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Abstract. The limit behavior of a periodic assembly of a finite number of elasto-plastic phases
is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived
through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic
model, albeit with an infinite number of internal variables.

Keywords. Elasticity, plasticity, space of bounded deformations, lower semicontinuity, Radon
measures, periodic homogenization, evolution problems

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
2. Quasi-static evolutions in periodic heterogeneous materials . . . . . . . . . . . . . . . . 415
3. Elasto-plasticity on the periodic torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
4. Two-scale convergence of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
5. Two-scale kinematics and two-scale statics . . . . . . . . . . . . . . . . . . . . . . . . . 433
6. Two-scale homogenization of the quasi-static evolution . . . . . . . . . . . . . . . . . . 451
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

1. Introduction

1.1. Introductory remarks

In a previous paper [11], we undertook what we believe to be a thorough revamping
of heterogeneous, small strain elasto-plastic evolutions, so as to account for multi-phase
composites with arbitrary yield surfaces and elasticities, provided only that the interfaces
between the phases be piecewise C1. This laid the ground work for the present investiga-
tion in which we propose to (re)visit periodic homogenization in the same context.

Elasto-plastic composites belong to the familiar of many engineering fields, and their
behavior has been meticulously investigated in a plethoric literature. When focussing on
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limit analysis, that is, on the prediction of the ultimate load that a composite elasto-plastic
structure can withstand, the engineering literature is extensive, while the mathematical
analysis of the underlying variational problem has been successfully undertaken in var-
ious works of G. Bouchitté and/or P.-M. Suquet (see e.g. [5], [20], [6], [7]). However,
when elasto-plastic evolutions are envisioned, both engineering and mathematical liter-
ature fall short of any bona fide discussion of the interaction between the evolution and
the elasto-plastic microstructure. Rather, the default position is to rely on strain hardening
as a regularizing mechanism under which the homogenization procedure becomes much
simpler (see e.g. [22], [23], [18], [16] as far as the mathematical literature is concerned).

In this paper, we propose to confront the homogenization of the evolution of a peri-
odic multi-phase elasto-plastic composite without any regularizing effect. The periodicity
restriction is unfortunate, but, in all fairness, we are clueless if departing from the peri-
odic framework, although we suspect that ergodicity could easily replace periodicity. In
turn, the periodicity assumption will allow us to resort to the very efficient method of two-
scale convergence first proposed by [17], [1] in a classical elliptic setting, then refined by
many authors. As in our previous contribution [11], we pay close attention to the issue of
the duality between the stress fields which are essentially square-integrable functions and
the plastic strains which are bounded measures; we attempt to clearly circumscribe those
steps where duality is truly needed.

The paper is organized as follows.
In Section 2, we detail the structure of the envisioned periodic microstructures and

apply the existence results for a quasi-static evolution that were derived in [11] to the spe-
cific setting at hand. It proves most convenient to view the periodic structure as that which
is given on an N -dimensional torus, denoted henceforth by Y . In Section 3, we state the
various consequences of the existence result (maximal dissipation, flow rule, . . . ) for an
evolution that takes place exclusively on Y . We do so because those results will then serve
as the building block for the interpretation of the resulting “homogenized evolution” (an
evolution in both the macroscopic variable x and its microscopic counterpart y), provided
that the macroscopic dependence of all fields can be properly localized.

Elasto-plasticity gives rise to plastic strains that are merely bounded measures, so
that the tools that will be used in the homogenization process have to account for weak∗

convergences in measure spaces. Since we have specialized the microstructures to the
periodic setting, two-scale convergence is the usual tool that we extend to our specific
setting. Of course, two-scale convergence of bounded measures has already been exten-
sively discussed, starting with [2] in a BV setting. However, our measures are born out of
the complex kinematics of elasto-plasticity, which is why we revisit the two-scale conver-
gence process in this specific framework in Section 4. In the first subsection, we reframe
the general existence result for two-scale limits of sequences of bounded measures, so as
to prove in Lemma 4.6 a two-scale version of Reshetnyak’s lower semicontinuity theorem
(see e.g. [19, Theorem 1.7]); of course, we do not contend that Lemma 4.6 is new in and
of itself. In Subsection 4.2, we characterize more specifically those measures that arise
out of symmetrized gradients of BD functions (see Propositions 4.7 and 4.10), which in
turn allows us to define the proper two-scale kinematics in Definition 5.1. Even when
restricted to BV functions, our characterization is more elementary than that proposed
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in [2] because we avoid the use of Banach-space-valued measures (more specifically, of
measures with values in periodic BV functions).

In Subsection 6.1, we address the homogenization process for the elasto-plastic evo-
lution. To this end, we first have to prove a lower semicontinuity result for the dissipation
in a two-scale setting (see Theorem 5.7) which is reminiscent of an analogous result in
the heterogeneous setting [11, Proposition 2.3]. We then prove an inequality between
two-scale dissipation and two-scale plastic work (Remark 5.13) which heavily relies on
the results of Section 3. Finally, we prove that the heterogeneous elasto-plastic evolution
of Section 2 two-scale converges at each time to a two-scale evolution (Theorem 6.2).
That evolution is an evolution on the two-scale limits at each time, u(t, x), E(t, x, y),
P(t, x, y), of the various kinematic fields, i.e., the displacement field uε(t), the elastic
strain eε(t), and the plastic strain pε(t). In the resulting evolution, the y-dependence—
that is, the dependence upon the micro-structural variable—cannot be integrated out,
which results in a thermodynamical model with an infinite number of internal variables
(essentially the plastic strains at each point y of the torus Y).

In which sense is this still an elasto-plastic evolution? That is the question we address
in the final subsection of this paper (Subsection 6.2). The goal is to recover some kind of
flow rule, a harbinger of plasticity. This is achieved in Theorem 6.6 which demonstrates
that, at almost every macroscopic point x, the two-scale plastic flow follows the rules
of normality—that is, it is oriented along the normal to the yield surface, a y-dependent
hypersurface—and this at all points of the torus Y . The proof of Theorem 6.6 heavily
relies upon Theorem 5.12 which is in turn a localized version of the previously mentioned
Remark 5.13.

To achieve the results of Section 6 and in the spirit of e.g. [21], [14], [10], [11], we
need to use the duality between plastic strain and its counterpart, the deviatoric stress. But
those are not defined on the same set of macroscopic points x because the plastic strain is
a measure in both x and y, which can thus concentrate in both variables, while the devia-
toric stress is only defined LNx ⊗LNy -a.e. Consequently, to even make sense of the duality
for a fixed x, we need to resort to the concept of disintegration of measures, Specifically,
we need to disintegrate the two-scale kinematically admissible fields and to define the
accompanying duality results. This is performed in the technical Section 5 which also in-
cludes the already mentioned lower semicontinuity result (Theorem 5.7) and the inequal-
ity between dissipation and the global stress-plastic strain duality product (Remark 5.13).

Because of that flow rule, we are seemingly at liberty to incorporate the resulting two-
scale evolution into the framework of standard generalized materials advocated in [13].
To do so, however, we do need an infinite number of internal variables. Those are the
plastic strains Px(t, y) := P(t, x, y), where y ∈ Y . See Remark 6.7 for more details on
the extent to which the previous statement is justified.

Finally, the reader will undoubtedly note that force loads are not considered in this
work. As explained in [11, Remark 2.9], this is no restriction, provided that a uniform safe
load condition with a smooth enough associated deviatoric stress is satisfied; for details
refer to that remark in [11]. If that is not the case, then one should be very careful because,
drawing a parallel with the discussion in [6], one should expect that, besides the bulk-type
homogenization detailed in this work, a boundary-type homogenization also occurs.
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1.2. Notation

The following notation will be adopted throughout.

General notation. For A ⊆ RN , 1A denotes the characteristic function of A, i.e., 1A(x)
= 1 for x ∈ A and 1A(x) = 0 for x 6∈ A. The indicator function of A, denoted by IA,
is defined as IA(x) = 0 for x ∈ A, and IA(x) = +∞ for x 6∈ A. The symbol bA stands
for “restricted to A”. Finally LN stands for the usual Lebesgue measure, while HN−1

denotes the (N − 1) dimensional Hausdorff measure.

Matrices. We denote by MN
sym the set of (N × N)-symmetric matrices and by MN

D the
set of trace-free elements of MN

sym. If M is an element of MN
sym, then MD denotes its de-

viatoric part, i.e., its projection onto the subspace MN
D of MN

sym orthogonal to the identity
mapping i for the Frobenius inner product. The symbol · denotes that inner product. We
denote by Ls(MN

D) the set of symmetric endomorphisms on MN
D . For a, b ∈ RN , a � b

stands for the symmetric matrix such that (a � b)ij := (aibj + ajbi)/2.

Measures. If E is a locally compact separable metric space, and X a finite-dimensional
normed space, Mb(E;X) will denote the space of finite Radon measures on E with val-
ues in X. For µ ∈Mb(E;X), we denote by |µ| its total variation. The space Mb(E;X)

is the topological dual of C0
0(E;X

∗), the set of continuous functions u from E to the
vector dual X∗ of X which “vanish at the boundary”, i.e., for every ε > 0 there exists a
compact set K ⊆ E with |u(x)| < ε for x 6∈ K . We will denote by M+

b (E) the space of
positive bounded Radon measures on E.

If µ ∈ M+

b (R
N ) we will denote by µs the singular part of µ with respect to the

N -dimensional Lebesgue measure.
We will make extensive use of the technique of generalized products and disintegra-

tion of measures, for which we refer the reader to [4, Section 2.5]. Given E,F locally
compact separable metric spaces, and η ∈ M+

b (E), a map x 7→ µx ∈ Mb(F ) is said
to be η-measurable if the map x 7→ µx(B) is η-measurable for every Borel set B ⊆ F .
Assuming moreover that the map x 7→ |µx |(F ) is η-summable, the generalized product

η
gen.
⊗ µx ∈Mb(E × F) is defined through the equality

〈η
gen.
⊗ µx, f 〉 :=

∫
E

(∫
F

f (x, y) dµx(y)

)
dη(x), f ∈ C0

0(E × F).

Moreover (see [4, Theorem 2.28]), every µ ∈Mb(E × F) can be disintegrated, i.e.,

it can be written as a generalized product η
gen.
⊗ µx . Here η is the push forward of |µ| along

the projection on E, i.e., for every Borel set B ⊆ E,

η(B) := |µ|(B × F),

while x 7→ µx ∈Mb(F ) is a suitable η-measurable map.

Further (see [4, Corollary 2.29]), |µ| = η
gen.
⊗ |µx |.

The generalized product technique, and the associated disintegration result, are easily
extended to the case of vector-valued finite Radon measure.
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By contrast, if µ and ν are in Mb(E) and Mb(F ), respectively, we will denote by
µ ⊗ ν the classical product measure in Mb(E × F). Let us emphasize that, if π ∈

Mb(E × F) disintegrates as π = µ
gen.
⊗ [a(x, y)ν], then we cannot assert a priori that a

is µ⊗ ν-measurable. However, π is then absolutely continuous with respect to µ⊗ ν, so
that there exists a Borel map h : E×F → R such that π = h(x, y)(µ⊗ ν). The relation
between h and a will have to be established on a case-by-case basis and this will be a
source of difficulties in the proof of Proposition 4.7 and in Lemma 5.4. In the case where
E = F = R and µ = ν = L1, an example due to W. Sierpiński provides the existence of
a non-measurable set A ⊂ R2 such that all its sections Ax := {y ∈ R : (x, y) ∈ A} are
reduced to a point (see [12]). Then

L1
x

gen.
⊗ 1A(x, y)L1

y ≡ 0,

so that adding 1A(x, y) to a(x, y) will clearly prevent any possible identification of h
to a.

The (kinematic) space BD. Let Ω ⊆ RN be an open set. In this paper as in previous
works on elasto-plasticity the displacement field u lies in BD(Ω), the space of functions
with bounded deformations. We refer the reader to e.g. [21, Chapter 2] and [3] for back-
ground material. Besides elementary properties of BD(Ω), we will only appeal to two
“finer” results. Firstly, the measure Eu does not charge HN−1-negligible sets (see [3,
Remark 3.3]). Secondly, assuming that Ω is bounded with Lipschitz boundary and given
Γd ⊆ ∂Ω with HN−1(Γd) > 0, Poincaré–Korn’s inequality states that there exists C > 0
such that

‖u‖BD(Ω) ≤ C

(∫
Γd

|u| dHN−1
+ ‖Eu‖Mb(Ω;MN

sym)

)
,

where Eu denotes the symmetrized gradient of u, and the integral on Γd involves the
trace of u on ∂Ω which is well defined as an element of L1(∂Ω;RN ); see [21, Chapter 2,
Remark 2.5(ii)].

We say that
un
∗

⇀ u weakly∗ in BD(Ω)

iff

un→ u strongly in L1(Ω;RN ) and Eun
∗

⇀ Eu weakly∗ in Mb(Ω;MN
sym).

If Ω is bounded and Lipschitz, bounded sequences in BD(Ω) always admit a weakly∗

converging subsequence.

Functional spaces. Given E ⊆ RN measurable, 1 ≤ p < ∞, and M a finite-dimen-
sional normed space, Lp(E;M) stands for the space of p-summable functions on E with
values in M , with associated norm denoted by ‖ · ‖p. Given A ⊆ RN open, H 1(A;M) is
the Sobolev space of functions in L2(A;M) with distributional derivatives in L2.

Finally, let X be a normed space. We denote by BV(a, b;X) and AC(a, b;X) the
space of functions with bounded variation and the space of absolutely continuous func-
tions from [a, b] to X, respectively. We recall that the total variation of f ∈ BV(a, b;X)
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is defined as

VX(f ; a, b) := sup
{ k∑
j=1

‖f (tj )− f (tj−1)‖X : a = t0 < t1 < · · · < tk = b
}
.

Periodicity. Our analysis of the homogenization problem relies on an extensive use of
two-scale convergence (see Section 4). We thus need to consider the space of [0, 1]N -
periodic continuous (orC1) functions on RN , and its dual, a space of measures that enjoys
suitable periodicity properties. These spaces are most conveniently viewed as acting on a
torus.

Let Y := RN/ZN be the N -dimensional torus, Y := [0, 1)N , and let I : Y → Y

denote the corresponding canonical identification. For future reference, we set

C := I−1(∂Y ). (1.1)

For any Z ⊂ Y , we define

Zε := {x ∈ RN : x/ε ∈ ZN + I(Z)}, (1.2)

while for any function F : Y → X, where X is some set, the ε-periodic function Fε :
RN → X is defined as

Fε(x) := F(yε) with x/ε − [x/ε] = I(yε) ∈ Y. (1.3)

The ε-periodic function Fε will be abbreviated as F(x/ε) unless confusion might ensue.

Remark 1.1. Note that, if D is a Lipschitz hypersurface in Y , then the normal νε(x) at a
given point x ∈ Dε is actually of the form ν(y) for some y ∈ Y .

Throughout the paper, if X a finite-dimensional vector space, we will identify the
space of [0, 1]N -periodic and continuous (resp. C1) functions with values in X with
C0(Y;X) (resp. C1(Y;X)). The dual space is then naturally identified with Mb(Y;X).

For our applications to plasticity, we need to consider BD functions on Y , i.e., those
functions u ∈ L1(Y;MN

sym) whose symmetrized gradient Eyu—defined by means of a
local coordinates system associated with the very definition of Y as a quotient space—is
a finite Radon measure on Y with values in MN

sym. These can be identified with those
functions u : RN → RN which are locally BD and Y -periodic. In other words, besides
Y -periodicity, there exists C > 0 such that∣∣∣∣∫

Y

u · divψ dx
∣∣∣∣ ≤ C‖ψ‖∞

for every ψ ∈ C1
per([0, 1]N ;MN

sym). Thanks to periodicity, if u ∈ BD(Y) is such that
Eyu = 0, that is, if u is a periodic “infinitesimal rigid body motion”, then u is a constant
vector on Y . In particular, we will use the following form of the Poincaré–Korn inequality
on BD(Y): there exists C > 0 such that for every u ∈ BD(Y) with

∫
Y u dy = 0,∫

Y
|u| dy ≤ C|Eyu|(Y).
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2. Quasi-static evolutions in periodic heterogeneous materials

In this section we detail the structure of periodic heterogeneous materials and of elasto-
plastic evolutions for such materials.

