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Abstract. In this paper we extend the holomorphic analytic torsion classes of Bismut and Köhler
to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we
propose an axiomatic definition and give a classification of the theories of generalized holomorphic
analytic torsion classes for projective morphisms. The extension of the holomorphic analytic tor-
sion classes of Bismut and Köhler is obtained as the theory of generalized analytic torsion classes
associated to −R/2, R being the R-genus. As an application of the axiomatic characterization, we
give new simpler proofs of known properties of holomorpic analytic torsion classes, we give a char-
acterization of the R-genus, and we construct a direct image of hermitian structures for projective
morphisms.

Keywords. Grothendieck–Riemann–Roch theorem, holomorphic analytic torsion, Quillen metric,
Grothendieck duality

1. Introduction

The aim of this paper is to extend the classes of analytic torsion forms introduced by Bis-
mut and Köhler to arbitrary projective morphisms between complex algebraic varieties.
The main tool for this extension is an axiomatic characterization of all the possible theo-
ries of holomorphic analytic torsion classes. Before stating what we mean by a theory of
holomorphic analytic torsion classes, we briefly recall the origin of analytic torsion.

R-torsion is a topological invariant attached to certain euclidean flat vector bundles
on a finite CW-complex. This invariant was introduced by Reidemeister and general-
ized by Franz in order to distinguish non-homeomorphic lens spaces that have the same
homology and homotopy groups. Let W be a connected CW-complex and let K be an
orthogonal representation of π1(W). ThenK defines a flat vector bundle with a euclidean
inner product EK . Assume that the chain complex of W with values in EK is acyclic.
Then the R-torsion is the determinant of this complex with respect to a preferred basis.
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Later, Ray and Singer introduced an analytic analogue of R-torsion and they con-
jectured that, for compact riemannian manifolds, this analytic torsion agrees with the
R-torsion. This conjecture was proved by Cheeger and Müller. IfW is a riemannian man-
ifold and K is as before, then we have the de Rham complex of W with values in EK
at our disposal. The hypothesis on K implies that (�∗(W,EK), d) is also acyclic. Then
analytic torsion is essentially the determinant of the de Rham complex. Here the difficulty
is that the vector spaces �p(W,EK) are infinite-dimensional and therefore the “determi-
nant” has to be defined using a zeta function regularization involving the laplacian. More
details on the construction of R-torsion and analytic torsion can be found in [41].

Ray and Singer observed that, with the help of hermitian metrics, the acyclicity con-
dition can be removed. Moreover, their definition of analytic torsion can be extended to
any elliptic complex. In [42], they introduced a holomorphic analogue of analytic torsion
as the determinant of the Dolbeault complex. They also studied some of its properties and
computed some examples. In particular, they showed that this invariant depends on the
complex structure and they gave a hint that holomorphic analytic torsion should be inter-
esting in number theory. This holomorphic analytic torsion and its generalizations are the
main object of study of the present paper. Since this is the only kind of analytic torsion
that we will consider, throughout the paper, by analytic torsion we will mean holomorphic
analytic torsion.

In [40], Quillen, using analytic torsion, associated to each holomorphic hermitian vec-
tor bundle on a Riemann surface a hermitian metric on the determinant of its cohomology.
Furthermore, he showed that this metric varies smoothly with the holomorphic structure
on the vector bundle. He also computed the curvature of the hermitian line bundle on the
space of all complex structures obtained in this way.

Subsequently Bismut and Freed [7], [8] generalized the construction of Quillen to
families of Dirac operators on the fibers of a smooth fibration. They obtained a smooth
metric and a unitary connection on the determinant bundle associated with the family
of Dirac operators. Furthermore, they computed the curvature of this connection, which
agrees with the degree 2 part of the differential form obtained by Bismut in his proof of the
Local Family Index theorem [2]. Later, in a series of papers [9], [10], [11], Bismut, Gillet
and Soulé considered the case of a holomorphic submersion endowed with a holomorphic
hermitian vector bundle. They defined a Quillen type metric on the determinant of the
cohomology of the holomorphic vector bundle. In the locally Kähler case, they showed
the compatibility with the constructions of Bismut–Freed. In addition they described the
variation of the Quillen metric under change of the metric on the vertical tangent bundle
and on the hermitian vector bundle. The results of [9], [10], [11] represent a rigidification
of [7], [8]. All in all, these works explain the relationship between analytic torsion and
the Atiyah–Singer index theorem and, in the algebraic case, with Grothendieck’s relative
version of the Riemann–Roch theorem.

In [20], Deligne, inspired by the Arakelov formalism, gave a formula for the Quillen
metric that is a very precise version of the degree one case of the Riemann–Roch theorem
for families of curves. This result is in the same spirit as the arithmetic Riemann–Roch
theorem of Faltings [23]. In [29], Gillet and Soulé conjectured an arithmetic Riemann–
Roch formula that generalizes the results of Deligne and Faltings. Besides the Quillen
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metric, this Riemann–Roch formula involves a mysterious new odd additive characteristic
class, the R-genus, that they computed with the help of Zagier.

In [14] Bismut and Lebeau studied the behavior of analytic torsion with respect
to complex immersions. Their compatibility formula also involved the R-genus. Later
Bost [15] and Roessler [43] explained, using geometric arguments, why the same genus
appears both in the arithmetic Riemann–Roch formula and the Bismut–Lebeau compat-
ibility formula. However these geometric arguments do not characterize the R-genus.
Gillet and Soulé [30] proved the degree one part of the arithmetic Riemann–Roch theo-
rem. A crucial ingredient of the proof is the compatibility formula of Bismut–Lebeau.

In order to establish the arithmetic Riemann–Roch theorem in all degrees it was nec-
essary to generalize analytic torsion and define higher analytic torsion classes. It was
clear from [30] that, once a suitable theory of higher analytic torsion classes satisfying
certain properties were developed, the arithmetic Riemann–Roch theorem would follow.
A first definition of such forms was given by Gillet and Soulé [29], but they did not
prove all the necessary properties. A second equivalent definition was given by Bismut
and Köhler [13], where some of the needed properties were proved. The compatibility
of higher analytic torsion classes with complex immersions, i.e. the generalization of the
Bismut–Lebeau compatibility formula, was proved in [3]. As a consequence, Gillet, Soulé
and Rössler [25] extended the arithmetic Riemann–Roch theorem to arbitrary degrees.

In the book [24], Faltings followed a similar strategy to define direct images of her-
mitian vector bundles and proved an arithmetic Riemann–Roch formula up to a unique
unknown odd genus.

The arithmetic Riemann–Roch theorems of Gillet–Soulé and Faltings deal only with
projective morphisms between arithmetic varieties that, at the level of complex points,
define a submersion. By contrast, in his thesis [49] Zha follows a completely different
strategy to establish an arithmetic Riemann–Roch theorem without analytic torsion. His
formula does not involve the R-genus. Moreover Zha’s theorem is valid for any projective
morphism between arithmetic varieties.

In [44], Soulé advocates for an axiomatic characterization of analytic torsion, similar
to the axiomatic characterization of Bott–Chern classes given by Bismut–Gillet–Soulé
in [9]. Note that R-torsion has also been generalized to higher degrees giving rise to
different higher torsion classes. In [33], Igusa gives an axiomatic characterization of these
higher torsion classes.

We now explain more precisely what we mean by a theory of generalized analytic
torsion classes. The central point is the relationship between analytic torsion and the
Grothendieck–Riemann–Roch theorem. From now on, by a smooth complex variety we
will mean the complex manifold associated to a smooth quasi-projective variety over C.

Let π : X → Y be a smooth projective morphism of smooth complex varieties. Let
ω be a closed (1, 1)-form on X that induces a Kähler metric on the fibers of π and,
moreover, a hermitian metric on the relative tangent bundle Tπ . We denote by T π the
relative tangent bundle equipped with this metric.

Let F = (F, hF ) be a hermitian vector bundle on X such that for every i ≥ 0, Riπ∗F
is locally free. We consider on Riπ∗F the L2 metric obtained using Hodge theory on the
fibers of π and denote the corresponding hermitian vector bundle as Riπ∗F . To these
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data, Bismut and Köhler associate an analytic torsion differential form τ that satisfies the
differential equation

∗∂∂̄τ =
∑

(−1)i ch(Riπ∗F)− π∗(ch(F )Td(T π )), (1.1)

where ∗ is a factor that takes into account that we are working with characteristic classes
with the algebro-geometric normalization, while Bismut and Köhler work with the topo-
logical normalization (see Section 8 for more details). Moreover, if we consider the class
of τ up to Im ∂ + Im ∂̄ , then τ behaves nicely with respect to changes of metric.

The Grothendieck–Riemann–Roch theorem in de Rham cohomology says that the
differential form on the right side of (1.1) is exact. Thus, the existence of higher analytic
torsion classes provides an analytic proof of this theorem.

Since the Grothendieck–Riemann–Roch theorem is valid in more generality, it is nat-
ural to extend the notion of higher analytic torsion classes to non-smooth morphisms. To
this end we will use the language of hermitian structures on the objects of the bounded
derived category of coherent sheaves developed in [17]. In particular we will make ex-
tensive use of the category Db

introduced there. Since, from now on, derived categories
will be the natural framework, all functors will be tacitly assumed to be derived functors.
Let f : X → Y be a projective morphism between smooth complex varieties. Let F be
a hermitian vector bundle on X. Now, the relative tangent complex Tf and the derived
direct image f∗F are objects of the bounded derived category of coherent sheaves on X
and Y respectively. Since X and Y are smooth, using resolutions by locally free sheaves,
we can choose hermitian structures on Tf and f∗F . Hence we have characteristic forms
ch(f∗F) and Td(Tf ). We denote by f the morphism f together with the choice of hermi-
tian structure on Tf . Then the triple ξ = (f , F , f∗F) will be called a relative hermitian
vector bundle. This is a particular case of the relative metrized complexes of Section 2.

Then, a generalized analytic torsion class for ξ is the class modulo Im ∂ + Im ∂̄ of a
current that satisfies the differential equation

∗∂∂̄τ = ch(f∗F)− f∗(ch(F )Td(Tf )). (1.2)

Note that such a current τ always exists: the Grothendieck–Riemann–Roch theorem in de
Rham cohomology implies that the right hand side of (1.2) is an exact current. Thus, if Y
is proper, the ddc-lemma implies the existence of such a current. When Y is non-proper,
a compactification argument allows us to reduce to the proper case.

Of course, in each particular case, there are many choices for τ . We can add to τ any
closed current and obtain a new solution of (1.2). By a theory of generalized analytic
torsion classes we mean a coherent way of choosing a solution of (1.2) for all relative
hermitian vector bundles, satisfying a certain natural minimal set of properties.

Each theory of generalized analytic torsion classes gives rise to a definition of direct
images in arithmetic K-theory and therefore to an arithmetic Riemann–Roch formula. In
fact, the arithmetic Riemann–Roch theorems of Gillet–Soulé and of Zha correspond to
different choices of a theory of generalized analytic torsion classes. We leave for a subse-
quent paper the discussion of the relation with the arithmetic Riemann–Roch formula.

Since each projective morphism is the composition of a closed immersion followed
by the projection of a projective bundle, it is natural to study first the analytic torsion
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classes for closed immersions and projective bundles and then combine them in a global
theory of analytic torsion classes.

In [19] the authors studied the case of closed immersions (see Section 3). The general-
ized analytic torsion classes for closed immersions are called singular Bott–Chern classes
and we will use both terms interchangeably. The definition of a theory of singular Bott–
Chern classes is obtained by imposing axioms analogous to those defining the classical
Bott–Chern classes [26]. Namely, a theory of singular Bott–Chern classes is an assign-
ment that, to each relative hermitian vector bundle ξ = (f , F , f∗F), with f a closed
immersion, assigns the class of a current T (ξ) on Y , satisfying the following properties:

(i) the differential equation (1.2);
(ii) functoriality for morphisms that are transverse to f ;

(iii) a normalization condition.

A crucial observation is that, unlike the classical situation, these axioms do not character-
ize the singular Bott–Chern classes uniquely. Consequently there are various nonequiv-
alent theories of singular Bott–Chern classes. They are classified by an arbitrary charac-
teristic class of F and Tf . If we further impose the condition that the theory is transitive
(that is, compatible with composition of closed immersions) and compatible with the pro-
jection formula, then the ambiguity is reduced to an arbitrary additive genus on Tf . The
uniqueness can be obtained by adding to (i)–(iii) an additional homogeneity property. The
theory obtained is transitive and compatible with the projection formula and agrees (up
to normalization) with the theory introduced in [12].

Similarly, one can define a theory of analytic torsion classes for projective spaces
(Section 5). This is an assignment that, to each relative hermitian vector bundle ξ =
(f , F , f∗F), where f : PnY → Y is the projection of a trivial projective bundle, assigns
the class of a current T (ξ) with the properties analogous to (i)–(iii), plus additivity and
compatibility with the projection formula. The theories of analytic torsion classes for
projective spaces are classified by their values in the cases Y = SpecC, n ≥ 0, F = O(k),
0 ≤ k ≤ n for one particular choice of metrics (see Theorem 5.9).

We say that a theory of analytic torsion classes for closed immersions and one for
projective spaces are compatible if they satisfy a compatibility equation similar to the
Bismut–Lebeau compatibility formula for the diagonal immersion 1 : PnC → PnC × PnC,
n ≥ 0. Given a theory of singular Bott–Chern classes that is transitive and compatible
with the projection formula, there exists a unique theory of analytic torsion classes for
projective spaces that is compatible with it (Theorem 6.4).

The central result of this paper (Theorem 7.7) is that, given a theory of singular Bott–
Chern classes and a compatible theory of analytic torsion classes for projective spaces,
they can be combined to produce a unique theory of generalized analytic torsion classes
(Definition 7.1). Moreover, every theory of analytic torsion classes arises in this way. Thus
we have a complete classification of the theories of generalized analytic torsion classes
by additive genera.

Once we have proved the classification theorem, we derive several applications. The
first consequence of Theorem 7.7 is that the classes of analytic torsion forms of Bismut–
Köhler arise as the restriction to smooth projective morphisms of the theory of gener-
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alized analytic torsion classes associated to minus half the R-genus (Theorem 8.8). In
particular, we have succeeded in extending Bismut–Köhler analytic torsion classes to
arbitrary projective morphisms in the category of smooth quasi-projective complex vari-
eties. Moreover, we reprove, in the quasi-projective setting, and generalize to non-smooth
projective morphisms, the theorems of Berthomieu–Bismut [1] and Ma [35], [36] on the
compatibility of analytic torsion with the composition of submersions (Corollary 8.11).
Note however, that the results of Bismut–Köhler, Berthomieu–Bismut and Ma are valid
for Kähler fibrations of complex manifolds without the hypothesis of quasi-projectivity,
while in this paper all varieties are quasi-projective.

The second application of the classification theorem is a characterization of the R-
genus. From the axiomatic point of view, the role played by the R-genus is mysterious. It
would seem more natural to consider the generalized analytic torsion classes associated
to the trivial genus 0. This is the choice made implicitly by Zha in his thesis [49]. In
fact, from our point of view, one of the main results of Zha’s thesis is the existence of a
theory of analytic torsion classes associated to the trivial genus. This theory leads to an
arithmetic Riemann–Roch formula identical to the classical one without any correction
term. Thus, one is tempted to consider the R-genus as an artifact of the analytic definition
of analytic torsion. Nevertheless, by the work of several authors, the R-genus seems to
have a deeper meaning. A paradigmatic example is the computation by Bost and Kühn
[34] of the arithmetic self-intersection of the line bundle of modular forms on a modular
curve, provided with the Petersson metric. This formula gives an arithmetic meaning to
the first term of the R-genus. Thus it is important to characterize the R-genus from an
axiomatic point of view and to understand its role in the above computations.

From a theorem of Bismut [5] we know that the Bismut–Köhler analytic torsion
classes of the relative de Rham complex of a Kähler fibration (with the appropriate her-
mitian structures) vanish. This result is important because one of the main difficulties
to apply the arithmetic Riemann–Roch theorem is precisely the estimation of analytic
torsion. Moreover, this result explains why the terms of the R-genus appear in different
arithmetic computations. For instance, the equivariant version of this result (due to Mail-
lot and Roessler in degree 0 and to Bismut in general) allows Maillot and Roessler [37]
to prove some cases of a conjecture of Gross–Deligne.

The above vanishing property characterizes the analytic torsion classes of Bismut
and Köhler. In order to show this, we first construct the dual theory T ∨ to a given the-
ory T of generalized analytic torsion classes (Theorem & Definition 9.10). A theory is
self-dual (T = T ∨) if and only if the even coefficients of the associated genus vanish
(Corollary 9.14). In particular, Bismut–Köhler’s theory is self-dual. Self-duality can also
be characterized in terms of the de Rham complex of smooth morphisms (Theorem 9.18).
A theory T is self-dual if its components of bidegree (2p − 1, p), p odd, in the Deligne
complex, vanish on the relative de Rham complexes of Kähler fibrations. Finally, in The-
orem 9.24 we show that, if it exists, a theory of analytic torsion classes that vanishes, in
all degrees, on the relative de Rham complexes of Kähler fibrations is unique, hence it
agrees with Bismut–Köhler’s. In fact, to characterize this theory, it is enough to assume
the vanishing of the analytic torsion classes for the relative de Rham complexes of Kähler
fibrations of relative dimension one. To establish this characterization we appeal to the
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non-vanishing of the tautological class κg−2 on the moduli stack Mg of smooth curves
of genus g ≥ 2.

The third application of generalized analytic torsion classes is the construction of
direct images of hermitian structures. We consider the category Sm∗/C introduced in
[17]. The objects of this category are smooth complex varieties, and the morphisms are
projective morphisms equipped with a hermitian structure on the relative tangent com-
plex. Assume that we have chosen a theory of generalized analytic torsion classes. Let
f : X → Y be a morphism in Sm∗/C. One would like to define a direct image functor

f∗ : Db
(X)→ Db

(Y ). It turns out that, using analytic torsion, we cannot define the direct
image functor on the category Db

and we have to introduce a new category D̂b. Roughly
speaking, the relation between D̂b and Db is the same as the relation between the arith-
metic K-groups and the usual K-groups [28]. Then we are able to define a direct image
functor f∗ : D̂b(X)→ D̂b(Y ) that satisfies the composition rule, projection formula and
base change. Moreover, if the theory of generalized analytic torsion is self-dual (Bismut–
Köhler theory) this functor satisfies a Grothendieck duality theorem. In a forthcoming
paper, the direct image functor will be the base of an arithmetic Grothendieck–Riemann–
Roch theorem for projective morphisms.

The last application that we discuss is a new proof of a theorem of Bismut–Bost on
the singularity of the Quillen metric for degenerating families of curves, whose singular
fibers have at most ordinary double points [6]. In contrast with [6], where the spectral
definition of Ray–Singer analytic torsion is required, our arguments rely on the existence
of a generalized theory for arbitrary projective morphisms and some elementary compu-
tations of Bott–Chern classes. This theorem has already been generalized by Bismut [4]
and Yoshikawa [48] to families of varieties of arbitrary dimension. In fact, our approach
is very similar to the one in [4] and [48]. One of the main ingredients of their proof is the
Bismut–Lebeau immersion formula, while our approach uses implicitly Bismut’s gener-
alization of the immersion formula in the comparison between Bismut–Köhler analytic
torsion and a theory of generalized analytic torsion classes. But we want to emphasize
that, once we have identified Bismut–Köhler as (part of) a theory of generalized ana-
lytic torsion classes, many arguments can be simplified considerably because the theory
has been extended to non-smooth projective morphisms. For simplicity, we treat only the
case of families of curves and the Quillen metric, but the methods can be applied to higher
dimensional families and analytic torsion forms of higher degree.

A few words about notations. The normalizations of characteristic classes and Bott–
Chern classes in this paper differ from the ones used by Bismut, Gillet–Soulé and other
authors. The first difference is that they work with real valued characteristic classes,
while we use characteristic classes in Deligne cohomology, which naturally include the
algebro-geometric twist. The second difference is a factor 1/2 in Bott–Chern classes,
which explains the factor 1/2 that appears in the characteristic class associated to the
torsion classes of Bismut–Köhler. This change of normalization appears already in [16]
and its objective is to avoid the factor 1/2 that appears in the definition of arithmetic de-
gree in [27, §3.4.3] and the factor 2 that appears in [27, Theorem 3.5.4] when relating
Green currents with the Beilinson regulator. The origin of this factor is that the natural
second order differential equation that appears when defining Deligne–Beilinson coho-
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mology is dD = −2∂∂̄ , while the operator used when dealing with real valued forms is
d dc = 1

4πi dD . Thus the characteristic classes that appear in the present article only agree
with the ones in the papers of Bismut, Gillet and Soulé after renormalization. With respect
to the work of these authors we have also changed the sign of the differential equation
that characterizes singular Bott–Chern classes. In this way, the same differential equation
appears when considering both singular Bott–Chern classes and analytic torsion classes.
This change is necessary to combine them.

We point out that our construction of generalized analytic torsion classes is influenced
by the thesis of Zha [49], where the author uses implicitly a theory of analytic torsion
classes different from that of Bismut–Köhler.

Further applications of generalized analytic torsion classes are left for future work. We
plan to prove generalizations of the arithmetic Grothendieck–Riemann–Roch theorem of
Gillet–Soulé [30] and Gillet–Rössler–Soulé [25] to arbitrary projective morphisms, along
the lines of [19].

It is possible to compute explicitly the characteristic numbers of the unique theory of
analytic torsion classes for projective spaces compatible with the homogeneous theory for
closed immersions. This computation makes the characterization of generalized analytic
torsion classes more precise. Nevertheless, since this computation is much more transpar-
ent when written in terms of properties of arithmetic Chow groups and the Riemann–Roch
theorem, we leave it to the paper devoted to the arithmetic Riemann–Roch theorem.

We also plan to study the possible axiomatic characterization of equivariant analytic
torsion classes. Note that the characterization of equivariant singular Bott–Chern forms
has already been obtained by Tang [45].

2. Deligne complexes, transverse morphisms and relative metrized complexes

In this section we fix the notations and conventions used through the article, we also recall
the definition of transverse morphisms and we review some basic properties. Finally we
introduce the notion of relative metrized complex, and explain some basic constructions.

In this paper, by a smooth complex variety we will mean the complex manifold as-
sociated to an equi-dimensional smooth quasi-projective variety over C. Hence, they are
always Kähler.

