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Abstract. We consider contractions of Lie and Poisson algebras and the behaviour of their centres
under contractions. A polynomial Poisson algebra A = K[An] is said to be of Kostant type if its
centre Z(A) is freely generated by homogeneous polynomials F1, . . . , Fr that give Kostant’s regu-
larity criterion on An (dxFi are linearly independent if and only if the Poisson tensor has maximal
rank at x). If the initial Poisson algebra is of Kostant type and Fi satisfy a certain degree equality,
then the contraction is also of Kostant type. The general result is illustrated by two examples. Both
are contractions of a simple Lie algebra g corresponding to a decomposition g = h⊕V , where h is a
subalgebra. Here A = S(g) = K[g∗], Z(A) = S(g)g, and the contracted Lie algebra is a semidirect
product of h and an Abelian ideal isomorphic to g/h as an h-module. In the first example, h is a
symmetric subalgebra, and in the second, it is a Borel subalgebra and V is the nilpotent radical of
an opposite Borel.

1. Introduction

Let q be a finite-dimensional Lie algebra defined over a field K of characteristic zero.
Then the symmetric algebra S(q) = K[q∗] carries a Poisson structure induced by the
Lie bracket on q. In this paper, we study the algebra S(q)q of symmetric invariants. By
a theorem of Duflo, it is isomorphic to the centre ZU(q) of the universal enveloping
algebra U(q), and therefore is of much interest in representation theory. We can also say
that S(q)q coincides with the Poisson centre ZS(q) of S(q) (for the definition of this
object see Section 2), and one can employ methods of Poisson geometry to investigate
this algebra.

To be more precise, the Lie algebra in question is a contraction of some other Lie
algebra, whose symmetric invariants are well understood. Already contractions of simple
(non-Abelian) Lie algebras provide a fairly interesting and not yet completely explored
field of research. Let f ⊂ q be a Lie subalgebra and V ⊂ q a complementary subspace,
not necessarily f-stable. Then one contracts q to a Lie algebra q̃ = f n V , where V is an
Abelian ideal and the action of f on it comes from the projection prV : q → V along f.
A more sophisticated description of contractions of Poisson and Lie algebras is given in
Section 3.
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Suppose that g is a reductive Lie algebra. Let F1, . . . , F` with ` = rk g be homoge-
neous generators of ZS(g). Then, by [K, Theorem 9], their differentials dξFi at a point
ξ ∈ g∗ are linearly independent if and only if dim gξ = ` where gξ the stabiliser in the
coadjoint action. This is known as Kostant’s regularity criterion. For an arbitrary Lie al-
gebra q, the notion of index, ind q = minξ∈q∗ dim qξ , generalises the rank in the reductive
case. A Lie algebra q of index ` is said to be of Kostant type if ZS(q) is freely generated
by homogeneous polynomials H1, . . . , H` that give Kostant’s regularity criterion on q∗.
Set q∗sing := {ξ ∈ q∗ | dim qξ > ind q}. We say that q has the “codim-2” property or
satisfies a “codim-2” condition if dim q∗sing ≤ dim q−2. The importance of this condition
was first noticed in [PPY] and [P07].

The decomposition q = f ⊕ V induces a bi-grading on S(q). For each homogeneous
F ∈ S(q), let degt F denote its degree in V and F • the bi-homogeneous component
of F of bi-degree (degF − degt F, degt F) in f and V , respectively. In case q = g is
reductive and g̃ is the contraction of g corresponding to the decomposition g = f⊕ V , a
simplification of our main result, Theorem 3.8, can be formulated as follows.

Suppose that ind g̃ = ` = rk g. Then

•
∑

degt Fi ≥ dimV and the polynomials F •i are algebraically independent if and only
if
∑

degt Fi = dimV .
• Moreover, if equality holds and the polynomials F •i generate ZS(g̃) (this can be guar-

anteed by the “codim-2” property of g̃), then g̃ is of Kostant type.

The proof of Theorem 3.8 relies on Lemma 2.1, a statement about Poisson brackets in
the algebraic setting, and good behaviour of the Poisson tensor under contractions. The
resulting algebras g̃ are non-reductive and there is no general method for describing their
symmetric invariants.

Note that Theorem 3.8 is stated and proved for an arbitrary polynomial Poisson alge-
bra, which is not necessarily the symmetric algebra of any finite-dimensional q. We do
not consider applications of the more general version in this paper, but hope to explore
this subject in the (near) future.

Two types of contractions g  g̃ are studied here. In both cases it is assumed that
the ground field K is algebraically closed. The first contraction comes from a Z2-grading
(or symmetric decomposition) g = g0 ⊕ g1 of g. It was conjectured by D. Panyushev
[P07] that in this setting S(g̃)g̃ is a polynomial algebra in ` variables. As was shown
in [P07], ind g̃ = ` and g̃ has the “codim-2” property. Also for many Z2-gradings the
polynomiality of S(g̃)g̃ was established in that paper of Panyushev. For four of the re-
maining cases, we construct homogeneous generators Fi such that

∑
degt Fi ≤ dim g1.

Since also
∑

degt Fi ≥ dim g1 by Theorem 3.8, we get the equality
∑

degt Fi = dim g1
and thereby prove that their components F •i freely generate S(g̃)g̃. This line of argument
resembles proofs of [PPY, Theorems 4.2 & 4.4]. Our result confirms a weaker version of
Panyushev’s conjecture. If the restriction homomorphism K[g]g→ K[g1]

g0 is surjective,
then S(g̃)g̃ is a polynomial algebra in ` variables (see Theorem 4.5).

The second contraction g  g̃ was recently introduced by E. Feigin [F10] and for
the resulting Lie algebra, g̃-invariants in S(g̃) and K[g̃] were studied in [PY]. Here the
decomposition is g = b⊕n−, where b = LieB is a Borel subalgebra and n− is the nilpo-
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tent radical of an opposite Borel. Complementing and relying on results of [PY], we show
that g̃ is of Kostant type (Lemma 5.2), compute its fundamental semi-invaraint (see Def-
inition 5.4 and Theorem 5.5), and prove that the subalgebra S(g̃)si ⊂ S(g̃) generated by
semi-invariants of g̃ (Definition 4.7) is a polynomial algebra in 2` variables, Theorem 5.9.
If g is not of type A, then g̃ does not have the “codim-2” property. However, the quotient
map K[g̃∗] → K[g̃∗]g̃ is equidimensional and U(g̃) is a free ZU(g̃)-module [PY].

Finally, Section 5.2 contains a few observations related to subregular orbital vari-
eties Di , which are linear subspaces of n of codimension 1 forming the complement of
the open B-orbit in n. In particular, in Proposition 5.13, we list all Di such that the sta-
biliser Bx is Abelian for a generic x ∈ Di .

2. Generalities on polynomial Poisson structures

In this section, we recall a rather important equality in Poisson algebras, which has an
origin in mathematical physics [OR].

Let K be a field of characteristic zero and An = AnK the n-dimensional affine space
with the algebra of regular functions A = K[x1, . . . , xn]. Let � be the algebra of regular,
i.e., with polynomial coefficients, differential forms on An and W the algebra of deriva-
tions of A. Both are free A-modules with bases consisting of skew-monomials in dxi and
∂i = ∂xi , respectively. In other words, W is a graded skew-symmetric algebra generated
by polynomial vector fields on An. We identify�0 with A and regard�1 as the A-module
of global sections of the cotangent bundle T ∗An. Let W1 be an A-module generated by ∂i
with 1 ≤ i ≤ n. We view the exterior powers �k = 3kA�

1 and Wk
:= 3kAW1 as dual

A-modules by extending the canonical non-degenerate A-pairing dxi(∂j ) = δij .
Let ω = dx1∧· · ·∧dxn be the volume form. If f and g are elements of�k and�n−k ,

respectively, then f ∧g = aω with a ∈ A. We will say that in this situation a = (f ∧g)/ω
and f/ω is an element of (�n−k)∗ such that (f/ω)(g) = a. This defines an A-linear map

1
ω
: �k → (�n−k)∗ ∼=Wn−k.

