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Abstract. Among compact Hausdorff groups G whose maximal profinite quotient is finitely gen-
erated, we characterize those that possess a proper dense normal subgroup. We also prove that the
abstract commutator subgroup [H,G] is closed for every closed normal subgroup H of G.
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0. Introduction

Let G be a compact Hausdorff topological group with identity component G0, so G0 is a
connected compact group and G/G0 is the maximal profinite quotient of G. We say that
G is of f.g. type if G/G0 is (topologically) finitely generated. In [NS2] we established a
number of results about groups of this type, including

Theorem 0.1. The (abstract) derived group G′ = [G,G] is closed in G.

Theorem 0.2. G has a virtually-dense normal subgroup of infinite index if and only if G
has an open normal subgroup G1 such that either G1 has infinite abelianization or G1
has a strictly infinite semisimple quotient.

(A strictly infinite semisimple group is a Cartesian product of infinitely many finite simple
groups or compact connected simple Lie groups). The purpose of this note is (1) to gen-
eralize Theorem 0.1, and (2) to characterize the compact groups of f.g. type that possess
a dense proper normal subgroup (which must then have infinite index, by the main result
of [NS1]); this analogue to Theorem 0.2 is a little technical to state: see Theorem 2.1 in
Section 2 below.

Here and throughout, simple group is taken to mean non-abelian simple group.

1. Commutators

1.1. The main result

Theorem 1.1. Let G be a compact Hausdorff group of f.g. type and H a closed normal
subgroup of G. Then the (abstract) commutator subgroup [H,G] is closed in G.
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When G is profinite, this is Theorem 1.4 of [NS1]; when G is connected, it may be
deduced quite easily from known results (cf. [HM, Theorem 9.24]). The general case,
however, seems harder: to prove it we have to beef up slightly the main technical result
of [NS2]; the beefed-up version appears as Proposition 1.4 below.

Now let G and H be as in Theorem 1.1. For a subset X of G we let X denote the
closure of X in G, and for f ∈ N write

X ∗f = {x1 . . . xf | x1, . . . , xf ∈ X }.

The minimal size of a finite topological generating set for G (if there is one) is denoted
d(G).

First reduction. Let N denote the set of closed normal subgroups N ofG such thatG/N
is a Lie group. Set

X = {[h, g] | h ∈ H, g ∈ G}. (1)

Then X is a compact set, so X ∗f is closed for each finite f . Suppose that for some f we
have

[H,G]N = X ∗fN ∀N ∈ N .

Then
[H,G] ⊆

⋂
N∈N

X ∗fN = X ∗f = X ∗f ⊆ [H,G]

(cf. [HM, Lemma 9.1]), so [H,G] is closed.
Thus it will suffice to prove

Theorem 1.2. Let G be a compact Lie group and H a closed normal subgroup of G.
Then

[H,G] = X ∗f

where X is given by (1) and f depends only on d(G/G0).

Second reduction. We assume now that G is a compact Lie group, with d(G/G0) = d .
Then G/G0 is finite and G = G00 for some finite subgroup 0 = 〈g1, . . . , g2d〉 where
g2i = g

−1
2i−1 for each i; also G0

= ZS where Z = Z(G0) and S is connected semisimple
(cf. [HM, Theorems 6.36, 6.15, 6.18]).

Put H1 = HZ ∩ S, H2 = H
0
1 . Then H2 is connected semisimple, so every element of

H2 is a commutator ([HM, Cor. 6.56]); it follows that H2 ⊆ X . So replacing G by G/H2
we may suppose that H1 is finite, which implies that H1 ≤ Z since H1 is normal in S and
S is connected. Then H3 := H ∩G

0
≤ ZH1 = Z.

As H3 is abelian we have

[H3,G] = [H3, 0] =

d∏
i=1

[H3, g2i] ⊆ X ∗d ,

and X ∗d is closed; so replacing G by G/[H3,G] we may suppose that H3 ≤ Z(G).
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Let x ∈ H and y ∈ G0. Then xn ∈ H3 where n = |G : G0
|, and there exists v ∈ G0

such that y = vn (every element of G0 is an nth power, because it lies in a torus: see
[HM, Theorem 9.32]). Now

1 = [xn, v] = [x, v]n = [x, vn] = [x, y].

Thus G0
≤ CG(H).

PutD = H0∩G0. ThenH0 = D0. SinceH0/H3 is finite, we haveH3 ≥ (H0)
0
=

H 0
:= H4. There exists a finite subgroup L ofH0 such thatH0 = H4L ([HM, Theorem

6.74]). Then L C H0 (since H4 ≤ Z(G)) and 1 := L ∩ H C G00 = G since
[H,G0

] = 1. Moreover H = H41; and [H,G] = [1,G].
Applying [HM, Theorem 6.74] to the group G/1, we find a finite subgroup Q/1 of

G/1 such that G = G0Q and Q/1 ∩ (G/1)0 ≤ Z((G/1)0), hence Q ∩ G01 C G.
Then Q ∩ G0 is central in G0. Replacing each gi by an element of G0gi ∩ Q, we may
suppose that 0 ≤ Q. Now putting

E = 10 ≤ Q and A = E ∩G0
≤ Z(G0),

we have

E = 10 = A0, [A,A1] = [A ∩1,E] = 1, [H,G] = [1,0] = [1,E].

Conclusion of the proof. In the following subsection we establish

Theorem 1.3. Let G be a finite group, H a normal subgroup of G and {y1, . . . , yr} a
symmetric subset of G. Suppose that G = H 〈y1, . . . , yr 〉 = A〈y1, . . . , yr 〉 where A is an
abelian normal subgroup of G with [A,H ] = 1. Then

[H,G] =
( r∏
i=1

[H, yi]
)∗f1

where f1 = f1(r).

Applying this with E,1 in place of G,H we obtain

[H,G] = [1,E] =
( 2d∏
i=1

[1, gi]
)∗f1(2d)

.

Taking account of all the reductions, we see that Theorem 1.2 follows, with

f = 1+ d + 2df1(2d).

1.2. A variant of the ‘Key Theorem’

Theorem 1.3 depends on the following proposition. We recall some notation from [NS2];
throughout this subsection, G will be a finite group.

Notation. For g, v ∈ G(m) and 1 ≤ j ≤ m,

τj (g, v) = vj [gj−1, vj−1] . . . [g1, v1], v · g = (v1g1, . . . , vmgm), c(v, g) =
m∏
j=1

[vj , gj ].
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Proposition 1.4. There exists a function k : N → N with the following property. Let
G be a finite group, H = [H,G] a soluble normal subgroup of G, and C ≤ CG(H)
a normal subgroup of G. Suppose that G = C〈g1, . . . , gr 〉. Put m = r · k(r), and for
1 ≤ j < k(r) and 1 ≤ i ≤ r set

gi+jr = gi .

Then for each h ∈ H there exist v(i) ∈ H (m) (i = 1, 2, 3) such that

h =

3∏
i=1

c(v(i), g) (2)

and
C〈g

τ1(g,v(i))
1 , . . . , g

τm(g,v(i))
m 〉 = G for i = 1, 2, 3. (3)

In fact we can take
k(r) = 1+ 4(r + 1) ·max{r, 7}. (4)

This reduces to (a special case of) Theorem 3.10 of [NS2] when C = 1. The latter
can be beefed up in a similar way in the general case where H is not necessarily soluble;
as this will not be needed here, we leave it for the interested reader to fill in the details.
The ingredients of the proof (in both cases) are all taken from [NS2, Section 3], though
they need to be arranged in a different way.

