on the
dual space h∗ of h. Let

8× = {α ∈ 8 | (α|α) 6= 0} and 80
= {α ∈ 8 | (α|α) = 0}

be the sets of nonisotropic (resp. isotropic) roots in 8. Let

gc := subalgebra of g generated by gα , α ∈ 8×,

be the core of g. We say that (g, ( | ), h) is an extended affine Lie algebra (EALA) if in
addition to (EA1) and (EA2), the following axioms hold:

(EA3) ad(x) is locally nilpotent for x ∈ gα , α ∈ 8×.
(EA4) 8× cannot be decomposed as the union of two orthogonal nonempty subsets.
(EA5) The centralizer of gc in g is contained in gc.
(EA6) The subgroup 〈80

〉 of h∗ generated by 80 is finitely generated.

We will then often say for short that g is an EALA.
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5.1.2. An EALA over C such that 8 is a discrete subset of h∗ is called a discrete EALA
[Neh3, 6.14]. (In fact, (EA6) is redundant in this definition [Neh3, 6.15].) Discrete EALAs
have been studied in a number of papers including [H-KT], [BGK], [AABGP], [ABGP],
[AG] and [ABP1] where, beginning with [AABGP], they were called tame EALAs.

5.1.3. The properties of the root systems of discrete EALAs were developed in [AABGP,
Chapter 2]. It was shown that these root systems can be described using a finite root
system together with a family of semilattices.

5.1.4. More generally, as described in [Neh3, §6], if 8 is the root system of an EALA
g then 8 has the following properties: 8 is a reduced symmetric affine reflection system
with irreducible finite quotient root system; all root strings are unbroken; 〈80

〉 is finitely
generated; and 80

⊆ 8× + 8×. (The interested reader can consult [Neh3] or [LN] for
the terms used here. We will not use them subsequently.) As a consequence, it follows
from [LN, §4-5] (see also [Neh3, §3.7]) that the structure of 8 can be described in terms
of extension data for the finite quotient root system of 8. This generalizes the approach
mentioned in 5.1.3 that uses semilattices. As a result, most of the basic properties of
discrete EALAs carry over to general EALAs with similar and sometimes shorter proofs.
In a few cases below we will only sketch an argument along these lines, as the details are
not hard to fill in.

5.1.5 (The quotient type of an EALA). Suppose that (g, ( | ), h) is an EALA with root
system8. Then, using the properties mentioned in 5.1.4, it is easy to deduce the following
facts about 8 from standard facts about finite root systems. First, let

V = spanQ(8)

in h∗. Then V is finite-dimensional over Q. Further, we can and do normalize ( | ), by
replacing it by a k× multiple of itself, so that (α|β) ∈ Q and (α|α) ≥ 0 for α, β ∈ 8. In
that case, ( | ) restricts to a Q-bilinear form V × V → Q; and this restriction, which we
also denote by ( | ), is positive semi-definite (that is, (α|α) ≥ 0 for α ∈ V ). We let

V 0
= rad(V )

be the radical of this form, and we set

V̄ = V/V 0

with canonical map − : V → V̄ . So ( | ) induces a positive definite Q-bilinear form
on V̄ , which we again denote by ( | ). Further, 8̄ is an irreducible (possibly nonreduced)
finite root system in V̄ . We call 8̄ the finite quotient root system for (g, ( | ), h), or simply
for g, and we call its type the quotient type of g.

Remark 5.1.6. Suppose that g is a discrete EALA (over C). Then the properties de-
scribed in 5.1.5 hold with the rational field Q everywhere replaced by the real field R,
in which case one obtains a finite quotient root system over R rather than Q [AABGP,
Chap. 1]. It is not difficult to check that this finite root system over R is obtained by base
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field extension (as described in [Bo2, Chap. VI, §1, Remark 1]) from the one over Q.
So these two finite root systems have the same type. Hence, the notion of quotient type
defined above coincides with the notion of type defined in [AABGP, p. 27].

Lemma 5.1.7. Suppose that g is an EALA with root system 8. Then

(a) gc is a perfect ideal of g.
(b) 80

= {α ∈ 8 | Zα ⊆ 8}. Hence, 80 and 8× are determined by 8 (without
reference to the form ( | )).

Proof. In the case of discrete EALAs, (a) is proved in [AG, §1], and (b) follows from
[AABGP, Cor. 2.31]. The arguments in general follow the same lines, as discussed
in 5.1.4. ut

5.2. The nullity of an EALA

Definition 5.2.1. Suppose that g is an EALA with root system 8. Since the additive
group of h∗ is torsion free, it follows from (EA6) that 〈80

〉 is a finitely generated free
abelian group. We define the nullity of g to be the rank of the group 〈80

〉.

Remark 5.2.2. Let g be an EALA with notation as in 5.1.5.
(a) Using extension data, one can easily see that spanQ(8

0) = V 0 (see [AABGP,
(2.10) and (2.11)(b)] in the discrete case). Thus, the nullity of g equals dimQ(V 0).

(b) Suppose that g is discrete (over C). Let VR be the real span of R and let V 0
R be the

radical of the restriction of ( | ) to VR. Then, by [AABGP, Prop. 1.4 and Cor. 2.31], the
rank of 〈80

〉 equals dimR(V
0
R). Thus, the notion of nullity defined above coincides with

the notion of nullity defined in [AABGP, p. 27].

Using results of [ABFP2] and [ABGP], we have the following characterizations of
EALAs of nullity 0 and 1.

Proposition 5.2.3. (a) If g is a finite-dimensional simple Lie algebra with Killing form
( | ) and Cartan subalgebra h, then (g, ( | ), h) is an EALA of nullity 0. Conversely, if
(g, ( | ), h) is an EALA of nullity 0, then g is a finite-dimensional simple Lie algebra
and gc = g.

(b) If g is an affine Kac–Moody Lie algebra with normalized invariant form ( | ) (see [K2,
§6.2] or 7.1.1 below) and with distinguished Cartan subalgebra h, then (g, ( | ), h)
is an EALA of nullity 1. Conversely, if (g, ( | ), h) is an EALA of nullity 1, then g is
isomorphic to an affine Kac–Moody Lie algebra and gc = g′.

Proof. (a) The first statement follows from standard facts about finite-dimensional simple
Lie algebras. For the converse, suppose that (g, ( | ), h) is an EALA of nullity 0 with root
system 8. Then, by [Neh3, Prop 6.4], gc is a Lie (3, 8̄)-torus, where 3 = 〈80

〉 = {0}
(see 5.3.3 for this terminology). So, by [ABFP2, Remark 1.2.4], gc is finite-dimensional
and simple. Now let d ∈ g. Then, since gc is an ideal of g and every derivation of gc is
inner, it follows that d − e centralizes gc for some e ∈ gc. So by (EA5), d = e. Hence,
g = gc is finite-dimensional simple.
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(b) The first statement follows from standard facts about affine algebras. The second
statement is proved for discrete EALAs over C in [ABGP], and the proof given there can
be easily adapted to handle the general case (as discussed in 5.1.4). Indeed, suppose that
(g, ( | ), h) is an EALA of nullity 1. Then, using extension data, one sees, as in [ABGP,
pp. 677–678], that the root system 8 of g is one of the root systems for an affine algebra.
Using that information the proof of Theorem 2.31 of [ABGP] gives our conclusion. ut

5.2.4. If g is a finite-dimensional simple (resp. an affine Kac–Moody) Lie algebra, we
will subsequently regard g as an EALA with the choices of ( | ) and h made in the first
sentence of Proposition 5.2.3(a) (resp. Proposition 5.2.3(b)).

5.2.5. If g is finite-dimensional simple, the quotient type of g is the type of g. Also, for
each affine GCM A, the quotient type of g(A) is well known (see Remark 6.3.5 below).

5.3. Centreless cores of EALAs and Lie tori

Definition 5.3.1. Suppose that g is an EALA with root system 8. We let

gcc = gc/Z(gc).

Since gc is perfect, gcc is centreless (that is, it has trivial centre). For this reason gcc is
called the centreless core of g.

Example 5.3.2. If g is a finite-dimensional simple Lie algebra (resp. an affine Kac–
Moody Lie algebra) then by Proposition 5.2.3 we have gcc ' g (resp. gcc = g′).

5.3.3 (Lie tori). In order to give an axiomatic description of the centreless cores of
EALAs, Yoshii introduced Lie tori in [Y2]. To describe these, let3 be a finitely generated
free abelian group and let 1 be an irreducible finite root system with root lattice Q1.

A Lie (3,1)-torus is a Lie algebra L with compatible gradings by 3 and Q1 so that
the Q1-support of L is contained in 1 and four natural axioms hold. We will not need to
refer directly to these axioms and instead direct the interested reader to [Neh1], [ABFP2,
§1] or (for an equivalent definition) [Neh3, §5.1].

If L is a Lie (3,1)-torus, we say that L has full root support if the Q1-support of L
equals1. There is no loss of generality in assuming this when convenient, since it always
holds if we replace 1 by a suitable sub-root-system of 1. (See [ABFP2, Remark 1.1.11]
for more about this.)

If L is a centreless Lie (3,1)-torus, we say that L is invariant if there exists a non-
degenerate invariant graded symmetric bilinear form on L. (This is equivalent to the def-
inition in [Neh3, §5.1] in view of [ABFP2, Prop. 1.2.2(vi)].)

We have the following relationship between EALAs and centreless Lie tori. (See
[Neh2] or [Neh3, §6]. For discrete EALAs, see [AG, §1] and [Y2].)

Proposition 5.3.4. Let3 be a free abelian group of rank n, let1 be an irreducible finite
root system of type Xk . Then a Lie algebra L is isomorphic to the centreless core of an
EALA of nullity n and quotient type Xk if and only if L is isomorphic to an invariant
centreless Lie (3,1)-torus with full root support.
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Remark 5.3.5. Suppose that k = C. In [Y2], Yoshii showed, using some classification
results for centreless Lie tori, that every centreless Lie torus over C is invariant. Also, it
follows from [Y2] that the term “EALA” can be replaced by the term “discrete EALA” in
Proposition 5.3.4. Hence, centreless cores of EALAs are the same algebras as centerless
cores of discrete EALAs. We will not make use of these facts in this article.

5.3.6. Centreless Lie tori and hence centreless cores of EALAs have been characterized
as certain “matrix algebras” over (in general) infinite-dimensional graded coordinate alge-
bras using theorems that are called coordinatization theorems. There is one such theorem
for each quotient type; the reader is referred to [AF] for an overview of this work by many
authors. This approach provides a wealth of detailed information about centreless cores,
but we will not use it in this work, except to calculate some indices in Section 14.2.

5.4. The class En
Definition 5.4.1. If n is a nonnegative integer, let En be the class of all Lie algebras that
are isomorphic to the centreless core of an EALA of nullity n. We call algebras in En
nullity n centreless cores.

5.4.2. Note that Proposition 5.3.4 gives a characterization of the algebras in En in terms
of centreless Lie tori.

For each n ≥ 0, we have now defined three classes Mn, In and En of Lie algebras.
For n = 0, we have the following:

Proposition 5.4.3. M0 = I0 = E0 is the class of finite-dimensional simple Lie algebras.

Proof. All that has to be proved is that E0 is the class of finite-dimensional simple Lie
algebras, and this follows from Proposition 5.2.3(a). ut

5.5. Fgc algebras in En
We have the following from [ABFP2] and [A].

Theorem 5.5.1. Suppose that L is an fgc centreless Lie (3,1)-torus with full root sup-
port, where 3 has rank n and 1 has type Xk . Then L ∈ Mn and the relative type (as
defined in Definition 3.3.3) of L is Xk .

Proof. The fact that L ∈Mn is proved in Theorem 3.3.1 of [ABFP2], and the fact that L
has relative type Xk is proved in [A]. ut

Corollary 5.5.2. (a) If g is an EALA of nullity n such that gcc is fgc, then gcc ∈Mn, gcc
is isotropic, and the relative type of gcc is the quotient type of g.

(b) Mn ∩ En is the class of fgc algebras in En.

Proof. (a) Let Xk be the quotient type of g and let L = gcc. By Proposition 5.3.4 and
Theorem 5.5.1, we know that L ∈Mn and that the relative type of L is Xk . Finally, since
k > 0, it follows that L is isotropic.

(b) follows from (a) and Proposition 4.4.3. ut
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6. Loop algebras of symmetrizable Kac–Moody Lie algebras

To obtain our main results, we will need to understand loop algebras of finite-dimensional
simple Lie algebras and loop algebras of affine Lie algebras. We consider in this section
the more general topic of loop algebras of symmetrizable Kac–Moody Lie algebras.

We assume throughout the section that g = g(A) is the Kac–Moody Lie algebra de-
termined by an indecomposable symmetrizable GCM A = (aij )i,j∈I. We use the notation
of Section 2.4.

6.1. Automorphisms of symmetrizable Kac–Moody Lie algebras

We now recall some facts about automorphisms of g, g′ and g′.

6.1.1. We begin by discussing some subgroups of Aut(g).
First let Aut(A) be the group of automorphisms of the GCM A; that is, Aut(A) is the

group of permutations σ of I so that aσ(i),σ (j) = ai,j for i, j ∈ I. By [KW, §4.19] there
exists a group monomorphism σ 7→ σ̃ of Aut(A) into Aut(g) such that σ̃ (h) = h and

σ̃ (ei) = eσ(i) and σ̃ (fi) = fσ(i),

for σ ∈ Aut(A) and i ∈ I. It is clear that σ 7→ σ̃ is unique when A has finite type, and
this is also true whenA is affine (see Proposition 7.2.1 below). In any case, we fix a choice
of the monomorphism σ 7→ σ̃ and we use this map to identify Aut(A) as a subgroup of
Aut(g).

Next let ω be the unique automorphism of g (the Chevalley automorphism of g) such
that

ω(ei) = −fi, ω(fi) = −ei and ω(h) = −h

for i ∈ I and h ∈ h. Now ω has order 2 and it commutes with the automorphisms in
Aut(A), so we may define the outer automorphism group of g by

Out(A) :=
{

Aut(A) if A has finite type,
〈ω〉 × Aut(A) otherwise.

Then Out(A) is a finite subgroup of Aut(g).
Next let Aute(g) = 〈exp(ad(x)) | x ∈ gα, α ∈ 1

re
〉 in Aut(g). We also have sub-

groups Aut(g; h) := {σ ∈ Aut(g) | σ(h) = h for h ∈ h} and Aut(g; g′) = {σ ∈ Aut(g) |
σ(x) = x for x ∈ g′} of Aut(g). Then Aut(g; h) normalizes Aute(g), while Aut(g; g′)
centralizes both Aute(g) and Aut(g; h). Hence,

Aut0(g) := Aute(g)Aut(g; h)Aut(g; g′)

is a subgroup of Aut(g), which we call the inner automorphism group of g. We will recall
below in Proposition 6.1.5 that Aut(g) = Aut0(g) o Out(A). If g is finite-dimensional,
then Aut0(g) coincides with Gad(k) where Gad is the group of adjoint type corresponding
to g. Furthermore, in that case, Gad is the connected component of the identity of the
algebraic group Aut(g).
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6.1.2. We have group homomorphisms

χ1 : Aut(g) 7→ Aut(g′) and χ2 : Aut(g′) 7→ Aut(g′), (6)

where χ1(υ) = υ|g′ for υ ∈ Aut(g) and χ2(τ ) = τ̄ for τ ∈ Aut(g′), and where τ̄ denotes
the automorphism induced by τ on g′ = g′/Z(g′). Let

Aut0(g′) = χ1(Aut0(g)) and Aut0(g′) = (χ2 ◦ χ1)(Aut0(g)).