The reference configuration. In all that follows, Ω ⊂ RN is an open, bounded set with
(at least) Lipschitz boundary and exterior normal ν. Further, the Dirichlet part Γd of ∂Ω
is a non-empty open set in the relative topology of ∂Ω with boundary ∂b∂ΩΓd in ∂Ω
and we set Γt := ∂Ω \ Γ̄d . Reproducing the setting of [11, Section 6], we introduce the
following

Definition 2.1. We will say that ∂b∂ΩΓd is admissible iff, for any σ ∈ L2(Ω;MN
sym)

with
div σ = f in Ω, σν = g on Γt , σD ∈ L

∞(Ω;MN
D) (2.1)

where f ∈ LN (Ω;RN ) and g ∈ L∞(Γt ;RN ), and every p ∈ Mb(Ω ∪ Γd;MN
D) such

that there exists an associated pair (u, e) ∈ BD(Ω)× LN/(N−1)(Ω;MN
sym) with

Eu = e + p in Ω, p = (w − u)� νHN−1
bΓd on Γd ,

the distribution, defined for all ϕ ∈ C∞c (RN ) by

〈σD, p〉(ϕ) := −

∫
Ω

ϕσ · (e − Ew) dx −

∫
Ω

ϕf · (u− w) dx

−

∫
Ω

σ · [(u− w)�∇ϕ] dx +

∫
Γt

ϕg · (u− w) dHN−1 (2.2)

is a bounded Radon measure on RN with |〈σD, p〉| ≤ ‖σD‖∞|p|.

Definition 2.1 covers many “practical” settings like those of a hypercube with one of
its faces being the Dirichlet part Γd of the boundary; see [11, Section 6] for that and other
such settings.

Remark 2.2. Expression (2.2) defines a meaningful distribution on RN . Indeed, accord-
ing to [11, Proposition 6.1], if σ ∈ L2(Ω;MN

sym) is such that div σ ∈ LN (Ω;RN ) and
σD ∈ L

∞(Ω;MN
D), then σ ∈ Lr(Ω;MN

sym) for every 1 ≤ r <∞ with

‖σ‖r ≤ Cr(‖σ‖2 + ‖div σ‖N + ‖σD‖∞)

for some Cr > 0. On the other hand, u ∈ LN/(N−1)(Ω;RN ) in view of the embed-
ding of BD(Ω) into LN/(N−1)(Ω;RN ). Further, u has a trace on ∂Ω which belongs
to L1(∂Ω;RN ). Finally note that, if σ is the restriction to Ω of a C1-function and if
HN−1(∂b∂ΩΓd) = 0, then, performing an integration by parts in BD (see [21, Chapter 2,
Theorem 2.1]), the right hand side of (2.2) coincides with the integral of ϕ with respect
to the (well defined) measure σDp.
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Geometry. Let Y := [0, 1)N be the unit cell in RN , while Y is the associated N -
dimensional torus. We view Y as being made of finitely many phases Yi , together with
their interfaces, i.e., Y =

⋃
Ȳi . We assume that those phases are pairwise disjoint open

sets with Lipschitz boundary. Moreover it is not restrictive to assume that the transversal-
ity condition

HN−1(∂Yi ∩ C) = 0 (2.3)

holds true (C was defined in (1.1)). This can be achieved by a translation of the unit cell Y ,
and a suitable redefining of the associated identification map I : Y → Y .

Denoting by Γ the interfaces, i.e.,

Γ :=
⋃
i,j

∂Yi ∩ ∂Yj ,

we assume that there exists a compact set S ⊂ Γ with HN−1(S) = 0 and

Γ \ S is a C1-hypersurface.

We will write
Γ =

⋃
i 6=j

Γij ,

where Γij stands for the interface between Yi and Yj .
A torus Y that satisfies the collection of those (minimal) assumptions will be referred

to henceforth as a geometrically admissible multiphase torus.
Throughout the rest of this paper it will be assumed that Y is a geometrically

admissible multiphase torus. If, further, Γ \S is aC2-hypersurface, then Y will be referred
to as a C2-geometrically admissible multiphase torus.

Given ε > 0, we assume that our domain Ω is made up of the various phases (Yi)ε
(see (1.2)). Note that, provided that ε is chosen such that HN−1((

⋃
i (∂Yi)ε) ∩ Γd) = 0,

then each point of Γd outside an HN−1-negligible set belongs to a well defined phase.
Therefore, Ω ∪ Γd is a geometrically admissible multiphase domain in the sense of [11,
Subsection 1.2]. Only those ε’s will be considered from this point on.

Kinematic admissibility. Given the boundary displacement w ∈ H 1(Ω;RN ), we adopt
the following

Definition 2.3 (Admissible configurations). A(w), the family of admissible configura-
tions relative to w, is the set of triplets (u, e, p) with

u ∈ BD(Ω), e ∈ L2(Ω;MN
sym), p ∈Mb(Ω ∪ Γd;MN

D),

and such that

Eu = e + p in Ω, p = (w − u)� νHN−1
bΓd on Γd , (2.4)

where ν denotes the outer normal to ∂Ω and w − u is to be understood in the sense of
traces.
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The function u denotes the displacement field on Ω , while e and p are the associated
elastic and plastic strains. In view of the additive decomposition (2.4) of Eu and of the
general properties of BD functions recalled earlier, p does not charge HN−1-negligible
sets. Moreover, given a Lipschitz hypersurface D ⊂ Ω dividing Ω locally into the sub-
domains Ω+ and Ω−, we have

pbD = (u
+
− u−)� νHN−1

bD,

where ν is the normal to D pointing from Ω− to Ω+, and u± are the traces on D of
the restrictions of u to Ω±. Since p is assumed to take values in the space of deviatoric
matrices MN

D , u+ − u− is perpendicular to ν, so that only particular plastic strains are
activated along D.

These properties will be used below when defining the plastic properties of the multi-
phase material Ω .

Elastic and plastic properties. The elasto-plastic properties of Ω are given in terms of
a periodic elastic tensor and a periodic dissipation potential.

The elasticity tensor. We consider elasticity tensors (Hooke’s law) of the form

C(y)M := CD(y)MD + k(y) tr(M)i, y ∈ Y, (2.5)

with CD := (CD)i ∈ Ls(MN
D) and k := ki > 0 on every Yi , with (CD)i such that

(CD)iM ·M ≥ c1|M|
2, ∀M ∈ MN

D; ki ≥ c1, (2.6)

for some c1 > 0.
For every ε > 0 and e ∈ L2(Ω;MN

sym) we consider the elastic energy

Qε(e) :=
1
2

∫
Ω

Cεe · e dx, (2.7)

where Cε(x) := C(x/ε) for every x ∈ Ω (see (1.3)).

The set of admissible stresses. In elasto-plasticity, the deviatoric part of the stress σ
is restricted by the yield condition. Thus, here, we are led to assuming the existence of
a convex compact set Ki ⊂ MN

D for each phase Yi . We further assume that those sets
cannot be too small or too large, i.e., there exist c3, c4 > 0 such that for every i,

B(0, c3) ⊂ Ki ⊂ B(0, c4). (2.8)

We define
K(y) := Ki for y ∈ Yi, (2.9)

and Kε(x) = K(x/ε) for x ∈ Ω.
Our formulation of the problem uses the Legendre transform of IKi , which is often

referred to as the dissipation potential.
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The dissipation potential. For all y ∈ Yi and ξ ∈ MN
D , we define the dissipation

potential to be
H(y, ξ) = Hi(ξ) := sup{τ · ξ : τ ∈ Ki}. (2.10)

This defines, for a.e. y ∈ Y , a convex, one-homogeneous function in ξ which further
satisfies

c3|ξ | ≤ H(y, ξ) ≤ c4|ξ | for a.e. y ∈ Y .

This is not however sufficient for our purpose because we need the dissipation po-
tential to act upon the plastic strain (or plastic strain rate) which, being a measure, may
concentrate on sets of zero Lebesgue measure. Moreover, plastic strains can concentrate
on the inner interfaces where they will only activate particular strain directions, as previ-
ously mentioned. We thus have to extend H to every point in Y ×MN

D .
The dissipation potential H : Y × MN

D → [0,+∞] of a geometrically admissible
multiphase torus is constructed as follows.

(a) In each phase Yi , we take

H(y, ξ) = Hi(ξ) for y ∈ Yi

with Hi : MN
D → R such that

ξ 7→ Hi(ξ) is convex and positively one-homogeneous in ξ (2.11)

with
c3|ξ | ≤ Hi(ξ) ≤ c4|ξ |, (2.12)

where c3, c4 > 0 are independent of the phase i.
(b) At a point y ∈ Γ \ S on the interface between Yi and Yj such that the associated

normal ν(y) points from Yj to Yi , we set{
H(y, ξ) := Hij (a, ν(y)) for every ξ = a � ν(y) ∈ MN

D,

H(y, ξ) = +∞ otherwise on MN
D,

(2.13)

where for every a ∈ RN and ν ⊥ a ∈ SN−1,

Hij (a, ν) := inf{Hi(ai�ν)+Hj (aj�ν) : a = ai+aj , ai, aj ∈ RN , ai ⊥ ν, aj ⊥ ν}.

Note that ξ 7→ H(y, ξ) is convex and positively one-homogeneous and, for every
a � ν(y) ∈ MN

D ,

c3|a � ν(y)| ≤ H(y, a � ν(y)) ≤ c4|a � ν(y)|. (2.14)

Also observe that, sinceHi ,Hj are continuous functions of ξ , ν is a continuous func-
tion of y ∈ Γ \S, while, by coercivity, the infimum in the inf-convolution is actually a
minimum,H(y, ξ) is lower semicontinuous on (Γ \S)×MN

D . Thus (y, ξ) 7→ H(y, ξ)

is a Borel function.
(c) Finally, we define H(y, ξ) arbitrarily for y ∈ S, for example as c3|ξ |, since those

points will not be relevant for the admissible plastic strains because HN−1(S) = 0.
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It is readily seen that the resulting dissipation potential H : Y ×MN
D → [0,+∞] is a

Borel function.

Remark 2.4. By convex conjugation, we can associate with the dissipation at y ∈ Γij \S
the set

K(y) = {6D ∈ MN
D : (6Dν(y))τ ∈ (Kiν(y))τ ∩ (Kjν(y))τ },

where (·)τ denotes the orthogonal projection to the hyperplane tangent to Γij at y. Notice
that K(y) is a cylinder in MN

D . We take the view that this is a constraint on the vector
(6Dν(y))τ , rather than on the matrix 6D . Set

KΓ (y) := (Kiν(y))τ ∩ (Kjν(y))τ ⊆ RN . (2.15)

In that way, IKΓ (y) is the Legendre transform of the map a 7→ H(y, a � ν(y)) with
a ⊥ ν(y), and conversely.

Coming to the periodic multiphase material, we consider the dissipation potential

Hε : (Ω ∪ Γd)×MN
D → [0,+∞]

defined as (see (1.3))
Hε(x, ξ) := H(x/ε, ξ).

For every p ∈Mb(Ω ∪ Γd;MN
D) we define the dissipation functional to be

Hε(p) :=

∫
Ω∪Γd

Hε(x, p/|p|) d|p|, (2.16)

where, from now onward, for any bounded Radon measure q on RN , q/|q| denotes the
Radon–Nikodym derivative of q with respect to its total variation |q|.

If t 7→ p(t) is a map from [0, T ] to Mb(Ω ∪ Γd;MN
D), we finally define the total

dissipation over an interval [a, b] ⊆ [0, T ] to be

Dε(a, b;p) := sup
{ k∑
j=1

Hε(p(tj )− p(tj−1)) : a = t0 < t1 < · · · < tk = b
}
.

Quasistatic evolutions. We prescribe the boundary displacement w on Γd as the trace
on Γd of

w ∈ AC(0, T ;H 1(RN ;RN )). (2.17)

We now have all the ingredients for defining a quasi-static evolution as follows.

Definition 2.5 (Quasistatic evolution). We say that t 7→ (uε(t), eε(t), pε(t)) ∈ A(w(t))
is an ε-quasi-static evolution relative to w provided that the following conditions hold for
every t ∈ [0, T ].

(a) Global stability: for every (v, η, q) ∈ A(w(t)),

Qε(eε(t)) ≤ Qε(η)+Hε(q − pε(t)). (2.18)
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(b) Energy equality: t 7→ pε(t) has bounded variation from [0, T ] to Mb(Ω ∪Γd;MN
D)

and

Qε(e(t))+Dε(0, t;pε) = Qε(e(0))+
∫ t

0

∫
Ω

σε(τ )·Eẇ(τ) dx dτ with σε(t) := Cεeε(t).

The following existence result has been established in [11, Theorem 2.7].

Theorem 2.6 (Existence of a heterogeneous evolution). Assume that (2.5), (2.6), (2.11),
(2.12), (2.13), (2.17) are satisfied. Let (u0

ε, e
0
ε , p

0
ε ) ∈ A(w(0)) satisfy the global stabil-

ity condition (2.18). Then there exists a quasi-static evolution t 7→ (uε(t), eε(t), pε(t))

relative to the boundary displacement w such that (uε(0), eε(0), pε(0)) = (u0
ε, e

0
ε , p

0
ε ).

Remark 2.7 (Balance equations). According to [11, Theorem 3.6], σε(t) satisfies the
balance equation and the admissibility conditions, i.e.,

div σε(t) = 0 in Ω, σε(t)ν = 0 on ∂Ω \ Γ̄d ,
(σε)D(t, x) ∈ Kε(x) for a.e. x ∈ Ω.

We set

Kε := {σ ∈ L2(Ω;MN
sym) : div σ = 0 in Ω, σν = 0 on ∂Ω \ Γ̄d ,

σD(x) ∈ Kε(x) for a.e. x ∈ Ω}, (2.19)

and we refer to Kε as the family of ε-statically admissible stress fields.

3. Elasto-plasticity on the periodic torus

In this section, we collect a few results which are consequences of [11] in a periodic set-
ting: they will be useful when dealing with the homogenization of quasi-static evolutions
in periodic heterogeneous materials.

Let Y be a geometrically admissible multiphase torus according to Section 2.

Definition 3.1 (Periodic admissible configurations). The family AY of admissible con-
figurations on Y is given by the set of triplets

u ∈ BD(Y), E ∈ L2(Y;MN
sym), P ∈Mb(Y;MN

D)

such that
Eyu = E + P on Y.

We set
5Y := {P ∈Mb(Y;MN

D) : ∃(u,E) such that (u,E, P ) ∈ AY }.

Recalling (2.9), we adopt the following
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Definition 3.2 (Periodic statically admissible stresses). 6 ∈ L2(Y;MN
sym) is said to be

a statically admissible stress on the torus if

divy 6 = 0 on Y

and
6D(y) ∈ K(y) for a.e. y ∈ Y.

We denote the set of all such stresses by KY .

If 6 ∈ KY , then in particular 6D ∈ L∞(Y;MN
sym), from which it is deduced (see

[11, Proposition 6.1]) that 6 ∈ Lr(Y;MN
sym) for every 1 ≤ r <∞ with

‖6‖r ≤ Cr(‖6‖2 + ‖6D‖∞) (3.1)

for some Cr > 0.
Moreover, considering the interfaces Γ , it is possible to define a tangential trace for

6ν on Γ \ S,
(6ν)τ ∈ L

∞(Γ ;RN ),

in the following way. Consider a smooth approximation 6n ∈ C∞(Y;MN
sym) such that

6n→ 6 strongly in L2(Y;MN
sym),

divy 6n→ 0 strongly in L2(Y;RN ),
‖(6n)D‖∞ ≤ ‖6D‖∞,

and consider (6nν)τ := (6n)ν − ((6n)ν · ν)ν (the tangential component of (6n)D is
defined analogously). It is then immediate that (6nν)τ = ((6n)Dν)τ . Since y 7→ ν(y) is
an L∞(Γ ;RN )-mapping, there exists an L∞(Γ ;RN )-function (6ν)τ such that, up to a
subsequence,

(6nν)τ
∗

⇀ (6ν)τ weakly∗ in L∞(Γ ;RN ).

(6ν)τ is only a function of {(6n)Dν}n∈N which we will denote henceforth by (6Dν)τ .
Notice that (6Dν)τ may depend upon the approximation sequence {6n}n∈N (or at least
upon {(6n)D}n∈N). If Γ \ S is a C2-hypersurface, then (6Dν)τ is uniquely determined
as an element of L∞(Γ ;RN ). Indeed, considering Γij , for every ϕ ∈ H 1/2

00 (Γij ;R
N ), it

is readily seen that∫
Γij

(6ν)τ · ϕ dHN−1
= 〈6ν, ϕ〉 − 〈(6ν)ν, ϕ〉, where 〈(6ν)ν, ϕ〉 := 〈6ν, (ϕ · ν)ν〉.

Since the normal component (ϕ · ν)ν of ϕ with respect to Γij belongs to H 1/2
00 (Γij ;R

N )

in view of the regularity of ν, the definition of (6ν)ν is meaningful.
The following result is a consequence of [11, Section 6 and Lemma 3.8].
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Theorem 3.3 (Duality). Let P ∈ 5Y and 6 ∈ KY . Then the distribution

〈6D, P 〉(ψ) := −

∫
Y
ψ(y)6 · E dy −

∫
Y
6 · [u�∇ψ] dy, ψ ∈ C1(Y), (3.2)

is a bounded Radon measure on Y such that

|〈6D, P 〉| ≤ ‖6D‖∞|P |.