The natural context where one can define the Bott–Chern classes and the analytic
torsion classes is that of Deligne complexes. Recall that, to any Dolbeault complex A
([16, Def. 2.2], [18, Def. 5.7]) we can associate a bigraded complex D∗(A, ∗) called the
Deligne complex of A ([16, Def. 2.5], [18, Def. 5.10]). When A is a Dolbeault algebra
([16, Def. 3.1], [18, Def. 5.13]), then D∗(A, ∗) has a bigraded product, denoted •, which
is graded commutative with respect to the first degree, associative up to homotopy and
satisfies the Leibniz rule. The pieces of this complex that we will use more frequently are

D2p(A, p) = Ap,p ∩ (2πi)pA2p
R , D2p−1(A, p) = Ap−1,p−1

∩ (2πi)p−1A
2p−2
R .

An example of the differential of the Deligne complex, denoted by dD : Dn(A, p)→

Dn+1(A, p), is given, for η ∈ D2p−1(A, p), by dD η = −2∂∂̄η. Then η ∈ D2p−1(A, p)

belongs to Im dD if and only if η = ∂u+ ∂̄v.
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As an example of the product •, if ω ∈ D2p(A, p) and η ∈ Dm(A, q), we can take

η • ω = ω • η = ω ∧ η.

The reader is referred to [18, Definition 5.14] for general formulas.
Let X be a smooth complex variety and E∗(X) the Dolbeault algebra of differen-

tial forms on X (with arbitrary singularities at infinity). This is the basic example of a
Dolbeault algebra. The Deligne algebra of differential forms on X is defined to be

D∗(X, ∗) := D∗(E∗(X), ∗).

This complex computes the analytic Deligne cohomology of X, which agrees with the
Deligne cohomology of X when X is proper.

If X has dimension d , there is a natural trace map given by∫
: H 2d

c (X,R(d))→ R, ω 7→
1

(2πi)d

∫
X

ω.

To take this trace map into account, the Dolbeault complex of currents is constructed
as follows. Denote by E∗c (X)R the space of differential forms with compact support.
Then Dp,q(X) is the topological dual of Ep,qc (X), and Dn(X)R is the topological dual of
Enc (X). In this complex the differential is given by

d T (η) = (−1)nT (d η)

for T ∈ Dn(X)R. For X of dimension d we write

Dp,q(X) = Dd−p,d−q(X), Dn(X)R = (2πi)−dD2d−n(X).

With these definitions, D∗(X) is a Dolbeault complex and it is a Dolbeault module
over E∗(X). We will write

D∗D(X, ∗) := D∗(D∗(X), ∗).

for the Deligne complex of currents on X. The trace map above defines an element

δX ∈ D0
D(X, 0).

More generally, if Y ⊂ X is a subvariety of pure codimension p, then the current integra-
tion along Y , denoted δY ∈ D2p

D (X, p), is given by

δY (ω) =
1

(2πi)d−p

∫
Y

ω.

Let T ∗X0 = T
∗X \ X be the cotangent bundle of X with the zero section removed

and S ⊂ T ∗X0 a closed conical subset. We will denote by (D∗D(X, S, ∗), dD) the Deligne
complex of currents on X whose wave front set is contained in S (see [19, §4]). For
instance, if N∗Y is the conormal bundle to Y , then δY ∈ D2p

D (X,N
∗

Y , p).



472 José Ignacio Burgos Gil et al.

If ω is a locally integrable differential form, we associate to it the current

[ω](η) =
1

(2πi)dimX

∫
X

η ∧ ω.

This map induces an isomorphism D∗(X, ∗)→ D∗D(X,∅, ∗) that we use to identify them.
For instance, when in a formula sums of currents and differential forms appear, we will
tacitly assume that the differential forms are converted into currents by this map.

Note also that, if f : X → Y is a proper morphism of smooth complex varieties of
relative dimension e, then there are direct image morphisms

f∗ : Dn
D(X, p)→ Dn−2e

D (X, p − e).

If f is smooth, the direct image of differential forms is defined by first converting them
into currents and then applying the above direct image of currents. If f is a smooth mor-
phism of relative dimension e we can convert them back into differential forms. This
procedure gives us 1/(2πi)e times the usual integration along the fiber.

We shall use the notations and definitions of [19]. In particular, we write

D̃n(X, p) = Dn(X, p)/dD Dn−1(X, p), D̃n
D(X, p) = Dn

D(X, p)/dD Dn−1
D (X, p).

We now recall the definition of the set of normal directions of a map and the definition
of transverse morphisms.

Definition 2.1. Let f : X → Y be a morphism of smooth complex varieties. Let T ∗Y0
be the cotangent bundle to Y with the zero section removed. The set of normal directions
of f is the conic subset of T ∗Y0 given by

Nf = {(y, v) ∈ T
∗Y0 | d f tv = 0}.

Definition 2.2. Let f : X → Y and g : Z → Y be morphisms of smooth complex vari-
eties. We say that f and g are transverse if Nf ∩Ng = ∅.

It is easily seen that, if f is a closed immersion, this definition of transverse mor-
phisms agrees with that given in [31, IV-17.13]. If f and g are transverse, then the carte-
sian productX×

Y
Z is smooth. For lack of a good reference we prove the following result.

Proposition 2.3. Let f : X → Y and g : Z → Y be transverse morphisms of smooth
complex varieties. Then they are tor-independent.

Proof. Since the conditions of being transverse and being tor-independent are both local

in Y ,X andZ, we may assume that the map f factorizes asX
i
→ Y×An

p
→ Y , where i is

a closed immersion and p is the projection. Let g′ : Z ×An→ Y ×An be the morphism
g × id. If f and g are transverse then i and g′ are transverse; and if i and g′ are tor-
independent then f and g are tor-independent. Hence we may suppose that f is a closed
immersion.

Since every closed immersion between smooth schemes is regular, we may assume
that Y = SpecA, X = SpecA/I , where I is an ideal generated by a regular sequence



Generalized holomorphic analytic torsion 473

(s1, . . . , sk) and Z = SpecB. The transversality condition implies that (s1, . . . , sk) is a
regular sequence generating IB. Let K be the Koszul resolution of A/I attached to the
above sequence. ThenK⊗AB is the Koszul resolution of B/IB, hence exact. Therefore,
ToriA(A/I, B) = 0 for all i ≥ 1. Thus f and g are tor-independent. ut

Let now Y ′′
h
→ Y ′

g
→ Y be morphisms of smooth complex varieties such that g and g ◦ h

are smooth. We form the cartesian diagram

X′′ //

f ′′

��

X′ //

f ′

��

X

f

��
Y ′′

h // Y ′
g // Y

The smoothness of g implies that Nf ′ = g∗Nf . Then the smoothness of g ◦h implies that
h and f ′ are transverse. Therefore, any current η ∈ D∗D(Y

′, Nf ′ , ∗) can be pulled back to
a current h∗η ∈ D∗D(Y

′′, Nf ′′ , ∗).
The following result will be used to characterize several Bott–Chern classes and ana-

lytic torsion classes.

Lemma 2.4. Let f : X → Y be a morphism of smooth complex varieties. Let ϕ̃ be an
assignment that, to each smooth morphism of complex varieties g : Y ′ → Y and each
acyclic complex A of hermitian vector bundles on X′ := X ×

Y
Y ′, assigns a class

ϕ̃(A) ∈
⊕
n,p

D̃n
D(Y

′, g∗Nf , p)

with the following properties:

(i) (Differential equation) dD ϕ̃(A) = 0;
(ii) (Functoriality) for each morphism h : Y ′′ → Y ′ of smooth complex varieties with

g ◦ h smooth, we have h∗ϕ̃(A) = ϕ̃(h∗A);
(iii) (Normalization) if A is orthogonally split, then ϕ̃(A) = 0.

Then ϕ̃ = 0.

Proof. The argument of the proof of [19, Thm. 2.3] applies mutatis mutandis to the
present situation. One only needs to observe that all the operations with differential forms
of that argument can be extended to the currents that appear in the present situation thanks
to the hypothesis about their wave front sets. ut

In [17] we defined and studied hermitian structures on objects of the bounded derived
category of coherent sheaves on a smooth complex variety. The language and the results of
[17] will be used extensively in this paper. We just mention here that a hermitian metric on
an object F of Db(X) is an isomorphism E 99K F in Db(X), with E a bounded complex
of vector bundles, together with a choice of a hermitian metric on each constituent vector
bundle of E. Such an isomorphism always exists due to the fact that we work in the
algebraic category. A hermitian structure is an equivalence class of hermitian metrics. To
each smooth complex varietyX, we associated the category Db

(X) [17, §3] whose objects
are objects of Db(X) provided with a hermitian structure. We introduced the hermitian
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cone [17, Def. 3.14], denoted cone, of a morphism in Db
(X). We also defined Bott–Chern

classes for isomorphisms [17, Thm. 4.11] and distinguished triangles [17, Thm. 4.18] in
Db
(X). We introduced a universal abelian group for additive Bott–Chern classes. Namely,

the set of hermitian structures on a zero object of Db(X) is an abelian group that we denote
KA(X) [17, Def. 2.31]. Finally, we defined the category Sm∗/C [17, §5] whose objects
are smooth complex varieties and whose morphisms are projective morphisms together
with a hermitian structure on the relative tangent complex.

We now introduce one of the central objects of the paper.

Definition 2.5. Let f : X → Y be a projective morphism of smooth complex varieties
and f ∈ HomSm∗/C(X, Y ) a morphism over f . Let F ∈ Ob Db

(X) and let f∗F ∈

Ob Db
(Y ) be an object over f∗F . The triple ξ = (f ,F , f∗F) will be called a rela-

tive metrized complex. When f is a closed immersion we will also call it an embedded
metrized complex. When F and f∗F are clear from the context we will denote the relative
metrized complex ξ by the morphism f .

Let ξ = (f ,F , f∗F) be a relative metrized complex and let g : Y ′ → Y be a mor-
phism of smooth complex varieties that is transverse to f . Consider the cartesian diagram

X′
g′ //

f ′

��

X

f

��
Y ′

g // Y

(2.6)

Then f ′ is still projective. Moreover, the transversality condition implies that the canoni-
cal morphism g′

∗
Tf 99K Tf ′ is a hermitian structure on Tf ′ . We define

g∗f = (f ′, g′
∗
Tf ) ∈ HomSm∗/C(X

′, Y ′). (2.7)

By tor-independence, there is a canonical isomorphism g∗f∗F 99K f ′∗g′
∗F . There-

fore g∗f∗F induces a hermitian structure on f ′∗g
′∗F .

Definition 2.8. The pull-back of ξ by g is the relative metrized complex

g∗ξ = (g∗f , g′
∗F , g∗f∗F).

Definition 2.9. Let ξ = (f : X → Y,F , f∗F) be a relative metrized complex. Let G be
an object of Db

(Y ). The hermitian structures on f∗F and G induce a natural hermitian
structure on f∗(F ⊗ f ∗G) that we denote f∗F ⊗ G. The tensor product of ξ by G is then
defined to be the relative metrized complex

ξ ⊗ G = (f ,F ⊗ f ∗G, f∗F ⊗ G).

Definition 2.10. Let ξ i = (f ,Fi, f∗Fi), i = 1, 2, be relative metrized coherent com-
plexes on X. Then the direct sum relative metrized complex is

ξ1 ⊕ ξ2 := (f ,F1 ⊕ F2, f∗F1 ⊕ f∗F2).
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We now introduce a notation for Todd-twisted direct images of currents and differen-
tial forms, which will simplify many formulas involving the Todd genus. Let f = (f, Tf )
be a morphism in Sm∗/C. To f we associate a Todd differential form Td(f ) := Td(Tf ) ∈⊕
p D2p(X, p) [17, (5.15)]. Let S be a closed conic subset of T ∗X0. Then we denote

f∗(S) = {(f (x), η) ∈ T
∗Y0 | (x, (d f )tη) ∈ S} ∪Nf . (2.11)

If g : Y → Z is another morphism of smooth complex varieties, it is easy to see that we
have (g ◦ f )∗(S) ⊆ g∗f∗(S).

Definition 2.12. Let f : X→ Y be a morphism in Sm∗/C. For each closed conical subset
S ⊂ T ∗X0, we define the map

f [ : D∗D(X, S, ∗)→ D∗D(Y, f∗S, ∗) by f [(ω) = f∗(ω • Td(f )).

Note that this map is not homogeneous.

Proposition 2.13. Let f : X → Y and g : Y → Z be morphisms in Sm∗/C. Let S ⊂
T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets and let h = f ◦ g. Then

(i) h∗S ⊂ g∗f∗S and h[ = g[ ◦ f [.
(ii) Let θ ∈ D∗D(X, S, ∗) and ω ∈ D∗D(Y, T , ∗). Assume that T ∩Nf = ∅ and T +f∗S is

disjoint from the zero section in T ∗Y0. Then f ∗T +S is disjoint from the zero section
and there is an equality of currents

f [(f
∗(ω) • θ) = ω • f [(θ)

in D∗D(Y,W, ∗), with W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T .

Proof. The inclusion h∗S ⊂ g∗f∗S follows easily from the definition. For the second
statement it is enough to notice the equality of currents

g[(f [(ω)) = (g ◦ f )∗(ω • f
∗ Td(g) • Td(f )) = h∗(ω • Td(h)).

For the second item, it is easy to see that f ∗T + S does not cross the zero section, and
hence both sides of the equality are defined. It then suffices to establish the equality of
currents f∗(f ∗ω • θ) = f∗(ω) • θ. If θ and ω are smooth, then the equality follows from
the definitions. The general case follows by approximation of θ and ω by smooth currents
and the continuity of the operators f ∗ and f∗. ut

Proposition 2.14. Let f be a morphism in Sm∗/C of relative dimension e and S a closed
conical subset of T ∗X0. Let g : Y ′ → Y be a morphism of smooth complex varieties
transverse to f . Consider the cartesian diagram (2.6) and let f

′
= g∗f . Suppose that

Ng′ is disjoint from S. Then:

(i) Ng and f∗S are disjoint and g∗f∗S ⊂ f ′∗g
′∗S;

(ii) g∗ ◦ f [ = f
′

[ ◦ g
′∗.
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Proof. The first claim follows from the definitions. In particular the diagram makes sense.
For the commutativity of the diagram, since g′∗ Td(f ) = Td(f

′
), it suffices to check the

equality of currents g∗f∗(θ) = f ′∗g
′∗(θ) for θ ∈ Dn

D(X, S, p).
By the continuity of the operators g∗, g′∗, f∗ and f ′∗, it is enough to prove the relation

whenever θ is smooth. Moreover, using a partition of unity argument we are reduced to
the following local analytic statement.

Lemma 2.15. Let f : X → Y and g : Y ′ → Y be transverse morphisms of complex
manifolds. Let θ be a smooth differential form on X with compact support. Consider the
diagram (2.6). Then

g∗f∗(θ) = f
′
∗g
′∗(θ). (2.16)

Proof. The map f can be factored as X
ϕ
→ X × Y

p2
→ Y , where ϕ(x) = (x, f (x)) is a

closed immersion and p2, the second projection, is smooth. Using again the continuity of
the operators g∗ (respectively g′∗) and f∗ (respectively f ′∗), we are reduced to proving
(2.16) in the cases when f is smooth and when f is a closed immersion. The case when
f is smooth is clear. Assume now that f is a closed immersion. By transversality, f ′ is
also a closed immersion of complex manifolds. We may assume that θ = f ∗θ̃ for some
smooth form θ̃ on Y . Then (2.16) follows from

g∗f∗θ = g
∗f∗f

∗θ̃ = g∗(θ̃ ∧ δX) = g
∗(θ̃) ∧ δX′ = f

′
∗f
′∗g∗θ̃ = f ′∗g

′∗f ∗θ̃ = f ′∗g
′∗θ.

This concludes the proof of the lemma and the proposition. ut

3. Analytic torsion for closed immersions

In [19], singular Bott–Chern classes for closed immersions of smooth complex varieties
are studied. The singular Bott–Chern classes are the analogue, for closed immersions, of
analytic torsion for smooth morphisms. For this reason, we will call them also analytic
torsion classes. The aim of this section is to recall the main results of [19] and to translate
them into the language of derived categories. We will freely use the notations of [17].

Definition 3.1. A theory of analytic torsion classes for closed immersions is a map that
to each embedded metrized complex ξ = (f : X→ Y,F , f∗F) assigns a class

T (ξ) ∈
⊕
p

D̃2p−1
D (Y,Nf , p)

satisfying the following conditions:

(i) (Differential equation) dD T (ξ) = ch(f∗F)− f [[ch(F)].
(ii) (Functoriality) For every morphism h : Y ′→ Y of smooth complex varieties that is

transverse to f we have h∗T (ξ) = T (h∗ξ).
(iii) (Normalization) If X = ∅ and Y = SpecC, then T (f , 0, 0) = 0.
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When the hermitian structure of f is given by a hermitian metric on N , unraveling
the definitions, the differential equation can be written as

−2∂∂̄T (ξ) = [ch(f∗F)] − f∗([ch(F)] ∧ Td−1(N)).

Recall that, by convention, conversion from differential forms to currents and direct im-
ages of currents implicitly contain a power of 2πi.

Definition 3.2. Let T be a theory of analytic torsion classes for closed immersions.

(i) We say that T is compatible with the projection formula if, for every embedded
metrized complex ξ = (f ,F , f∗F), and every object G ∈ Db

(Y ), we have

T (ξ ⊗ G) = T (ξ) • ch(G). (3.3)

(ii) We say that T is additive if, given ξ i = (f ,Fi, f∗Fi), i = 1, 2, two embedded
metrized complexes, we have

T (ξ1 ⊕ ξ2) = T (ξ1)+ T (ξ2). (3.4)

(iii) We say that T is transitive if, given an embedded metrized complex ξ=(f ,F , f∗F),
a closed immersion of smooth complex varieties g : Y → Z, a morphism g over g,
and an object (g ◦ f )∗F ∈ Ob Db

(Z) over (g ◦ f )∗F , we have

T (g ◦ f ) = T (g)+ g[(T (f )). (3.5)

Remark 3.6. (i) If T is well defined for objects of Db
, then the normalization condition

in Definition 3.1 and the normalization condition in [19, Def. 6.9] are equivalent. Com-
patibility with the projection formula implies the normalization condition and additivity
[19, Prop. 10.9]

(ii) To check that a theory is compatible with the projection formula, it is enough to
consider complexes consisting of a single hermitian vector bundle in degree 0.

Let X be a smooth complex variety and let N be a hermitian vector bundle of rank r .
We denote by P = P(N ⊕ 1) the projective bundle obtained by completing N . Let
πP : P → X be the projection and let s : X → P be the zero section. Since N can
be identified with the normal bundle to X on P , the hermitian metric of N induces a her-
mitian structure on s. We will denote it by s. On P we have a tautological quotient vector
bundle with an induced metric Q. For each hermitian vector bundle F on X we have the
Koszul resolution K(F,N) of s∗F . We denote by K(F,N) the Koszul resolution with
the induced metrics. See [19, Def. 5.3] for details.

Definition 3.7. Let T be a theory of analytic torsion classes for closed immersions. We
say that T is homogeneous if, for every pair of hermitian vector bundles N and F with
rkN = r , there exists a homogeneous class of bidegree (2r−1, r) in the Deligne complex

ẽ(F ,N) ∈ D̃2r−1
D (P,Ns, r)

such that
T (s, F ,K(F ,N)) • Td(Q) = ẽ(F ,N) • ch(π∗PF). (3.8)
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Remark 3.9. Observe that Definition 3.7 is equivalent to [19, Def. 9.2]. The advantage
of the present definition is that it treats on equal footing the case when rkF = 0.

Let D denote the base ring for Deligne cohomology [19, before Def. 1.5]. A conse-
quence of [19, Thm. 1.8] is that there is a bijection between the set of additive genera in
Deligne cohomology and the set of power series in one variable D[[x]]. To each power
series ϕ ∈ D[[x]] it associates the unique additive genus such that ϕ(L) = ϕ(c1(L)) for
every line bundle L.

Definition 3.10. A real additive genus is an additive genus such that the corresponding
power series belongs to R[[x]].

Let 11 ∈ D be the element represented by the constant function 1 of D1(SpecC, 1)
= R. Then Theorem 9.11, Theorem 9.19 and Corollary 9.43 of [19] imply:

Theorem 3.11. (i) There is a unique homogeneous theory of analytic torsion classes
for closed immersions, which we denote T h. This theory is compatible with the pro-
jection formula, additive and transitive.

(ii) Let T be any transitive theory of analytic torsion classes for closed immersions that
is compatible with the projection formula. Then there is a unique real additive genus
ST such that, for any embedded metrized complex ξ := (f ,F , f∗F),

T (ξ)− T h(ξ) = −f∗[ch(F) • Td(Tf ) • ST (Tf ) • 11]. (3.12)

(iii) Conversely, any real additive genus S defines, by means of (3.12), a unique transitive
theory of analytic torsion classes TS for closed immersions that is compatible with
the projection formula and additive.

Proof. Existence and uniqueness for both T h and TS is the content of [19] when restricted
to triples ξ with Tf = NX/Y [−1], F a hermitian vector bundle placed in degree 0 and
f∗F given by a finite locally free resolution. For the general case, we thus need to prove
that the theories of analytic torsion classes for closed immersions in the sense of [19]
uniquely extend to arbitrary ξ , satisfying the desired properties.

Assume given a theory T in the sense of [19], compatible with the projection for-
mula and transitive. We will call T the initial theory. We consider a triple ξ with Tf =

NX/Y [−1] and F ∈ Ob Db
(X). Choose a representative F 99K F of the hermitian struc-

ture on F . We then define T (ξ) by induction on the length of the complex F . First suppose
that F = F d [−d] consists of a single vector bundle placed in degree d . Choose a finite
locally free resolution

· · · → E1
→ E0

→ f∗F
d
→ 0.