Also, it is easy to see that χ1 and χ2 ◦ χ1 restricted to Out(A) are injective, and we use
these maps to identify Out(A) with a subgroup of Aut(g′) and Aut(g′) respectively. In
particular, we are regarding Aut(A) as a subgroup of Aut(g), Aut(g′) and Aut(g′).

Definition 6.1.3. We use the term diagram automorphism to refer to an automorphism
of g, g′ or g′ that lies in Aut(A).

6.1.4. There is a unique action of Out(A) onQ such that ν(αi) = αν(i) and ω(αi) = −αi
for all ν ∈ Aut(A), and i ∈ I. Then, with the identifications of 6.1.2, we have

σ(gα) = gσ(α), σ ((g′)α) = (g
′)σ(α) and σ((g′)α) = (g′)σ(α)

for σ ∈ Out(A) and α ∈ Q.

The following result on the structure of Aut(g), Aut(g′) and Aut(g′) is due to Peterson
and Kac [PK] (see also [ABP2, Prop. 7.3]).

Proposition 6.1.5. χ1 is surjective with kernel Aut(g; g′), and χ2 is an isomorphism.
Furthermore

Aut(g) = Aut0(g)o Out(A),

Aut(g′) = Aut0(g′)o Out(A),

Aut(g′) = Aut0(g′)o Out(A).

(7)

6.1.6. Next we let p : Aut(g) → Out(A), p′ : Aut(g′) → Out(A) and p̄ : Aut(g′) →
Out(A) be the projections onto the second factor relative to the decompositions in (7).
Then we have the commutative diagram

Aut(g)
p

−−−−→ Out(A)

χ1

y ∥∥∥
Aut(g′)

p′

−−−−→ Out(A)

χ2

y ∥∥∥
Aut(g′)

p̄
−−−−→ Out(A)

(8)

Definition 6.1.7. Suppose that σ is an automorphism of g, g′ or g′. We say that σ is of
first kind if p(σ) ∈ Aut(A), p′(σ ) ∈ Aut(A) or p̄(σ ) ∈ Aut(A) respectively. Otherwise,
we say that σ is of second kind.3

3 Although we will not need this fact, one can show that this definition of first and second kind
agrees with the usual one which is defined using the image of the positive Borel subalgebra under
σ [KW, §4.6].
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Proposition 6.1.8. The group homomorphism χ1 has a section (that is, a homomorphism
that is a right inverse of χ1).

Proof. We use the notation and identifications of Sections 2.4 and 6.1. For convenience
we set

G = Aute(g), H̃ = Aut(g; h) and K = Aut(g; g′).

By Proposition 6.1.5, χ1 is an epimorphism with kernel K and

Aut(g) = Aut0(g)o Out(A) = (GH̃K)o Out(A).

Note also that H̃ normalizes G, so GH̃ is a subgroup of Aut(g). Further Out(A) nor-
malizes GH̃ , so (GH̃ ) o Out(A) is a subgroup of Aut(g). So χ1|(GH̃ )oOut(A) : (GH̃ ) o
Out(A)→ Aut(g′) is an epimorphism with kernel ((GH̃ )oOut(A))∩K . Thus it suffices
to show that ((GH̃ )o Out(A)) ∩K = {1}. Hence it suffices to show that

(GH̃ ) ∩K = {1}. (9)

Let 1+ be the set of positive roots of g; let U+ denote the subgroup of G generated
by the automorphisms of the form exp(ad(x)), where x ∈ gα , α ∈ 1re

∩ 1+; and let
B̃+ = U+H̃ . Then B̃+ is a subgroup of GH̃ and

GH̃ =
⋃
w∈W

B̃+nwB̃+, (10)

where the family {nw}w∈W of elements of G satisfies n1 = 1, nw(h) = h and nw|h = w
for w ∈ W . (Here we are identifying W as a subgroup of GL(h) as usual [MP, Lemma
5.1.2].) Indeed, this follows from the Bruhat decomposition for the derived group of g,
since that group is mapped onto G by the adjoint map [MP, Prop. 6.3.7].

Observe also from the definition of B̃+ that

b ∈ B̃+ ⇒ b(n+) ⊆ n+ and b(h) ∈ h+ n+ for h ∈ h, (11)

where n+ =
⊕

α∈1+
gα .

To show (9), suppose that p ∈ (GH̃ ) ∩K . Then, by (10), we have

p = b1nwb2,

where b1, b2 ∈ B̃+ and w ∈ W . Thus nw = b−1
1 pb−1

2 . So for h ∈ h′, we have nw(h) ∈
h + n+ by (11). Thus w|h′ = 1, and hence, by [MP, Cor. 5.2.1], w = 1. Therefore,
p ∈ B̃+ ∩ K . Now it easy to see that the elements of K stabilize h (see for example
[ABP2, Prop. 7.5(a)]). In particular, p stabilizes h. So, since p ∈ B̃+, it follows from (11)
that p|h = 1. Since g = g′ + h, we have p = 1 as desired. ut
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6.2. Loop algebras of symmetrizable Kac–Moody Lie algebras

6.2.1. If µ1, µ2 ∈ Out(A), we write µ1 ∼ µ2 to mean that µ1 is conjugate to µ2 or µ−1
2

in Out(A).

Using the results of [ABP2], we can prove the following:

Theorem 6.2.2. Suppose that g = g(A) is the Kac–Moody Lie algebra determined by an
indecomposable symmetrizable GCM A.

(a) If υ1 and υ2 are finite order automorphisms of g, then L(g, υ1) ' L(g, υ2) if and only
if p(υ1) ∼ p(υ2).

(b) If τ1 and τ2 are finite order automorphisms of g′, then L(g′, τ1) ' L(g′, τ2) if and
only if p′(τ1) ∼ p

′(τ2).
(c) If σ1 and σ2 are finite order automorphisms of g′, then p̄(σ1) ∼ p̄(σ2) implies that

L(g′, σ1) ' L(g′, σ2).

Proof. (a) This is Theorem 9.3 of [ABP2].
(b) This is stated in [ABP2] as a corollary of (a). For the sake of completeness (since

the proof is not entirely obvious) we include the necessary details here. By Proposition
6.1.8, we can choose υi ∈ Aut(g) of finite order so that χi(υi) = τi for i = 1, 2. Then
L(g′, τ1) ' L(g′, τ2) if and only if L(g, υ1) ' L(g, υ2) (by [ABP2, Theorem 8.6]) which
holds if and only if p(υ1) ∼ p(υ2) (by (a)). But, by (8), p′(τi) = p(υi) for i = 1, 2. So
we have (b).

(c) Suppose that p̄(σ1) ∼ p̄(σ2). Since χ1 has a section and χ2 is an isomorphism, we
can choose υi of finite order in Aut(g) such that (χ2 ◦χ1)(υi) = σi for i = 1, 2. Then, by
(8), we have p(υ1) ∼ p(υ2), so L(g, υ1) ' L(g, υ2) by (a). Thus, L(g, υ1)

′/Z(L(g, υ1)
′)

' L(g, υ2)
′/Z(L(g, υ2)

′). So by Lemma 4.1.9, we have L(g′, σ1) ' L(g′, σ2). ut

Remark 6.2.3. (a) If g is finite-dimensional simple, then g′ = g, Z(g′) = 0, g′ ' g,
Out(A) = Aut(A), and the elements of Aut(A) are the classical diagram automorphisms.

(b) If g is finite-dimensional simple and k = C, Theorem 6.2.2 is a result of Kac. (See
[P1] and [P2] for other generalizations of Kac’s result.)

(c) If g is affine and σ1 and σ2 are of first kind, we will see in Corollary 13.2.3 that
the converse in Theorem 6.2.2(c) is also true.

6.3. Loop algebras of finite-dimensional simple algebras and the class M1

The following realization theorem for affine algebras is due to V. Kac [K1, Lemma 22]. In
the untwisted case (see Corollary 6.3.2), it was proved independently by R. Moody [Mo,
Thm. 2]. A detailed proof is given in [K2, §7.4 and §8.3] in the complex case, and that
proof also works in general.

Theorem 6.3.1 (Kac). (a) If ġ is a finite-dimensional simple Lie algebra of type Xk and
σ̇ is a diagram automorphism of ġ of order m, then L(ġ, σ̇ ) ' g′, where g = g(A) is
the Kac–Moody Lie algebra constructed from the affine GCM A of type X(m)k .
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(b) Conversely, if g = g(A), where A is the affine GCM of type X(m)k , then there is an
isomorphism ϕ from g′ onto a loop algebra Lm(ġ, σ̇ ) contained in ġ⊗ S1, where ġ is
a finite-dimensional simple Lie algebra of type Xk and σ̇ is a diagram automorphism
of ġ of order m. Moreover, this isomorphism can be chosen such that

t1ϕ((g′)α) = ϕ((g′)α+mδ)

for α ∈ Q, where t1 = zm1 in R1 = k[t±1
1 ] (see 4.1.6), and δ is the standard null root

(see (13) below).

Corollary 6.3.2. A Lie algebra L is isomorphic to g′ for some untwisted affine Kac–
Moody Lie algebra if and only if L ' L(ġ, 1) for some finite-dimensional simple Lie
algebra ġ.

In the complex case, the equivalence of (a)–(d) in the following corollary is due to Kac.

Corollary 6.3.3. If L is a Lie algebra, the following statements are equivalent:

(a) L ∈M1.
(b) L ' L(ġ, σ̇ ) for some finite-dimensional simple Lie algebra ġ and some diagram

automorphism σ̇ of ġ.
(c) L ' g′ for some affine Kac–Moody Lie algebra g.
(d) L ∈ I1.
(e) L ∈ E1.

Proof. First of all, (a)⇒(b) follows from Theorem 6.2.2(a) (applied to ġ); while (b)⇒(a)
is trivial. Next (b) and (c) are equivalent by Theorem 6.3.1; (a) and (d) are equivalent by
definition; and (c) and (e) are equivalent by Proposition 5.2.3(b). ut

Corollary 6.3.4. Suppose that g = g(A), whereA is the affine GCM of type X(m)k . Then g′

is prime, perfect and fgc; and the absolute type and relative type of g′ are respectively Xk
and the quotient type of g (see 5.1.5).

Proof. This follows from Theorem 6.3.1(b), Propositions 4.4.3 and 4.4.4, and Theorem
5.5.2(a). ut

6.3.5. For each affine GCM A, the quotient type of g = g(A) is calculated in [K2,
Prop. 6.3]. We display the results in Table 1 below, where X(1)k denotes any one of the
untwisted affine types. By Corollary 6.3.4, this table also displays the relative type of g′.

Remark 6.3.6. Suppose that g = g(A) is affine. If A has type X(m)k , using the labels
from [K2] as above, then by Corollary 6.3.4 the absolute type of g′ can be read from the
label as Xk . In [MP, §3.5] a different system is used to label affine matrices which allows
one to read the quotient type of g, and hence also the relative type of g′, from the label
in the same fashion. For example if A has label D(3)4 as above, the label for A in [MP]
is G(3)2 . Thus both systems convey important information about the Lie algebra g′. We
will continue to use the labels from [K2] as discussed in Section 2.4.
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Table 1

A Quotient type of g(A)

X(1)
k

Xk

A(2)
k

, k ≥ 2, k 6= 3 BCk/2 (k even) or C(k+1)/2 (k odd)

D(2)
k

, k ≥ 3 Bk−1

D(3)4 G2

E(2)6 F4

The realization theorem leads to a classification of the algebras in M1 using the de-
scription of these algebras in Corollary 6.3.3(b).

Corollary 6.3.7. (a) If σ̇i is a diagram automorphism of a finite-dimensional simple Lie
algebra ġi , i = 1, 2, then L(ġ1, σ̇1) ' L(ġ2, σ̇2) implies that ġ1 ' ġ2.

(b) If σ̇i is a diagram automorphism of a finite-dimensional simple Lie algebra ġ, i =
1, 2, then L(ġ, σ̇1) ' L(ġ, σ̇2) if and only if σ̇1 and σ̇2 are conjugate in the group of
diagram automorphisms of ġ.

Proof. This follows from the Peterson–Kac conjugacy theorem [PK, Thm. 2] and Theo-
rem 6.3.1(a). (See also Remark 8.13 of [ABP2].) Another proof using Galois cohomology
is given in [P2]. Alternatively, (a) follows from Proposition 4.4.4; and (b) follows from
Theorem 6.2.2(a) (since every element of Aut(g) is conjugate to its inverse). ut

Corollary 6.3.8. An algebra L is in I2 if and only if L ' L(g′, σ ) for some affine Lie
algebra g = g(A) and some finite order σ ∈ Aut(g). Moreover, in that case, if A has
type X(m)k , then L has absolute type Xk .

Proof. The first statement follows from the definition of I2 and Corollary 6.3.3; and the
second statement follows from Corollary 6.3.4 and Proposition 4.1.10. ut

7. Automorphisms of affine algebras

In Section 6.1, we discussed some general properties of automorphisms of symmetrizable
Kac–Moody Lie algebras. In this section, we obtain some more detailed information in
the affine case.

We assume throughout the section that g = g(A) is the Kac–Moody Lie algebra
determined by an affine GCM A = (aij )i,j∈I, where I = {0, . . . , `} with ` ≥ 1.

7.1. Notation and terminology for affine algebras

Before looking at automorphisms, we collect some notation, recall some terminology and
discuss some basic properties of affine algebras. We will use this material throughout the
rest of this paper.
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7.1.1. In addition to the notation of Section 2.4, we use the following notation that is stan-
dard in the affine case [K2]. Choose relatively prime positive integers a0, . . . , a` and rel-
atively prime positive integers a∨0 , . . . , a

∨

` so that A[a0, . . . , a`]
t
= 0 and [a∨0 , . . . , a

∨

` ]A

= 0. Note that if ν ∈ Aut(A), then

aν(i) = ai and a∨ν(i) = a
∨

i (12)

for i ∈ I [FSS, p. 47]. Let

c =
∑
i∈I

a∨i α
∨

i and δ =
∑
i∈I

aiαi, (13)

in which case Z(g′) = kc and δ is a Z-basis for the lattice of isotropic roots of g. Let
d ∈ h be a scaling element satisfying αi(d) = δi,0 for i ∈ I, in which case

g = g′ ⊕ kd and h = h′ ⊕ kd.