A normal subgroupN of a groupG is said to be quasi-minimal normal ifN is minimal
subject to

1 < N = [N,G].

Let Z = ZN be a normal subgroup of G maximal subject to Z < N . Then [Z,nG] =
[[[Z,G],G], . . . ,G] = 1 for some n, which implies that (i) Z = N ∩ ζω(G) is uniquely
determined, and (ii) [Z,N] ≤ [Z,H ] ≤ [Z,Gω] = 1. (Here ζω(G) denotes the hy-
percentre and Gω the nilpotent residual of G; if G is finite, Gω is the last term of the
lower central series of G and [ζω(G),Gω] = 1.) An elementary argument (cf. [NS2,
Lemma 3.4]) shows that Z is contained in the Frattini subgroup 8(G) of G. If N is
soluble then N = N/Z is an abelian chief factor of G.

We fix k = k(r) as given by (4). Fix h ∈ H . For S C G let us say that v = (v(i)j )
∈ H (3m) satisfies E(S), resp. G(S) if (2), resp. (3) is true modulo S. By hypothesis, E(H )
and G(H ) are satisfied by v = (1, . . . , 1).

Since H = [H,G] there is a chain

H = H0 > H1 ≥ · · · ≥ Hz = 1

such that Hi−1/Hi is a quasi-minimal normal subgroup of G/Hi for i = 1, . . . , z. Fix
l < z and suppose that u ∈ H (3m) satisfies E(Hl) and G(Hl). Our aim is to find elements
a(i) ∈ Hl (m) such that v = a · u satisfies E(Hl+1) and G(Hl+1). If we can do this, the
proposition will follow by induction.

To simplify notation we now replace G by G/Hl+1. Put N = Hl , now a soluble
quasi-minimal normal subgroup of G, and set Z = ZN .
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The argument is done in three steps. Put K1 = N, K2 = N ′[Z,G], K3 = [Z,G],
K4 = 1. We assume that u satisfies E(N ) and G(N ). Fix q ≤ 3 and suppose that u satisfies
E(Kq ) and G(Kq ); we will find a(i) ∈ N (m) such that v = a · u satisfies E(Kq+1) and
G(Kq+1). Again, to simplify notation we may replace G by G/Kq+1 and so assume that
Kq+1 = 1, and set K = Kq . Thus we have to show that (2) and (3) hold.

Lemma 1.5.( 3∏
i=1

c(a(i) · u(i), g)
)( 3∏

i=1

c(u(i), g)
)−1
=

3∏
i=1

( m∏
j=1

[a(i)j , gj ]
τj (g,u(i))

)w(i)
where w(i) = c(u(i − 1), g)−1 . . . c(u(1), g)−1.

This is a direct calculation. The next lemma is easily verified by induction on m (see
[NS1], Lemma 4.5):

Lemma 1.6.

〈g
τj (g,u)
j | j = 1, . . . , m〉 = 〈g

ujhj
j | j = 1, . . . , m〉

where hj = g−1
j−1 . . . g

−1
1 .

Now we are given u(i) ∈ H (m) and κ ∈ K such that

h = κ

3∏
i=1

c(u(i), g)

and

G = CK〈g
τj (g,u(i))
j | j = 1, . . . , m〉 = CK〈g

u(i)jhj
j | j = 1, . . . , m〉 for i = 1, 2, 3,

(5)
the second equality thanks to Lemma 1.6.

Let v = a · u with a(i) ∈ N (m); the goal is to find a suitable a. Lemma 1.5 shows that
(2) is then equivalent to

3∏
i=1

( m∏
j=1

[a(i)j , gj ]
τj (g,u(i))

)w(i)
= κ. (6)

This can be further simplified by setting

y(i)j = g
τj (g,u(i))w(i)
j , t (i)j = g

u(i)jhj
j ,

b(i)j = a(i)
τj (g,u(i))w(i)
j , c(i)j = a(i)

u(i)jhj
j .

(7)

Define φ(i) : N (m)
→ N by

bφ(i) = c(b, y(i)), b ∈ N (m). (8)

Then (6) becomes
3∏
i=1

b(i)φ(i) = κ, (9)
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and (5) is equivalent to

G = CK〈y(i)1, . . . , y(i)m〉 = CK〈t (i)1, . . . , t (i)m〉 for i = 1, 2, 3. (10)

Similarly, by Lemma 1.5 again, (3) holds if and only if for i = 1, 2, 3 we have

G = CZ〈t (i)
c(i)j
j | j = 1, . . . , m〉 (11)

(where Z is added harmlessly since Z ≤ 8(G)).
Let X (i) denote the set of all c(i) ∈ N (m) such that (11) holds, and writeW(i) for the

image of X (i) under the bijection N (m)
→ N (m) defined in (7) sending c(i) 7→ b(i).

To sum up: to establish the existence of a(1), a(2), a(3) ∈ N (m) such that the v(i) =
a(i) ·u(i) satisfy (2) and (3), it suffices to find (b(1),b(2),b(3)) ∈ W(1)×W(2)×W(3)
such that (9) holds.

We set ε = min{1/7, 1/r}, and will write − : G→ G/Z for the quotient map.

The case q = 1. In this case we have K = N and we are assuming that K2 = N
′
[Z,G]

= 1. We use additive notation for N and consider it as a G-module. Note that [CK,N]
= 1. Then (10) together with N = [N,G] implies that

φ(1) : b 7→
m∑
j=1

bj (y(1)j − 1)

is a surjective (Z-module) homomorphism N (m)
→ N . It follows that

|φ(1)−1(c)| = |kerφ(1)| = |N |m−1

for each c ∈ N .
Now fix i ∈ {1, 2, 3}. According to Theorem 2.1 of [NS2], at least one of the ele-

ments gj has the ε/2-fixed-point space property on N (see [NS2, Section 2.1]); therefore
at least k of the elements t (i)j have this property. Now we apply [NS2, Proposition 2.8(i)]
to the groupG/CZ: ifN � CZ this shows that (11) holds for at least |N |m(1−|N |r−kε/2)
values of c(i) in |N |m. If N ≤ CZ the same holds trivially for all c(i) in |N |m. It follows
in any case that

|W(i)| = |X (i)| ≥ |Z|m · |N |m(1− |N |r−kε/2) = |N |m(1− |N |r−kε/2). (12)

We need to compare |N | with |N |. Observe that b 7→
∑r
j=1 bj (gj − 1) induces an

epimorphism from N
(r)

onto N ; consequently, |N | ≤ |N |r . Thus since kε/2r > 1 we
have

|W(i)| ≥ |N |m(1− |N |1−kε/2r) > 0,

so W(i) is non-empty for each i. For i = 2, 3 choose b(i) ∈ W(i) and put

c = κ
( 3∏
i=2

b(i)φ(i)
)−1

.
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Then
|φ(1)−1(c)| + |W(1)| ≥ |N |m(|N |−1

+ 1− |N |1−kε/2r) > |N |m

since kε/2r > 2. It follows that φ(1)−1(c) ∩W(1) is non-empty. Thus we may choose
b(1) ∈ φ(1)−1(c) ∩W(1) and ensure that (9) is satisfied.

