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Abstract. The limit behavior of a periodic assembly of a finite number of elasto-plastic phases
is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived
through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic
model, albeit with an infinite number of internal variables.
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1. Introduction

1.1. Introductory remarks

In a previous paper [11], we undertook what we believe to be a thorough revamping
of heterogeneous, small strain elasto-plastic evolutions, so as to account for multi-phase
composites with arbitrary yield surfaces and elasticities, provided only that the interfaces
between the phases be piecewise C. This laid the ground work for the present investiga-
tion in which we propose to (re)visit periodic homogenization in the same context.
Elasto-plastic composites belong to the familiar of many engineering fields, and their
behavior has been meticulously investigated in a plethoric literature. When focussing on
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limit analysis, that is, on the prediction of the ultimate load that a composite elasto-plastic
structure can withstand, the engineering literature is extensive, while the mathematical
analysis of the underlying variational problem has been successfully undertaken in var-
ious works of G. Bouchitté and/or P.-M. Suquet (see e.g. [5], [20], [6], [7]). However,
when elasto-plastic evolutions are envisioned, both engineering and mathematical liter-
ature fall short of any bona fide discussion of the interaction between the evolution and
the elasto-plastic microstructure. Rather, the default position is to rely on strain hardening
as a regularizing mechanism under which the homogenization procedure becomes much
simpler (see e.g. [22], [23], [18], [16] as far as the mathematical literature is concerned).

In this paper, we propose to confront the homogenization of the evolution of a peri-
odic multi-phase elasto-plastic composite without any regularizing effect. The periodicity
restriction is unfortunate, but, in all fairness, we are clueless if departing from the peri-
odic framework, although we suspect that ergodicity could easily replace periodicity. In
turn, the periodicity assumption will allow us to resort to the very efficient method of two-
scale convergence first proposed by [17], [1] in a classical elliptic setting, then refined by
many authors. As in our previous contribution [11], we pay close attention to the issue of
the duality between the stress fields which are essentially square-integrable functions and
the plastic strains which are bounded measures; we attempt to clearly circumscribe those
steps where duality is truly needed.

The paper is organized as follows.

In Section 2, we detail the structure of the envisioned periodic microstructures and
apply the existence results for a quasi-static evolution that were derived in [11] to the spe-
cific setting at hand. It proves most convenient to view the periodic structure as that which
is given on an N-dimensional torus, denoted henceforth by ). In Section 3, we state the
various consequences of the existence result (maximal dissipation, flow rule, ...) for an
evolution that takes place exclusively on ). We do so because those results will then serve
as the building block for the interpretation of the resulting “homogenized evolution” (an
evolution in both the macroscopic variable x and its microscopic counterpart y), provided
that the macroscopic dependence of all fields can be properly localized.

Elasto-plasticity gives rise to plastic strains that are merely bounded measures, so
that the tools that will be used in the homogenization process have to account for weak™
convergences in measure spaces. Since we have specialized the microstructures to the
periodic setting, two-scale convergence is the usual tool that we extend to our specific
setting. Of course, two-scale convergence of bounded measures has already been exten-
sively discussed, starting with [2] in a BV setting. However, our measures are born out of
the complex kinematics of elasto-plasticity, which is why we revisit the two-scale conver-
gence process in this specific framework in Section 4. In the first subsection, we reframe
the general existence result for two-scale limits of sequences of bounded measures, so as
to prove in Lemma 4.6 a two-scale version of Reshetnyak’s lower semicontinuity theorem
(see e.g. [19, Theorem 1.7]); of course, we do not contend that Lemma 4.6 is new in and
of itself. In Subsection 4.2, we characterize more specifically those measures that arise
out of symmetrized gradients of BD functions (see Propositions 4.7 and 4.10), which in
turn allows us to define the proper two-scale kinematics in Definition 5.1. Even when
restricted to BV functions, our characterization is more elementary than that proposed
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in [2] because we avoid the use of Banach-space-valued measures (more specifically, of
measures with values in periodic BV functions).

In Subsection 6.1, we address the homogenization process for the elasto-plastic evo-
Iution. To this end, we first have to prove a lower semicontinuity result for the dissipation
in a two-scale setting (see Theorem 5.7) which is reminiscent of an analogous result in
the heterogeneous setting [11, Proposition 2.3]. We then prove an inequality between
two-scale dissipation and two-scale plastic work (Remark 5.13) which heavily relies on
the results of Section 3. Finally, we prove that the heterogeneous elasto-plastic evolution
of Section 2 two-scale converges at each time to a two-scale evolution (Theorem 6.2).
That evolution is an evolution on the two-scale limits at each time, u(z, x), E(¢t, x, y),
P(t, x, y), of the various kinematic fields, i.e., the displacement field u®(r), the elastic
strain e®(¢), and the plastic strain p®(¢). In the resulting evolution, the y-dependence—
that is, the dependence upon the micro-structural variable—cannot be integrated out,
which results in a thermodynamical model with an infinite number of internal variables
(essentially the plastic strains at each point y of the torus ))).

In which sense is this still an elasto-plastic evolution? That is the question we address
in the final subsection of this paper (Subsection 6.2). The goal is to recover some kind of
flow rule, a harbinger of plasticity. This is achieved in Theorem 6.6 which demonstrates
that, at almost every macroscopic point x, the two-scale plastic flow follows the rules
of normality—that is, it is oriented along the normal to the yield surface, a y-dependent
hypersurface—and this at all points of the torus ). The proof of Theorem 6.6 heavily
relies upon Theorem 5.12 which is in turn a localized version of the previously mentioned
Remark 5.13.

To achieve the results of Section 6 and in the spirit of e.g. [21], [14], [10], [11], we
need to use the duality between plastic strain and its counterpart, the deviatoric stress. But
those are not defined on the same set of macroscopic points x because the plastic strain is
a measure in both x and y, which can thus concentrate in both variables, while the devia-
toric stress is only defined EQ’ ® E;V -a.e. Consequently, to even make sense of the duality
for a fixed x, we need to resort to the concept of disintegration of measures, Specifically,
we need to disintegrate the two-scale kinematically admissible fields and to define the
accompanying duality results. This is performed in the technical Section 5 which also in-
cludes the already mentioned lower semicontinuity result (Theorem 5.7) and the inequal-
ity between dissipation and the global stress-plastic strain duality product (Remark 5.13).

Because of that flow rule, we are seemingly at liberty to incorporate the resulting two-
scale evolution into the framework of standard generalized materials advocated in [13].
To do so, however, we do need an infinite number of internal variables. Those are the
plastic strains Py (f, y) := P(t, x,y), where y € ). See Remark 6.7 for more details on
the extent to which the previous statement is justified.

Finally, the reader will undoubtedly note that force loads are not considered in this
work. As explained in [11, Remark 2.9], this is no restriction, provided that a uniform safe
load condition with a smooth enough associated deviatoric stress is satisfied; for details
refer to that remark in [11]. If that is not the case, then one should be very careful because,
drawing a parallel with the discussion in [6], one should expect that, besides the bulk-type
homogenization detailed in this work, a boundary-type homogenization also occurs.
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1.2. Notation
The following notation will be adopted throughout.

General notation. For A C RV, 14 denotes the characteristic function of 4, i.e., 14(x)
= 1forx € Aand 14(x) = 0 for x ¢ A. The indicator function of A, denoted by 14,
is defined as [4(x) = 0 for x € A, and [4(x) = +o0o for x ¢ A. The symbol | 4 stands
for “restricted to A”. Finally £V stands for the usual Lebesgue measure, while 7" ~!
denotes the (N — 1) dimensional Hausdorff measure.

Matrices. We denote by Mgm the set of (N x N)-symmetric matrices and by M% the

set of trace-free elements of Mf\;m If M is an element of Mfgm then Mp denotes its de-
viatoric part, i.e., its projection onto the subspace Mg of Mf;m orthogonal to the identity
mapping i for the Frobenius inner product. The symbol - denotes that inner product. We
denote by L; (MIDV) the set of symmetric endomorphisms on Mg. Fora,b e RN, a0 b

stands for the symmetric matrix such that (a © b);; := (a;b; + a;b;)/2.

Measures. If E is a locally compact separable metric space, and X a finite-dimensional
normed space, M (E; X) will denote the space of finite Radon measures on E with val-
ues in X. For u € My (E; X), we denote by || its total variation. The space M (E; X)
is the topological dual of C8 (E; X™*), the set of continuous functions u from E to the
vector dual X* of X which “vanish at the boundary”, i.e., for every ¢ > 0 there exists a
compact set K C E with |u(x)| < ¢ for x ¢ K. We will denote by MZF(E) the space of
positive bounded Radon measures on E.

If u e MZ(IRN ) we will denote by w* the singular part of p with respect to the
N-dimensional Lebesgue measure.

We will make extensive use of the technique of generalized products and disintegra-
tion of measures, for which we refer the reader to [4, Section 2.5]. Given E, F locally
compact separable metric spaces, and 1 € MZ(E), amap x — U, € Mp(F) is said
to be n-measurable if the map x — w,(B) is n-measurable for every Borel set B C F.

Assuming moreover that the map x +— |u,|(F) is n-summable, the generalized product
gen.

nQ® uy € Mp(E x F) is defined through the equality

'@t f) 1= /E</F £, y) dux(y)) dn(x), feCYUE x F).

Moreover (see [4, Theorem 2.28]), every u € My (E x F) can be disintegrated, i.e.,
gen.
it can be written as a generalized product n ® u,. Here 7 is the push forward of || along
the projection on E, i.e., for every Borel set B C E,

n(B) = u|(B x F),
while x > u, € Mp(F) is a suitable n-measurable map.

gen.
Further (see [4, Corollary 2.29]), || =1 & |ux].
The generalized product technique, and the associated disintegration result, are easily
extended to the case of vector-valued finite Radon measure.
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By contrast, if u and v are in My (E) and M (F), respectively, we will denote by
u ® v the classical product measure in Mj,(E x F). Let us emphasize that, if 7 €

Mp(E x F) disintegrates as 7 = uggl[a (x, y)v], then we cannot assert a priori that a
is 4 ® v-measurable. However, 7 is then absolutely continuous with respect to ;& ® v, so
that there exists a Borelmap & : E x F — R such that 7 = h(x, y)(u ® v). The relation
between h and a will have to be established on a case-by-case basis and this will be a
source of difficulties in the proof of Proposition 4.7 and in Lemma 5.4. In the case where
E=F=Rand u =v = L', an example due to W. Sierpiriski provides the existence of
a non-measurable set A C R? such that all its sections A, := {y € R : (x, y) € A} are
reduced to a point (see [12]). Then

| &en. |
L, 1a(x, y)Ly =0,

so that adding 14(x, y) to a(x, y) will clearly prevent any possible identification of &
toa.

The (kinematic) space BD. Let 2 € R" be an open set. In this paper as in previous
works on elasto-plasticity the displacement field u lies in BD(£2), the space of functions
with bounded deformations. We refer the reader to e.g. [21, Chapter 2] and [3] for back-
ground material. Besides elementary properties of BD(S2), we will only appeal to two
“finer” results. Firstly, the measure Eu does not charge H" ~!-negligible sets (see [3,
Remark 3.3]). Secondly, assuming that §2 is bounded with Lipschitz boundary and given
Iy € 382 with HN -1 (I'y) > 0, Poincaré—Korn’s inequality states that there exists C > 0
such that

lullapie) < c( / jul dHY "+ ||Eu||Mbm;M@m>),
Iy )

where Eu denotes the symmetrized gradient of u, and the integral on I'; involves the
trace of u on 952 which is well defined as an element of L!(32; RY); see [21, Chapter 2,
Remark 2.5(ii)].

We say that

Uy — u  weakly* in BD(£2)
iff
u, — u strongly in L'(2;RY) and Eu, X Eu weakly® in M, (£2; MY ).

sym

If £2 is bounded and Lipschitz, bounded sequences in BD(§2) always admit a weakly*
converging subsequence.

Functional spaces. Given E € RY measurable, | < p < oo, and M a finite-dimen-
sional normed space, L? (E; M) stands for the space of p-summable functions on E with
values in M, with associated norm denoted by || - ||,. Given A C RN open, H L(A; M) is
the Sobolev space of functions in L2(A; M) with distributional derivatives in L2.
Finally, let X be a normed space. We denote by BV (a, b; X) and AC(a, b; X) the
space of functions with bounded variation and the space of absolutely continuous func-
tions from [a, b] to X, respectively. We recall that the total variation of f € BV (a, b; X)
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is defined as
k
V(fsa,b) i=sup{ Y1) = f-0lx s a=1o<n < <n=b].
j=1

Periodicity. Our analysis of the homogenization problem relies on an extensive use of
two-scale convergence (see Section 4). We thus need to consider the space of [0, 1V-
periodic continuous (or C!) functions on RY, and its dual, a space of measures that enjoys
suitable periodicity properties. These spaces are most conveniently viewed as acting on a
torus.

Let Y := RV /ZV be the N-dimensional torus, ¥ := [0, DV, andletZ : Y — Y
denote the corresponding canonical identification. For future reference, we set

C:=77'@Y). (1.1)
For any Z C ), we define
Z.={x eRN :x/e € ZN + 1(2)}, (1.2)

while for any function F : Y — X, where X is some set, the e-periodic function Fy :
RN — X is defined as

Fo(x) = F(y,) withx/e —[x/e]l=T(y:) €Y. (1.3)
The e-periodic function F, will be abbreviated as F'(x/¢) unless confusion might ensue.

Remark 1.1. Note that, if D is a Lipschitz hypersurface in )/, then the normal v, (x) at a
given point x € D, is actually of the form v(y) for some y € ).