Endow the vector bundles Ei with smooth hermitian metrics. Observe that there is an in-
duced isomorphism E[−d]

∼
99K f∗F , in Db

(Y ), whose Bott–Chern classes c̃h are defined
in [17, §4]. We then put

T (ξ) = (−1)dT (NX/Y , F
d
, E)+ c̃h(E[−d]

∼
99K f∗F). (3.13)
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This definition does not depend on the choice of representative of the hermitian structure
on F , nor on the choice of E, due to [17, Thm. 4.11, Prop. 4.13], and [19, Cor. 6.14].
The differential equation is satisfied as a consequence of the differential equations for
T (NX/Y , F

d
, E) and c̃h(E[−d]

∼
99K f∗F). Compatibility with pull-back by morphisms

h : Y ′ → Y transverse to f is immediate as well. Finally, notice that by construction, if
ξ
′
= (NX/Y ,F , f∗F

′
), then

T (ξ ′) = T (ξ)+ c̃h(f∗F
′
, f∗F). (3.14)

Now suppose that T (ξ) has been defined for F of length l, satisfying in addition (3.14).
If F has length l + 1, let F d be the first non-zero vector bundle of F . Consider the exact
sequence of complexes

ε : 0→ σ>dF → F → F
d
[−d] → 0,

where σ>d is the bête filtration. Observe that as a distinguished triangle [17, Definition
3.29], (ε) is tightly distinguished, hence c̃h(ε) = 0. Choose hermitian metrics on f∗σ>dF
and f∗F d [−d]. We thus have a distinguished triangle in Db

(Y )

τ : f∗σ>dF → f∗F → f∗F d [−d] → f∗σ>dF [1] → · · · .

We define

T (ξ) = T (NX/Y , σ
>dF, f∗σ>dF)+ (−1)dT (NX/Y , F

d
, f∗F d)− c̃h(τ ). (3.15)

This does not depend on the choice of hermitian structures on f∗σ>dF and f∗F d , by
the analogue to [17, Thm. 3.33(vii)] for c̃h and because (3.14) holds by assumption for
T (NX/Y , σ

>dF, f∗σ>dF) and T (NX/Y , F
d
, f∗F d). Similarly, (3.14) holds for T (ξ) de-

fined in (3.15). The differential equation and compatibility with pull-back are proven as
in the first case. This concludes the proof of existence in the case that Tf = NX/Y [−1].

To conclude with the existence, we may now consider a general ξ . Choose a hermitian
metric on the normal bundle NX/Y . Put ξ ′ = (NX/Y [−1],F , f∗F). We define

T (ξ) = T (ξ
′
)+ f [[ch(F) • T̃dm(Tf 99K NX/Y [−1])], (3.16)

where T̃dm is the multiplicative Todd secondary class defined in [17, §5]. It is straight-
forward from the definition that T (ξ) satisfies the differential equation and is compatible
with pull-back by morphisms transverse to f . We call T the extended theory.

We now proceed to prove that the extended theory T is transitive and compatible with
the projection formula. For the projection formula, it suffices by Remark 3.6 (ii) to prove
it for a hermitian vector bundle placed in degree 0. This readily follows from the inductive
construction of the extended theory T and the assumptions on the initial theory T . One
similarly establishes transitivity and additivity.

We conclude by observing that, since Lemma 2.4 implies that (3.13)–(3.16) hold, the
theory T (ξ) thus constructed for arbitrary ξ is completely determined by the values T (ξ ′)
with ξ ′ of the form (NX/Y , F ,E) where F is a hermitian vector bundle and E→ f∗F is
a finite locally free resolution.
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Once we have seen that any theory of singular Bott–Chern classes as in [19] can be
uniquely extended, statements (ii) and (iii) follow by combining (7.3) and [19, Corollary
9.43]. Note that the minus sign in (3.12) comes from the fact that S(Tf ) = −S(NX/Y ).

ut

In [19, §6] several anomaly formulas are proved. We now translate these formulas to the
current setting. Recall that we are using the notation of [17] for secondary characteristic
classes.

Proposition 3.17. Let T be a theory of analytic torsion classes for closed immersions.
Let ξ = (f : X→ Y,F , f∗F) be an embedded metrized complex.

(i) If F ′ is another choice of hermitian structure on F and ξ1 = (f : X→ Y,F ′, f∗F),
then

T (ξ1) = T (ξ)+ f [[c̃h(F ′,F)].

(ii) If f
′

is another hermitian structure on f and ξ2 = (f
′
: X→ Y,F , f∗F), then

T (ξ2) = T (ξ)+ f
′

[[ch(F) • T̃dm(f
′
, f )]. (3.18)

(iii) If f∗F
′

is another choice of hermitian structure on f∗F , and ξ3 = (f : X → Y,

F , f∗F
′
), then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).

Proof. We first prove the second assertion. Let E 99K Tf be a representative of the
hermitian structure on Tf . By [17, Thm. 3.13(ii)], we may assume the hermitian structure

on T
f
′ is represented by the composition E ⊕ A

pr1
→ E 99K Tf for some bounded acyclic

complex A of hermitian vector bundles on X. For every smooth morphism g : Y ′ → Y

of complex varieties, consider the cartesian diagram (2.6). We introduce the assignment
that, to every such g and each bounded acyclic complex A of hermitian vector bundles
on X′, assigns the class

ϕ̃(A) = T (g′
∗
ξ)− T

(
(f ′, g′

∗
Tf + [A]), g

′∗F , g∗f∗F
)

+ f ′∗
[
ch(g′∗F)T̃dm((g′

∗
Tf + [A]), g

′∗Tf )Td(g′∗Tf + [A])
]
.

Here [A] stands for the class of A in KA(X′) [17, Def. 2.31] and + denotes the action of
KA(X′) on Db

(X′) [17, Thm. 3.13]. Since ϕ̃ satisfies the hypothesis of Lemma 2.4, we
have ϕ̃ = 0. This concludes the proof of (ii).

To prove (i), we observe that F ′ = F + [A] for some bounded acyclic complex A of
hermitian vector bundles on X. For each cartesian diagram (2.6), we set f

′
= g∗f . Let

ϕ̃1 be the assignment that, to each such diagram and each bounded acyclic complex A of
hermitian vector bundles on X′, assigns the class

ϕ̃1(A) = T (g
′∗ξ)− T

(
f
′
, g′
∗F + [A], g∗f∗F

)
− f

′

[[c̃h(A)].

The hypotheses of Lemma 2.4 are satisfied, hence ϕ̃1 = 0. This concludes the proof of (i).
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Finally, to prove (iii), to each morphism g : Y ′→ Y transverse to f , we associate the
cartesian diagram (2.6) and we consider the assignment ϕ̃2 that, to each bounded acyclic
complex B of hermitian vector bundles on Y ′, assigns the class

ϕ̃2(B) = T (g
′∗ξ)− T

(
f
′
, g′
∗F , g∗f∗F + [B]

)
+ c̃h(B).

By Lemma 2.4 applied to idY , we have ϕ̃2 = 0. This concludes the proof of (iii). ut

The following result provides a compatibility relation for analytic torsion classes for
closed immersions with respect to distinguished triangles. The statement is valid for ad-
ditive theories, in particular the ones we are concerned with.

Proposition 3.19. Let T be an additive theory of analytic torsion classes for closed im-
mersions. Let f : X → Y be a closed immersion of smooth complex varieties. Consider
distinguished triangles in Db

(X) and Db
(Y ) respectively,

τ : F2 → F1 → F0 → F2[1], f∗τ : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],

and the relative hermitian complexes ξ i = (f ,F i, f∗F i), i = 0, 1, 2. Then∑
j

(−1)jT (ξj ) = c̃h(f∗τ)− f [(c̃h(τ )).

Proof. We can assume that the distinguished triangles τ and f∗τ can be represented by
short exact sequences of complexes of hermitian vector bundles

ε : 0→ E2 → E1 → E0 → 0,

ν : 0→ V 2 → V 1 → V 0 → 0.

Applying the explicit construction at the beginning of the proof of [19, Theorem 2.3] to
each row of the above exact sequences, we obtain exact sequences

ε̃i : 0→ Ẽi2 → Ẽi1 → Ẽi0 → 0,

ν̃i : 0→ Ṽ i2 → Ṽ i1 → Ṽ i0 → 0

overX×P1 and Y ×P1 respectively. The restriction of ε̃i (respectively ν̃i) toX×{0} (re-
spectively Y ×{0}) agrees with ε (respectively ν), whereas the restriction toX×{∞} (re-
spectively Y × {∞}) is orthogonally split. The sequences ε̃i and ν̃i form exact sequences
of complexes that we denote ε̃ and ν̃. It is easy to verify that the restrictions to X × {∞}
(respectively Y ×{∞}) are orthogonally split as sequences of complexes. Moreover, there
are isomorphisms Ṽj 99K f∗Ẽj , j = 0, 1, 2. We denote ξ̃j = (f × idP1 , Ẽj , Ṽj ). Then, in
the group

⊕
p D̃

2p−1
D (Y,Nf , p), we have
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0 = dD
1

2πi

∫
P1

−1
2

log t t̄ •
∑
j

(−1)jT (̃ξj )

= T (ξ1)− T (ξ0 ⊕ ξ2)−
1

2πi

∫
P1

−1
2

log t t̄ •
∑
j

(−1)j ch(Ṽj )

+
1

2πi

∫
P1

−1
2

log t t̄ •
∑
j

(−1)j (f × idP1)∗(ch(Ẽj ) • Td(f × idP1))

= T (ξ1)− T (ξ0 ⊕ ξ2)+ c̃h(f∗τ)− f∗(c̃h(τ )Td(f )).

Thus the result follows from additivity. ut

We end this chapter with the relation between the singular Bott–Chern classes of Bismut-
Gillet–Soulé [12] and the theory of homogeneous analytic torsion classes. We draw at-
tention to the difference of normalizations. Let us momentarily denote by τ the theory of
singular Bott–Chern classes of Bismut–Gillet–Soulé. By the anomaly formulas, it may be
extended to arbitrary embedded metrized complexes. Let ξ = (f : X→ Y,F , f∗F) be a
relative metrized complex, with Y of dimension d. If τ (p−1,p−1) denotes the component
of degree (p − 1, p − 1) of the current τ , we define

T BGS(ξ)(2p−1,p)
= −

1
2(2πi)d−(p−1) τ

(p−1,p−1)
∈ D̃2p−1

D (Y,Nf , p). (3.20)

In the above equation, the factor (2πi)p−1 comes from the difference in the normalization
of characteristic classes. In [12] the authors use real valued classes while we use twisted
coefficients. The factor (2πi)d comes from our convention about the Deligne complex
of currents. The factor 2 comes from the fact that the second order differential operator
that appears in the Deligne complex is−2∂∂̄ = 2(2πi)ddc, while the second order differ-
ential operator that appears in the differential equation considered by Bismut, Gillet and
Soulé is ddc. The main reason behind this change is that we want the Bott–Chern classes
to be related to the Beilinson regulator and not to twice the Beilinson regulator (see [27,
Theorem 3.5.4]). Finally, the minus sign comes from the discrepancy of the differential
equations of the singular Bott–Chern forms of Bismut–Gillet–Soulé and the analytic tor-
sion forms of Bismut–Köhler. Note that we are forced to change this sign because we
want to merge singular Bott–Chern forms and analytic torsion forms in a single theory.
We put

T BGS(ξ) =
∑
p≥1

T BGS(ξ)(2p−1,p)
∈

⊕
p

D̃2p−1
D (Y,Nf , p).

We have the following comparison theorem [19, Thm. 9.25].

Theorem 3.21. For every embedded metrized complex ξ we have

T BGS(ξ) = T h(ξ).

4. Regular coherent sheaves

In this section we recall some properties of regular sheaves. Let X be a scheme and let
PnX = PX(V ) be the projective space of lines of the trivial bundle V of rank n+ 1 on X.
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Let π : PnX → X be the natural projection. By abuse of notation, if G is a sheaf on X, we
will also denote by G the inverse image π∗G.

Definition 4.1 ([38, Lecture 14]). A quasi-coherent sheaf F on PnX is called regular if
Rqπ∗F(−q) = 0 for all q > 0.

Recall the following properties of regular sheaves (see [39]).

(i) If G is a quasi-coherent sheaf on X, then G ⊗X OPnX (k) is regular for k ≥ 0.
(ii) If the schemeX is noetherian and F is a coherent sheaf on PnX, then Serre’s vanishing

theorem implies that for d large enough F(d) is regular.
(iii) Let 0 → F2 → F1 → F0 → 0 be an exact sequence of quasi-coherent sheaves

on PnX and d be an integer. Then:

(a) if F2(d) and F0(d) are regular, then F1(d) is regular;
(b) if F2(d + 1) and F1(d) are regular, then F0(d) is regular;
(c) if F0(d) and F1(d + 1) are regular and the map R0π∗(F1(d))→ R0π∗(F0(d))

is surjective, then F2(d + 1) is regular.

(iv) If F is regular, then F(k) is regular for k > 0.
(v) If F is regular, then the canonical map R0π∗F ⊗X OPnX → F is surjective.

Theorem 4.2 ([39, §8.1]). Let F be a regular quasi-coherent sheaf on PnX. Then there
exists a canonical resolution

γcan(F) : 0→ Gn(−n)→ Gn−1(−n+ 1)→ · · · → G0 → F → 0

where Gi (i = 0, . . . , n) are quasi-coherent sheaves on X. Moreover, for every k ≥ 0, the
sequence

0→ Gk → Gk−1 ⊗ Sym1 V ∨→ · · · → G0 ⊗ Symk V ∨→ R0π∗(F(k))→ 0

is exact. Hence the sheaves Gk are determined by F up to unique isomorphism.

Corollary 4.3. Let X be a noetherian scheme and F a coherent sheaf on PnX. Then, for
d large enough, we have a resolution

γd(F) : 0→ Gn(−n− d)→ Gn−1(−n− d + 1)→ · · · → G0(−d)→ F → 0

where Gi , i = 0, . . . , n, are coherent sheaves on X.

Example 4.4. The sheaf O(1) is regular. Its canonical resolution is

0→ 3n+1V ∨(−n)→ 3nV ∨(−n+ 1)→ · · · → 32V ∨(−1)→ V ∨→ O(1)→ 0.

Twisting this exact sequence by O(−1) we obtain the Koszul exact sequence

0→ 3n+1V ∨(−n− 1)→ 3nV ∨(−n)→ · · · → 32V ∨(−2)→ V ∨(−1)→ O→ 0,

which we denote K . We will denote by K(k) its twist by O(k).
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Theorem 4.5 ([49]).

(i) Let F be a regular coherent sheaf on PnX, and let γcan(F) be the canonical resolution
of F as in Theorem 4.2. Let

ε1 : 0→ Fn+k(−n− k)→ · · · → F1(−1)→ F0 → F → 0

be an exact sequence of coherent sheaves, where the Fi are sheaves onX. Then there
exist natural surjective morphisms of sheaves Fi → Gi on X, 0 ≤ i ≤ n, making
commutative the diagram

Fn+1(−n− 1)

��

// Fn(−n)

����

// · · · // F0

����

// F // 0

0 // Gn(−n) // · · · // G0 // F // 0

(4.6)

(ii) Let F be a regular coherent sheaf on X, and γcan(F) the canonical resolution. There
exists a resolution of F(1) of the form

ε2 : 0→ Sn+k(−n− k)→ · · · → S1(−1)→ S0 → F(1)→ 0

such that S0 . . . ,Sn+k are coherent sheaves onX and the following diagram of exact
sequences with surjective vertical arrows is commutative:

Sn+1(−n− 1)

��

// Sn(−n)

����

// · · · // S0

����

// F(1) // 0

0 // Gn(−n+ 1) // · · · // G0(1) // F(1) // 0

Proof. We introduce the sheaves Nj and Kj defined as the kernels at each term of the
sequences γcan and ε1, respectively. Hence, there are exact sequences

0→ Nj+1(j + 1)→ Gj+1 → Nj (j + 1)→ 0,
0→ Kj+1(j + 1)→ Fj+1 → Kj (j + 1)→ 0.

With these notations, observe that N−1 = K−1 = F . By induction, starting from the left
hand side of the long exact sequences, it is easily checked that Nj (j+1) and Kj (j+1) are
regular sheaves, for j ≥ −1. Also, by Theorem 4.2, we find that Gj+1 = π∗(Nj (j + 1))
for j ≥ −1.

We next prove by induction that, for each k ≥ −1, there is a commutative diagram of
exact sequences
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0

��

0

��

0

��
0 // Pk+1 //

��

Hk+1 //

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Fk+1 //

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 1) // Gk+1 //

��

Nk(k + 1) //

��

0

0 0

(4.7)

where Hk+1, Pk and Pk+1 are defined as the kernels of the corresponding morphisms, and
Pk(1) is regular. For k = −1, since N−1 = K−1 = F , we deduce that P−1(1) = 0, hence
regular. Thus it only remains to be shown that there is a surjective morphism F0 → G0 fit-
ting in the diagram (4.6). As we remarked above, K0(1) is regular (so that R1π∗K0 = 0).
Since F0 is a sheaf on X this implies that the map F0 = π∗F0 → π∗F is surjective.
Since, moreover, G0 = π∗F , we obtain our surjective map.

Assume that the statement is true for a fixed k ≥ −1. In order to proceed with the
induction, we need to prove: (a) the map Kk+1(k+2)→ Nk+1(k+2) is surjective, (b) the
sheaf Pk+1(1) is regular, and (c) there is an induced surjective map Fk+2 → Gk+2.

We first prove (a). We apply π∗ to the last two columns of the diagram (4.7). Observ-
ing that Fk+1, Gk+1 and Hj+1 are actually sheaves on X and recalling that Kk+1(k + 2)
is regular, we find a commutative diagram of exact sequences

0 // Hk+1 //

��

Fk+1 //

��

Gk+1 // 0

0 // π∗(Pk(1)) // π∗(Kk(k + 1))

��

// π∗(Nk(k + 1)) // 0

0
It follows that the map Hk+1 � π∗(Pk(1)) is a surjection. Since Pk(1) is regular, we see
that π∗(Pk(1)) ⊗ OPnX � Pk(1) is also a surjection. Thus the map Hk+1 → Pk(1) is
surjective. The diagram (4.7) implies that the map Kk+1(k + 1) → Nk+1(k + 1) is also
surjective. Twisting by O(1), we obtain (a).

Now the regularity of Hk+1 and Pk(1), and the surjectivity of Hk+1 � π∗(Pk(1)),
ensure the regularity of Pk+1(1). In its turn, this shows that the sequence

0→ π∗(Pk+1(1))→ π∗(Kk+1(k + 2))→ π∗(Nk+1(k + 2))→ 0 (4.8)

is exact. Finally, we observe that there is a surjective map

Fk+2 � π∗(Kk+1(k + 2)), (4.9)
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by the regularity of Kk+2(k + 3). From (4.8) and (4.9), we obtain a surjection

Fk+2 � π∗(Nk+1(k + 2)) = Gk+2.

This completes the proof of the inductive step, hence of the existence of the diagram,
from which we deduce (i).

To prove the second item we construct the resolution S∗ inductively. We will denote
by Kk the kernel of any map Sk(−k) → Sk−1(−k + 1) already defined and by Nk the
successive kernels of the canonical resolution of F as in the proof of the first statement.

Assume that we have constructed the sequence ε2 up to Sk(−k) with the further con-
ditions that Kk(k + 1) is regular and that there is an exact sequence

0→ Pk(1)→ Kk(k + 1)→ Nk(k + 2)→ 0

with Pk(1) regular. We have to show that we can extend the resolution one step further
satisfying the same conditions. Recall that we already know that Nk(k+1) is regular. We
consider as well the surjection Gk+1(1)� Nk(k + 2). We form the fiber product

Tk+1 := Ker
(
Kk(k + 1)⊕ Gk+1(1)→ Nk(k + 2)

)
.

Observe that Tk+1 is regular, because both Nk(k+1), Kk(k+1)⊕Gk+1(1) are regular and
the morphism π∗(Kk(k)⊕Gk+1)→ Gk+1 = π∗(Nk(k+1)) is surjective. So are the arrows
Tk+1 → Gk+1(1) and Tk+1 → Kk(k + 1). Therefore, if we define Sk+1 = π∗(Tk+1), we
have a commutative diagram of exact sequences

0

��

0

��

0

��
0 // Pk+1 //

��

Hk+1 //

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Sk+1 //

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 2) // Gk+1(1) //

��

Nk(k + 2) //

��

0

0 0

where Hk+1 and Pk+1 are defined as the kernels of the corresponding morphisms. Thus
we have been able to extend the resolution one step further. We still need to show that this
extension has the extra properties. We observe that, by the definition of Sk+1 and the left
exactness of direct images, the map π∗(Sk+1) → π∗(Gk+1(1)) is surjective. Therefore
Hk+1(1) is regular. Moreover, one can check that Sk+1 is the fiber product

Sk+1 = Ker
(
π∗(Gk+1(1))⊕ π∗(Kk(k + 1))→ π∗(Nk(k + 2))

)
.

This implies easily that π∗(Hk+1) = π∗(Pk(1)). We also observe that, by definition of
fiber product, Pk(1) = Ker(Tk+1 → Gk+1(1)). Since Sk+1 surjects onto Tk+1, we deduce
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that the morphism Hk+1 → Pk(1) is surjective. From this we conclude that the morphism
Kk+1(k + 2) → Nk+1(k + 3) is surjective and that the sheaf Pk+1(1) is regular. Since
Nk+1(k+ 3) is regular, we deduce that Kk+1(k+ 2) is regular. Therefore Sk+1 has all the
required properties, concluding the proof of (ii). ut

We end this section recalling the notion of a generating class of a triangulated category.

Definition 4.10. Let D be a triangulated category. A generating class is a subclass C of D
such that the smallest triangulated subcategory of D that contains C is equivalent to D via
inclusion.

A well-known direct consequence of Theorem 4.2 is the following result.

Corollary 4.11. The class of objects of the form G(k), with G a coherent sheaf in X and
−n ≤ k ≤ 0, is a generating class of Db(PnX).

5. Analytic torsion for projective spaces

Let n be a non-negative integer, V the n + 1-dimensional vector space Cn+1 and Pn :=
Pn(V ) the projective space of lines in V . We write V for the vector space V together
with the standard metric. We will denote by V the trivial vector bundle of fiber V over
any base. In this section we will denote generically by π : PnX → X the projection of the
trivial projective bundle.

We may construct natural relative hermitian complexes that arise by considering the
sheaves O(k), their cohomology and the Fubini–Study metric. If we endow the trivial
sheaf with the standard metric and O(1) with the Fubini–Study metric, then the tangent
bundle Tπ carries a quotient hermitian structure via the short exact sequence

0→ OPnC → O(1)n+1
→ Tπ → 0. (5.1)

We will denote the resulting hermitian vector bundle by T FS
π and call it the Fubini–Study

metric of Tπ . The arrow (π, T FS
π ) in Sm∗/C will be written πFS. We endow the invertible

sheaves O(k) with the k-th tensor power of the Fubini–Study metric on O(1). We refer to
them by O(k).