Moreover, for every i 6= j , and for every tangential trace (6Dν)τ ,

〈6D, P 〉bΓij = (6Dν)τ · (u
i
− uj )HN−1

bΓij ,

where ν points from Yj to Yi , and ui, uj are the traces on Γij of the restrictions of u on
Yi and Yj .

Remark 3.4. Note that the proof of Lemma 3.8 in [11] only requires that 6D ∈
L∞(Y;MN

D) and thus the requirement that 6 ∈ KY in the previous theorem can be
weakened to 6 ∈ L2(Y;MN

sym) with divy 6 = 0 on Y and 6D ∈ L∞(Y;MN
D).

The following result holds true (see [11, Proposition 3.9 and Theorem 3.13]).

Proposition 3.5. Let (u,E, P ) ∈ AY , 6 ∈ KY , and let Y be a C2-admissible multi-
phase torus. Then

H(y, P/|P |)|P | ≥ 〈6D, P 〉 as measures on Y.

If moreover equality holds, then

P

|P |
(y) ∈ NK(y)(6D(y)) for LN -a.e. y ∈ {|P | > 0},

where NK(y)(6D(y)) denotes the normal cone to K(y) at 6D(y), and, for every i 6= j ,

ui − uj

|ui − uj |
∈ ENKΓ (y)((6Dν)τ (y)) for HN−1-a.e. y ∈ {ui 6= uj },

where ν points from Yj to Yi , ui, uj are the traces on Γij of the restrictions of u on Yi
and Yj , and ENKΓ (y)(τ ) denotes the normal cone—a cone of vectors—toKΓ (y) at a vector
τ ⊥ ν(y).

4. Two-scale convergence of measures

In this section we recall the definition and the main properties of two-scale convergence
for Radon measures proved in [2]. We also prove a structure result for the two-scale limit
of symmetrized gradients of weakly∗ converging sequences of BD functions.
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4.1. Definitions and basic properties

We adopt the following

Definition 4.1 (Two-scale measure convergence). Let Ω ⊆ RN be an open set, {µε}ε>0
be a family in Mb(Ω) and consider µ ∈Mb(Ω × Y). Then

µε
w∗-2
−−⇀ µ0 two-scale weakly∗ in Mb(Ω × Y)

iff, for every χ ∈ C0
0(Ω × Y),

lim
ε→0

∫
Ω

χ(x, x/ε) dµε(x) =

∫
Ω×Y

χ(x, y) dµ(x, y).

The convergence is called two-scale weak∗ convergence.

Remark 4.2. Notice that the family {µε}ε>0 determines the family of measures {λε}ε>0
⊂Mb(Ω × Y) obtained by setting∫

Ω×Y
χ(x, y) dλε(x, y) :=

∫
Ω

χ(x, x/ε) dµε(x)

for every χ ∈ C0
0(Ω×Y). Thus µ0 is simply the weak∗ limit in Mb(Ω×Y) of a suitable

subsequence of {λε}ε>0.

Remark 4.3. Let D ⊆ Y , and assume that µε has its support onΩ∩Dε, and µε
w∗-2
−−⇀ µ0

two-scale weakly∗ in Mb(Ω × Y). Then suppµ0 ⊂ Ω × D̄.

In view of Remark 4.2, two-scale weak∗ convergence has the following compactness
property.

Proposition 4.4 (Two-scale compactness). Let Ω ⊆ RN be an open set and {µε}ε>0 be
a bounded family in Mb(Ω). Then there exist µ0 ∈Mb(Ω × Y) and εn→ 0 such that

µεn
w∗-2
−−⇀ µ0 two-scale weakly∗ in Mb(Ω × Y).

Remark 4.5. The notion of two-scale weak∗ convergence can be easily adapted to mea-
sures in Mb(Ω;X), where X is a finite-dimensional space. For our applications in plas-
ticity, X will be either RN , or the spaces of matrices MN

sym and MN
D .

The following lower semicontinuity lemma is a two-scale analogue of Reshetnyak’s
lower semicontinuity theorem ([4, Theorem 2.38] or [19, Theorem 1.7]).

Lemma 4.6. Let Ω be an open subset of RN , X a finite-dimensional linear space, and
let H : X→ [0,+∞) be a convex and positively one-homogeneous function. If {µε}ε>0
is a bounded family of measures in Mb(Ω;X) such that

µε
w∗-2
−−⇀ µ0 two-scale weakly∗ in Mb(Ω × Y;X),

then
lim inf

ε

∫
Ω

H(µε/|µε|) d|µε| ≥

∫
Ω×Y

H(µ0/|µ0|) d|µ0|.
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Proof. We can endow X with an inner product. Since H is convex and positively one-
homogeneous,

H(ξ) = sup
m∈N
{am · ξ : am ∈ X}.

Let us extract a sequence {εn}n∈N such that, setting µn := µεn ,

lim inf
ε

∫
Ω

H(µε/|µε|) d|µε| = lim
n

∫
Ω

H(µn/|µn|) d|µn|.

Denote by H ∈Mb(Ω × Y) the two-scale weak∗ limit of (a subsequence of)

H(µn/|µn|)|µn|

(still indexed by n). We will show that

H
|µ0|

(x0, y0) ≥ H

(
µ0

|µ0|
(x0, y0)

)
for |µ0|-a.e. (x0, y0) in Ω × Y. (4.1)

Then, by the very definition of two-scale convergence, for any 0 ≤ ϕ ≤ 1 ∈ C0
c (Ω),

lim
n

∫
Ω

H(µn/|µn|) d|µn| ≥

∫
Ω×Y

ϕ(x) dH(x, y)

≥

∫
Ω×Y

ϕ(x)H

(
µ0

|µ0|
(x, y)

)
d|µ0|(x, y).

Letting ϕ ↗ 1 on Ω , we get the result by Lebesgue’s dominated convergence theorem.
Take (x0, y0) to be a Lebesgue point for µ0/|µ0| with respect to |µ0|. Since we can

argue locally, Besicovitch’s derivation theorem allows us to choose (x0, y0) such that, if
Br(x0, y0) denotes the open ball of center (x0, y0) and radius r in RN × Y ,

H
|µ0|

(x0, y0) = lim
r→0+

H(Br(x0, y0))

|µ0|(Br(x0, y0))
.

Choose a sequence {rk ↘ 0} and ϕk,l ∈ C0
c (Brk (x0, y0)) with 0 ≤ ϕk,l

l

↗ 1Brk (x0,y0).
Then, by monotone convergence,

H
|µ0|

(x0, y0) = lim
k

1
|µ0|(Brk (x0, y0))

lim
l

∫
Ω×Y

ϕk,l(x, y) dH(x, y)

= lim
k

1
|µ0|(Brk (x0, y0))

lim
l

lim
n

∫
Ω

ϕk,l(x, x/εn)H

(
µn

|µn|
(x)

)
d|µn|(x)

≥ lim inf
k

1
|µ0|(Brk (x0, y0))

lim inf
l

lim
n

∫
Ω

ϕk,l(x, x/εn)am · dµn(x)

= lim inf
k

1
|µ0|(Brk (x0, y0))

lim inf
l

∫
Ω×Y

ϕk,l(x, y)am · dµ0(x, y).
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Lebesgue’s dominated convergence theorem finally yields

H
|µ0|

(x0, y0) ≥ lim inf
k

1
|µ0|(Brk (x0, y0))

∫
Brk (x0,y0)

am · dµ0 = am ·
µ0

|µ0|
(x0, y0).

Taking the supremum of the right hand-side of the above inequality over m ∈ N yields
(4.1). ut

4.2. Two-scale limits of symmetrized gradients of BD functions

For our homogenization problem in plasticity, we will need to consider two-scale weak∗

limits of measures which are also symmetrized gradients of BD functions. For Ω ⊆ RN
open, set

X (Ω) := {µ ∈Mb(Ω × Y;RN ) : Eyµ ∈Mb(Ω × Y;MN
sym),

µ(F × Y) = 0 for every Borel set F ⊆ Ω}, (4.2)

where Eyµ denotes the distributional symmetrized gradient of µ with respect to y. The
following proposition enumerates the main properties of X (Ω) that will be used in what
follows.

Proposition 4.7. Let µ ∈ X (Ω). Then:

(a) There exist η ∈ M+

b (Ω) and a Borel map (x, y) ∈ Ω × Y 7→ µx(y) ∈ RN such
that, for η-a.e. x ∈ Ω ,

µx ∈ BD(Y),
∫
Y
µx(y) dy = 0, |Eyµx |(Y) 6= 0, (4.3)

and
µ = µx(y)(η ⊗ LNy ).

Moreover, the map x 7→ Eyµx ∈Mb(Y;MN
sym) is η-measurable and

Eyµ = η
gen.
⊗ Eyµx .

(b) For any C1-hypersurface D ⊆ Y , if ν denotes a continuous unit normal vector field
to D, then

EyµbΩ×D = a(x, y)�ν(y)(η ⊗ (HN−1
bD)), (4.4)

where a : Ω ×D→ RN is a Borel function.

Proof. Let us prove item (a). By [4, Theorem 2.28 and Corollary 2.29] we know that µ
and λ := Eyµ can be disintegrated with respect to proj# |µ| and proj# |λ| respectively,
proj denoting the projection of Ω × Y on the first factor, and proj# the associated push
forward of measures. Setting

η := proj# |µ| + proj# |λ|
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we obtain the disintegrations

µ = η
gen.
⊗ µx and λ = η

gen.
⊗ λx (4.5)

with µx ∈Mb(Y;RN ) and λx ∈Mb(Y;MN
sym). Further, if F := {x ∈ Ω : |λx |(Y) 6= 0},

then, obviously, λ = ηbF
gen.
⊗ λx .

For every g ∈ C1(Y;MN
sym) and f ∈ C1

c (Ω),∫
Ω

f (x)〈µx, divy g〉 dη(x) = 〈η
gen.
⊗ µx, f (x) divy g〉 = 〈µ, divy(f (x)g(y))〉

= −〈Eyµ, f (x)g(y)〉 = −〈ηbF
gen.
⊗ λx, f (x)g(y)〉

= −

∫
Ω

f (x)1F (x)〈λx, g(y)〉 dη(x).

Letting g vary in a countable and dense set (by Fourier series for example), we deduce
that, for η-a.e. x ∈ Ω and for all h ∈ C1(Y;MN

sym),

〈µx, divy h〉 = −〈1F (x)λx, h(y)〉,

i.e., using a regularization argument through convolution,

µx ∈ BD(Y) and Eyµx = 1F (x)λx . (4.6)

Finally, since µ(G× Y) = 0 for every Borel set G ⊆ Ω we get, for every f ∈ C0
c (Ω),

0 = 〈µ, f (x)〉 =
∫
Ω

f (x)µx(Y) dη(x),

so that, for η-a.e. x ∈ Ω ,
µx(Y) = 0. (4.7)

In particular, for η-a.e. x in Ω \ F , µx is a rigid body motion on Y that satisfies (4.7),
hence µx ≡ 0 and we can thus replace η by ηbF in both equalities in (4.5). We still denote
the new measure by η from now onward.

In order to complete the proof of item (a), it suffices to show that it is not restrictive
to assume that (x, y) 7→ µx(y) is a Borel map. From (4.5) and (4.6), we infer that µ is
absolutely continuous with respect to η ⊗ LNy . Consequently, there exists a Borel map
h : Ω × Y → RN such that µ = h(x, y)(η ⊗ LNy ). Moreover for η-a.e. x ∈ Ω there
exists Sx ⊆ Y with LNy (Sx) = 0 and such that

h(x, y) = µx(y) for every y 6∈ Sx .

This is sufficient for replacing µx with h(x, ·)LNy in (4.5), so that (a) follows.
Let us come to item (b). By (a), the map x 7→ EyµxbD is η-measurable with

EyµbΩ×D = η
gen.
⊗ (EyµxbD).
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Thanks to the structure of symmetrized gradients of BD functions, for η-a.e. x ∈ Ω ,

EyµxbD = b(x, y)� ν(y)HN−1
bD

for a suitable b(x, y) ∈ RN . We thus infer that EyµbΩ×D is absolutely continuous with
respect to the measure ζ := η ⊗ (HN−1

bD). By Radon–Nikodym’s theorem, we deduce
that

EyµbΩ×D = η
gen.
⊗ [b(x, y)� ν(y)HN−1

bD] = f (x, y)ζ (4.8)

for a suitable Borel function f : Ω×D→ MN
sym. As previously noted in the introduction,

this equality is not sufficient to infer that f (x, y) = b(x, y) � ν(y), ζ -a.e. on Ω × D,
from which the conclusion would easily follow. From (4.8) we can only infer, as above,
that, for η-a.e. x ∈ Ω , there exists Nx ⊆ D with HN−1(Nx) = 0, and such that

f (x, y) = b(x, y)� ν(y) for every y 6∈ Nx . (4.9)

Let us show that there exists a map a : Ω ×D→ RN such that

f (x, y) = a(x, y)� ν(y) for ζ -a.e. (x, y) ∈ Ω ×D. (4.10)

For every y ∈ D, we consider 5(y) := {ξ � ν(y) : ξ ∈ RN } ⊆ MN
sym and the Borel

set B := {(x, y) ∈ Ω × D : dist(f (x, y),5(y)) 6= 0}. That set is readily seen to be
ζ -negligible in view of (4.9) and of Fubini’s theorem. Then (4.10) follows. Finally, we
can assume that a is Borel regular since ν is continuous and does not vanish on D, so that
the proof of item (b) is concluded. ut

The following result will be useful.

Lemma 4.8. The space
E := {Eyµ : µ ∈ X (Ω)}

is weakly∗ closed in Mb(Ω × Y;MN
sym).

Proof. In view of the Krein–Šmulian theorem and since C0
0(Ω×Y;M

N
sym) is separable, it

is enough to show sequential weak∗-closedness. Assume that {λn}n∈N is a sequence in E
such that

λn
∗

⇀ λ weakly∗ in Mb(Ω × Y;MN
sym).

By assumption there exists a measure µn ∈ X (Ω) such that Eyµn = λn. Note that
{µn}n∈N is bounded in Mb(Ω × Y;RN ): indeed Proposition 4.7(a) implies that

µn = µ
n
x (ηn ⊗ LNy ), Eyµn = ηn

gen.
⊗ Eyµ

n
x,

with ηn ∈ M+

b (Ω) and µnx ∈ BD(Y) satisfying (4.3) for ηn-a.e. x ∈ Ω . Taking into
account Poincaré–Korn’s inequality in BD(Y) and applying [4, Corollary 2.29], we obtain

|µn|(Ω × Y) =
∫
Ω

[∫
Y
|µnx(y)| dy

]
dηn(x) ≤ C

∫
Ω

|Eyµ
n
x |(Y) dηn(x)

= C|λn|(Ω × Y) ≤ C′
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for some constant C′. Up to a subsequence, there exists µ ∈Mb(Ω × Y;RN ) with

µn
∗

⇀ µ weakly∗ in Mb(Ω × Y;RN ).

Clearly Eyµ = λ. Moreover, passing to the limit in the equality∫
Ω×Y

f (x) dµn(x, y) = 0, f ∈ C0
c (Ω),

we get, by standard approximation arguments, µ(F × Y) = 0 for every Borel set F ⊆ Ω ,
so that λ ∈ E . ut

The following lemma is essential in the study of two-scale weak∗ limits of symmetrized
gradients of BD functions.

Lemma 4.9. Let Ω ⊆ RN be an open set and λ ∈ Mb(Ω × Y;MN
sym). The following

items are equivalent:

(a) For every χ ∈ C0
0(Ω×Y;M

N
sym)with divy χ(x, y) = 0 (in the sense of distributions),∫
Ω×Y

χ(x, y) dλ(x, y) = 0.

(b) There exists µ ∈ X (Ω) such that λ = Eyµ.