The case q = 2. Now we take K = N ′, assuming that K3 = [Z,G] = 1. Since N ′ ≤ Z,
the argument above again gives (12).

The maps φ(i) are no longer homomorphisms, however. Below we establish

Proposition 1.7. Let N be a soluble quasi-minimal normal subgroup and C a normal
subgroup of the finite group G, with [C,N] = 1. Assume that G = C〈y(i)1, . . . , y(i)m〉
for i = 1, 2, 3. Then for each c ∈ N ′ there exist c1, c2, c3 ∈ N such that c = c1c2c3 and

|φ(i)−1(ci)| ≥ |N |
m
· |N |−r−2 (i = 1, 2, 3), (13)

where φ(i) is given by (8) and r = d(G/C).

Since now K ≤ Z, the hypotheses of Proposition 1.7 follow from (10). Put c = κ

and choose c1, c2, c3 as in the proposition. As kε > 4r + 4, we see that (12) and (13)
together imply that φ(i)−1(ci) ∩ W(i) is non-empty for i = 1, 2, 3. Thus we can find
b(i) ∈ φ(i)−1(ci) ∩W(i) for i = 1, 2, 3 to obtain (9).

The case q = 3. Now we take K = [Z,G]. Since G = C〈g1, . . . , gr 〉, we have K =∏r
j=1[Z, gj ]. Thus κ =

∏r
j=1[zj , gj ] with z1, . . . , zr ∈ Z. In this case, (9) is satisfied if

we set

b(1)j = zj (1 ≤ j ≤ r),
b(1)j = 1 (r < j ≤ m),

b(i)j = 1 (i = 2, 3, 1 ≤ j ≤ m),

because y(i)j is conjugate to gj under the action of H and [Z,H ] = 1.
For each i we have W(i) ⊇ Z(m), since in this case (10) implies (11) if c(i)j ∈ Z for

all j . So b(i) ∈ W(i) for each i, as required.
This concludes the proof of Proposition 1.4, modulo

Proof of Proposition 1.7. Now N is a quasi-minimal normal subgroup of G =

C〈g1, . . . , gr 〉. Recall the definition of ZN as a normal subgroup of G maximal subject
to Z < N ; we saw that ZN is in fact uniquely determined. Put 0 = N〈g1, . . . , gr 〉.
Let g0 ∈ N r ZN . Since [C,N] = 1 we have N = 〈gG0 〉 = 〈g

〈g1,...,gr 〉
0 〉 and so

0 = 〈g1, . . . , gr , g0〉; thus d(0) ≤ r + 1. For each i and j we have y(i)j = cijxij
with cij ∈ C and xij ∈ 0. Then for i = 1, 2, 3 we have

0 = (0 ∩ C)〈xi1, . . . , xim〉 = 〈xi1, . . . , xim, xi,m+1, . . . , xim′〉

where m′ = m+ r + 1 and xij ∈ C for m < j ≤ m′.
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Define ψ(i) : N (m′)
→ N by

bψ(i) =
m′∏
j=1

[bj , xij ].

We apply Proposition 7.1 of [NS1] to the group 0 and its soluble quasi-minimal normal
subgroup N . This shows that for each c ∈ N ′ there exist c1, c2, c3 ∈ N such that c =
c1c2c3 and

|ψ(i)−1(ci)| ≥ |N |
m′
· |N |−r−2 (i = 1, 2, 3).

Now
(b1, . . . , bm′)ψ(i) = (b1, . . . , bm)φ(i)

for each b ∈ N (m′); so

ψ(i)−1(ci) = φ(i)
−1(ci)×N

(r+1)

and it follows that

|φ(i)−1(ci)| = |ψ(i)
−1(ci)| · |N |

−(r+1)
≥ |N |m · |N |−r−2

as required.
This completes the proof.

Proof of Theorem 1.3. Now G is a finite group, H is a normal subgroup of G and
{y1, . . . , yr} is a symmetric subset of G. We are given that G = H 〈y1, . . . , yr 〉 =

A〈y1, . . . , yr 〉 where A is an abelian normal subgroup of G with [A,H ] = 1. The claim
is that

[H,G] =
( r∏
i=1

[H, yi]
)∗f1

where f1 = f1(r).
Put 0 = 〈y1, . . . , yr 〉, so G = H0 = A0. Choose n so that [H,nG] = K satisfies

K = [K,G]. By [S, Proposition 1.2.5] we have

[H,G] =

r∏
i=1

[H, yi] ·K.

Put G1 = K0 and A1 = A ∩ G1. Then G1 = A10 and K = [K,0] = [K,G1]. So
replacing H by K, G byG1 and A by A1 we reduce to the case where H = [H,G]. This
implies in particular that

G = H0 = G′0 = G′〈y1, . . . , yr 〉.

Now AH ∩ 0 is centralized by A and normalized by 0, so AH ∩ 0 C G. But AH =
A(AH ∩ 0) so

H ′ = (AH)′ = (AH ∩ 0)′ ≤ 0.
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Theorem 1.2 of [NS2] gives

[H ′,G] = [H ′, 0] =
( r∏
i=1

[H ′, yi]
)∗f0(r)

(where f0(r) depends only on r). Replacing G by G/[H ′,G], we reduce to the case
where H ′ ≤ Z(G). Thus H = [H,G] is nilpotent. It follows by Proposition 1.4 that

H =
( r∏
i=1

[H, yi]
)∗3k(r)

.

Putting everything together we can take

f1 = 1+ f0(r)+ 3k(r).

(The alert reader may wonder how we could establish the hard result Theorem 1.3 using
only a version of the easier, ‘soluble’ case of the ‘Key Theorem’ from [NS2]; the answer
is that the full strength of the latter is implicitly invoked at the point where we quote [NS2,
Theorem 1.2].)

2. Dense normal subgroups

2.1. The main result

Definition. (a) Let S be a finite simple group. ThenQ(S) denotes the following subgroup
of Aut(S):

PGO+2n(q) if S = Dn(q), n ≥ 5,

PGO−2n(q) if S = 2Dn(q),

Inn(S) if S = Cn(q),
InnDiag(S) if S is of another Lie type,
Aut(S) in all other cases.

Note that when S = Dn(q) then Q(S) = PGO+2n(q) = PSO+2n(q)〈τ 〉 and when
S = 2Dn(q) then Q(S) = PGO−2n(q) = PSO−2n(q)〈[q]〉, where τ is the non-trivial graph
automorphism of Dn(q) and [q] denotes the field automorphism of order 2 of 2Dn(q).

(b) Let S be a connected compact simple Lie group. Then

Q(S) =

{
Aut(S) if S = PSO(2n), n ≥ 3,
Inn(S) else.

(c) A compact topological group H is Q-almost-simple if S C H ≤ Q(S) where S is
a finite simple group or a compact connected simple Lie group with trivial centre (and S
is identified with Inn(S)). Note that if H is not finite, then H is Q-almost-simple if and
only if it is either simple or else isomorphic to Aut(PSO(2n)) for some n ≥ 3, because
|Aut(S)/Inn(S)| = 2 for S = PSO(2n).