Throughout the paper, if X a finite-dimensional vector space, we will identify the
space of [0, 1]1V-periodic and continuous (resp. C') functions with values in X with
co(y; X) (resp. C! (5 X)). The dual space is then naturally identified with M (Y; X).

For our applications to plasticity, we need to consider BD functions on ), i.e., those
functions u € L'(Y; Mgm) whose symmetrized gradient Ey,u—defined by means of a
local coordinates system associated with the very definition of ) as a quotient space—is
a finite Radon measure on )/ with values in Mé\;m. These can be identified with those
functions u : RN — R which are locally BD and Y-periodic. In other words, besides
Y -periodicity, there exists C > 0 such that

f u-divy dx| < Cl o
Y
for every ¥ € Cger([o, 1V, Mgm). Thanks to periodicity, if u € BD()) is such that

Eyu = 0, that is, if u is a periodic “infinitesimal rigid body motion”, then u is a constant
vector on ). In particular, we will use the following form of the Poincaré—Korn inequality
on BD()): there exists C > 0 such that for every u € BD())) with fy udy =0,

/ luldy < CIEyul(Y).
Yy
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2. Quasi-static evolutions in periodic heterogeneous materials

In this section we detail the structure of periodic heterogeneous materials and of elasto-
plastic evolutions for such materials.

The reference configuration. In all that follows, £2 C RY is an open, bounded set with
(at least) Lipschitz boundary and exterior normal v. Further, the Dirichlet part I'; of 92
is a non-empty open set in the relative topology of 92 with boundary 9|,y in 02
and we set I} := 982\ fd. Reproducing the setting of [11, Section 6], we introduce the
following

Definition 2.1. We will say that 3|, Iy is admissible iff, for any o € L?(£2; Mé\}’,m)
with
divoe = fin2, ov=gonl;, opel™(2;M}) .1

where f € LN (2;RV) and g € L®(I}; RY), and every p € My(2 U I'y; Mg) such
that there exists an associated pair (i, ¢) € BD(£2) x LN/WVN=D(g; Mé\;m) with

Eu=e+p in§£2, p:(w—u)@vHN_led on Iy,

the distribution, defined for all ¢ € C° (RM) by

(op, p)(@) == —/ <pa~(e—Ew)dx—/ of - (u—w)dx
2 2

—/U'[(M—w)QV(p]dx—i-/ 0g - (u—w)dHN! (2.2)
2 Iy

is a bounded Radon measure on RY with |(op, p)| < lloplleol P!

Definition 2.1 covers many “practical” settings like those of a hypercube with one of
its faces being the Dirichlet part Iy of the boundary; see [11, Section 6] for that and other
such settings.

Remark 2.2. Expression (2.2) defines a meaningful distribution on R¥ . Indeed, accord-
ing to [11, Proposition 6.1], if o € L*(£2; MY ) is such that dive € LN (2; RY) and
op € L*®(£2; Mg), theno € L"(£2; Msl\;m) for every 1 <r < oo with

lollr < Crliollz + lldivolly + lloplle)

for some C, > 0. On the other hand, u € LY/V=D(2;RM) in view of the embed-
ding of BD(£2) into LN/(N=D (2. RN). Further, u has a trace on 952 which belongs
to LI(B.Q; RN ). Finally note that, if o is the restriction to 2 of a C I_function and if
HN 1@y Ty) = 0, then, performing an integration by parts in BD (see [21, Chapter 2,
Theorem 2.1]), the right hand side of (2.2) coincides with the integral of ¢ with respect
to the (well defined) measure op p.
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Geometry. Let ¥ := [0, l)N be the unit cell in RY, while ) is the associated N-
dimensional torus. We view ) as being made of finitely many phases );, together with
their interfaces, i.e., ) = )7[. We assume that those phases are pairwise disjoint open
sets with Lipschitz boundary. Moreover it is not restrictive to assume that the transversal-
ity condition

HY1 Oy, NnC) =0 (2.3)

holds true (C was defined in (1.1)). This can be achieved by a translation of the unit cell Y,
and a suitable redefining of the associated identification mapZ : ) — Y.
Denoting by I the interfaces, i.e.,

r.= Uay[ nayj,

iJj
we assume that there exists a compact set S C I" with H¥~1(S) = 0 and

I'\ S is a C'-hypersurface.

r=r
i#]j
where I7; stands for the interface between ); and ).

A torus ) that satisfies the collection of those (minimal) assumptions will be referred
to henceforth as a geometrically admissible multiphase torus.

Throughout the rest of this paper it will be assumed that ) is a geometrically
admissible multiphase torus. If, further, '\ S is a C2—hypersurface, then ) will be referred
to as a C2-geometrically admissible multiphase torus.

Given ¢ > 0, we assume that our domain £2 is made up of the various phases ();)
(see (1.2)). Note that, provided that ¢ is chosen such that ’HN_l((Ui @YV)e)NTy) =0,
then each point of I'; outside an H™ ~!-negligible set belongs to a well defined phase.
Therefore, §£2 U I'; is a geometrically admissible multiphase domain in the sense of [11,
Subsection 1.2]. Only those ¢’s will be considered from this point on.

We will write

Kinematic admissibility. Given the boundary displacement w € H'(£2; R"Y), we adopt
the following

Definition 2.3 (Admissible configurations). A(w), the family of admissible configura-
tions relative to w, is the set of triplets (u, e, p) with

u€BD(2), eeL*(2:MY,). peMpRUI;Mp).
and such that
Eu=c¢+p in2, p=w-wovH" ', only, (2.4)

where v denotes the outer normal to 02 and w — u is to be understood in the sense of
traces.
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The function u denotes the displacement field on §2, while e and p are the associated
elastic and plastic strains. In view of the additive decomposition (2.4) of Eu and of the
general properties of BD functions recalled earlier, p does not charge H™~!-negligible
sets. Moreover, given a Lipschitz hypersurface D C §2 dividing §2 locally into the sub-
domains 21 and 2, we have

plp = @™ —u") 0 vHN 1| p,

where v is the normal to D pointing from £2~ to £2%, and u* are the traces on D of
the restrictions of u to £2%. Since p is assumed to take values in the space of deviatoric
matrices M%, ut — u~ is perpendicular to v, so that only particular plastic strains are
activated along D.

These properties will be used below when defining the plastic properties of the multi-
phase material £2.

Elastic and plastic properties. The elasto-plastic properties of £2 are given in terms of
a periodic elastic tensor and a periodic dissipation potential.

The elasticity tensor. We consider elasticity tensors (Hooke’s law) of the form
COM :=Cp(y)Mp +k(y) e(M)i, yel, (2.5
with Cp := (Cp); € ES(M%) and k := k; > 0 on every );, with (Cp); such that
(Cp)iM -M >ci|M>, YMeMy; ki >ci, (2.6)

for some ¢; > 0.

For every ¢ > 0 and e € L?(£2; MS’;m) we consider the elastic energy

Qele) = l/ Cee - edx, 2.7)
2 /e

where C;(x) := C(x/e) for every x € §2 (see (1.3)).

The set of admissible stresses. In elasto-plasticity, the deviatoric part of the stress o
is restricted by the yield condition. Thus, here, we are led to assuming the existence of
a convex compact set K; C M% for each phase );. We further assume that those sets
cannot be too small or too large, i.e., there exist c3, ¢4 > 0 such that for every i,

B(0,c3) C K; C B(0, c4). 2.8)
We define
K(y) :=K; forye), 2.9)

and K. (x) = K(x/e) forx € £2.
Our formulation of the problem uses the Legendre transform of Ik,, which is often
referred to as the dissipation potential.
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The dissipation potential. For all y € ); and &€ € MY, we define the dissipation
potential to be

H(y,§)=H;() =sup{t-&:1 € K;}. (2.10)
This defines, for a.e. y € ), a convex, one-homogeneous function in & which further
satisfies

el < H(y,&) < c4l§| forae.ye).

This is not however sufficient for our purpose because we need the dissipation po-
tential to act upon the plastic strain (or plastic strain rate) which, being a measure, may
concentrate on sets of zero Lebesgue measure. Moreover, plastic strains can concentrate
on the inner interfaces where they will only activate particular strain directions, as previ-
ously mentioned. We thus have to extend H to every point in ) x M%.

The dissipation potential H : ) x MII\)’ — [0, +o00] of a geometrically admissible
multiphase torus is constructed as follows.

(a) In each phase );, we take
H(y,§)=H;(§) forye)
with H; : M} — R such that
& — H; (&) is convex and positively one-homogeneous in & 2.11)
with
c3l§l = Hi(§) < c4l§l, (2.12)

where c3, c4 > 0 are independent of the phase i.
(b) Atapoint y € I" \ S on the interface between ); and )); such that the associated
normal v(y) points from }); to };, we set

H(y,&):=H;j(a,v(y)) forevery& =aOv(y) € MY,

2.13)
- N
H(y,§) =400 otherwise on M},

where for every a € RN andv 1L a € SN,
Hjj(a,v) = inf{H;(a; Ov)+Hj(a;OV) : a = aj+aj, a;, a;j € RN, a; L v, aj L v}

Note that £ — H(y, &) is convex and positively one-homogeneous and, for every
a ©v(y) € My,

csla©v(y)l = H(y,a ©v(y)) =< cala ©v(y)l. (2.14)

Also observe that, since H;, H; are continuous functions of &, v is a continuous func-
tionof y € I'\ S, while, by coercivity, the infimum in the inf-convolution is actually a
minimum, H (y, &) is lower semicontinuous on (I"\S) lel\)’. Thus (v, &) — H(y, &)
is a Borel function.

(c) Finally, we define H(y, &) arbitrarily for y € S, for example as c¢3|&|, since those
points will not be relevant for the admissible plastic strains because %" ~1(S) = 0.
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It is readily seen that the resulting dissipation potential H : ) x Mg — [0, 4o0]is a
Borel function.

Remark 2.4. By convex conjugation, we can associate with the dissipationaty € I7;\S
the set

K(y) ={Zp e MY : (Zpv(»)) € (Kiv(3))e N (K;jv(3))e},

where (-); denotes the orthogonal projection to the hyperplane tangent to I5; at y. Notice
that K (y) is a cylinder in M%. We take the view that this is a constraint on the vector
(Zpv(y))r, rather than on the matrix X p. Set

Kr(y) := (Kiv(y): N (Kjv(y)): CRY. (2.15)

In that way, Ig(y) is the Legendre transform of the map a — H(y,a O v(y)) with
a L v(y), and conversely.

Coming to the periodic multiphase material, we consider the dissipation potential
H.: (2U ;) x M} — [0, +00]
defined as (see (1.3))
H(x,§) := H(x/e, §).
For every p € Mp(£2 U I'y; M%) we define the dissipation functional to be

He(p) 1=/ H(x, p/IpDdlpl, (2.16)
Ul

where, from now onward, for any bounded Radon measure ¢ on RY, ¢/|¢| denotes the
Radon—Nikodym derivative of ¢ with respect to its total variation |g]|.

If t — p(¢) is a map from [0, T] to Mp(£2 U Iy; Mg), we finally define the total
dissipation over an interval [a, b] C [0, T'] to be

k
Dela, b p) = sup] D He(p(t) = plt-1) ra =10 <ty < -+ < 1y = b}
j=1

Quasistatic evolutions. We prescribe the boundary displacement w on I, as the trace
on Iy of
w € AC(0, T; H'(RV; RY)). (2.17)

We now have all the ingredients for defining a quasi-static evolution as follows.

Definition 2.5 (Quasistatic evolution). We say that > (ug(2), e-(t), ps(t)) € A(w(t))
is an e-quasi-static evolution relative to w provided that the following conditions hold for
every t € [0, T].

(a) Global stability: for every (v, 1, ¢) € A(w(t)),
Qe(es (1)) < Qe(n) + Hel(g — pe(D)). (2.18)
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(b) Energy equality: ¢ — p.(¢) has bounded variation from [0, T'] to M (2 U Iy; Mg)
and

t
Qe (e(1)+De(0,1; pe) = Qs(e(O))+/ / 0e(1)-Ew(t)dxdt  with 0p (1) := Ceee (1).
0/

The following existence result has been established in [11, Theorem 2.7].

Theorem 2.6 (Existence of a heterogeneous evolution). Assume that (2.5), (2.6), (2.11),
(2.12), (2.13), (2.17) are satisfied. Let 2, eg, po) € A(w(0)) satisfy the global stabil-

&€ &
ity condition (2.18). Then there exists a quasi-static evolution t > (ug(t), es(t), ps(t))

relative to the boundary displacement w such that (u;(0), e.(0), p:(0)) = (ug, eg, pg).

Remark 2.7 (Balance equations). According to [11, Theorem 3.6], o.(¢) satisfies the
balance equation and the admissibility conditions, i.e.,

dive,(1) =0 inf2, o.(H)r=0 ondR2\ Iy,
(oe)p(t,x) € Ko(x) forae. x € £2.

‘We set
Ke:=1{o € L*(2:M},)) : divo =0in 2, ov =00n 9\ I,
op(x) € Kg(x) forae. x € 2}, (2.19)

and we refer to /C; as the family of e-statically admissible stress fields.

3. Elasto-plasticity on the periodic torus

In this section, we collect a few results which are consequences of [11] in a periodic set-
ting: they will be useful when dealing with the homogenization of quasi-static evolutions
in periodic heterogeneous materials.

Let ) be a geometrically admissible multiphase torus according to Section 2.

Definition 3.1 (Periodic admissible configurations). The family .4y, of admissible con-
figurations on ) is given by the set of triplets

ueBDQ)., EeL*Y:MJ,). PeMpQ;Mp)

such that
Eyu=E+P on).

We set
My :={P € My(Y; M}) : I(u, E) such that (u, E, P) € Ay}.