Suppose that A has a Poisson structure { , } : A×A→ A and let π denote the corre-
sponding Poisson tensor (bivector), the element of HomA(�

2,A) satisfying π(df ∧ dg)
= {f, g} for all f, g ∈ A. (It is not assumed that the coefficients of π are linear func-
tions.) In view of the duality between forms and vector fields, we may regard π as an
element of W2. For ξ ∈ An, πξ can be viewed as a skew-symmetric matrix with entries
{xi, xj }(ξ). The index of the Poisson algebra A, denoted indA, is defined as

indA := n− rkπ, where rkπ = max
ξ∈An

rkπξ .

An element a ∈ A is said to be central if {a,A} = 0. Correspondingly, the set ZA =
Z(A, π) of all central elements is called the Poisson centre of A.
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Set Singπ := {ξ ∈ An | rkπξ < rkπ}. Clearly, Singπ is a proper Zariski closed
subset of An. By definition, π(da ∧ db) = 0 for all a ∈ ZA and all b ∈ A. Hence the
linear subspace {dξa | a ∈ ZA} lies in the kernel of πξ and we have

tr.degK ZA ≤ indA.

For g1, . . . , gm ∈ A, the Jacobian locus J(g1, . . . , gm) consists of all ξ ∈ An
such that the differentials dξg1, . . . , dξgm are linearly dependent. In other words, ξ ∈
J(g1, . . . , gm) if and only if (dg1 ∧ · · · ∧ dgm)ξ = 0. The set J(g1, . . . , gm) is Zariski
closed in An and it coincides with An if and only if g1, . . . , gm are algebraically depen-
dent.

Given k ∈ N, we let
3kπ := π ∧ · · · ∧ π︸ ︷︷ ︸

k factors

be an element of W2k . Note that 3kπ 6= 0 if and only if πξ contains a non-zero 2k×2k-
minor for some ξ ∈ An. Therefore 3kπ = 0 for k > (rkπ)/2 and 3kπ 6= 0 for
k ≤ (rkπ)/2. The following statement can be extracted from the proofs of [OR, Theorem
3.1], [PPY, Theorem 1.2], [P07, Theorem 1.2].

Lemma 2.1. Let A = K[x1, . . . , xn] be a Poisson algebra of index ` and let {F1, . . . , F`}

⊂ ZA be a set of algebraically independent polynomials. Then there are coprime q1, q2 ∈

A \ {0} such that

q1
dF1 ∧ · · · ∧ dF`

ω
= q23

(n−`)/2π.

Proof. Set F = dF1∧· · ·∧dF`. Take any F ∈ ZA. Because of the inequality tr.degZ(A)
≤ `, the polynomials F1, . . . , F`, and F are algebraically dependent, hence F ∧ dF = 0.
Moreover, π(dF, ·) = 0 and 3(n−`)/2π is zero on dF ∧�n−`−1.

Changing the ordering of the coordinates, we may assume F∧dx1∧· · ·∧dxn−` 6= 0.
Let ξ ∈ An be such that rkπξ = n − ` and the elements dξFi together with {dxj | j ≤
n− `} form a basis of T ∗ξ A

n. Then

3n−`(T ∗ξ A
n) = Ker (F/ω)ξ ⊕K(dx1 ∧ · · · ∧ dxn−`).

Note that here the kernel of (F/ω)ξ lies also in the kernel of3(n−`)/2πξ . Next3(n−`)/2πξ
6= 0. Therefore (F/ω)ξ is a non-zero scalar multiple of3(n−`)/2πξ . We can conclude that
F/ω and 3(n−`)/2π are proportional on an open subset of An. It follows that there exist
non-zero coprime q1, q2 ∈ A such that q1(F/ω) = q23

(n−`)/2π . ut

Of particular interest are situations where q1, q2 ∈ K for q1, q2 as above. This can be
guaranteed by “codim-2” conditions (see e.g. [PPY, Theorem 1.2]). If dim Singπ ≤ n−2,
then q1 must be a scalar. If dim J(F1, . . . , F`) ≤ n− 2, then q2 must be a scalar.

In case π is homogeneous, i.e., all the (polynomial) coefficients of π are of the same
degree, we can say that deg3kπ = k degπ . Suppose that π and all the Fi’s are homo-
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geneous. Then q1, q2 are also homogeneous and

deg q1 − `+
∑̀
i=1

degFi = deg q2 +
n− `

2
degπ.

If, for example, 2
∑

degFi = 2`+ (n− `) degπ , then deg q1 = deg q2 and knowing that
q1 is constant, we also know that q2 is a constant.

Poisson tensors of degree 1 correspond to finite-dimensional Lie algebras q over K.
In this case An = q∗ is the dual space of an n-dimensional Lie algebra q and A = S(q) =
K[q∗] is the symmetric algebra of q. Set ind q = ind S(q) and q∗sing = Singπ . Note that

ind q = min
γ∈q∗

dim qγ = dim qα for all α ∈ q∗reg = q∗ \ q∗sing.

It is also worth mentioning that ZS(q) = S(q)q.
Suppose that g is a non-Abelian reductive Lie algebra. Then ind g = rk g, the al-

gebra ZS(g) of symmetric invariants is freely generated by homogeneous polynomials
F1, . . . , F` with ` = rk g, and 2

∑
degFi = n+ `. Moreover, dim g∗sing = n− 3. There-

fore, after a suitable renormalisation,

dF1 ∧ · · · ∧ dF`

ω
= 3(n−`)/2π. (2.1)

This is known as Kostant’s regularity criterion: x ∈ g∗reg if and only if the differentials
dxFi are linearly independent [K, Theorem 9].

Definition 2.2. Equation (2.1) is called the Kostant equality and we will say that a Pois-
son algebra A (or a Lie algebra q) is of Kostant type if ZA is generated by ` polynomials
satisfying the Kostant equality.

Apart from reductive and Abelian Lie algebras, examples of Lie algebras of Kostant
type are provided by the centralisers ge of nilpotent elements in slm and sp2m [PPY],
truncated seaweed (biparabolic) subalgebras of slm and sp2m [J], and semidirect products
related to symmetric decompositions g = g0 ⊕ g1 (see [P07] and Section 4 here).

Let (e, h, f ) be an sl2-triple in g = LieG. Then Se = e + gf is the Slodowy slice
of Ge at e, and K[Se] inherits a Poisson bracket from g (∼= g∗). These Poisson algebras
are of Kostant type and they are associated graded algebras of finite W -algebras (see [Pr]
and [PPY, Section 2]). Note that all the above mentioned Poisson and Lie algebras of
Kostant type have the “codim-2” property.

3. Contractions of Poisson tensors

We begin with a definition of a contraction in the Lie algebra setting. Let q be a Lie al-
gebra, f ⊂ q a Lie subalgebra, and V ⊂ q a complementary (to f) subspace. We do not
require V to be f-stable. For each t ∈ K× , let ϕt : q → q be a linear map multiplying
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vectors in V by t and vectors in f by 1. These automorphisms form a one-parameter sub-
group in GL(q). Each ϕt defines a new Lie algebra structure on the same vector space q.
The t-commutator [ , ]t or the t-Poisson bracket { , }t is given by

{x, y}t := ϕ
−1
t ({ϕt (x), ϕt (y)})

for x, y ∈ q. Let prf and prV be the projection on f and V , respectively. Then

[ξ, η]t = [ξ, η], [ξ, v]t = t prf([ξ, v])+ prV ([ξ, v]),

[v,w]t = t
2 prf([v,w])+ t prV ([v,w]),

for ξ, η ∈ f and v,w ∈ V . We can pass to the limit limt→0[ , ]t and get yet another Lie
algebra structure on q. Let q̃ denote this contraction of q. Then q̃ = fn V , where V is an
Abelian ideal of q̃ and the action of f on V is given by prV . (The reader feeling uncom-
fortable with taking the limit, although it can be defined in a purely algebraic setting, may
assume that t takes values in Q ⊂ K.)