If H is Q-almost-simple as above, the rank of H is defined to be the (untwisted) Lie
rank of S if S is of Lie type, n if S ∼= Alt(n), and zero otherwise.
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Theorem 2.1. Let G be a compact Hausdorff group of f.g. type. Then G has a proper
dense normal subgroup if and only if one of the following holds:

• G has an infinite abelian quotient, or
• G has a strictly infinite semisimple quotient, or
• G has Q-almost-simple quotients of unbounded ranks.

(The quotients here refer toG as a topological group, i.e. they are continuous quotients—
in the first case this makes no difference, in view of Theorem 0.1.)

2.2. The profinite case

Let G be an infinite finitely generated profinite group. It is clear that in each of the fol-
lowing cases, G has a countable, hence proper, dense normal subgroup:

• G is abelian (because G contains a dense (abstractly) finitely generated subgroup),
• G is semisimple (G is the Cartesian product of infinitely many finite simple groups,

and the restricted direct product is a dense normal subgroup).

Let G2 denote the intersection of all maximal open normal subgroups of G not contain-
ing G′; thus

Gss := G/G2

is the maximal semisimple quotient of G. The preceding observations imply:

• G has a proper dense normal subgroup if either Gab
:= G/G′ or Gss is infinite

(recall that G′ is closed, so G/G′ is again profinite, by Theorem 0.1).
We recall a definition and a result from [NS2, Section 1]:

Definition. G0 denotes the intersection of the centralizers of all simple non-abelian chief
factors of G (here by ‘chief factor’ of G we mean a chief factor of some G/K where K
is an open normal subgroup of G).

Proposition 2.2 ([NS2, Corollary 1.8]). Let N be a normal subgroup of (the underlying
abstract group) G. If NG′ = NG0 = G then N = G.

Now let X denote the class of all finitely generated profinite groups H such that H0 = 1
and both H ab and Hss are finite, and let X (dns) denote the subclass consisting of those
groups that contain a proper dense normal subgroup.

Lemma 2.3. Let G be a finitely generated profinite group. Then G contains a proper
dense normal subgroup if and only if at least one of the following holds:

(a) Gab is infinite,
(b) Gss is infinite,
(c) G/G0 ∈ X (dns).
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Proof. We have shown above that G contains a proper dense normal subgroup if either
(a) or (b) holds, and the same clearly follows in case (c). Suppose conversely that none of
(a), (b) or (c) holds. Then G/G0 ∈ X r X (dns). Now let N be a dense normal subgroup
ofG. SinceGab is finite,G′ is open inG and soNG′ = G. AsG/G0 has no proper dense
normal subgroup, we also have NG0 = G. Now Proposition 2.2 shows that N = G. ut

Thus it remains to identify the groups in X (dns).
For any chief factor S of G let AutG(S) denote the image of G in Aut(S), where G

acts by conjugation. Now we can state

Proposition 2.4. Let G ∈ X . Then G ∈ X (dns) if and only if the simple chief factors S
of G such that

AutG(S) ≤ Q(S) (14)

have unbounded ranks.

Since AutG(S) is aQ-almost-simple image ofG for such chief factor S, this will complete
the proof of Theorem 2.1 in the case of a profinite group G.

Proposition 2.4 depends on the following four lemmas, which will be sketched in the
next subsection:

Lemma 2.5. There exists ε∗ > 0 such that

log |[S, f ]| ≥ ε∗ log |S|

whenever S is a finite simple group and f ∈ Aut(S)rQ(S).

Lemma 2.6. If S is a finite simple group of rank at most r and 1 6= f ∈ Aut(S) then

log |[S, f ]| ≥ ε(r) log |S|,

where ε(r) > 0 depends only on r .

Lemma 2.7. Given ε > 0, there exists k(ε) ∈ N with the following property: if S is a
finite simple group and f ∈ Aut(S) satisfies log |[S, f ]| ≥ ε log |S| then

S = ([S, f ][S, f−1
])∗k(ε).

Lemma 2.8. For every ε > 0 there exists n ∈ N such that if S is a finite simple group of
rank at least n and f ∈ Q(S), then there exists s ∈ S such that

log |[S, sf ]| < ε log |S|.

Proof of Proposition 2.4. Now Gab and Gss are finite, and G0 = 1. This implies that
G has a semisimple closed normal subgroup T = G(3), and the simple factors of T are
precisely the simple chief factors of G (here G(3) denotes the closure of the third term
of the derived series of G; see [NS2, Section 1.1]). Thus T = T0 × T1 × T2 where T0 is
the product of those simple factors S such that G = SCG(S), T1 is the product of those
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S 
 T0 for which (14) holds, and T2 is the product of the rest. Note that T0 is finite,
because T0 ∼= Gss. We fix a finite set {a1, . . . , ad} of (topological) generators for G.

Suppose that T1 contains factors of unbounded ranks. Pick a sequence (Sj ) of simple
factors of T1 such that rank(Sj ) → ∞ and let T3 =

∏
j∈N Sj . Then T = T3 × T4 for a

suitable complement T4. If G/T4 has a proper dense normal subgroup then so does G; so
replacing G by G/T4 we may assume that T = T3.

In view of Lemma 2.8, we can find sij ∈ Sj such that

log |[Sj , sijai]|
log |Sj |

< εj

for all i and j , where εj → 0 as j →∞. For each i put

bi = (sij ) · ai ∈ T ai,

and note that [Sj , sijai] = [Sj , bi]. Let N = 〈bG1 , . . . , b
G
d 〉 be the normal subgroup of G

generated (algebraically) by b1, . . . , bd .
Since AutG(Sj ) 6= Inn(Sj ), for each j there exists i such that [Sj , bi] 6= 1, and so

1 6= [Sj , N] ≤ Sj ∩ N . As each Sj is simple it follows that N contains the (restricted)
direct product P = 〈Sj | j ∈ N〉. Therefore N ≥ P = T , and as ai ∈ TN for each i it
follows that N is dense in G.

On the other hand, N 6= G. To see this, fix i and j , set b = bi , S = Sj , and write
† = †j : G → AutG(S) for the natural map. Then |G†

| ≤ |Aut(S)| ≤ |S|1+ηj where
ηj → 0 as j →∞, because rank(Sj )→∞ (see [GLS, Section 2.5]). So

|(bG)†| = |[G†, b†
]| ≤ |G†

: S†
| |[S†, b†

]| ≤ |S|ηj · |[S, b]| ≤ |S|ηj+εj .

Now for n ∈ N set Xn = (bG1 ∪ (b
−1
1 )G ∪ · · · ∪ bGd ∪ (b

−1
d )G)∗n. Then

|X†
n| ≤ (2d|S|

ηj+εj )n < |Sj | = |S
†
j |

if |Sj | > (2d)2n and ηj + εj < (2n)−1. This holds for all sufficiently large values of j ;
thus we may choose a strictly increasing sequence (j (n)) and for each n an element
xj (n) ∈ Sj (n) such that

x
†j (n)
j (n) /∈ X

†j (n)
n .