Recalling (2.9), we adopt the following
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Definition 3.2 (Periodic statically admissible stresses). X € L2y, MY

sym) 18 said to be
a statically admissible stress on the torus if

divy ¥ =0 on)

and
Yp(y) €e K(y) forae. yel.

We denote the set of all such stresses by K.

If ¥ € Ky, then in particular Xp € L*®(); MY ), from which it is deduced (see

sym

[11, Proposition 6.1]) that ¥ € L"(); MY ) forevery 1 <r < oo with

sym
1Z0, < C-UZEl2+ 1Zbplloo) (3.1

for some C, > 0.

Moreover, considering the interfaces I, it is possible to define a tangential trace for
Yvonl'\S,

(Zv); € L5 RY),

in the following way. Consider a smooth approximation %, € C*(); MY ) such that

sym
Yp—> X strongly in Lz(y; Mg,m),
divy ¥, - 0 strongly in LZ(J); RN),

[(Zn)Dlloo = 1ZD oo

and consider (X,v); = (X,)v — ((£,)v - v)v (the tangential component of (X,)p is
defined analogously). It is then immediate that (X,v); = ((X,)pVv):. Since y > v(y) is
an L®(I"; RY )-mapping, there exists an L°°(I"; RM)-function (Zv), such that, up to a
subsequence,

(Za1)r — (Zv),  weakly* in L®(I"; R).

(Xv); is only a function of {(X,)pv},eny Which we will denote henceforth by (Xpv);.
Notice that (Xpv), may depend upon the approximation sequence {X,},cn (or at least
upon {(Z;)plnen).- f '\ Sis a C2-hypersurface, then (¥pv); is uniquely determined
as an element of L°°(I; RN). Indeed, considering I7;;, for every ¢ € Hol({z(ﬂj; RN), it
is readily seen that

/ (V) @dHN ' = (Bv,0) — (Zv)y, @),  where  ((Zv),, 9) := (Zv, (9 - V)v).
Iij

Since the normal component (¢ - v)v of ¢ with respect to I;; belongs to H&{Z(Fij; RM)
in view of the regularity of v, the definition of (Xv), is meaningful.
The following result is a consequence of [11, Section 6 and Lemma 3.8].
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Theorem 3.3 (Duality). Let P € Ily and ¥ € Ky. Then the distribution

(Xp, P)(¥) = —/yw(y)EEdy—/yE [wovyldy, vecC'Q), (2

is a bounded Radon measure on ) such that
(XD, P)| = IXpllecl P
Moreover, for every i # j, and for every tangential trace (¥pv)<,
(Zp, P)lpy, = (Zpw)e - ' —u )MV
where v points from ); to Y, and u', ul are the traces on T j of the restrictions of u on
Vi and );.

Remark 3.4. Note that the proof of Lemma 3.8 in [11] only requires that ¥p €
L, Mll\)’) and thus the requirement that ¥ € Ky in the previous theorem can be
weakened to £ € L2(Y; MY, ) with divy £ = 0on Y and p € L®(Y; M}).

sym

The following result holds true (see [11, Proposition 3.9 and Theorem 3.13]).

Proposition 3.5. Let (u, E, P) € Ay, ¥ € Ky, and let Y be a C2-admissible multi-
phase torus. Then

H(y, P/|P|)|P| > (Zp, P) as measureson).

If moreover equality holds, then
P

P () € Nk»(Ep(y)  for LN-ae y e {|P| > 0},

where Nk (y)(Xp(y)) denotes the normal cone to K (y) at Xp(y), and, for every i # j,

i — j - . .
L e Nkro)(Spv)e(»)  for HN ae y € {u' # ul},

lul — ul|
where v points from Y; to ), ut, ul are the traces on T; j of the restrictions of u on Y;

and Y, and N .(y) (1) denotes the normal cone—a cone of vectors—to K (y) at a vector
T Lv(y).

4. Two-scale convergence of measures
In this section we recall the definition and the main properties of two-scale convergence

for Radon measures proved in [2]. We also prove a structure result for the two-scale limit
of symmetrized gradients of weakly* converging sequences of BD functions.
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4.1. Definitions and basic properties

We adopt the following

Definition 4.1 (Two-scale measure convergence). Let £2 € RY be an open set, {1t¢}s~0
be a family in M} (§2) and consider u© € M (82 x Y). Then

w*-2

e — o two-scale weakly® in M (2 x V)
iff, for every x € Cg(.Q x )),

lim/ x(x,X/e)dug(X)=/ x(x, y)du(x,y).
e—=0J0 2xY

The convergence is called two-scale weak™ convergence.

Remark 4.2. Notice that the family {u}.~( determines the family of measures {A¢}e~0
C Mp(£2 x )) obtained by setting

/ x(x, y)dre(x, y) ;:/ x(x,x/e)de(x)
2xY 2

forevery x € C8(.Q x V). Thus pg is simply the weak™ limit in M, (£2 x )) of a suitable
subsequence of {Ag}s~0-

.2
Remark 4.3. Let D C ), and assume that u, has its support on 2ND,, and w, = o
two-scale weakly™* in My (82 x )). Then supp uo C 2 x D.

In view of Remark 4.2, two-scale weak™ convergence has the following compactness
property.
Proposition 4.4 (Two-scale compactness). Let 2 € RN be an open set and {j1s}¢~0 be
a bounded family in My (82). Then there exist 1o € Mp(2 x V) and &, — 0 such that

2
He, v wo  two-scale weakly™ in Mp(£2 x )).

Remark 4.5. The notion of two-scale weak™ convergence can be easily adapted to mea-
sures in M, (§2; X), where X is a finite-dimensional space. For our applications in plas-

ticity, X will be either RN or the spaces of matrices Mé\;m and Mg.

The following lower semicontinuity lemma is a two-scale analogue of Reshetnyak’s
lower semicontinuity theorem ([4, Theorem 2.38] or [19, Theorem 1.7]).

Lemma 4.6. Let 2 be an open subset of RN, X a finite-dimensional linear space, and
let H: X — [0, +00) be a convex and positively one-homogeneous function. If {{i¢}e=0
is a bounded family of measures in My ($2; X) such that

w*-2

e — o two-scale weakly* in Mp(2 x V; X),

then
timint [ e /lachdlee) = [ HGuo/Inob dinol.
2

2xY
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Proof. We can endow X with an inner product. Since H is convex and positively one-
homogeneous,

H(&) = sup{am - § : ay € X}.

meN

Let us extract a sequence {&,},eN such that, setting , := g, ,

hminff H (e 1te) dlpte] =hm/ O
& 2 noJe

Denote by H € M (§2 x Y) the two-scale weak™ limit of (a subsequence of)

H (n /| tn D itn

(still indexed by n). We will show that

H ) .
—(x0, yo) > H(—(Xo, yo)) for [uol-a.e. (xo, yo) in £2 x V. 4.1
[ ol [0

Then, by the very definition of two-scale convergence, forany 0 < ¢ <1 € C?(.Q),

im [ G/l = [ . y)

2xY

- [ ¢(x)H(ﬂ(x, y)) ol (x, ).
2xY ol
Letting ¢ /' 1 on §2, we get the result by Lebesgue’s dominated convergence theorem.
Take (xg, yo) to be a Lebesgue point for wg/|mo| with respect to |ug|. Since we can
argue locally, Besicovitch’s derivation theorem allows us to choose (xg, yo) such that, if
B, (x0, yo) denotes the open ball of center (xo, yo) and radius r in RN x ),

i(m yo) = lim H (B, (x0, Y0))
lwol r—0+ ol (Br(x0, ¥0))

!
Choose a sequence {ry \ 0} and g € C?(Brk (x0, y0)) with 0 < @ lBrk(XOsyO)‘
Then, by monotone convergence,

H .
— (x0, y0) = lim Ori(x, y)dH(x, y)

—lim/
[0 k |pol(Br, (x0,¥0)) | Joxy

o M
= lm—hmhm/ Qri(x, x/e )H( (x)> d|pnl(x)
k- lol(Br (x0, y0)) 1 n Jo "\l "
1
> liminf—liminflim/ i, 1(x, x/en)am - dpn(x)
ko lnol(Br(xo.y0) 1 n Jg e

1
=liminf ——— liminff Or.1(x, Y)ay - dpo(x, y).
ko ol (B (x0,0) 1 Jaxy "
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Lebesgue’s dominated convergence theorem finally yields

H L. 1 o

— (x0, yo) = liminf —————— am - do = am - ——(x0, y0)-
ol kol (Bry (x0, 0)) VB, (x.y0) 1ol

Taking the supremum of the right hand-side of the above inequality over m € N yields

4.1). O

4.2. Two-scale limits of symmetrized gradients of BD functions

For our homogenization problem in plasticity, we will need to consider two-scale weak™
limits of measures which are also symmetrized gradients of BD functions. For £2 € RV
open, set

X(2) = {u € Mp(2 x Vi RY) : Eyp € Mp(2 x Vi M),

w(F x YY) =0 for every Borel set F C 2}, (4.2)

where E i denotes the distributional symmetrized gradient of v with respect to y. The
following proposition enumerates the main properties of X’ (£2) that will be used in what
follows.

Proposition 4.7. Let u € X (§2). Then:

(a) There exist n € MZ(.Q) and a Borel map (x,y) € 2 x Y +— u(y) € RN such
that, for n-a.e. x € S2,

px € BD(Y), /yux(y)dy =0, |Eyuxc|(Y) #0, 4.3)

and
m= () ® LY).

Moreover; the map x > Eyjiy € Mp(Y; MY

sym) s n-measurable and

gen.

Eyp=n® Eyux.

(b) For any C'-hypersurface D C Y, if v denotes a continuous unit normal vector field
to D, then

Eyploxp =ax, y)ovy)n © MY p)), 4.4
where a : 2 x D — R¥ is a Borel function.

Proof. Let us prove item (a). By [4, Theorem 2.28 and Corollary 2.29] we know that p
and A := Eyu can be disintegrated with respect to projy |u| and proj, |A| respectively,
proj denoting the projection of §£2 x ) on the first factor, and proj, the associated push
forward of measures. Setting

1 := Projy [i| + projy [A|
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we obtain the disintegrations

gen. gen.
U=nQuy, and A=1nQ Ay “.5)
with py € Mp(V; RY) and A, € My(V; MY ). Further, if F:= {x € 2 : [A|(}) # O},

sym

gen.
then, obviously, A = n|p ® A,.
Forevery g € C'(V; MY ) and f € CL(22),

sym
/Qf(X)wx, divy g) dn(x) = (nggm, fx)divy g) = {u, divy (f(x)g(y)))

(Eypt, fFDEO)) = —(LF ® Axs F)EO)

—/Qf(x)lF(x)(/\x,g(y))dn(X)-

Letting g vary in a countable and dense set (by Fourier series for example), we deduce
that, for n-a.e. x € £2 and for all h € C'(Y; MY ),

sym
(x, divy ) = —(1p(X)Ax, h(y)),
i.e., using a regularization argument through convolution,
Mx € BD(Y) and Eyuy = 1p(x)Ay. 4.6)

Finally, since (G x Y) = 0 for every Borel set G C §2 we get, for every f € C?(.Q),

0= (. () = /Q FEOR) dnx),

so that, for n-a.e. x € £2,
ux () =0. @7

In particular, for n-a.e. x in £2 \ F, u, is a rigid body motion on ) that satisfies (4.7),
hence 1, = 0 and we can thus replace 7 by n|  in both equalities in (4.5). We still denote
the new measure by n from now onward.

In order to complete the proof of item (a), it suffices to show that it is not restrictive
to assume that (x, y) — pu,(y) is a Borel map. From (4.5) and (4.6), we infer that u is
absolutely continuous with respect to n ® E;V . Consequently, there exists a Borel map
h:2xY — RN suchthat p = h(x, y)(n ® EQ’). Moreover for n-a.e. x € §2 there

exists S, € ) with EQ’ (Sy) = 0 and such that

h(x,y) = ux(y) foreveryy ¢ Sx.

This is sufficient for replacing u, with A(x, -) ,ijv in (4.5), so that (a) follows.
Let us come to item (b). By (a), the map x — Ey i, |p is n-measurable with

gen.
EyMI.QxD =nQ® (Eyl/-x D).



Periodic homogenization in plasticity 427

Thanks to the structure of symmetrized gradients of BD functions, for n-a.e. x € £2,

Eypxlp = b(x, ) ©viOHY ! p

for a suitable b(x, y) € RVN. We thus infer that E vy Lo« is absolutely continuous with
respect to the measure ¢ := n ® (H"~!|p). By Radon-Nikodym’s theorem, we deduce
that

gen. B

Eyplgxp =1 ® [b(x, ) O vHY ' [p] = f(x, y)¢ 4.8)
for a suitable Borel function f : 2 xD — Mé\;m. As previously noted in the introduction,
this equality is not sufficient to infer that f(x,y) = b(x,y) © v(y), {-a.e. on 2 x D,

from which the conclusion would easily follow. From (4.8) we can only infer, as above,
that, for n-a.e. x € £2, there exists Ny € D with HV~1(N,) = 0, and such that

f,y) =b(x,y) Ov(y) foreveryy & N. 4.9)
Let us show that there exists a map a : £2 x D — R" such that
fx,y)=a(x,y) ©v(y) forc¢-ae.(x,y) e 2 xD. (4.10)

For every y € D, we consider TT(y) := {§ © v(y) : £ € RY} € M{, and the Borel
set B := {(x,y) € £ x D : dist(f(x, y), [1(y)) # 0}. That set is readily seen to be
¢-negligible in view of (4.9) and of Fubini’s theorem. Then (4.10) follows. Finally, we
can assume that a is Borel regular since v is continuous and does not vanish on D, so that
the proof of item (b) is concluded. O

The following result will be useful.