Extending ϕt to the symmetric algebra S(q) as well as to W and �, one can say that
πt = ϕ

−1
t (π) and π̃ = limt→0 πt . Let qt stand for the Lie algebra corresponding to πt .

Then the Poisson centre of S(qt ) equals ϕ−1
t (ZS(q)).

For H ∈ S(q), let degt H be the degree in t of ϕt (H). This means that ϕt (H) =
tdHd + t

d−1Hd−1 + · · · +H0, where d = degt H , Hi ∈ S(q), and Hd 6= 0. We will say
that H • := Hd is the highest (t-) component of H .

Lemma 3.1. If H ∈ ZS(q), then H • is a central element in S(q̃).

Proof. Since H ∈ ZS(q), its preimage ϕ−1
t (H) is a central element in S(qt ), which one

can write as ϕ−1
t (H) = t−dHd + t

1−dHd−1 + · · · + t
−1H1 + H0. Multiplying it by td ,

we see that
∑d
j=0 t

d−jHj is also a central element in S(qt ). Passing to the limit as t → 0
shows that Hd = H • is an element of ZS(q̃). ut

The automorphism ϕt : q → q does not need to be of degree 1 in t ; also, the Poisson
tensor π does not need to be linear. We can consider a one-parameter family of linear
automorphisms of An and the corresponding deformation of Poisson structures on it. The
only important thing is that the limit limt→0 πt exists. In order to be consistent with the
Lie algebra case, we identify An with Kn. Let ϕ be a K-linear automorphism of the dual
space (Kn)∗. Then ϕ extends to K-linear automorphisms of An, A = K[An], W, and �.

Definition 3.2. Let π be a polynomial Poisson tensor on An ∼= Kn. Suppose that we
have a family of automorphisms ϕt given by a regular map K× → GL((Kn)∗) and that
the formal expression of πt := ϕ−1

t (π) is an element of W2
[t]. Then π̃ := limt→0 πt

is called a contraction of π . For each H ∈ A, we define its highest (t-) component as a
non-zero polynomial H • such that H • = limt→0 t

dϕ−1
t (H) for some d =: degt H . (One

readily sees the uniqueness of this d.)

Lemma 3.3. If π̃ is a contraction of π , then π̃ is again a Poisson tensor and for each
H ∈ Z(A, π), the polynomial H • is an element of Z(A, π̃).
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Proof. An element R ∈ W2 is a Poisson tensor if and only if [R,R] = 0. (This is a way
to state the Jacobi identity.) Since [πt , πt ] = 0 for all non-zero t and πt ∈ W2

[t], we
have πt = π̃ + tR, where R ∈ W2

[t], and 0 = [πt , πt ] = [π̃ , π̃ ] + tR̃ with R̃ ∈ W2
[t].

Therefore [π̃ , π̃ ] = 0.
In order to prove the second statement one repeats the argument of Lemma 3.1:

0 = lim
t→0
{tdϕ−1

t (H), a}t = lim
t→0
{H •, a}t = π̃(dH

•
∧ da)

for all a ∈ A. ut

Example 3.4. Suppose we have a decomposition q = V0 ⊕ V1 ⊕ · · · ⊕ Vm−1, where V0
is a subalgebra and in general [Vi, Vj ] ⊂

⊕
k≤i+j Vk . Then one can define ϕt : q → q

by setting ϕ|Vj = tj id and consider Lie algebra structures [ , ]t on q. Clearly, the limit
as t → 0 exists and the resulting Lie algebra q̃ has a Z-grading with at most m non-zero
components.

Contractions of Lie algebras as in Example 3.4 were studied by Panyushev [P09].

Definition 3.5. Let ` = ind q. We say that a set {H1, . . . , H`} ⊂ S(q)q is a good gener-
ating system with respect to a contraction [ , ]t  [ , ]q̃ if the polynomials Hi generate
S(q)q and their highest components H •i are algebraically independent.

Let (ZS(q))• be the algebra of highest components of ZS(q), i.e., the algebra gener-
ated by H • with H ∈ ZS(q).

Lemma 3.6. If {H1, . . . , H`} ⊂ S(q)q is a good generating system, then theH •i generate
(ZS(q))•.
Proof. Each non-zero element g ∈ ZS(q) can be expressed as a polynomial P in the Hi .
Suppose that P =

∑
s̄ as̄H

s1
1 . . . H

s`
` with some s̄ ∈ Z`

≥0. Define P̃ as a sum of those
monomials (with the coefficients as̄), where the degree in t , s1 degt H1+· · ·+ s` degt H`,
is maximal. Then P̃ (H •1 , . . . , H

•

` ) is a non-zero polynomial, because the elements H •i
are algebraically independent, and it equals g• by construction. ut

3.1. Contractions and the Kostant equality

Example 3.7. Suppose that q = sl2 and a contraction q q̃ is defined by a decomposi-
tion sl2 = so2⊕V , where V is an so2-invariant complement. In a standard basis {e, h, f }
the automorphism ϕt multiplies e and f by t . In the basis {e/t, h, f/t} the Poisson tensor
πt is given by the same formula as π in the original basis. Therefore we have

dF

d(e/t) ∧ dh ∧ d(f/t)
= h∂e/t∧∂f/t + 2

e

t
∂h∧∂e/t + 2

f

t
∂f/t∧∂h,

where F is a suitably normalised invariant of degree 2, explicitly F = −h
2

2 −
2ef
t2

. After
removing t from denominators, the above equality modifies to

−t2hdh− 2f de − 2edf
de ∧ dh ∧ df

= t2h∂e∧∂f + 2e∂h∧∂e + 2f ∂f∧∂h.

In particular, for q̃, we have dF •/ω = π̃ .
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Example 3.7 illustrates a general phenomenon. Let Dt be the degree in t of the deter-
minant of the map ϕt : (Kn)∗ → (Kn)∗, where Kn is identified with An. In the case of
a linear (in t) contraction of a Lie algebra q, we have Dt = dimV and ϕt multiplies the
canonical volume form ω by tDt .

Theorem 3.8. Suppose we have a contraction πt  π̃ of a Poisson structure π on
An ∼= Kn given by a family of linear automorphisms ϕt : (Kn)∗ → (Kn)∗ with determi-
nant tDt . Suppose further that indA = ` and it stays the same under the contraction. If
the Kostant equality holds for a set of polynomials F1, . . . , F` ∈ Z(A, π), then

(i)
∑

degt Fi ≥ Dt , moreover, if
∑

degt Fi > Dt , then F •i are algebraically depen-
dent;

(ii) if
∑

degt Fi = Dt , then F •i are algebraically independent and satisfy the Kostant
equality with π̃ ;

(iii) if we have equality in (i) and dim Sing π̃ ≤ n− 2, and if each F •i is a homogeneous
polynomial, then the F •i generate Z(A, π̃).

Proof. We are contracting, so to say, both sides in the Kostant equality. For each non-
zero t , we have

dϕ−1
t (F1) ∧ · · · ∧ dϕ

−1
t (F`)

ϕ−1
t (ω)

= 3(n−`)/2πt

and therefore

tDt dϕ−1
t (F1) ∧ · · · ∧ dϕ

−1
t (F`)

ω
= 3(n−`)/2π̃ + tR,

where R ∈Wn−`
[t].