Proof. The fact that (b) implies (a) follows by integration by parts and a density argument.
Let us assume that (a) holds. By Lemma 4.8, E := {Eyµ : µ ∈ X (Ω)} is weakly∗ closed
in Mb(Ω × Y;MN

sym). Then, if by contradiction (b) is not true, i.e., λ /∈ E , the Hahn–
Banach theorem—which is applied here to Mb(Ω × Y;MN

sym) equipped with its weak∗

topology—yields the existence of χ ∈ C0
0(Ω × Y;MN

sym) such that∫
Ω×Y

χ(x, y) dλ(x, y) = 1, (4.11)

and, for every µ ∈ X (Ω), ∫
Ω×Y

χ(x, y) dEyµ(x, y) = 0. (4.12)

In particular, if we choose µ to be a smooth function, (4.12) implies that divy χ(x, y) = 0
(in the sense of distributions). As a consequence, (4.11) contradicts (a), and the result
follows. ut

The previous results combine into a structure result for two-scale weak∗ limits of sym-
metrized gradients of BD functions.
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Proposition 4.10 (Symmetrized gradients). Let Ω ⊆ RN be open, and let {uε}ε>0 be a
bounded family in BD(Ω) such that

uε
∗

⇀ u weakly∗ in BD(Ω)

for some u ∈ BD(Ω) as ε→ 0. Let

Euε
w∗-2
−−⇀ λ two-scale weakly∗ in Mb(Ω × Y;MN

sym).

Then there exists µ ∈ X (Ω) such that

λ = Eu⊗ LNy + Eyµ.

Proof. Since uε → u strongly in L1(Ω;RN ),

uε LNx
w∗-2
−−⇀ u(x) (LNx ⊗ LNy ) two-scale weakly∗ in Mb(Ω × Y;RN ).

By compactness, there exist εn→ 0 and λ ∈Mb(Ω × Y;MN
sym) such that

Euεn
w∗-2
−−⇀ λ two-scale weakly∗ in Mb(Ω × Y;MN

sym).

Considering χ ∈ C1
c (Ω × Y;MN

sym) with divy χ = 0, from the equality∫
Ω

χ(x, x/ε)dEuε(x) = −

∫
Ω

divx χ(x, x/ε)uε(x) dx

we get, as ε→ 0,∫
Ω×Y

χ(x, y) dλ(x, y)= −

∫
Ω×Y

divx χ(x, y)u(x) dx dy=
∫
Ω×Y

χ(x, y) d(Eu⊗LNy ).

By a density argument, we infer that∫
Ω×Y

χ d[λ− Eu⊗ LNy ] = 0

for every χ ∈ C0
0(Ω ×Y;MN

sym) with divy χ = 0 in the sense of distributions. The result
now follows by Lemma 4.9. ut

4.3. Unfolding of sequences of symmetrized gradients of BD functions

In the following we adapt the unfolding method originally developed for sequences of Lp

functions in [8, 9] to the setting at hand.
For every ε > 0 let

Qi
ε :=

{
x ∈ RN :

x − εi

ε
∈ [0, 1)N

}
and xiε := εi.
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Clearly RN =
⋃
i∈ZN Q

i
ε. Given Ω ⊆ RN open, we set

Iε(Ω) := {i ∈ ZN : Qi
ε ⊂ Ω}. (4.13)

For µε ∈Mb(Ω) and Qi
ε ⊂ Ω we let µiε ∈Mb(Y) be the measure defined as∫

Y
ψ(y) dµiε(y) :=

1
εN

∫
Qiε

ψ(x/ε) dµε(x), ψ ∈ C0(Y). (4.14)

Then set λ̃ε ∈Mb(Ω × Y), the unfolded measures associated with µε, to be

λ̃ε :=
∑

i∈Iε(Ω)

(LNx bQiε )⊗ µ
i
ε. (4.15)

Proposition 4.11 (Unfolding). Let Ω ⊆ RN be open and {µε}ε>0 be a bounded family
in Mb(Ω) such that

µε
w∗-2
−−⇀ µ0 two-scale weakly∗ in Mb(Ω × Y).

Let {λ̃ε}ε>0 ⊂Mb(Ω × Y) be the associated family of unfolded measures according to
(4.15). Then

λ̃ε
∗

⇀ µ0 weakly∗ in Mb(Ω × Y).
Proof. It suffices to show that, for every χ ∈ C0

c (Ω × Y),

lim
ε→0

∫
Ω×Y

χ dλ̃ε = lim
ε→0

∫
Ω×Y

χ dλε

where λε has been introduced in Remark 4.2. Let Ω̃ ⊂ RN be open, bounded and such
that supp(χ) ⊂⊂ Ω̃ × Y .

Note that
lim
ε
εN#(Iε(Ω̃)) = LN (Ω̃). (4.16)

Then, for ε small enough,∫
Ω̃×Y

χ(x, y) dλ̃ε =
1
εN

∑
i∈Iε(Ω̃)

∫
Qiε×Q

i
ε

χ(z, x/ε) dµε(x)dz,

so that, with (4.16),∣∣∣∣∫
Ω×Y

χ(x, y) dλε −

∫
Ω×Y

χ(x, y) dλ̃ε

∣∣∣∣ = ∣∣∣∣∫
Ω̃×Y

χ(x, y) dλε −

∫
Ω̃×Y

χ(x, y) dλ̃ε

∣∣∣∣
≤ ‖χ‖∞

(
LN (Ω̃)−εN#(Iε(Ω̃))

)
+

∑
i∈Iε(Ω̃)

∫
Qiε

∣∣∣∣χ(x, x/ε)− 1
εN

∫
Qiε

χ(z, x/ε) dz

∣∣∣∣ d|µε|
≤ O(ε)+ δε|µε|(Ω̃),

with
δε := sup

|x1−x2|<ε
√
N, y∈Y

|χ(x1, y)− χ(x2, y)| → 0.

Hence the result upon letting ε go to 0. ut
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Remark 4.12 (Two-scale convergence in Lebesgue spaces). Unfolding provides an easy
link between two-scale weak∗ convergence of measures and two-scale convergence of Lp

functions. LetΩ ⊂ RN be open and bounded and {uε}ε>0 be a bounded family in Lp(Ω)
for some p ∈ (1,∞) such that

uε LN
w∗-2
−−⇀ µ0 two-scale weakly∗ in Mb(Ω × Y).

Then there exists u0 ∈ L
p(Ω × Y) such that

µ0 = u0(x, y)(LNx ⊗ LNy ). (4.17)

Indeed, according to (4.14), for every i ∈ Iε(Ω),

µiε = v
i
ε(y)LNy

where viε(y) := uε(x
i
ε + εI(y)). Consequently,

λ̃ε = vε(x, y)(LNx ⊗ LNy ) with vε(x, y) :=
∑

i∈Iε(Ω)

1Qiε (x)v
i
ε(y).

A direct computation shows that∫
Ω×Y
|vε(x, y)|

p dx dy =

∫
⋃
i∈Iε(Ω)

Qiε

|uε(x)|
p dx ≤

∫
Ω

|uε|
p dx.

By weak compactness of Lp(Ω × Y) we infer immediately that (4.17) holds true.
We will say that

uε
w-2
−⇀ u0 two-scale weakly in Lp(Ω × Y).

If further
lim
ε→0

∫
Ω

|uε|
p dx =

∫
Ω×Y
|u0|

p dx dy,

we will say that

uε
s-2
→ u0 two-scale strongly in Lp(Ω × Y).

In the context of unfolding, sequences of symmetrized gradients of BD functions will
satisfy the following proposition which will be used in the proof of Theorem 5.7.

Proposition 4.13. Let Ω ⊆ RN be open and let B ⊆ Y be an open set with Lipschitz
boundary. If uε ∈ BD(Ω), then the unfolded measure associated with EuεbBε\Cε accord-
ing to (4.15) is given by ∑

i∈Iε(Ω)

(LNx bQiε )⊗ Ey û
i
εbB\C, (4.18)

where C is defined in (1.1) and ûiε is a suitable function in BD(Y) such that∫
∂B
|ûiε| dHN−1

+ |Ey û
i
ε|(B ∩ C) ≤

C

εN
|Euε|(int(Qi

ε)) (4.19)

for some constant C independent of i and ε.
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Proof. Note that Cε = (
⋃
i ∂Q

i
ε)∩Ω . Accordingly, for i ∈ Iε(Ω) andψ ∈ C1(Y;MN

sym),∫
Qiε

ψ(x/ε) · dEuεbBε\Cε =
∫

int(Qiε)
ψ(x/ε) · dEuεbBε .

Since Bε has a Lipschitz boundary, uε1Bε ∈ BDloc(Ω) with

EuεbBε = E(uε1Bε )+ (uε)b∂Bε � νH
N−1
b∂Bε ,

where, from now onward in this proof, for any open Lipschitz domain A ⊂⊂ Ω and any
u ∈ BD(Ω), ub∂A denotes the trace of u1A on ∂A, while ν is the exterior normal to ∂A.
Then∫

int(Qiε)
ψ(x/ε) · dEuεbBε

=

∫
int(Qiε)

ψ(x/ε) · dE(uε1Bε )+
∫

int(Qiε)
ψ(x/ε) · [(uε)b∂Bε � ν] dH

N−1
b∂Bε .

If we set viε(z) := uε(x
i
ε + εz) for z ∈ (0, 1)N , then viε ∈ BD((0, 1)N ) and, thanks to the

periodicity of ψ , the definition of Bε, and Remark 1.1,∫
Qiε

ψ(x/ε) · dEuεbBε\Cε = ε
N−1

∫
(0,1)N

ψ(z) · dE(viε1I(B))(z)

+ εN−1
∫
(0,1)N

ψ(z) · [(viε)b∂I(B)(z)� ν(z)] dHN−1(z). (4.20)

Adding a rigid body motion to uε on Qi
ε does not change Euε on Bε \ Cε, hence it

does not modify the computation in (4.20). But then, by Poincaré–Korn’s inequality, we
may as well assume that∫

∂(0,1)N
|(viε)b∂(0,1)N | dHN−1

≤ C|Eviε|((0, 1)N ) =
C

εN−1 |Eu
i
ε|(int(Qi

ε)) (4.21)

for some constant C > 0 independent of i and ε.
Let ûiε ∈ BD(Y) be such that

ûiε(y) :=
1
ε
viε(I(y)).

From (4.21) and through the identification of the opposite sides of ∂(0, 1)N when passing
to Y , we obtain

|Ey û
i
ε|(Y) ≤

C + 1
εN
|Euiε|(int(Qi

ε)). (4.22)

Moreover, ∫
(0,1)N

ψ · dE(viε1I(B)) = ε
∫
Y\C

ψ · dE(ûiε1B)
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while ∫
(0,1)N

ψ · [(viε)b∂I(B) � ν] dHN−1
= ε

∫
∂B\C

ψ · [(ûiε)b∂B � ν] dHN−1,

where (ûiε)b∂B denotes the trace on ∂B of the restriction of ûiε to B. Therefore (4.20) reads
as
1
εN

∫
Qiε

ψ(x/ε) · dEuεbBε\Cε =
∫
Y\C

ψ · dE(ûiε1B)+
∫
∂B\C

ψ · [(ûiε)b∂B � ν] dHN−1.

Now,
E(ûiε1B) = Eû

i
εbB − (û

i
ε)b∂B � νHN−1

b∂B,

thus (4.20) finally reads

1
εN

∫
Qiε

ψ(x/ε) dEuεbBε\Cε =
∫
Y
ψ dEy û

i
εbB\C . (4.23)

Note that we can add to ûiε rigid body motions on the finitely many connected com-
ponents of B with no effect on the preceding equality, nor on Ey ûiεbB∩C (since rigid
body motions on B are continuous on B). As a consequence, thanks to Poincaré–Korn’s
inequality on BD(Y), and in view of (4.22), we can assume that∫

∂B
|ûiε| dHN−1

+ |Ey û
i
ε|(B ∩ C)

≤ C′|Ey û
i
ε|(B)+ |Ey ûiε|(B ∩ C) ≤ (C′ + 1)|Ey ûiε|(Y) ≤

C′′

εN
|Euiε|(int(Qi

ε))

for some C′, C′′ independent of i and ε, so that (4.19) follows. ut

5. Two-scale kinematics and two-scale statics

This section, the most technical of the paper, is devoted to an investigation of the disin-
tegration and duality properties of the two-scale limits of the kinematically admissible
fields uε, eε, pε and of the statically admissible fields σε associated with the heteroge-
neous evolution. We will also discuss the lower semicontinuity properties of the various
energies involved in that evolution.

5.1. Two-scale kinematics and lower semicontinuity

In this subsection, we define the set of admissible two-scale (kinematically admissible)
configurations and proceed, for future use, to disintegrate them in a manner such that
almost every x-fiber (with respect to a suitable measure) is actually an element of AY
(see Definition 3.1). We then show that two-scale kinematically admissible configurations
arise from a natural compactness argument. We finally establish a lower semicontinuity
result for the ε-dissipation potentials Hε resulting in a homogenized dissipation poten-
tial Hhom.
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In order to handle the Dirichlet boundary condition, it proves convenient to consider
Ω ′ ⊆ RN open bounded and such that Ω ⊂ Ω ′ and ∂Ω ∩Ω ′ = Γd . Given a boundary
displacement w ∈ H 1(RN ;RN ), and a configuration (u, e, p) ∈ A(w), we may extend
u, e, p to Ω ′ by setting

u = w, e = Ew, p = 0 on Ω ′ \Ω. (5.1)

It is readily checked that the admissibility conditions (2.4) become

Eu = e + p on Ω ′. (5.2)

Then the family of admissible configurations for w can be described as

A(w) = {(u, e, p) ∈ BD(Ω ′)× L2(Ω ′;MN
sym)×Mb(Ω

′
;MN

D) :

(5.1) and (5.2) are satisfied}. (5.3)

Coming to a two-scale setting, we adopt the following

Definition 5.1 (Kinematically admissible two-scale configurations). Ahom(w), the fam-
ily of admissible two-scale configurations relative to w, is the set of triplets (u,E, P )
with

u ∈ BD(Ω ′), E ∈ L2(Ω ′ × Y;MN
sym), P ∈Mb(Ω

′
× Y;MN

D),

such that
u = w, E = Ew, P = 0 on (Ω ′ \Ω)× Y, (5.4)

and also such that there exists µ ∈ X (Ω ′) (see (4.2)) with

E(x, y) (LNx ⊗ LNy )+ P − Eu⊗ LNy = Eyµ in Ω ′ × Y. (5.5)

Further, set

5(w) := {P ∈Mb(Ω
′
× Y;MN

D) : ∃(u,E) such that (u,E, P ) ∈ Ahom(w)}.

Remark 5.2. The element µ ∈ X (Ω ′) associated with (u,E, P ) according to the pre-
vious definition is uniquely determined. Indeed, (5.5) implies that Eyµ is uniquely de-

termined. The disintegrations µ = µx(y)(η ⊗ LNy ) and Eyµ = η
gen.
⊗ Eyµx for a suitable

η ∈M+

b (Ω
′) given by Proposition 4.7 are such that µx ∈ BD(Y) and

∫
Y µx dy = 0 for

η-a.e. x ∈ Ω ′. Thus Poincaré–Korn’s inequality on BD(Y) yields

|µ|(Ω ′ × Y) =
∫
Ω ′

[∫
Y
|µx(y)| dy

]
dη(x) ≤ C

∫
Ω ′
|Eyµx(y)|(Y) dη(x)

= |Eyµ|(Ω
′
× Y),

from which the uniqueness of µ follows.
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Remark 5.3. If T ⊆ Y is such that HN−1(T ) = 0, then

P bΩ ′×T = 0.

Indeed, P bΩ ′×T = EyµbΩ ′×T , and the conclusion results from Proposition 4.7(a).

The following disintegration result then holds:

Lemma 5.4 (Admissible configurations and disintegration). Let (u,E, P ) ∈ Ahom(w)

with associated µ ∈ X (Ω ′), and set

η := LNx + (proj# |P |)
s
∈M+

b (Ω
′).

The following disintegrations hold true:

Eu⊗ LNy = A(x)(η ⊗ LNy ), (5.6)

E(x, y)(LNx ⊗ LNy ) = C(x)E(x, y)(η ⊗ LNy ), (5.7)

P = η
gen.
⊗ Px, (5.8)

and we can choose a Borel map (x, y) 7→ µx(y) ∈ RN such that

µ = µx(y)(η ⊗ LNy ), Eyµ = η
gen.
⊗ Eyµx . (5.9)

Above, A : Ω ′ → MN
sym and C : Ω ′ → [0,+∞) are the respective Radon–Nikodym

derivatives of Eu and LNx with respect to η, E(x, y) is a Borel representative of E, while
µx ∈ BD(Y),

∫
Y µx dy = 0, and Px ∈Mb(Y;MN

D) for η-a.e. x ∈ Ω ′.
In particular, for η-a.e. x ∈ Ω ′, the measure Px ∈Mb(Y;MN

D) is the plastic strain
of the element of AY given by

(µx, C(x)E(x, ·)− A(x), Px).

