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Abstract. Among compact Hausdorff groups G whose maximal profinite quotient is finitely gen-
erated, we characterize those that possess a proper dense normal subgroup. We also prove that the
abstract commutator subgroup [H, G] is closed for every closed normal subgroup H of G.
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0. Introduction

Let G be a compact Hausdorff topological group with identity component G, so G* is a
connected compact group and G/ G is the maximal profinite quotient of G. We say that
G is of fg. type if G/G" is (topologically) finitely generated. In [NS2] we established a
number of results about groups of this type, including

Theorem 0.1. The (abstract) derived group G’ =[G, G] is closed in G.

Theorem 0.2. G has a virtually-dense normal subgroup of infinite index if and only if G
has an open normal subgroup G such that either G| has infinite abelianization or G|
has a strictly infinite semisimple quotient.

(A strictly infinite semisimple group is a Cartesian product of infinitely many finite simple
groups or compact connected simple Lie groups). The purpose of this note is (1) to gen-
eralize Theorem 0.1, and (2) to characterize the compact groups of f.g. type that possess
a dense proper normal subgroup (which must then have infinite index, by the main result
of [NS1]); this analogue to Theorem 0.2 is a little technical to state: see Theorem 2.1 in
Section 2 below.

Here and throughout, simple group is taken to mean non-abelian simple group.

1. Commutators
1.1. The main result

Theorem 1.1. Let G be a compact Hausdorff group of f.g. type and H a closed normal
subgroup of G. Then the (abstract) commutator subgroup [H, G| is closed in G.
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When G is profinite, this is Theorem 1.4 of [NS1]; when G is connected, it may be
deduced quite easily from known results (cf. [HM, Theorem 9.24]). The general case,
however, seems harder: to prove it we have to beef up slightly the main technical result
of [NS2]; the beefed-up version appears as Proposition 1.4 below.

Now let G and H be as in Theorem 1.1. For a subset X of G we let X denote the
closure of X in G, and for f € N write

X*f:{xl...Xf | x1,...,xp € X}.

The minimal size of a finite topological generating set for G (if there is one) is denoted
d(G).

First reduction. Let N denote the set of closed normal subgroups N of G such that G/N
is a Lie group. Set
X ={[h.gllheH, geG} )]

Then X is a compact set, so X*/ is closed for each finite f. Suppose that for some f we
have
[H,GIN = X*) NVN e N.

Then ‘
[H.G1c () XN =X+ =X C[H G]
NeN
(cf. [HM, Lemma 9.1]), so [H, G] is closed.
Thus it will suffice to prove

Theorem 1.2. Let G be a compact Lie group and H a closed normal subgroup of G.
Then .
[H,G] = x*/

where X is given by (1) and f depends only on d(G/GY).

Second reduction. We assume now that G is a compact Lie group, with d(G/G°) = 4.
Then G/G" is finite and G = G°T" for some finite subgroup I' = (g, ..., g24) where
g = gzl_l for each i; also G° = ZS where Z = Z(G") and § is connected semisimple
(cf. [HM, Theorems 6.36, 6.15, 6.18]).

PutH =HZNS, H = Hl0 . Then H; is connected semisimple, so every element of
H; is a commutator ([HM, Cor. 6.56]); it follows that H, € X. So replacing G by G/ H»
we may suppose that H; is finite, which implies that H; < Z since H; is normal in S and
S is connected. Then H3 := H N G'<ZH, = Z.

As Hj is abelian we have

d
[H3, G] = [H3, Tl = [ [[H3, g2i] € X*,

i=1

and X* is closed; so replacing G by G /[Hz, G| we may suppose that Hz < Z(G).
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Letx € H and y € G°. Then x" € H3 where n = |G : G°|, and there exists v € G°
such that y = v" (every element of G is an nth power, because it lies in a torus: see
[HM, Theorem 9.32]). Now

1 =[x",v]=[x,v]" =[x,v"] =[x, y].

Thus G° < Cg(H).