Finally, let ( | ) be the normalized invariant form on g [K2, §6.2]; that is, ( | ) is the
unique nondegenerate symmetric bilinear form on g satisfying

(α∨i |α
∨

j ) = aja
∨

j aij , (α∨i |d) = δi,0a0 and (d|d) = 0

for i, j ∈ I (see [K2, §6.1 and 6.2] where c is denoted by K). Note in particular that

(ei |fi) =
ai

a∨i
for i ∈ I. (14)

We also have (αi |αi) 6= 0 and

aij =
2(αi |αj )
(αi |αi)

for i, j ∈ I [K2, §2.3].
Also, as for general EALAs in 5.1.5, we let

V = spanQ(1).

Then {α}i∈I is a Q-basis for V . Note that the form ( | ) restricted to V takes rational
values [K2, §6.2–6.3] and we denote its restriction to V also by ( | ). Then the form
( | ) : V × V → Q is positive semi-definite with radical

V 0
:= rad(V ) = Qδ.

We let V̄ = V/V 0 with the canonical map − : V → V̄ , in which case we have the
induced positive definite form ( | ) : V̄ × V̄ → Q on V̄ .

If S ⊆ V , we let
S× = {α ∈ S | (α|α) 6= 0}.

Then [K2, Prop. 5.10(c)]
1× = 1re

=

⋃
i∈I

Wαi . (15)
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7.2. Diagram automorphisms of affine algebras

We now recall from [Bau] that the embedding of Aut(A) into Aut(g) discussed in 6.1.1
is unique in the affine case. This gives a unique interpretation of the notion of diagram
automorphism.

Proposition 7.2.1. There exists a unique group homomorphism σ 7→ σ̃ of Aut(A) into
Aut(g) such that σ̃ (h) = h,

σ̃ (ei) = eσ(i) and σ̃ (fi) = fσ(i) (16)

for σ ∈ Aut(A) and i ∈ I. This homomorphism is injective. Finally, the normalized
invariant form ( | ) on g is invariant under σ̃ for σ ∈ Aut(A).

Proof. We know that a homomorphism with the property indicated in the first sentence
exists. Also, uniqueness follows from Lemma 2.2(b) of [Bau]. Furthermore, it is shown
in the proof of that lemma that σ̃ (d) ∈ d + h′ for σ ∈ Aut(A).

Next it is clear that the map σ 7→ σ̃ is injective, so all that remains is to prove the
last statement. For this, let σ ∈ Aut(A), and define a new form ( | )′ on g by (x|y)′ =
(σ̃ x|σ̃ y). Then both ( | ) and ( | )′ are invariant nondegenerate symmetric bilinear forms
on g. Let

m = {x ∈ g | (x|y)′ = (x|y) for all y ∈ g}.

Then m is an ideal of g, which we must show is g. First ei ∈ m for all i. To see this,
observe that ei is orthogonal, using either form, to all root spaces of g except g−αi . Hence,
it suffices to show that (ei |fi)′ = (ei |fi), which follows from (12) and (14). So ei ∈ m

and similarly fi ∈ m. Thus, m contains g′. Finally, let d ′ =
∑|σ |−1
i=0 σ̃ id. Then, since

σ̃ (d) ∈ d+h′, we see that d ′ ∈ h\h′. Further, σ̃ d ′ = d ′ and so certainly (d ′|d ′)′ = (d ′|d ′).
But since m contains g′, we have (x|d ′)′ = (x|d ′) for all x ∈ g′. So d ′ ∈ m, and we have
m = g. ut

7.2.2. Suppose that σ ∈ Aut(A). As in 6.1.2 and 6.1.3, we will, whenever convenient,
identify σ with the automorphism σ̃ , σ̃ |g′ or σ̃ |g′ of g, g′ or g′ respectively.

7.3. The kind of a finite order automorphism of an affine algebra

In the affine case, using Theorem 6.3.1(b) and the results of [ABP2.5], we can characterize
the kind (as defined in Definition 6.1.7) of a finite order automorphism of g′ in terms of
the centroid of the loop algebra L(g′, σ ).

Proposition 7.3.1. Suppose that σ is an automorphism of finite order of g′. Then, σ is of
first kind if and only if C(L(g′, σ )) ' R2.

Proof. We use the isomorphism ϕ in Theorem 6.3.1(b) to identify g′ = Lm1(ġ, σ̇ ) in
ġ ⊗ S1, and we then identify C(g′) = R1 = k[t±1

1 ] as in Proposition 4.1.7, where σ̇ has
order m1 and t1 = z

m1
1 . Then C(σ ) ∈ Aut(R1) and we have

(C(σ )(t
j

1 ))(x) = σ(t
j

1 (σ
−1x))
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for x ∈ g′, j ∈ Z. Note that since C(σ ) ∈ Aut(R1), we have

C(σ )(t1) ∈ k×t±1
1 .

Let m2 be a period for σ and L = Lm2(g
′, σ ) ⊆ g′ ⊗ k[z±1

2 ]. (We are using z2
for the Laurent variable in this second loop construction to avoid possible confusion.)
Then, by [ABP2.5, Prop. 4.11 and Prop. 4.13], we have C(L) ' Lm2(C(g′),C(σ )) =
Lm2(R1,C(σ )), so

C(L) ' Lm2(R1,C(σ )) ⊆ R1 ⊗ k[z±1
2 ].

Therefore, by [ABP2.5, Lemma 9.1], we see that C(L) ' R2 if and only if t1 ⊗ z
j

2 ∈

Lm2(R1,C(σ )) for some j ∈ Z. But this last condition holds if and only if C(σ )(t1) ∈
ζ
−j
m2 t1 for some j ∈ Z. So, since C(σ ) has period m2, we see that C(L) ' R2 if and only

if C(σ )(t1) ∈ k×t1. Therefore, it remains to show that

p̄(σ ) ∈ Aut(A) ⇔ C(σ )(t1) ∈ k×t1. (17)

Now, by Proposition 6.1.5, we can write

σ = µρ ν ωi,

where µ is a product of automorphisms of g′ of the form exp(ad(xα)) with xα ∈ (g′)α
and α ∈ 1re; ρ ∈ (χ2 ◦ χ1)(Aut(g, h)); ν ∈ Aut(A); ω is the Chevalley automorphism;
and i = 0 or 1. Then, p̄(σ ) ∈ Aut(A) if and only if i = 1. So, to prove (17), it suffices to
show that

C(µ)(t1) ∈ k×t1, C(ρ)(t1) ∈ k×t1, C(ν)(t1) ∈ k×t1 and C(ω)(t1) ∈ k×t−1
1 .

First, µ commutes with the action of C(g′), and hence C(µ)(t1) = t1. Next, if α ∈ 1,
we have ρ((g′)α) = (g′)α . Hence for α ∈ 1,

(C(ρ)(t1))(g′)α = ρ(t1(g′)α) = ρ((g′)α+m1δ) = (g
′)α+m1δ.

So C(ρ)(t1) /∈ k×t−1
1 , and thus C(ρ)(t1) ∈ k×t1. Next ν(δ) = δ and ν((g′)α) = (g′)ν(α)

for α ∈ 1. So calculating as above, we get (C(ν)(t1))(g′)α = (g′)α+m1δ for α ∈ 1,
and therefore C(ν)(t1) ∈ k×t1. Next ω(δ) = −δ and ω((g′)α) = (g′)−α for α ∈ 1. So,
we get (C(ω)(t1))(g′)α = (g′)α−m1δ for α ∈ 1, hence C(ω)(t1) /∈ k×t1, and therefore
C(ω)(t1) ∈ k×t−1

1 . ut

8. Loop algebras of affine algebras relative to diagram rotations

Our goal in the next two sections is to obtain detailed information about L(g′, σ ), where
g = g(A) is an affine algebra and σ ∈ Aut(A).

We say that σ is transitive if the group 〈σ 〉 acts transitively on I. Observe that by
the classification of affine diagrams, σ is transitive if and only if g is of type A(1)` , where
` ≥ 1, and σ has order `+ 1 in the rotation group of the diagram.
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We will consider two overlapping cases:

The rotation case: g is of type A(1)` , where ` ≥ 1 and σ is in the rotation group of the
diagram. (When ` = 1, σ = (1) or (0, 1).)

The nontransitive case: σ is not transitive.

Note that by the preceding observation every σ is covered by one of these two cases.
In this section, we determine the structure of L(g′, σ ) in the rotation case. We will

consider the nontransitive case in the next section.

8.1. The map ιm

8.1.1 (The map ιm). We next introduce a map ιm : Zm → Zm for m ≥ 1, which will
appear in our description of the structure of L(g′, σ ) (Theorem 8.3.1). To do this, we
begin by defining for each positive divisor g of m the set

U(m, g) = {k̄ ∈ Zm | gcd(k,m) = g}.

(As is usual, we interpret gcd(0, m) asm.) So, in particular,U(m,m) = {0̄}, andU(m) :=
U(m, 1) is the group of units of the ring Zm. (Our convention is that 0̄ is a unit in Z1 =

{0̄}.) Now
Zm =

⋃
g|m

U(m, g) (disjoint);

and, for each g | m, we have the bijection

U(m/g)
·g
−→ U(m, g)

given by k̄ 7→ kg. We let ιm : Zm → Zm be the unique map such that, for each positive
divisor g of m, we have ιm(U(m, g)) ⊆ U(m, g) and the diagram

U(m/g)
·g

−−−−→ U(m, g)

inv

y yιm|U(m,g)
U(m/g)

·g
−−−−→ U(m, g)

commutes, where inv is the inversion map on U(m/g). It is clear from this definition that
ι2m = 1 and hence ιm is a bijection.

8.2. Some associative loop algebras

Our goal now is to realize certain associative loop algebras as matrix algebras over quan-
tum tori. We use the notation dm(u), pm(u), Dm(u), Pm(u) and Q(θ) of 4.5.4.

Lemma 8.2.1. Suppose that m ≥ 1, θ has order m in k×, and q ∈ Z. Then, using the
notation of Definition 4.1.1,

Lm(Mm(R1), Pm(t1)
q , θ) ' Lm

(
Mm(k), (Dm(θ), Pm(1)q), θ

)
, (18)

where m = (m,m) and θ = (θ, θ).
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Proof. We identify Mm(k)⊗ S1 = Mm(S1), where S1 = k[z±1
1 ]. Then

Lm(Mm(k),Dm(θ), θ) = Mm(S1)
Dm(θ)⊗η.

where η ∈ Aut(S1) satisfies η(z1) = θ−1z1 and Mm(S1)
Dm(θ)⊗η is the algebra of fixed

points of Dm(θ)⊗ η in Mm(S1). Similarly, we have

Lm(Mm(k), 1, θ) = Mm(S1)
1⊗η
= Mm(R1),

where R1 = k[t±1
1 ] with t1 = zm1 . But setting

ϕ = Dm(z1) ∈ Aut(Mm(S1)),

we have

ϕ(1⊗ η)ϕ−1
= Ad(dm(z1))(1⊗ η)Ad(dm(z1)

−1)

= Ad(dm(z1))Ad((1⊗ η)dm(z1)
−1)(1⊗ η)

= Ad(dm(z1)dm(ηz1)
−1)(1⊗ η) = Dm(θ)⊗ η.

It follows that ϕ restricts to an isomorphism

ϕ : Lm(Mm(k), 1, θ)
∼
−→ Lm(Mm(k),Dm(θ), θ).

So using Remark 4.2.2, we have

Lm
(
Mm(k), (Dm(θ), Pm(1)q), θ

)
' Lm

(
Lm(Mm(k),Dm(θ), θ), Pm(1)q , θ

)
' Lm

(
Lm(Mm(k), 1, θ), ϕ−1Pm(1)qϕ, θ

)
.

But ϕ−1Pm(1)ϕ = Ad(dm(z1)
−1pm(1)dm(z1)), and a direct calculation shows that

dm(z1)
−1pm(1)dm(z1) = z

−1
1 pm(z

m
1 ). So ϕ−1Pm(1)ϕ = Pm(zm1 ). Thus,

Lm
(
Mm(k), (Dm(θ), Pm(1)q), θ

)
' Lm

(
Lm(Mm(k), 1, θ), Pm(zm1 )

q , θ
)

= Lm(Mm(R1), Pm(t1)
q , θ). ut

Proposition 8.2.2. Suppose that m ≥ 1, θ has order m in k× and q ∈ Z. Then

L(Mm(R1), Pm(t1)
q , θ) ' Mgcd(q,m)(Q(θ

ιm(q̄))), (19)

where θ ιm(q̄) has the evident well-defined interpretation.

Proof. By Lemmas 8.2.1 and 4.5.6(a), we have

L(Mm(R1), Pm(t1), θ) ' Q(θ). (20)

Since ιm(1̄) = 1̄, this proves (19) when q = 1.
We next suppose that q = g, where g is a positive divisor of m. Since ιm(ḡ) = ḡ, we

must show that
Lm(Mm(R1), Pm(t1)

g, θ) ' Mg(Q(θ
g)). (21)
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To see this, we regard matrices in Mm(R1) as elements in EndR1(R
m
1 ) by means of the

natural left action on column vectors. Let (x1, . . . , xm) be the standard ordered R1-basis
for Rm1 and let k = m/g. Then, relative to the new ordered R1-basis

(x1, x1+g, . . . , x1+(k−1)g, x2, x2+g, . . . , x2+(k−1)g, . . . , xg, xg+g, . . . , xg+(k−1)g)

of Rm1 , pm(t1)g has matrix

pm,g(t1) := diag(pk(t1), . . . , pk(t1))

in block diagonal form with g diagonal k × k-blocks. So

Lm(Mm(R1), Pm(t1)
g, θ) ' Lm(Mm(R1), Pm,g(t1), θ),

where Pm,g(t1) = Ad(pm,g(t1)). It follows that

Lm(Mm(R1), Pm(t1)
g, θ) ' Mg

(
Lm(Mk(R1), Pk(t1), θ)

)
.

But using Lemma 4.1.2(c) and (20), we have

Lm(Mk(R1), Pk(t1), θ) ' Lk(Mk(R1), Pk(t1), θ
g) ' Q(θg).

So we have (21).
Finally, suppose that q ∈ Z is arbitrary, and let g = gcd(m, q), k = m/g and r = q/g.

Now gcd(r, k) = 1. Hence, since the map s̄ 7→ s̄ from U(m) to U(k) is surjective, we
can choose s ∈ Z satisfying

gcd(s,m) = 1 and sr ≡ 1 (mod k).