Let t ∈ T1 have xj (n) as its Sj (n)-component for each n. Then t†j (n) = x
†j (n)
j (n) /∈ X

†j (n)
n for

every n, and so

t /∈

∞⋃
n=1

Xn = N;

hence N 6= G as claimed.
For the converse, suppose that every simple factor of T1 has rank at most r . Let N be

a dense normal subgroup of G. Then NT = G by Lemma 2.3, since (G/T )0 = G/T .
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Let a1, . . . , ad be as above and choose ci ∈ aiT ∩N . For each simple factor S of T2,
there exists i such that conjugation by ci induces on S an automorphism not in Q(S).
Then Lemmas 2.7 and 2.5 show that

S = ([S, ci][S, c
−1
i ])

∗k(ε∗).

It follows that

T2 =
( d∏
i=1

[T , ci][T , c
−1
i ]

)∗k(ε∗)
⊆ N.

For each simple factor S of T1, there exists i such that conjugation by ci does not
centralize S. Since each such S has rank at most r , we see in the same way, now using
Lemmas 2.7 and 2.6, that

T1 =
( d∏
i=1

[T , ci][T , c
−1
i ]

)∗k(ε(r))
⊆ N.

We conclude that

|G : N | = |T : T ∩N | ≤ |T : T1T2| = |T0| <∞.

ThereforeN is open inG by [NS1, Theorem 1.1] (= [NS2, Theorem 5.1]), and soN = G.

2.3. Some lemmas

Proof of Lemma 2.7. S is a simple group and f ∈ Aut(S) satisfies log |[S, f ]| ≥ ε log |S|.
Put Y = [S, f ]S and X = [S, f ][S, f−1

]. Then Y ∗k(ε) = S by [LS2, Proposition 1.23],
where k(ε) = dc′/εe; and X ⊇ Y by [NS2, Lemma 3.5].

Proof of Lemma 2.6. S is a simple group of rank at most r and 1 6= f ∈ Aut(S). Then
C = CS(f ) is a proper subgroup of S, and the main result of [BCP] implies that |S : C| ≥
|S|ε(r) where ε(r) > 0 depends only on r . It follows that |[S, f ]| = |S : C| ≥ |S|ε(r).

Proof of Lemma 2.8. We are given a simple group S and f ∈ Q(S). We have to show that
if rank(S) is large enough then there exists s ∈ S such that log |[S, sf ]| < ε log |S| (we
will not distinguish between s and the inner automorphism it induces).

If S is a large alternating group, we can choose s so that sf is either 1 or (conjugation
by) a transposition, and the claim is clear.

Otherwise, we may assume that S is a classical group of dimension n over a field of
size q. Note that when S is an orthogonal group then PGOεn(q)/PSOεn(q) is generated by
a single reflection if q is odd and is trivial if q is even (or n is odd). At the same time
PSOεn(q)/Inn(S) is generated by a product of two reflections if q is odd and is generated
by a transvection if q is even (see [GLS, Section 2.7]; ε ∈ {±1}). In all cases, there exists
s ∈ S such that sf = h, where h is an automorphism of S such that h is a product of at
most three reflections/transvections in case when S is an orthogonal group or else h is a
diagonal element with n− 1 eigenvalues equal to 1 in case S is PSUn(q) or PSLn(q). In
each case, log |CS(h)|/log |S| → 1 as rank(S)→∞ uniformly in q. Lemma 2.8 follows.
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Proof of Lemma 2.5. Now S is a simple group and f ∈ Aut(S)rQ(S). This implies that
S is of Lie type, and in view of Lemma 2.6 we may assume that S is a classical group of
large rank. We have to show that log |CS(f )|/log |S| ≤ 1− ε∗ where ε∗ > 0.

Case I: f ∈ InnDiag(S). This can only happen when S is an orthogonal group in even
dimension or a symplectic group and q is odd. In both cases the description of Inndiag(S)
of [GLS, Section 2.7] for the classical groups and the definition of Q(S) show that f is a
similarity, i.e. there is some λ ∈ F∗q with (f (v), f (v)) = λ(v, v) for all v ∈ V , the natural
module for S. Here (·, ·) is the natural bilinear form on V . Moreover λ is not a square
in F∗q , for if λ = µ2 then µ−1f = f ∈ PGO±2n(q) = Q(S), a contradiction. We shall call
f a proper similarity if λ 6∈ (F∗q)2. By considering an appropriate odd power of f we may
assume that f is a semisimple element of GL(V ). Let t be the maximal multiplicity of
some eigenvalue of f over the algebraic closure of V . We claim that t ≤ (dimV )/2. For
if t > (dimV )/2 then t belongs to some rational eigenvalue µ ∈ F∗q and there is some
element v of the µ-eigenspace of f with (v, v) 6= 0 (because the maximal dimension
of totally isotropic subspaces of V is (dimV )/2). But then λ(v, v) = (f (v), f (v)) =

µ2(v, v), a contradiction since λ is non-square. This establishes the claim. Now Lemma
3.4(ii) of [LS1] shows that

|f S | > c′q(dimV−t)(dimV )/2 > c′q(dimV )2/4

for some constant c′ > 0. This means that log |CS(f )|/ log |S| is bounded away from 1.

Case II: f 6∈ InnDiag(S).

(a) Assume first that either

• S is untwisted and f does not involve a graph automorphism, or else
• S is twisted and f has order at least 3 modulo InnDiag(S).

We follow the methods of [NS2, Subsection 4.1.5]. Let L be the adjoint simple alge-
braic group with a Steinberg morphism F such that S is the socle of LF . Then LF =
InnDiag(S) by [GLS, Lemma 2.5.8(a) and Theorem 2.2.6(e)]. We may write f as f = φg
where g ∈ InnDiag(S) and φ is a field automorphism of order m ≥ 2 (m ≥ 3 if S is
twisted). We have F = φm if S is untwisted, F 2

= φm if S is twisted. Since L is con-
nected, Lang’s theorem implies that there is some g0 ∈ L such that g = g

φ

0 g
−1
0 . Let

x ∈ L. The following conditions on x are equivalent:

(i) x ∈ S and x is fixed by φg,
(ii) y := xg0 is fixed by φ and x = yg0

−1
is fixed by F .

Ignoring the second part of (ii) we see that |CS(f )| ≤ |Lφ |. Now log |Lφ | ∼
dimL log |Kφ | where Kφ is the fixed field of φ. On the other hand if S = LF is un-
twisted then log |S| ∼ dimL log |KF | where KF is the fixed field of F = φm, while if
S is twisted then log |S| ∼ dimL log |KF 2 |/2, where KF 2 is the fixed field of F 2

= φm.
We conclude that log |Lφ | ∼ (a/m) log |S| where a = 1 if S is untwisted and a = 2
otherwise. In both cases |CS(F )| ≤ |S|2/3.
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The remaining cases are:

(b) S = An(q) and f = gφτ for an element g ∈ GLn+1(q), a field automorphism φ and
a graph automorphism τ .

(c) S = 2An(q) and f = g[q] for g ∈ Un+1(q). Here [q] denotes the automorphism of
Un+1 induced by the field automorphism x 7→ xq .

(d) S = Dn(q) and f = gφτ with g ∈ InnDiag(S), where either the field automorphism
φ is non-trivial or g ∈ InnDiag(S)r PSOn(q) is a proper similarity.