Put D = HI'NG". Then HT = DT . Since HI"/ Hj is finite, we have H3 > (HI")? =
HY := Hj. There exists a finite subgroup L of HT such that HT' = HyL ([HM, Theorem
6.74]). Then L < HT (since Hy < Z(G))and A := LN H < G°T' = G since
[H, GO] = 1. Moreover H = H4A; and [H, G] = [A, G].

Applying [HM, Theorem 6.74] to the group G/A, we find a finite subgroup Q/A of
G/A such that G = G°Q and Q/A N (G/A)° < Z((G/A)?), hence 0 N G°A < G.
Then Q N GY is central in G°. Replacing each g; by an element of G'g; N Q, we may
suppose that I' < Q. Now putting

E=AT<Q and A=ENG°<7GY,
we have

E=AT = AT, [A,AAl=[ANA,E]=1, [H,G]=[A,T]=I[A,E].

Conclusion of the proof. In the following subsection we establish

Theorem 1.3. Let G be a finite group, H a normal subgroup of G and {y1,..., ¥} a
symmetric subset of G. Suppose that G = H(y1,...,y) = A{(¥1, ..., yr) where A is an
abelian normal subgroup of G with [A, H] = 1. Then

11,61 = ([Jtr)) " where fi = (o

i=1

Applying this with E, A in place of G, H we obtain

2d fi
[H,Gl=[A,E] = (H[A,gi]) f <2d>.
i=1

Taking account of all the reductions, we see that Theorem 1.2 follows, with

f=1+d+2df12d).

1.2. A variant of the ‘Key Theorem’

Theorem 1.3 depends on the following proposition. We recall some notation from [NS2];
throughout this subsection, G will be a finite group.

Notation. Forg,ve G™ and 1 < j <m,

m
7(g, V) = vilgj—1,vj—1]...[g1,vil, V- 8= (vigl,- -, Umgm), €(V,8) = ]_[[vj,gj].
j=1
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Proposition 1.4. There exists a function k : N — N with the following property. Let
G be a finite group, H = [H, G] a soluble normal subgroup of G, and C < Cg(H)
a normal subgroup of G. Suppose that G = C(gy1, ..., &). Putm = r - k(r), and for
1<j<k()andl <i <r set

8i+jr = 8i-
Then for each h € H there exist v(i) € H™ (i =1,2,3) such that

3
h= Hc(v(i), g) )
i=1
and ' ‘
Clg @YD gm® Oy — G fori=1,2,3. 3)
In fact we can take
k(r) =1+4@ + 1) - max{r, 7}. )

This reduces to (a special case of) Theorem 3.10 of [NS2] when C = 1. The latter
can be beefed up in a similar way in the general case where H is not necessarily soluble;
as this will not be needed here, we leave it for the interested reader to fill in the details.
The ingredients of the proof (in both cases) are all taken from [NS2, Section 3], though
they need to be arranged in a different way.

A normal subgroup N of a group G is said to be quasi-minimal normal if N is minimal
subject to

1 <N=[N,G].

Let Z = Zy be a normal subgroup of G maximal subject to Z < N. Then [Z,, G] =
[[[Z, G], G], ..., G] = 1 for some n, which implies that (i) Z = N N ¢, (G) is uniquely
determined, and (ii) [Z, N] < [Z, H] < [Z,G,] = 1. (Here ¢,(G) denotes the hy-
percentre and G, the nilpotent residual of G; if G is finite, G, is the last term of the
lower central series of G and [{,(G), G,] = 1.) An elementary argument (cf. [NS2,
Lemma 3.4]) shows that Z is contained in the Frattini subgroup ®(G) of G. If N is
soluble then N = N/Z is an abelian chief factor of G.

We fix k = k(r) as given by (4). Fix h € H. For § <1 G let us say that v = (v(i);)
€ HO™ satisfies E(S), resp. G(S) if (2), resp. (3) is true modulo S. By hypothesis, E(H)
and G(H) are satisfied by v= (1, ..., 1).

Since H = [H, G] there is a chain

H=Hy>H >--->H, =1

such that H;_1/H; is a quasi-minimal normal subgroup of G/H; fori = 1,..., z. Fix
| < z and suppose thatu € H Gm) satisfies E(H;) and G(H;). Our aim is to find elements
a(i) € H;" such that v = a - u satisfies E(H;1) and G(H;41). If we can do this, the
proposition will follow by induction.