Proof. Since proj#(Eyµ) = 0, from (5.5) we get

Eu =

(∫
Y
E(x, y) dy

)
LNx + proj#(P ) = e(x)LNx + proj#(P ) on Ω ′,

where e(x) :=
∫
Y E(x, y) dy ∈ L

2(Ω ′;MN
sym). Consequently, the measure Eu is abso-

lutely continuous with respect to η. We can thus write

Eu⊗ LNy = A(x)(η ⊗ LNy ),

where A : Ω ′ → MN
sym is the Radon–Nikodym derivative of Eu with respect to η, so

that (5.6) follows. If C : Ω ′ → [0,+∞) is the Radon–Nikodym derivative of LNx with
respect to η, and E(x, y) is a Borel representative of E, it is immediate that

E(x, y) (LNx ⊗ LNy ) = C(x)E(x, y)(η ⊗ LNy ),
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so that (5.7) holds true. Finally, by [4, Theorem 2.28], the measure P can be disintegrated
with respect to proj# |P | which is absolutely continuous with respect to η, so that the
disintegration (5.8) follows.

Let us come to (5.9). By Proposition 4.7(a),

µ = µ̃x(y)(ζ ⊗ LNy ), Eyµ = ζ
gen.
⊗ Eyµ̃x

for a suitable measure ζ ∈M+

b (Ω
′), and a suitable Borel function (x, y) 7→ µ̃x(y) ∈ RN

with µ̃x ∈ BD(Y),
∫
Y µ̃x dy = 0 and

|Eyµ̃x |(Y) 6= 0

for ζ -a.e. x ∈ Ω ′. At the expense of replacing ζ with |Eyµ̃x |(Y)ζ , it is not restrictive to
assume that |Eyµ̃x |(Y) = 1 for ζ -a.e. x ∈ Ω ′.

Since, by [4, Corollary 2.29], proj# |Eyµ| = ζ , while, in view of the above,

proj# |Eyµ| =
{∫

Y
|C(x)E(x, y)− A(x)| dy + |Px |(Y)

}
η,

ζ is absolutely continuous with respect to η. Thus, ζ = D(x)η, whereD : Ω ′→ [0,+∞[
can be chosen to be a Borel map. The disintegration (5.9) follows upon setting

µx(y) := D(x)µ̃x(y).

Finally, note that, for η-a.e. x ∈ Ω ′,

Eyµx = (C(x)E(x, ·)− A(x))LNy + Px .

Moreover, in view of the very definition of η, we have C(x) ∈ [0, 1], so that∫
Ω ′

[∫
Y
|C(x)E(x, y)|2 dy

]
dη ≤

∫
Ω ′

[∫
Y
|E(x, y)|2 dy

]
dx <∞.

Thus, C(x)E(x, ·) − A(x) ∈ L2(Y;MN
sym) for η-a.e. x ∈ Ω ′, and this proves the last

assertion of the lemma. ut

Remark 5.5. Since |P | = η
gen.
⊗ |Px |, we have

η
gen.
⊗

Px

|Px |
|Px | = η

gen.
⊗ Px = P =

P

|P |
|P | = η

gen.
⊗

P

|P |
|Px |,

so that, for η-a.e. x ∈ Ω ′,

P

|P |
(x, ·) =

Px

|Px |
|Px |-a.e. on Y. (5.10)

The definition of the class of admissible two-scale configurations is motivated by the
following compactness result.



Periodic homogenization in plasticity 437

Lemma 5.6 (Compactness). Let {(uε, eε, pε)}ε>0 ⊂ A(w) be such that

‖uε‖BD(Ω ′) + ‖eε‖L2(Ω ′;MN
sym)
+ ‖pε‖Mb(Ω

′;MN
D)
≤ C

and
uε ⇀ u weakly∗ in BD(Ω ′),

eε
w-2
−⇀ E two-scale weakly in L2(Ω ′ × Y;MN

sym),

pε
w∗-2
−−⇀ P two-scale weakly∗ in Mb(Ω

′
× Y;MN

D).

Then (u,E, P ) ∈ Ahom(w).

Proof. Since (uε, eε, pε) = (w,Ew, 0) on Ω ′ \Ω , it is immediate that (5.4) holds.
By compactness of the canonical injection of BD into L1,

uε → u strongly in L1(Ω ′;RN ),

so that

uεLNx
w∗-2
−−⇀ u(LNx ⊗ LNy ) two-scale weakly∗ in Mb(Ω

′
× Y;RN ).

From the compatibility conditionEuε = eε+pε onΩ ′ we deduce, in view of Proposition
4.10, the existence of µ ∈ X (Ω ′) such that

Eu(x)⊗ LNy + Eyµ = E(x, y) (LNx ⊗ LNy )+ P,

and the result follows. ut

For (u,E, P ) ∈ Ahom(w) we set

Qhom(E) :=
1
2

∫
Ω×Y

C(y)E · E dx dy (5.11)

Hhom(P ) :=

∫
(Ω∪Γd )×Y

H(y, P/|P |) d|P |. (5.12)

We call Qhom the homogenized elastic energy, and Hhom the homogenized dissipation.
The domain of integration in the definition of Hhom can be extended to Ω ′ since P = 0
on (Ω ′ \Ω)× Y .

The following lower semicontinuity result holds.

Theorem 5.7 (Lower semicontinuity). Let (uε, eε, pε) ∈ A(w) be such that

uε ⇀ u weakly∗ in BD(Ω ′),

eε
w-2
−⇀ E two-scale weakly in L2(Ω ′ × Y;MN

sym),

pε
w∗-2
−−⇀ P two-scale weakly∗ in Mb(Ω

′
× Y;MN

D),

(5.13)
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with (u,E, P ) ∈ Ahom(w). Then, for Qε and Hε as in (2.7) and (2.16) respectively, we
get

Qhom(E) ≤ lim inf
ε

Qε(eε), (5.14)

Hhom(P ) ≤ lim inf
ε

Hε(pε). (5.15)

Proof. We first prove (5.14). In view of Remark 4.12, it is readily seen that

Cεeε
w-2
−⇀ C(y)E two-scale weakly in L2(Ω ′ × Y;MN

sym).

Given 8 ∈ C∞c (Ω × Y;MN
sym), and passing to the limit in the inequality

0 ≤
1
2

∫
Ω

Cε(x)(eε −8(x, x/ε)) · (eε −8(x, x/ε)) dx

we obtain∫
Ω×Y

C(y)E ·8(x, y) dx dy −
1
2

∫
Ω×Y

C(y)8(x, y) ·8(x, y) dx dy ≤ lim inf
ε

Qε(eε).

Letting 8 converge to E strongly in L2(Ω × Y;MN
sym) yields (5.14).

The proof of (5.15) is more delicate, and we proceed in two steps.

Step 1. As a first step, consider B ⊆ Y , an open set with Lipschitz boundary, and also
such that ∂B \ T is C1 for some compact set T with HN−1(T ) = 0. Assume also that
∂B ∩ C ⊆ T , where C has been introduced in (1.1).

Let vε ∈ BD(Ω ′) be such that

vε
∗

⇀ v weakly∗ in BD(Ω ′),

and (see (1.2))

EvεbΩ ′∩Bε
w∗-2
−−⇀ π two-scale weakly∗ in Mb(Ω

′
× Y;MN

sym).

We claim that π is supported in Ω ′ × B̄ and that

πbΩ ′×(∂B\T ) = a(x, y)� ν(y) ζ, (5.16)

where ζ ∈M+

b (Ω
′
× (∂B \ T )), a : Ω ′ × (∂B \ T )→ RN is a Borel map, and ν is the

exterior normal to ∂B.
Indeed, in view of Remark 4.3, the two-scale weak∗ limits (up to subsequences) of

EvεbΩ ′∩Bε∩Cε ∈Mb(Ω
′
;MN

sym)

have support concentrated on Ω ′ × B ∩ C. Since by assumption ∂B ∩ C ⊆ T , they do
not contribute to the behaviour of π on Ω ′ × (∂B \ T ). We can therefore focus on the
two-scale weak∗ limit π̃ (up to subsequences) of

EvεbΩ ′∩(Bε\Cε) ∈Mb(Ω
′
;MN

sym)
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as
πbΩ ′×(∂B\T ) = π̃bΩ ′×(∂B\T ).

Let ∑
i∈Iε(Ω ′)

(LNx bQiε )⊗ µ
i
ε ∈Mb(Ω

′
× Y;MN

sym)

be the unfolded measure associated with EvεbΩ ′∩(Bε\Cε) according to (4.15). Then, ap-
pealing to Proposition 4.13, we get, for every χ ∈ C1

c (Ω
′
× Y;MN

sym) with divy χ(x, y)
= 0,∫
Ω ′×Y

χ(x, y) dπ̃(x, y) = lim
ε→0

∑
i∈Iε(Ω ′)

∫
Qiε

[∫
B\C

χ(x, y) · dEy v̂
i
ε

]
dx

= lim
ε→0

∑
i∈Iε(Ω ′)

∫
Qiε

[∫
∂B
χ(x, y) · (v̂iε(y)� ν(y)) dHN−1(y)−

∫
C∩B

χ(x, y) · dEv̂iε

]
dx

(5.17)

for a suitable v̂iε ∈ BD(Y) such that∫
∂B
|v̂iε| dHN−1

+ |Ey v̂
i
ε|(C ∩ B) ≤

C

εN
|Evε|(int(Qi

ε)), (5.18)

where C > 0 independent of i and ε.
In view of (5.18) a density argument allows us to rewrite (5.17) as∫

Ω ′×Y
χ dπ̃ = lim

ε→0

∫
Ω ′×Y

χ dλ1
ε+

∫
Ω ′×Y

χ dλ2
ε, χ ∈ C0

0(Ω
′
×Y;MN

sym), divy χ = 0,

(5.19)
with λ1

ε, λ
2
ε ∈Mb(Ω

′
× Y;MN

sym) such that (up to a subsequence)

λ1
ε

∗

⇀ λ1, λ2
ε

∗

⇀ λ2 weakly∗ in Mb(Ω
′
× Y;MN

sym).

Moreover supp(λ1) ⊆ Ω ′ × ∂B and supp(λ2) ⊆ Ω ′ × C ∩ B. In view of (5.19), Lemma
4.9 implies the existence of µ ∈ X (Ω ′) such that

π̃ = λ1
+ λ2

+ Eyµ.

Recalling that ∂B ∩ C ⊆ T ,

π̃b∂B\T = λ
1
b∂B\T + Eyµb∂B\T .

Thanks to Proposition 4.7(b), the proof is complete if we show the analogue of (5.16) for
λ1
b∂B\T .

Consider

ηε := v̂ε(x, y)(LNx ⊗ (HN−1
y b∂B)) ∈Mb(Ω

′
× Y;RN )
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with
v̂ε(x, y) :=

∑
i∈Iε(Ω ′)

1Qiε (x)v̂
i
ε(y),

so that λ1
ε = ηε(x, y)� ν(y) for any Borel extension of ν to Y . In view of (5.18), up to a

subsequence,
ηε
∗

⇀ η weakly∗ in Mb(Ω
′
× Y;RN )

for some η ∈Mb(Ω
′
×Y;RN ). Since ν is continuous along ∂B \T , we immediately get

λ1
b∂B\T =

η

|η|
� ν|η|b∂B\T ,

so that claim (5.16) follows because η/|η| is a Borel function.

Step 2. We now prove (5.15), assuming, with no loss of generality, that

lim inf
ε

Hε(pε) <∞. (5.20)

We decompose pε as
pε =

∑
i

piε +
∑
i 6=j

pijε

where, since pε does not charge HN−1-negligible sets,

piε := pεbΩ ′∩(Yi )ε and pijε := pεbΩ ′∩(Γij \S)ε .

Up to a subsequence,

piε
w∗-2
−−⇀ P i two-scale weakly∗ in Mb(Ω

′
× Y;MN

D),

pijε
w∗-2
−−⇀ P ij two-scale weakly∗ in Mb(Ω

′
× Y;MN

D).

Clearly
P =

∑
i

P i +
∑
i 6=j

P ij (5.21)

with supp(P i) ⊆ Ω̄ × Ȳi and, thanks to Remark 4.3, supp(P ij ) ⊆ Ω̄ × Γij .
Invoking Lemma 4.6 we get

lim inf
ε

∫
Ω∪Γd

Hε(x, p
i
ε/|p

i
ε|) d|p

i
ε| = lim inf

ε

∫
Ω ′
H(x/ε, piε/|p

i
ε|) d|p

i
ε|

= lim inf
ε

∫
Ω ′
Hi(p

i
ε/|p

i
ε|) d|p

i
ε| ≥

∫
Ω ′×Y

Hi(P
i/|P i |) d|P i |

=

∫
Ω ′×Yi

Hi(P
i/|P i |) d|P i | +

∫
Ω ′×Γ

Hi(P
i/|P i |) d|P i |

≥

∫
Ω ′×Yi

H(y, P i/|P i |) d|P i | +
∑
j 6=i

∫
Ω ′×(Γij \S)

Hi(P
i/|P i |) d|P i |.
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By (5.13) eε
w-2
−⇀ E two-scale weakly in L2(Ω ′ × Y;MN

sym), so that

EuεbΩ ′∩(Yi )ε
w∗-2
−−⇀ E1Ω ′×Yi (L

N
x ⊗LNy )+P i two-scale weakly∗ in Mb(Ω

′
×Y;MN

sym).

We denote by ν the normal to Γij pointing from Yj to Yi . Since, according to (2.3),
HN−1(Γ ∩ C) = 0, so that we may as well identify S with S ∪ (Γ ∩ C), ensuring that
Γ ∩ C ⊂ S, the first step of the proof implies that, for every j 6= i,

P ibΩ×(Γij \S) = −(a
ij
� ν)ηij (5.22)

for a suitable ηij ∈M+

b (Ω
′
× (Γij \S)), and suitable Borel functions aij : Ω ′× (Γij \S)

→ RN such that aij (x) ⊥ ν(x) for ηij -a.e. (x, y) ∈ Ω × (Γij \ S) (recall that P i has
values in MN

D). Thus,

lim inf
ε

∫
Ω∪Γd

Hε(x, p
i
ε/|p

i
ε|) d|p

i
ε|

≥

∫
Ω ′×Yi

H(y, P i/|P i |) d|P i | +
∑
j 6=i

∫
Ω ′×(Γij \S)

Hi(−a
ij
� ν) dηij . (5.23)

As to pijε ,
pijε = (u

i
ε − u

j
ε )� ν(x/ε)HN−1

b(Γij \S)ε ,

where uiε and ujε are the traces of uε on Ω ′ ∩ (Γij\S)ε coming from (Yi)ε and (Yj )ε
respectively. In view of the definition of H on Γij\S (see (2.13)), and since the inf-
convolution is indeed attained as a minimum, we get∫
Ω∪Γd

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε | =

∫
Ω ′∩(Γij \S)ε

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε |

=

∫
Ω ′∩(Γij \S)ε

Hε(x, (u
i
ε − u

j
ε )(x)� ν(x/ε)) dHN−1

=

∫
Ω ′∩(Γij \S)ε

[Hi(b
ij
i,ε(x)� ν(x/ε))+Hj (−b

ij
j,ε(x)� ν(x/ε))] dH

N−1 (5.24)

for suitable Borel functions biji,ε, b
ij
j,ε : Ω

′
∩ (Γij\S)ε → RN such that

b
ij
i,ε(x)− b

ij
j,ε(x) = u

i
ε(x)− u

j
ε (x) for HN−1-a.e. x ∈ (Γij\S)ε

with
b
ij
i,ε(x) ⊥ ν(x/ε), b

ij
j,ε(x) ⊥ ν(x/ε) for HN−1-a.e. x ∈ (Γij\S)ε.

That the functions biji,ε, b
ij
j,ε are Borel can be proved by approximating uiε − u

j
ε along

(Γij\S)ε by simple functions, and recalling that ν is continuous.
In view of the coercivity estimate (2.12) and of the bound (5.20) we obtain∫

Ω ′∩(Γij \S)ε
[|b

ij
i,ε(x)� ν(x/ε)| + |b

ij
j,ε(x)� ν(x/ε)|] dH

N−1(x) ≤ C
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for a suitable constant C > 0. The bound above actually implies that the measures

η
ij
i,ε := b

ij
i,εH

N−1
bΩ ′∩(Γij \S)ε and η

ij
j,ε := b

ij
j,εH

N−1
bΩ ′∩(Γij \S)ε

are bounded in ε. Thus, recalling Remark 4.3, we can assume that, up to a subsequence
that will not be relabeled,b

ij
i,ε � ν(x/ε)H

N−1
bΩ ′∩(Γij \S)ε

w∗-2
−−⇀ λij two-scale weakly∗ in Mb(Ω

′
× Y;MN

sym),

b
ij
j,ε � ν(x/ε)H

N−1
bΩ ′∩(Γij \S)ε

w∗-2
−−⇀ λji two-scale weakly∗ in Mb(Ω

′
× Y;MN

sym),

and η
ij
i,ε

w∗-2
−−⇀ η

ij
i = b

ij
i |η

ij
i | two-scale weakly∗ in Mb(Ω

′
× Y;RN ),

η
ij
j,ε

w∗-2
−−⇀ η

ij
j = b

ij
j |η

ij
j | two-scale weakly∗ in Mb(Ω

′
× Y;RN ),

with λij , λji ∈Mb(Ω
′
× Y;MN

sym) and ηiji , η
ij
j ∈Mb(Ω

′
× Y;RN ) such that

supp(λij ), supp(λji), supp(ηiji ), supp(ηijj ) ⊆ Ω̄ × Γij .