(e) S = 2Dn(q) with f = g[q] where g ∈ InnDiag(S)r PSOn(q) is a proper similarity.

We consider these in turn.

Case (b). Here τ is conjugate to the involution x 7→ (xT )−1 in GLn+1. Thus we may as-
sume that f (x) = g−1(xT )−φg for a matrix g ∈ GLn+1. Put V = Fn+1

q , the natural mod-
ule for S of column vectors. The condition f (x) = x is equivalent to (xφ)T gx = g, which
is equivalent to the requirement that x preserve the non-degenerate form B : V ×V → Fq
defined by B(v,w) = (vφ)T gw. Now the result will follow from

Lemma 2.9. Let V be an m-dimensional vector space over a finite field F , let φ be
an automorphism of F , and let B be a form on V which is non-degenerate and such
that B(αv, βw) = αφβB(v,w) for any α, β ∈ F . Then the subgroup GB of elements
x ∈ GL(V ) that preserve B has size at most |F |m(m+1)/2.

We omit the proof, an exercise in linear algebra. Note that Lemma 2.9 estimates the
fixed points of f in SLn+1(q) which is the universal cover S̃ of S. The trivial bound
|[S, f ]| ≥ |[S̃, f ]| |Z(S̃)|−1 together with log |Z(S̃)|/log |S| → 0 as rank(S)→∞ then
completes the proof of case (b).

Case (c). The argument here also follows the idea in [NS2, Subsection 4.1.5]. Let X be
the algebraic group GLn+1. Let [q] be the morphism x 7→ x[q] of X and let F be the
Frobenius morphism x 7→ xτ [q] whose fixed point set on SLn+1 is the universal cover
S̃ = SUn+1(q) of S. By Lang’s theorem we can write g = g

[q]

0 g−1
0 for some g0 ∈ X.

Since g is fixed by F , the element h := g−F0 g0 is fixed by [q], i.e. h ∈ GLn+1(q). Let
x ∈ SLn+1. The following two conditions on x are equivalent:

(i) x ∈ S̃ and x is fixed by [q]g,
(ii) y := xg0 ∈ SLn+1 is fixed by [q] and x = yg0

−1
is fixed by F .

Therefore the number of fixed points of [q]g on S̃ is equal to the number of elements
y ∈ SLn+1(q) such that

(yg
−1
0 )F = xF = x = (yF )g

−F
0 = yg

−1
0 ,

equivalently
(yF )(g

−F
0 g0) = y.

Observing that for y ∈ SLn+1(q) we have yF = yτ , the last condition becomes yτh = y.
By Case (a) the number of such y is at most q(n+1)n/2, which is about |S̃|1/2. We have
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proved that |[S̃, f ]| ≥ |S̃|1/2−o(1); the corresponding result for |[S, f ]| follows just as in
case (b).

Case (d). Let U be the fixed point subgroup of the graph automorphism τ in S = Dn(q).
Then U = Bn−1(q) and log |U |/log |S| → 1 as n→∞. Hence it is enough to prove that
log |CS(f ) ∩ U |/log |S| ≤ 1 − ε for some fixed ε > 0. Now CS(f ) ∩ U is contained in
the fixed point set of gφ on S, which has size at most |S|1−ε by Case II (a) if φ 6= 1 and
by Case I otherwise.

Case (e). This is similar to Case (d) on putting U = CS([q]) ∼= Bn−1(q), noting that
log |U |/log |S| → 1 as n→∞, and applying Case I to CS(g).

2.4. The general case

Assume now that G is a compact group with G/G0 finitely generated. We will show
that G has a proper dense normal subgroup—say G has DNS—if and only if one of the
following holds:

(a) Gab is infinite,
(b) G has a strictly infinite semisimple quotient,
(c) G has Q-almost-simple quotients of unbounded ranks.

Suppose that G is infinite and abelian. Then either G maps onto an infinite finitely
generated abelian profinite group, or G0 has finite index in G. In the first case, G has
DNS by a remark in Subsection 2.2; in the second case, G maps onto a non-trivial torus
([HM, Proposition 8.15]), hence onto R/Z: then the inverse image of Q/Z is a dense
proper subgroup of G. Thus in general, if (a) holds then G has DNS. If (b) holds, a dense
normal subgroup is provided by the inverse image in G of the restricted direct product of
simple factors in a strictly infinite semisimple quotient of G.

Suppose that (c) holds but neither (a) nor (b) does. If G has Q-almost-simple finite
quotients of unbounded ranks then so does G/G0, and then G has DNS by Subsection
2.2. Otherwise, there exists a strictly increasing sequence (ni) (with n1 ≥ 3) such that G
maps onto each Aut(Si) where Si ∼= PSO(2ni) for each i. Then for each i, the inverse
image Di in G of Inn(Si) has index 2. Since G has only finitely many open subgroups of
index 2, we can replace (ni) with an infinite subsequence and reduce to the case where
Di = D is constant. Then G has closed normal subgroups Ni < D such that D/Ni ∼= Si
and G/Ni induces Aut(D/Ni) on D/Ni ; replacing G by a quotient we may assume that⋂
∞

i=1Ni = 1.
Then D =

∏
i Si where Si =

⋂
j 6=i Nj

∼= PSO(2ni). Also G = D〈y〉 where y2
∈ D

and y acts on Si like siτi, where si ∈ Si = Inn(Si) and τi is the non-trivial graph
automorphism of Si given by conjugation by the diagonal matrix diag(1, 1, . . . , 1,−1) ∈
O(2n).

Let τ = (s−1
i )i∈N · y ∈ Dy. Then τ induces τi on each Si and τ 2

∈ CG(D) = 1. Put
N = 〈τG〉. Then for each i we have Si ∩ N ⊇ [Si, τ ] 6= 1, so Si ∩ N is a non-trivial
closed normal subgroup of Si and hence Si ≤ N . Therefore D ≤ N and it follows that
N = G.
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We claim thatN 6= G. To see this, observe that dim(Si) = 2n2
−nwhile dim(CSi (τi))

= dim(O(2n− 1)) = 2(n− 1)2 − n+ 1; therefore

dim [Si, τi]
dim(Si)

→ 0 as i →∞.

This implies that for eachm there exist i(m) ∈ N and si(m) ∈ Si(m)r [Si(m), τ ]∗m, and we
may choose i(m) > i(m− 1) for each m > 1. Now let h ∈ D be such that hi(m) = si(m)
for all m. We claim that h /∈ N .

Indeed, suppose that

w =

m∏
j=1

τ gj ∈ D,

where without loss of generality gj = (gj,i)i ∈ D. Then m is even and

wi = [x1, τ ][x
τ
2 , τ ] . . . [xm−1, τ ][x

τ
m, τ ] ∈ [Si, τ ]

∗m

where xj = gj,i . Therefore wi(m) 6= hi(m), so h 6= w.
Thus N is a proper dense normal subgroup of G.
For the converse, let N be a proper dense normal subgroup of G, and assume that

neither (a) nor (b) holds; we will show that (c) must hold.

1. If G0N < G we are done by the profinite case. So we may assume that G0N = G.

2. Let Z = Z(G0). Suppose that NZ = G. Then G′ ≤ N ; but we have assumed
that Gab is finite, so N has finite index in G, hence contains G0, whence N = G, a
contradiction. Therefore NZ < G, and replacing N by NZ we may assume that Z ≤ N .
Now replacing G by G/Z we may suppose that Z = 1. In this case we have

G0
=

∏
i∈I

Si

where each Si is a compact connected simple (and centreless) Lie group.