If
∑

degt Fi < Dt , then letting t → 0, we get zero on the left hand side. Since index
remains the same under this contraction, 3(n−`)/2π̃ 6= 0, and this proves the inequality∑

degt Fi ≥ Dt . Further, if
∑

degt Fi > Dt , then tDt (dF •1 ∧ · · · ∧ dF
•

` ) is either zero or
tends to infinity as t → 0 and therefore dF •1 ∧ · · · ∧ dF

•

` must be zero. This completes
the proof of (i).

If
∑

degt Fi = Dt then the left hand side tends to (dF •1 ∧ · · · ∧ dF
•

` )/ω as t → 0.
Therefore these highest components are algebraically independent and indeed satisfy the
Kostant equality with 3(n−`)/2π̃ on the right hand side.

Part (ii) implies that J(F •1 , . . . , F
•

` ) = Sing π̃ . Thus, if the conditions in (iii) are satis-
fied, then the Jacobian locus of F •i has dimension at most n−2. Since tr.degZ(A, π̃) ≤ `,
for each F ∈ Z(A, π̃), the polynomials F •1 , . . . , F

•

` , and F are algebraically dependent.
The assumption that each F •i is homogeneous allows us to use a characteristic zero ver-
sion of Skryabin’s result (see [PPY, Theorem 1.1]), which states that in this situation F
lies in the subalgebra generated by F •i . ut

4. Symmetric invariants of Z2-contractions

Let G be a connected reductive algebraic group defined over K. Suppose that K = K.
Set g = LieG. Let σ be an involution (automorphism of oder 2) of G. At the Lie algebra
level, σ induces a Z2-grading g = g0 ⊕ g1, where g0 = gσ = LieG0 and G0 := G

σ is
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the subgroup of σ -invariant points. In this context,G0 is said to be a symmetric subgroup,
G/G0 a symmetric space and (g, g0) a symmetric pair. One can contract g to a semidirect
product g̃ = g0 n g1, where g1 becomes an Abelian ideal, as described in Section 3. We
will call the resulting Lie algebra g̃ a Z2-contraction of g. In this section, our main objects
of interest are Z2-contractions of simple (non-Abelian) Lie algebras.

Set ` = ind g = rk g. By [P07, Proposition 2.5], ind g̃ = ` for a Z2-contraction
of a reductive Lie algebra. It was also conjectured in [P07] that S(g̃)g̃ is a polynomial
algebra in ` variables. In would be sufficient to prove the conjecture for symmetric pairs
with simple g. For many pairs it was already proved in [P07]. Here we consider four
of the remaining ones. This does not cover all of them and does not prove Panyushev’s
conjecture.

Proposition 4.1 ([P07, Section 6]). Suppose that g is a simple non-Abelian Lie algebra.
Then all symmetric pairs (g, g0) such that the polynomiality of S(g̃)g̃ is not established
yet are listed below.

Exceptional Lie algebras:

• (E6, F4), (E7, E6 ⊕K), (E8, E7 ⊕ sl2), and (E6, so10 ⊕ so2);
• (E7, so12 ⊕ sl2).

Classical Lie algebras:

• (sp2n+2m, sp2n ⊕ sp2m) for n ≥ m;
• (so2`, gl`);
• (sl2n, sp2n).

The first four exceptional symmetric pairs are collected in one item, because there are
no good generating systems in S(g)g with respect to the corresponding Z2-contractions
(see [P07, Remark 4.3]). Moreover, it is quite possible that the algebra of symmetric
invariants is not freely generated for these g̃. These are precisely the symmetric pairs
such that the restriction homomorphism K[g]G → K[g1]

G0 is not surjective [H]. Note
that one symmetric pair, (sp2n, gln), is missing in the list in [P07, Section 6], but not in
the main text of the paper. Here S(g̃)g̃ = K[g∗1]

GLn is a polynomial algebra.
According to [P07, Theorem 3.3], the Lie algebra g̃ always has the “codim-2” prop-

erty, dim Sing π̃ ≤ dim g̃ − 2. For the pair (E7, so12 ⊕ sl2) and the three classical series
listed in Proposition 4.1, we will construct homogeneous generators Fi ∈ S(g)g such that∑

degt Fi ≤ dim g1 and using Theorem 3.8 prove that Panyushev’s conjecture holds for
them.

For each element x ∈ g1, we let gi,x = gx ∩ gi denote its centraliser in gi (i = 0, 1).
Let c ⊂ g1 be a maximal (Abelian) subalgebra consisting of semisimple elements. Any
such subalgebra is called a Cartan subspace of g1. Let l = g0,c be the centraliser of c
in g0. We will need a few facts that can be found in e.g. [KR, Thm. 1 & Prop. 8]. First, all
Cartan subspaces are G0-conjugate. Second, l = g0,s for a generic s ∈ c and therefore it
is a reductive subalgebra. And finally, G0c is a dense subset of g1.

Let L := (G0,c)
◦ be the connected component of the identity of G0,c = {g ∈ G0 |

gs = s for all s ∈ c}. Using the Killing form, we identify g ∼= g∗, g1 ∼= g∗1, and g0 ∼= g∗0.
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Fix also the dual decomposition g̃∗ = g∗0 ⊕ g∗1. In order to avoid confusion, let l̂ and ĉ
denote the subspaces of g̃∗ arising from l and c, respectively, under this identification.
The orthogonal complements appearing below are taken with respect to the Killing form
of g. Let G̃ = G0 n exp(g1) be an algebraic group with Lie G̃ = g̃. The group G0 is
not necessarily connected and therefore G̃ can also have several connected components.
However, note that each bi-homogeneous (with respect to the decomposition g = g0⊕g1)
component of H ∈ S(g)g is an invariant of G0 and therefore in view of Lemma 3.1,
H • ∈ S(g̃)G̃.

Remark 4.2. In [P07], a good generating system (g.g.s.) consists of homogeneous poly-
nomials by definition. It is possible to show that if there is a g.g.s. in S(g)g with respect to
a contraction g  g̃, then there are also homogeneous polynomials forming a g.g.s. We
will not use this fact and therefore will not prove it. In this and the following sections, all
generating systems of invariants contain only homogeneous polynomials.

Example 4.3. Take (g, g0) = (E7, so12 ⊕ sl2). Then Dt = dim g1 = 64, and the gener-
ating homogeneous invariants H1, . . . , H7 ∈ S(g)g have degrees: 2, 6, 8, 10, 12, 14, 18.
It is known that the restrictions of H1, H2, H3, H5 to g∗1 generate S(g1)

g0 , independently
of the choice of Hi (see [H]). We will show that there is a g.g.s. in ZS(g) with respect to
the contraction g g̃.

Take any of the remaining three generators, say Hj . Assume that H •j ∈ S(g1). Then it
can be expressed as a polynomial P in H •i with i ∈ {1, 2, 3, 5} and we can replace Hj by
Hj − P(H1, H2, H3, H5). Or rather assume from the beginning that degt Hj < degHj .

The next step is to show that degt Hj < degHj − 1. Assume this is not the case.
Restricting H •j to l̂ ⊕ ĉ, we get either zero or an L-invariant polynomial function of bi-
degree (degHj−1, 1), in other words, a sum of L-invariants in S(l) of an odd degree with
coefficients from c. In this example l = sl2 ⊕ sl2 ⊕ sl2 (see e.g. [VO, §5.4 and Table 9
in Ref. Chapter]) and all symmetric invariants have even degrees. This shows that H •j is

zero on l̂⊕ ĉ. Clearly H •j is also zero on the G̃-saturation G̃(l̂⊕ ĉ).