We now describe natural hermitian structures on the complexes π∗O(k). First assume
k ≥ 0. The sheaf O(k) is π -acyclic, hence π∗O(k) = H0(PnC,O(k)) as a complex con-
centrated in degree 0. This space is naturally equipped with the L2 metric with respect
to the Fubini–Study metric on O(k) and the volume form c1(O(1))∧n/n!(2πi)n on PnC.
Namely, given global sections s, t of O(k),

〈s, t〉L2 =
1

n!(2πi)n

∫
PnC
〈s(x), t (x)〉x c1(O(1))∧n.

Recall that, with the algebro-geometric normalization, c1(O(1)) = ∂∂̄ log ‖s‖2 for any
rational section s of O(1). If −n ≤ k < 0, then π∗O(k) = 0 and we put the trivial metric
on it. Finally, let k ≤ −n− 1. Then the cohomology of π∗O(k) is concentrated in degree
n and there is an isomorphism

π∗O(k) ∼= H0(PnC,O(−k − n− 1))∨[−n].
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Notice that this isomorphism is canonical due to Grothendieck duality and to the natural
identification ωPnC = O(−n− 1). Hence we may endow π∗O(k) with the dual of the L2

metric on H0(PnC,O(−k − n− 1)).

Notation 5.2. For every integer k, we introduce the relative metrized complex

ξn(k) = (π
FS,O(k), π∗O(k)). (5.3)

If X is a smooth complex variety, we will also denote by ξn(k) its pull-back to PnX. Let F
be a metrized coherent sheaf on X. Then we define F(k) and π∗F(k) by the equality

ξn(k)⊗ F = (πFS,F(k), π∗F(k)).

Definition 5.4. Let X be a complex smooth variety and π : PnX → X the projection.
Let π denote the map π with any choice of hermitian structure on the relative tangent
complex. An analytic torsion class for the relative hermitian complex ξ = (π,F , π∗F)
is a class η̃ ∈

⊕
p D̃2p−1(X, p) such that

dD η̃ = ch(π∗F)− π [[ch(F)]. (5.5)

For instance, when X is proper, the Grothendieck–Riemann–Roch theorem for
Deligne cohomology implies that the two currents on the right hand side of (5.5) are
cohomologous. Note that, since the map π is smooth, the analytic torsion class is the
class of a smooth form [27, Theorem 1.2.2].

Definition 5.6. Let n be a non-negative integer. A theory of analytic torsion classes for
projective spaces of dimension n is an assignment that, to each relative metrized complex
ξ = (π : PnX → X,F , π∗F) of relative dimension n, assigns a class of differential forms

T (ξ) ∈
⊕
p

D̃2p−1(X, p),

satisfying the following conditions:

(i) (Differential equation) dD T (ξ) = ch(π∗F)− π [[ch(F)].
(ii) (Functoriality) Given a morphism f : Y → X, we have T (f ∗ξ) = f ∗T (ξ).

(iii) (Additivity and normalization) If ξ1 and ξ2 are relative metrized complexes on X,
then T (ξ1 ⊕ ξ2) = T (ξ1)+ T (ξ2).

(iv) (Projection formula) For any hermitian vector bundle G on X, and any integer k in
[−n, 0], we have T (ξn(k)⊗G) = T (ξn(k)) • ch(G).

A theory of analytic torsion classes for projective spaces is an assignment as before
for all non-negative integers n.

Definition 5.7. Let T be a theory of analytic torsion classes for projective spaces of di-
mension n. Fix as base space the point SpecC. The characteristic numbers of T are

tn,k(T ) := T (ξn(k)) ∈ D̃1(SpecC, 1) = R, k ∈ Z. (5.8)

The numbers tn,k(T ), −n ≤ k ≤ 0, will be called the main characteristic numbers of T .



Generalized holomorphic analytic torsion 489

The central result of this section is the following classification theorem.

Theorem 5.9. Let n be a non-negative integer and let t = (tn,k)k=−n,...,0 be a family of
arbitrary real numbers. Then there exists a unique theory Tt of analytic torsion classes
for projective spaces of dimension n such that tn,k(Tt) = tn,k .

Before proving Theorem 5.9, we show some consequences of the definition of analytic
torsion classes. First we state some anomaly formulas that determine the dependence of
analytic torsion classes on hermitian structures.

Proposition 5.10. Let T be a theory of analytic torsion classes for projective spaces of
dimension n. Let ξ = (π : PnX → X,F , π∗F) be a relative metrized complex.

(i) If F ′ is another choice of hermitian structure on F and ξ1=(π : PnX→X,F ′, π∗F),
then

T (ξ1) = T (ξ)+ π [[c̃h(F ′,F)].

(ii) If π ′ is another hermitian structure on π and ξ2 = (π
′
: PnX → X,F , π∗F), then

T (ξ2) = T (ξ)+ π
′
[[ch(F) • T̃dm(π ′, π)]. (5.11)

(iii) If π∗F
′

is another hermitian structure on π∗F and ξ3 = (π : PnX → X,F , π∗F
′
),

then
T (ξ3) = T (ξ)− c̃h(π∗F

′
, π∗F).

Proof. The proof is the same as the proof of Proposition 3.17. ut

Next we state the behavior of analytic torsion classes for projective spaces with respect to
distinguished triangles.

Proposition 5.12. Let T be a theory of analytic torsion classes for projective spaces
of dimension n. Let X be a smooth complex variety and π : PnX → X the projection.

Consider distinguished triangles in Db
(PnX) and Db

(X) respectively:

τ : F2 → F1 → F0 → F2[1] and (π∗τ) : π∗F2 → π∗F1 → π∗F0 → π∗F2[1],

and define relative metrized complexes ξ i = (π,F i, π∗F i), i = 0, 1, 2. Then∑
j

(−1)jT (ξj ) = c̃h(π∗τ)− π [(c̃h(τ )).

Proof. The proof is similar to that of 3.19. ut

In view of this proposition, we see that the additivity axiom is equivalent to the apparently
stronger statement of the next corollary.

Corollary 5.13. With the assumptions of Proposition 5.12, if τ and π∗τ are tightly dis-
tinguished, then T (ξ1) = T (ξ0)+ T (ξ2).
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Corollary 5.14. Let ξ = (π,F , π∗F) be a relative metrized complex and let ξ [i] =
(π,F[i], π∗F[i]) be the shifted relative metrized complex. Then T (ξ) = (−1)iT (ξ [i]).

Proof. It is enough to treat the case i = 1. We consider the tightly distinguished triangle

F 99K cone(idF ) 99K F[1] 99K

and the analogous triangle for direct images. Since cone(idF ) and cone(id
π∗F ) are mea-

ger, we have, by the anomaly formulas and the additivity axiom,

T (π, cone(idF ), cone(id
π∗F )) = T (π, 0, 0) = 0.

Hence, the result follows from Corollary 5.13. ut

Next we rewrite Proposition 5.12 in the language of complexes of metrized coherent
sheaves. Let

ε : 0→ Fm→ · · · → F l → 0

be a bounded complex of metrized coherent sheaves on PnX and assume that hermitian

structures on the complexes π∗Fj , j = l, . . . , m, are chosen. Let [ε], [π∗ε] ∈ Ob Db
(PnX)

be the associated objects as in [17, Defs. 3.37, 3.39].

Remark 5.15. In [17, Defs. 3.37, 3.39] there is a misprint. The class [ε] should be defined
inductively by the condition [ε] = cone(Fm[m − 1], [σ<mε]). The same is true for the
definition of [π∗ε]. This definition implies that there are tightly distinguished triangles

τ k : [σ<kε] → [σ<k+1ε] → Fk[k] →,

π∗τk : [π∗σ<kε] → [π∗σ<k+1ε] → π∗Fk[k] → .

Corollary 5.16. With the above hypothesis,

T (π, [ε], [π∗ε]) =

m∑
j=l

(−1)jT (π,Fj , π∗Fj ).

Moreover, if ε is acyclic, then T (π, [ε], [π∗ε]) = c̃h(π∗ε)− π [[c̃h(ε)].

Proof. The first equation is proved by applying Corollary 5.13 to the tightly distinguished
triangles of Remark 5.15 for k = l, . . . , m, and using Corollary 5.14 to convert the shift
into a sign. The second statement is proved in a similar way by breaking ε into short exact
sequences and using Proposition 5.12 and [17, Prop. 3.41]. ut

Finally, we show that the projection formula holds in greater generality:

Proposition 5.17. Let T be a theory of analytic torsion classes for projective spaces of
dimension n. Let X be a smooth complex variety, let ξ = (π,F , π∗F) be a relative
metrized complex and let G be an object in Db

(X). Then

T (ξ ⊗ G) = T (ξ) • ch(G). (5.18)
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Proof. By the anomaly formulas, if (5.18) holds for a particular choice of hermitian struc-
tures on π , F and π∗F then it holds for any other choice. Moreover, if we are in the situ-
ation of Proposition 5.12 and (5.18) holds for two of ξ0, ξ1, ξ2, then it holds for the third.
Since the objects of the form H(k), where H is a coherent sheaf onX and k = −n, . . . , 0,
constitute a generating class of Db(PnX), we are reduced to proving that

T (ξn(k)⊗ G) = T (ξn(k)) • ch(G)

for k = −n, . . . , 0. Now, if

G2 99K G1 99K G0 99K

is a distinguished triangle in Db
(X) and (5.18) is satisfied for two of G2, G1, G0, then it is

satisfied also by the third. Therefore, since the complexes of vector bundles concentrated
in a single degree constitute a generating class of Db(X), the projection formula axiom
implies the proposition. ut

Proof of Theorem 5.9 . First, we prove the uniqueness assertion. Assume a theory T of
analytic torsion classes, with main characteristic numbers tn,k , −n ≤ k ≤ 0, exists. Then
the anomaly formulas (Proposition 5.10) imply that, if T (π,F , π∗F) is known for a par-
ticular choice of hermitian structures on π , F and π∗F , then the value of T (π ′,F ′, π∗F

′
)

for any other choice of hermitian structures is fixed. By Proposition 5.12, if we know the
value of T (π,F , π∗F) for F in a generating class, then T is determined. By the pro-
jection formula (Proposition 5.17), the characteristic numbers determine the values of
T (ξ(k) ⊗ G), k = −n, . . . , 0. Finally, since by Corollary 4.11, the objects of the form
G(k), k = −n, . . . , 0, form a generating class, we deduce that the characteristic numbers
determine the theory T . Thus, if it exists, the theory Tt is unique.

In particular, from the above discussion we see that the main characteristic numbers
determine all the characteristic numbers. We now derive an explicit inductive formula for
them. Consider the metrized Koszul resolution

K : 0→ 3n+1V
∨
(−n− 1)→ · · · → 31V

∨
(−1)→ OPnC → 0, (5.19)

where O(k), for k 6= 0, has the Fubini–Study metric and OPnC has the trivial metric.
We will denote by K(k) the above exact sequence twisted by O(k), k ∈ Z, again with
the Fubini–Study metric. Recall the definition of the relative metrized complexes ξn(k)
(5.3). In particular, for every k, we have fixed natural hermitian structures on the objects
π∗O(k− j). According to [17, Defs. 3.37, 3.39] (see Remark 5.15), we may consider the
classes [K(k)] and [π∗K(k)] in Db

(PnC) and Db
(SpecC), respectively. By Corollary 5.16,

for each k ∈ Z we find

n+1∑
j=0

(−1)jT (ξn(k − j)⊗3
jV
∨
) = c̃h(π∗K(k))− πFS

[ [c̃h(K(k))].
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Because 3jV
∨

is isometric to C(
n+1
j ) with the standard metric, the additivity axiom for

the theory T and the definition of the characteristic numbers tn,k−j provide

T (ξn(k − j)⊗3
jV
∨
) = tn,k−j

(
n+ 1
j

)
.

Therefore we derive

n+1∑
j=0

(−1)j
(
n+ 1
j

)
tn,k−j = c̃h(π∗K(k))− πFS

[ [c̃h(K(k))]. (5.20)

This gives an inductive formula for all the characteristic numbers tn,k once we fix n + 1
consecutive characteristic numbers and, in particular, once we fix the main characteristic
numbers.

To prove existence, we follow the proof of uniqueness to obtain a formula for T (ξ).
We start with the main characteristic numbers t = (tn,k)−n≤k≤0. We define the character-
istic numbers tn,k for k ∈ Z inductively using (5.20).

We will need the following results.

Lemma 5.21. Let η : 0→ F2 → F1 → F0 → 0 be a short exact sequence of metrized
coherent sheaves on X. Let k be an integer, and F(k) and π∗F(k) be as in Notation
5.2. Thus we have an exact sequence η(k) of metrized coherent sheaves on PnX and a
distinguished triangle π∗η(k). Then

c̃h(π∗η(k)) = πFS
[ (c̃h(η(k))). (5.22)

Proof. By the Riemann–Roch theorem for the map PnC→ SpecC we have

ch(π∗O(k)) = π∗(ch(O(k))Td(πFS)). (5.23)

Hence, by the properties of Bott–Chern classes and the choice of metrics,

c̃h(π∗η(k)) = c̃h(η) • ch(π∗O(k)) = c̃h(η) • π∗(ch(O(k))Td(πFS))

= π∗
(
c̃h(η(k)) • Td(πFS)

)
= πFS

[ (c̃h(η(k))). ut

Lemma 5.24. Let

µ : 0→Mm(−m− d)→ · · · →Ml(−l − d)→ 0 (5.25)

be an exact sequence of metrized coherent sheaves on PnX, where, for each i = l, . . . , m,
Mi is a metrized coherent sheaf on X, and Mi(k) is as in Notation 5.2. On π∗Mi(k) we
consider the hermitian structures given also by Notation 5.2. Then

m∑
i=l

(−1)i tn,−d−i ch(Mi) = c̃h(π∗µ)− πFS
[ (c̃h(µ)). (5.26)
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Proof. We consider a commutative diagram of exact sequences

0

��

0

��
µ′ 0 //M′

m(−m− d)
//

��

· · · //M′

l(−l − d)
//

��

0

µ 0 //Mm(−m− d) //

��

· · · //Ml(−l − d) //

��

0

µ′′ 0 //M′′

m(−m− d)
//

��

· · · //M′′

l (−l − d)
//

��

0

0 0

ξm . . . ξ l

Claim. If (5.26) holds for two of µ, µ′ and µ′′, then it holds for the third.

Proof of the claim. On the one hand we have

m∑
i=l

(−1)i tn,−d−i
(
ch(M′

i)− ch(Mi)+ ch(M′′

i )
)
=

m∑
i=l

(−1)i tn,−d−i dD c̃h(ξ i).

But, if t ∈ D1(SpecC, 1) = R is a real number, in the group
⊕
p D̃2p−1(X, p) we have

t dD c̃h(ξ i) = − dD(t • c̃h(ξ i)) = 0.

On the other hand, by Lemma 5.21,

c̃h(π∗µ′)− c̃h(π∗µ)+ c̃h(π∗µ′′) = πFS
[ (c̃h(µ′))− πFS

[ (c̃h(µ))+ πFS
[ (c̃h(µ′′)).

The proof of the lemma is by induction on the length r = m − l of the complex. If
r ≤ n then µ(d + l) has the same shape as the canonical resolution of the zero sheaf. By
the uniqueness of the canonical resolution, we have Mi = 0 for i = l, . . . , m. Using the
above claim when Mi = 0 has a non-trivial hermitian structure, we obtain the lemma
for r ≤ n.

Assume now that r > n. LetK be the Koszul exact sequence (5.19). ThenK(1)⊗Ml

is the canonical resolution of the regular coherent sheaf Ml(1). By Theorem 4.5(i) there
is a surjection of exact sequences µ → K(−l − d) ⊗Ml whose kernel is an exact
sequence

µ′ : 0→M′
m(−m− d)→ · · · →M′

l+1(−d − l − 1)→ 0.
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We consider onK the metrics of (5.19), for i = l+ 1, . . . , m we choose arbitrary metrics
on M′

i and denote by µ′ the corresponding exact sequence of metrized coherent sheaves.
By induction hypothesis, µ′ satisfies (5.26). Moreover, since the characteristic num-

bers tn,k for k 6∈ [−n, 0] are defined using (5.20), the exact sequence K(−l − d) ⊗Ml

also satisfies (5.26). Hence the lemma follows from the previous claim. ut

We now treat the case of complexes concentrated in a single degree. Let F be a coherent
sheaf on PnX with a hermitian structure and let π∗F be a choice of hermitian structure
on the direct image complex. Write ξ = (πFS,F , π∗F) for the corresponding relative
metrized complex.

Choose an integer d such that F(d) is regular. Then we have the resolution γd(F) of
Corollary 4.3. More generally, let µ be an exact sequence of the form

0→ Sm(−d −m)→ · · · → S1(−d − 1)→ S0(−d)→ F → 0,

where the Si , i = 0, . . . , m, are coherent sheaves on X. Assume that we have chosen
hermitian structures on the sheaves Si . Using Notation 5.2 and [17, Defs. 3.37, 3.39] (see
Remark 5.15) we have objects [µ] in KA(PnX) and [π∗µ] in KA(X). Then we write

Tt,µ(ξ) =

m∑
j=0

(−1)j tn,j−d ch(Sj )− c̃h(π∗µ)+ πFS
[ (c̃h (µ)). (5.27)

Lemma 5.28. Given any choice of metrics on the sheaves Gi (respectively G′i), i =
0, . . . , n, that appear in the resolution γd(F) (respectively γd+1(F)), denote by γ d and
γ d+1 the corresponding exact sequences of metrized coherent sheaves. Then

Tt,γ d+1(ξ) = Tt,γ d (ξ).

In particular, Tt,γ d (ξ) does not depend on the choice of metrics on the sheaves Gi .

Proof. By Theorem 4.5(ii), there is an exact sequence

µ : 0→ Sn+k(−n− k − d − 1)→ · · · → S0(−d − 1)→ F → 0, (5.29)

and a surjection of exact sequences f : µ → γ d extending the identity on F . Here S i ,
i = 0, . . . , n+ k, are coherent sheaves on X with hermitian structures.

By Theorem 4.5(i) there is a surjection of exact sequences µ→ γ d+1 extending the
identity on F , whose kernel is an exact sequence

ε : 0→Mn+k(−n− k − d − 1)→ · · · →M0(−d − 1)→ 0, (5.30)

where Mi , i = 0, . . . , n+ k, are coherent sheaves on X, and we have chosen arbitrarily
hermitian structures on them. Denote by ηi the rows of the exact sequence

0→ ε→ µ→ γ d+1 → 0.
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Observe that ηi = η
′

i(−i − d − 1) for some short exact sequence η′i on X. When j ≥ n
we denote G′j = 0. Then

n+k∑
j=0

(−1)j tn,j−d−1
(
ch(G′j )− ch(Sj )+ ch(Mj )

)
=

n+k∑
j=0

(−1)j tn,j−d−1 dD c̃h(η′i) = 0. (5.31)

By [17, Prop. 3.41], we have

c̃h(π∗γd+1)− c̃h(π∗µ)+ c̃h(π∗ε) =
n+k∑
j=0

(−1)j c̃h(π∗ηj ), (5.32)

c̃h(γ d+1)− c̃h(µ)+ c̃h(ε) =
n+k∑
j=0

(−1)j c̃h(ηj ). (5.33)

Combining (5.31)–(5.33) and Lemmas 5.21 and 5.24 we obtain

Tt,µ(ξ) = Tt,γ d+1(ξ). (5.34)

We now consider cone(µ, γd). We put on it the obvious hermitian structure induced
by µ and γd , cone(µ, γd). On π∗ cone(µ, γd), we put the obvious family of hermitian
metrics induced by π∗µ and π∗γd , and denote it as π∗ cone(µ, γd). By [17, Cor. 3.42] we
have

c̃h(cone(µ, γd)) = c̃h(γ d)− c̃h(µ), (5.35)

c̃h(π∗ cone(µ, γd)) = c̃h(π∗γd)− c̃h(π∗µ). (5.36)

Observe that cone(µ, γd)
i
= S−i−1(i − d) ⊕ G−i(i − d). Combining Lemma 5.24 for

cone(µ, γd) with (5.35) and (5.36), we obtain

Tt,µ(ξ) = Tt,γ d (ξ). (5.37)

Together with (5.34) this proves the lemma. ut

Now we are in a position to prove the existence of Tt. Let n and t be as in Theorem 5.9.
We define the numbers tn,k for k < −n and k > 0 by (5.20). Let ξ = (πFS,F , π∗F)
be a relative metrized complex. We construct Tt(ξ) by induction on the length of the
cohomology of F . If it has at most a single non-zero coherent sheaf H sitting in degree j ,
then F and π∗F determine hermitian structures on H[−j ] and π∗H[−j ] respectively.
We choose an integer d such that H(d) is regular and we write

Tt(ξ) = (−1)jTt,γ d (H)(π
FS,H, π∗H). (5.38)

By Lemma 5.28, this does not depend on the choice of d , nor on the choice of metrics
on γ d(H).

Assume that we have defined the analytic torsion classes for all complexes whose
cohomology has length less than l, and that the cohomology of F has length l. Let H be
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the highest cohomology sheaf of F , say of degree j . Choose auxiliary hermitian structures
on H[−j ] and π∗H[−j ]. There is a unique natural map H[−j ] 99K F . Then we define

Tt(ξ) = Tt(π
FS,H[−j ], π∗H[−j ])

+ Tt
(
πFS, cone(H[−j ],F), cone(π∗H[−j ], π∗F)

)
. (5.39)

It follows from [17, Thm. 2.27(iv)] that the right hand side of this equality does not depend
on the choice of the auxiliary hermitian structures.

Finally, we consider the case when π has a hermitian structure different from the
Fubini–Study metric. Thus, let ξ = (π,F , π∗F) and write ξ ′ = (πFS,F, π∗F). Then
we put

Tt(ξ) = Tt(ξ
′
)+ π [[ch(F ) • T̃dm(π, πFS)]. (5.40)

Definition 5.41. Let n and t be as in Theorem 5.9. Then Tt is the assignment that to each
relative metrized complex ξ associates Tt(ξ) given by (5.38)–(5.40).