Then

Lm(Mm(R1), Pm(t1)
q , θ) ' Lk(Mm(R1), Pm(t1)

q , θg) (by Lemma 4.1.2(c))
= Lk(Mm(R1), (Pm(t1)

g)r , θg)

' Lk(Mm(R1), Pm(t1)
g, (θg)s) (by Lemma 4.1.2(b))

' Lm(Mm(R1), Pm(t1)
g, θ s) (by Lemma 4.1.2(c))

' Mg(Q(θ
sg)) (by (21))

' Mg(Q(θ
ιm(q̄))). ut

8.3. The structure of L(g′, ρq)

We now assume that g = g(A), where A is the affine GCM of type A(1)` , ` ≥ 1. We enu-
merate the fundamental roots α0, α1, . . . , α` in cyclic order around the Dynkin diagram
as in [K2, §4.8]; and we use the notation of Section 7 for affine algebras. Let

ρ = (0, 1, . . . , `) ∈ Aut(A);

so ρ is a rotation of the Dynkin diagram by one position. Then a general rotation of the
Dynkin diagram has the form ρq , where q ∈ Z.
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We now prove a theorem that gives realizations of the loop algebras L(g′, ρq) as
multiloop algebras (see (23)) and as matrix algebras over quantum tori (see (24)).

Theorem 8.3.1. Suppose that q ∈ Z. Then

L(g′, ρq) ' L(sl`+1(R1), P`+1(t1)
q), (22)

L(g′, ρq) ' L
(
sl`+1(k), (D`+1(ζ`+1), P`+1(1)q)

)
, (23)

L(g′, ρq) ' slgcd(q,`+1)(Q(ζ
ι`+1(q̄)
`+1 )). (24)

Proof. By Theorem 6.3.1 (with m = 1 and t1 = z1), we can identify

g′ = sl`+1(k)⊗ R1 = sl`+1(R1).

Furthermore, by [K2, Thm. 7.4], this can be done with

e0 = t1E`+1,1, f0 = t
−1
1 E1,`+1, ei = Ei,i+1, fi = Ei+1,i

for 1 ≤ i ≤ `, where Eij denotes the (i, j)-matrix unit in M`+1(R1). Now, a direct cal-
culation shows that P`+1(t

−1
1 )(ei) = ei+1 and P`+1(t

−1
1 )(fi) = fi+1 for 0 ≤ i ≤ `,

where the subscripts are interpreted modulo ` + 1. So ρ = P`+1(t
−1
1 ). Therefore

L(g′, ρq) = L(sl`+1(R1), P`+1(t
−1
1 )q). Replacing t1 by t−1

1 we have (22).
Now taking the derived algebras of both sides of (18) (with m = `+ 1 and θ = ζ`+1)

we see, using Lemma 4.1.9(a), that the right hand sides of (22) and (23) are isomorphic.
Similarly, taking the derived algebras of both sides of (19), we see that the right hand
sides of (22) and (24) are isomorphic. ut

Corollary 8.3.2. If q ∈ Z, L(g′, ρq) ∈ M2. Moreover, if q is relatively prime to ` + 1,
then the relative type of L(g′, ρq) is A0; in other words L(g′, ρq) is anisotropic.

Proof. This follows from (24) and Proposition 4.5.8(b). ut

9. Loop algebras of affine algebras relative to nontransitive diagram
automorphisms

Suppose that g = g(A) is the Kac–Moody Lie algebra constructed from an affine GCM
A = (aij )i,j∈I, and suppose that σ ∈ Aut(A), m is a positive integer and σm = 1. We
continue with the notation of Section 7 for affine algebras.

In this section, we recall results from [ABP1] that show that if σ is not transitive,
L(g′, σ ) is the centreless core of an EALA which is constructed as the affinization of g
relative to σ . We use this and Theorem 5.5.2 about EALAs to give a description of the
relative type of L(g′, σ ) in terms of σ and the root system of g.

9.1. Affinization

Initially we do not assume that σ is nontransitive.

9.1.1. Let
Affm(g, σ ) := Lm(g, σ )⊕ kc̃ ⊕ kd̃ (25)
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as a vector space, where c̃, d̃ 6= 0, and define a skew-symmetric product on Affm(g, σ )
by
[x ⊗ zi1 + r1c̃ + r2d̃, y ⊗ z

j

1 + s1c̃ + s2d̃]

= [x, y] ⊗ z
i+j

1 + jr2y ⊗ z
j
− is2x ⊗ z

i
+ iδi+j,0(x|y)c̃ (26)

for i, j ∈ Z, x ∈ gı̄ , y ∈ g̄ , r1, r2, s1, s2 ∈ k. One checks easily that Affm(g, σ ) is a
Lie algebra which we call the affinization of g relative to σ . We define a form ( | ) on
Affm(g, σ ) by

(x ⊗ zi1 + r1c̃ + r2d̃ | y ⊗ z
j

1 + s1c̃ + s2d̃) = δi+j,0(x|y)+ r1s2 + r2s1. (27)

Then, since σ preserves the form on g by Proposition 7.2.1, it follows that ( | ) is a
nondegenerate symmetric bilinear form on Affm(g, σ ) [ABP1, Lemma 3.2]. Finally, let
H = (hσ ⊗ 1)⊕ kc̃ ⊕ kd̃ , in which case H is an abelian subalgebra of Affm(g, σ ).

To discuss the root system of Affm(g, σ ) we need some further notation.

9.1.2. We have σ(h) = h, so σ acts on h∗ by the inverse dual action:

(σ (α))(h) = α(σ−1(h))

for α ∈ h∗, h ∈ h. Then

σ(1) = 1, so σ(V ) = V. (28)

Next, since σ has finite order, we have

V = V σ ⊕ (1− σ)(V ), (29)

where V σ denotes the fixed point set of σ acting on V . Let πσ : V → V σ be the
projection of V onto V σ relative to the decomposition (29).

Proposition 9.1.3. Suppose that g = g(A) is an affine Kac–Moody Lie algebra
with root system 1, σ ∈ Aut(A) is not transitive, and σm = 1. Then the triple
(Affm(g, σ ), ( | ),H) defined in 9.1.1 is an EALA of nullity 2 which is discrete if k = C.
Moreover, the centreless core of this EALA is isomorphic to Lm(g′, σ ). Finally, πσ (1) is
an irreducible finite root system in V σ and the quotient type of (Affm(g, σ ), ( | ),H) is
equal to the type of the finite root system πσ (1).
Proof. If k = C, these statements are proved in [ABP1]. (See Theorem 4.8, Lemma
3.57 and Equation (3.48) of [ABP1].) The result for general k is proved by straightfor-
ward modification of the arguments given there. In particular, instead of working with
the R-spans of the root systems for g and Affm(g, σ ), one works with the Q-spans. Also,
Lemma 3.33 of [ABP1] must be replaced by the statement that the group generated by the
isotropic roots of Affm(g, σ ) is finitely generated. This is easily checked using [ABP1,
(3.31)]. The remaining changes are evident, so we omit further explanation. ut

9.2. Relative type in the nontransitive case

Theorem 9.2.1. Suppose that g = g(A) is an affine Kac–Moody Lie algebra and σ ∈
Aut(A) is not transitive. Then L(g′, σ ) ∈ M2 ∩ E2, and the relative type of L(g′, σ ) is
equal to the type of the finite root system πσ (1).
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Proof. Let L = L(g′, σ ). Then L is fgc by Corollary 6.3.8 and Proposition 4.4.3, and
L ∈ E2 by Proposition 9.1.3. Our conclusion now follows from Proposition 9.1.3 and
Corollary 5.5.2. ut

9.2.2. We will return in Section 12 to study the finite root system πσ (1) and see how to
calculate its type.

10. Characterizations of algebras in M2

10.1. Characterizations

Our first main theorem gives three characterizations of the algebras in M2.

Theorem 10.1.1. For a Lie algebra L, the following statements are equivalent:

(a) L ∈M2.
(b) L ' L(g′, σ ), where g is an untwisted affine Kac–Moody Lie algebra and σ is a

diagram automorphism of g′.
(c) L ' L(g′, σ ), where g is an affine Kac–Moody Lie algebra and σ is a finite order

automorphism of g′ of first kind.
(d) L ∈ I2 and C(L) is isomorphic to R2.

Proof. (c) and (d) are equivalent by Corollary 6.3.8 and Proposition 7.3.1. It remains
therefore to show that (a), (b) and (c) are equivalent.

(a)⇒(b): We have L ' L(ġ, σ ), where ġ is a finite-dimensional simple Lie algebra
and σ = (σ1, σ2) is a pair of commuting finite order automorphisms of ġ. If P =

[
a b
c d

]
∈

GL2(Z), we write σP = (σ a1 σ
c
2 , σ

b
1 σ

d
2 ). Then L(ġ, σP ) ' L(ġ, σ ) [GP1, Lemma 5.3], so

we can replace σ by σP as needed.
Next ġ = g(Ȧ) for some GCM Ȧ of finite type, so, by Proposition 6.1.5, we have

Aut(ġ) = Aut0(ġ) o Aut(Ȧ), since Out(Ȧ) = Aut(Ȧ). We let ṗ : Aut(ġ)→ Aut(Ȧ) be
the projection onto the second factor relative to this decomposition.

We claim that for suitable P =
[
a b
c d

]
∈ GL2(Z), we have

ṗ(σ a1 σ
c
2 ) = 1. (30)

Now Aut(Ȧ) is isomorphic to S3, Z/2Z or {1}. So, since ṗ(σ1) and ṗ(σ2) commute, one
of these is a power of the other. If ṗ(σ2) = ṗ(σ1)

k , then (30) holds with P =
[
−k 1
1 0

]
. On

the other hand, if ṗ(σ1) = ṗ(σ2)
k , then (30) holds with P =

[ 1 0
−k 1

]
. This demonstrates

the claim.
So we can replace σ by σP and assume that ṗ(σ1) = 1. Hence, using Theo-

rem 6.2.2(a) (applied to ġ) and Corollary 6.3.2, we have L(ġ, σ1) ' L(ġ, ṗ(σ1)) =

L(ġ, 1) ' g′, where g = g(A) is an untwisted affine algebra. Therefore,

L ' L(ġ, σ ) ' L(L(ġ, σ1), σ2 ⊗ 1|L(ġ,σ1)) ' L(g′, τ ),

for some automorphism τ of g′ of finite order.
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Next, by Proposition 4.1.7, the centroid C(L) of L is isomorphic to R2. Thus, by
Proposition 7.3.1, τ is of first kind. So using the notation of 6.1.6, p̄(τ ) ∈ Aut(A). Finally,
by Theorem 6.2.2(c), we have L ' L(g′, τ ) ' L(g′, p̄(τ )) = L(g′, σ ).

(b)⇒(c): This is trivial.
(c)⇒(a): Suppose L ' L(g′, σ ), where g = g(A) is an affine Kac–Moody Lie alge-

bra and σ is a finite order automorphism of g′ of first kind. By Theorem 6.2.2(c) again,
we have L ' L(g′, p̄(σ )); so replacing σ by p̄(σ ), we can assume that σ ∈ Aut(A). Then
L ∈M2 by Corollary 8.3.2 and Theorem 9.2.1. ut

Remark 10.1.2. If L ' L(g′, σ ), where σ is a diagram automorphism of an affine alge-
bra of type X(1)k , it follows from Theorem 10.1.1 and Proposition 4.1.10 that L ' L(ġ, τ ),
where τ is a 2-tuple of commuting finite order automorphisms of a finite-dimensional
simple Lie algebra ġ of type Xk . It would be interesting to obtain a simple algorithm to
find such a τ in each case. This may be possible with a careful examination of the steps
in the proof of Theorem 10.1.1.

We now look more closely at the relationship between the class M2 and the classes
E2 and I2. This is presented in a sequence of corollaries of Theorem 10.1.1.

Corollary 10.1.3. For a Lie algebra L, the following statements are equivalent:

(a) L ∈M2 ∩ E2.
(b) L ∈ I2 ∩ E2.
(c) L ∈ E2 and L is fgc.
(d) L ∈M2 and L is isotropic.
(e) L ' L(g′, σ ), where g is an untwisted affine Kac–Moody Lie algebra and σ is a

nontransitive diagram automorphism of g′.

Proof. (a)⇒(b) holds since M2 ⊆ I2, (b)⇒(c) follows from Proposition 4.4.3, and
(c)⇒(d) follows from Theorem 5.5.2.

(d)⇒(e): By Theorem 10.1.1, we have L ' L(g′, σ ), where g = g(A) is an untwisted
affine algebra and σ ∈ Aut(A). Then, since L is isotropic, it follows from Corollary 8.3.2
that σ is not transitive.

(e)⇒(a): This holds by Theorem 9.2.1. ut

Corollary 10.1.4. For a Lie algebra L, the following statements are equivalent:

(a) L ∈M2 \ E2.
(b) L ∈M2 and L is anisotropic.
(c) L ' L(g′, σ ), where g is an untwisted affine Kac–Moody Lie algebra and σ is a

transitive diagram automorphism of g′.
(d) L ' sl1(Q(θ)), where θ 6= 1 is a root of unity in k×.

Proof. First, (a)⇒(c) by Theorem 10.1.1 and Corollary 10.1.3; second, (c)⇒(b) by
Corollary 8.3.2; and third, (b)⇒(a) by Corollary 10.1.3. Therefore, (a), (b) and (c) are
equivalent. Finally (d) and (c) are equivalent by (24), since any root of unity 6= 1 in k×
equals ζ r`+1 for some ` ≥ 1 and some r relatively prime to `+ 1. ut
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Remark 10.1.5. We have described the algebras in M2 \E2 as matrix algebras. This can
also be done for the algebras in E2 \M2 using the coordinatization theorems for algebras
in En (see 5.3.6). In nullity 2, it turns out that the only algebras in E2 that are not fgc, and
hence not in M2, are the algebras isomorphic to slg(Q(θ)), for some g ≥ 2 and some θ
of infinite order in k×. (See [Neh2] for a more general theorem.) We will not use this fact
in this paper except to include it in Figure 1 below.

Corollary 10.1.6. For a Lie algebra L, the following statements are equivalent:

(a) L ∈ I2 \M2.
(b) L ' L(g′, ωσ), where g is an untwisted affine Kac–Moody Lie algebra, ω is the

Chevalley automorphism and σ is a diagram automorphism of g′.
(c) L ' L(g′, σ ), where g is an affine Kac–Moody Lie algebra and σ is a finite order

automorphism of second kind of g′.

Proof. (a)⇒(b): By Corollary 6.3.8, L ' L(g′, σ ) for some affine Lie algebra g = g(A)
and some finite order σ ∈ Aut(g). By Theorem 6.2.2(c), we can assume that σ ∈ Out(A).
Finally, σ /∈ Aut(A), by Theorem 10.1.1.

(b)⇒(c) is trivial.
(c)⇒(a): By Corollary 6.3.8, L ∈ I2. Further, if L ∈ M2, then C(L) ' R2 by

Proposition 4.1.7, which implies that σ is of first kind by Proposition 7.3.1. ut

10.1.7. Much of the information from this section is summarized in Figure 1 below. In
the figure, M2 has a bold line border, I2 is the tall vertical rectangle, and E2 is the wide
horizontal rectangle.