Consider first the action of exp(g1) ⊂ G̃. Note that [g, x] = g⊥x for any x ∈ g, and
hence [g1, x] = g0 ∩ g⊥x = g0 ∩ (g0,x)

⊥ for any x ∈ g1. Now let ŝ ∈ ĉ be an element
coming from some s ∈ c. Then

exp(g1)(l̂×{ŝ}) = l̂×{ŝ} + [̂g1, s],

where [̂g1, s] is the annihilator of g0,s in g∗0. Since g0,s = l for generic s ∈ c, the saturation

exp(g1)(l̂⊕ĉ) is a dense subset of g∗0⊕ĉ. ApplyingG0 to this subset, we get G̃(l̂⊕ ĉ) = g̃∗

and therefore H •j = 0. Since the highest t-component of a non-zero polynomial is non-
zero, we get degt Hj ≤ degHj − 2. Summing up,

7∑
i=1

degt Hi ≤
∑

degHi − 6 = 70− 6 = 64 = Dt .
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Multiplying one of the Hi by a non-zero constant, we may assume that H1, . . . , H` sat-
isfy the Kostant equality. Then, by Theorem 3.8(i),(ii), H •i are algebraically independent,
which means that Hi form a good generating system.

In order to simplify calculations for other pairs, we prove a simple equality concerning
ranks and dimensions. Recall that ` = rk g.

Lemma 4.4. Let bl ⊂ l be a Borel subalgebra. Then dim b = dim g1 + dim bl.

Proof. Clearly the subspace l⊕c contains a maximal torus of g. Therefore ` = rk l+dim c.
It is known that the dimension of a maximal G0-orbit in g1 equals dim g0 − dim l on
one hand, and dim g1 − dim c on the other (see e.g. [KR, Proposition 9]). Consequently,
dim g0 − dim l = dim g1 − dim c. Therefore

dim b = (dim g+ `)/2 = (dim g0 + dim g1 + `)/2
= (dim g1 + dim l− dim c+ dim g1 + `)/2
= dim g1 + (dim l− dim c+ rk l+ dim c)/2 = dim g1 + dim bl. ut

The following assertion was predicted by D. Panyushev.

Theorem 4.5. Let (g, g0) be a symmetric pair with g simple. Suppose that the restriction
map K[g]G→ K[g1]

G0 is surjective. Then there is a good generating system F1, . . . , F`
in S(g)g such that each Fi is homogeneous and S(g̃)g̃ is freely generated by F •i .

Proof. According to [P07], there are four pairs to consider. For one of them the existence
of a g.g.s. was established in Example 4.3. Our next goal is to construct good generating
systems for three classical pairs listed in Proposition 4.1. We always assume that a set of
generators F1, . . . , F` in S(g)g is normalised in order to satisfy the Kostant equality.

sp2n

g1 sp2m

g1

Fig. 1. Symmetric decomposition of sp2n+2m.

For the first pair, with g = sp2n+2m, we start with a set of generating invariants
{H1, . . . , H`} ⊂ S(g)g, where each Hi is the sum of all principal 2i-minors (this is also
a coefficient of the characteristic polynomial). As can be readily seen from the block
structure of this symmetric pair (Figure 1), degt Hi ≤ 4m for all i. To be more precise,
for 1 ≤ i ≤ m, the highest t-components H •i lie in S(g1) and form a generating set
in K[g∗1]

G0 . Therefore set Fi := Hi for i ≤ m. Here l = (sl2)
m
⊕ sp2n−2m and all

symmetric l-invariants are of even degrees. Applying the same trick as in Example 4.3,
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we can modify Hj with m < j ≤ 2m to Fj in such a way that degt Fj ≤ 2j − 2. The
remaining generators stay as they are, Fi = Hi for i > 2m. Summing up,∑̀

i=1

(degFi − degt Fi) ≥ 2m+
n−m∑
j=1

2j = dim bl.

Making use of Lemma 4.4 and again of the equality
∑

degFi = dim b, we conclude that∑
degt Fi ≤ dim g1 = Dt .
For the second pair, with g = so2`, we have l = (sl2)

`/2 when ` is even, and l =
(sl2)

[`/2]
⊕ so2 when ` is odd. In case ` is even, we argue as in Example 4.3. Choose

homogeneous generators Fi ∈ S(g)g such that the highest components F •1 , . . . , F
•

`/2
form a generating set in K[g∗1]

G0 , and degt Fi ≤ degFi−2 for i > `/2. Then, taking into
account Lemma 4.4, we get∑̀

i=1

degt Fi ≤
∑̀
i=1

degFi − ` = dim b− dim bl = dim g1 = Dt .

The case of ` odd is more interesting. We begin with a set of generating invariants
{H1, . . . , H`} ⊂ S(g)g, where each Hi with i 6= ` is the sum of all principal 2i-minors
and H` is the pfaffian, in particular, degF` = ` is odd. One can realise so2` as a set of
2`×2` matrices skew-symmetric with respect to the anti-diagonal. Then elements of g1
have block structure as shown in Figure 2. This implies that all bi-homogeneous (in g0
and g1) components of Hi with i < ` have even degrees in g1 (and in g0).

0

C 0

B

Fig. 2. g1 for (so2`, gl`). Here the matrices B and C are skew-symmetric with respect to the anti-
diagonal.

The highest t-components H •i with 2i < ` form a generating set in K[g∗1]
G0 . There-

fore we put Fi := Hi for these i. Each Hj with `/2 < j < ` can be modified to Fj with
degt Fj ≤ 2j − 2. And, finally, since det ξ = 0 for all ξ ∈ g1, we have degt H` ≤ `− 1.
Set F` := H`. Then∑̀

i=1

degt Fi ≤
∑̀
i=1

degFi − (`− 1)− 1 = dim b− dim bl = dim g1 = Dt ,

where again we have used Lemma 4.4.
For the third pair, with g = sl2n, we have l = (sl2)

n. Here everything works exactly
as in Example 4.3. We take homogeneous invariants Fi with degFi = i+ 1. Then the F •i
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with 1 ≤ i < n form a generating set in K[g∗1]
G0 and, modifying Fj if necessary, we can

assume that degt F
•

j ≤ degFj − 2 for j ≥ n. In view of Lemma 4.4,

∑̀
i=1

degt Fi ≤
∑̀
i=1

degFi − 2n = dim b− dim bl = dim g1 = Dt .

For all three series we have constructed Fi ∈ S(g)g such that
∑`
i=1 degt Fi ≤ Dt .

By Theorem 3.8(i),(ii), the polynomials Fi form a g.g.s. Since in addition all Fi are ho-
mogeneous here as well as in Example 4.3, the polynomials F •i generate S(g̃)g̃ by [P07,
Theorem 4.2(i)] or by Theorem 3.8(iii), if one recalls that g̃ has the “codim-2” property
[P07, Theorem 3.3.]. ut

Corollary 4.6 (cf. [P07, Theorem 4.2(ii)]). Let (g, g0) be a symmetric pair such that
Theorem 4.5 applies. Then the Lie algebra g̃ is of Kostant type.

4.1. Poisson semicentre

Definition 4.7. Let q be a Lie algebra. Then an element H ∈ S(q) is called a semi-
invariant if {ξ,H } ∈ KH for all ξ ∈ q. We let S(q)si denote the K-algebra generated by
semi-invariants. This algebra is also called the Poisson semicentre of S(q).

It is easy to deduce that {S(q)si, S(q)si} = 0 (see e.g. [OV, Section 2]). Recently
Poisson semicentres were studied in [OV] and [JSh]. In particular, [OV] proves a degree
inequality for Lie algebras q such that ZS(q) is a polynomial ring and ZS(q) = S(q)si.
Here we show that some Z2-contractions g̃ of simple Lie algebras also have the second
property. If G0 is semisimple, then g̃ has no non-trivial characters and clearly ZS(g̃) =
S(g̃)si.