It remains to prove that Tt satisfies axioms (i) to (iv). Axiom (i) follows from the
differential equations satisfied by the Bott–Chern classes. Axiom (ii) follows from the
functoriality of the canonical resolution, the Chern forms and the Bott–Chern classes.
Axiom (iii) follows from the additivity of the canonical resolution and of the Chern char-
acter. Finally, (iv) follows from the multiplicativity of the Chern character. This concludes
the proof of Theorem 5.9. ut

We finish this section showing the compatibility of analytic torsion classes with composi-
tion of projective bundles. Let X be a smooth complex variety. Consider the commutative
diagram with cartesian square

Pn1
X ×

X
Pn2
X

p1

{{

p2

##
p

��

Pn1
X

π1
$$

Pn2
X

π2
zz

X

On π1 and π2 we introduce arbitrary hermitian structures and on p1 and p2 the hermitian
structures induced by the cartesian diagram.

Proposition 5.42. Let F be an object of Db
(Pn1
X ×

X
Pn2
X ). Put arbitrary hermitian struc-

tures on (p1)∗F , (p2)∗F , and p∗F . Then

T (π1)+ (π1)[(T (p1)) = T (π2)+ (π2)[(T (p2)), (5.43)

where we are using the convention at the end of Definition 2.5.
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Proof. By the anomaly formulas (Proposition 5.10), if (5.43) holds for a particular choice
of hermitian structures on F , (p1)∗F , (p2)∗F , and p∗F , then it holds for any other
choice. Let

F2 99K F1 99K F0 99K

be a distinguished triangle and put hermitian structures on the direct images as before.
Then Proposition 5.12 implies that, if (5.43) holds for two of them, then it also holds for
the third. Since the objects of the form G(k, l) := p∗G⊗p∗1O(k)⊗p

∗

2O(l) are a generating
class of Db(Pn1

X ×
X
Pn2
X ), the previous discussion shows that it is enough to prove the case

F = G(k, l), with the hermitian structure of F induced by a hermitian structure of G
and the Fubini–Study metric on O(k) and O(l), and the hermitian structures on the direct
images defined as in (5.3). In this case the result follows easily from functoriality and the
projection formula. ut

6. Compatible analytic torsion classes

In this section we study compatibility between analytic torsion classes for closed immer-
sions and analytic torsion classes for projective spaces. It turns out that, once the compat-
ibility between the diagonal embedding of Pn into Pn × Pn and the second projection of
Pn × Pn onto Pn is established, all the other possible compatibilities follow. Essentially
this observation can be traced back to [15].

Let n, V , V and Pn(V ) be as in the previous section. We consider the diagram

Pn

id ##

1 // Pn × Pn
p1 //

p2

��

Pn

π

��
Pn

π1 // SpecC

On Pn we have the tautological short exact sequence

0→ O(−1)→ V → Q→ 0.

This induces on Pn × Pn the exact sequence

0→ p∗2O(−1)→ V → p∗2Q→ 0.

By composition with the injection p∗1O(−1) ↪→ V , we obtain a morphism p∗1O(−1)→
p∗2Q, hence a section of p∗2Q⊗p

∗

1O(1). The zero locus of this section is the image of the
diagonal. Moreover, the associated Koszul complex is quasi-isomorphic to 1∗OPn . That
is, the sequence

0→ 3n(p∗2Q
∨)⊗ p∗1OPn(−n)→ · · ·

· · · → 31(p∗2Q
∨)⊗ p∗1OPn(−1)→ OPn×Pn → 1∗OPn → 0 (6.1)

is exact.
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On TPn and TPn×Pn we consider the Fubini–Study metrics. We denote by 1 and p2
the morphisms of Sm∗/C determined by these metrics. As in [17, Ex. 5.7], we see that
p2 ◦ 1 = idPn , where TidPn

= 0. The Fubini–Study metric on O(−1) and the metric
induced by the tautological exact sequence on Q induce a metric K(1) on the Koszul
complex. This is a hermitian structure on1∗OPn . Finally on OPn we consider the standard
metric. This is a hermitian structure on (p2)∗K(1).

Fix a real additive genus S and denote by TS the theory of analytic torsion classes for
closed immersions that is compatible with the projection formula and transitive, associ-
ated to S (Theorem 3.11). Moreover, fix a family t = {tnk | n ≥ 0, −n ≤ k ≤ 0} of real
numbers and denote by Tt the theory of generalized analytic torsion classes for projective
spaces associated to this family.

Compatible analytic torsion classes for closed immersions and for projective spaces
should combine to provide analytic torsion classes for arbitrary projective morphisms, and
these classes should be transitive. The transitivity condition for the composition idPn =
p2 ◦1 should give us

0 = T (idPn ,OPn ,OPn) = Tt(p2,K(1),OPn)+ (p2)[(TS(1,OPn ,K(1))).

In general we define

Definition 6.2. The theories of analytic torsion classes TS and Tt are called compatible
if

Tt(p2,K(1),OPn)+ (p2)[(TS(1,OPn ,K(1))) = 0. (6.3)

Theorem 6.4. Let S be a real additive genus. Then there exists a unique family t = {tn,k |
n ≥ 0, −n ≤ k ≤ 0} of real numbers such that the theories of analytic torsion classes TS
and Tt are compatible. The theory Tt will also be denoted TS .

Proof. The first step is to write (6.3) in terms of the main characteristic numbers t. To
this end, first observe that, since the exact sequence

0→ Tp2 → TPn×Pn → p∗2TPn → 0 (6.5)

is split and the hermitian metric on TPn×Pn is the orthogonal direct sum metric, p2 =

π∗1 (π
FS). Next, we denote by K(1)i the component of degree i of the Koszul complex,

and we define

(p2)∗K(1)i =

{
OPn for i = 0,
0 for i > 0.

Finally using Corollary 5.16, functoriality and compatibility with the projection formula,
we derive

Tt(p2,K(1),OPn) =
n∑
i=0

(−1)iTt(p2,K(1)i, (p2)∗K(1)i)

=

n∑
i=0

(−1)iTt(π∗1 ξn(−i)⊗3
iQ
∨
) =

n∑
i=0

(−1)i tn,−i ch(3iQ
∨
).
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Thus, the second and last step is to solve the equation

n∑
i=0

(−1)i tn,−i ch(3iQ
∨
) = −(p2)∗(TS(1,OPn ,K(1)) • Td(p2)). (6.6)

Since the left hand side of (6.6) is closed, to solve this equation we have to show that the
right hand side is also closed. We compute

dD(p2)∗(TS(1,OPn ,K(1)) • Td(p2))

= (p2)∗

( n∑
i=0

(−1)i ch(K(1)i)Td(p2)−1∗(ch(OPn)Td(1))Td(p2)
)

= (p2)∗

( n∑
i=0

(−1)ip∗2(ch(3iQ
∨
))p∗1(ch(O(−i)))Td(p2)

)
− 1

=

n∑
i=0

(−1)i ch(3iQ
∨
)(p2)∗(p

∗

1(ch(O(−i)))Td(p2))− 1

=

n∑
i=0

(−1)i ch(3iQ
∨
)π∗1π∗(ch(O(−i))Td(π))− 1 = 1− 1 = 0.

In the first equality we have used the differential equation of TS . In the second one we have
used the definition of the Koszul complex, the equation ch(OPn) = 1 and the fact that, by
the choice of hermitian structures on T1 and Tp2 we have Td(1) •1∗(Td(p2)) = 1. The
third equality is the projection formula and the fourth is base change for cohomology. For
the last equality we have used (5.23).

Both sides of (6.6) are closed and defined up to boundaries, hence this is an equation
in cohomology classes. The tautological exact sequence induces exact sequences

0→ 3kQ∨→ 3kV ∨→ 3k−1Q∨ ⊗O(1)→ 0,

which give us

ch(3kQ∨) =
(
n+ 1
k

)
− ch(3k−1Q∨) ch(O(1)).

Hence

ch(3kQ∨) =
k∑
i=0

(−1)i
(
n+ 1
k − i

)
ch(O(i)).

Since the classes ch(O(i)), i = 0, . . . , n, form a basis of
⊕
p H

2p
D (Pn,R(p)), the same is

true for the classes ch(3iQ∨), i = 0, . . . , n. Therefore, if 11 ∈ H
1
D(P

n,R(1)) is the class
represented by the constant function 1, the classes 11 • ch(3iQ∨), i = 0, . . . , n, form a
basis of

⊕n+1
p=1H

2p−1
D (Pn,R(p)). This implies that (6.6) has a unique solution. ut
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Remark 6.7. Given a theory T of analytic torsion classes for projective spaces, obtained
from an arbitrary choice of characteristic numbers, in general there does not exist an ad-
ditive genus such that the associated theory of singular Bott–Chern classes is compatible
with T . It would be interesting to characterize the collections of characteristic numbers
that arise from Theorem 6.4.

By definition, compatible analytic torsion classes for closed immersions and projec-
tive spaces satisfy a compatibility condition for the trivial vector bundle and the diagonal
embedding. When adding functoriality and the projection formula, we obtain compatibil-
ity relations for arbitrary sections of the trivial projective bundle and arbitrary objects.

Let X be a smooth complex variety, let π : PnX → X be the projective space over X
and let s : X → PnX be a section. Choose any hermitian structure on Tπ . Since we have
an isomorphism Ts 99K s∗Tπ [−1], this hermitian structure induces a hermitian structure
on s. Denote by π and s the corresponding morphisms in Sm∗/C. With this choice of
hermitian structures, we have

π ◦ s = (π ◦ s, cone(s∗Tπ [−1], s∗Tπ [−1])) = (idX, 0),

because the cone of the identity is meager.

Proposition 6.8. Let S be a real additive genus. Let TS denote both the theory of analytic
torsion classes for closed immersions determined by S, and the theory of analytic torsion
classes for projective spaces compatible with it. Let F be an object of Db

(X). Put a
hermitian structure on s∗F . Then

TS(π, s∗F ,F)+ π [(TS(s,F , s∗F)) = 0. (6.9)

Proof. By the anomaly formulas of Propositions 3.17 and 5.10, if (6.9) holds for a partic-
ular choice of hermitian structure on s∗F then it holds for any other choice. Therefore we
can assume that the hermitian structure on s∗F is given by K(s) ⊗ π∗F , where K(s) is
the Koszul complex associated to the section s. By the projection formulas, if (6.9) holds
for the trivial bundle OX then it holds for arbitrary objects of Db

(X).
We now prove that, if (6.9) holds for a particular choice of hermitian structure π , then

it holds for any other choice. Thus, assume that (6.9) is satisfied for π and s. Let π ′ be
another choice of hermitian structure on π , and s′ be the hermitian structure induced on s.
On the one hand, we have

TS(π
′,K(s),OX) = TS(π,K(s),OX)+ π∗

(
ch(K(s) • T̃dm(π ′, π) • Td(π ′))

)
. (6.10)

On the other hand, we have

TS(s
′,F , s∗F) • Td(π ′)
=
(
TS(s,F , s∗F)+ s∗(T̃dm(s′, s)Td(s′))

)
•
(
Td(π)− dD(T̃dm(π ′, π) • Td(π ′))

)
= TS(s,F , s∗F) • Td(π)+ s∗(T̃dm(s′, s)Td(s′)) • Td(π ′)

− TS(s,F , s∗F) • dD(T̃dm(π ′, π) • Td(π ′)). (6.11)
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In the group
⊕
p D̃

2p−1
D (PnX, Ns, p) we have

TS(s,F , s∗F) • dD(T̃dm(π ′, π) • Td(π ′))

=
(
ch(K(s))− s∗(Td(s))

)
•
(
T̃dm(π ′, π) • Td(π ′)

)
. (6.12)

Observe that, by the definition of the hermitian structures of s and s′, we have

Td(s) • s∗T̃dm(π ′, π) = −T̃dm(s′, s) • Td(s′). (6.13)

By combining (6.9), (6.10), (6.12) and (6.13) we obtain

TS(π
′, s∗F ,F) = −π∗

(
TS(s

′,F , s∗F) • Td(π ′)
)
. (6.14)

We now prove (6.9) for a particular choice of hermitian structures. Let f : X → Pn
denote the composition of s with the projection PnX → Pn. Then we have a commutative
diagram with cartesian squares

Pn ×X
id×f //

π

��

Pn × Pn

p2

��

X

s

cc

id

{{

f
// Pn

1

::

id

$$
X

f // Pn

Let 1 and p2 be as in Definition 6.2. On π and s we put the hermitian structures induced
by 1. Since the Koszul complex K(s) equals (idPn ×f )∗K(1), by Proposition 2.14 and
functoriality, equation (6.9) in this case follows from (6.3). ut

We now study another compatibility between analytic torsion classes for closed immer-
sions and projective spaces. Let ι : X → Y be a closed immersion of smooth complex
varieties. Consider the cartesian square

PnX
π1

��

ι1 // PnY
π

��
X

ι // Y

Choose hermitian structures on π and ι and put on π1 and ι1 the induced ones.

Proposition 6.15. Let S be a real additive genus. Let TS denote both the theory of an-
alytic torsion classes for closed immersions determined by S, and the theory of analytic
torsion classes for projective spaces compatible with it. Let F be an object of Db

(PnX).
Put hermitian structures on (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F . Then

TS(π)+ π [(TS(ι1)) = TS(ι)+ ι[(TS(π1)). (6.16)
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Proof. By the anomaly formulas, if (6.16) holds for a particular choice of hermitian
structures on (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F , then it holds for any choice. Because the
sheaves G(k), with G a coherent sheaf on X, constitute a generating class of Db(PnX),
and by Propositions 3.19 and 5.12, we reduce to the case when F is of the form G(k).
We choose arbitrary hermitian structures on G and ι∗G. Furthermore, we assume O(k),
(π1)∗O(k) and π∗O(k) are endowed with the hermitian structures of Notation 5.2. From
these choices and the projection formula, the objects (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F
automatically inherit hermitian structures. Indeed, it is enough to observe the natural iso-
morphisms

(π1)∗F ∼= G ⊗ (π1)∗O(k), (6.17)
(ι1)∗(π

∗

1G ⊗ ι
∗

1O(k)) ∼= π
∗(ι∗G)⊗O(k), (6.18)

(π ◦ ι1)∗F ∼= π∗(π∗ι∗G ⊗O(k)) ∼= ι∗G ⊗ π∗O(k). (6.19)

We now work out the left hand side of (6.16). Using the projection formula for the theory
TS for projective spaces, and (6.17)–(6.19), we find

TS(π) = tn,k • ch(ι∗G). (6.20)

Using the functoriality of TS for closed immersions and the projection formula we have

TS(ι1) = π
∗TS(ι,G, ι∗G) • ch(O(k)),

π [(TS(ι1)) = TS(ι,G, ι∗G) • π∗(ch(O(k)) • Td(π)). (6.21)

Now for the right hand side of (6.16), the projection formula for TS for closed immersions
implies

TS(ι) = TS(ι,G, ιG) • ch(π∗O(k)). (6.22)

Similarly, we obtain TS(π1) = tn,k • ch(G), and hence

ι[(TS(π1)) = tn,k • ι∗(ch(G) • Td(ι)). (6.23)

In view of (6.20)–(6.23), the difference of the two sides of (6.16) becomes

tn,k • dD TS(ι,G, ι∗G)− TS(ι,G, ι∗G) • dD tn,k = − dD(tn,k • TS(ι,G, ι∗G)) = 0

in the group
⊕
p D̃

2p−1
D (Y,Nι, p). ut

7. Generalized analytic torsion classes

In this section we will extend the definition of analytic torsion classes to arbitrary projec-
tive morphisms of smooth complex varieties. Our construction is based on the construc-
tion of analytic torsion classes by Zha [49].
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Definition 7.1. A theory of generalized analytic torsion classes is an assignment that, to
each morphism f : X → Y in Sm∗/C and relative metrized complex ξ = (f ,F , f∗F),
assigns a class of currents

T (ξ) ∈

n+1⊕
p=1

D̃2p−1
D (Y,Nf , p)

with the following properties:

(i) (Differential equation) For any current η ∈ T (ξ), we have

dD η = ch(f∗F)− f [[ch(F)]. (7.2)

(ii) (Functoriality) If g : Y ′→ Y is a morphism transverse to f , then g∗T (ξ)=T (g∗ξ).
(iii) (Additivity and normalization) If ξ1, ξ2 are relative metrized complexes on X, then

T (ξ1 ⊕ ξ2) = T (ξ1)+ T (ξ2).

(iv) (Projection formula) If ξ is a relative metrized complex, and G ∈ Ob Db
(Y ), then

T (ξ ⊗ G) = T (ξ) • ch(G).

(v) (Transitivity) If f : X → Y and g : Y → Z are morphisms in Sm∗/C, and
(f ,F , f∗F) and (g, f∗F , (g ◦ f )∗F) are relative metrized complexes, then

T (g ◦ f ) = T (g)+ g[(T (f )). (7.3)

Propositions 7.4 and 7.6 below contain several anomaly and compatibility formulas
satisfied by an arbitrary theory of generalized analytic torsion classes. They follow from
properties (i)–(iii) and are analogous to those in Propositions 3.17 and 5.10, 3.19 and
5.12 respectively. The proofs are omitted, as they are similar to those of the analogous
statements referred to before.

Proposition 7.4. Let T be a theory of generalized analytic torsion classes. Let ξ =
(f ,F , f∗F) be a relative metrized complex.

(i) If F ′ is another choice of metric on F and ξ1 = (f ,F
′
, f∗F), then

T (ξ1) = T (ξ)+ f [[c̃h(F ′,F)].

(ii) If f
′

is another choice of hermitian structure on f and ξ2 = (f
′
,F , f∗F), then

T (ξ2) = T (ξ)+ f
′

[[ch(F) • T̃dm(f
′
, f )]. (7.5)

(iii) If f∗F
′

is a different choice of metric on f∗F and ξ3 = (f ,F , f∗F
′
), then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).
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Proposition 7.6. Let T be a theory of generalized analytic torsion classes. Let
f : X → Y be a morphism in Sm∗/C. Consider the distinguished triangles in Db

(X)

and Db
(Y ) respectively,

τ : F2 → F1 → F0 → F2[1] and f∗τ : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],

and the relative metrized complexes ξ i = (f ,F i, f∗F i), i = 0, 1, 2. Then

2∑
j=0

(−1)jT (ξj ) = c̃h(π∗τ)− f [(c̃h(τ )).

The main result of this section is the following classification theorem.

Theorem 7.7. Let S be a real additive genus. Then there exists a unique theory of gener-
alized analytic torsion classes that agrees with TS when restricted to the class of closed
immersions. Moreover, if T is a theory of generalized analytic torsion classes, then there
exists a real additive genus S such that T = TS .

We will denote the theory associated to the additive genus S, whose existence is guaran-
teed by the preceding theorem, by TS . In particular, there is a unique theory of generalized
analytic torsion classes that agrees with T h when restricted to the class of closed immer-
sions. This theory will be called homogeneous.

Prof of Theorem 7.7. We first prove uniqueness. Let T be a theory of analytic torsion
classes that agrees with TS for the class of closed immersions. Since the restriction of
T to projective spaces, by the transitivity axiom, is compatible with TS , by Theorem 6.4
it also agrees with TS . Finally, the transitivity axiom implies that T is determined by its
values for closed immersions and projective spaces.

We now prove existence. For the moment, let TS be the theory of analytic torsion
classes for closed immersions and projective spaces determined by S. Let f : X→ Y be
a morphism in Sm∗/C, and let ξ = (f ,F , f∗F) be a relative metrized complex. Since
f is assumed to be projective, there is a factorization f = π ◦ ι, where ι : X → PnY
is a closed immersion and π : PnY → Y is the projection. Choose auxiliary hermitian
structures on ι, π and ι∗F . Then we define

TS(ξ) = TS(π)+ π [(TS(ι))+ f [
[
ch(F) • T̃dm(f , π ◦ ι)

]
. (7.8)

To simplify the notations, we will also write simply T (ξ). The anomaly formulas easily
imply that this definition does not depend on the choice of hermitian structures on ι, π
and ι∗F . We next show that this definition is independent of the factorization of f . Let
f = π1 ◦ ι1 = π2 ◦ ι2 be two different factorizations, with Pni being the target of ιi ,
i = 1, 2. Since (7.8) is independent of the choice of auxiliary hermitian structures, by
[17, Lem. 5.12], we may assume that f = π1 ◦ ι1 = π2 ◦ ι2.
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We consider the commutative diagram with cartesian square

X
j1 //

idX
!!

X ×
Y
Pn2
Y

k1 //

q1

��

Pn1
Y ×

Y
Pn2
Y

p1

��
X

ι1 //

f
&&

Pn1
Y

π1

��
Y

where j1(x) = (x, ι2(x)), p1 is the first projection, and q1 and k1 are defined by the
cartesian square. The hermitian structure of π2 induces a hermitian structure on p1 that, in
turn, induces a hermitian structure on q1. The hermitian structure of ι1 induces a hermitian
structure on k1 and the hermitian structure of ι2 induces one on j1. We will denote the
corresponding morphisms of Sm∗/C by p1, q1, k1 and j1. We also consider the analogous
diagram obtained by swapping 1 and 2. Finally, we write p = π1 ◦ p1 = π2 ◦ p2 and
j = k1 ◦ j1 = k2 ◦ j2. Then we have

T (π1)+ (π1)[(T (ι1)) = T (π1)+ (π1)[(T (ι1))+ f [
(
T (q1)+ (q1)[(T (j1))

)
= T (π1)+ (π1)[

(
T (ι1)+ (ι1)[(T (q1))

)
+ p[(k1)[(T (j1))

= T (π1)+ (π1)[
(
T (p1)+ (p1)[(T (k1))

)
+ p[(k1)[(T (j1))

= T (p)+ p[(T (j)).

Analogously, we obtain T (π2) + (π2)[(T (ι2)) = T (p) + p[(T (j)). Hence TS is well
defined for all relative metrized complexes.