Lemma 4.8. The space
E={Eyu:pne X))

is weakly* closed in Mp(2 x Y, MY .

sym

Proof. In view of the Krein—Smulian theorem and since Cg (2 xY, Mé\}/,m) is separable, it

is enough to show sequential weak*-closedness. Assume that {1, },cn is a sequence in £
such that .
dn = A weakly* in Mp(2 x Vi M)
By assumption there exists a measure u, € X (§2) such that Eyu, = A,. Note that
{in}nen is bounded in My (2 x V; RY): indeed Proposition 4.7(a) implies that

i v gen. "
Hn = My (7711®Ly ), Eyun =0, ® Eypuy,

with n, € M;(Q) and pf € BD(Y) satistying (4.3) for n,-a.e. x € £2. Taking into
account Poincaré—Korn’s inequality in BD()) and applying [4, Corollary 2.29], we obtain

(2 X V) = [9 [ fy m:z(yndy} dnn(x) < C /ﬂ Ey 1| O) diga ()
— P2 x V) = C
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for some constant C’. Up to a subsequence, there exists u € Mj(2 x Y, RN ) with
n A w weakly® in My(£2 x Y; RM).

Clearly Eyu = A. Moreover, passing to the limit in the equality

/ f)dun(x,y) =0, feCl),
2xY

we get, by standard approximation arguments, u(F x )) = 0 for every Borel set F C §2,
sothat A € &£. O

The following lemma is essential in the study of two-scale weak™ limits of symmetrized
gradients of BD functions.

Lemma 4.9. Let 2 € RY be an open set and » € My(2 x V; Mg’,m). The following
items are equivalent:

(a) Forevery x € Cg(.Q xY; MN ) with divy x (x, y) = O (in the sense of distributions),

sym

/ x(x, y)dr(x,y) =0.
2xY

(b) There exists u € X (§2) such that .. = Eypu.

Proof. The fact that (b) implies (a) follows by integration by parts and a density argument.
Let us assume that (a) holds. By Lemma 4.8, £ := {Eyu : u € X (£2)} is weakly* closed
in Mp(£2 x Y: MY ). Then, if by contradiction (b) is not true, i.e., A ¢ &£, the Hahn—

sym

Banach theorem—which is applied here to My, (2 x V; MY ) equipped with its weak*

sym
topology—yields the existence of x € C8 (£2 xY; Mé\;m) such that
/ x@x, y)dr(x,y) =1, “4.11)
2xY
and, for every u € X (£2),
f x(x, y)dEyu(x,y) =0. (4.12)
2x)Y

In particular, if we choose p to be a smooth function, (4.12) implies that divy x (x, y) =0
(in the sense of distributions). As a consequence, (4.11) contradicts (a), and the result
follows. ]

The previous results combine into a structure result for two-scale weak* limits of sym-
metrized gradients of BD functions.
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Proposition 4.10 (Symmetrized gradients). Let 2 C RY pe open, and let {ug}e~ be a
bounded family in BD(§2) such that

Ug Xy weakly* in BD(£2)

for some u € BD(§2) as ¢ — 0. Let

*9
Eu, Y0 two-scale weakly* in My(2 x Y; MY ).

sym
Then there exists u € X (§2) such that
A=Eu®L) + Eyp.

Proof. Since uy — u strongly in L'(£2; RN),
*-2
Ug EQ’ r= u(x) (,C)]CV ® EQ’) two-scale weakly* in M, (2 x V; RV).

By compactness, there exist ¢, — 0 and A € Mp(£2 x V; MY ) such that

sym

w*-2

Eu,, —~ )  two-scale weakly* in M, (2 x V; MY .

sym

Considering x € C, Cl (2 xY; Mé\;m) with divy, x = 0, from the equality

/ Xx(x,x/e)dEugs(x) = —/ divy x(x, x/8)us(x)dx
Q Q

we get, as ¢ — 0,
f x(x, y)di(x, y)= —/ divy x (x, y)u(x) dx dy=/ X (x, y)d(Eu®£§v)-
2xY 22xYy 2xYy

By a density argument, we infer that
/ xdlh—Eu®L)]=0
2xY

for every x € Cg (2 x Y: MYy with divy x = 0in the sense of distributions. The result

sym
now follows by Lemma 4.9. O

4.3. Unfolding of sequences of symmetrized gradients of BD functions
In the following we adapt the unfolding method originally developed for sequences of L?
functions in [8, 9] to the setting at hand.

For every ¢ > 0 let

Qi = {xeRN : r=e € [O,I)N} and xé = el
I3

&
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Clearly R = J; v Q. Given £2 € RN open, we set
1(2):={i eZV: Q! c ). (4.13)
For o € Mp(£2) and Qé C £2 we let Mé € M ()) be the measure defined as

. 1
/yllf(y) dug(y) = s_N/Q Y(x/e)due(x), ¥ e CO). (4.14)
Then set Xg € Mp(£2 x )), the unfolded measures associated with (i, to be
e = Y (LN g) @l (4.15)
iel,(22)

Proposition 4.11 (Unfolding). Let 2 € RY be open and {jis}e=0 be a bounded family
in My (82) such that

w*-2

e — o two-scale weakly* in Mp(£2 x ).

Let {As}e=0 C Mp(82 x V) be the associated family of unfolded measures according to
(4.15). Then

Ae A wo  weakly® in Mp(2 x V).
Proof. Tt suffices to show that, for every x € C?(.Q x ),

lim / x dhe = lim X dhg
e—>0 2xy e—0 2xY

where A, has been introduced in Remark 4.2. Let 2 c RN be open, bounded and such
that supp(x) CC 2 x V.
Note that
lim eN#(1,(2)) = LV (2). (4.16)

Then, for & small enough,

~ 1
/~ Xy die = —
2xY &
so that, with (4.16),

/ x(m)dxg—/ x(m)digz‘/~ x(m)dxg—/~ (. y) die
2xYy 2xy 2xy 2xy

~ ~ 1
= lhee(£" @) M@+ X [ s [ xiegera:

i€l ()

Z /i X(Z,X/E)dus(x)dz,

~ i
il () Qe x

d| el

< 0(&) + 8| 1el (£2),
with

88 = sup |X(X1’y)_X(X27y)|_>O-
|X17xz|<€\/ﬁ»yey

Hence the result upon letting ¢ go to 0. O
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Remark 4.12 (Two-scale convergence in Lebesgue spaces). Unfolding provides an easy
link between two-scale weak™ convergence of measures and two-scale convergence of L”
functions. Let £2 € R" be open and bounded and {u; }~¢ be a bounded family in L? (£2)
for some p € (1, co) such that

w*-2

ug LN —= g two-scale weakly* in My (2 x V).
Then there exists ug € L?(£2 x )) such that
1o = uo(x, Y)(LY ® LY). @.17)
Indeed, according to (4.14), for every i € 1.(£2),
ue =i LY

where vé (y) :=ug (xé + ¢Z(y)). Consequently,

e =ve(e, LY @ LY) with ve(x,y) = Y 1o (0)vE(y).

il (2)

A direct computation shows that

/ |v€(x,y>|1’dxdy=/ e (o)I? dx 5/ P dx.

2xy Uiero2) Q¢ $2

By weak compactness of L”(§2 x )) we infer immediately that (4.17) holds true.
We will say that

2
Ug s uy two-scale weakly in L? (2 x ).

If further
lim | |ug|Pdx = / lugl? dx dy,
e—=0J0 2xY

we will say that
Ug L? ug two-scale strongly in L7 (£2 x ).
In the context of unfolding, sequences of symmetrized gradients of BD functions will

satisfy the following proposition which will be used in the proof of Theorem 5.7.

Proposition 4.13. Let 2 € RY be open and let B € Y be an open set with Lipschitz
boundary. If ug € BD(82), then the unfolded measure associated with Eu, LBS\CS accord-
ing to (4.15) is given by '
> (LN ) ® Eyitk g\ (4.18)
il (2)

where C is defined in (1.1) and 12§2 is a suitable function in BD())) such that
. . C .
/ 17 dHN 1+ |Eyiig|(BNC) < —N|Eug|(int(Q’8)) (4.19)
B e

for some constant C independent of i and ¢.
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Proof. Note that C; = (|J; dQ1)N$2. Accordingly, fori € I,(£2) and y € C'(Y; MY ),

sym

/ Y(x/e)-dEug|p,\c, = / - Y(x/e) - dEu:|p,.
0L int(Q%)
Since B, has a Lipschitz boundary, u:15, € BDjoc(£2) with

Euglp, = E(u:1p,) + W) las, © vH" ' y5,,

where, from now onward in this proof, for any open Lipschitz domain A CC 2 and any
u € BD($2), u|,, denotes the trace of ul4 on dA, while v is the exterior normal to d A.
Then

/ Y(x/e)-dEu|p,

int(Q%)

:/ _ w(X/s)-dE(uglse)vL/ CY(x/e) - [(ue) Lap, @ VIAHN g,
int(QL) int(Q¢)

If we set vf; (2) :=ue (x;; + ¢z) for z € (0, )V, then vé € BD((0, 1)V) and, thanks to the
periodicity of v, the definition of B,, and Remark 1.1,

/Q W(x/e) - dEus g, = e / V@ dEGiE)©

©O,DN

v /(0 w7 (D) Loz (D) O v(@1dHY @), (4.20)

Adding a rigid body motion to u; on Qé does not change Eu, on B; \ Cg, hence it
does not modify the computation in (4.20). But then, by Poincaré—Korn’s inequality, we
may as well assume that

. B . C o .
/0 @D Loy dH¥ ! < CIEUIO, DY) = S EutlGnt(Qh)  @21)
a(0,1)

for some constant C > 0 independent of i and ¢.
Let i} € BD()) be such that

iy (y) = gvé(I(y)).

From (4.21) and through the identification of the opposite sides of (0, 1)V when passing

to ), we obtain

» C+1 . 4
|Eyit,|(YV) < N |Eug|(int(Qy)). (4.22)

Moreover,

/ w-dE(vélz(lg))zg/ v -dE@@l1p)
©,H¥ Y\C
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while
/ ¥ - 10D Loz @ vIdHY T =¢ / - (@) Ly © vIdHN !,
(0,HN aB\C

where (ﬁi) |55 denotes the trace on 913 of the restriction of ﬁf9 to B. Therefore (4.20) reads
as

1 . )
— f Y(x/e) dEu;|p,\c, = / v -dE(i}1p) + / ¥ - [ g © vIdHN .
e Joi I\C aB\C

Now, ' ' '
E@l1p) = Eil|g — @) L5 © vH" ' yp.
thus (4.20) finally reads

! AL
E_N/Qig W (x/e)dEug|p\c, = /yl/deyugLB\c- (4.23)

Note that we can add to ’22 rigid body motions on the finitely many connected com-
ponents of B with no effect on the preceding equality, nor on E yﬁé Lgnc (since rigid
body motions on 55 are continuous on B). As a consequence, thanks to Poincaré—Korn’s
inequality on BD()), and in view of (4.22), we can assume that

/ lal| dHN ! + |Eyal|(BNC)
B

ni ni ni i i
< C'|Eyit, |(B) + | Eyitg (BN C) < (C"+ DI|Eyit,|(Y) < 8—N|Eugl(lnt(Q5))

for some C’, C” independent of i and ¢, so that (4.19) follows. m}

5. Two-scale kinematics and two-scale statics

This section, the most technical of the paper, is devoted to an investigation of the disin-
tegration and duality properties of the two-scale limits of the kinematically admissible
fields u., ec, p. and of the statically admissible fields o, associated with the heteroge-
neous evolution. We will also discuss the lower semicontinuity properties of the various
energies involved in that evolution.

5.1. Two-scale kinematics and lower semicontinuity

In this subsection, we define the set of admissible two-scale (kinematically admissible)
configurations and proceed, for future use, to disintegrate them in a manner such that
almost every x-fiber (with respect to a suitable measure) is actually an element of Ay
(see Definition 3.1). We then show that two-scale kinematically admissible configurations
arise from a natural compactness argument. We finally establish a lower semicontinuity
result hfor the e-dissipation potentials H, resulting in a homogenized dissipation poten-
tial H"O™.
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In order to handle the Dirichlet boundary condition, it proves convenient to consider
2’ € RY open bounded and such that 2 C £’ and 352 N 2’ = I'y. Given a boundary
displacement w € H'(RY; RY), and a configuration (u, e, p) € A(w), we may extend
u, e, pto 2’ by setting

u=w, e=Ew, p=0 on'\LQ. (5.1)
It is readily checked that the admissibility conditions (2.4) become
Eu=e¢+p on$. (5.2)
Then the family of admissible configurations for w can be described as
Aw) = {(u, e, p) € BD(R') x L*(2': MY,)) x Mp(2'; M}) :
(5.1) and (5.2) are satisfied}.  (5.3)
Coming to a two-scale setting, we adopt the following

Definition 5.1 (Kinematically admissible two-scale configurations). A"™(w), the fam-
ily of admissible two-scale configurations relative to w, is the set of triplets (u, E, P)
with

ueBD(R), EelL*(2 xY;MN)), PeMuyR xY;MY),

sym

such that
u=w, E=Ew, P=0 on(2'\2)x), (5.4)

and also such that there exists u € X (£2') (see (4.2)) with
E(x, ) (LY ®L)+P—-Eu®L) =E,u inQ' x). (5.5)
Further, set
M(w) :={P € Mp(2' x Y; MY) : I(u, E) such that (u, E, P) € APom (3.