Until the end of this section we assume that G0 has a non-trivial connected centre.
Let G′0 be the derived group of G0 and g′0 = [g0, g0] the derived Lie algebra. Using
an elementary observation that g0 ⊕ [g0, g1] is an ideal of g, one proves the equality
g̃′ = g′0 n g1.

Recall that a symmetric space (or a symmetric pair) can be either of tube type, mean-
ing K[g1]

g′0 6= K[g1]
g0 , or of non-tube type. For example, (so2`, gl`) is of tube type if

and only if ` is even. There are many characterisations of symmetric pairs of tube type. If
(g, g0) is of tube type, then there are more semi-invariants than symmetric g̃-invariants,
because S(g1)

g′0 ⊂ S(g̃)si. That case may be worth investigating. Here we deal with sym-
metric spaces of non-tube type.

The following observation helps to treat semidirect products (cf. [R] or [P07′, Propo-
sition 5.5]).

Lemma 4.8. Let q = f n V be a semidirect product of a Lie algebra f and an Abelian
ideal V . Take x = a + b ∈ q∗ with a(V ) = 0 = b(f). Let a = Ann(f·b) be a subspace of
(V ∗)∗ = V . Then a� qx and qx/a ∼= (fb)ã , where ã is the restriction of a to fb.
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Proof. Note that V ·b is zero on V , because [V, V ] = 0, and therefore qx ⊂ fb n V . It
is also quite clear that V ·b ⊂ Ann(fb ⊕ V ). Hence qx ⊂ (fb)ã n V . For dimensional
reasons, V ·b = Ann(fb⊕V ), and for each ξ ∈ (fb)ã , there is η ∈ V such that η·b = ξ ·a.
It remains to notice that qx ∩ V = Ann(f·b). ut

Proposition 4.9. Suppose that (g, g0) is a symmetric pair of non-tube type. Then S(g̃)si =

ZS(g̃).

Proof. Here we consider the connected groups G̃◦ and (G̃′)◦ = (G′0)
◦ n exp(g1). Each

character of G̃◦ is trivial on (G̃′)◦, hence S(g̃)si ⊂ S(g̃)g̃
′

. (In fact, S(g̃)si = S(g̃)g̃
′

.) Next
we take H ∈ S(g̃)g̃

′

and show that it is an invariant of G̃◦.
Since g′0 is semisimple, K(g1)

g′0 is the quotient field of K[g1]
g′0 . By Rosenlicht’s

theorem, generic orbits of an algebraic group, in our case (G′0)
◦, are separated by rational

invariants. Therefore the equality K[g1]
g′0 = K[g1]

g0 implies thatG◦0 and (G′0)
◦ have the

same generic orbits in g1 and g∗1. At the Lie algebra level this means that g0 = g′0 + g0,b
for generic b ∈ g1.

Suppose that x = â + b̂ ∈ g̃∗, where â and b̂ correspond to generic a ∈ l and
b ∈ c, respectively. In view of Lemma 4.8 and the fact that l = g0,b is reductive, g̃x =
lan([g0, b])

⊥, where ([g0, b])
⊥
= {η ∈ g1 | [b, η] ∈ g⊥0 } (the orthogonal complement is

taken with respect to the Killing form of g).
Since g0 = g′0 + l and la contains the centre of l, we also have g0 = g′0 + la and

g̃ = g̃′ + g̃x . This leads to the equalities g̃′·x = g̃·x and dim G̃′x = dim G̃x. In addition,
(G̃′)◦ is a normal subgroup of G̃◦. Consequently, (G̃′)◦x = G̃◦x. This equality holds on

an open subset of G̃◦(l̂⊕ ĉ), which is a dense subset of g̃∗, because G̃(l̂⊕ ĉ) = g̃∗, as we
know from Example 4.3, and g̃∗ is irreducible. Thus, H is constant on a generic G̃◦-orbit
and hence H ∈ ZS(g̃). ut

5. Applications to E. Feigin’s contraction

In this section, g = LieG is a simple Lie algebra of rank `, B ⊂ G is a Borel subgroup,
and b = LieB is a Borel subalgebra. We keep the assumption that K = K. Fix a de-
composition g = b ⊕ n−, where n− is the nilpotent radical of an opposite Borel, and
consider a one-parameter contraction of g given by this decomposition. For the resulting
Lie algebra g̃, we have g̃ = b n n−, where n− is an Abelian ideal. This contraction was
recently introduces by E. Feigin [F10]. His motivation came from some problems in rep-
resentation theory [FFL]. Degenerations of flag varieties of g related to the contraction
g g̃ were further studied in [F11] and [FFiL].

Let {α1, . . . , α`} be the set of simple roots and ei, fi the corresponding elements of
the Chevalley basis. Set greg = {x ∈ g | dim gx = `}, where gx is the stabiliser in the
adjoint representation, nreg := n∩ greg. If x ∈ nreg, then nx = bx = gx and Bx is a dense
open orbit in n. Hence nreg is a singleB-orbit. The complement of this orbit was described
by Kostant [K, Theorem 4]: n \ nreg =

⋃`
i=1 Di , where each Di is a linear subspace of

dimension dim n−1 orthogonal to fi . We will also need an interpretation of Di as closures
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of orbital varieties. It is a classical fact that for each nilpotent orbitGe ⊂ g, all irreducible
components ofGe∩n are of dimension 1

2 dimGe. In particular, n\nreg = Osub ∩ n, where
Osub is the unique nilpotent G-orbit in g of dimension dim g− `− 2.

Making further use of the Killing form ( , ) of g, we identify (n−)∗ with the nilpotent
radical n ⊂ b and fix the dual decomposition g̃∗ = b∗ ⊕ nab, where ab indicates that nab

is the space of linear functions on an Abelian ideal. Let also nab
reg be a subset of nab

⊂ g̃∗

corresponding to nreg. We identify Di with subsets of nab using the same letters for them.
Then next statement was first proved in [PY].

Lemma 5.1 (cf. Lemma 4.8). We have ind g̃ = `.

Proof. Clearly, rkπ cannot get larger after a contraction, therefore ind g̃ ≥ `. On the
other hand, take x ∈ nab

reg and extend it to a linear function on g̃∗ by putting x(b) = 0.
Then g̃x = bx = nx and it has dimension `. Thus ind g̃ = `. ut

Another result of [PY], Theorem 3.3, states that S(g̃)g̃ is freely generated by some poly-
nomials P̂i (with 1 ≤ i ≤ `). The construction of these polynomials P̂i starts with a
system of homogeneous generators Fi of S(g)g with degFi ≤ degFi+1. It is also shown
that P̂i = F •i [PY, Theorem 3.9]. We assume that the Fi are normalised to satisfy the
Kostant equality.

Lemma 5.2. Let Fi be as above. Then F •i satisfy the Kostant equality with π̃ and there-
fore g̃ is a Lie algebra of Kostant type. Moreover, degt Fi = degFi − 1 for all i.

Proof. Recall that S(n−)b = K. If degt Fi = degFi , that is, F •i ∈ S(n−), then also
F •i ∈ S(n−)b, a contradiction. Hence degt Fi ≤ degFi − 1 for each i and∑

degt Fi ≤ dim b− ` = dim n = Dt .

By Theorem 3.8(i),(ii), degt Fi = degFi − 1, the polynomials F •i are algebraically inde-
pendent and satisfy the Kostant equality with π̃ . Since, according to [PY, Section 3], the
F •i generate S(g̃)g̃, the Lie algebra g̃ is of Kostant type. ut

Actually, the bi-degrees of F •i with respect to the decomposition g = b⊕n− have already
been found in [PY].