Since the normal vector field ν is continuous on Γij \ S , we get

λij = (b
ij
i � ν)|η

ij
i | and λji = (b

ij
j � ν)|η

ij
j | on Ω ′ × (Γij \ S).

In view of Lemma 4.6 we obtain

lim inf
ε

∫
(Ω∪Γd )∩(Γij \S)ε

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε |

= lim inf
ε

∫
Ω ′∩(Γij \S)ε

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε |

= lim inf
ε

∫
Ω ′∩(Γij \S)ε

[Hi(b
ij
i,ε(x)� ν(x/ε))+Hj (−b

ij
j,ε(x)� ν(x/ε))] dH

N−1(x)

≥

∫
Ω ′×(Γij \S)

Hi(b
ij
i � ν(y)) d|η

ij
i | +

∫
Ω ′×(Γij \S)

Hj (−b
ij
j � ν(y)) d|η

ij
j |. (5.25)

Recalling (5.21) and (5.22), the previous analysis shows that

P bΩ ′×(Γij \S) = −(a
ij
� ν)ηij+(aji � ν)ηji + (b

ij
i � ν)|η

ij
i | − (b

ij
j � ν)|η

ij
j |

= [(ci − cj )� ν] ζ ij , (5.26)

where ζ ij := ηij + ηji + |ηiji | + |η
ij
j |, and ci, cj are suitable Borel functions on Ω ′ ×

(Γij\S) with values in RN such that

(ci � ν)ζ ij = −(aij � ν)λij + (b
ij
i � ν)|η

ij
i |,
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idem for cj . Further,

ci(x, y) ⊥ ν(y), cj (x, y) ⊥ ν(y) for ζ ij -a.e. (x, y) ∈ Ω ′ × (Γij\S).
Since

Hε(pε) =
∑
i

∫
Ω∪Γd

Hε(x, p
i
ε/|p

i
ε|) d|p

i
ε|

+

∑
i 6=j

∫
(Ω∪Γd )∩(Γij \S)ε

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε |,

we get, thanks to (5.23) and (5.25),

lim inf
ε

Hε(pε) ≥
∑
i

lim inf
ε

∫
Ω∪Γd

Hε(x, p
i
ε/|p

i
ε|) d|p

i
ε|

+

∑
i 6=j

lim inf
ε

∫
(Ω∪Γd )∩(Γij \S)ε

Hε(x, p
ij
ε /|p

ij
ε |) d|p

ij
ε |

≥

∑
i

(∫
Ω ′×Yi

H(y, P i/|P i |) d|P i | +
∑
j 6=i

∫
Ω ′×(Γij \S)

Hi(−a
ij
� ν) dηij

)

+

∑
i 6=j

(∫
Ω ′×(Γij \S)

Hi(b
ij
i � ν) d|η

ij
i | +

∫
Ω ′×(Γij \S)

Hj (−b
ij
j � ν) d|η

ij
j |

)
=

∫
Ω ′×

⋃
i Yi

H(y, p/|p|) d|p|

+

∑
i 6=j

(∫
Ω ′×(Γij \S)

Hi(−a
ij
� ν) dηij +

∫
Ω ′×(Γij \S)

Hj (a
ji
� ν) dηji

+

∫
Ω ′×(Γij \S)

Hi(b
ij
i � ν) d|η

ij
i | +

∫
Ω ′×(Γij \S)

Hj (−b
ij
j � ν) d|η

ij
j |

)
.

In view of (5.26), by the definition of H on Ω ′ × (Γij\S) and the subadditive character
of Hi and Hj , and since, in view of Remark 5.3, P does not charge Ω ′ × S, we deduce
that

lim inf
ε

Hε(pε) ≥

∫
Ω ′×

⋃
i Yi

H(y, P/|P |) d|P |

+

∑
i 6=j

∫
Ω ′×(Γij \S)

[Hi(c
i(x, y)� ν(y))+Hj (−c

j (x, y)� ν(y))] dζ ij (x, y)

≥

∫
Ω ′×

⋃
i Yi

H(y, P/|P |) d|P | +
∑
i 6=j

∫
Ω ′×(Γij \S)

H(y, (ci − cj )� ν) dζ ij

=

∫
Ω ′×

⋃
i Yi

H(y, P/|P |) d|P | +
∑
i 6=j

∫
Ω ′×(Γij \S)

H(y, P/|P |) d|P | = Hhom(P ),

which concludes the proof. ut
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5.2. Two-scale statics and duality

In this subsection we define two-scale (statically admissible) stress configurations, inves-
tigate the duality between those and elements of Ahom(w) in the spirit of Theorem 3.3 and
Proposition 3.5, and show that they naturally arise as two-scale weak limits of statically
admissible stress fields.

We adopt the following

Definition 5.8 (Two-scale static admissibility). An element6 ∈ L2(Ω×Y;MN
sym) such

that

divy 6 = 0 on Ω × Y, 6D(x, y) ∈ K(y) for LNx ⊗ LNy -a.e. (x, y) ∈ Ω × Y

and
divx σ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d , (5.27)

where σ(x) :=
∫
Y 6(x, y) dy, is said to be two-scale statically admissible; we denote by

Khom the set of all such stresses.

Remark 5.9. Recalling Definition 3.2, if 6 ∈ Khom, then, for a.e. x ∈ Ω ,

6(x, ·) ∈ KY .

According to (3.1), there exists, for every 1 ≤ r < ∞, a constant Cr > 0 (independent
of x) such that

‖6(x, ·)‖Lr (Y;MN
sym)
≤ Cr [‖6(x, ·)‖L2(Y;MN

sym)
+‖6D(x, ·)‖L∞(Y;MN

sym)
].

Let P ∈ 5hom(w) and 6 ∈ Khom. In view of Lemma 5.4, P = η
gen.
⊗ Px , Px being

a plastic strain for an admissible configuration on Y for η-a.e. x ∈ Ω ′. On the other
hand, according to Remark 5.9, for LNx -a.e. x ∈ Ω , 6x := 6(x, ·) ∈ L2(Y;MN

sym)

is a statically admissible stress field on Y . Thus it would be tempting to conclude that,
recalling Theorem 3.3, a coupling between Px and 6x is available on almost every fiber
with base inΩ . But there is a snag: the measure η can have concentrated parts, while6x is
only well defined almost everywhere with respect to the Lebesgue measure. To overcome
this difficulty, we will have to construct in a first step an adequate approximation of 6
(see Lemma 5.10), then use that approximation to define in turn a (disintegrated) two-
scale analogue of the duality measure 〈6D, P 〉 defined in (3.2) (see Proposition 5.11) and
to obtain the analogue of Proposition 3.5 (see Theorem 5.12).

Lemma 5.10 (Approximation of stresses). Let 6 ∈ Khom. There exists a mapping
6n : RN × Y → MN

sym with

6n ∈ L
2(RN × Y;MN

sym), (5.28)

and such that the following holds:

(a) 6n(x, y) ∈ C∞(RN ;L2(Y;MN
sym));
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(b) divy 6n(x, ·) = 0 on Y for every x ∈ RN , and

‖6n(x, y)‖L2(Y;MN
sym)
≤ C̃n‖6‖L2(Ω×Y;MN

sym)
,

where C̃n does not depend on x. Moreover

sup
n
‖(6n)D(x, ·)‖∞ <∞

and for every 1 ≤ r <∞ there exists Cn > 0 such that

‖6n(x, ·)‖Lr (Y;MN
sym)
≤ Cn;

(c) for every ε > 0, there exists Nε such that, for n ≥ Nε and for every x ∈ RN ,

(6n(x, y))D ∈ (1+ ε)K(y) for a.e. y ∈ Y;

(d) 6n→ 6 strongly in L2(Ω × Y;MN
sym); and

(e) setting σn(x) :=
∫
Y 6n(x, y) dy and σ(x) :=

∫
Y 6(x, y) dy, σn ∈ C∞(RN ;MN

sym),

sup ‖(σn)D‖∞ <∞,

σn→ σ strongly in L2(Ω;MN
sym),

div σn→ 0 strongly in LN (Ω;RN ),

σn→ σ strongly in Lr(Ω;MN
sym) for every 1 ≤ r <∞.

Proof. Let us extend 6 to RN × Y by setting 6 = 0 outside Ω . For every x ∈ ∂Ω ,
consider an open neighborhood U such that ∂Ω ∩U is a Lipschitz subgraph with respect
to a suitable coordinate system. We cover ∂Ω with finitely many open sets U1, . . . , Um
associated with x1, . . . , xm ∈ ∂Ω , and assume that there exist τi ∈ RN such that

(Ui ∩Ω)+ aτi ⊂⊂ Ω, 0 < a < 1. (5.29)

Let {ψi}mi=1 be a partition of unity of ∂Ω subordinated to {Ui}mi=1. Write

6 =

m∑
i=1

ψi6 +
(

1−
m∑
i=1

ψi

)
6 :=

m∑
i=1

6i +60, (5.30)

the last term having compact support in Ω × Y .
The approximation 6n is obtained by infinitesimally translating each 6i in the direc-

tion −τi and taking a convolution with respect to x, while 60 is simply regularized by
convolution with respect to x. We then use a diagonal argument.

Indeed, (5.28) and items (a) and (d) immediately follow, while (b) follows by the
definition of Khom and the continuity of the ψi’s if one further takes Remark 5.9 into
account. As far as (c) is concerned, the definition of Khom implies that, for a.e. x ∈ RN
and a.e. y ∈ Y ,

(6i)D(x, y) ∈ ψi(x)K(y) (i = 1, . . . , m), (60)D(x, y) ∈
(

1−
m∑
i=1

ψi(x)
)
K(y).
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Given ε > 0, in view of the continuity ofψi and of the convexity ofK(y), the construction
above shows that, for n large enough, and for every x ∈ RN and a.e. y ∈ Y ,

(6ni )D(x, y) ∈ (ψi(x)+ ε)K(y), (6n0 )D(x, y) ∈
(

1+ ε −
m∑
i=1

ψi(x)
)
K(y),

so that, using the convexity of K(y) once more, (6n(x, y))D ∈ (1+ (m+ 1)ε)K(y) for
a.e. y ∈ Y. Item (c) thus follows in view of the arbitrariness of ε.

Finally, to prove (e) we need only justify the convergence of div σn, the first two
properties being a consequence of the previous items modulo an integration in y, while
the last statement is a consequence of the inequality in Remark 2.2. From (5.30) we
deduce, by integrating in y,

σ =

m∑
i=1

ψiσ +
(

1−
m∑
i=1

ψi

)
σ.

The associated approximation obtained by translations and convolutions can be written
explicitly as

σn(x) = ρn(x) ?
[ m∑
i=1

ψi(x + anτi)σ (x + anτi)+
(

1−
m∑
i=1

ψi(x)
)
σ(x)

]
with an ↘ 0 and {ρn}n∈N suitable convolution kernels. Since div(σ (x+anτi)) = 0 thanks
to (5.29), the convergence follows from (5.27) and Remark 2.2, which imply that σ is in
Lr(Ω;MN

sym) for 1 ≤ r <∞. ut

Proposition 5.11 (Two-scale duality). Let 6 ∈ Khom, and (u,E, P ) ∈ Ahom(w). Let

η ∈M+

b (Ω
′) be the measure such that P = η

gen.
⊗ Px , with Px ∈Mb(Y;MN

D), according
to Lemma 5.4.

(a) If {6n}n∈N is the sequence given by Lemma 5.10, the sequence {λn}n∈N defined as

λn := η
gen.
⊗ 〈(6n)D(x, ·), Px〉

(where 〈(6n)D(x, ·), Px〉 is the measure on Y associated with the duality between
the stress 6n(x, ·) and the plastic strain Px according to Remark 3.4) is a bounded
sequence of elements of Mb(Ω

′
× Y).

(b) There exists a subsequence of {λn}n∈N (still indexed by n) and an element λ ∈
Mb(Ω

′
× Y) such that

λn
∗

⇀ λ weakly∗ in Ω ′ × Y,

with
λ = (LNx bΩ)

gen.
⊗ 〈6D(x, ·), Px〉 + λ

s, (5.31)

where 〈6D(x, ·), Px〉 ∈ Mb(Y) denotes the duality between the stress 6D(x, ·) ∈
KY and the plastic strain Px ∈ 5Y , and where λs ∈Mb(Ω

′
× Y) is such that

|λs | � ηs
gen.
⊗ |Px |.
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Finally, if ∂b∂ΩΓd is admissible in the sense of Definition 2.1, the mass of λ is given
by

λ(Ω ′ × Y) = −
∫
Ω×Y

6 · E dx dy +

∫
Ω

σ · Ew dx. (5.32)

Proof. (a) By Lemma 5.4, for η-a.e. x ∈ Ω ′ the measure Px ∈Mb(Y;MN
D) is the plastic

strain of the admissible configuration on Y given by (µx, C(x)E(x, ·)−A(x), Px),where
µx ∈ BD(Y), while C : Ω ′ → [0, 1] and A : Ω ′ → MN

sym are the Radon–Nikodym
derivatives of LNx and Eu with respect to η, respectively. Thanks to Lemma 5.10,

6n(x, ·) ∈ L
2(Y;MN

sym), (6n)D(x, ·) ∈ L
∞(Y;MN

D), divy 6n(x, ·) = 0

for every x ∈ Ω ′. We conclude that the duality 〈(6n)D(x, ·), Px〉 is well defined as an
element in Mb(Y) for η-a.e. x ∈ Ω ′.

By definition of 〈(6n)D(x, ·), Px〉,

〈(6n)D(x, ·), Px〉(ψ) = −

∫
Y
ψ(y)6n(x, y) · [C(x)E(x, y)− A(x)] dy

−

∫
Y
6n(x, y) · [µx(y)�∇ψ(y)] dy (5.33)

for every ψ ∈ C1(Y). The η-a.e. defined map

x 7→ 〈(6n)D(x, ·), Px〉(ψ) is η-measurable on Ω ′. (5.34)

Indeed, a direct computation shows that the maps f (x, y) := ψ(y)6n(x, y) ·

[C(x)E(x, y) − A(x)] and g(x, y) := 6n(x, y) · [µx(y) � ∇ψ(y)] are summable with
respect to the measure η ⊗ LNy . Then (5.34) follows by Fubini’s theorem.

Through a standard approximation argument, we infer that x 7→ 〈6n(x, ·), Px〉(F ) is
η-measurable for every Borel set F ⊆ Y . Since, in view of Lemma 5.10(b),

|〈(6n)D(x, ·), Px〉| ≤ ‖(6n)D(x, ·)‖∞|Px | ≤ C|Px |,

we deduce from the actual definition of generalized products (see Subsection 1.2 or [4,

Definition 2.27]) that λn = η
gen.
⊗ 〈6n(x, ·), Px〉 is well defined as an element of Mb(Ω

′
×

Y).
Since

|λn| = η
gen.
⊗ |[(6n)D(x, ·), Px]| ≤ η

gen.
⊗ ‖(6n)D(x, ·)‖∞|Px | ≤ C|P |

with C independent of n, we infer that {λn}n∈N is bounded in Mb(Ω
′
× Y).

(b) Up to a subsequence,

λn
∗

⇀ λ weakly∗ in Mb(Ω
′
× Y)
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for a suitable λ ∈Mb(Ω
′
× Y). For every ϕ ∈ C0

c (Ω
′), the very definition of λn yields

〈λn, ϕ〉 = −

∫
Ω ′×Y

ϕ(x)6n(x, y) · C(x)E(x, y) d(η ⊗ LNy )

+

∫
Ω ′
ϕ(x)σn(x) · A(x) dη(x)

= −

∫
Ω ′
ϕ(x)6n(x, y) · E(x, y) dx dy +

∫
Ω ′
ϕ(x)σn(x) dEu(x).

But σn is continuous, so∫
Ω ′
ϕ(x)σn(x) · dEu(x) =

∫
Ω ′
ϕ(x)σn(x) · e(x) dx +

∫
Ω ′
ϕ(x)σn(x) · dp(x)

=

∫
Ω ′
ϕ(x)σn(x) · e(x) dx+

∫
Ω ′
ϕ(x)(σn)D(x) · dp(x),

hence

〈λn, ϕ〉 = −

∫
Ω ′×Y

ϕ(x)6n · E dx dy +

∫
Ω ′
ϕσn · e dx +

∫
Ω ′
ϕ(σn)D · dp,

where e(x) :=
∫
Y E(x, y) dy ∈ L

2(Ω ′;MN
sym) and p := proj# P ∈Mb(Ω

′
;MN

D).
Since σn ∈ C∞(RN ;MN

sym) we have, recalling Remark 2.2,

(σn)Dp = 〈(σn)D, p〉 as measures on Ω ′.