To simplify notation we now replace G by G/H;y;. Put N = Hj, now a soluble
quasi-minimal normal subgroup of G, and set Z = Zy.
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The argument is done in three steps. Put K| = N, K» = N'[Z,G], K3 = [Z, G],
K4 = 1. We assume that u satisfies E(N) and G(N). Fix ¢ < 3 and suppose that u satisfies
E(K,) and G(K,); we will find a(i) € N such that v = a - u satisfies E(K4+1) and
G(Kg+1). Again, to simplify notation we may replace G by G/K, 1 and so assume that
K,4+1 =1, and set K = K. Thus we have to show that (2) and (3) hold.

Lemma 1.5.
: 3 - 3 n w(i
(TTe@ -uir.)([Tewire) " = [T([Trawy. g17e)""
i=1 i=1 i=1 j=1

where w(i) = c(u@i — 1), g~ ...c(u(l), g .

This is a direct calculation. The next lemma is easily verified by induction on m (see
[NS1], Lemma 4.5):

Lemma 1.6.

7i(guw) | .
(/" 1ji=1.

— ot s
§ ..,m)_(gj lj=1,...,m)

-1 -1
where hj = g 1---81 -

Now we are given u(i) € H (m) and ¥ € K such that

3
h =i []e@@i). g
i=1

and

G=Cckig/®" 1 j=1...m=ck(g"" | j=1,....m) fori=123,
(%)
the second equality thanks to Lemma 1.6.
Let v = a-u with a(i) € N; the goal is to find a suitable a. Lemma 1.5 shows that
(2) is then equivalent to

i wi)

3
[T(ITtat;. g1 @)™ =« ©)

i=1 j=1
This can be further simplified by setting

y(i)j = gjtf(g,u<i))w<i)’ 1)) = g]’f(i)jhj’ -
b(i); = a(i)]f_j(g,u(i))w(i), c(i); = a(i);‘(i)jhj.
Define ¢ (i) : N™ — N by
bp (i) = c(b,y(i), be N™. ®)

Then (6) becomes

3
[[pi¢) =x, ©)
i=1
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and (5) is equivalent to
G=CK{y@)i,...,y@)m)=CK{&@)1,...,t({)y) fori=1,2,3. (10)

Similarly, by Lemma 1.5 again, (3) holds if and only if fori = 1, 2, 3 we have
G=Czu);" 1j=1.....m) )

(where Z is added harmlessly since Z < ©(G)).

Let X (i) denote the set of all ¢(i) € N such that (11) holds, and write W (i) for the
image of X (i) under the bijection N m) s N defined in (7) sending ¢(i) — b(i).

To sum up: to establish the existence of a(1), a(2), a(3) € N gsuch that the v(i) =
a(i) -u(i) satisfy (2) and (3), it suffices to find (b(1), b(2), b(3)) € W(1) x W(2) x W(3)
such that (9) holds.

We set ¢ = min{1/7, 1/r}, and will write ~ : G — G/Z for the quotient map.

The case g = 1. In this case we have K = N and we are assuming that K» = N'[Z, G]
= 1. We use additive notation for N and consider it as a G-module. Note that [CK, N]
= 1. Then (10) together with N = [N, G] implies that

¢(1):b > > bi(y(1); — 1)

j=1
is a surjective (Z-module) homomorphism N — N. It follows that
P (O] = [kerp (D) = [N~

foreachc € N.

Now fix i € {1, 2, 3}. According to Theorem 2.1 of [NS2], at least one of the ele-
ments g; has the ¢/2-fixed-point space property on N (see [NS2, Section 2.1]); therefore
at least k of the elements m have this property. Now we apply [NS2, Proposition 2.8(i)]
to the group G/CZ:if N £ CZ this shows that (11) holds for at least IN|™(1—|N|"—ke/2)
values of ¢(i) in |[N|™. If N < CZ the same holds trivially for all ¢(i) in |[N|™. It follows
in any case that

W@ = 1XG)] = 1ZI™ - [N™ (1 — [NI"*/) = IN™ (1 — [N]"k/2). (12)