Remark 5.3. Lemma 5.2 implies that J(F •1 , . . . , F
•

` ) = Sing π̃ . Therefore Sing π̃ con-
tains a divisor whenever g is not of type A (see [PY, Th. 4.2 & Prop. 4.3]). This means
that outside of type A we get curious examples of Lie algebras of Kostant type that do not
have the “codim-2” property.

Next we turn our attention to the subset Sing π̃ = g̃∗sing. Lemma 4.8 implies that

b∗×nab
reg ⊂ g̃∗reg and therefore g̃∗sing ⊂ b∗×

⋃`
i=1 Di , where the subspaces Di are regarded

as subsets of nab.

Definition 5.4. Let q be an n-dimensional Lie algebra with ind q = ` and π its Lie–
Poisson tensor. Then we will say that a polynomial p is a fundamental semi-invariant
of q if 3(n−`)/2π = pR with R ∈ Wn−` (notation as in Section 2) and the zero set of R
in q∗ has codimension greater than or equal to 2.
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In [OV], the fundamental semi-invariant is defined as the greatest common divisor of
the rkπ×rkπ (here rkπ = n− `) minors in the matrix of π . Our polynomial is a square
root of that one (up to a non-zero scalar) and is a scalar multiple of the fundamental
semi-invariant in the sense of [JSh, Section 4.1].

Let δ be the highest root, eδ a highest root vector, and ri = [δ : αi] the i-th coefficient
in the decomposition of δ, i.e., δ =

∑
riαi .

As is well-known, the highest degree of a homogeneous generator, under our assump-
tions, degF`, equals 1 +

∑
ri . Since F •` has weight zero and is of degree 1 in b and of

degree degF` − 1 in n−, up to a scalar multiple we have F •` = eδ
∏
f
ri
i . This is also

proved in [PY, Lemma 4.1].
Set p :=

∏
f
ri−1
i . Note that in type A we have ri = 1 for all i and hence p = 1.

Here we generalise [PY, Proposition 4.3], stating that in type A the singular set Sing π̃
contains no divisors.

Theorem 5.5. Let g̃ be Feigin’s contraction of a simple Lie algebra g. Then p =
∏
f
ri−1
i

is a fundamental semi-invariant of g̃.

Proof. Set F = dF •1 ∧ · · · ∧ dF
•

` . Consider also the differential 1-form

L =
(∏̀
i=1

fi

)
deδ + eδ

∑̀
i=1

rif1 . . . fi−1fi+1 . . . f`dfi

and set R := dF •1 ∧ · · · ∧ dF
•

`−1 ∧ L. Note that dF •` = apL with a ∈ K× and therefore
F = apR. In view of the Kostant equality for F •i established in Lemma 5.2, we have to
show that the zero set of R contains no divisors.

Clearly, the zero set of R is contained in g̃∗sing and we have to prove that R is non-zero
on each irreducible divisor in g̃∗sing. As already mentioned, Lemma 4.8 together with a

result of Kostant [K, Theorem 4] imply that g̃∗sing ⊂ b∗×
⋃`
i=1 Di , where the Di are the

components of Osub ∩ n. Fix i ∈ {1, . . . , `}. There is an element e = e(i) in Di such
that e ∈ Osub and (fj , e) 6= 0 for all j 6= i. Take this e and add to it b ∈ b∗ such
that b(eδ) 6= 0, forming a linear function x = b + e on g̃. Evaluating L at x we get
Lx = a′dfi with a′ ∈ K× . The goal is to prove that dxF •j with 1 ≤ j < ` and Lx are
linearly independent. To this end we calculate dxF •j .

Each dxF •j can be considered as an element of g̃ and therefore dxF •j = ξj + ηj

with ξj ∈ b and ηj ∈ n−. Since each F •j has degree 1 in b, we have ξi = deFi , where
e is regarded as an element of g ∼= g∗. By e.g. [Sl, Sect. 8.3, Lemma 1] or [P07′, Theo-
rem 10.6], the deFj with j ≤ ` generate a subspace of dimension `−1. For dxF •` we have
two possibilities: either it is zero (if ri > 1), or proportional to dfi . In any case, ξ` = 0.
Therefore ξ1, . . . , ξ`−1 are linearly independent and clearly the dxF •j with 1 ≤ j < ` and
Lx together generate a subspace of dimension `. This proves that R is non-zero on each
b∗×Di . Therefore dim{ξ ∈ g̃∗ | Rξ = 0} ≤ dim g̃− 2 and we are done. ut

There are three types of simple Lie algebras such that ri > 1 for all i. Here g̃∗sing is a union
of ` irreducible divisors and we have the following observation.
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Corollary 5.6. Suppose that g is of typeE8, F4 orG2. Then an element x ∈ g̃∗ is singular
if and only if dxF •` = 0.

For a simple (non-Abelian) Lie algebra g, the above statement is true, independently of the
type of g. By a result of Varadarajan [V], g∗sing is characterised by the property dxF` = 0.
It would be interesting to find out whether it holds for all g̃ or not. That task lies beyond
the scope of this paper.

5.1. Proper semi-invariants

A semi-invariant is said to be proper if it is not an invariant. The Lie algebra g̃ has proper
symmetric semi-invariants, for example eδ . Therefore describing S(g̃)si is an interesting
task.

Set Hi = F •i for 1 ≤ i < `; Hi = fj , where j = i − ` + 1 for ` ≤ i < 2`; and
H2` = eδ . Clearly all these functions are semi-invariants of g̃. We will show that they
generate S(g̃)si.

Let h ⊂ b be a Cartan subalgebra of g,U ⊂ B the unipotent radical, and g̃′ the derived
algebra of g̃. We have g̃′ = nnn−. Note that the Lie algebra g̃′ has only trivial characters.

Lemma 5.7. We have S(g̃)si = ZS(g̃
′). In particular, S(g̃)si is a subalgebra of S(g̃′).

Proof. Suppose that S(g̃)λ is an eigenspace of g̃ corresponding to a character λ ∈ g̃∗ and
S(g̃)λ 6= 0. Let g̃λ ⊂ g̃ be the kernel of λ. Then, by a result of Borho et al. [BGR, Satz 6.1],
S(g̃)si ⊂ S(g̃λ) (see also [RV, Lemme 4.1] or [JSh, Sect. 1.2]). Since f1, . . . , f` ∈ n− ⊂ g̃
are semi-invariants with weights−αi (1 ≤ i ≤ `), we conclude that S(g̃)si ⊂ S(g̃′). Next,
g̃′ has no non-trivial characters and the action of h on ZS(g̃′) is diagonalisable. Thus
indeed S(g̃)si = ZS(g̃

′). ut

Lemma 5.7 shows that g̃′ is the canonical truncation of g̃ in the following sense. For any
algebraic finite-dimensional Lie algebra q, there exists a unique subalgebra a such that
S(q)si = ZS(a) [BGR]. This a is said to be the truncation of q.

Lemma 5.8. LetHi be as above. Then the polynomialsHi are algebraically independent.
Moreover, ind g̃′ = 2`.

Proof. Let ê ⊂ nab be a linear function coming from a regular nilpotent element e ∈ n.
We extend it to a function on g̃∗ by setting ê(b) = 0. Then dêF •i = deFi . Moreover,
deF` = eδ up to a constant. Therefore dêF •1 , . . . , dêF

•

`−1 and eδ = deδ generate ne, a
subspace of dimension `. The other polynomials Hj (` ≤ j < 2`) are linearly indepen-
dent elements of n−. Thus the dêHi are linearly independent and the first statement is
proved.

According to the index formula of Raı̈s [R] (cf. Lemma 4.8),

ind g̃′ = (dim nab
− dimUê)+ ind nê = 2`.