Appealing to the convergences of σn to σ in Lemma 5.10(e) we deduce from the definition
of the duality product in (2.2) and the facts that ϕ ≡ 0 on Γ̄t while p ≡ 0 on Ω ′ \ Ω̄ that

〈(σn)D, p〉
∗

⇀ 〈(σ )D, p〉 weakly∗ in Mb(Ω
′)

(and thus 〈(σ )D, p〉 ∈Mb(Ω
′)), with, for every ϕ ∈ C1

c (Ω
′),

〈(σ )D, p〉(ϕ) = −

∫
Ω

ϕσ · (e − Ew) dx −

∫
Ω

σ · [(u− w)�∇ϕ] dx.

Using Lemma 5.10(d), and since e ≡ E ≡ Ew outside Ω , we deduce that

〈λ, ϕ〉 = lim
n
〈λn, ϕ〉

= lim
n

[
−

∫
Ω ′×Y

ϕ(x)6n · E dx dy +

∫
Ω ′
ϕ(x)σn · e dx + 〈(σn)D, p〉(ϕ)

]
= lim

n

[
−

∫
Ω×Y

ϕ(x)6n · E dx dy +

∫
Ω

ϕ(x)σn · e dx + 〈(σn)D, p〉(ϕ)

]
= −

∫
Ω×Y

ϕ(x)6 · E dx dy +

∫
Ω

ϕ(x)σ · e dx + 〈σD, p〉(ϕ).



Periodic homogenization in plasticity 449

If ∂b∂ΩΓd is admissible, letting ϕ ↗ 1Ω ′ we get

λ(Ω ′ × Y) = −
∫
Ω×Y

6 · E dx dy +

∫
Ω

σ · e dx + 〈σD, p〉(Ω)

= −

∫
Ω×Y

6 · E dx dy +

∫
Ω

σ · e dx −

∫
Ω

σ · (e − Ew) dx

= −

∫
Ω×Y

6 · E dx dy +

∫
Ω

σ · Ew dx,

which is (5.32).
It now remains to establish the precise form (5.31) of λ. Note that, since Px = 0 for

LN -a.e. x ∈ Ω ′ \Ω and η = LNx + ηs ,

λn = LNx
gen.
⊗ 〈(6n)D(x, ·), Px〉 + η

s
gen.
⊗ 〈(6n)D(x, ·), Px〉

= (LNx bΩ)
gen.
⊗ 〈(6n)D(x, ·), Px〉 + η

s
gen.
⊗ 〈(6n)D(x, ·), Px〉 =: λ

1
n + λ

2
n.

In view of Lemma 5.10(b),

|λ1
n| ≤ C(LNx bΩ)

gen.
⊗ |Px | ≤ C|P | and |λ2

n| ≤ Cη
s

gen.
⊗ |Px | ≤ C|P |,

with C independent of n. As a consequence, we may assume that, up to extracting a
further subsequence,

λ1
n

∗

⇀ λ1 weakly∗ in Mb(Ω
′
× Y),

λ2
n

∗

⇀ λ2 weakly∗ in Mb(Ω
′
× Y),

with
|λ1
| ≤ C(LNx bΩ)

gen.
⊗ |Px | and |λ2

| ≤ Cηs
gen.
⊗ |Px |

as measures on Ω ′ × Y .
In view of Lemma 5.10(b) & (d), and taking into account Remark 5.9,

6n(x, ·)→ 6(x, ·) strongly in Lr(Y;MN
sym) for a.e. x ∈ Ω, 1 ≤ r <∞.

Since, according to Lemma 5.4, (µx, C(x)E(x, ·) − A(x), Px) ∈ AY , hence
(C(x)E(x, ·) − A(x)) ∈ L2(Y,MN

sym) for η-a.e. x ∈ Ω , we immediately pass to the
limit in (5.33) and conclude that

〈(6n)D(x, ·), Px〉
∗

⇀ 〈(6)D(x, ·), Px〉 weakly∗ in Mb(Y).

By the very definition of a generalized product, we finally obtain

λ1
= (LNx bΩ)

gen.
⊗ 〈(6)D(x, ·), Px〉.

Since λ = λ1
+ λ2, (5.31) follows and the proof is complete. ut

We now establish the two-scale analogue of Proposition 3.5.
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Theorem 5.12. Assume that Y is a C2-admissible multiphase torus. Then, for every
6 ∈ Khom and (u,E, P ) ∈ Ahom(w),

H(y, P/|P |)|P | ≥ λ,

with λ defined in (5.31). Further, if equality holds, then for LNx -a.e. x ∈ Ω ,

Px

|Px |
(y) ∈ NK(y)(6D(x, y)) for LNy -a.e. y ∈ {|Px | > 0};

and, letting µ ∈ X (Ω ′) be the measure associated with (u,E, P ) and using the disinte-
gration (5.9), we get, for LNx -a.e. x ∈ Ω and for every i 6= j ,

µix(y)− µ
j
x(y)

|µix(y)− µ
j
x(y)|

∈ ENKΓ (y)((6D(x, ·)ν)τ (y)) for HN−1-a.e. y ∈ {µix 6= µ
j
x},

where µix and µjx are the traces on Γij of the restrictions of µx to Yi and Yj respectively,
assuming that ν points from Yj to Yi , and where ENKΓ (y)(τ ) denotes the normal cone
(a cone of vectors) to KΓ (y) at a vector τ ⊥ ν(y).

Proof. Let {6n}n∈N be the sequence given by Lemma 5.10, and let {λn}n∈N be the asso-
ciated measures defined in Proposition 5.11. Given ε > 0, Lemma 5.10(c) implies that,
for n large enough,

(6n)D(x, ·) ∈ (1+ ε)K(y) for a.e. y ∈ Y and for every x ∈ Ω ′.

By Proposition 3.5, we deduce that, for η-a.e. x ∈ Ω ′,

H(y, Px/|Px |)|Px | ≥
1

1+ ε
〈(6n)D(x, ·), Px〉 as measures on Y.

Consequently, in view of (5.10) and item (a) in Proposition 5.11,

H(y, P/|P |)|P | = η
gen.
⊗ H(y, P/|P |)|Px | = η

gen.
⊗ H(y, Px/|Px |)|Px | ≥

1
1+ ε

λn.

Proposition 5.11(b) implies the desired inequality upon passing to the limit in n, then in ε.

If, further, equality holds, then the decomposition P = η
gen.
⊗ Px , with η := LNx +

(proj# |P |)
s given by Lemma 5.4 implies, in view of (5.31), that

(LNx bΩ)
gen.
⊗ H(y, P/|P |)|Px | = (LNx bΩ)

gen.
⊗ 〈6D(x, ·), Px〉

so that, recalling (5.10),

H(y, Px/|Px |)|Px | = 〈6D(x, ·), Px〉 as measures on Y,

and this for LNx -a.e. x ∈ Ω . The result now follows from Proposition 3.5 once it is recalled
that, thanks to Lemma 5.4, Px is the plastic strain of the BD deformation µx on Y . ut
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Remark 5.13. Assuming that ∂b∂ΩΓd is admissible in the sense of Definition 2.1, the
previous theorem together with (5.32) immediately implies the two-scale version of the
principle of maximum plastic work, that is, for any6 ∈ Khom and any triplet (u,E, P ) ∈
Ahom(w),

Hhom(P ) ≥ [6 |P ] := −

∫
Ω×Y

6 · E dx dy +

∫
Ω

σ · Ew dx.

As a final remark in this subsection, two-scale statically admissible fields naturally
arise as two-scale weak limits of ε-statically admissible stress fields (see (2.19)). Indeed,

Proposition 5.14. Let (σε)ε>0 be a bounded family in L2(Ω;MN
sym) such that σε ∈ Kε

and

σε
w-2
−⇀ 6 two-scale weakly in L2(Ω × Y;MN

sym).

Then 6 ∈ Khom.

Proof. Since σ(x) :=
∫
Y 6(x, y) dy is the weak L2-limit of σε, it is immediate that

divx σ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d .

Applying the definition of two-scale weak convergence it is readily seen that

divy 6 = 0 on Y.

In order to prove our assertion, we appeal to Remark 4.12. The function 6 is the weak
limit in L2(Ω × Y;MN

sym) of the functions

6ε(x, y) :=
∑

i∈Iε(Ω)

1Qiε (x)σ
i
ε (y),

where Iε(Ω) is defined in (4.13), and σ iε (y) := σε(x
i
ε+εI(y)). Since σε ∈ Kε, we deduce

that

6ε ∈ {4 ∈ L
2(Ω × Y;MN

sym) : 4D(x, y) ∈ K(y) for a.e. (x, y) ∈ Ω × Y}.

But this set is convex and closed in the strong topology of L2(Ω × Y;MN
sym), hence

weakly closed, and this concludes the proof. ut

6. Two-scale homogenization of the quasi-static evolution

In this last section, we address in the first subsection the two-scale limit of the heteroge-
neous quasi-static evolution, while we derive the corresponding generalized flow rule in
the second subsection.



452 Gilles Francfort, Alessandro Giacomini

6.1. Two-scale quasi-static evolutions and the homogenization result

For any t 7→ P(t) ∈ Mb(Ω
′
× Y;MN

D), t ∈ [0, T ], we define the homogenized total
dissipation on [a, b] ⊆ [0, T ] to be

Dhom(a, b;P) := sup
{ I∑
i=1

Hhom(P (ti)− P(ti−1)) : a = t0 ≤ t1 ≤ · · · ≤ tI = b
}
,

where Hhom was defined in (5.12).
Recalling the definitions of Ahom(w) and of Qhom (see Definition 5.1 and (5.11)), we

are now in a position to formulate a notion of quasi-static elasto-plastic evolution in a
two-scale setting.

Definition 6.1 (Two-scale quasi-static evolution). We say that

t 7→ (u(t), E(t), P (t)) ∈ Ahom(w(t))

is a two-scale quasi-static evolution relative to w iff the following conditions hold for
every t ∈ [0, T ]:

(a) Global stability: for every (v,4,Q) ∈ Ahom(w(t)),

Qhom(E(t)) ≤ Qhom(4)+Hhom(Q− P(t)).

(b) Energy equality: t 7→ P(t) has bounded variation from [0, T ] to Mb(Ω
′
×Y;MN

D)

and

Qhom(E(t))+Dhom(0, t;P) = Qhom(E(0))+
∫ t

0

∫
Ω

σ(τ) · Eẇ(τ) dx dτ,

where σ(t, x) :=
∫
Y C(y)E(t, x, y) dy for a.e. x ∈ Ω .

As will be seen shortly, two-scale quasi-static evolutions naturally arise in the de-
scription of the behavior of quasi-static evolutions in periodic heterogeneous materials as
the size of the microstructure goes to zero.

For every ε > 0, let (u0
ε, e

0
ε , p

0
ε ) ∈ A(w(0)) be globally stable initial configurations

such that 
u0
ε

∗

⇀ u0 weakly∗ in BD(Ω ′),

e0
ε

s-2
→ E0 two-scale strongly in L2(Ω ′ × Y;MN

sym),

p0
ε

w∗-2
−−⇀ P0 two-scale weakly∗ in Mb(Ω

′
× Y;MN

D),

(6.1)

for some (u0, E0, P0) ∈ Ahom(w(0)). In particular,

lim
ε→0

Qε(e
0
ε) = Qhom(E0). (6.2)

In view of the above assumptions on (u0
ε, e

0
ε , p

0
ε ), Theorem 2.6 applies to the evolution

at fixed ε and yields a quasi-static evolution in the sense of Definition 2.5. The following
homogenization result holds.
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Theorem 6.2 (Two-scale homogenization of a quasi-static evolution). Assume that

• ∂b∂ΩΓd is admissible in the sense of Definition 2.1;
• relations (2.5), (2.6), (2.11), (2.12), (2.13), (2.17) hold; and
• for every ε > 0, (u0

ε, e
0
ε , p

0
ε ) ∈ Aε(w(0)) are globally stable configurations satisfying

(6.1).

Let t 7→ (uε(t), eε(t), pε(t)) be a quasi-static evolution relative to the boundary dis-
placement w such that

(uε(0), eε(0), pε(0)) = (u0
ε, e

0
ε , p

0
ε ).

Then there exists εn → 0 and a two-scale quasi-static evolution t 7→ (u(t), E(t), P (t))

relative to the boundary displacement w such that

(u(0), E(0), P (0)) = (u0, E0, P0)

and such that, upon setting (un, en, pn) := (uεn , eεn , pεn),
un(t)

∗

⇀ u(t) weakly∗ in BD(Ω ′),

en(t)
w-2
−⇀ E(t) two-scale weakly in L2(Ω ′ × Y;MN

sym),

pn(t)
w∗-2
−−⇀ P(t) two-scale weakly∗ in Mb(Ω

′
× Y;MN

D),

(6.3)

for every t ∈ [0, T ].

Proof. We divide the proof into several steps.

Step 1: Compactness. From the energy balance at fixed ε and upon application of
[21, Chapter II, Proposition 2.4]—taking

∫
Ω ′\Ω
|u| dx as a continuous seminorm on

BD(Ω ′)—we deduce the existence of a constant C > 0 such that, for every ε > 0 and
t ∈ [0, T ],

‖uε(t)‖BD(Ω ′) + ‖eε(t)‖L2(Ω ′;MN
sym)
+ VMb(Ω

′;MN
D)
(0, t;pε) ≤ C. (6.4)

In view of Proposition 4.4 and of Remark 4.2, application of [15, Theorem 3.2] yields a
sequence {εn ↘ 0} and P ∈ BV(0, T ;Mb(Ω

′
×Y;MN

D)) such that, for every t ∈ [0, T ],

pn(t)
w∗-2
−−⇀ P(t) two-scale weakly∗ in Mb(Ω

′
× Y;MN

D).

Further, for a possibly t-dependent subsequence {εnt }nt∈N of {εn}n∈N,unt (t)
∗

⇀u(t) weakly∗ in BD(Ω ′),

ent (t)
w-2
−⇀ E(t) two-scale weakly in L2(Ω ′ × Y;MN

sym),
(6.5)

and, according to Lemma 5.6, (u(t), E(t), P (t)) ∈ Ahom(w(t)).
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Finally, in view of Remark 4.12, we can choose {εnt }nt∈N such that

σnt (t) := Cεnt ent (t)
w-2
−⇀ 6(t) := C(y)E(t) two-scale weakly in L2(Ω × Y;MN

sym);

consequently,
σnt (t) ⇀ σ(t) weakly in L2(Ω;MN

sym) (6.6)

where σ(t, x) :=
∫
Y 6(t, x, y) dy for a.e. x ∈ Ω . By Proposition 5.14, 6(t) ∈ Khom

because, in view of Remark 2.7, σnt (t) ∈ Kεnt .

Step 2: Global stability. Since (u(t), E(t), P (t)) ∈ Ahom(w(t)) (with associatedµ(t) ∈
X (Ω ′)), it follows that, for every (v,4,Q) ∈ Ahom(w(t)) (with associated ν ∈ X (Ω ′)),
(v − u(t),4− E(t),Q− P(t)) belongs to Ahom(0). Since 6(t) ∈ Khom, Remark 5.13
implies that

Hhom(Q−P(t)) ≥ −

∫
Ω×Y

6·(4−E(t)) dx dy = −

∫
Ω×Y

C(y)E(t)·(4−E(t)) dx dy,

from which it is immediately deduced that

Hhom(Q− P(t))+Qhom(4) ≥ Qhom(E(t))+Qhom(4− E(t)) ≥ Qhom(E(t)),

hence the global stability.
Assume that (u′(t), E′(t), P (t)) ∈ Ahom(w(t)), with associated µ′(t) ∈ X (Ω ′),

also satisfies global stability. Then, by the convexity of the set Ahom(w(t)) and the strict
convexity of Qhom, it is immediate that

E′(t) = E(t).

From the admissibility condition (5.5) we infer

Eu(t)⊗ LNy + Eyµ(t) = Eu′(t)⊗ LNy + Eyµ′(t) on Ω ′ × Y,

so that taking the average with respect to y we obtain

Eu(t) = Eu′(t) in Ω ′.

Since u(t) = u′(t) = w(t) on Ω ′ \ Ω , using again [21, Chapter II, Proposition 2.4]
with

∫
Ω ′\Ω
|u| dx as a continuous seminorm on BD(Ω ′), we infer u(t) = u′(t) on Ω ′.