I2 \M2
= {L(g′, ωσ) | g untwisted affine, σ ∈ Aut(A)}
= {algebras in I2 with centroid 6' R2}

M2 \ E2
= {L(g′, σ ) | g untwisted affine,

σ ∈ Aut(A) transitive}
= {anisotropic algebras in M2}
= {sl1(Q(θ)) | θ a root of unity 6= 1}

M2 ∩ E2 = I2 ∩ E2
= {L(g′, σ ) | g untwisted affine,

σ ∈ Aut(A) not transitive}
= {isotropic algebras in M2}
= {fgc algebras in E2}

E2 \M2
= non-fgc algebras in E2
= {slg(Q(θ)) | g ≥ 2,

θ not a root of unity}

E2

M2

I2

Fig. 1. The classes M2, I2 and E2.
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10.1.8. There is another interesting class of algebras related to multiloop algebras which
has been investigated in [GP1] using cohomological methods. This is the class, which
we denote here by Fn, of Rn-forms of finite-dimensional simple Lie algebras. (If g is an
algebra, an Rn-form of g is an algebra L over Rn such that L⊗Rn S 'S g⊗ S for some
faithfully flat and finitely presented extension S/Rn of unital commutative associative
algebras over k.) For any n ≥ 1, Fn contains Mn [GP1, §5.1]; if n = 1, F1 = M1 [P2],
so F1 = M1 = I1 = E1; but already if n = 2, an example of B. Margaux shows that F2
properly contains M2 [GP1, Example 5.7]. Furthermore, algebras in F2 are fgc and have
centroids isomorphic to R2 [GP1, Lemma 4.6], so F2∩ I2 =M2 and F2∩E2 =M2∩E2.
We will not discuss the class Fn further here, and instead refer the reader to [GP1] for
more information.

11. Isomorphism conditions for matrix algebras over quantum tori

In the next two sections we develop the results we need to determine when two algebras
of the form L(g′, σ ), where g is an affine algebra and σ is a diagram automorphism of g′,
are isomorphic. We do this for the rotation case in this section and for the nontransitive
case in the next section.

Recall that R2 = k[t±1
1 , t±1

2 ]. We let

K2 = k(t1, t2)

be the quotient field of R2; that is, K2 is the field of rational functions in the variables
t1, t2 over k.

Recall also from 4.5.3 that if θ is an element of k× of finite order m and Q(θ) is the
quantum torus determined by θ with distinguished generators x1, x2, x

−1
1 , x−1

2 , then we
have identified R2 with the centre of Q(θ) by setting t1 = xm1 and t2 = xm2 .

11.1. Comparing Q(θ) and Q(θ−1)

Suppose that θ ∈ k× has order m.

11.1.1. Note that Q(θ) ' Q(θ−1) under the isomorphism that exchanges the distin-
guished generators x1 and x2. However, it is not true that Q(θ) 'R2 Q(θ−1) unless
m = 1 or 2, as we shall see below in Lemma 11.3.1.

11.1.2. If A is an arbitrary algebra, we denote by Aop the opposite algebra of A, with
underlying vector space A and multiplication (x, y) 7→ yx.

Lemma 11.1.3. Suppose that g ≥ 1. Then

Mg(Q(θ)) 'R2 Mg(Q(θ
−1))op,

glg(Q(θ)) 'R2 glg(Q(θ
−1)) and slg(Q(θ)) 'R2 slg(Q(θ

−1)).

Proof. Let ∗ denote the product in Q(θ−1)op. Then in Q(θ−1)op, we have x1 ∗ x2 =

x2x1 = θx1x2 = θx2 ∗ x1. Hence, we have a k-algebra isomorphism of Q(θ) onto
Q(θ−1)op with xi 7→ xi . It is clear that this is an R2-algebra isomorphism, so that
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Q(θ) 'R2 Q(θ
−1)op. Thus,

Mg(Q(θ)) 'R2 Mg(Q(θ
−1)op) 'R2 Mg(Q(θ

−1))op,

where the last isomorphism is the transpose map; and

glg(Q(θ)) 'R2 glg(Q(θ
−1)op) 'R2 glg(Q(θ

−1)),

where the last isomorphism is additive inversion. Taking derived algebras now finishes
the proof. ut

Lemma 11.1.4. If ϕ ∈ Aut(R2), then there exists a k-algebra isomorphism ofQ(θ) onto
either Q(θ) or Q(θ−1) that extends ϕ.

Proof. It is well known that there exists a unique P =
[ p11 p12
p21 p22

]
∈ GL2(Z) such that

ϕ(ti) ∼ t
pi1
1 t

pi2
2

for i = 1, 2, where ∼ means that the first element is obtained from the second by mul-
tiplying by an element of k×. Let ε = det(P ) ∈ {±1}. We will show that ϕ extends to
an isomorphism from Q(θ) to Q(θε). Let ψex : Q(θ) → Q(θ−1) be the isomorphism
mentioned in 11.1.1. Replacing ϕ by ψex|R2ϕ if necessary, we can assume that ε = 1.
But then, since P ∈ SL2(Z), there exists ψP ∈ Aut(Q(θ)) such that ψP (xi) ∼ x

pi1
1 x

pi2
2

for i = 1, 2 [Neeb, Lemmas IV.3 and IV.6]. Then ψP (ti) ∼ t
pi1
1 t

pi2
2 , so (ψ−1

P ϕ)(ti) ∼ ti

for i = 1, 2. Hence, replacing ϕ by ψ−1
P |R2ϕ, we can assume that ϕ(ti) ∼ ti for i = 1, 2.

Since k× = (k×)m, the proof in this case is clear. ut

11.2. Cyclic algebras and quantum tori

Suppose that θ ∈ k× has order m.

11.2.1 (Cyclic algebras). Suppose that F is a unital commutative associative k-algebra
and u1, u2 are units in F . We let

A = (u1, u2;m,F, θ)

denote the algebra over F presented by the generators y1, y2 subject to the relations
y1y2 = ζy2y1, ym1 = u1 and ym2 = u2. We call A the cyclic algebra over F determined
by u1, u2 and θ , and we call y1, y2 the distinguished generators of A over F . It is easy to
see that A is a free F -module of rank m2 with basis {yk1

1 y
k2
2 | 0 ≤ k1, k2 ≤ m− 1}. If F

is a field, it is known that A is a central simple algebra over F [D, Theorem 11.1], and we
denote the element represented by A in the Brauer group Br(F ) of F by [u1, u2;m,F, θ ].

Lemma 11.2.2. (a) Q(θ) 'R2 (t1, t2;m,R2, θ).
(b) Q(θ)⊗R2 K2 'K2 (t1, t2;m,K2, θ), where K = k(t1, t2).
(c) Q(θ)⊗R2 K2 is a central division algebra of dimension m2 over K2.
(d) [t1, t2;m,K2, θ] has order m in Br(K2).
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Proof. (a) follows easily from the presentations for the two algebras, and (b) follows
from (a).

(c) is well known (see for example the arguments in [Y1, §2–3]). For the reader’s
convenience, we briefly recall the proof. In view of (b) and the remarks in 11.2.1, it
suffices to show that Q(θ) ⊗R2 K2 is a division algebra. Since Q(θ) ⊗R2 K2 is finite-
dimensional over K2, it is enough to show that Q(θ) ⊗R2 K2 is a domain, and thus it
suffices to show that Q(θ) is a domain. This is easily seen by looking at components of
highest degree (relative to the lexicographic ordering) in the Z2-grading for Q(θ).

To prove (d), let r be the order of [t1, t2;m,K2, θ] in Br(K2). Since the algebra
(t1, t2;m,K2, θ) is central simple of dimension m2 over K2, we know r divides m. But
by [D, Lemma 11.6], we have r[t1, t2;m,K2, θ] = [t1, t2;m/r,K2, θ

r
], so

[t1, t2;m/r,K2, θ
r
] = 0.

Also, by (b), (t1, t2;m/r,K2, θ
r) 'R2 Q(θ

r) ⊗R2 K2, which is a division algebra of
dimension (m/r)2 over K2 by (c). Hence, m/r = 1, so r = m. ut

Remark 11.2.3. It is known that the homomorphism Br(R2) 7→ Br(K2) induced by base
ring extension is an injection [Mi, Cor. IV.2.6], where Br(R2) is the Brauer group of the
ring R2. Using this fact, Lemma 11.2.2(d) is equivalent to the statement, proved in [GP1,
Prop. 3.16] in a different way, that (t1, t2;m,R2, θ) represents an element of order m in
Br(R2).

11.3. Isomorphism conditions

Lemma 11.3.1. Suppose that θ1 and θ2 are elements of k× of finite order. If
Q(θ1) ⊗R2 K2 'K2 Q(θ2) ⊗R2 K2, then θ1 = θ2. Thus, if Q(θ1) 'R2 Q(θ2), then
θ1 = θ2 (see 11.1.1).

Proof. By Lemma 11.2.2(c), θ1 and θ2 have the same order m in k×. So we can
write θ2 = θ

q

1 , where q ∈ Z and gcd(q,m) = 1. Then, by Lemma 11.2.2(b),
we have [t1, t2;m,K2, θ1] = [t1, t2;m,K2, θ

q

1 ] in Br(K2). So q[t1, t2;m,K2, θ1] =

q[t1, t2;m,K2, θ
q

1 ]. But, by [D, Lemma 11.5], the right hand side is equal to
[t1, t2;m,K2, θ1]. So (q − 1)[t1, t2;m,K2, θ1] = 0, and therefore, by Lemma 11.2.2(d),
we have q ≡ 1 (modm). Thus θ1 = θ2. ut

Theorem 11.3.2. Suppose that g1 and g2 are positive integers, and that θ1 and θ2 are
elements of k× of finite order. Then the following statements are equivalent:

(a) slg1(Q(θ1)) ' slg2(Q(θ2)).
(b) g1 = g2 and θ1 = θ

±1
2 .

(c) Mg1(Q(θ1)) ' Mg2(Q(θ2)).

Proof. For simplicity, we write R = R2 and K = K2.
(c)⇒(a) is clear, and, since Q(θ1) ' Q(θ

−1
1 ), (b)⇒(c) is also clear. So all that must

be proved is that (a)⇒(b).
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Let Li = slgi (Q(θi)) for i = 1, 2, and suppose that % : L1 → L2 is an isomorphism
of k-algebras. Let mi be the order of θi for i = 1, 2. If g1m1 = 1, then g1 = 1 and
θ1 = 1. Thus L1 = 0, so L2 = 0. Therefore, g2 = 1 and θ2 = 1, so (b) holds. Hence,
we can assume that g1m1 > 1 and similarly g2m2 > 1. Thus, by Lemma 4.5.6(e), the
natural homomorphism R → C(Li) is an isomorphism which we regard as an identifi-
cation for i = 1, 2. So we have the induced automorphism ϕ = C(%) of R satisfying
%(rx) = ϕ(r)%(x) for r ∈ R, x ∈ L1 (see 3.1.3). Then, by Lemma 11.1.4, there exists an
isomorphism ψ : Q(θ1)→ Q(θε1 ), where ε = ±1, such that ψ |R = ϕ−1. Further, by the
last isomorphism in Lemma 11.1.3, we can assume that ε = 1. Now ψ ∈ Aut(Q(θ1)) in-
duces ψ̃ ∈ Mg1(Q(θ1)), which restricts to ψ̃ |L1 ∈ Aut(L1). Then, replacing % by %ψ̃ |L1 ,
we can assume that % is R-linear. Thus, L1 'R L2, so L1 ⊗R K 'K L2 ⊗R K .

Now since K/R is a flat extension of commutative k-algebras [Bo1, Chap. I, § 2.4,
Thm. 1], we have (M⊗R K)′ 'K M′ ⊗R K for any Lie algebra M over R. Thus,

slgi (Q(θi)⊗R K) 'K
(
glgi (Q(θi)⊗R K)

)′
'K

(
glgi (Q(θi))⊗R K

)′
'K

(
glgi (Q(θi))

)′
⊗R K 'K slgi (Q(θi))⊗R K ' Li ⊗R K

for i = 1, 2. So
slg1(Q(θ1)⊗R K) 'K slg2(Q(θ2)⊗R K). (31)

Now, by Lemma 11.2.2, Q(θi) ⊗R K is an m2
i -dimensional central division algebra

overK for i = 1, 2. Thus, by the isomorphism theorem for central simple Lie algebras of
type A [J, Thm. X.10], (31) implies that Mg1(Q(θ1) ⊗R K) is isomorphic as an algebra
over K to either Mg2(Q(θ2) ⊗R K) or (Mg2(Q(θ2) ⊗R K))

op. Now, by Lemma 11.1.3,
we can replace θ2 by θ−1

2 if necessary and assume that

Mg1(Q(θ1)⊗R K) 'K Mg2(Q(θ2)⊗R K).

By the uniqueness part of Wedderburn’s structure theorem [Pi, Thm. 3.5(ii)], it follows
that g1 = g2 and Q(θ1)⊗R K 'K Q(θ2)⊗R K . Thus, θ1 = θ2 by Lemma 11.3.1. ut

12. Calculating the relative type in the nontransitive case

Suppose that g = g(A) is the Kac–Moody Lie algebra constructed from an affine GCM
A = (aij )i,j∈I, where I = {0, . . . , `} with ` ≥ 1, and that σ ∈ Aut(A) is not transitive.
We continue with the notation of Section 7 for affine algebras, and we choose a positive
integer m such that σm = 1.

We saw in Theorem 9.2.1 that the relative type of L(g′, σ ) is the type of the finite root
system πσ (1). In this section we use methods from [FSS] and [Bau] to compute the type
of πσ (1).

12.1. Calculating πσ (1)×

12.1.1. Recall from 9.1.2 that σ acts on h∗ and that σ(1) = 1, so σ(V ) = V . Also, by
(16), we have σ(αi) = ασ(i) for i ∈ I. Further, since σ preserves the form ( | ) on h∗ by
Proposition 7.2.1, σ also preserves the form ( | ) on V .
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Recall next that V = V σ ⊕ (1− σ)(V ). In fact, since σ preserves the form ( | ) this
decomposition is orthogonal:

V = V σ ⊥ (1− σ)(V ). (32)

As in 9.1.2, let πσ : V → V σ be the projection of V onto V σ relative to the decomposi-
tion (32). Then, since σ has period m, we have

πσ (α) =
1
m

m−1∑
i=0

σ i(α)

for α ∈ V .

12.1.2. Although we will not use this fact, it is clear that h = hσ ⊥ (1−σ)h, πσ (α)|hσ =
α|hσ and πσ (α)|(1−σ)h = 0. In this way, πσ (α) can be identified with α|hσ . This is the
point of view taken in [Bau] and [ABP1].

12.1.3. Let
Ĭ = {i ∈ I | σ k(i) ≥ i for k ∈ Z}.

For i ∈ Ĭ, let O(i) denote the orbit containing i under the action of the group 〈σ 〉. Then
the sets O(i), i ∈ Ĭ, are the distinct orbits for the action of 〈σ 〉 on I; and, for i ∈ Ĭ, i is
the least element of O(i).

For i ∈ Ĭ, set
µi = πσ (αi).