We need to compare |N| with |N|. Observe that b — Z;:l bj(gj — 1) induces an

epimorphism from ﬁ(r) onto N; consequently, |[N| < |N|". Thus since ke/2r > 1 we
have
W@ = INJ"(1 = N|'7F/20) > 0,

so W (i) is non-empty for each i. For i = 2, 3 choose b(i) € W (i) and put

c= K(ﬁ b(i)¢(i))71.
=2
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Then
o)~ + WD) = NN+ 1 — [N]" 2y S N

since ke /2r > 2. It follows that qb(l)’1 (c) N W(1) is non-empty. Thus we may choose
b(1) € c/)(l)_l(c) N W (1) and ensure that (9) is satisfied.

The case g = 2. Now we take K = N’, assuming that K3 = [Z, G] = 1. Since N’ < Z,
the argument above again gives (12).
The maps ¢ (i) are no longer homomorphisms, however. Below we establish

Proposition 1.7. Let N be a soluble quasi-minimal normal subgroup and C a normal
subgroup of the finite group G, with [C, N] = 1. Assume that G = C{(y(i)1, ..., Y({)m)
fori =1,2,3. Then for each c € N' there exist c|, ca, ¢3 € N such that ¢ = cicac3 and

6@~ ()l = IN" - IN|7> (i=1,2,3), (13)
where ¢ (i) is given by (8) and r = d(G/C).

Since now K < Z, the hypotheses of Proposition 1.7 follow from (10). Put ¢ = «
and choose ¢y, ¢, ¢3 as in the proposition. As ke > 4r + 4, we see that (12) and (13)
together imply that ¢ (i) ~!(c;) N W (i) is non-empty for i = 1,2, 3. Thus we can find
b(i) € ¢ (i) (c;) N W(i) fori = 1,2, 3 to obtain (9).

The case ¢ = 3. Now we take K = [Z, G]. Since G = C(g1,..., &), we have K =
]_[jr-:l[Z, gj)- Thus k = ]_[;Il[zj, gjlwith zq, ..., z, € Z. In this case, (9) is satisfied if
we set

b()j=z; (A=<j=r),
b(); =1 (r<j=<m),
b@j=1 (=23 1=j=<m),

because y(i); is conjugate to g; under the action of H and [Z, H] = 1.

For each i we have W (i) 2 Z", since in this case (10) implies (11) if c(@i); € Z for
all j. Sob(i) € W(i) for each i, as required.

This concludes the proof of Proposition 1.4, modulo

Proof of Proposition 1.7. Now N is a quasi-minimal normal subgroup of G =
C{(gi1, ..., gr). Recall the definition of Zy as a normal subgroup of G maximal subject
to Z < N; we saw that Zy is in fact uniquely determined. Put ' = N({(gy, ..., g).
Let go € N ~ Zy. Since [C,N] = 1 we have N = (g§) = (g{¥"*’) and so
I' = (g1,...,8r,80); thus d(I') < r + 1. For each i and j we have y(i); = ¢;;x;j
with ¢;; € C and x;; € I'. Then fori = 1, 2, 3 we have

F = (ch)<xll9'~3x1m> = (-xlla ""-xiVna-xi,m-"-]’ "'7'xim,>

wherem’ =m +r+landx;; € Cform < j <m'.
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Define ¥ (i) : N™) — N by

m/

by (i) = [ 1b;. xij1.

Jj=1

We apply Proposition 7.1 of [NS1] to the group I and its soluble quasi-minimal normal
subgroup N. This shows that for each ¢ € N’ there exist c1, ¢3, c3 € N such that ¢ =
cicpcs and

W@~ )l = IN™ - INIT2 (0 =1,2,3).

Now
b1, oo b)Y (@) = (b1, ..., )P (0)

foreach b € N(’"/); SO
Y (@) Nei) = ¢ i) x NP
and it follows that
lp@) " ()l = [ @) el - INITUHD = NN

as required.
This completes the proof.