It remains to prove that it has the properties of a theory of analytic torsion classes.
Properties (i) to (iv) are clear. We thus focus on (v). Let f : X → Y and g : Y → Z be
morphisms in Sm∗/C. We choose factorizations of g ◦ f and g:

X
� � i //

g◦f   

PmZ
p

��
Z

Y
� � ` //

g   

PnZ
r

��
Z

where the hermitian structures on p and r come from fixed hermitan structures on the tan-
gent bundles TPmC and TPnC , and the hermitian structures i and ` are obtained by using [17,
Lem. 5.12]. We define ϕ : X → PmC to be the morphism obtained by composing i with
the projection to PmC . Then the morphism j := (ϕ, f ) : X → PmY is a closed immersion.
Indeed, it is enough to realize that the composition

X
(ϕ,f )
−−−→ PmY

(id,g)
−−−→ PmZ
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agrees with the closed immersion i and that G := (id, g) is separated (being proper). We
can thus decompose f as

X
� � j //

f   

PmY
q

��
Y

Again, in this factorization the hermitian structure q comes from the previously fixed
hermitian structure on TPmC , and the hermitian structure j is obtained by using [17, Lem.
5.12]. Because g ◦ f = p ◦ i, and by the very construction of T for arbitrary projective
morphisms (7.8), we have

T (g ◦ f ) = T (p)+ p[(T (i)). (7.9)

We proceed to work on T (i). For this we write the commutative diagram

X
� � j //
� o

i   

PmY
� � k //

G

��

PmPnZ PnPmZ
π

��
PmZ

id // PmZ

We recall that G = (id, g) and k = (id, `). Below, G, k and π will be endowed with
the obvious hermitian structures. With these choices, we observe that i = G ◦ j and
G = π ◦ k. Taking also into account the construction of T and the fact that T = TS is
transitive for compositions of closed immersions, we find

T (i) = T (π ◦ k ◦ j) = T (π)+ π [(T (k))+G[(T (j)) = T (G)+G[(T (j)). (7.10)

Therefore, from (7.9), (7.10) and the identity p[G[ = g[q[ we derive

T (g ◦ f ) = T (p)+ p[(T (G))+ g[q[(T (j)). (7.11)

We claim that
T (p)+ p[(T (G)) = T (g)+ g[(T (q)). (7.12)

Assuming this for a while, we combine (7.11) and (7.12) into

T (g ◦ f ) = T (g)+ g[(T (q)+ q[(T (j))) = T (g)+ g[(T (f )). (7.13)

Hence we need to prove (7.12). For this we construct the commutative diagram with
cartesian squares

PmY
� � ˜̀ //

q

��

PmZ ×Z PnZ
r̃ //

p̃

��

PmZ
p

��
Y
� � ` // PnZ

r // Z
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Observe that G = r̃ ◦ ˜̀. Recalling now Propositions 5.42 and 6.15, we have

T (p)+ p[(T (G)) = T (p)+ p[(T (r̃)+ r̃[(T (
˜̀))) = T (r)+ r[(T (p̃)+ p̃[(T ( ˜̀))

= T (r)+ r[(T (`)+ `[(T (q))) = T (g)+ g[(T (q)).

This proves the claim.
The last assertion of the theorem follows from uniqueness. ut

Theorem 7.14. (i) Let T be a theory of generalized analytic torsion classes. Then there
is a unique real additive genus S such that, for any relative metrized complex ξ :=
(f ,F , f∗F), we have

T (ξ)− T h(ξ) = −f∗[ch(F) • Td(Tf ) • S(Tf ) • 11]. (7.15)

(ii) Conversely, any real additive genus S defines, by means of (7.15), a unique theory of
generalized analytic torsion classes TS .

Proof. We prove the first item, the second being immediate. Let S be the real additive
genus corresponding to T , provided by Theorem 7.7. Then (7.15) holds for embedded
metrized complexes. Because T and T h are both transitive, it suffices to show that (7.15)
holds whenever f : PnX → X is a trivial projective bundle. Observe that T and T h satisfy
the same anomaly formulas. Then, since the sheaves G(k), k = −n, . . . , 0, form a gener-
ating class for Db(PnX), and by the projection formula for T and T h, we easily reduce to
the case ξ = ξ(k). Let tn,k , thn,k be the characteristic numbers of T , T h respectively. We
have to establish the equality

tn,−i − t
h
n,−i = −π∗(ch(O(−i))Td(π)S(Tπ )), i = −n, . . . , 0. (7.16)

This is an equality of real numbers. By functoriality, this equality is equivalent to the anal-
ogous equality in

⊕
p H

2p−1
D (PnC,R(p)), for the second projection p2 : PnC × PnC → PnC

instead of π . Because the classes ch(3iQ∨) constitute a basis for
⊕
p H

2p−1
D (PnC,R(p)),

(7.16) is equivalent to the equality in cohomology

∑
i

(−1)i(tn,−i − thn,−i) ch(3iQ
∨
)

= −p2∗

(∑
i

(−1)i ch(p∗1O(−i)⊗3
ip∗2Q

∨
)Td(p2)S(Tp2) • 11

)
. (7.17)

Recalling the exact sequence (6.1), minus the right hand side of (7.17) becomes

p2∗(ch(1∗OPn)Td(p2)S(Tp2) • 11)

= p2∗
(
1∗(ch(OPn)Td(1))Td(p2)S(Tp2) • 11

)
= S(TPn) • 11.
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On the other hand, using the compatibility condition (Definition 6.2), the left hand side
of (7.17) can be equivalently written as

T (p2,1∗OPn ,OPn)− T
h(p2,1∗OPn ,OPn)

= −p2[
(
T (1,OPn ,1∗OPn)− T

h(1,OPn ,1∗OPn)
)
. (7.18)

The genus S is additive, so in Deligne cohomology we have the relation

S(T1) = S(TPn)−1
∗S(TPn×Pn) = S(TPn)−1

∗p∗1S(TPn)−1
∗p∗2S(TPn) = −S(TPn).

Hence, since the statement is known for closed immersions, the right hand side of (7.18)
becomes

p2∗
(
1∗(ch(OPn)Td(T1)S(T1) • 11)Td(p2)

)
= −S(TPn) • 11.

This concludes the proof. ut

8. Higher analytic torsion forms of Bismut and Köhler

We now explain the relationship between the theory of analytic torsion forms of Bismut–
Köhler [13] and the theory of generalized analytic torsion classes developed so far when
they can be compared. Note that the theory of Bismut–Köhler applies to Kähler submer-
sions between complex manifolds, whereas the theory developed here applies to projec-
tive morphisms between smooth quasi-projective complex manifolds.

Let π : X→ Y be a smooth projective morphism (a projective submersion) of smooth
complex varieties. Let ω be a closed (1, 1)-form on X that induces a Kähler metric on the
fibers of π . Then (π, ω) is a particular case of what is called a Kähler fibration. The form
ω defines a hermitian structure on Tπ , and we will abusively write π = (π, ω) for the
corresponding morphism in Sm∗/C.

Let F be a hermitian vector bundle on X such that for every i ≥ 0, Riπ∗F is locally
free. We consider on Riπ∗F the L2 metric obtained using Hodge theory on the fibers
of π . Using [17, Def. 3.47] we obtain a hermitian structure on π∗F , denoted by π∗FL2 .
Then ξ = (π, F , π∗FL2) is a relative metrized complex. The relative metrized complexes
that arise in this way will be said to be Kähler.

In [13], Bismut and Köhler associate to every Kähler relative metrized complex ξ a
differential form, which we temporarily denote by τ(ξ). Since in [13] the authors use real
valued characteristic classes (the topological normalization), while we use characteristic
classes in the Deligne complex (the algebro-geometric normalization), we have to change
the normalization of this form. To this end, if τ(ξ)(p−1,p−1) is the component of degree
(p − 1, p − 1) of τ(ξ), then we put

T BK(ξ)(2p−1,p)
=

1
2 (2πi)

p−1
[τ(ξ)(p−1,p−1)

] ∈ D̃2p−1
D (Y,∅, p).
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We recall that [·] converts differential forms into currents according to the conventions in
[19, §1], hence it includes a factor 1/(2πi)dimY (cf. (3.20)). We define

T BK(ξ) =
∑
p≥1

T BK(ξ)(2p−1,p).

The first main result of [13] is that this class satisfies the differential equation

dDT
BK(ξ) = ch(π∗FL2)− π [[ch(F )].

Thus, T BK(ξ) is an example of an analytic torsion class.
Let now ω′ be another closed (1, 1)-form on X that induces a Kähler metric on the

fibers of π . We denote π ′ = (π, ω′). Let F
′
be the vector bundle F with another choice of

metric and define π∗F
′

L2 to be the object π∗F with the L2 metric induced by ω′ and F
′
.

We write ξ ′ for the Kähler relative metrized complex (π ′, F
′
, π∗F

′

L2).
The second main result of [13] is the following anomaly formula.

Theorem 8.1 ([13, Theorem 3.10]). The following formula holds:

T BK(ξ
′
)− T BK(ξ) = c̃h(π∗FL2 , π∗F

′

L2)+ π
′
[

[
ch(F ) • T̃dm(π ′, π)− c̃h(F , F

′
)
]
.

In the book [3], Bismut studies the compatibility of higher analytic torsion forms with
complex immersions. Before stating his result we have to recall the definition of the R-
genus of Gillet and Soulé [29]. It is the additive genus attached to the power series

R(x) =
∑
m odd
m≥1

(
2ζ ′(−m)+

(
1+

1
2
+ · · · +

1
m

)
ζ(−m)

)
xm

m!
. (8.2)

Let T−R/2 be the theory of analytic torsion classes for closed immersions associated
to −1

2 R.

Remark 8.3. The fact that we obtain the additive genus −R/2 instead of R is due to
two facts. The sign comes from the minus sign in (3.12), while the factor 1/2 comes
from the difference of the normalization of Green forms used in this paper and the one
used in [27]. Note however that the arithmetic intersection numbers computed using both
normalizations agree, because the definition of arithmetic degree in [27, §3.4.3] has a
factor 1/2 while the definition of arithmetic degree in [18, (6.24)] does not.

Consider a commutative diagram of smooth complex varieties

X

f ��

ι // Y

g

��
Z

where f and g are projective submersions and ι is a closed immersion. Let F be a hermi-
tian vector bundle on X such that the sheaves Rif∗F are locally free and let

0→ En→ · · · → E0 → ι∗F → 0
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be a resolution of ι∗F by hermitian vector bundles. We assume that for all i, j , Rig∗Ej
is locally free. We will denote by E the complex En → · · · → E0. Let ωX and ωY be
closed (1, 1)-forms that define a structure of Kähler fibration on f and g respectively. As
before we write f = (f, ωX) and g = (g, ωY ). The exact sequence

0→ Tf → f ∗Tg → NX/Y → 0

induces a hermitian structure on NX/Y . We will denote by ι the inclusion ι with this
hermitian structure. Finally we denote by f∗FE the hermitian structure on f∗F induced
by the hermitian structures g∗Ej L2 , j = 0, . . . , n.

Then, adapted to our language, the main result of [3] can be stated as follows.

Theorem 8.4 ([3, Theorems 0.1 and 0.2]). The following equation holds in the group⊕
p D̃

2p−1
D (Z,∅, p):

T BK(f , F , f∗FL2
) =

n∑
j=0

(−1)jT BK(g, Ej , f∗Ej L2
)

+ g[(T−R/2(ι, F ,E))+ c̃h(f∗FE, f∗FL2).

We can specify the previous result to the case when F = 0. Then E and g∗E are acyclic
objects. The hermitian structures of Ej and g∗Ej L2 induce hermitian structures on them.
We denote these hermitian structures by E and g∗EL2 .

Corollary 8.5. Let E be a bounded acyclic complex of hermitian vector bundles on Y
such that the direct images Rig∗Ej are locally free on Z. Then

n∑
j=0

(−1)jT BK(g, Ej , g∗Ej L2) = c̃h(g∗EL2)− g[(c̃h(E))

in
⊕
p D̃

2p−1
D (Z,∅, p).

We will also need a particular case of functoriality and projection formula for the higher
analytic torsion forms of Bismut–Köhler proved by Rössler [43].

The relative metrized complexes ξn(k) of Notation 5.2 are Kähler. Therefore we can
apply the construction of Bismut–Köhler to them. We denote

tBK
n,k = T

BK(ξn(k)). (8.6)

By Corollary 8.5, the numbers tBK
n,k satisfy the relation (5.20). Hence they are determined

by the main characteristic numbers tBK
n,k for −n ≤ k ≤ 0.

Lemma 8.7 ([43, Lemma 7.15]). Let π : PnX → X be a trivial projective bundle. Let G
be a hermitian vector bundle on X. Then

T BK(ξn(k)⊗G) = t
BK
n,k • ch(G).
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Proof. In [43] this result is stated only for k � 0. To prove the result for all k ∈ Z one
observes that, since the sheaves Riπ∗(π∗G ⊗ O(k)) are locally free for all i, the proof
in [43] applies. Alternatively, one can derive the case k ∈ Z from the case k � 0 using
Corollary 8.5 and the Koszul resolution (5.19). ut

We have all the ingredients we need to prove the main result of this section.

Theorem 8.8. Let T−R/2 be the theory of generalized analytic torsion classes associated
to the additive genus −1

2 R. Then, for every Kähler relative metrized complex ξ , we have

T BK(ξ) = T−R/2(ξ).

In particular T−R/2 extends the construction of Bismut–Köhler to arbitrary projective
morphisms of smooth complex varieties and arbitrary smooth metrics.

Proof. Let tBK
= {tBK

n,k | n ≥ 0, −n ≤ k ≤ 0} and let TtBK be the theory of ana-
lytic torsion classes for projective spaces associated to it. Let π : PnX → X be a relative
projective space and let ξ = (π,E, π∗EL2) be a Kähler relative metrized complex. By
choosing d � 0 we may assume that all the coherent sheaves of the resolution γd(F )
of Corollary 4.3 are locally free. Using results 5.10, 5.16, 8.1, 8.5 and 8.7 we find that
T BK(ξ) = TtBK(ξ). By Theorem 8.4, the theories TtBK and T−R/2 are compatible in the
sense of Definition 6.2. Therefore, T BK

= T−R/2 when restricted to projective spaces.
Finally, by factoring a smooth projective morphism as a closed immersion followed

by the projection of a relative projective space, Theorem 8.4 implies that T BK
= T−R/2

for all smooth projective morphisms. ut

Remark 8.9. (i) The construction of Bismut–Köhler applies to a wider class of varieties
and morphisms: complex analytic manifolds and proper Kähler submersions. However
for the comparison we have to restrict to smooth algebraic varieties and smooth projective
morphisms.

(ii) The results of Bismut and his coworkers are more precise. Here the class T BK(ξ)

is well defined up to the image of dD. In contrast, the higher analytic torsion form of
Bismut and Köhler is a well defined differential form, local on the base and whose class
modulo dD agrees with T BK(ξ).

From Theorem 8.8, one can derive the result below; although it follows directly from
the definition of higher analytic torsion classes by Bismut and Köhler, it does not appear
explicitly in the literature.

Corollary 8.10. Let f : X → Y be a smooth projective morphism of smooth complex
varieties, and let ξ = (f ,E, f∗EL2) be a Kähler relative metrized complex.

(i) Let g : Y ′ → Y be a morphism of smooth complex varieties. Then T BK(g∗ξ) =

g∗T BK(ξ).

(ii) Let G be a hermitian vector bundle on Y . Then T BK(ξ ⊗G) = T BK(ξ) • ch(G).
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The last consequence we want to discuss generalizes to non-smooth projective morphisms
results already proved by Berthomieu–Bismut [1, Thm. 3.1] and Ma [35, Thm. 0.1], [36,
Thm. 0.1]. However we recall that, while we stay within the algebraic category and work
with projective morphisms, these authors deal with proper Kähler holomorphic submer-
sions of complex manifolds. Let g : X → Y and h : Y → Z be morphisms in the cat-
egory Sm∗/C such that the composition f = h ◦ g is a smooth morphism. We choose
a structure of Kähler fibration on f , which we denote f

′
. Let E be a hermitian vec-

tor bundle on X and assume that the higher direct images Rif∗E are locally free. Then
we may consider the analytic torsion T BK(f

′
) attached to the Kähler relative metrized

complex (f
′
, E, f∗EL2). Also, we choose an auxiliary hermitian structure on g∗E. We

can consider the torsion classes TR/2(g) and TR/2(h) of the relative metrized complexes
(g, E, g∗E) and (h, g∗E, f∗EL2).

We make the following additional assumption in some particular situations:
(∗) The morphisms g and h are Kähler fibrations, the higher direct images Rig∗E and

Rjh∗R
ig∗E are locally free and the auxiliary hermitian structure on g∗E is the L2

hermitian structure.
When the hypothesis (∗) is satisfied we denote by h∗g∗EL2 the L2 hermitian structure
attached to the Kähler structure on h and the L2 metric on g∗EL2 . Observe that this last
structure may differ from the L2 structure on f∗EL2 . In the derived category Db(Z) there
is a canonical isomorphism h∗g∗E

∼
99K f∗E. Applying [17, Thm. 4.11] for the Chern

character to this isomorphism we obtain a secondary class c̃h(h∗g∗EL2 , f∗EL2).
We can consider the torsion classes T BK(g) and T BK(h

′
) attached to (g, E, g∗EL2)

and (h, g∗EL2 , h∗g∗EL2). By Proposition 5.10, we have the relation

T BK(h
′
) = T−R/2(h)− c̃h(h∗g∗EL2 , f∗EL2).

The properties of the generalized analytic torsion classes imply immediately:

Corollary 8.11. Under these assumptions, we have

T BK(f
′
) = T−R/2(h)+ h[(T−R/2(g))+ f

′

[(ch(E) • T̃dm(f
′
, f )).

If in addition the hypothesis (∗) is satisfied, then

T BK(f
′
) = T BK(h

′
)+ h[(T

BK(g))+ f
′

[(ch(E) • T̃dm(f
′
, f ))+ c̃h(h∗g∗EL2 , f∗EL2).

Since T−R/2 extends the theory of analytic torsion classes T BK, we will denote T−R/2
by T BK for arbitrary relative metrized complexes.

9. Grothendieck duality and analytic torsion

We will now study the compatibility of analytic torsion with Grothendieck duality.

Definition 9.1. Let F be an object of Db
(X). Recall that a representative of the hermitian

structure of F is given by a bounded complex of hermitian vector bundles

E : · · · → E
m
→ · · · → E

l
→ · · ·
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and an isomorphism E
∼
99K F in Db(X). Then the rank of F is defined as rk(F) =∑

i(−1)i dim(Ei). This is just the Euler characteristic of the complex. The determinant
of F is the complex

det(F) =
⊗
i

(3dimEiE
i
)(−1)i

[− rk(F)].

It consists of a single line bundle concentrated in degree rk(F). The rank and the deter-
minant do not depend on the choice of representative of the hermitian structure.

Definition 9.2. Let f : X → Y be a morphism in Sm∗/C of relative dimension e. The
metrized dualizing complex is the complex given by ωf = (det Tf )

∨. This complex is
concentrated in degree −e. The underlying object of Db(X) will be denoted by ωf . If we
are interested in the dualizing sheaf as a sheaf and not as an element of Db(X) we will
denote it by ωf or ωX/Y . Finally, if Y = SpecC, we will denote ωf (respectively ωf ) by
ωX (respectively ωX).

Definition 9.3. Let D∗(∗) be the Deligne complex associated to a Dolbeault complex.
The sign operator is

σ : D∗(∗)→ D∗(∗), ω ∈ Dn(p) 7→ σ(ω) = (−1)pω.

The sign operator satisfies the following compatibilities.

Proposition 9.4. (i) Let (D∗(∗), dD) be a Deligne algebra. Then the sign operator is a
morphism of differential algebras, that is,

dD ◦ σ = σ ◦ dD, σ (ω • η) = σ(ω) • σ(η).

(ii) Let F be an object of Db
(X). Then

σ ch(F) = ch(F∨), (9.5)

σ ch(det(F)) = ch(det(F)∨) = ch(det(F))−1, (9.6)

σ Td(F) = (−1)rk(F) Td(F) • ch(det(F)∨). (9.7)

Proof. The first statement is clear because if ω ∈ Dn(p) and η ∈ Dm(q) then we have
dD ω ∈ Dn+1(p) and ω • η ∈ Dn+m(p + q).

For the second statement, let E 99K F be the hermitian structure of F . Write

E
+
=

⊕
i even

E
i
, E

−
=

⊕
i odd

E
i
.

Since the statement is local on X, we can chose trivializations of E
+

and E
−

over an
open subset U . Let H+ and H− be the matrices of the hermitian metrics on E

+
and E

−
.

The curvature matrices of E
+

and E
−

, whose entries are elements of D2(U, 1), are

K± = K±(F) = −∂(H±)−1∂H±.
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The characteristic forms can be computed from the curvature matrix:

ch(F) = tr(exp(K+))− tr(exp(K−)),

ch(det(F)) = (−1)rk(F) det(exp(K+)) • det(exp(K−))−1,

Td(F) = det
(

K+

1− exp(−K+)

)
• det

(
K−

1− exp(−K−)

)−1

.

The sign in the second equation comes from the fact that det(F) is concentrated in degree
rk(F). Therefore, since σ(K±) = −K± = K±(F∨), we have

σ ch(F) = σ tr(exp(K+))− σ tr(exp(K−))

= tr(exp(K+(F∨)))− tr(exp(K−(F∨))) = ch(F∨),
σ ch(det(F)) = det(exp(−K+)) • det(exp(−K−))−1

= ch(det(F))−1,

σ Td(F) = det
(

−K+

1− exp(K+)

)
• det

(
−K−

1− exp(K−)

)−1

= det
(

K+

1− exp(−K+)

)
• det(exp(−K+))

• det
(

K−

1− exp(−K−)

)−1

• det(exp(−K−))−1

= Td(F) • ch(det(F))−1. ut

Corollary 9.8. Let [E] ∈ KA(X). Then c̃h(E
∨
) = σ c̃h(E).

Proof. Due to Proposition 9.4, the assignment sending [E] to σ c̃h(E) has the character-
izing properties of c̃h. ut

In the particular case of a projective morphism between smooth complex varieties or,
more generally, smooth varieties over a field, Grothendieck duality takes a very simple
form (see for instance [32, §3.4] and the references therein). If F is an object of Db(X)

and f : X → Y is a projective morphism of smooth complex varieties, then there is a
natural functorial isomorphism

f∗(F∨ ⊗ ωf ) ∼= (f∗F)∨. (9.9)

Compatibility between analytic torsion and Grothendieck duality is given by the fol-
lowing result.

Theorem & Definition 9.10. Let T be a theory of generalized analytic torsion classes.
Then the assignment that, to a relative metrized complex ξ = (f ,F , f∗F), associates the
class

T ∨(ξ) = σT (f ,F∨ ⊗ ωf , f∗F
∨
)

is a theory of generalized analytic torsion classes that we call the theory dual to T .
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Proof. We have to show that, if T satisfies the conditions of Definition 7.1, then the same
is true for T ∨. We start with the differential equation. Let e be the relative dimension
of f . Then

dD T ∨(ξ) = dD σT (f ,F
∨
⊗ ωf , f∗F

∨
) = σ dD T (f ,F

∨
⊗ ωf , f∗F

∨
)

= σ ch(f∗F
∨
)− σf∗

[
ch(F∨ ⊗ ωf ) • Td(f )

]
= ch(f∗F)− (−1)ef∗

[
σ ch(F∨) • σ(ch(det(Tf )

∨) • Td(Tf ))
]

= ch(f∗F)− f∗[ch(F) • Td(f )].