Therefore, there is no need to extract a subsequence {εnt }nt∈N from {εn}n∈N in (6.5), so
that the whole sequences {un(t)}n∈N, {En(t)}n∈N converge, which establishes (6.3).

Step 3: Energy balance. We start with the energy balance at fixed ε. It states in particular
(see Theorem 2.6) that for any partition 0 ≤ t1 ≤ · · · ≤ tm = t of [0, t],

Qεn(en(t))+

m−1∑
i=0

Hεn(pn(ti+1)− pn(ti)) ≤ Qεn(en(0))+
∫ t

0

∫
Ω

σn(s) · Eẇ(s) dx ds.
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Pass to the limit as n↗∞. For the left-hand side, Theorem 5.7 yields

Qhom(E(t))+

m−1∑
i=0

Hhom(P (ti+1)− P(ti))

≤ lim inf
n

[
Qεn(en(t))+

m−1∑
i=0

Hεn(pn(ti+1)− pn(ti))
]
.

In view of (6.4) and of (6.6), Lebesgue’s dominated convergence theorem entails that the
limit of the second term on the right hand-side is by

∫ t
0

∫
Ω
σ(s) ·Eẇ(s) dx ds. In view of

(6.2),
lim
n

Qεn(en(0)) = Qhom(E0).

Recalling all limits, we finally obtain

Qhom(E(t))+

m−1∑
i=0

Hhom(P (ti+1)− P(ti)) ≤ Qhom(E0)+

∫ t

0

∫
Ω

σ(s) · Eẇ(s) dx ds.

Taking the supremum over all partitions 0 ≤ t1 ≤ · · · ≤ tm = t of [0, t] then yields

Qhom(E(t))+Dhom(0, t;P) ≤ Qhom(E0)+

∫ t

0

∫
Ω

σ(s) · Eẇ(s) dx ds. (6.7)

Deriving the reverse inequality in (6.7) is straightforward. Indeed, the argument is
identical to that at the end of the proof of [11, Theorem 2.7] upon replacing Q,D,H
by Qhom,Dhom,Hhom, respectively, and replacing the global minimality statement used
there by item (a) in Definition 6.1. It simply consists in testing, at time ti , the global
minimality of the triplet (u(ti), E(ti), P (ti)) by (u(ti+1) + w(ti) − w(ti+1), E(ti+1) +

(Ew(ti) − Ew(ti+1)), P (ti+1)) ∈ Ahom(w(ti)) and passing to the limit in the time step
in the resulting inequality upon remarking that the BV regularity in time for P implies
that t 7→ 6(t) ∈ L2(Ω × Y;MN

sym) can only have a countable number of discontinuity
points; see [11, Remark 2.6 and Theorem 2.7] for details. ut

6.2. Flow rule for two-scale quasi-static evolutions

This subsection is devoted to the analysis of the flow rule for a two-scale quasi-static
evolution. To this end, we need to interpret the energy equality for a two-scale quasi-
static evolution in terms of a more classical flow rule with respect to the variable y.

Lemma 6.3 (Static admissibility). Let t 7→ (u(t), E(t), P (t)) ∈ Ahom(w(t)) be a two-
scale quasi-static evolution according to Definition 6.1. Then, for every t ∈ [0, T ],

6(t) := CE(t) ∈ Khom,

where Khom is the set of two-scale statically admissible stresses (see Definition 5.8).
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Proof. Take (v,4,Q) ∈ Ahom(0). From global stability with (u(t) + v,E(t) + 4,
P (t)+Q) as test field, it is immediate that∫

Ω×Y
6(t) ·4dx dy +Hhom(Q) ≥ 0

so that
−Hhom(Q) ≤

∫
Ω×Y

6(t) ·4dx dy ≤ Hhom(−Q).

Considering (0, Ey8(x, y), 0) ∈ Ahom(0) where 8(x, y) ∈ C∞c (Ω × Y;RN ) (with
associatedµ := (8(x, y)−

∫
Y 8(x, y) dy)(L

N
x ⊗LNy ) ∈ X (Ω ′)), the previous inequality

entails that
divy 6 = 0 on Ω × Y.

Given B1 ⊆ Ω and B2 ⊆ Y Borel sets, and an arbitrary ξ ∈ MN
D , then

(0, ξ1B1×B2(x, y),−ξ1B1×B2(x, y)) ∈ Ahom(0)

(with associated µ := 0 ∈ X (Ω ′)). Thus, for LNx ⊗ LNy -a.e. (x, y) ∈ Ω × Y , H(y, ξ) ≥
6D(t, x, y)·ξ , so that, by the definition (2.10) ofH and the arbitrariness of ξ , we conclude
that

6D(x, y) ∈ K(y).

Finally, by considering (v, Exv, 0) ∈ Ahom(0) with v ∈ C1(Ω) and v = 0 onΩ ′ \Ω ,
we get

divx σ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d ,

so that 6(t) ∈ Khom. ut

A proof completely analogous to that of [10, Theorem 5.2], in the two-scale setting and
modulo the absence of external loads, would entail the following

Proposition 6.4 (Regularity in time). If t 7→ (u(t), E(t), P (t)) is a two-scale quasi-
static evolution, then

(u,E, P ) ∈ AC(0, T ;BD(Ω ′)× L2(Ω ′ × Y;MN
sym)×Mb(Ω

′
× Y;MN

D)).

Moreover, the following limits exist for a.e. t ∈ [0, T ]:

u̇(t) := lim
s→t

u(s)− u(t)

s − t
weakly∗ in BD(Ω ′),

Ė(t) := lim
s→t

E(s)− E(t)

s − t
strongly in L2(Ω ′ × Y;MN

sym),

Ṗ (t) := lim
s→t

P(s)− P(t)

s − t
weakly∗ in Mb(Ω

′
× Y;MN

D),

with (u̇(t), Ė(t), Ṗ (t)) ∈ A(ẇ(t)). Finally Dhom(0, t;P) ∈ AC(0, T ) and, for a.e.
t ∈ [0, T ],

Ḋhom(0, t;P) = −
∫
Ω×Y

6(t) · Ė(t) dx dy +

∫
Ω

σ(t) · Eẇ(t) dx.



Periodic homogenization in plasticity 457

We need the following lower semicontinuity result for the two-scale dissipation potential
Hhom.

Proposition 6.5 (Lower semicontinuity of Hhom). Let (un, En, Pn) ∈ Ahom(wn) be
such that

un
∗

⇀ u weakly∗ in BD(Ω ′),

En ⇀ E weakly in L2(Ω ′ × Y;MN
sym),

Pn
∗

⇀ P weakly∗ in Mb(Ω
′
× Y;MN

D),

wn→ w strongly in H 1(RN ;RN ).

(6.8)

Then (u,E, P ) ∈ Ahom(w) and

Hhom(P ) ≤ lim inf
n

Hhom(Pn). (6.9)

Proof. Since

Eun ⊗ LNy + Eyµn = En (LNx ⊗ LNy )+ Pn on Ω ′ × Y (6.10)

and in view of Lemma 4.8, we immediately infer that (u,E, P ) ∈ Ahom(w).
The lower semicontinuity (6.9) follows by an argument identical to Step 2 in the proof

of Theorem 5.7 provided that we establish the following result. Let B ⊆ Y be an open set
with Lipschitz boundary and exterior normal denoted by ν, such that ∂B\T is of class C1

for some closed set T ⊆ ∂B with HN−1(T ) = 0. If

PnbΩ ′×B
∗

⇀ λ weakly∗ in Mb(Ω
′
× Y;MN

D),

then
λbΩ ′×(∂B\T ) = (a(x, y)� ν(y))η (6.11)

for a suitable measure η ∈M+

b (Ω
′
×(∂B \ T )) and a Borel map a : Ω ′×(∂B \ T )→ RN

with a(x, y) ⊥ ν(y) for η-a.e. (x, y) ∈ Ω ′ × (∂B \ T ).
In order to establish (6.11), let us consider µn ∈ X (Ω ′) associated with (un, En, Pn).

Up to subsequences, we may assume that

Eyµ
n
bΩ ′×B

∗

⇀ λ̃ weakly∗ in Mb(Ω
′
× Y;MN

sym).

In view of the convergences (6.8) and of the admissibility condition (6.10), the restriction
of λ on Ω ′ × ∂B is the same as that of λ̃.

A direct computation similar to that in the proof of Proposition 4.11 shows that, upon
setting

(Eyµ
n
bΩ ′×B)

i
ε(F ) :=

1
εN
Eyµ

n(Qi
ε × (F ∩ B))

for every Borel set F ⊆ Y , then, as ε→ 0,∑
i∈Iε(Ω ′)

(LNx bQiε )⊗ (Eyµ
n
bΩ ′×B)

i
ε

∗

⇀ Eyµ
n
bΩ ′×B weakly∗ in Mb(Ω

′
× Y;MN

sym).
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Since, with obvious notation,

(Eyµ
n
bΩ ′×B)

i
ε = (Eyµ

n)iεbB,

a diagonalization process yields the existence of a sequence {εn ↘ 0}n∈N such that∑
i∈Iεn (Ω

′)

(LNx bQiεn )⊗ (Eyµ
n)iεnbB

∗

⇀ λ̃ weakly∗ in Mb(Ω
′
× Y;MN

sym).

Now,
(µn)iεn ∈ BD(Y) and Ey(µ

n)iεn = (Eyµ
n)iεn . (6.12)

Indeed, in view of Lemma 5.4,

µn = µnx(y)(ηn ⊗ LNy )

where ηn := LNx + (proj# |Pn|)
s , and (x, y) 7→ µnx(y) ∈ RN is a Borel map with

µnx ∈ BD(Y) for η-a.e. x ∈ Ω . Moreover, x 7→ Eyµ
n
x is ηn-measurable and Eyµn =

ηn
gen.
⊗ Eyµ

n
x .

For every ε > 0, i ∈ Iε(Ω) and g ∈ C1(Y;MN
sym),

(µn)iε(divy g) =
∫
Qiε×Y

µnx(y) · divy g(y) dηn(x) dy

=

∫
Qiε

(∫
Y
µnx(y) · divy g(y) dy

)
dηn(x)

= −

∫
Qiε

(∫
Y
g(y) dEyµ

n
x(y)

)
dηn(x) = −

∫
Qiε×Y

g(y) dEyµ
n

= −(Eyµ
n)iε(g),

where all integrals above are meaningful, hence (6.12).
Then, for every χ ∈ C1

c (Ω
′
× Y;MN

sym) with divy χ = 0,∫
Ω ′×Y

χ(x, y)λ̃(x, y) = lim
n

∑
i∈Iεn (Ω

′)

∫
Qiεn

(∫
B
χ(x, y) d(Eyµ

n)iεn

)
dx

= lim
n

∑
i∈Iεn (Ω

′)

∫
Qiεn

(∫
B
χ(x, y) dEy(µ

n)iεn

)
dx

= lim
n

∑
i∈Iεn (Ω

′)

∫
Qiεn

(∫
∂B
χ(x, y) · [(µn)iεn(y)� ν(y)] dH

N−1(y)

)
dx. (6.13)

At the expense of subtracting infinitesimal rigid body motions on B, we may assume that∫
∂B
|(µn)iεn | dH

N−1
≤ C|Ey(µ

n)iεn |(B) ≤
C

εNn
|Eyµ

n
|(Qi

εn
× B)

for some constant C > 0 independent of n and i. Since {Eyµn}n∈N is a bounded sequence
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in Mb(Ω
′
× Y;MN

sym), the measures∑
i∈Iεn (Ω

′)

(LNx bQiεn )⊗ (µ
n)iεnH

N−1
b∂B ∈Mb(Ω

′
× ∂B;RN )

and ∑
i∈Iεn (Ω

′)

(LNx bQiεn )⊗ [(µ
n)iεn � νH

N−1
b∂B] ∈Mb(Ω

′
× ∂B;MN

sym)

form bounded sequences, so that, up to subsequences, we may assume that∑
i∈Iεn (Ω

′)

(LNx bQiεn )⊗ (µ
n)iεnH

N−1
b∂B

∗

⇀ ζ ∈Mb(Ω
′
× ∂B;RN ),

and∑
i∈Iεn (Ω

′)

(LNx bQiεn )⊗ [(µ
n)iεn � νH

N−1
b∂B]

∗

⇀ π weakly∗ in Mb(Ω
′
× ∂B;MN

sym).

In view of Lemma 4.9 and (6.13), there exists µ ∈ X (Ω ′) such that

λ̃ = π + Eyµ.

Since ν is continuous on ∂B \ T , we immediately deduce that

πb∂B\T =
ζ

|ζ |
� ν |ζ |b∂B\T ,

so that by appealing to Proposition 4.7(b), (6.11) follows. ut

The following result finally yields the flow rule for two-scale quasi-static evolutions.

Theorem 6.6 (Two-scale flow rule). Assume that Y is a C2-admissible multiphase torus
and that ∂b∂ΩΓd is admissible in the sense of Definition 2.1. Let t 7→ (u(t), E(t), P (t)) ∈

Ahom(w(t)) be a two-scale quasi-static evolution. Then, for a.e. t ∈ [0, T ],
(a) (u̇(t), Ė(t), Ṗ (t)) ∈ Ahom(ẇ(t));
(b) for LNx -a.e. x ∈ Ω ,

Ṗx(t)

|Ṗx(t)|
(y) ∈ NK(y)(6D(t, x, y)) for LNy -a.e. y ∈ {|Ṗx(t)| > 0},

where Ṗx results from the decomposition (5.8) of Lemma 5.4;
(c) letting µ̇(t) ∈ X (Ω ′) be the measure associated with (u̇(t), Ė(t), Ṗ (t)) ∈

Ahom(ẇ(t)), for LNx -a.e. x ∈ Ω and for every i 6= j ,

µ̇ix(t, y)− µ̇
j
x(t, y)

|µ̇ix(t, y)− µ̇
j
x(t, y)|

∈ ENKΓ (y)((6D(t, x, ·)ν)τ (y))

for HN−1-a.e. y ∈ {µ̇ix(t) 6= µ̇
j
x(t)},

where µ̇x(t) results from the disintegration (5.9) of µ̇(t), µ̇ix(t) and µ̇jx(t) are the
traces on Γij of the restrictions of µ̇x(t) on Yi and Yj respectively, assuming that ν
points from Yj to Yi , and ENKΓ (y)(τ ) denotes the normal cone (a cone of vectors) to
KΓ (y) at a vector τ ⊥ ν(y).
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Proof. Let t ∈ [0, T ] be a time such that ẇ(t) exists in H 1(RN ;RN ), and
u̇(t), Ė(t), Ṗ (t), Ḋhom(0, t;P) all exist in the sense of Proposition 6.4 with

Ḋhom(0, t;P) = −
∫
Ω×Y

6(t) : Ė(t) dx dy +

∫
Ω

σ(t) : Eẇ(t) dx.

By Proposition 6.5 we deduce that (u̇(t), Ė(t), Ṗ (t)) ∈ Ahom(ẇ(t)). Since Dhom is a
total variation, and since Hhom is positively one-homogeneous, for t1 > t we have

Hhom
(
P(t1)− P(t)

t1 − t

)
≤

Dhom(0, t1;P)−Dhom(0, t;P)
t1 − t

.

Hence, taking the limit for t1 → t , and appealing to Proposition 6.5, we infer that

Hhom(Ṗ (t)) ≤ −

∫
Ω×Y

6(t) : Ė(t) dx dy +

∫
Ω

σ(t) : Eẇ(t) dx.

But 6(t) ∈ Khom by Lemma 6.3, so that the opposite inequality holds true in view of
Remark 5.13, and we obtain

Hhom(Ṗ (t)) = −

∫
Ω×Y

6(t) : Ė(t) dx dy +

∫
Ω

σ(t) : Eẇ(t) dx dy.

The result then immediately follows from Theorem 5.12. ut

Remark 6.7. The disintegrations of P(t) and Ṗ (t) do not imply that Ṗx(t) is the deriva-
tive of Px(t) in the weak∗ (or strict) sense of Proposition 6.4. Consequently, the flow rule
of Theorem 6.6 cannot be construed as completely vindicating the two-scale evolution as
that corresponding to a generalized standard material in the sense of [13].

But worse still, our flow rules view Px (as functions of y, t) as the internal vari-
ables, whereas a consistent thermodynamical model would freeze the variable y ∈ Y
and seek a flow rule in the variable x. In truth, we do not have enough structure on the
measures P and on the functions 6 to switch the disintegration around, that is, to write

P = κ
gen.
⊗ Py with κ ∈M+

b (Y) and Py ∈Mb(Ω
′
;MN

D), and to hope for a flow rule in x
for LNy -a.e. y ∈ Y .

These discrepancies will hopefully be resolved in future investigations.
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