Alternatively, one can use [OV, Lemma 3.7], which calculates the index of a truncated
Lie algebra. In our case it reads ind g̃′ = ind g̃+ (dim g̃− dim g̃′). ut
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Theorem 5.9. Let g̃ be Feigin’s contraction of g. Then S(g̃)si is generated by the polyno-
mials Hi defined above.

Proof. First, we extract the “h-part” out of π̃ and its powers. Let π̃ ′ be the Poisson
tensor of g̃′, and ω′ a volume form on (g̃′)∗. Then π̃ = π̃ ′ + Rh, where Rh is a sum∑
[hi, yj ]∂hi ∧ ∂yj over a basis h1, . . . , h` of h and a basis of g̃′. Since dim h = `, for

k > ` we have 3kRh = 0. Taking into account that also 3kπ̃ ′ = 0 for k > (n − 3`)/2
(Lemma 5.8), we get the equality

3(n−`)/2π̃ = (3(n−3`)/2π̃ ′) ∧ (3`Rh).

Therefore a fundamental semi-invariant of g̃′ is a divisor of p =
∏
f
ri−1
i .

Set H := dH1 ∧ · · · ∧ dH2`. By Lemma 5.8, H 6= 0. Note also that by the same
lemma, ind g̃′ = 2`. Therefore, applying Lemma 2.1 to S(g̃′), we get non-zero coprime
q1, q2 ∈ S(g̃′) such that

q1(H/ω
′) = q23

(n−3`)/2π̃ ′.

Since the polynomials q1 and q2 are coprime, q1 must be a divisor of p as well. In partic-
ular, deg q1 ≤ degp. Next we compute and sum the degrees of all objects involved in the
equality

deg q2 + (n− 3`)/2 = deg q1 + degH ≤ degp +
(`−1∑
i=1

degFi − `+ 1
)

= degp + ((n+ `)/2− degF` − `+ 1) = (n+ `)/2− (`+ 1)− `+ 1 = (n− 3`)/2.

This is possible only if q2 ∈ K and q1 = p (up to a scalar multiple). Thus p(H/ω′) =
a3(n−3`)/2π̃ ′ with a ∈ K× . Moreover, p is a fundamental semi-invariant of π̃ ′ and
therefore the Jacobian locus J(H1, . . . , H2`) of Hi does not contain divisors. We have
dim J(H1, . . . , H2`) ≤ dim g̃ − 2 and all polynomials Hi are homogeneous. This allows
us to use the characteristic zero version of a result of Skryabin (see [PPY, Theorem 1.1]),
stating that here anyH ∈ S(g̃′) that is algebraic over a subalgebra generated byHi is con-
tained in that subalgebra. Since tr.degZS(g̃′) ≤ 2`, we conclude that ZS(g̃′) is generated
by H1, . . . , H2`. Now the result follows from Lemma 5.7. ut

5.2. Subregular orbital varieties

Irreducible components of Osub ∩ n are called subregular orbital varieties. They have
played a major rôle in the proof of Theorem 5.5 and we know that each of them is a linear
space Di . Every Di is also the nilpotent radical of a minimal parabolic subalgebra pαi .
An interesting question is whether B acts on Di with an open orbit. This problem was
addressed and solved in [GHR]. It turns out that our results complement some of the
arguments in [GHR].

Let G̃ = B n exp(n−) be an algebraic group with Lie G̃ = g̃. Let also Oi be an
irreducible component of Osub

∩ n lying in Di . Note that Oi is a dense open subset of Di .
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Lemma 5.10. Suppose that ri = [δ : αi] = 1. Then there is a dense open B-orbit in Di .
In the other direction, suppose that there is a dense open B-orbit in Di , but ri > 1. Then
be is Abelian for generic e ∈ Di .

Proof. According to Theorem 5.5, if ri = 1, then the intersection (b∗×Di)∩ g̃
∗
reg is non-

empty, and hence it is a non-empty open subset of b∗×Di . Therefore there is a regular x in
b∗×Oi . Let ê be the nab-component of this x. In other words, x ∈ b∗×{ê}, where ê ∈ nab

comes from a subregular nilpotent element e ∈ n. Next we compute the codimension
of G̃x. This can be done in the spirit of the Raı̈s formula for the index of a semidirect
product [R] (see also [P07′, Proposition 5.5] and Lemma 4.8). And the result is that

dim g̃− dim G̃x = dim n− (dim b− dim be)+ ind be = dim be − `+ ind be. (5.1)

Suppose that Be is not dense in Di . Then dimBe < (dim n − 1) and therefore
dim be ≥ `+ 2, implying be = ge. Since ind ge ≥ ` by Vinberg’s inequality [P03, Corol-
lary 1.7], we get dim g̃ − dim G̃x ≥ (` + 2) and therefore x ∈ g̃∗sing. This contradiction
proves the first statement of the lemma.

Next suppose that ri > 1, Be = Di , and x is a generic element in b∗×{ê}. The
equation (5.1) is valid for this x and gives ind be ≥ `, since dim be = `+ 1. Because the
difference dim q− ind q is even for every finite-dimensional Lie algebra q, this inequality
is possible only if be is commutative. ut

In type A all ri are equal to 1 and all components Di have open B-orbits. This result was
first obtained by J. A. Vargas [Va].

Example 5.11. Suppose that g = so2` with ` > 3 and e ∈ g is a subregular nilpotent
element. Then e is given by a partition (2` − 3, 3), odd powers e2k+1 of the underlying
matrix are elements of g, and ge has a basis

e, e3, . . . , e2`−5, ξ1, ξ2, ξ3, η

with the following non-trivial commutators: [ξ1, ξ2] = e2n−5, [ξ1, η] = ξ2, and
[ξ2, η] = ξ3. (The structure of ge is described, for example, in [Y, Section 1].) It is
not difficult to see that ge does not contain a commutative subalgebra of codimension 1.
In particular, if dim be = `+ 1, then be is not Abelian. By Lemma 5.10, in type D there
is an open B-orbit in Di if and only if ri = 1.

Calculating centralisers ge of subregular nilpotent elements in type E, on GAP or by
hand, one can show that ge does not contain an Abelian subalgebra of codimension 1.
Together with Lemma 5.10, this fact provides an additional explanation for [GHR, The-
orem 2.4(a)(i)]. That result states that for g simply laced, Di contains an open B-orbit if
and only if ri = 1.

Remark 5.12. Actually, Theorem 2.4 of [GHR] asserts that there are a finite number of
B-orbits in Oi if ri = 1. As is explained in the Introduction of [GHR], this is equiva-
lent to the existence of an open orbit. Note also that [GHR] proves the existence of an
open B-orbit by giving its representative in each particular case. Moreover, results for the
exceptional Lie algebras rely on GAP calculations of S. Goodwin [G].
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Independently of the above discussion, D. Panyushev has posed a related question.
When is the stabiliser Be of a generic e ∈ Di Abelian? The centraliser of a nilpotent
element is Abelian only when the element is regular; for a conceptual proof of this fact see
[P03, Theorem 3.3]. In particular, ge is not Abelian for a subregular nilpotent element e.
This implies that be can be Abelian only if dim be < ` + 2 and there is a dense B-orbit
in Di . On the other hand, for an Abelian Lie algebra, ind be = dim be = ` + 1 and
therefore ri must be larger than 1. In the simply laced case, ge does not contain Abelian
subalgebras of codimension 1. For the remaining Lie algebras, [GHR, Theorem 2.4(a)(ii)]
provides the following answer.

Proposition 5.13. The stabiliser in B of a generic e ∈ Di is Abelian if and only if

• g is of type B` and i > 1, or
• g is of type C` with ` > 1 and i = 1, or
• g is of type F4 and i = 4, or
• g is of type G2 and i = 2,

in the Vinberg–Onishchik numbering of simple roots [VO].
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