Proof of Theorem 1.3. Now G is a finite group, H is a normal subgroup of G and
{¥1,..., ¥} is a symmetric subset of G. We are given that G = H{(y1,..., yr) =
A(y1, ..., yr) where A is an abelian normal subgroup of G with [A, H] = 1. The claim
is that

1,61 = ([ e 1)
i=1

where fi = fi(r).
PutT’ = (y1,...,y),s0 G = HI' = AT'. Choose n so that [H,, G] = K satisfies
K = [K, G]. By [S, Proposition 1.2.5] we have

,
[H,Gl=[]H vl K.
i=1
Put Gy = KT and Ay = AN G;.Then G; = A" and K = [K,T'] = [K, G1]. So
replacing H by K, G by G and A by A1 we reduce to the case where H = [H, G]. This
implies in particular that

G=HT =G T =G {y1,...,y).

Now AH NT is centralized by A and normalized by I', so AHNT" << G. But AH =
A(AHNT) so
H =(AH) = (AHNT) <T.
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Theorem 1.2 of [NS2] gives
r *fo(r)
(1, Gl = [H', 11 = ([TtH", 1)
i=1

(where fy(r) depends only on r). Replacing G by G/[H’, G], we reduce to the case
where H' < Z(G). Thus H = [H, G] is nilpotent. It follows by Proposition 1.4 that

r *3k(r)
H= ([T v1)"
i=1
Putting everything together we can take
Ji=14 folr) 4 3k(r).

(The alert reader may wonder how we could establish the hard result Theorem 1.3 using
only a version of the easier, ‘soluble’ case of the ‘Key Theorem’ from [NS2]; the answer
is that the full strength of the latter is implicitly invoked at the point where we quote [NS2,
Theorem 1.2].)

2. Dense normal subgroups

2.1. The main result

Definition. (a)Let S be a finite simple group. Then Q(S) denotes the following subgroup
of Aut(S):
PGOJ,(q)  if S = Du(q). n > 5.

PGO,, (q)  if S = 2Du(q),

Inn(S) if § = Cu(q),
InnDiag(S) if S is of another Lie type,
Aut(S) in all other cases.

Note that when S = D,(q) then Q(S) = PGOJ (¢) = PSOJ (¢)(r) and when
S =12, (g) then Q(S) = PGO,, (q9) = PSO,, (q){[¢]), where 7 is the non-trivial graph
automorphism of D, (g) and [¢g] denotes the field automorphism of order 2 of D, ().
(b) Let S be a connected compact simple Lie group. Then

_ [Aus) it S =PSO@n), n =3,

Q05 = Inn(S) else.

(c) A compact topological group H is Q-almost-simple if S << H < Q(S) where S is
a finite simple group or a compact connected simple Lie group with trivial centre (and S
is identified with Inn(S)). Note that if H is not finite, then H is Q-almost-simple if and
only if it is either simple or else isomorphic to Aut(PSO(2n)) for some n > 3, because
|Aut(S)/Inn(S)| = 2 for S = PSO(2n).

If H is Q-almost-simple as above, the rank of H is defined to be the (untwisted) Lie
rank of S if S is of Lie type, n if S = Alt(n), and zero otherwise.
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Theorem 2.1. Let G be a compact Hausdorff group of f.g. type. Then G has a proper
dense normal subgroup if and only if one of the following holds:

e G has an infinite abelian quotient, or
e G has a strictly infinite semisimple quotient, or
e G has Q-almost-simple quotients of unbounded ranks.

(The quotients here refer to G as a topological group, i.e. they are continuous quotients—
in the first case this makes no difference, in view of Theorem 0.1.)

2.2. The profinite case

Let G be an infinite finitely generated profinite group. It is clear that in each of the fol-
lowing cases, G has a countable, hence proper, dense normal subgroup:

e G is abelian (because G contains a dense (abstractly) finitely generated subgroup),
e G is semisimple (G is the Cartesian product of infinitely many finite simple groups,
and the restricted direct product is a dense normal subgroup).

Let G, denote the intersection of all maximal open normal subgroups of G not contain-
ing G'; thus
Gs:=G/G,

is the maximal semisimple quotient of G. The preceding observations imply:
e G has a proper dense normal subgroup if either G® := G /G’ or G is infinite

(recall that G’ is closed, so G/G' is again profinite, by Theorem 0.1).
We recall a definition and a result from [NS2, Section 1]:

Definition. G denotes the intersection of the centralizers of all simple non-abelian chief
factors of G (here by ‘chief factor’ of G we mean a chief factor of some G/K where K
is an open normal subgroup of G).