Then πσ (αp) = µi for i ∈ Ĭ and p ∈ O(i). Also {µi}i∈Ĭ is a Q-basis for V σ , so
dimQ(V σ ) = card(Ĭ).

12.1.4. Since σ(αi) = ασ(i) for i ∈ I, we have σ(δ) = δ by (12) and (13). So δ ∈ V σ ,
and hence dimQ(V σ ) = card(Ĭ)− 1.

The next lemma was observed in the proof of Proposition III.3.4 of [Bau] (see also
[FSS, §2.5]). It is proved by checking the claim for each possible affine matrix A and
each σ ∈ Aut(A) that is not transitive.

Lemma 12.1.5. If i ∈ Ĭ, then exactly one of the following holds:

(a) The elements of O(i) are pairwise orthogonal.
(b) O(i) = {αp, αq}, where p, q ∈ Ĭ, p 6= q and apq = aqp = −1.

12.1.6. For i ∈ Ĭ, we now define

si =

{
1 if (a) holds in Lemma 12.1.5,
2 if (b) holds in Lemma 12.1.5. (33)

Lemma 12.1.7 ([FSS, §2.1]). Let i ∈ Ĭ. Then si(3− si) = 2 and

si = 3−
∑

p∈O(i)

api . (34)

Proof. This follows immediately from Lemma 12.1.5 and the definition of si . ut

We now calculate the Cartan integers for the set {µi}i∈Ĭ.
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Proposition 12.1.8. Suppose that i, j ∈ Ĭ. Then

(a) (µi |µi) 6= 0, so µi ∈ πσ (1)×.
(b) If α ∈ V , we have

(µi |πσ (α))

(µi |µi)
= si

∑
p∈O(i)

(αp|α)

(αp|αp)
.

(c) 2
(µi |µj )

(µi |µi)
= si

∑
p∈O(i)

apj ∈ siZ.

Proof. Suppose that α ∈ V . Then

(µi |πσ (α)) =

(
µi

∣∣∣∣ 1
m

m−1∑
p=0

σp(α)

)
= (µi |α) (since µi ∈ V σ )

=
1
m

(m−1∑
p=0

σp(αi)

∣∣∣α) = 1
m

m

card(O(i))

( ∑
p∈O(i)

αp|α
)

=
(αi |αi)

card(O(i))

∑
p∈O(i)

(αp|α)

(αi |αi)
=

(αi |αi)

card(O(i))

∑
p∈O(i)

(αp|α)

(αp|αp)
. (35)

Now putting α = αi in (35), we get

(µi |µi) =
(αi |αi)

2 card(O(i))

∑
p∈O(i)

api =
(αi |αi)

2 card(O(i))
(3− si) =

(αi |αi)

card(O(i))
1
si
. (36)

using Lemma 12.1.7. This implies (a). Also, dividing (35) by (36), we obtain (b). Finally,
setting α = αj in (b) yields (c). ut

12.1.9. Let Ă = (ăij )i,j∈Ĭ ∈ Mcard(Ĭ)(Q), where

ăij = 2
(µi |µj )

(µi |µi)
(37)

for i, j ∈ Ĭ. By Proposition 12.1.8(c), we have

ăij = si
∑

p∈O(i)

apj ∈ siZ. (38)

for i, j ∈ Ĭ, so in particular Ă ∈ Mcard(Ĭ)(Z).

The next result is a special case of a result proved in [FSS] about diagram automor-
phisms of symmetrizable GCM’s (see also [Bau, Prop. III.3.3]).

Proposition 12.1.10. Ă is an affine GCM.

Proof. In [FSS], si and ăij are defined by (34) and (38) respectively. With those defini-
tions the proposition is proved in [FSS, §2.3]. ut
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Remark 12.1.11. It follows from (38) that the Dynkin diagram for Ă is obtained from
the diagram for A as follows. If i, j ∈ Ĭ,

Multiplicity of the arrow
from µj to µi in the
diagram for Ă

= si
∑

p∈O(i)

number of arrows from αj to αp,
including multiplicity, in the
diagram for A.

(39)

(If the sum on the right is zero, there is no arrow from µj to µi .) See 12.2.2 for an
example.

Remark 12.1.12. The type of the matrix Ă for each A and each σ (up to conjugacy in
Aut(A)) is recorded in [Bau, List II, §III.4] and in [FSS, Table 2.24].

12.1.13. If α ∈ V ×, we define the orthogonal reflection rα : V → V along α as usual as

rα(β) = β − 2
(α|β)

(α|α)
α

for β ∈ V . Then r2
α = 1 and rα is in the orthogonal group of the form ( | ) on V . Let

W̆ = 〈rµi | i ∈ Ĭ〉 ≤ GL(V ).

Note that each rµi fixes (1− σ)(V ) pointwise, so we can, by restriction, identify W̆ with
a subgroup of GL(V σ ).

12.1.14. Let 1̆ be the set of roots (including 0) of the affine Kac–Moody Lie algebra
g(Ă), and let V̆ = spanQ(1̆). It follows from Proposition 12.1.10 and (37) that we can
identify V σ with V̆ so that {µi}i∈Ĭ is the standard base for 1̆ and the form ( | ) on V σ is
a nonzero rational multiple of the standard form on V̆ . We make this identification from
this point on. Then W̆ is the Weyl group of 1̆. Hence, by (15) applied to g(Ă), we have

1̆× =
⋃
i∈Ĭ

W̆µi . (40)

12.1.15. In [Bau, pp. 33–37], J. Bausch proved the next proposition in the case when
k = C by constructing a subalgebra of gσ that is isomorphic to g(Ă) and then using a
characterization [K2, Prop. 5.8(a)] of the Tits cone of g(Ă). The result for arbitrary k
can likely be proved along the same lines. Instead, for the convenience of the reader, we
present a proof by induction on the height of an element of πσ (1).

Proposition 12.1.16. If si = 1 for i ∈ Ĭ, then

πσ (1)
×
= 1̆×. (41)

Proof. We first show as in [Bau] that

W̆ (πσ (1)) ⊆ πσ (1). (42)

To prove this, we must show that rµi (πσ (1)) ⊆ πσ (1) for i ∈ Ĭ. Indeed, since si = 1,
the reflections rαp , p ∈ O(i), commute. Set w =

∏
p∈O(i) rαp ∈ W . Then, for α ∈ 1, we
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have, using Proposition 12.1.8(b),

rµi (πσ (α)) = πσ (α)− 2
(µi |πσ (α))

(µi |µi)
µi = πσ (α)− 2

( ∑
p∈O(i)

(αp|α)

(αp|αp)

)
µi

= πσ

(
α −

∑
p∈O(i)

2
(αp|α)

(αp|αp)
αp

)
= πσ (w(α)) ∈ πσ (1).

This proves (42); and, since reflections preserve the form ( | ), it follows that

W̆ (πσ (1)
×) ⊆ πσ (1)

×. (43)

The inclusion “⊇” in (41) now follows from (40) and (43). For the inclusion “⊆”,
observe first that any nonzero element ν of πσ (1) can be written uniquely in the form
ν =

∑
i∈Ĭ niµi , where the ni are integers which are all either nonnegative or nonpositive.

We say that ν is positive or negative accordingly, and we define the height of ν to be∑
i∈Ĭ ni . We must show that

ν ∈ πσ (1)
×
⇒ ν ∈ 1̆×.

To do this, we can assume that ν is positive and induct on the height of ν, the case of
height 1 being clear. Write ν =

∑
i∈Ĭ niµi , where each ni is nonnegative. Then, since

(ν|ν) > 0, we have (ν|µi) > 0 for some i ∈ Ĭ with ni > 0. If rµi (ν) is positive, we
are done by induction. So we can assume that rµi (ν) is negative. Then ν = qµi , where
q is a positive integer. Thus, we have ν = πσ (α), where α =

∑
p∈O(i)mpαp ∈ 1 and∑

p∈O(i)mp = q. Since si = 1 for i ∈ Ĭ, this implies that q = 1. ut

12.2. Calculating the relative type

Theorem 12.2.1. Suppose that g = g(A) is an affine Kac–Moody Lie algebra and σ ∈
Aut(A) is not transitive. If si = 1 for all i ∈ Ĭ then the relative type of L(g′, σ ) is equal
to the quotient type of g(Ă), where Ă is obtained from A using (38); whereas if si = 2
for some i ∈ Ĭ then the relative type of L(g′, σ ) is equal to BCr , where r = card(Ĭ)− 1.
(Here the integers si , i ∈ Ĭ, are defined in 12.1.6.)

Proof. By Theorem 9.2.1, the relative type of L(g′, σ ) is the type of the finite root system
πσ (1).

If si = 1 for all i ∈ Ĭ, then by (41) we have πσ (1)× = 1̆×, and hence

πσ (1) = πσ (1)
×
∪ {0} = πσ (1)× ∪ {0} = 1̆× ∪ {0} = 1̆

×

∪ {0} = 1̆.

Suppose finally that si = 2 for some i ∈ Ĭ. Then O(i) = {αp, αq} , where p, q ∈ Ĭ,
p 6= q and apq = aqp = −1. So αp + αq ∈ 1, and hence 2µi = πσ (αp + αq) ∈

πσ (1). Thus µi and 2µi are elements of πσ (1)×. So µi and 2µi are nonzero elements
of πσ (1). Therefore πσ (1) is a nonreduced irreducible finite root system in V σ . Thus,
by the classification of irreducible finite root systems [Bo2, Chap. VI, §4, no. 14], πσ (1)
has type BCr , where r = dimV σ = card(Ĭ)− 1, using 12.1.4. ut
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Example 12.2.2. In this example let g = g(A), where A has type D(1)5 with Dynkin
diagram

�
�

@
@ �

�

@
@rα0

rα1 r
α2

r
α3

r α4

r α5

If σ ∈ Aut(A), we know from Corollary 6.3.8 that the absolute type of L(g′, σ ) ∈ M2
is D5. We now use Theorem 12.2.1 to calculate the relative type of L(g′, σ ) in two cases.

(a) Suppose first that σ = (0, 1)(4, 5) ∈ Aut(A). Then Ĭ = {0, 2, 3, 4} and

O(0) = {0, 1}, O(2) = {2}, O(3) = {3}, O(4) = {4, 5}. (44)

Since a01 = 0, we have s0 = 1, and similarly s2 = s3 = s4 = 1. We now use Remark
12.1.11 to calculate the Dynkin diagram for Ă. We get

< >r
µ0

r
µ2

r
µ3

r
µ4

which is the diagram for the affine matrix of type D(2)4 . So, by Table 1, the quotient type
of g(Ă) is B3; hence, by Theorem 12.2.1, L(g′, σ ) has relative type B3.

(b) Suppose next that σ = (0, 5)(1, 4)(2, 3) ∈ Aut(A). Then Ĭ = {0, 1, 2}, and

O(0) = {0, 5}, O(1) = {1, 4}, O(2) = {2, 3}.

Since a23 = a32 = −1, we have s2 = 2. Thus, by Theorem 12.2.1, L(g′, σ ) has relative
type BC2.

13. Classification of algebras in M2

In this section, we obtain a classification of the algebras in M2 up to isomorphism.

13.1. Tables of relative types

13.1.1. If A is an affine GCM and σ ∈ Aut(A), the relative type of L(g(A)′, σ ) can
be calculated using the method described in Example 12.2.2 when σ is not transitive and
using Corollary 8.3.2 when σ is transitive. In Tables 2 and 3 below, we record this relative
type for all A up to isomorphism and all σ ∈ Aut(A) up to conjugacy. Table 2 covers the
cases when g(A) is untwisted, whereas Table 3 covers the twisted cases. Our enumeration
of the fundamental roots of the root system corresponding to A follows [K2, §4.8].

The first column of the tables contains the type X(m)k of A; and the second column
contains σ (when σ is uniquely determined up to conjugacy in Aut(A) by its order, we
simply list its order). The third column contains a label that we assign to the algebra
L(g(A)′, σ ) for ease of reference; and the fourth column contains the relative type of
L(g(A)′, σ ). When the entry in column 4 depends on the parity of k, the first expression
in the column applies when k is even and the second when k is odd.

The labels in column 3 were chosen to indicate the method of construction of the
algebras as iterated loop algebras. For example, we used the labels D(1,2a)k , D(1,2b)k and
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A σ Label Relative type

A(1)
k

, k ≥ 1 (0, 1, . . . , k)q , 0 ≤ q ≤ b(k + 1)/2c A(1,rot(q))
k

Agcd(q,k+1)−1∏bk/2c
i=1 (i, k + 1− i), k ≥ 2 A(1,2a)

k
BCk/2, C(k+1)/2∏(k−1)/2

i=0 (i, k − i), k odd ≥ 3 A(1,2b)
k

BC(k−1)/2

B(1)
k

, k ≥ 3 (1) B(1,1)
k

Bk

|σ | = 2 B(1,2)
k

Bk−1

C(1)
k

, k ≥ 2 (1) C(1,1)
k

Ck

|σ | = 2 C(1,2)
k

Ck/2, BC(k−1)/2

D(1)
k

, k ≥ 4 (1) D(1,1)
k

Dk

(k − 1, k) D(1,2a)
k

Bk−1

(0, 1)(k − 1, k) D(1,2b)
k

Bk−2∏b(k−1)/2c
i=0 (i, k − i), k ≥ 5 D(1,2c)

k
Ck/2, BC(k−1)/2

|σ | = 3, k = 4 D(1,3)4 G2

|σ | = 4 D(1,4)
k

BCb(k−2)/2c

E(1)6 (1) E(1,1)6 E6

|σ | = 2 E(1,2)6 F4

|σ | = 3 E(1,3)6 G2

E(1)7 (1) E(1,1)7 E7

|σ | = 2 E(1,2)7 F4

E(1)8 (1) E(1,1)8 E8

F(1)4 (1) F(1,1)4 F4

G(1)2 (1) G(1,1)2 G2

Table 2. Relative type of L(g(A)′, σ ) for untwisted A.

D(1,2c)k in lines 9, 10 and 11 of Table 2, since these algebras are constructed starting
from a finite-dimensional Lie algebra of type Dk using a loop construction relative to an
automorphism of order 1 followed by a loop construction relative to an automorphism of
order 2. The one exception to this scheme is the label A(1,rot(q))

k in line 1 of Table 2, where
we needed to convey more information with the label.

If A and σ are chosen from columns 1 and 2 of Tables 2 or 3, we will often denote the
algebra L(g(A)′, σ ) by the corresponding label from column 3.



Nullity 2 multiloop algebras 373

A σ Label Relative type

A(2)
k

, k ≥ 2, k 6= 3 (1) A(2,1)
k

BCk/2 , C(k+1)/2

|σ | = 2, k odd A(2,2)
k

BC(k−1)/2

D(2)
k

, k ≥ 3 (1) D(2,1)
k

Bk−1

5
bk−2/2c
i=0 (i, k − 1− i) D(2,2)

k
BCb(k−1)/2c

D(3)4 (1) D(3,1)4 G2

E(2)6 (1) E(2,1)6 F4

Table 3. Relative type of L(g(A)′, σ ) for twisted A.