3. Put D = G0
∩N . Then [G0, N] ≤ D < G0. It follows that

G0
= G0′

≤ [G0,G] = [G0, N ] ≤ D,

so D is dense in G0. Suppose that Si � D for some i. As Si is abstractly simple, we
have Si ∩D = 1, whence D ≤ CG0(Si), a proper closed subgroup of G0. It follows that
Si ≤ D for every i. Since D < D this implies that the index set I must be infinite.

Since G/G0 is finitely generated, we have G = G0
〈y1, . . . , yd〉 for some yl ∈ N .

Then [G0, yl] ⊆ D for each l. Applying [NS2, Proposition 5.18] we deduce that there
exists an infinite subset J of I such that each yl normalizes Si for every i ∈ J . As NG(Si)
is closed and contains G0, it follows that Si is normal in G for every i ∈ J . We may take
J = {i ∈ I | Si C G}.

Put P =
∏
i∈J Si and C = CG(P ). Suppose that CN = G. Then

P = P ′ ≤ [P,G] = [P,N] ≤ N.
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Now apply the preceding argument to G/P : since (G/P )0 = (
∏
i∈IrJ Si)P/P , this im-

plies thatG normalizes Sj for infinitely many j ∈ I r J , which contradicts the definition
of J .

It follows that CN < G. So replacing N by CN and then replacing G by G/C, we
may assume that C = 1. As C ∩G0

=
∏
i∈IrJ Si , this means in particular that Si C G

for all i ∈ I (renaming J to I ), and that CG(G0) = 1.
Now Out(Si) embeds in Sym(3) for each i. As G/G0 is a finitely generated profinite

group, it admits only finitely many continuous homomorphisms to Sym(3), so G has an
open normal subgroup H ≥ G0 such that H induces inner automorphisms on each Si .
Then H = CH (G0)G0

= G0; thus G/G0 is finite. Hence there exists a finite subset Y
of N such that G = G0Y .

4. Put Ci = CG(Si) and now set J = {i ∈ I | CiSi = G}. For i ∈ J put Ki =⋂
i 6=j∈J Cj and X =

⋂
i∈J Ci . Then for i ∈ J we have

Si ∼= XSi/X C Ki/X ∼= G/Ci ∼= Si,

soKi = X×Si . Hence the image ofG/X in the product
∏
i∈J G/Ci

∼=
∏
i∈J Si contains

the restricted direct product, and it follows thatG/X ∼=
∏
i∈J Si . Since we have assumed

that G has no strictly infinite semisimple quotient, it follows that J is finite.
As Si ≤ D for each i, we may now replaceG byG/

∏
i∈J Si , and so assume that J is

empty. Then for each i there exists y(i) ∈ Y such that y(i) induces an outer automorphism
on Si .

5. In the next subsection we will prove

Proposition 2.10. Let S be a compact connected simple and centreless Lie group and y
an outer automorphism of S. Then

S = ([S, y] · [S, y−1
])∗k

where
k = k0 if S � PSO(2n) ∀n,
k ≤ k(n) if S ∼= PSO(2n),

k0 ∈ N is an absolute constant and k(n) ∈ N depends on n.

Now let t ≥ 3 and let

J (t) = {i ∈ I | Si � PSO(2n) ∀n > t}.

Put k(t) = max{k0, k(n) (n ≤ t)}. Then for each i ∈ J (t) we have

Si =
∏
y∈Y

([Si, y] · [Si, y
−1
])∗k(t).

Therefore ∏
i∈J (t)

Si =
∏
y∈Y

([ ∏
i∈J (t)

Si, y
]
·

[ ∏
i∈J (t)

Si, y
−1
])∗k(t)

⊆ N,
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since the product in the middle is a closed set. As N < G = G0N it follows that∏
i∈J (t) Si < G0; thus J (t) 6= I .

Thus for every t there exist n > t and i ∈ I such that Si ∼= PSO(2n), and then G has
the Q-almost-simple quotient G/Ci ∼= Aut(PSO(2n)). Thus (c) holds.

2.5. More lemmas

Throughout this section, we take S to be a compact connected simple Lie group (see for
example [H, Table IV, p. 516]). We assume that S has an outer automorphism. Such an
automorphism is the product of an inner automorphism and a non-trivial graph automor-
phism; this only exists when S has typeAn,Dn, orE6. We choose and fix a maximal torus
T of S, a root system 8 of characters of T , and a set of fundamental roots {α1, . . . , αr}.
Throughout, r = r(S) will denote the rank of S, and W the Weyl group.

We need not assume that Z(S) = 1, but will sometimes for brevity identify elements
of S with the corresponding inner automorphisms.

The function λ : T → [0, 1] was defined in [NS2, Subsection 5.5.4]:

λ(t) = (πr)−1
r∑
i=1

|l(αi(t))|

where l(eiθ ) = θ for θ ∈ (−π, π].
Proposition 2.10 depends on Lemma 5.19 of [NS2] which we restate here in the fol-

lowing form:

Proposition 2.11. For each ε > 0 there is an integer k = k′(ε) such that if g ∈ T
satisfies λ(g) > ε then S = (gS ∪ g−S)∗k .

We shall prove

Lemma 2.12. (i) There exists ε = ε(S) > 0 such that for each f ∈ Aut(S) r Inn(S)
there exist an element g ∈ [S, f ] and a conjugate g1 of g with g1 ∈ T and λ(g1) > ε.

(ii) If S = (P)SU(n) where n > 30, we can take ε(S) = (200π)−1.

A simple calculation shows that if g ∈ [S, f ] then gS ⊆ [S, f ][S, f−1
] and g−S ⊆

[S, f−1
][S, f ], and so

(gS ∪ g−S)∗k ⊆ ([S, f ][S, f−1
][S, f ][S, f−1

])∗k = ([S, f ][S, f−1
])∗2k.

Now if r > 6, then S has type Dr or Ar . Among centreless compact simple groups,
the one of typeDr is PSO(2r) and the one of type Ar is PSU(r + 1). So Proposition 2.10
will follow from these results on setting

k1 = max{k′(ε(S)) | r(S) ≤ 30},

k0 = 2 max{k1, k
′((200π)−1)}, k(n) = 2k′(ε(PSO(2n)))

(this makes sense because only finitely many groups S have rank at most 30).
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Proof of Lemma 2.12(i). For g ∈ S, choose an S-conjugate g′ of g inside T and set

η(g) = max{l(α(g′)) | α ∈ 8};

as different choices for g′ lie in the same orbit of W on T , this definition is independent
of the choice of g′. It is clear that η(g) = 0 is equivalent to g ∈ Z(S).

Now given g ∈ S r Z(S), we have η(g) = l(α(g′)) > 0 for some root α ∈ 8, and
there exists w ∈ W with αw = αj for some j . Setting g1 = g

′w we see that

λ(g1) ≥ (πr)
−1l(αj (g1)) = (πr)

−1l(α(g′)) = (πr)−1η(g).