Remark 5.2. The element u € X (§2’) associated with (u, E, P) according to the pre-
vious definition is uniquely determined. Indeed, (5.5) implies that Eyu is uniquely de-

gen.
termined. The disintegrations © = u, (y)(n ® £§Y) and Eyp = n ® Eypu, for a suitable

n e M;(.Q’) given by Proposition 4.7 are such that u, € BD())) and fy Uy dy = 0 for
n-a.e. x € §2’. Thus Poincaré—Korn’s inequality on BD()) yields

@ <3 = [ [ [ inias|ane <¢ [ 1Emmioanw
= Bl x D),

from which the uniqueness of u follows.
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Remark 5.3. If 7 C Y is such that H¥=1(7) = 0, then
Plor =0.
Indeed, P|g/7 = Eyulo <7 and the conclusion results from Proposition 4.7(a).
The following disintegration result then holds:

Lemma 5.4 (Admissible configurations and disintegration). Let (u, E, P) € A"™(w)
with associated . € X ($2), and set

n =LY + (projy | P|)* € Mj (22").

The following disintegrations hold true:

Eu® L) = Ax)(n® L)), (5.6)
E@x, y)(LY ® L)) = C)E(x, ) ® LY), (5.7)
P=n® P, (5.8)

and we can choose a Borel map (x,y) — ux(y) € RY such that

gen.
p=mMO®LY), Eyu=n®Eyu,. (5.9)
Above, A @ 2" — MS’\;m
derivatives of Eu and E)ICV with respect to 1), E(x, y) is a Borel representative of E, while
Wy € BD()), fy uxdy =0, and P, € Mp(Y; Mg)for n-a.e. x € 2.
In particular, for n-a.e. x € $2', the measure P, € My (Y; Mg) is the plastic strain
of the element of Ay given by

and C : ' — [0, +00) are the respective Radon—Nikodym

(hx, C(X)E(x, ) — A(x), Py).
Proof. Since proju(Eyu) = 0, from (5.5) we get

Eu = </ E(x, y)dy)ﬁﬁcv + proj4(P) = e(x)ﬂiv + projz(P) on £2',
Y
where e(x) = fy E(x,y)dy € L*(2'; Mg,m). Consequently, the measure Eu is abso-
lutely continuous with respect to 1. We can thus write
Eu®L) = Ax)(n® L)),

where A : 2/ — Mﬁ\;m is the Radon—-Nikodym derivative of Eu with respect to 7, so

that (5.6) follows. If C : £2/ — [0, +00) is the Radon—-Nikodym derivative of Eﬁ:’ with
respect to i, and E(x, y) is a Borel representative of E, it is immediate that

E(x,y) (LY ® L)) = C)E(x, y)(n® LY),



436 Gilles Francfort, Alessandro Giacomini

so that (5.7) holds true. Finally, by [4, Theorem 2.28], the measure P can be disintegrated
with respect to projs | P| which is absolutely continuous with respect to 7, so that the
disintegration (5.8) follows.
Let us come to (5.9). By Proposition 4.7(a),
gen.
p=a(ECLY), Eypu={®Ej,

for a suitable measure { € MZ(.Q’ ), and a suitable Borel function (x, y) — i, (y) € RN
with fi, € BD(Y), fy fixdy = 0 and

|Eyix|(Y) #0

for z-a.e. x € 2. At the expense of replacing ¢ with |Ey ji|())¢, it is not restrictive to
assume that |E, i, [()) = 1 for -a.e. x € 2.
Since, by [4, Corollary 2.29], proju |Ey | = ¢, while, in view of the above,

projy |Eypu| = {fy IC(X)E(x, y) — A(x)|dy + IPxI(y)}n,

¢ is absolutely continuous with respect to n. Thus, ¢ = D(x)n, where D : 2/ — [0, +o0[
can be chosen to be a Borel map. The disintegration (5.9) follows upon setting

px(¥) := D(x) iy (y).
Finally, note that, for n-a.e. x € £2’,
Eypy = (C()E(x, ) — A(x)) ﬁfvv + P,.

Moreover, in view of the very definition of , we have C(x) € [0, 1], so that

f [/ |C<x>E<x,y)|2dy]dngf U |E(x,y)|2dyi|dx<oo.
LYy ' LJYy

Thus, C(x)E(x,) — A(x) € L2(y; MY Y for n-a.e. x € £2’, and this proves the last

sym
assertion of the lemma. O

Remark 5.5. Since |P| = 7 ® | P,|, we have
1O L P =B P = P = P =18 P,
| Py |P| |P|
so that, for n-a.e. x € £2/,

P P,
—(x,) =
[P | Px|

| Py|-a.e.on V. (5.10)

The definition of the class of admissible two-scale configurations is motivated by the
following compactness result.
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Lemma 5.6 (Compactness). Let {(ug, eg, pe)}eso C A(w) be such that

lute i + lleell 2,y + 1Pell gy ety < €

sym

and
Ug — U weakly* in BD(2'),

2
e Y E two-scale weakly in L*(£2' x V; Mg,m),

w*-2

pe —~ P two-scale weakly* in M (2" x Y; MP).
Then (u, E, P) € AMM(y).

Proof. Since (ug, eg, pe) = (w, Ew, 0) on 2’ \ 2, it is immediate that (5.4) holds.
By compactness of the canonical injection of BD into L',

ug — u  strongly in L'(£2"; RV),
so that
)
ugﬁiv 2= u(ﬁiv ® Elyv) two-scale weakly* in M, (22" x V; RY).

From the compatibility condition Eu, = e; + p. on £2” we deduce, in view of Proposition
4.10, the existence of u € X (£2') such that

Eu(x) ® LY + Eyu = E(x, y) (£ ® L)) + P,

and the result follows. O

For (u, E, P) € A (w) we set

Qhom(E) .= 1/ C(y)E - Edxdy (5.11)
2 Jaxy

Hhom(py = / H(y. P/IP)d|P]. (5.12)
(uUIy)xY

We call Q™ the homogenized elastic energy, and H'™ the homogenized dissipation.
The domain of integration in the definition of H"™ can be extended to £2’ since P = 0
on (2/\ 2) x ).

The following lower semicontinuity result holds.

Theorem 5.7 (Lower semicontinuity). Let (ue, eg, pe) € A(w) be such that

Ug — U weakly* in BD(2'),

2
e E two-scale weakly in L2(.Q/ x V; Mé\;m), (5.13)
w*-2

pe —~ P two-scale weakly* in My(£2' x Y; M%),
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with (u, E, P) € A"™(w). Then, for Qs and M, as in (2.7) and (2.16) respectively, we
get

oM™ (E) < liminf O, (e;), (5.14)
Hhom(py < lim inf He (pe)- (5.15)

Proof. We first prove (5.14). In view of Remark 4.12, it is readily seen that

2
Cees = C(y)E two-scale weakly in L2(.Q’ x Y; MY .

sym

Given ® € C°(2 x V; Mé\;m), and passing to the limit in the inequality

0< %/ Ce(x)(es — D(x, x/e)) - (es — D(x, x/e)) dx
2
we obtain
f COHIE - @(x. y)dxdy - 3/ COIPG,y) - @(x,y) dx dy < liminf Qs ().
2xY 2 2%y ’

Letting ® converge to E strongly in L2(£2 x Y; MY ) yields (5.14).

sym
The proof of (5.15) is more delicate, and we proceed in two steps.

Step 1. As a first step, consider 5 € )/, an open set with Lipschitz boundary, and also
such that B \ T is C! for some compact set 7 with HV~1(7) = 0. Assume also that
oB NC C T, where C has been introduced in (1.1).

Let v, € BD(£2') be such that

*
ve — v weakly* in BD(£2'),
and (see (1.2))

*

Eve|oing, 2= 7 two-scale weakly® in My (2" x V; Mé\;m)‘

We claim that 7 is supported in 2’ x B and that
7T loxeT) = alx,y) Ov(y) ¢, (5.16)

where ¢ € M;r(.Q’ x AB\T)),a: 2 x @B\T)— RY is a Borel map, and v is the
exterior normal to 955.
Indeed, in view of Remark 4.3, the two-scale weak™ limits (up to subsequences) of

Evelons.nc, € Mp(2'; M)

sym

have support concentrated on §£2’ x BN C. Since by assumption 38N C C T, they do
not contribute to the behaviour of = on £’ x (8B \ 7). We can therefore focus on the
two-scale weak™ limit 77 (up to subsequences) of

Eveloing.\c,) € Mp(R2's MYy,
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as
Tlox@B\T) = T La'x@B\T)-
Let
Ny i / MmN
ST LN o) ® ph € M2 x Vi MY,
i€l (2
be the unfolded measure associated with Eve | oin(s,\c,) according to (4.15). Then, ap-

pealing to Proposition 4.13, we get, for every x € C!(£2' x J; Mgm
= 0,

/ x(x, y)d7(x,y) = lim Z / I:f X(x,y)-dEyﬁf;:| dx
.Q/Xy 8_)01'613(9/) Qfg B\C

—tim > [ U X3 @L) @) dHY ) - [ x(x,y>~dEﬁ§]dx
el ()Y Q:LJOB CnB

) with divy, x (x, y)

e—0

(5.17)

for a suitable 9. € BD())) such that
N N—1 i ¢ : i
B|Ug|d7'l +Ey0 [(CNB) < 8—N|Eve|(mt(Qs)), (5.18)
9

where C > 0 independent of i and ¢.
In view of (5.18) a density argument allows us to rewrite (5.17) as

/ x d7 = lim XdA;Jr/ xdrl, x €CR'xY: My, divy x =0,
2'xY e=0J/xy Q'xY

(5.19)
with )\i, Ag € Mp(£2' x Y; MY ) such that (up to a subsequence)

sym

A Al 2502 weakly* in My (2' x Vi MY ).

sym

Moreover supp(A!) € £2’ x 9B and supp(A?) € £’ x C N B. In view of (5.19), Lemma
4.9 implies the existence of € X (£2’) such that

=24+ +Eyp.
Recalling that 9BNC C T,

g7 = Al Lap\T + EyiLan\T-

Thanks to Proposition 4.7(b), the proof is complete if we show the analogue of (5.16) for

Al Lan\T-
Consider

ne = 0e(x, MLY ® (M)~ [4p)) € Mp(82' x V;RY)
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with ‘
Der,y) = Y 1o ()DL,

iel (2

so that )»; = 1ne(x, ¥) © v(y) for any Borel extension of v to ). In view of (5.18),uptoa
subsequence,

Ne X n  weakly® in M, (2’ x Y; RY)
for some 7 € M(£2’' x V; RV). Since v is continuous along 33\ 7, we immediately get
n
Inl

so that claim (5.16) follows because 1/|n| is a Borel function.

Mg = — ovinllas T

Step 2. We now prove (5.15), assuming, with no loss of generality, that

liminfH, (pe) < o00. (5.20)

We decompose p; as

pe=)_pit) vl

i i#]
where, since p, does not charge H"~!-negligible sets,
Pe i= De lern@,). and pe = pe szfm(r,«,-\S)g'
Up to a subsequence,

w*-2

pi — pi two-scale weakly™ in M (2" x V; M%),

owr2 ..
Y 2 P two-scale weakly* in M (2" x V; M%).

P=Y P+ pi (5.21)

z iZi
with supp(P’) C £2 x )); and, thanks to Remark 4.3, supp(P"/) C 2 x I};.
Invoking Lemma 4.6 we get

Clearly

&

lim inf / He(x, p./Ip.)) d|pl| = liminf / H(x/e, pL/IpLD) d|pt|
Uy € (ol

=1iminf/ H,-<p§/|pé|>d|p;|z/ H;(P'/|P'|)d|P'|

€ ok 2'xY

=/ Hi(P"/|P"|)d|Pf|+f H;(P'/|P'|)d|P'|
2'xY; Q'xI’

z/ H(y,P"/|P"|>d|P"|+Z/ H;(P'/|P'])d|P".
2'xY; £ Y2 X(T\S)
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2
By (5.13) ¢, — E two-scale weakly in L2(2' x J; MV

sym)» SO that

*_2 .
Euelonm, w= Elgiyy, (Efcv ®£§Y)+P’ two-scale weakly® in M, (2’ xY; Mi\)]/m)

We denote by v the normal to I3; pointing from ); to ). Since, according to (2.3),
HN-L(P N C) = 0, so that we may as well identify S with S U (I" N C), ensuring that
I' NC C &, the first step of the proof implies that, for every j # i,

P! lexmrjns) = —(@’ @ v)n (5.22)

for a suitable "/ € M; (2" x (I;\ S)), and suitable Borel functions a”/ : 2 x (I7;\S)
— RY such that a”/ (x) L v(x) for n'/-a.e. (x,y) € 2 x (I; \ S) (recall that P’ has
values in Mg). Thus,

&

liminf/ H,(x, pL/1piD dIpl|
UIy

= [ weorprnari+ Y [ Hi(—a’ @ vydyl.  (5.23)
2'xY; Ji '3 (I;j\S)
As to pij,
U —(u —M])QU(X/E)H |—(Fij\3)s’
where ufg and ué are the traces of u, on 2’ N (I7j\S)¢ coming from (Y;), and ())e

respectively. In view of the definition of H on I7;\S (see (2.13)), and since the inf-
convolution is indeed attained as a minimum, we get

/ HeGe, p /1 pii ) d| —/ He(x. pid /|pi9)) d1pi|
QuUly QNTG\S)e

-/ Ho(x, (el — ) (v) © v(x/e)) dHV !
'N(L\S)e

= / [H; (b, (x) © v(x /) + Hj(=b} (x) © v(x/eNTdHN ™' (5.24)
N(L\S)e

for suitable Borel functions 5, b Q' N (I} \S)e — RN such that

1, 7],
by (x) — b;{S(x) =ul(x) —ul(x) forHV -ae x € ([;\S)e

with

b” (x) L v(x/e), bjljg(x) Lvx/e) forHNae x € (I3\S)e.