Remark 13.1.2. It is important to recall that the absolute type of L(g(A)′, σ ) can also
be read off from Tables 2 and 3. Indeed if A has type X(m)k , then L(g(A)′, σ ) has absolute
type Xk by Corollary 6.3.8.

13.1.3. Note that by (24) the algebras occurring in row 1 of Table 2 have matrix realiza-
tions:

A(1,rot(q))
k ' slgcd(q,k+1)(Q(ζ

ιk+1(q̄)
k+1 )), (45)

0 ≤ q ≤ b(k + 1)/2c. (Recall that if q = 0, gcd(q, k + 1) is interpreted as k + 1.)

The following proposition follows from Theorem 10.1.1 and Table 2.

Proposition 13.1.4. Let L ∈ M2. Then L satisfies condition (AA) (described in the
Introduction) if and only if L ' A(1,rot(q))

k for some k ≥ 1 and some 0 ≤ q ≤ b k+1
2 c.

13.2. Isomorphism

We know from Theorem 10.1.1 that the algebras in M2 are, up to isomorphism, the al-
gebras of the form L(g′, σ ), where g is an untwisted affine algebra and σ is a diagram
automorphism of g′. The next theorem gives necessary and sufficient conditions for two
algebras of this form to be isomorphic.

Theorem 13.2.1. (a) If gi is an untwisted affine Kac–Moody Lie algebra and σi is a dia-
gram automorphism of g′i , i = 1, 2, then L(g′1, σ1) ' L(g′2, σ2) implies that g1 ' g2.

(b) If g is an affine Kac–Moody Lie algebra (twisted or untwisted) and σi is a diagram
automorphism of g′, i = 1, 2, then L(g′, σ1) ' L(g′, σ2) if and only if σ1 and σ2 are
conjugate in the group of diagram automorphisms of g′.

Proof. (a) follows from Corollary 6.3.8, so it remains to prove (b). The implication “⇐”
in (b) follows from Lemma 4.1.2(a).

To prove the implication “⇒” in (b), suppose that L1 ' L2, where Li = L(g′, σi) for
i = 1, 2. Now g = g(A), where A is one of the affine matrices in column 1 of Tables 2
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or 3. Further, replacing each σi by a conjugate in Aut(A), we can, by Lemma 4.1.2(a),
assume that σ1 and σ2 are among the automorphisms listed in column 2 of Tables 2 or 3.

Case 1: Suppose that L1, and hence also L2, satisfies Condition (AA). Then by
Proposition 13.1.4, A has type A(1)k for some k ≥ 1 and σi = (0, 1, . . . , k)qi , where
0 ≤ qi ≤ b(k + 1)/2c, i = 1, 2. So Li = L(g′, (0, 1, . . . , k)qi ) for i = 1, 2. Thus, since
L1 ' L2, we have

slgcd(q1,k+1)(Q(ζ
ιk+1(q̄1)
k+1 )) ' slgcd(q2,k+1)(Q(ζ

ιk+1(q̄2)
k+1 ))

by (24). Hence, by Theorem 11.3.2, we have ιk+1(q̄1) = ±ιk+1(q̄2) in Zk+1, and therefore
q̄1 = ±q̄2. So q1 = q2, and σ1 = σ2.

Case 2: Suppose that L1, and hence also L2, does not satisfy Condition (AA). If g
is untwisted, then σ1 and σ2 appear in one of the rows after row 1 of Table 2. Since the
relative type of L1 is the same as the relative type of L2, it follows checking Table 2 that
σ1 and σ2 appear in the same row. Thus, σ1 = σ2. The argument in the twisted case is the
same using Table 3. ut

13.2.2. As a corollary of this theorem, we next prove that the converse in Theorem
6.2.2(c) is valid for an affine algebra g = g(A) and automorphisms of first kind. Be-
fore doing so, we note that by the classification of affine matrices, Aut(A) is one of the
following: a cyclic group of order 1 or 2, a dihedral group of order ≥ 6, or a symmetric
group S3 or S4. Hence, any element of Aut(A) is conjugate to its inverse, so the relation
∼ in Aut(A) described prior to Theorem 6.2.2 is simply conjugacy.

Corollary 13.2.3. Suppose that g = g(A) is an affine Kac–Moody Lie algebra and σ1
and σ2 are finite order automorphisms of first kind of g′. Then L(g′, σ1) ' L(g′, σ2) if
and only if p̄(σ1) is conjugate to p̄(σ2) in Aut(A).

Proof. By Theorem 6.2.2(c), we only need to prove the implication “⇒”. Suppose that
L(g′, σ1) ' L(g′, σ2). By Theorem 6.2.2(c), we have L(g′, σi) ' L(g′, p̄(σi)), for i =
1, 2. Hence, replacing σi by p̄(σi), we can assume that σi ∈ Aut(A), i = 1, 2. The result
now follows from Theorem 13.2.1(b). ut

13.3. Classification

Our second main theorem gives a classification of the algebras in M2.

Theorem 13.3.1. If A and σ are chosen from columns 1 and 2 of Table 2, then
L(g(A)′, σ ) is in M2. Conversely, any algebra in M2 is isomorphic to exactly one such
algebra.

Proof. This follows from Theorems 10.1.1 and 13.2.1. ut

13.3.2. Using the labels in column 3 of Table 2, Theorem 13.3.1 states that a nonredun-
dant list of all algebras in M2 up to isomorphism is A(1,rot(q))

k , . . . ,G(1,1)2 .

The following corollary follows from Proposition 13.1.4, Theorem 13.3.1 and Table 2.
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Corollary 13.3.3. Two algebras in M2 that do not satisfy Condition (AA) are isomorphic
if and only if they have the same absolute type and the same relative type.

13.3.4. Any algebra appearing in Table 3 is in M2 by Theorem 10.1.1, and hence it is
isomorphic to an algebra in Table 2. But no such algebra satisfies Condition (AA) (by
Table 3), so to match it with an algebra in Table 2, we just have to match the relative and
absolute types. In this way, we see that

A(2,1)k ' A(1,2a)k if k ≥ 2, k 6= 3,

A(2,2)k ' A(1,2b)k if k ≥ 5, k odd,

D(2,1)k '

{
D(1,2a)k if k ≥ 4,

A(1,2a)3 if k = 3,

D(2,2)k '


D(1,4)k if k ≥ 4, k even,

D(1,2c)k if k ≥ 5, k odd,

A(1,2b)3 if k = 3,

D(3,1)4 ' D(1,3)4 and E(2,1)6 ' E(1,2)6 .

The isomorphisms A(2,1)k ' A(1,2a)k , D(2,1)k ' D(1,2a)k , D(3,1)4 ' D(1,3)4 and E(2,1)6 ' E(1,2)6
are of course not surprising and can be proved directly without our classification results.

14. Links to some related work

In this section, we consider two invariants associated to an algebra L in M2, the index and
the Saito extended affine root system, thereby linking our results to the work of several
other researchers.

14.1. The index of a prime perfect fgc Lie algebra

In order to define the index of a prime perfect fgc Lie algebra, we first discuss the corre-
sponding notion for algebraic groups.

14.1.1. Suppose that F is a field, Fs is a separable closure of F , and 0 = Gal(Fs/F ).
(a) Starting from a semisimple algebraic group G defined over F , one can construct

a triple (5,50, ∗), called the index of G [T, §2.3]. This triple, which is often also called
the Tits index of G, consists of a finite Dynkin diagram 5, a (possibly empty) subset 50

of 5, and a homomorphism σ
∗
−→ σ ∗ (called the ∗-action) from 0 into Aut(5) satisfying

σ ∗(50) = 50 for σ ∈ 0. (Here Aut(5) is the group of diagram automorphisms of 5.)
We will not need to describe the construction of (5,50, ∗), but instead recall it below in
14.1.3(b) in the special case of interest here.

(b) If Gi is a semisimple algebraic group defined over F with index (5i,5i0, ∗)
for i = 1, 2, we say that (51,510, ∗) and (52,520, ∗) are isomorphic if there is a di-
agram isomorphism from 51 onto 52 which maps 510 onto 520 and commutes with
the ∗-actions. As a special case of [T, Prop. 2.6.3], we know that if G1 and G2 are



376 Bruce Allison et al.

F -isomorphic then their indices are isomorphic. In particular, the index is independent
up to isomorphism of the choices made in its construction.

14.1.2. Besides isomorphism, there is a another notion of equivalence for indices which is
useful. To describe this, suppose that for i = 1, 2, Fi is a field, (Fi)s is a separable closure
of Fi , 0i = Gal((Fi)s/Fi), and (5i,5i0, ∗) is the index for a semisimple algebraic
group Gi defined over Fi . We say that the indices (51,510, ∗) and (52,520, ∗) are
similar if there is a diagram isomorphism λ : 51 → 52 and a group isomorphism
µ : (01)

∗
→ (02)

∗ such that λ(510) = 520 and λ(gα) = µ(g)λ(α) for g ∈ (01)
∗ and

α ∈ 5. Clearly, if F1 = F2, isomorphic indices are similar.
In the famous Table 2 of [T], Tits listed and labelled all indices up to similarity that

can occur for some absolutely simple algebraic group defined over some F . We will use
those labels 1Adn,r , . . . ,G0

2,2 in Section 14.2 below.

14.1.3. Suppose next that L is a simple fgc Lie algebra. Let F = C(L), which is a field
extension of k.

(a) Recall from 3.1.2 that L is a finite-dimensional central simple Lie algebra over F ,
and hence Aut0(L) is a simple algebraic group over F , where Aut0(L) denotes the con-
nected component of the automorphism group Aut(L) of L over F . We define the index
of L to be the index of Aut0(L).

(b) Since char(k) = 0, the index of L can equivalently be defined purely in terms of
the structure of L. For the convenience of the reader, we do this here following [T, §2.3],
[Sat, §4] and [Se1] (in the Lie algebra case). Let F̄ (= Fs) be an algebraic closure of F
with 0 = Gal(F̄ /F ), let LF̄ = L ⊗F F̄ , and identify L as usual as an F -subalgebra
of LF̄ . Let T be a MAD F -subalgebra of L, and let H be a Cartan F -subalgebra of L
containing T [Se2, Prop. I.1]. Then HF̄ = H⊗F F̄ is a MAD F̄ -subalgebra of LF̄ . Let1
be the root system (including 0) of LF̄ relative to HF̄ , in which case the restriction map
α 7→ αT maps 1 onto the root system of L with respect to T. Choose an additive linear
order > on the root lattice Q1 that is compatible with restriction (that is if α1, α2 ∈ Q1,
α1|T = α2|T and α1 > 0 then α2 > 0). Let 5 be the base for 1 determined by >,
and let 50 = {α ∈ 5 | α|T = 0}. Finally, 0 acts on HF̄ (trivially on H and naturally
on F̄ ), and this action transfers as usual to an action of 0 on H∗

F̄
= HomF̄ (HF̄ , F̄ ) which

stabilizes 1. For σ ∈ 0, we define σ ∗ ∈ Aut(5), by σ ∗(α) = wσσ(α), where wσ is the
element of the Weyl group of 1 such that wσσ(5) = 5. Then (5,50, ∗) is the index
of L.

(c) If follows from the definition in (b) (or (a)) that the absolute type of L is the type
of the Dynkin diagram 5. (This type is used as the “base” for the label of the index
of L.) Moreover, Tits described in [T, §2.5.2] an algorithm for calculating the relative
type of L given its index up to similarity. Hence, both the absolute and relative type of L
are determined by its index up to similarity. For example if L has index E9

7,4, then L has
absolute type E7 and, using the algorithm, relative type F4.

Definition 14.1.4. Suppose finally that L is a prime perfect fgc Lie algebra. We know
from Proposition 3.3.2 that the central closure L̃ := L ⊗C(L) C̃(L) is a simple fgc Lie
algebra. We define the index of L to be the index of L̃.
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Lemma 14.1.5. Suppose that L1 and L2 are prime perfect fgc Lie algebras that are
isomorphic (as k-algebras). Then the indices of L1 and L2 are similar.

Proof. We sketch this proof; the details are straightforward and left to the reader. As in the
proof of Lemma 3.3.4, we can assume that L1 and L2 are simple. Choose Fi , F̄i and 0i
for Li as in 14.1.3(b). Let ϕ : L1 → L2 be an isomorphism. Let γ = C(ϕ) : F1 → F2
which we extend to an isomorphism γ̄ : F̄1 → F̄2. Choose T1, H1 and > for L1 as in
14.1.3(b), and use these to compute the index (51,510, ∗) for L1. Next using ϕ and γ̄ ,
we can transfer T1, H1 and > to corresponding T2, H2 and > for L2, and use these
to compute (52,520, ∗) for L2. (This is permitted by 14.1.1(b).) Then we can show that
there exists a diagram isomorphism λ : 51 → 52 and a group isomorphism ν : 01 → 02
(conjugation by γ̄ ) such that λ(σ ∗α) = ν(σ )∗λ(α) for σ ∈ 01, α ∈ 51. This clearly
implies similarity. ut

14.2. The index of algebras in M2

14.2.1. If L ∈ In, then L is prime, perfect and fgc by Proposition 4.4.3, and hence the
index of L is defined. In particular this is true if L ∈Mn.

Theorem 14.2.2. Two algebras in M2 that do not satisfy Condition (AA) are isomorphic
if and only if they have similar indices.

Proof. The implication “⇒” follows from Lemma 14.1.5. The converse follows from
14.1.3(c) and Corollary 13.3.3. ut

14.2.3. Theorem 14.2.2 provides a positive answer to Conjecture 6.4 in [GP1].4

14.2.4. In the rest of this section, we describe how to calculate the index of an algebra
L in M2. We omit most of the details here, but rather sketch three examples that will be
enough for the interested reader to complete the details.

We summarize our results in Table 4. In that table, column 1 lists our label from Ta-
ble 3 for the algebra L, and column 2 lists the index of L. (Column 3 contains information
that we will discuss in Section 14.4.) As before, when an entry in columns 2 or 3 depends
on the parity of k, the first expression in the column applies when k is even and the second
when k is odd.

Example 14.2.5. To give our first example, suppose that L = E(1,2)7 . Then L has ab-
solute type E7 and relative type F4. But using the list of indices in Table 2 of [T] and
the algorithm (see 14.1.3(c)) for calculating the relative type from the index, we find that
there is only one possible index, namely E9

7,4, yielding these relative and absolute types.
(In fact this is true over any field F .) So we conclude that L has index E9

7,4.