Proposition 2.2 ([NS2, Corollary 1.8]). Let N be a normal subgroup of (the underlying
abstract group) G. If NG’ = NGy = G then N = G.

Now let &' denote the class of all finitely generated profinite groups H such that Hy = 1
and both H?® and Hy are finite, and let X (dns) denote the subclass consisting of those
groups that contain a proper dense normal subgroup.

Lemma 2.3. Let G be a finitely generated profinite group. Then G contains a proper
dense normal subgroup if and only if at least one of the following holds:

(@) G™ is infinite,
(b) G is infinite,
(©) G/Gg € X(dns).
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Proof. We have shown above that G contains a proper dense normal subgroup if either
(a) or (b) holds, and the same clearly follows in case (c). Suppose conversely that none of
(a), (b) or (c) holds. Then G/Gg € X . X(dns). Now let N be a dense normal subgroup
of G. Since G s finite, G’ is open in G and so NG’ = G. As G/ G has no proper dense
normal subgroup, we also have NGy = G. Now Proposition 2.2 shows that N = G. O

Thus it remains to identify the groups in X (dns).
For any chief factor S of G let Autg(S) denote the image of G in Aut(S), where G
acts by conjugation. Now we can state

Proposition 2.4. Let G € X. Then G € X (dns) if and only if the simple chief factors S
of G such that
Autg(S) = Q(S) (14

have unbounded ranks.

Since Autg (S) is a Q-almost-simple image of G for such chief factor §, this will complete
the proof of Theorem 2.1 in the case of a profinite group G.

Proposition 2.4 depends on the following four lemmas, which will be sketched in the
next subsection:

Lemma 2.5. There exists &4 > 0 such that
log|[S, f1I = exlog|S|
whenever S is a finite simple group and f € Aut(S) ~ Q(S).
Lemma 2.6. If S is a finite simple group of rank at most r and 1 # f € Aut(S) then
log [[S, f1I = e(r)log]S],
where €(r) > 0 depends only on r.

Lemma 2.7. Given ¢ > 0, there exists k(¢) € N with the following property: if S is a
finite simple group and [ € Aut(S) satisfies log |[S, f]| > elog|S| then

S = (S, FIIS, £~ '@,

Lemma 2.8. For every ¢ > O there exists n € N such that if S is a finite simple group of
rank at least n and f € Q(S), then there exists s € S such that

log|[S, sf]] < elog]S|.

Proof of Proposition 2.4. Now G® and Gy are finite, and Go = 1. This implies that
G has a semisimple closed normal subgroup T = G, and the simple factors of T are

precisely the simple chief factors of G (here G® denotes the closure of the third term
of the derived series of G; see [NS2, Section 1.1]). Thus T = Ty x T} x Tp where Tj is
the product of those simple factors S such that G = SCg(S), T; is the product of those
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S % Ty for which (14) holds, and 73 is the product of the rest. Note that Tj is finite,
because Ty = Ggs. We fix a finite set {a1, ..., ag} of (topological) generators for G.

Suppose that 77 contains factors of unbounded ranks. Pick a sequence (S;) of simple
factors of T7 such that rank(S;) — oo and let T3 = HjeN S;. Then T = T3 x Ty for a
suitable complement 7y. If G/ T4 has a proper dense normal subgroup then so does G; so
replacing G by G/ T4 we may assume that T = T3.

In view of Lemma 2.8, we can find 5;; € S; such that

log [[S}, sijaill

e
log |S; | /

foralli and j, where ¢; — O as j — oo. For each i put
bi = (sij) - a;i € Ta;,

and note that [S;, s;ja;] =[S}, b;]. Let N = (bf;, R bg) be the normal subgroup of G
generated (algebraically) by by, ..., by.