Functoriality and additivity are clear. We next check the projection formula. Let G be an
object of Db

(Y ). Then

T ∨(ξ ⊗ G) = σT (f ,F∨ ⊗ f ∗G∨ ⊗ ωf , f∗F
∨
⊗ G∨)

= σ
(
T (f ,F∨ ⊗ ωf , f∗F

∨
) • ch(G∨)

)
= T ∨(ξ) • ch(G).

Finally we check transitivity. Let g : Y → Z be another morphism in Sm∗/C. By the
definition of g ◦ f we have ωg◦f = f

∗ωg ⊗ ωf . Therefore,

f∗(F∨ ⊗ ωg◦f ) = f∗(F∨ ⊗ f ∗ωg ⊗ ωf ) = f∗(F∨ ⊗ ωf )⊗ ωg = (f∗F)∨ ⊗ ωg.

On f∗(F∨ ⊗ ωg◦f ) we put the hermitian structure of f∗F
∨
⊗ ωg . Then we have

T ∨(g ◦ f ) = σT (g ◦ f ,F∨⊗ ωg◦f , (g ◦ f )∗F
∨
)

= σT (g, f∗F
∨
⊗ ωg, (g ◦ f )∗F

∨
)

+ σg[T (f ,F
∨
⊗ ωf ⊗ f

∗ωg, f∗F
∨
⊗ ωg)

= T ∨(g, f∗F , (g ◦ f )∗F)+ σg∗
(
T (f ,F∨⊗ ωf , f∗F

∨
) • ch(ωg) •Td(g)

)
= T ∨(g)+ g[T

∨(f ).

Therefore, T ∨ also has the transitivity property. Hence it is a generalized theory of ana-
lytic torsion classes. ut

Definition 9.11. A theory of torsion classes T is called self-dual when T ∨ = T .

We want to characterize the self-dual theories of generalized analytic torsion classes.

Theorem 9.12. The homogeneous theory T h is self-dual.

Proof. By the uniqueness of the homogeneous theory, it is enough to prove that, if T is
homogeneous, then T ∨ is homogeneous. Let X be a smooth complex variety and let N
be a hermitian vector bundle of rank r on X. Put P = P(N ⊕ 1) and let s : X → P

be the zero section and π : P → X the projection. Let Q be the tautological quotient
bundle with the induced metric andK(s) the Koszul resolution associated to the section s.
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Since the normal bundle NX/P can be identified with N , on the map s we can consider
the hermitian structure given by the hermitian metric on N . Then detQ is a complex
concentrated in degree r . Moreover s∗ detQ = detN = ωs . The Koszul resolution has
the duality property K(s)∨ = K(s)⊗ detQ. The theory T ∨ is homogeneous if and only
if the class

T ∨(s,OX,K(s)) • Td(Q)

is homogeneous of bidegree (2r−1, r) in the Deligne complex. Since T is homogeneous
we deduce that

T ∨(s,OX,K(s)) • Td(Q) = σT (s,ωs,K(s)∨) • Td(Q)

= σT (s, s∗ detQ,K(s)⊗ detQ) • Td(Q)

= σ(T (s,OX,K(s)) • ch(detQ)) • Td(Q)

= σT (s,OX,K(s)) • ch(detQ
∨
) • Td(Q)

= (−1)rσ(T (s,OX,K(s)) • Td(Q))

is homogeneous of bidegree (2r − 1, r) in the Deligne complex. ut

Proposition 9.13. Let S(x) =
∑
∞

n=0 anx
n
∈ R[[x]] be a power series in one variable

with real coefficients. Denote by S the corresponding real additive genus and by TS the
associated theory of analytic torsion classes. Then the dual theory T ∨S has corresponding
real additive genus Sσ (x) := −S(−x).

Proof. Let ξ = (f ,F , f∗F) be a relative metrized complex. Let e be the relative dimen-
sion of f . Since f∗ sends currents of bidegree (n, p) to currents of bidegree (n−2e, p−e),
we have σf∗ = (−1)ef∗σ . The proposition readily follows from the definition of T ∨S , the
self-duality of T h and Proposition 9.4. ut

We can now characterize the self-dual theories of analytic torsion classes.

Corollary 9.14. The theory of analytic torsion classes TS attached to the real additive
genus S(x) =

∑
n≥0 anx

n is self-dual if and only if an = 0 for n even.

Proof. By the proposition, T ∨S = TSσ , hence T is self-dual if and only if Sσ = S. The
corollary follows. ut

In particular we recover the following fact, which is well known if we restrict to Kähler
relative metrized complexes.

Corollary 9.15. The theory of analytic torsion classes of Bismut–Köhler T BK is self-
dual.

Proof. We just remark that the even coefficients of the R-genus (8.2) vanish. ut

We now elaborate on an intimate relation between self-duality phenomena and the ana-
lytic torsion of de Rham complexes. Let f : X → Y be a smooth projective morphism
of smooth algebraic varieties, of relative dimension e. Let T X/Y denote the vertical tan-
gent bundle, endowed with a hermitian metric. Write f for the corresponding morphism
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in Sm∗/C. On the locally free sheaves �pX/Y = 3p�X/Y we put the induced hermitian
structures. The metrized de Rham complex is

0→ OX
0
→ �X/Y

0
→ �

2
X/Y

0
→ · · ·

0
→ �

e

X/Y → 0

with zero differentials. In fact, we are really considering the de Rham graded sheaf and
converting it into a complex in a trivial way. We indicate by �•X/Y the corresponding

object of Db
(X) ([17, Def. 3.37], see Remark 5.15). The individual terms �pX/Y will be

considered as complexes concentrated in degree p. We then obviously have:

Lemma 9.16. The objects (�•X/Y )
∨
⊗ ωf and �•X/Y [2e] are tightly isomorphic.

For every p, q, the cohomology sheaf Rqf∗�
p
X/Y is locally free, because the Hodge

numbers hp,q of the fibers of f (which are projective, hence Kähler) are known to be
locally constant. Every stalk of this sheaf is endowed with the usual L2 metric of Hodge
theory. This family of L2 metrics on Rqf∗�

p
X/Y glue into a smooth metric. Because the

Hodge star operators ∗ act by isometries, it is easily shown that Serre duality becomes an
isometry for the L2 structures: the isomorphism

(Rqf∗�
p
X/Y )

∨ ∼
→ Re−qf∗((�

p
X/Y )

∨
⊗ ωf ) = R

e−qf∗�
e−p
X/Y

preserves theL2 hermitian structures. For every p, let f∗�
p
X/Y denote the object of Db

(Y )

with the metric induced by the L2 metrics on its cohomology pieces [17, Def. 3.47]. Here
f∗ stands for the derived direct image. By [17, Prop. 3.48], Grothendieck duality

(f∗�
p
X/Y )

∨ ∼
−→ f∗�

e−p
X/Y [2e]

is a tight isomorphism. Finally, let [f∗�•X/Y ] be the object of Db
(Y ) provided by [17,

Def. 3.39] (see Remark 5.15). The next lemma follows easily from the construction of
[17, Def. 3.39].

Lemma 9.17. Grothendieck duality defines a tight isomorphism in Db
(Y )

[f∗�
•

X/Y ]
∨ ∼= [f∗�

•

X/Y ][2e].

Theorem 9.18. Let T be a theory of analytic torsion classes. The following assertions
are equivalent:

(i) the theory T is self-dual;
(ii) for every f , Tf , �•X/Y and [f∗�•X/Y ] as above and for every odd integer p ≥ 1,

the part of bidegree (2p− 1, p) (in the Deligne complex) of T (f ,�•X/Y , [f∗�
•

X/Y ])

vanishes.
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Proof. Assume first of all that T is self-dual. We apply the definition of T ∨, the self-
duality assumption and Lemmas 9.16 and 9.17. We find that

T (f ,�
•

X/Y , [f∗�
•

X/Y ])= σT (f ,�
•

X/Y [2e], [f∗�
•

X/Y ][2e])

= (−1)2eσT (f ,�•X/Y , [f∗�
•

X/Y ])= σT (f ,�
•

X/Y , [f∗�
•

X/Y ]).

The sign operator σ changes the sign of the components of bidegree (2p−1, p) for odd p.
Hence T (f ,�•X/Y , [f∗�

•

X/Y ])
(2p−1,p) vanishes for p ≥ 1 odd.

For the converse implication, let S(x) =
∑
n≥0 anx

n be the real additive genus at-
tached to T via Theorem 7.14. By Corollary 9.14, we have to show that the coefficients an
with n even vanish. Let us look at a smooth morphism f : X→ Y of relative dimension 1,
with an arbitrary metric on Tf . Then, developing the power series of ch and Td and taking
into account that �1

X/Y = T
∨

f = ωX/Y , we compute

f∗[ch(�•X/Y )Td(Tf )S(Tf ) • 11] =
∑
n≥0

(−1)n+1anf∗[c1(ωX/Y )
n+1
• 11].

Therefore, for p ≥ 1 odd, we have

(−1)pap−1f∗[c1(ωX/Y )
p
• 11]

=
(
T (f ,�•X/Y , [f∗�

•

X/Y ])− T
h(f ,�•X/Y , [f∗�

•

X/Y ])
)(2p−1,p,p)

= 0. (9.19)

Hence it is enough, for every odd integer p ≥ 1, to find a relative curve f : X→ Y such
that f∗(c1(ωX/Y )

p) 6= 0 in the cohomology group H 2p(Y,C). Let d = p− 1 and choose
Y to be a smooth projective variety of dimension d . Let L be an ample line bundle on Y
and take X = P(L⊕OY ). Consider the tautological exact sequence

0→ O(−1)→ f ∗(L⊕OY )→ Q→ 0.

We easily derive the relations

π∗c1(L) = c1(Q)− c1(O(1)), (9.20)
c1(O(−1))c1(Q) = 0. (9.21)

Moreover we have
c1(ωX/Y ) = −c1(Q)− c1(O(1)). (9.22)

From (9.20)–(9.22) and because d = p − 1 is even, we compute

c1(ωX/Y )
d
= c1(Q)

d
+ c1(O(1))d = π∗c1(L)

d .

Therefore we find
c1(ωX/Y )

p
= π∗c1(L)

dc1(ωX/Y ). (9.23)

Finally, f is a fibration into curves of genus 0, hence f∗(c1(ωX/Y )) = −2. We infer that
(9.23) leads to

f∗(c1(ωX/Y )
p) = −2c1(L)

d .

This class does not vanish, since Y is projective of dimension d and L is ample. ut

We end with a characterization of the theory of analytic torsion classes of Bismut–Köhler.



Generalized holomorphic analytic torsion 519

Theorem 9.24. The theory of analytic torsion classes of Bismut–Köhler T BK is the
unique theory of generalized analytic torsion classes such that, for every Kähler fibra-
tion f : X→ Y in Sm∗/C, we have

T BK(f ,�
•

X/Y , [f∗�
•

X/Y ]) = 0.

Proof. That the theory T BK vanishes for de Rham complexes of Kähler fibrations is a
theorem of Bismut [5]. For uniqueness, let T be a theory of generalized analytic tor-
sion classes vanishing on de Rham complexes of Kähler fibrations. Denote by S(x) =∑
k≥0 akx

k its corresponding genus. If f is a relative curve with a structure of Kähler
fibration, then by Theorem 7.14,

T h(f ,�
•

X/Y , [f∗�
•

X/Y ]) =
∑
k≥0

(−1)kakf∗[c1(ωX/Y )
k+1
• 11]. (9.25)

It is enough to find, for every k ≥ 0, a relative curve f such that f∗(c1(ωX/Y )
k+1) does

not vanish. The elementary construction in the proof of Theorem 9.18 works whenever
k is even, but one easily sees it fails for k odd. Fortunately, there is an alternative argu-
ment. Let g ≥ 2 and n ≥ 3 be integers. Consider the fine moduli scheme of smooth
curves of genus g with a Jacobi structure of level n [21, Def. 5.4], to be denoted Mn

g .
It is well known to be quasi-projective. Let π : Cng → Mn

g be the universal curve. An
example of Kähler fibration structure on π is provided by Teichmüller theory (see for
instance [47, Sec. 5]). By [22, Thm. 1], the tautological class κg−2 := π∗(c1(ωπ )

g−1) ∈

H 2(g−2)(Mn
g,C) does not vanish. Taking g = k + 2 and f = π , we conclude the proof

of the theorem. ut

We note that in the previous theorem, the existence is provided by Bismut’s theorem. It
would be interesting to have a proof of the existence of a theory satisfying the condition
of Theorem 9.24 from the axiomatic point of view.

10. Direct images of hermitian structures

As another application of a theory of generalized analytic torsion classes, we construct
direct images of metrized complexes. It turns out that the natural place to define direct
images is not the category Db

(·) but a new category D̂b(·) that is the analogue to the
arithmetic K-theory of Gillet and Soulé [28].

Let X be a smooth complex variety. The fibers of the forgetful functor Db
(X) →

Db(X) have a structure of KA(X)-torsor, for the action of KA(X) by translation of her-
mitian structures [17, Thm. 3.13]. At the same time, the group KA(X) acts on the group⊕
p D̃

2p−1
D (X, p) by translation, via the Bott–Chern character c̃h [17, Prop. 4.6]. Observe

that all Bott–Chern classes live in these groups, just as for analytic torsion classes. It is
thus natural to build a product category over KA(X).
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Definition 10.1. Let S ⊂ T ∗X0 be a closed conical subset. We define

D̂b(X, S) = Db
(X)×KA(X)

⊕
p

D̃2p−1
D (X, S, p)

to be the category whose objects are the equivalence classes [F, η] of pairs (F , η) be-
longing to Ob Db

(X)×
⊕
p D̃

2p−1
D (X, S, p) under the equivalence relation

(F , η) ∼ (F + [E], η − c̃h(E))

for [E] ∈ KA(X), and with morphisms

HomD̂b(X)([F , η], [G, ν]) = HomDb(X)(F ,G).

If S ⊂ T are closed conical subsets of T ∗X0, then D̂b(X, S) is naturally a full subcat-
egory of D̂b(X, T ).

In what follows, we extend the main operations in Db(X) to the categories D̂b(X, S).
In particular, we use the theory of generalized analytic torsion classes to construct push-
forward morphisms attached to morphisms in Sm∗/C.

The category D̂b(X, S) has a natural additive structure. More generally, if S, T are
closed conical subsets of T ∗X0, then there is an obvious addition functor

D̂b(X, S)× D̂b(X, T )
⊕
→ D̂b(X, S ∪ T ).

The object [0, 0] is a neutral element for this operation. If S + T is disjoint from the zero
section in T ∗X, then there is a product defined by the functor

Ob D̂b(X, S)× Ob D̂b(X, T )
⊗
→ Ob D̂b(X, (S + T ) ∪ S ∪ T ),

([F , η], [G, ν]) 7→ [F ⊗ G, ch(F) • ν + η • ch(G)+ dD η • ν],
(10.2)

and the obvious assignment for morphisms. This product is commutative up to natural
isomorphism. It induces on D̂b(X,∅) a structure of commutative and associative ring
category. Also, [OX, 0] is a unity object for the product structure. More generally, the
category D̂b(X, S) becomes a left and right D̂b(X,∅) module. Under the same assump-
tions on S, T we may define an internal Hom. For this, let [F , η] ∈ Ob D̂b(X, S) and
[G, ν] ∈ Ob D̂b(X, T ). Then we put

Hom([F , η], [G, ν]) = [Hom(F ,G), (σ ch(F)) • ν + (ση) • ch(G)+ (dD ση) • ν],

where we recall that σ is the sign operator (Definition 9.3). Using Corollary 9.8, it is
easily seen this is well defined. In particular, we put

[F , η]∨ := Hom([F , η], [OX, 0]) = [F∨, ση].

The shift [1] on Db
(X) induces a well defined shift functor on D̂b(X, S), whose action

on objects is
[F , η][1] = [F[1],−η].
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There is a Chern character

ch : Ob D̂b(X, S)→
⊕
p

D̃2p
D (X, S, p), [F , η] 7→ ch(F)+ dD η,

which is well defined because dD c̃h(E) = ch(E) for [E] ∈ KA(X). The Chern character
is additive and compatible with the product structure:

ch([F , η] ⊗ [G, ν]) = ch([F , η]) • ch([G, ν]).

Notice the relations

ch([F , η]∨) = σ ch([F , η]), ch([F , η][1]) = − ch([F , η]).

We may also define Bott–Chern classes for isomorphisms and distinguished triangles.
Let ϕ̂ : [F, η] 99K [G, ν] be an isomorphism in D̂b(X, S), whose underlying morphism
in Db(X) is denoted ϕ. While the class c̃h(ϕ : F 99K G) depends on the representatives
(F , η), (G, ν), the class c̃h(ϕ̂) := c̃h(ϕ : F 99K G)+ ν − η is well defined.

Lemma 10.3. Let ϕ̂ : [F , η] 99K [G, ν] be an isomorphism in D̂b(X, S), with underlying
morphism ϕ in Db(X). Then the following conditions are equivalent:

(i) there exists [E] ∈ KA(X) such that ϕ induces a tight isomorphism between F + [E]
and G, and ν = η − c̃h(E);

(ii) c̃h(ϕ̂) = 0.

Proof. This is actually a tautology. Because KA(X) acts freely and transitively on the
possible hermitian structures on F , there exists a unique [E] ∈ KA(X) such that F+[E]
is tightly isomorphic to G via the morphism ϕ. Then we have

c̃h(ϕ̂) = c̃h(E)+ ν − η.

The lemma follows. ut

Definition 10.4. Let ϕ̂ be an isomorphism in D̂b(X, S). We say that ϕ̂ is tight if the
equivalent conditions of Lemma 10.3 are satisfied.

In particular, if ϕ : F 99K G is a tight isomorphism in Db
(X), then ϕ induces a tight

isomorphism [F , η] 99K [G, ν] if and only if η = ν.
The following lemma provides an example involving the notion of tight isomorphism.

Lemma 10.5. Let [F , η] ∈ D̂b(X, S) and [G, ν] ∈ D̂b(X, T ). Assume that S + T does
not cross the zero section. Then there is a functorial tight isomorphism

[F , η]∨ ⊗ [G, ν] ∼= Hom([F , η], [G, ν]).
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Assume now there is given a distinguished triangle

τ̂ : [F , η] 99K [G, ν] 99K [H, µ] 99K [F , η][1].

Let τ denote the distinguished triangle F 99K G 99K H 99K in Db
(X). Then we put

c̃h(̂τ ) = c̃h(τ )+ η − ν + µ.

By [17, Thm. 3.33(vii)], this class does not depend on the representatives and thus is well
defined.

We now study the functoriality of D̂b(X, S) with respect to inverse and direct images.
Let f : X → Y be a morphism of smooth complex varieties. Let T ⊂ T ∗Y0 be a closed
conical subset disjoint from Nf . The action of the left inverse image functor on objects is

f ∗ : Ob D̂b(Y, T )→ Ob D̂b(X, f ∗T ), [F , η] 7→ [f ∗F , f ∗η].

That this assignment is well defined amounts to the functoriality of c̃h.
Let f be a morphism in the category Sm∗/C. The definition of a direct image functor

attached to f depends upon the choice of a theory of generalized analytic torsion classes.
Let T be such a theory. Then we define a functor f ∗ whose action on objects is

f ∗ : Ob D̂b(X, S)→ Ob D̂b(Y, f∗S),

[F , η] 7→ [f∗F, f [(η)− T (f ,F , f∗F)],
(10.6)

where f∗F is an arbitrary choice of hermitian structure on f∗F . By the anomaly formulas,
this definition does not depend on the representative (F , η) nor on the choice of hermitian
structure on f∗F .

Theorem 10.7. Let f : X→ Y and g : Y → Z be morphisms in Sm∗/C. Let S ⊂ T ∗X0
and T ⊂ T ∗Y0 be closed conical subsets.

(i) Let [F , η] ∈ Ob D̂b(X, S). Then there is a functorial tight isomorphism

(g ◦ f )∗([F , η]) ∼= g∗f ∗([F , η]).

(ii) (Projection formula) Assume that T ∩ Nf = ∅ and that T + f∗S does not cross
the zero section of T ∗Y . Let [F , η] ∈ Ob D̂b(X, S) and [G, ν] ∈ Ob D̂b(Y, T ). Then
there is a functorial tight isomorphism

f ∗([F, η] ⊗ f ∗[G, ν]) ∼= f ∗[F, η] ⊗ [G, ν]

in D̂b(Y,W), where W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T .
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(iii) (Base change) Consider a cartesian diagram

X′
h′ //

f ′

��

X

f

��
Y ′

h // Y

Suppose that f and h are transverse and that Nh′ is disjoint from S. Equip f ′ with
the hermitian structure induced by the natural isomorphism h∗Tf 99K Tf ′ . Let [F , η]
be in Ob D̂b(X, S). Then there is a functorial tight isomorphism

h∗f ∗[F , η] ∼= f
′

∗h
′∗
[F, η]

in D̂b(Y ′, f ′∗h
′∗S).

Proof. The first and the second assertions follow from Proposition 2.13, the transitivity
and the projection formula for T . For the third item, one uses the functoriality of the
analytic torsion classes and Proposition 2.14. ut

We close this section with an extension of Grothendieck duality to D̂b. Let f : X → Y

be a morphism is Sm∗/C. To lighten notations, we denote by ωf the object [ωf , 0] in
D̂b(X,∅) (Definition 9.2). Suppose there is given a closed conical subset T ⊂ T ∗Y0 such
that T ∩Nf = ∅. Then we define the functor f

!
whose action on objects is

f
!
: Ob D̂b(Y, T )→ Ob D̂b(X, f ∗T ), [F , η] 7→ f ∗[F , η] ⊗ ωf .

Observe the equality

[G, ν] ⊗ ωf = [G ⊗ ωf , ν • ch(ωf )]. (10.8)

Now fix a theory of generalized analytic torsion classes. To the morphism f we have
attached the direct image functor f ∗. We denote by f

∨

∗ the direct image functor associated
to f and the dual theory (Theorem & Definition 9.10).