That the functions b; ] b” ¢ are Borel can be proved by approximating u - ue along
(I7j\S)¢ by simple funct10ns and recalling that v is continuous.

In view of the coercivity estimate (2.12) and of the bound (5.20) we obtain

/ [1B7.(6) © v(x/)| + 16 (x) © v(x/e) [1dHY ) (x) = €
NGNS '
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for a suitable constant C > 0. The bound above actually implies that the measures
ij . ij 4/N—1 ij . ij 2/N—1
Nie =bi . H' lonmps), and i =b; H" " Lonm,s).

are bounded in €. Thus, recalling Remark 4.3, we can assume that, up to a subsequence
that will not be relabeled,

g *o
b, v /) HY anmns). ZE 0 two-scale weakly* in My (2" x Y; MY ),

sym
;. xp
b;{a Ov(x/e) HN! Lon@n\S). S I two-scale weakly* in M, (2' x V; MS’;m),

and

CowF2 s AT, .
ny — 0 =bIn’| two-scale weakly* in M(£2" x V; RV),
ij w*-2

e — r/;j = b;j|n;j| two-scale weakly* in M, (22" x V; RV),

with A, A/ e Mp(2' x Y; Mf;m) and n;:j, nji-j € Mp(£2' x V; RN) such that
supp(A'/), supp(/"), supp(n;’), supp(n}) < 2 x Ti;.
Since the normal vector field v is continuous on [;; \ S, we get
W= ol and 2= @ @il on 2 x (I \S).
In view of Lemma 4.6 we obtain

lim inf/
€ (LUIPHNUTI\S)e

- liminf/ He(x, p¥ /Ipi ) d|p¥|
QINU\S)e

He(x, p /1p¥)) d|p¥ |

&

= liminf f [H; (b, (x) © v(x/e) + H;(—b(x) © v(x/eN]dHN ™! (x)
2'N(F\S)e ’ ’

&
> / Hi (b7 @ v(y) din}| + / Hj(=b7 @ v(y)din|.  (5.25)
Q'x(L\S) Q'x(I;j\S)
Recalling (5.21) and (5.22), the previous analysis shows that

Plaiys = —@! 0vn+@ 0w + ¢ o nin!| - ¢f o iy
=" —cHovidi, (526)

where ¢/ 1= n'l 4+ plt + |n§j| + |17]i.j|, and ¢!, ¢/ are suitable Borel functions on £2’ x
(I7;\S) with values in R¥ such that

( o)t = —@’ ovAl + Y ovn’l,
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idem for ¢/ . Further,
(x,y) Lvy), c/x,y) Lv(y) foriV-ae. (x,y) € 2 x ([;\S).

Since

He(pe) = merd Ho(x, pL/Ipt)) dIpl|

+ He(x, p¥ /Ip]) d1p¥ ],

it] KQUFd)ﬂ(ﬂj\S)s
we get, thanks to (5.23) and (5.25),

liminf e (pe) > thinf/ H.(x, pl/IpiD dIp]
€ - & QUIy

1
n Zliminf/ He(x, p¥ /Ip1) d| p¥|
i#j é (-QUFd)m(Fij\S)s

> H(y, P'/|P'))d|P'| + / H'(—aijGV)dnij)
Z(/Q'xy Z Q'x(I;j\S) l

i i
+ Z(/ Hi (b ©v)din’| +/ Hi(—b © v>d|n§f|>
i£j \'x(Tj\S) Q'x(F\S)

=// HG. p/IphdIpl

i

+Z</ Hi(—aij(Dv)dnij+/ H;(a’" @ v)dp/!
T \Jarxrps) Qx(T\S)

+/ Hi(b! ©v)dn}| +/ Hi(—b © v)d|n;lf|).
2% (Tij\S) 2/%(T\S)

In view of (5.26), by the definition of H on £2’ x (I};\S) and the subadditive character
of H; and Hj, and since, in view of Remark 5.3, P does not charge 2’ x S, we deduce
that

lim inf &, (ps) z/ H(y. P/|P])d|P|
£ .

Q'xU; Vi

> [Hi (€ (3, ¥) © v(») + Hj (—¢/ (x, ) @ v(»)]dg 7 (x, y)
i£j YR xUTj\S)

= [ moenepari+y | H(y, (¢ — ) O v)del
.Q’in)/i l;é] Q/X(F,\S)

=/ H(y. P/|P|)d|P|+Zf H(y. P/|P|)d|P| = H"™(P),
2'x\J; Vi i£j Y2 x(Tij\S)

which concludes the proof. O
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5.2. Two-scale statics and duality

In this subsection we define two-scale (statically admissible) stress configurations, inves-
tigate the duality between those and elements of A"™ (w) in the spirit of Theorem 3.3 and
Proposition 3.5, and show that they naturally arise as two-scale weak limits of statically
admissible stress fields.

We adopt the following

Definition 5.8 (Two-scale static admissibility). Anelement ¥ € L2(2xY; Mgm) such
that

divy 2 =0 on®2xY, Zpx,y)eKk(y) forll®L)ae (x,y)eRxY

and .
div,o =0 inf2, o-v=0 ondf2\ [y, (5.27)

where o (x) := fy ¥ (x, y)dy, is said to be two-scale statically admissible; we denote by
chom the set of all such stresses.

Remark 5.9. Recalling Definition 3.2, if ¥ € jchom then, for ae. x € £2,
2(x, ) e Ky.

According to (3.1), there exists, for every 1 < r < 00, a constant C, > 0 (independent
of x) such that

1% Cx, ’)“L'"OJ;MQ;m) < GllIZE(x, ')||L2(y;M§\§m)+||ZD(X, ')Ile(y;M@m)]’

Let P € Hhom(w) and ¥ € Khom [n view of Lemma 5.4, P = ng(g.Px, Py being
a plastic strain for an admissible configuration on ) for n-a.e. x € £2’. On the other
hand, according to Remark 5.9, for LN-ae. x € 2, ¥, := Z(x,) € L*(); M)
is a statically admissible stress field on ). Thus it would be tempting to conclude that,
recalling Theorem 3.3, a coupling between P, and X is available on almost every fiber
with base in £2. But there is a snag: the measure 7 can have concentrated parts, while X is
only well defined almost everywhere with respect to the Lebesgue measure. To overcome
this difficulty, we will have to construct in a first step an adequate approximation of X
(see Lemma 5.10), then use that approximation to define in turn a (disintegrated) two-
scale analogue of the duality measure (X p, P) defined in (3.2) (see Proposition 5.11) and
to obtain the analogue of Proposition 3.5 (see Theorem 5.12).

Lemma 5.10 (Approximation of stresses). Let ¥ € K™ There exists a mapping
Sp RN x Y —» MY with

sym

%€ LPRY x yiMJ ).

(5.28)
and such that the following holds:

(@) Tp(x,y) € C°WRN; L2Y; MY )));

sym
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(b) divy X, (x,-) =0o0n )Y foreveryx € R¥, and
” En ()C, y) ”LZQ);Mxm) =< Cn ” z ”LZ(QX)};Mg,m)’

where C,, does not depend on x. Moreover
sup 1(En)p(x, )lloe < 00
and for every 1 <r < oo there exists C,, > 0 such that
130 G Dty < o

(c) for every e > 0, there exists N, such that, for n > N, and for every x € RV,

(Zn(x,y)p € 1 +)K(y) forae yel;
(d) =, — X strongly in L>(2 x Y; MY _; and

sym
(e) setting o, (x) := fy n(x,y)dy and o (x) = fy Z(x, y)dy, o, € CP(RY; Mé\{,m),
sup [[(0n)plloc < 00,
o, —> O strongly in L2(.Q; Mg,m),
dive, — 0 strongly in LN(.Q; RN),
oy, —> O strongly in L" (£2; Mg,m)for every 1l <r < oo.

Proof. Let us extend X to RY x ) by setting ¥ = 0 outside £2. For every x € 352,
consider an open neighborhood U such that §2 N U is a Lipschitz subgraph with respect

to a suitable coordinate system. We cover 052 with finitely many open sets Uy, ..., Uy,
associated with x1, ..., x,, € 92, and assume that there exist 7; € RY such that
UinR2)+ar;cCc 2, 0O0<a<l. (5.29)

Let {1;}7_ | be a partition of unity of 92 subordinated to {U;}i" ,. Write

zziwinr(l—iwi)z;:iziJrzo, (5.30)
i=1 i=1 i=1

the last term having compact support in £2 x ).

The approximation X, is obtained by infinitesimally translating each X; in the direc-
tion —1; and taking a convolution with respect to x, while X is simply regularized by
convolution with respect to x. We then use a diagonal argument.

Indeed, (5.28) and items (a) and (d) immediately follow, while (b) follows by the
definition of "™ and the continuity of the v;’s if one further takes Remark 5.9 into
account. As far as (c¢) is concerned, the definition of JChom implies that, for a.e. x € RN
anda.e.y e ),

(Z0p(, ) € YiKD) (=1...com), (S, v € (1= D vi0))KG).
i=1
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Given ¢ > 0, in view of the continuity of y; and of the convexity of K (y), the construction
above shows that, for n large enough, and for every x € RN and a.e. y € ),

(EDp(r,y) € Wi + KM, (Eoey) e (1+e =Y pi0)KG),
i=1

so that, using the convexity of K (y) once more, (X,(x,y))p € (1 + (m 4+ 1)e)K (y) for
a.e. y € Y. Item (c) thus follows in view of the arbitrariness of ¢.

Finally, to prove (e) we need only justify the convergence of div oy, the first two
properties being a consequence of the previous items modulo an integration in y, while
the last statement is a consequence of the inequality in Remark 2.2. From (5.30) we
deduce, by integrating in y,

o= iwia + (1 — i%)“-
i=1 i=1

The associated approximation obtained by translations and convolutions can be written
explicitly as

m m

0n() = pu(0) % [ 3 ik + at)o (& +anm) + (1= D vi) o ()]
i=1 i=1

with a, N\ 0 and {0, }»cN suitable convolution kernels. Since div(o (x +a,t;)) = 0 thanks

to (5.29), the convergence follows from (5.27) and Remark 2.2, which imply that o is in

L’(Q;Mé\}’,m) for1 <r < oo. m]

Proposition 5.11 (Two-scale duality). Ler & € K™ and (u, E, P) € AM™(w). Let

gen.
n e M;‘(.Q’) be the measure such that P = n @ Py, with Py € My(Y; Mg), according
to Lemma 5 .4.

(@) If {Z,}neN is the sequence given by Lemma 5.10, the sequence {\,; },en defined as

hn = 1 ® (S, ), Py)

(where ((2,)p(x, ), Py) is the measure on Y associated with the duality between
the stress X, (x, -) and the plastic strain Py according to Remark 3.4) is a bounded
sequence of elements of Mp(2' x V).

(b) There exists a subsequence of { }nen (still indexed by n) and an element ). €
Mp(£2' x V) such that

An ) weakly* in 2' x Y,
with
N gen. s
A= (LY o) ®(Xp(x, ), Py) + 17, (5.3D

where (Xp(x,-), Py) € Mp(Y) denotes the duality between the stress Xp(x,-) €
Ky and the plastic strain Py € Iy, and where 1* € My(22" x Y) is such that

)\’S SgCI’LP
2] < n' @ | Pyl
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Finally, if 9|y Iy is admissible in the sense of Definition 2.1, the mass of A is given
by

,\(sz’xy)=—/

T . dedy—i—/ o-Ewdx. (5.32)
2xY

2

Proof. (a) By Lemma 5.4, for n-a.e. x € 2’ the measure P, € M (); Mg) is the plastic
strain of the admissible configuration on ) given by (uy, C(x)E(x, -)—A(x), Py), where
1y € BD()), while C : 2’ — [0,1]and A : 2’ — MY are the Radon-Nikodym

sym
derivatives of /.chv and Eu with respect to 7, respectively. Thanks to Lemma 5.10,

T, ) e LXQMY D, (Zo)px, ) € LYV MYy),  divy y(x, ) =0

sym

for every x € §2’. We conclude that the duality ((X,)p(x, ), Py) is well defined as an
element in M, () for n-a.e. x € £2’.
By definition of ((X,)p(x, -), Py),

(En)p(r, ), POW) = — /y PO Ex, ) - [COOE (R, y) — A1 dy
- fy 00, y) - [ix () © VY (D] dy (533)

for every ¥ € C1()). The n-a.e. defined map
x = () p(x,-), P)(¥) is n-measurable on £2’. (5.34)

Indeed, a direct computation shows that the maps f(x,y) = ¥v(»)Z,(x,y) -
[Cx)E(x,y) — A(x)] and g(x, y) := X, (x, y) - [ux(¥) © V()] are summable with
respect to the measure n ® Ljyv . Then (5.34) follows by Fubini’s theorem.

Through a standard approximation argument, we infer that x — (X, (x, -), Py)(F) is
n-measurable for every Borel set ' C ). Since, in view of Lemma 5.10(b),

K{(Zn)p(x, ), Po)l < 1(En) D (X, ool Pl = Cl Pyl

we deduce from the actual definition of generalized products (see Subsection 1.2 or [4,

gen.
Definition 2.27]) that A, = 5 ® (X, (x, -), Py) is well defined as an element of M, (2’ x
V).