Since Autg(S;) # Inn(S;), for each j there exists i such that [S;, b;] # 1, and so
1 # [S;, N] < §; N N. As each §; is simple it follows that N contains the (restricted)
direct product P = (§; | j € N). Therefore N >P =T,andasa; € TN foreach i it
follows that N is dense in G.

On the other hand, N # G. To see this, fix i and j, set b = b;, § = §;, and write
T =1; : G — Autg(S) for the natural map. Then IGT| < |Aut(S)| < |S|™" where
nj — 0as j — oo, because rank(S;) — oo (see [GLS, Section 2.5]). So

1T = I1GT, 6711 < 1GT - STII[ST, bT1] < IS - |[S, b]| < |S|" 5.
Now forn € Nset X, = (0% U (b;HP U---UbG U (b;")9)*". Then
X51 < QIS < |85 = IS

if |S;] > (2d)2" and n; +¢&; < (2n)~!. This holds for all sufficiently large values of j;
thus we may choose a strictly increasing sequence (j(n)) and for each n an element
Xj(n) € Sj(n) such that

T T
Ximy X

Let ¢ € T| have x;y) as its S;(,)-component for each n. Then i = x;{’(l';) ¢ X ,:j ™ for
every n, and so

o
re X, =N;
n=1

hence N # G as claimed.
For the converse, suppose that every simple factor of 77 has rank at most r. Let N be
a dense normal subgroup of G. Then NT = G by Lemma 2.3, since (G/T)o = G/T.
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Letay, ..., aq be as above and choose ¢; € a;T N N. For each simple factor S of 73,
there exists i such that conjugation by ¢; induces on S an automorphism not in Q(S).
Then Lemmas 2.7 and 2.5 show that

S = (S, cilS, ¢; ',

It follows that J
k()
= ([T et ) N
i=1

For each simple factor S of 77, there exists i such that conjugation by ¢; does not
centralize S. Since each such § has rank at most , we see in the same way, now using
Lemmas 2.7 and 2.6, that

d #h(£(r)
1= ([T anr.) <

i=1
We conclude that
|G:N|=|T:TNN|<|T:T1T»| =|Ty| < oo.

Therefore N is open in G by [NS1, Theorem 1.1] (= [NS2, Theorem 5.1]),and so N = G.

2.3. Some lemmas

Proof of Lemma 2.7. S is a simple group and f € Aut(S) satisfies log [[S, f]| > elog|S|.
Put Y =[S, f15 and X =[S, F1[S, f~']. Then Y**®) = § by [LS2, Proposition 1.23],
where k(¢) = [¢’/¢]; and X D Y by [NS2, Lemma 3.5].

Proof of Lemma 2.6. S is a simple group of rank at most r and 1 # f € Aut(S). Then
C = Cs(f) is a proper subgroup of S, and the main result of [BCP] implies that |S : C| >
|S|¢7) where £(r) > 0 depends only on r. It follows that |[S, f]| = |S : C| > |S|°®).

Proof of Lemma 2.8. We are given a simple group S and f € Q(S). We have to show that
if rank(S) is large enough then there exists s € S such that log|[S, sf]| < elog|S| (we
will not distinguish between s and the inner automorphism it induces).

If S is a large alternating group, we can choose s so that s f is either 1 or (conjugation
by) a transposition, and the claim is clear.

Otherwise, we may assume that S is a classical group of dimension n over a field of
size g. Note that when S is an orthogonal group then PGO5,(¢)/PSO;j,(¢) is generated by
a single reflection if ¢ is odd and is trivial if g is even (or n is odd). At the same time
PSO¢ (¢)/Inn(S) is generated by a product of two reflections if ¢ is odd and is generated
by a transvection if g is even (see [GLS, Section 2.7]; € € {£1}). In all cases, there exists
s € S such that sf = h, where & is an automorphism of S such that /4 is a product of at
most three reflections/transvections in case when S is an orthogonal group or else / is a
diagonal element with n — 1 eigenvalues equal to 1 in case S is PSU,(q) or PSL,(g). In
each case, log |Cg(h)|/log|S| — 1 asrank(S) — oo uniformly in g. Lemma 2.8 follows.
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Proof of Lemma 2.5. Now S is a simple group and f € Aut(S) ~. Q(S). This implies that
S is of Lie type, and in view of Lemma 2.6 we may assume that S is a classical group of
large rank. We have to show that log |Cs(f)|/log|S| < 1 — &, where ¢, > O.