Theorem 10.9 (Grothendieck duality for D̂b). Let f : X→ Y be a morphism in Sm∗/C.
Let S ⊂ T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets such that T ∩Nf = ∅ and T+f∗S
is disjoint from the zero section. Let [F , η] ∈ Ob D̂b(X, S) and [G, σ ] ∈ Ob D̂b(Y, T ).
Then there is a functorial tight isomorphism

Hom(f ∗[F , η], [G, ν]) ∼= f
∨

∗Hom([F , η], f ![G, ν])

in D̂b(Y,W), where W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T .
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In particular, we have

(f ∗[F , η])∨ ∼= f
∨

∗ ([F , η]∨ ⊗ ωf ). (10.10)

Proof. By Lemma 10.5 and Proposition 10.7, we are reduced to establish the functorial
tight isomorphism (10.10). The proof follows readily from the definitions, Grothendieck
duality and the following two observations. First of all, if T is the theory of analytic
torsion classes, then by the very definition of T ∨ we find

σT (f ,F , f∗F) = T ∨(f ,F
∨
⊗ ωf , f∗(F∨ ⊗ ωf )),

where the metric on f∗(F∨ ⊗ ωf ) is chosen so that Grothendieck duality provides a tight
isomorphism

f∗F
∨ ∼= f∗(F∨ ⊗ ωf ).

Secondly, for direct images of currents, we compute

σf [(η) = σf∗(η • Td(Tf )) = (−1)ef∗(ση • σ Td(Tf )) = f∗(ση • ch(ωf ) • Td(Tf )).

Here e is the relative dimension of f , and to derive the last equality we appeal to Propo-
sition 9.4. To conclude, we recall equation (10.8). ut

Corollary 10.11. Let T be a self-dual theory of generalized analytic torsion classes.

(i) Then there is a functorial isomorphism (f ∗[F , η])∨ ∼= f ∗([F , η]∨ ⊗ ωf ).

(ii) If the hermitian structure of f comes from chosen metrics on TX, TY and ωX, ωY are
equipped with the induced metrics, then we have a commutative diagram

D̂b(X, S)

f ∗
��

(·)∨⊗ωX // D̂b(X, S)

f ∗
��

D̂b(Y, f∗S)
(·)∨⊗ωY // D̂b(Y, f∗S)

Proof. The first claim is immediate from Theorem 10.9. The second item follows from
the first one and the projection formula (Proposition 10.7). ut

11. Analytic torsion for degenerating families of curves

As a second example of application of the theory developed in this article, we describe
the singularities of the analytic torsion for degenerating families of curves. The results
we prove are particular instances of those obtained by Bismut–Bost [6], Bismut [4] and
Yoshikawa [48]. Although the methods of this section can be extended to recover the
results of Yoshikawa in [48], for simplicity, we will restrict ourselves to fibrations in
curves over a curve.

In fact, our proof is not very different from the one in [4] and [48]. For instance, one
of the main ingredients of the proof of the results in [4] and [48] is the Bismut–Lebeau



Generalized holomorphic analytic torsion 525

immersion formula. Our approach implicitly uses Bismut’s generalization of the immer-
sion formula, encoded in the existence of analytic torsion theories for arbitrary projective
morphisms. We expect that the techniques of this section can be used to generalize the
above results to situations more general than the ones considered by Yoshikawa.

Let S be a smooth complex curve and f : X → S a projective morphism of smooth
complex varieties, whose fibers are reduced curves with at most ordinary double singular
points. We assume that f is generically smooth. Following Bismut–Bost [6, Sec. 2(b)],
we call such a family an f.s.o. (famille à singularités ordinaires). The singular locus
of f , to be denoted 6, is a zero-dimensional reduced closed subset of X. Its direct image
1 = f∗(6) is the Weil divisor

1 =
∑
p∈S

npp,

where np is the number of singular points of the fiber f−1(p). We will abusively iden-
tify 1 with its support. With these notations, we put V = S \1. Locally for the analytic
topology, the morphism f can be written in complex coordinates either as f (z0, z1) = z0
or f (z0, z1) = z0z1 [6, Sec. 3(a)]. In the second case, the point of coordinates (z0, z1) =

(0, 0) belongs to the singular locus 6.
For a vector bundle F over X, let P(F ) be the projective space of lines in F . The

differential df : TX → f ∗TS induces a section OX → �X⊗f
∗TS . Because f is smooth

over X \6, this section does not vanish on X \6. Therefore there is an induced map

µ : X \6→ P(�X ⊗ f ∗TS) ∼= P(�X),

called the Gauss map. Notice that this map was already used in [4] and [48].
We next study the blow-up X̃ = Bl6(X) of X at 6 and relate it to the Gauss map. Let

π : X̃ → X be the natural projection and f̃ : X̃ → S the natural morphism of X̃ over S.
Observe that f̃ is also an f.s.o. Let E be the exceptional divisor of π ,

E =
⊔
p∈6

Ep, Ep ∼= P(TpX),

with the reduced scheme structure. For every p ∈ 6, there is an identification TpX ∼=
�X,p provided by the hessian of f , which is a non-degenerate bilinear form on TpX. The
local description of the blow-up at a point implies:

Lemma 11.1. There is a commutative diagram

Ep = P(TpX)
∼ //

� _

��

P(�X,p)� _

��
X̃

µ̃ //

π

��

P(�X)

p

ww
X X \6

µ

OO

? _oo

Denote by O(−1) the tautological divisor either on P(�X) or on Ep. Then there is a
natural isomorphism µ̃∗O(−1)|Ep ∼= O(−1).
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Consider now the short exact sequence of vector bundles on P(�X)

0→ O(−1)→ p∗�X → Q→ 0,

where Q is the universal quotient bundle. Observe that Q is of rank 1. The dual exact
sequence is

0→ U → p∗TX → O(1)→ 0,

U being the universal vector subsheaf. We denote by η the induced exact sequence on X̃

η : 0→ µ̃∗U → π∗TX → µ̃∗O(1)→ 0. (11.2)

From (11.2) and the definition ωX/S = ωX ⊗ f ∗TS , we derive a natural isomorphism

µ̃∗U ⊗ π∗ωX/S ∼= µ̃
∗O(−1)⊗ f̃ ∗TS . (11.3)

Lemma 11.4. We have
µ̃∗O(−1)⊗ f̃ ∗TS = O(E). (11.5)

Proof. First of all we observe that µ̃∗U ⊗ π∗ωX/S is trivial on the open W = X̃ \ E.
Indeed, by construction of the Gauss map we have

µ̃∗U |W = ker(df : TX → f ∗TS)|W = ω
∨

X/S |W.

Hence by (11.3) we can write

µ̃∗O(−1)⊗ f̃ ∗TS = O
(∑
p∈6

mpEp

)
.

To compute the multiplicities mp we use that µ̃∗O(−1)|Ep = O(−1), (Ep · f̃ ∗TS) = 0
and (Ep · Ep) = −1:

−mp = deg(µ̃∗O(−1)⊗ f̃ ∗TS)|Ep = −1+ 0 = −1.

The lemma follows. ut

Later we will need the commutative diagram of exact sequences

η|W : 0 // µ̃∗U |W //

α

��

TX|W //

β

��

µ̃∗O(1)|W //

γ

��

0

ε : 0 // ω∨X/S |W
// TX|W // f ∗TS |W // 0

(11.6)

After the identification µ̃∗O(−1)⊗ f̃ ∗TS = O(E) provided by the lemma, the morphism
γ is the restriction to W of the natural inclusion µ̃∗O(1)→ µ̃∗O(1) ⊗ O(E). This fact
will be used below.

We now proceed to introduce the hermitian vector bundles and the analytic torsion
classes we aim to study. We fix a theory of generalized analytic torsion classes T .
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Let f : X → S, f̃ : X̃ → S be f.s.o. as above. Recall that we write W = X \ 6 =
X̃ \ E and V = S \ 1, so that f−1(V ) ⊂ W . We endow the tangent spaces TX and TS
with smooth hermitian metrics. We will denote by f the corresponding morphism in the
category Sm∗/C. On the open subset W , there is a quasi-isomorphism

ω∨X/S |W = ω∨X/S[1]|W → Tf

induced by the identification ω∨X/S |W = ker(TX|W → f ∗TS). On ω∨X/S |W , and in partic-

ular on ω∨
f−1(V )/V

, we put the metric induced by TX|W . We will write f
′
: f−1(V )→ V

for the corresponding morphism in Sm∗/C. Observe that the restriction of f to W , and

hence to f−1(V ), may be identified with the restriction of f̃ . Let F be an object in Db
(X)

and fix a hermitian structure on f∗F . Then we consider the relative metrized complexes

ξ = (f ,F , f∗F), ξ
′
= (f

′
,F |f−1(V ), f∗F |V ),

and the corresponding analytic torsion classes

T (ξ) ∈
⊕
p

D̃2p−1
D (S,Nf , p), T (ξ

′
) ∈

⊕
p

D̃2p−1
D (V ,∅, p).

By the functoriality of analytic torsion classes and the anomaly formulas, we have

T (ξ
′
) = T (ξ)|V − f [[ch(F |f−1(V )) T̃dm(ε|f−1(V ))]. (11.7)

Here ε is the exact sequence in (11.6), with the hermitian metrics we have just defined.
From now on we will omit the reference to f−1(V ) and V in formulas.

We consider the hermitian structures on the sheaves U and O(1) on P(�X) induced
by p∗TX. We will write η for the exact sequence in (11.2) and α, β and γ for the vertical
isomorphisms in diagram (11.6), all provided with the corresponding metrics. Notice that
α and β are isometries. By the properties of the Bott–Chern class T̃dm, one can prove

T̃dm(ε) = T̃dm(η)+ Td(η) T̃dm(γ ). (11.8)

Hence, from (11.7)–(11.8) and identifying f with f̃ over V , we have

T (ξ
′
) = T (ξ)− f̃∗[π

∗ ch(F)π∗ Td(f ) T̃dm(η)]

− f̃∗[π
∗ ch(F)π∗ Td(f )Td(η) T̃dm(γ )]. (11.9)

It will be convenient to have a precise description of T̃dm(γ ) at our disposal.
As shorthand, we write L := µ̃∗O(1) and ‖ · ‖0 for its hermitian structure constructed

before. We denote by ‖ · ‖1 the metric on O(E) such that the isomorphism O(E)1 =
L
−1
0 ⊗f̃

∗TS (Lemma 11.4) is an isometry. Recall that γ gets identified with the restriction
toW of the natural inclusionL→ L⊗O(E). We let ‖·‖∞ be the hermitian metric onL|W
such that γ is an isometry. Hence, if 1 denotes the canonical section of O(E) and ` is any
section of L|W , then

‖`‖∞ = ‖`‖0‖1‖1.
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To simplify the notations, we will skip the reference to W . We then have on W

T̃dm(γ ) = T̃dm(L0
id
→ L∞).

To compute a representative of this class, we fix a smooth function h : P1
C→ R such that

h(0) = 0 and h(∞) = 1. Then we proceed by a deformation argument. Let q : W×P1
C→

W be the projection to the first factor. On the line bundle q∗L we put the metric that, on
the fiber at the point (w, t) ∈ W × P1

C, is determined by the formula

‖`‖(w,t) = ‖`‖0,w‖1‖
h(t)
1,w .

We will write ‖ · ‖t for this family of metrics parametrized by P1
C. Define

Td(L0 → L∞) =
1

2πi

∫
P1
C

−1
2

log(tt)(Td(q∗Lt )− Td(q∗L0)).

Then
Tdm(γ ) = Td−1(L0)Td(L0 → L∞) (11.10)

represents the class T̃dm(γ ). Let us develop Tdm(γ ). If Ot denotes the trivial line bundle
on W × P1

C with the norm ‖1‖t = ‖1‖h(t)1 , then we compute

Td(q∗Lt )− Td(q∗L0) =
1
2
c1(Ot )+

1
6
c1(Ot )q

∗c1(L0)+
1

12
c1(Ot )

2.

By the very definition of c1, we find

c1(Ot ) = ∂ ∂ log ‖1‖2t = ∂ ∂(h(t) log ‖1‖21)

= h(t)c1(O(E)1)+ log ‖1‖21 ∂ ∂ h(t)+ ∂ h(t)∧ ∂ log ‖1‖21+ ∂ log ‖1‖21 ∧ ∂ h(t).

We easily obtain

1
2πi

∫
P1
C

−1
2

log(tt)
1
2
c1(Ot ) = −

1
2

log ‖1‖1, (11.11)

1
2πi

∫
P1
C

−1
2

log(tt)
1
6
q∗c1(L0)c1(Ot ) = −

1
6

log ‖1‖1c1(L0). (11.12)

With some more work, we have

1
2πi

∫
P1
C

−1
2

log(tt)
1
12
c1(Ot )

2
= −

a

6
log ‖1‖1c1(O(E)1)

+
b

3
∂(log ‖1‖1 ∂ log ‖1‖1), (11.13)

where

a =
1

2πi

∫
P1
C

log(tt)
1
2
∂ ∂(h(t)2), b =

1
2πi

∫
P1
C

log(tt) ∂ h(t) ∧ ∂ h(t). (11.14)



Generalized holomorphic analytic torsion 529

We observe that

a =
1

2πi

∫
P1
C

log(tt)
1
2
∂ ∂(h(t)2) =

1
2
,

which is independent of h. All in all, equations (11.10)–(11.14) provide the following
expression for the representative Tdm(γ ) of T̃dm(γ ):

Tdm(γ ) = Td−1(L0)
(
−

1
2

log ‖1‖1 −
1
6

log ‖1‖1c1(L0)

−
1

12
log ‖1‖1c1(O(E)1)+

b

3
∂(log ‖1‖1 ∂ log ‖1‖1)

)
. (11.15)

Given a current η ∈ Dn
D(X, p), we will call (n, p) its Deligne bidegree, while the

Dolbeault bidegree will be the bidegree in the Dolbeault complex. When it is clear from
the context to which bidegree we are referring, we call it bidegree.

We now study the singularities of the component of Deligne bidegree (1, 1) of T (ξ ′)
near the divisor 1. For this we first recall the decomposition of (11.9). Observe that
D̃1
D(V ,∅, 1) gets identified with the space of smooth real functions on V . For an element

ϑ ∈
⊕
p D̃

2p−1
D (∗, p), we write ϑ (2r−1,r) to refer to its component of bidegree (2r−1, r).

By construction of the Deligne complex, an element of Deligne bidegree (2r − 1, r) is
just a current of Dolbeault bidegree (r − 1, r − 1).

The following assertion is well known. See for instance [46, Lemma 2.1, Cor. 2.2].

Lemma 11.16. Let � ⊂ C be an open subset and ϑ a current of Dolbeault bidegree
(0, 0) on�. Let1 be the standard laplacian. If the current1ϑ is represented by a locally
bounded measurable function, then ϑ is represented by a continuous function.

Proposition 11.17. The current T (ξ)(1,1) ∈ D̃1
D(S,Nf , 1) is represented by a continuous

function on S.

Proof. The differential equation satisfied by T (ξ)(1,1) is

dD T (ξ)(1,1) = ch(f∗F)(2,1) − f∗[ch(F)Td(f )](2,1). (11.18)

In local coordinates, the operator dD = −2∂∂ is a rescaling of the laplacian 1. By the
lemma, it is enough to prove that the current on the right hand side of (11.18) is rep-
resented by a locally bounded measurable differential form. Because ch(f∗F)(2,1) and
ch(F)Td(f ) are smooth differential forms, we are reduced to study currents of the form
f∗[θ ]

(2,1), where θ is a smooth differential form. By a partition of unity argument, we
reduce to the case where f : C2

→ C is the morphism f (z0, z1) = z0z1 and θ is a dif-
ferential form of Dolbeault bidegree (2,2) with compact support. Then we need to prove
that the fiber integral

G(w) =

∫
z0z1=w

θ
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is a bounded form in a neighborhood ofw = 0. Write θ = h(z0, z1)dz0∧dz0∧dz1∧dz1.

We reduce to study integrals of the form

G(w) =

(∫
|w|<|z0|<1

h(z0, z0/w)
|w|2

|z0|4
dz0 ∧ z0

)
dw ∧ dw.

The property follows from an easy computation in polar coordinates. ut

Proposition 11.19. Let θ be a differential form of Dolbeault bidegree (1, 1) on X̃. Then
the current f̃∗[θ ] is represented by a bounded function on S.

Proof. The proof is the same as in [6, Prop. 5.2]. One only has to show that the argument
there carries over to the case of non-reduced fibres that have appeared when blowing up
the nodes. ut

Corollary 11.20. The current f̃∗[π
∗ ch(F)π∗ Td(f ) T̃dm(η)] is represented by a

bounded function on S.

Proof. It suffices to observe that the differential form π∗ ch(F)π∗ Td(f ) T̃dm(η) is actu-
ally smooth on the whole X̃. ut

According to (11.9), it remains to study the current

f̃∗[π
∗ ch(F)π∗ Td(f )Td(η) T̃dm(γ )]|V .

The main difference with the situation in Corollary 11.20 is that the class T̃dm(γ ) is not
defined on the whole X̃, but only on W = X̃ \ E. In the following discussion we will
use the representative Tdm(γ ) defined in (11.10) in place of T̃dm(γ ). In view of (11.11)–
(11.13), the first result we need is the following statement.

Proposition 11.21. Let θ be a smooth and ∂, ∂ closed differential form on X̃, of Dol-
beault bidegree (1, 1). Let w be an analytic coordinate in a neighborhood of p ∈ 1 with
w(p) = 0. Write Dp = E ∩ f̃−1(p). Then the current

f̃∗[log ‖1‖1θ ] −
(

1
2πi

∫
Dp

θ

)
[log |w|]

is represented by a continuous function in a neighborhood of p. In particular, if θ is
cohomologous to a form π∗ϑ , where ϑ is a smooth and ∂, ∂ closed differential form
on X, then f̃∗[log ‖1‖1θ ] is represented by a continuous function on S.

Proof. Recall that the Poincaré–Lelong formula provides the equality of currents

dD[log ‖1‖−1
1 ] = [c1(O(E)1)] − δE .

Moreover, the operator dD commutes with proper push-forward. Therefore, taking into
account that θ is ∂ and ∂ closed, the equation

dD f̃∗[log ‖1‖1θ ] =
(

1
2πi

∫
Dp

θ

)
δp − f̃∗[c1(O(E)1)θ ] (11.22)
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holds in a neighborhood of p. On the other hand, the Poincaré–Lelong equation also gives
dD[log |w|] = δp. Using (11.22), we see that

dD

(
f̃∗[log ‖1‖1θ ] −

(
1

2πi

∫
Dp

θ

)
[log |w|]

)
= −

1
2
f̃∗[c1(O(E)1)θ ].

Finally, by Proposition 11.19, the current f̃∗[c1(O(E)1)θ ] is represented by a continu-
ous function on S. Hence the first assertion follows from Lemma 11.16. For the second
assertion, we just observe that, in this case,∫

Dp

θ =

∫
Dp

π∗ϑ = 0.

The proof is complete. ut

Corollary 11.23. Let np be the multiplicity of 1 at p and O(1) the current represented
by a locally bounded function. The following estimates hold in a neighborhood of p:

f̃∗[log ‖1‖1c1(π
∗TX)] = O(1),

f̃∗[log ‖1‖1c1(O(E)1)] = −np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(L0)] = np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(µ̃
∗U)] = −np[log |w|] +O(1).

Proof. We use (11.3)–(11.5) and the intersection numbers (Dp ·Dp) = (Dp ·E) = −np.
ut

Corollary 11.24. With the notations above, the development

f̃∗[π
∗ ch(F)π∗ Td(f )Td(η) T̃dm(γ )](3,2) = rk(F)

np

6
[log |w|] +O(1)

holds in a neighborhood of p.

Proof. We take into account the expression (11.15) for the representative Tdm(γ ), the
developments of the smooth differential forms ch(F), Td(f ), Td(η) and Td−1(L0), and
then apply Corollary 11.23. We find

f̃∗[π
∗ ch(F)π∗ Td(f )Td(η) T̃dm(γ )](3,2)

= rk(F)
np

6
[log |w|] + rk(F)

b

3
f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] +O(1).

To conclude we observe that, on V , the term f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] vanishes. Indeed,
the morphism f̃∗ is smooth on V with one-dimensional fibers. Hence this current is rep-
resented by the function

V 3 s 7→
1

2πi

∫
f̃−1(s)

∂(log ‖1‖1 ∂ log ‖1‖1) =
1

2πi

∫
f̃−1(s)

d(log ‖1‖1 ∂ log ‖1‖1) = 0.

This ends the proof. ut

The results of this section are summarized in the following statement.
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Theorem 11.25. Let p ∈ 1 and let np be the number of singular points of f : X → S

lying above p. Let w be a local coordinate on S, centered at p. Then, in a neighborhood
of p, we have the estimate

T (ξ
′
)(1,1) = −

rkF
6
np[log |w|] +O(1).

Proof. It is enough to join (11.9), Proposition 11.17, Corollary 11.20 and 11.24. ut

Corollary 11.26. Assume that F = E is a vector bundle placed in degree 0, and that
R1f∗E = 0 on S. Endow f∗E with the L2 metric on V depending on E and the met-
ric on ωf−1(V )/V . Write ξ ′′ = (f

′
, E, f∗EL2) for the corresponding relative metrized

complex on V . Let p and w be as in the theorem. Then

T (ξ
′′
)(1,1) = −

rk(F)
6

np[log |w|] +O(log log |w|−1)

as w→ 0.

Proof. Introduce an auxiliary smooth hermitian metric on the vector bundle f∗E on S,
and let ξ ′ = (f

′
, E, f∗E) be the corresponding relative metrized complex. Then the

theorem applies to ξ ′. By the anomaly formulas, on V we have

T (ξ
′′
)(1,1) = T (ξ

′
)(1,1) + c̃h(f∗E, f∗EL2)

(1,1).

By [6, Prop. 7.1], the L2 metric has logarithmic singularities near w = 0 and

c̃h(f∗E, f∗EL2) = O(log log |w|−1)

as w→ 0. This proves the corollary. ut

Remark 11.27. The corollary is to be compared with [6, Thm. 9.3]. The difference of
sign is due to the fact that Bismut and Bost work with the inverse of the usual determinant
line bundle. The approach of [6] is more analytic and requires the spectral description of
the Ray–Singer analytic torsion. This result is a particular case of [4, Theorem 0.1].
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[12] Bismut, J.-M., Gillet, H., Soulé, C.: Complex immersions and Arakelov geometry. In:
Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, Boston, MA, 249–331
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