4 A partial proof of this conjecture for nullity two algebras of classical absolute type of “suffi-
ciently large” rank was given by A. Steinmetz-Zikesch in [S-Z]. His proof is in fact rather explicit,
and the algebras in question are described in full detail. Another proof of a more general version of
the conjecture will appear in [GP2].
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Label for L Index SEARS

A(1,rot(q))
k

, k ≥ 1, 1A
( k+1
r+1 )

k,r
, A(1,1)r ,

0 ≤ q ≤ b(k + 1)/2c r = gcd(q, k + 1)− 1 if r ≥ 1

A(1,2a)
k

, k ≥ 2 2A(1)
k,k/2, 2A(1)

k,(k+1)/2 BC(2,1)
k/2 , C(1,2)

(k+1)/2

A(1,2b)
k

, k odd ≥ 3 2A(1)
k,(k−1)/2 BC(2,2)

(k−1)/2(2)

B(1,1)
k

, k ≥ 3 B
k,k

B(1,1)
k

B(1,2)
k

, k ≥ 3 B
k,k−1 B(2,2)∗

k−1

C(1,1)
k

, k ≥ 2 C(1)
k,k

C(1,1)
k

C(1,2)
k

, k ≥ 2 C(2)
k,k/2 , C(2)

k,(k−1)/2 C(1,1)∗
k/2 , BC(1,1)

(k−1)/2

D(1,1)
k

, k ≥ 4 1D(1)
k,k

D(1,1)
k

D(1,2a)
k

, k ≥ 4 2D(1)
k,k−1 B(1,2)

k−1

D(1,2b)
k

, k ≥ 4 1D(1)
k,k−2 B(2,2)

k−2

D(1,2c)
k

, k ≥ 5 1D(2)
k,k/2, 2D(2)

k,(k−1)/2 C(2,2)
k/2 , BC(2,2)

(k−1)/2(1)

D(1,3)4
3D2

4,2 G(1,3)2

D(1,4)
k

, k ≥ 4 2D(2)
k,(k−2)/2, 1D(2)

k,(k−3)/2 BC(2,4)
(k−2)/2, BC(4,4)

(k−3)/2

E(1,1)6
1E0

6,6 E(1,1)6

E(1,2)6
2E2

6,4 F(1,2)4

E(1,3)6
1E16

6,2 G(3,3)2

E(1,1)7 E0
7,7 E(1,1)7

E(1,2)7 E9
7,4 F(2,2)4

E(1,1)8 E0
8,8 E(1,1)8

F(1,1)4 F0
4,4 F(1,1)4

G(1,1)2 G0
2,2 G(1,1)2

Table 4. The index and the SEARS of L ∈M2.

14.2.6. The same simple method (which with some practice goes quite quickly) works
for most of the algebras in M2. The exceptions are the following algebras:

A(1,rot(q))
k , k ≥ 1, 0 ≤ q ≤ b(k + 1)/2c, gcd(q, k + 1) = 1; (46)

C(1,2)k , k odd, k ≥ 3; D(1,2b)k , k ≥ 4; D(1,3)4 ; D(1,4)k , k ≥ 4; E(1,1)6 . (47)
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To handle each of these cases, we construct a matrix model for the algebra and then use
the Descriptions in Table 2 of [T] (or a direct calculation) to identify the index.

Example 14.2.7. Suppose that L = A(1,rot(q))
k , with k and q as in (46). Then, by (45),

we can identify L = sl1(Q(θ)), where θ has order m = k + 1 in k×. Then we identify
the centroid of L with R2 as in Lemma 4.5.6(e); and, since K2/R2 is flat, we have L̃ =

sl1(Q(θ))⊗R2 K2 ' sl1(Q(θ)⊗R2 K2). But, by Lemma 11.2.2,Q(θ)⊗R2 K2 is a central
division algebra of degree k+1 overK2. Thus, by Table 2 of [T] (see the first Description
on p. 55 of [T]), L has index 1A(k+1)

k,0 .

We are left with the algebras in (47). For these we use the easy part (the construction)
in the coordinatization theorems for centerless Lie tori (see 5.3.6).

Example 14.2.8. Suppose that L = D(1,4)k with k ≥ 4 and k even. Then L has relative
type BC(k−1)/2. To describe a construction of L, let A = Q(−1), the unital associative
algebra presented by the generators x1, x2, x

−1
1 , x−1

2 subject to the inverse relations and
the relation x1x2 = −x2x1. We identify the centre of A with R2 as in 4.5.3 with m = 2.
Let ∗ be the R2-linear involution on A such that x∗i = xi for i = 1, 2. Let Jk−2 be the
matrix in Mk−2(A) whose (i, j) entry is δi,k−1−j , and letG = diag(Jk−2, 1, x1) (in block
diagonal form) in E = Mk(A). Note that G is a unit in the R2-algebra E and (G∗)t = G,
so we may define an R2-linear involution τ on E by τ(T ) = G−1(T ∗)tG. We set

S = {T ∈ E | τ(T ) = −T },

in which case S is a Lie algebra over R2 under the commutator product.
We chose to look at S since it arises in [AB, Theorem 6.3.1], which is the coor-

dinatization theorem for centreless (3,1)-tori for 1 of type BCr , where in our case
r = (k − 1)/2. Indeed the first part of that theorem tells us that S is a centreless Lie
(3,1)-torus, where 3 has rank 2 and 1 is of type BC(k−1)/2. (See also 7.2.3 of [AB].)
Moreover, since ∗ is nontrivial, S has full root support [AB, Remark 8.1.1]. Also, it fol-
lows from Propositions 4.10 and 6.21 of [AB] that the centroid of S is identified with R2
using the natural action of R2 on S. Since it is clear that S is finitely generated as an
R2-module, S is fgc. Hence, by Theorem 5.5.1, S ∈ M2 and the relative type of S is
BC(k−1)/2.

We next look at the central closure of S. For this we set Ã = A⊗R2K2, Ẽ = E⊗R2K2,
and S̃ = S⊗R2K2; and we extend ∗ and τ toK2-linear involutions of Ã and Ẽ respectively.
One checks that

S̃ = {T ∈ Ẽ | τ(T ) = −T }.

Further, we know from Lemma 11.2.2 that Ã is a central division algebra of degree 2
over K2; and its clear that ∗ is an orthogonal involution on Ã. Thus, by [J, Theorem X.9],
the absolute type of S is Dk . Since we have matched relative and absolute types, we see
that L ' S.

Finally from the information in the previous paragraph and from Table 2 of [T] (see
the Descriptions on p. 57 of [T]), it follows that S has index tD(2)k,(k−1)/2, where t = 1 or 2.
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Moreover, t = 1 if and only if the discriminant disc(̃E, τ ) of the algebra with involution
(̃E, τ ) over K2 is trivial in K×2 /(K

×

2 )
2. Finally one calculates using [KMRT, 7.2] that

disc(̃E, τ ) = −tk+1
1 tk2 (K

×

2 )
2
6= 1(K×2 )

2, since k is even. So L ' S has index 2D(2)k,(k−1)/2.

14.2.9. The remaining cases in (47) can be handled in a similar fashion. For the algebras
C(1,2)k (k odd), D(1,2b)k , and D(1,4)k (k odd), one again uses the construction from [AB,
Theorem 6.3.1]. (That theorem covers quotient types BCr and Br .) Finally for the algebras
D(1,3)4 and E(1,3)6 , one uses the construction from [AG, Thm. 5.63] which covers quotient
type G2.5

14.3. Saito’s extended affine root systems

In this section and the next, we assume for convenience that k = C, although it is very
likely that with minor modifications the results mentioned carry over to the general case.

14.3.1. Let VR be a finite-dimensional real vector space with positive semi-definite real
valued symmetric bilinear form ( | ). For α ∈ VR with (α|α) 6= 0, let rα be the orthogonal
reflection along α. We will call a subset 6 of VR a Saito extended affine root system, or
SEARS for short, if the following conditions hold: the natural map spanZ(6)⊗ZR→ VR
is bijective, (α|α) 6= 0 for α ∈ 6, rα(6) = 6 for α ∈ 6, 2 (α|β)

(α|α)
∈ Z for α, β ∈ 6,

and 6 is irreducible in the usual sense. In that case, we say that 6 is reduced if α ∈ 6
implies 2α /∈ 6, and we define the null dimension of 6 to be the dimension of the radical
of VR. If 6 is a SEARS, then the image of 6 in VR modulo the radical of ( | ) is the set
of nonzero roots of an irreducible finite root system called the finite quotient root system
of 6 [Sai, Example 1.3 and Assertion 1.8]. Two SEARS 6 in VR and 6′ in V ′R are said
to be isomorphic if there is a vector space isomorphism from VR onto V ′R which maps 6
onto 6′, in which case the forms are preserved up to nonzero scalar by the isomorphism
[Sai, Lemma 1.4].

14.3.2. SEARS of null dimension n were introduced by Saito in [Sai, §1.3], where they
were called n-extended affine root systems. His motivation came from the study of elliptic
singularities of complex analytic surfaces.

14.3.3. SEARS also play an important role in the theory of EALAs, because the set of
nonisotropic roots 8× of a discrete EALA (g, ( | ), h) of nullity n is a reduced SEARS
of null dimension n (by [AABGP, Thm. 2.16] and [Az, Lemma 1.4]). Here VR is the real
span of 8× with symmetric form ( | ) induced and suitably normalized from the given
form on E.

14.3.4 (Classification of SEARS). In [Sai, §§ 5.2 and 5.4], Saito classified up to iso-
morphism all reduced SEARS of null dimension 2 that satisfy an additional condition,
the existence of a marking G such that 6/G is reduced. In [Az], Azam completed the
classification of reduced SEARS of null dimension 2 by establishing a relationship be-
tween reduced SEARS and the root systems studied in [AABGP, Chap. 2]. He showed

5 A different “cohomological” approach to computing the index will be described in [GP2].
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that, in addition to the root systems in Saito’s classification, there are two infinite families
that we will denote here by BC(1,1)` , ` ≥ 1, and BC(4,4)` , ` ≥ 1, following the notational
conventions in [Sai]. They are

BC(1,1)` = (1sh +3) ∪ (1lg +3) ∪ (1ex +3 \ (23)),

BC(4,4)` = (1sh +3 \ (23+ a)) ∪ (1lg + 23) ∪ (1ex + 43+ 2a),
(48)

where 1sh, 1lg and 1ex are the sets of roots of length 1, 2 and 4 respectively in the
irreducible finite root system of type BC`, a, b is a basis for the radical of ( | ), and
3 = Za ⊕ Zb. Note that the second term in each of these unions is empty if ` = 1. The
complete nonredundant list of reduced SEARS of null dimension 2 up to isomorphism is
then

A(1,1)` (`≥ 1), A(1,1)∗1 ,

B(1,1)` (`≥ 3), B(1,2)` (`≥ 3), B(2,2)` (`≥ 2), B(2,2)∗` (`≥ 2),

C(1,1)` (`≥ 2), C(1,2)` (`≥ 2), C(2,2)` (`≥ 3), C(1,1)∗` (`≥ 2),

BC(2,1)` (`≥ 1), BC(2,4)` (`≥ 1), BC(2,2)` (1) (`≥ 2), BC(2,2)` (2) (`≥ 1),

BC(1,1)` (`≥ 1), BC(4,4)` (`≥ 1),

D(1,1)` (`≥ 4), E(1,1)` (`= 6, 7, 8),

F(1,1)4 , F(1,2)4 , F(2,2)4 , G(1,1)2 , G(1,3)2 .

(49)

(See [Sai, §’s 5.2] and (48) above for the definitions of these root systems.) Note that the
type of the finite quotient root system of a reduced SEARS 6 of null dimension 2 is used
as the “base” in the notation for 6. For example, the reduced SEARS of null dimension 2
with finite quotient root system of type BC` occur in rows 4 and 5 of (49).

14.4. The SEARS of an isotropic algebra in M2

Suppose that k = C and that the primitive roots of unity are chosen as ζm = e2π
√
−1/m

for m ≥ 1. Let L be an isotropic algebra in M2.

14.4.1. By Theorem 13.3.1, there exists a unique affine GCMA and a unique σ ∈ Aut(A)
such that (A, σ ) appears in columns 1 and 2 of Table 2 and L ' L(g′, σ ), where g =
g(A). We note that the assumption that L is isotropic precisely rules out the case in row 1
of Table 2 where gcd(q, k + 1) = 1. We set g = g(A) and use the above isomorphism to
identify

L = Lm(g′, σ ),

where m is the order of σ . Since σ is not transitive, we can follow 9.1.1 and construct a
discrete EALA

E = Lm(g, σ )⊕ kc̃ ⊕ kd̃,
with nondegenerate symmetric bilinear form ( | ) and ad-diagonalizable abelian subalge-
bra H = hσ ⊕ kc̃ ⊕ kd̃ . Then, by Proposition 9.1.3, E is a discrete EALA of nullity 2
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with centreless core isomorphic to L. Let 8 be the root system for E relative to H. By
14.3.3, 8× is a reduced SEARS of null dimension 2 which we call the SEARS of L.

Remark 14.4.2. The SEARS of L just defined depends only on the isomorphism class
of L because of the uniqueness of A and σ in the above discussion. Indeed, once these
have been selected, E, H and ( | ) are defined in terms of A and σ . It would be desirable
to have a more intrinsic proof of the invariance of the SEARS of L.

Proposition 14.4.3. Let 8× be the SEARS of L, and let X` be the type of the finite quo-
tient root system of 8×. Then L has relative type X`.
Proof. Let E be the EALA described in 14.4.1. It follows from Remark 5.1.6 that X` is
the quotient type of E. But, by Proposition 9.1.3, we have Ecc ' L, so our conclusion
follows from Corollary 5.5.2(a). ut

14.4.4. We now use the work of U. Pollmann to list, in column 3 of Table 4, the SEARS
of each isotropic L in M2.

Indeed Pollmann did most of the work. For each algebra L(g′, σ ) in Table 2, except
those in Row 1, she calculated the root system8 of the EALA E described in 14.4.1. (She
actually worked with a central quotient of E rather than E, but this does not change the
root system.) In view of Lemma 5.1.7(b), this determines 8× as well.

This leaves us with the case when L = A(1,rot(q))
k , where k ≥ 1, 0 ≤ q ≤ b(k + 1)/2c,

and r := gcd(q, k + 1)− 1 ≥ 1. Then, by Table 2, L has relative type Ar . Now, if r ≥ 2,
there is only one reduced SEARS of null dimension 2 with finite quotient root system Ar ,
so by Proposition 14.4.3, 8× ' A(1,1)r . It remains to consider the case when r = 1. In
this case, the root system 8 (and hence 8×) can be found by direct calculation using the
realization (45) of L in terms of a quantum torus, and we obtain8× ' A(1,1)1 . The details
of this calculation are somewhat delicate but straightforward, and we leave them to the
reader.

Remark 14.4.5. In row 7, column 3 of Table 4, C(1,1)∗k/2 should be interpreted as A(1,1)∗1
when k = 2.

A comparison of column 3 of Table 4 with the list (49) now yields our final result.

Theorem 14.4.6. Every reduced SEARS of null dimension 2 arises as the SEARS of some
isotropic algebra in M2. Moreover, if L and L′ are algebras in M2 that do not satisfy
Condition (AA) (and in particular are isotropic), then L and L′ are isomorphic if and
only if their SEARS are isomorphic.
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