Since

gen. gen.
Al =n @ |[(Xn)p(x, ), Pell =1 ® [(Xn)p(x, Illocl Px| = C|P|

with C independent of n, we infer that {, },cn is bounded in M (2" x )).
(b) Up to a subsequence,

An — A weakly* in M, (22" x V)
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for a suitable A € M, (2" x ))). For every ¢ € C?(.Q’), the very definition of A, yields
(An, @) = —f P(N)Zu(x,y) - CX)E(x, y)d(n ® LY)
2'xYy
+ / @(x)on(x) - A(x) dn(x)
Ql

= —fg/fp(x)ﬁn(x,y) : E(x,y)dxdy+fﬂ/<ﬂ(X)Gn(X)dEu(X)~
But o, is continuous, so
/ (x)oy(x) - dEu(x) 2/ w(X)Un(X)-e(X)der/ @(x)on(x) - dp(x)
2’ ol Q'
:/Q/@(x)on(x)'e(x)dx‘i‘/g/(/’(x)(o’n)D(x)'dp(x)7
hence
(Ans @) z—f w(X)En~dedy+/ ®on -edx+/ @(on)p - dp,
2'xY ol Q'

where e(x) := fy E(x,y)dy € L>(£2'; Mgm) and p := projy P € Mp(§2; M]l\)’).

Since 0, € C®(RV; Mé\;m) we have, recalling Remark 2.2,
(6x)pp = {(0x)p, p)  as measures on £2’.

Appealing to the convergences of 0;, to o in Lemma 5.10(e) we deduce from the definition
of the duality product in (2.2) and the facts that ¢ = 0 on I'; while p = 0 on 2’ \ £2 that

(@)D, P) = ((©)p, p)  weakly" in My(£2")
(and thus ((0)p, p) € Mp(£2")), with, for every ¢ € C1(2"),
((@)p, p)(p) = —/9<p0 (e — Ew)dx — /9 o-[(u—w)OVeldx.
Using Lemma 5.10(d), and since ¢ = E = Ew outside £2, we deduce that
(A, @) = lim (A5, ¢)

=1 [—/ w(x)En-deder/ w(x)on~edx+<(an)p,p)(<p)}
n .Q’X)J Q'

= lim |:—/ p(xX)X, - Edxdy +/ @(x)oy - edx + ((on)D, P>(<ﬂ)i|
n 2xY 2

= —/ px)X - dedy-Ir/ ¢(x)o -edx + (op, p)(@).
2xY 2
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If 0|5 [y is admissible, letting ¢ 7 1o we get

x(sz’xy)z—/

2x)

=—/ E-dedy+/U~edx—fa~(e—Ew)dx
2xY Q 2

=—/ Z-dedy—i-/a-Ewdx,
2xY 2
which is (5.32).

It now remains to establish the precise form (5.31) of A. Note that, since P, = 0 for
LN-ae. x € 2\ 2andn =LY +7°,

Z~dedy+/ o -edx + (op. p)(R)
2

gen.

hn = LY@ (B p (. ), P) + 10 ® (S p(x. ). Py)
N gen. , gen. | )
= (LY ) ® (B p(x. ). P) +1° @ (B)p(x. ). Py) =1 AL 422
In view of Lemma 5.10(b),

1 N gen. 2 J&en.
Al = C(LY @) ® [P = CIP| and [A| = Cn” ® |Px| = C|P],

with C independent of n. As a consequence, we may assume that, up to extracting a
further subsequence,

AT weakly® in My (2 x V),
22 502 weakly* in My(2' x V),
with
gen. gen.
W<l o) ®IPd and 2% < Cp* @ | P,

as measures on 2’ x ).
In view of Lemma 5.10(b) & (d), and taking into account Remark 5.9,
Sa(x,) = T(x,) stronglyin L™ (Y; MY ) forae.x € 2, 1 <r < oo.

sym

Since, according to Lemma 5.4, (ur, C(x)E(x,:) — A(x),Pr) € Ay, hence
(C(X)E(x,-) — A(x)) € L%, Mg,m) for n-a.e. x € £2, we immediately pass to the
limit in (5.33) and conclude that

* .
(Z)p(x,), Pe) = ((Z)p(x, ), Py) weakly” in Mp(Y).
By the very definition of a generalized product, we finally obtain
gen.
M= (LY ) ® (D)p(x, ), Pr).

Since A = A! + A2, (5.31) follows and the proof is complete. O

We now establish the two-scale analogue of Proposition 3.5.
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Theorem 5.12. Assume that ) is a C*-admissible multiphase torus. Then, for every
¥ € KM gnd (u, E, P) € A (w),

H(y, P/|IPDIP| = 2,
with A defined in (5.31). Further, if equality holds, then for £)1€V—a.e. X € £,

X

| Pr|

() € Nk(y)(Ep(x, ) for L) -a.e.y € {|P.| > O};

and, letting u € X (2') be the measure associated with (u, E, P) and using the disinte-
gration (5.9), we get, for Lfcv-a.e. x € 82 and for everyi # j,
W) —pl) - _ : :
e € N (Ep(r, n)e () for HY eae y € {ul # ),
Il () — pmx ()]

where ,ui and ). are the traces on I j of the restrictions of |1y to YV; and )); respectively,

assuming that v points from Y; to Y;, and where Nk (y)(t) denotes the normal cone
(a cone of vectors) to Kr(y) at a vector T L v(y).

Proof. Let {Z,},en be the sequence given by Lemma 5.10, and let {4, },,cn be the asso-
ciated measures defined in Proposition 5.11. Given ¢ > 0, Lemma 5.10(c) implies that,
for n large enough,

E)pkx,)e(l+e)K(y) forae.yec) andforeveryx e £2'.

By Proposition 3.5, we deduce that, for n-a.e. x € £2’,
1
H(y, Px/|PxD|Px| = 1—_”((2")1)()6, ), Px)  as measures on ).
Consequently, in view of (5.10) and item (a) in Proposition 5.11,

gen. gen. —1
H(. P/IPDIP| = 0@ H(y. P/IPDIP] = 1'® H(. P/ IPDIPL] = 17—

Proposition 5.11(b) implies the desired inequality upon passing to the limit in 7, then in ¢.

gen.
If, further, equality holds, then the decomposition P = 1 ® Py, with n := Ei\’ +
(projy | P|)® given by Lemma 5.4 implies, in view of (5.31), that

gen. gen.
(LY @) ® H(y, P/IPD|Pc| = (LY Lo) ® (Ep(x. ), Py)
so that, recalling (5.10),

H(y, Pc/IP:D|Pc] = (Xp(x,-), Py) asmeasureson),

and this for £¥-a.e. x € £2. The result now follows from Proposition 3.5 once it is recalled
that, thanks to Lemma 5.4, P, is the plastic strain of the BD deformation p, on ). ]
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Remark 5.13. Assuming that 9|, Iy is admissible in the sense of Definition 2.1, the
previous theorem together with (5.32) immediately implies the two-scale version of the
principle of maximum plastic work, that is, for any ¥ € "™ and any triplet (u, E, P) €
Arom ),

HO™(P) > [T | P]:= —/

E-dedy—l—/ o-Fwdx.
2xY

2

As a final remark in this subsection, two-scale statically admissible fields naturally
arise as two-scale weak limits of e-statically admissible stress fields (see (2.19)). Indeed,

Proposition 5.14. Let (0,)¢~0 be a bounded family in L*($2; Mf;m) such that o, € IC;
and

2
[ LS two-scale weakly in L2(.{2 X V; Mi\;m).

Then ¥ e KChom,
Proof. Since o (x) := fy 2 (x, y)dy is the weak L2-limit of o, it is immediate that
div,io =0 inf2, o-v=0 ondR\Ty.
Applying the definition of two-scale weak convergence it is readily seen that
divy X =0 on).

In order to prove our assertion, we appeal to Remark 4.12. The function ¥ is the weak
limit in L2(£2 x Y; MY ) of the functions

sym

T, y) = Y Lo (0ol

iel,(2)

where I (£2) is defined in (4.13), and ogi (y) :=o0¢ (xé +¢Z(y)). Since o, € K¢, we deduce
that

Y. e{Ee€ L2(.Q x YV: MYy Ep(x,y) € K(y) forae. (x,y) € 2 x V}.

sym
But this set is convex and closed in the strong topology of L?(£2 x Y; MSA;m), hence
weakly closed, and this concludes the proof. O

6. Two-scale homogenization of the quasi-static evolution

In this last section, we address in the first subsection the two-scale limit of the heteroge-
neous quasi-static evolution, while we derive the corresponding generalized flow rule in
the second subsection.
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6.1. Two-scale quasi-static evolutions and the homogenization result

For any t — P(t) € Mp(2' x Y, M%), t € [0, T], we define the homogenized total
dissipation on [a, b] C [0, T'] to be

1
D" (a, b; P) = sup{ Y HW () = Pli-) ia=to s = =1 =b),
i=1

where H"™ was defined in (5.12).

Recalling the definitions of AM™ (w) and of QM™ (see Definition 5.1 and (5.11)), we
are now in a position to formulate a notion of quasi-static elasto-plastic evolution in a
two-scale setting.

Definition 6.1 (Two-scale quasi-static evolution). We say that
t > (), E@), P(1) € A (w(1))

is a two-scale quasi-static evolution relative to w iff the following conditions hold for
everyt € [0, T]:

(a) Global stability: for every (v, E, Q) € A (w(r)),
QM™E®) < Q"™(E) + H'™(Q — P(1)).

(b) Energy equality: ¢ — P(r) has bounded variation from [0, T'] to M, (2’ x Y, Mll\)’)
and

t
QWM (E (1)) + DM (0, 1: P) = QMM (E(0)) + / / o(v) - Eir(7) dx dr,
0 2

where o (¢, x) := fy C(H)E(t,x,y)dyforae. x € £2.

As will be seen shortly, two-scale quasi-static evolutions naturally arise in the de-
scription of the behavior of quasi-static evolutions in periodic heterogeneous materials as
the size of the microstructure goes to zero.

For every ¢ > 0, let (ug, eg, pg) € A(w(0)) be globally stable initial configurations
such that
%
u? = ug weakly* in BD(£2'),
e? 52 Eo two-scale strongly in L?(£2" x V; Mé\;m), 6.1)
)

pg 2= Py two-scale weakly™ in My (2" x Y, Mjl\)’),

for some (g, Eo, Po) € AM™(w(0)). In particular,

lim Q¢ (ef) = Q"™ (Ey). (6.2)
e—0
In view of the above assumptions on (ug, eg, pg), Theorem 2.6 applies to the evolution
at fixed ¢ and yields a quasi-static evolution in the sense of Definition 2.5. The following
homogenization result holds.
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Theorem 6.2 (Two-scale homogenization of a quasi-static evolution). Assume that

o 0|0y is admissible in the sense of Definition 2.1;

e relations (2.5), (2.6), (2.11), (2.12), (2.13), (2.17) hold; and

e foreverye > 0, (ug, eg, pg) € A.(w(0)) are globally stable configurations satisfying

6.1).

Let t +— (ug(t),es(t), pe(t)) be a quasi-static evolution relative to the boundary dis-
placement w such that

(e (0), e(0), pe(0) = @2, €2, p).

Then there exists ¢, — 0 and a two-scale quasi-static evolution t — (u(t), E(t), P(t))
relative to the boundary displacement w such that

u(0), E(0), P(0)) = (uo, Eo, Po)

and such that, upon setting (U, ey, py) ‘= (Ug,. €, Ps,)>

un (1) A u(t) weakly* in BD(£2'),
2
en(t) = E(t)  two-scale weakly in L*(2' x Y; Mgm), (6.3)
)
Pa(t) == P(1) two-scale weakly* in My(22' x Y; MN),
foreveryt €0, T].

Proof. We divide the proof into several steps.

Step 1: Compactness. From the energy balance at fixed ¢ and upon application of
[21, Chapter II, Proposition 2.4]—taking f on\g |u|dx as a continuous seminorm on

BD(£2")—we deduce the existence of a constant C > 0 such that, for every ¢ > 0 and
1€[0,T],

llue (D)l BD(27) + ”ea(t)”LZ(_Q’;Mg\)’,m) + V_/\/[b(g/;]\/[g)(o’ t; pe) < C. (6.4)

In view of Proposition 4.4 and of Remark 4.2, application of [15, Theorem 3.2] yields a
sequence {&, \( 0} and P € BV(0, T; M,(2' x Y; MZDV)) such that, for every ¢ € [0, T],

*2
pn(t) 2= P(t) two-scale weakly* in M, (2’ x V; M%).

Further, for a possibly z-dependent subsequence {&,, },,,en of {€,}reN,

Un, (H=u(t)  weakly* in BD(2'),

w-2

en, (1) —> E(t) two-scale weakly in L?(£2" x Y; MY ).

(6.5)

and, according to Lemma 5.6, (u(t), E(t), P(t)) € A" (w(r)).
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Finally, in view of Remark 4.12, we can choose {g, },, ey such that

on, (1) 1= Cg, e, (1) ¥ 3(t) :=C(y)E(t) two-scale weakly in L2(.Q x Y: MY y:

sym

consequently,
0y, (1) = o (1) weakly in L?(2; MY ) (6.6)

sym

where o (¢, x) = fy (t, x,y)dy for a.e. x € £2. By Proposition 5.14, (1) e Khom

because, in view of Remark 2.7, o,,, (t) € IC%.

Step 2: Global stability. Since (u(¢), E(1), P(t)) € A"™(w(r)) (with associated ju(f) €
X (£2")), it follows that, for every (v, E, Q) € AM™(w(r)) (with associated v € X (£2')),
(v —u(t), 8 — E(1), Q — P(1)) belongs to AM™(0). Since X(r) € KM™ Remark 5.13
implies that

HOm(O—P(1)) = —/

2xY

T(E—E(t))dxdy = —/

2%

yC(y)E(t)~(E—E(l))dx dy,

from which it is immediately deduced that
HOM(Q — P(1)) + QM™(E) > QMOM(E(1)) + Q"™(E — E(1)) = QMM(E(r)),

hence the global stability.