Suppose now that the statement (i) is false. Then we can find a sequence fi = gisi ∈
Aut(S), with gi ∈ S and si a non-trivial graph automorphism, such that

sup{η(g) | g ∈ [S, fi]} → 0 as i →∞. (15)

Since S is a compact group and Out(S) is finite we can find a subsequence fi(j) =
gi(j)si(j) with si(j) = s the same non-trivial graph automorphism for all j ≥ 1 and
(gi(j))j converging to an element g ∈ S. Thus the subsequence fi(j) converges to the
automorphism f∞ = gs in Aut(S). Now (15) implies that [S, f∞] ⊆ Z(S) and hence that
f∞ = 1 since S = [S, S], a contradiction since s = g−1f∞ is not inner.

For Lemma 2.12(ii), we fix S = SU(n) with n > 30 and choose T to be the group
of diagonal matrices A = diag(x1, . . . , xn) in S; then 8 consists of all characters αi,j
defined by αi,j (A) = xix−1

j . The Weyl groupW of S is Sym(n) acting on T by permuting
the eigenvalues. The function λ : T → [0, 1] is given by

λ(A) = (π(n− 1))−1
n−1∑
i=1

|l(xix
−1
i+1)|.

The only non-trivial graph automorphism of SU(n) is induced by complex conjuga-
tion of the matrix entries.

Lemma 2.13. Suppose that A ∈ T satisfies λ(Aw) ≤ ε for every w ∈ W . Let x1, . . . , xn
be all the eigenvalues of A listed with multiplicities. Then there exists an eigenvalue x
of A such that |l(xx−1

i )| < 20πε for at least 9n/10 values of i ∈ {1, . . . , n}.

Proof. Suppose the claim is false. Then for any eigenvalue x of A, at least one tenth of
the other eigenvalues xi satisfy |l(xx−1

i )| ≥ 20πε. Hence we can reorder x1, . . . , xn as
y1, . . . , yn so that |l(yiy−1

i+1)| ≥ 20πε for each i = 1, . . . , [n/10]. This means that

λ(diag(y1, . . . , yn)) ≥ (π(n− 1))−1
× 20πε × [n/10] > ε,

contradicting the hypothesis. ut

Proof of Lemma 2.12(ii). Consider an element a ∈ SU(n) which has eigenvalues 1, ω :=
exp(πi/3) and −1, each with multiplicity m := [(n− 1)/3]. Then af has eigenvalues 1,
ω−1 and −1 with the same multiplicity m.
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We claim that the element b := a−1af has an S-conjugate b1 ∈ T with λ(b1) >

(200π)−1. Suppose this is not true. Then by Lemma 2.13 there exist a b-invariant sub-
space V1 of Cn with dimV1 ≥ 9n/10 and a complex number σ such that all eigenvalues
of b on V1 are of the form σ exp(it) with |t | < 1/10. As a consequence, for any unit
vector v ∈ V1 we have |b · v− σv| < |1− exp(i/10)| < 1/10 (because all eigenvalues of
b − σ Id on V1 have norm at most |1− exp(i/10)|).

Whatever the complex number σ , there is some µ ∈ {1, ω,−1} such that l(µσ) ∈
[π/6, 5π/6] ∪ [−π/2,−5π/6]. This means that l(σµx−1) ≥ π/6 for each x =

1,−1, ω−1. Therefore |σµ− x| > 1/2 for each such x.
Let V2 be the µ-eigenspace of a and let V3 be the sum of the 1,−1 and ω−1-eigen-

spaces of af . We have dimV3 = 3m, dimV2 = m, while n ≤ 3m + 3 and dimV1 ≥

9n/10. As n > 30 we have

dimV1 + dimV2 + dimV3 > 2n,

which implies that V1 ∩ V2 ∩ V3 is non-empty. Pick a unit vector v ∈ V1 ∩ V2 ∩ V3.
Since b = a−1af we have ab · v = af · v. We can write bv = σv + u where u
is a vector of norm less than 1/10. Since v and σv belong to V2 we have ab · v =
µσv + u1 where u1 = au has norm less than 1/10. On the other hand v ∈ V3 and so
we may write v = w1 + w2 + w3 where w1, w2, w3 are xi-eigenvectors of af where
(x1, x2, x3) = (1, ω−1,−1). But distinct eigenspaces of a unitary operator are mutually
orthogonal, hence |w1|

2
+ |w2|

2
+ |w3|

2
= |v|2 = 1. Now

µσ(w1 + w2 + w3)+ u1 = µσv + u1 = ab · v = a
f
· v = x1w1 + x2w2 + x3w3,

giving
3∑
i=1

(µσ − xi)wi = −u1,

and since |µσ − xi | ≥ 1/2 for each i = 1, 2, 3 by the choice of µ, this implies that

10−2 > |u1|
2
=

3∑
i=1

|µσ − xi |
2
|wi |

2
≥

1
4

3∑
i=1

|wi |
2
= 1/4.

This contradiction completes the proof.

References

[BCP] Babai, L., Cameron, P. J., Pálfy, P.: On the orders of primitive groups with restricted
non-abelian composition factors. J. Algebra 79, 161–168 (1982) Zbl 0493.20001
MR 0679977

[GLS] Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups.
No. 3. Amer. Math. Soc., Providence (1998) Zbl 0890.20012 MR 1490581

[H] Helgason, H.: Differential Geometry, Lie Groups and Symmetric Spaces. Grad. Stud. Math.
34, Amer. Math. Soc., Providence (2001) Zbl 0993.53002 MR 1834454

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0493.20001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0679977
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0890.20012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1490581
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0993.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1834454


618 Nikolay Nikolov, Dan Segal

[HM] Hofmann, K. H., Morris, S. A.: The Structure of Compact Groups. 2nd ed., de Gruyter Stud.
Math. 25, de Gruyter, Berlin (2006) Zbl 06182019 MR 1646190

[LS1] Liebeck, M. W., Shalev, A.: Simple groups, permutation groups and probability. J. Amer.
Math. Soc. 12, 497–520 (1999) Zbl 0916.20003 MR 1639620

[LS2] Liebeck, M. W., Shalev, A.: Diameters of finite simple groups: sharp bounds and applica-
tions. Ann. of Math. 154, 383–406 (2001) Zbl 1003.20014 MR 1865975

[NS1] Nikolov, N., Segal, D.: On finitely generated profinite groups, I: strong completeness and
uniform bounds. Ann. of Math. 165, 171–238 (2007) Zbl 1126.20018 MR 2276769

[NS2] Nikolov, N., Segal, D.: Generators and commutators in finite groups; abstract quotients of
compact groups. Invent. Math. 190, 513–602 (2012) Zbl 1268.20031 MR 2995181

[S] Segal, D.: Words: Notes on Verbal Width in Groups. London Math. Soc. Lecture Note Ser.
361, Cambridge Univ. Press, Cambridge (2009) Zbl 1198.20001 MR 2547644

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06182019&format=complete
http://www.ams.org/mathscinet-getitem?mr=1646190
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0916.20003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1639620
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1003.20014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1865975
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1126.20018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2276769
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1268.20031&format=complete
http://www.ams.org/mathscinet-getitem?mr=2995181
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1198.20001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2547644

	Introduction
	Commutators
	Dense normal subgroups
	References