Assume that (u'(r), E'(t), P(t)) € AM™(w(r)), with associated u'(t) € X(£2'),
also satisfies global stability. Then, by the convexity of the set Abom 4, (4)) and the strict
convexity of Qhom it is immediate that

E'(t)=E®).
From the admissibility condition (5.5) we infer
Eu(t) ® LY + Eyu(t) = Eu'(t) @ L) + Eyp/(t)  on 2/ x Y,
so that taking the average with respect to y we obtain
Eu(t) = Eu'(t) in$2'.

Since u(t) = u'(t) = w(t) on 2’ \ 2, using again [21, Chapter II, Proposition 2.4]
with fQ,\§ |u| dx as a continuous seminorm on BD(£2"), we infer u(t) = u/(¢) on £2'.
Therefore, there is no need to extract a subsequence {&,, },,eN from {&,},cn in (6.5), so
that the whole sequences {u, (f)},en, {Ex (t)}ren converge, which establishes (6.3).

Step 3: Energy balance. We start with the energy balance at fixed ¢. It states in particular
(see Theorem 2.6) that for any partition 0 <#; <--- <t, =1t of [0, 7],

m—1

t
Qo (en() + 3 Hey (palti 1) — pat) = Qe (en(0)) + /0 [ outs)- i) dxas.
i=0
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Pass to the limit as n ' oo. For the left-hand side, Theorem 5.7 yields

m—1
QUOM(E()) + Y HM(P(tiy1) — P(1))

i=0 m—1

< liminf [ Qy, (en () + Y He, (pultic) = pa(t) -
i=0

In view of (6.4) and of (6.6), Lebesgue’s dominated convergence theorem entails that the
limit of the second term on the right hand-side is by fot f_Q o(s)- Ew(s)dxds. In view of
(6.2),

lim Qe, (¢x(0)) = Q"™ (Eo).

Recalling all limits, we finally obtain

m—1 t

QMEW) + Y- HPGe) — P = 8 E) + [ [ a0) Bis)dxas,
i=0 0 Jo

Taking the supremum over all partitions 0 < ¢ < --- <1, =t of [0, ¢] then yields

t
Qhom(E(t))+Dh°m(0,t;P)§Qhom(Eo)+f / o(s) - Ew(s)dxds.  (6.7)
0 J2

Deriving the reverse inequality in (6.7) is straightforward. Indeed, the argument is
identical to that at the end of the proof of [11, Theorem 2.7] upon replacing Q, D, H
by Qbom phom gyhom respectively, and replacing the global minimality statement used
there by item (a) in Definition 6.1. It simply consists in testing, at time ¢;, the global
minimality of the triplet (u(;), E(t;), P(t;)) by (u(ti+1) + w(t) — w(ti+1), E(ti+1) +
(Ew(t;) — Ew(ti11)), P(ti+1)) € AP™(w(t;)) and passing to the limit in the time step
in the resulting inequality upon remarking that the BV regularity in time for P implies
thatt — X(t) € L2(2 x V: Mé;m) can only have a countable number of discontinuity
points; see [11, Remark 2.6 and Theorem 2.7] for details. O

6.2. Flow rule for two-scale quasi-static evolutions

This subsection is devoted to the analysis of the flow rule for a two-scale quasi-static
evolution. To this end, we need to interpret the energy equality for a two-scale quasi-
static evolution in terms of a more classical flow rule with respect to the variable y.

Lemma 6.3 (Static admissibility). Let t — (u(t), E(t), P(t)) € Ah"m(u)(t)) be a two-
scale quasi-static evolution according to Definition 6.1. Then, for every t € [0, T],

(1) := CE(r) € Khom,

where K™ is the set of two-scale statically admissible stresses (see Definition 5.8).
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Proof. Take (v, E, Q) € AM™(0). From global stability with (u(t) + v, E(t) + E,
P(t) + Q) as test field, it is immediate that

f (1) - Edxdy + H'"™(Q) > 0
2xY

so that

—Hh"m(Q)f/ £(1)- Edxdy < H(—Q),
2xY

Considering (0, E,®(x, y),0) € Ahom () where @ (x, y) € CX (2 x Vs RY) (with
associated u := (®(x, y) —fy D(x,y) dy)(ﬁf?’@ﬁ?’) € X (£2)), the previous inequality
entails that

divy X =0 on$ x ).

Given B; C £2 and B C Y Borel sets, and an arbitrary & € MY then

(0, £15,x5,(x, ¥), —E15,x5,(x, ¥)) € A®™(0)

(with associated pu := 0 € X (£2")). Thus, for E)ICV ® Efvv—a.e. x,y)e 22 xY, H(y, &) >
Yp(t, x,y)-&, sothat, by the definition (2.10) of H and the arbitrariness of £, we conclude
that

Xp(x,y) € K(y).
Finally, by considering (v, E v, 0) € AM™(0) withv € C!'(£2) and v = O on £\ £2,
we get .
div,o =0 inf2, o-v=0 ondf2\ Iy,
so that X () e chom, O
A proof completely analogous to that of [10, Theorem 5.2], in the two-scale setting and

modulo the absence of external loads, would entail the following

Proposition 6.4 (Regularity in time). If t — (u(t), E(t), P(t)) is a two-scale quasi-
static evolution, then

(u, E, P) € AC(0, T; BD(22') x L*(2' x Y; MV ) x Mp(2' x Y; M)).

sym
Moreover, the following limits exist for a.e. t € [0, T]:

u(s) —u(t)
m —

() =1 weakly™ in BD(2'),
s—>t s —1

. E — E(t

E@) := lirr} (s)—t() strongly in L*(2' x ); Mgm),
s— s —

: P(s) — P(1

P(t) := lin} (s)—t() weakly* in Mp(2' x Y; MN),
s— s —

with (1), E(t), P(t)) € A@b(t)). Finally D™(0,t; P) € AC(0,T) and, for a.e.
t €0, T],

phom, 1; P) = —/

2xY

() - E(t)dxdy +/ o(t) - Ew(t)dx.
2
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We need the following lower semicontinuity result for the two-scale dissipation potential
/Hhom_

Proposition 6.5 (Lower semicontinuity of #"™). Let (u,, E,, P,) € AM™(w,) be
such that

U, - u weakly* in BD(2'),
E, — E weaklyin L>(2' x Y; MY ),

sym

* (6.8)
Py — P weakly* in Mp(22' x Y; M}),
wy, — w  strongly in H'(RY; RY).
Then (u, E, P) € A™™(w) and
Hhom(py < lim inf HMo™(P,). (6.9)
Proof. Since
Eup® LY + Eyu" =E, (LY ® L)+ P, onQ2' xY (6.10)

and in view of Lemma 4.8, we immediately infer that (u, E, P) € AM™(w).

The lower semicontinuity (6.9) follows by an argument identical to Step 2 in the proof
of Theorem 5.7 provided that we establish the following result. Let B C ) be an open set
with Lipschitz boundary and exterior normal denoted by v, such that 83\ 7T is of class C'!
for some closed set 7 C 88 with HN~1(T) = 0. If

Pylos — & weakly* in M, (82" x V; M),

then
MoxopT) = (@lx, y) ©v(y)n 6.11)
for a suitable measure n € M;(.Q/x @B\ 7)) andaBorelmapa : 2'x(@B\T) — RN
with a(x, y) L v(y) for n-a.e. (x,y) € 2’ x 3B\ T).
In order to establish (6.11), let us consider u" € X (£2’) associated with (u,, E,, P,).
Up to subsequences, we may assume that

Eyi"Lgip — & weakly* in My(2' x i MY,).

In view of the convergences (6.8) and of the admissibility condition (6.10), the restriction
of A on £2' x 813 is the same as that of A.

A direct computation similar to that in the proof of Proposition 4.11 shows that, upon
setting

. 1 .
(Eypu" Lo xB)e(F) i= S—NEyM"(Qﬁ; X (FNB))

for every Borel set F C ), then, as ¢ — O,

(LY o) ® (Eyp"Loixp)e = Eyi Lok weakly® in My (2" x Vi MY ).
iel (2
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Since, with obvious notation,
(Eyi" LB = (Eyu"); g,
a diagonalization process yields the existence of a sequence {&;,, \( 0}, <N such that
. . - )
Yo g )@ Byl lg =% weakly® in Mp(2' x ¥; MY,).
i€l (2

NOW’ . . .
("L, € BDY) and  Ey (", = (Ey,u"),. (6.12)

Indeed, in view of Lemma 5.4,
w = () ® L))

where 1, = Civ + (projy | P,1)°, and (x,y) — pl(y) € RY is a Borel map with

wh € BD(Y) for n-a.e. x € £2. Moreover, x — E,u” is n,-measurable and E,pu" =
gen.
M Ey:U«;-
Forevery e > 0,i € I;(§2) and g € cly;MN 1,

sym

(W (divy g) = / W) - divy () dme () dy

o, xY

=f<f Mﬁ(y)-divyg(y)dy> dn,(x)
0i \Jy

:_/_(f g(y)dEyMﬁ(y)> dnn(x):_/_ gy dE,u"
0i \Jy 0ixY
= —(Eyu"(2),

where all integrals above are meaningful, hence (6.12).
Then, for every x € C} (2" x Y; Mgm) with divy x =0,

> / </Bx(x,y)d(EyM")f3n> dx

iEIgn (.Q/) &n

(/Bxu,y)dEy(u");)dx

( /a Rl [, () @ v(y)] dHN—l(y)) dx. (6.13)

/ x(x, VAi(x, y) = lim
2'xY n

=1
m Y[
ielg, (£2')

—im Y
iel, (272

At the expense of subtracting infinitesimal rigid body motions on 3, we may assume that

i
&n
i
&n

] — nyi C n i
/BB G [ dHY < CLEL N 1B) = < By (21, % B)

for some constant C > 0 independent of » and i. Since { Ey " },,en is a bounded sequence
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in My(2' x Y; MY

sym

Z oy Loi,) ® ('un)inHN_l Lo € Mp(2' x 3B; RY)
ielg, (£2)

), the measures

and
> g ) @I, © vHY T ] € My(2' x 0B MY,
i€l (2
form bounded sequences, so that, up to subsequences, we may assume that
. _ *k
Y Yo )@ W, HY s = ¢ € Mp(2' x IB;RY),
iele, (2')
and
Y g ) @I, 0 vHN g1 S weakly® in My(2' x 9B; MY ).
ielg, ()
In view of Lemma 4.9 and (6.13), there exists u € X (£2”) such that
r=7m+ Eyu.
Since v is continuous on 38 \ T, we immediately deduce that
¢
T\ = il OV I¢llanyT

so that by appealing to Proposition 4.7(b), (6.11) follows. O
The following result finally yields the flow rule for two-scale quasi-static evolutions.

Theorem 6.6 (Two-scale flow rule). Assume that) isa C 2_admissible multiphase torus
and that 9|y I'y is admissible in the sense of Definition 2.1. Let t — (u(t), E(t), P(t)) €
AP (y) (1)) be a two-scale quasi-static evolution. Then, for a.e. t € [0, T,

(@) @), E@), P(1)) € A™™(W(1));

(b) for Lfcv—a.e. x € £2,

Py (1)
| Py ()]
where Py results from the decomposition (5.8) of Lemma 5.4;

(c) letting ju(t) € X(2') be the measure associated with (i(t), E(1), P(1)) €
AOm 4y (1)), for L)]Cv—a.e. X € 2 and for every i # |,

(") € Nk(y)(Ep(t,x,y))  for LY -a.e.y € {|Pe(t)] > O},

€ Nk () (Zp(t, x, Iv) (1))
for HNVace. y € {1 (1) # (),

where [y (t) results from the disintegration (5.9) of u(t), ;L; (t) and [u}(t) are the
traces on I of the restrictions of [ix(t) on ); and ); respectively, assuming that v
points from Y; to Y, and N Kr(y) (1) denotes the normal cone (a cone of vectors) to
Kr(y)atavectort L v(y).
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Pmof._ Let [ [0, 7] be a time such that w(s) exists in H!(RY:RY), and
i(t), E(t), P(t), D"™(0, r; P) all exist in the sense of Proposition 6.4 with

D0, 15 P) = —/

2@t : E(t)dxdy +/ o(t): Ew(t)dx.
2xY 2

By Proposition 6.5 we deduce that (ii(r), E(t), P(1)) € AM™(1i(r)). Since D™ is a
total variation, and since H'™ is positively one-homogeneous, for #; > r we have

thom<P(t1) - P(t)> _ D"(0.n; P) — DM, 15 P)
t—t - t—t ’

Hence, taking the limit for #; — ¢, and appealing to Proposition 6.5, we infer that

HO™(B (1)) < — /

2xY

() : E(t)dxdy + f o(t): Ew(t)dx.
2

But X(r) € K"™ by Lemma 6.3, so that the opposite inequality holds true in view of
Remark 5.13, and we obtain

HOM(P (1)) = — /

2xY

(@) : E(t)dxdy +/ o(t): Ew(t)dxdy.
2

The result then immediately follows from Theorem 5.12. O

Remark 6.7. The disintegrations of P(¢) and P(#) do not imply that P, () is the deriva-
tive of Py (¢) in the weak™ (or strict) sense of Proposition 6.4. Consequently, the flow rule
of Theorem 6.6 cannot be construed as completely vindicating the two-scale evolution as
that corresponding to a generalized standard material in the sense of [13].

But worse still, our flow rules view P, (as functions of y, t) as the internal vari-
ables, whereas a consistent thermodynamical model would freeze the variable y € Y
and seek a flow rule in the variable x. In truth, we do not have enough structure on the
measures P and on the functions X to switch the disintegration around, that is, to write

gen.
P =« ® Py withk € MZ())) and P, € M(£2"; Mg), and to hope for a flow rule in x
for L’/yv—a.e. yel.

These discrepancies will hopefully be resolved in future investigations.
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