Case I: f < InnDiag(S). This can only happen when S is an orthogonal group in even
dimension or a symplectic group and ¢ is odd. In both cases the description of Inndiag(S)
of [GLS, Section 2.7] for the classical groups and the definition of Q(S) show that f is a
similarity, i.e. there is some A € Fy with (f(v), f(v)) = A(v, v) forall v € V, the natural
module for S. Here (-, -) is the natural bilinear form on V. Moreover A is not a square
in [Fg, forif A = prthenpu'f = f € PGO2in (@) = Q(S), a contradiction. We shall call
f aproper similarity if A ¢ (IFZ)Z. By considering an appropriate odd power of f we may
assume that f is a semisimple element of GL(V). Let ¢ be the maximal multiplicity of
some eigenvalue of f over the algebraic closure of V. We claim that < (dim V) /2. For
if £ > (dim V)/2 then 7 belongs to some rational eigenvalue 1 € Fy and there is some
element v of the p-eigenspace of f with (v, v) # 0 (because the maximal dimension
of totally isotropic subspaces of V is (dim V))/2). But then A(v, v) = (f(v), f(v)) =
uz(v, v), a contradiction since X is non-square. This establishes the claim. Now Lemma
3.4(ii) of [LS1] shows that

/ (dimV)2/4

1£5] > /g@mV=n@imv)2 _ v,

for some constant ¢’ > 0. This means that log |Cs(f)|/log |S| is bounded away from 1.
Case II: f ¢ InnDiag(S).
(a) Assume first that either

e Sisuntwisted and f does not involve a graph automorphism, or else
e Sistwisted and f has order at least 3 modulo InnDiag(S).

We follow the methods of [NS2, Subsection 4.1.5]. Let L be the adjoint simple alge-
braic group with a Steinberg morphism F such that § is the socle of Lr. Then Ly =
InnDiag(S) by [GLS, Lemma 2.5.8(a) and Theorem 2.2.6(e)]. We may write f as f = ¢g
where g € InnDiag(S) and ¢ is a field automorphism of order m > 2 (m > 3 if S is
twisted). We have F = ¢™ if S is untwisted, FZ = ¢™ if § is twisted. Since L is con-
nected, Lang’s theorem implies that there is some gop € L such that g = gg 8o ' Let

x € L. The following conditions on x are equivalent:

(i) x € S and x is fixed by ¢g,
(i) y := x% is fixed by ¢ and x = y%0 ' is fixed by F.

Ignoring the second part of (ii) we see that |Cs(f)| < |Lgl. Now log|Ly| ~
dim L log |Ky| where K is the fixed field of ¢. On the other hand if S = LF is un-
twisted then log |S| ~ dim L log | K| where KF is the fixed field of F = ¢™, while if
S is twisted then log | S| ~ dim L log |K 2|/2, where K - is the fixed field of F% = ¢™M.
We conclude that log |Lg| ~ (a/m)log|S| where a = 1 if S is untwisted and a = 2

otherwise. In both cases |Cs(F)| < |S|2/3.
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The remaining cases are:

(b) S = A,(q) and f = g¢t for an element g € GL,,+1(q), a field automorphism ¢ and
a graph automorphism t.

(¢) S = 2A,(¢g)and f = g[q] for g € U,11(q). Here [¢] denotes the automorphism of
U,,+1 induced by the field automorphism x + x7.

(d) S = D,(q) and f = g¢t with g € InnDiag(S), where either the field automorphism
¢ is non-trivial or g € InnDiag(S) \. PSO, (g) is a proper similarity.

(e) S = 2D,(g) with f = g[q] where g € InnDiag(S) ~. PSO,(g) is a proper similarity.

‘We consider these in turn.

Case (b). Here 1 is conjugate to the involution x +— (xT)y~Lin GL,+1. Thus we may as-
sume that f(x) = g~'(x7)"%g for amatrix g € GL,, 1. Put V = IFZ‘H, the natural mod-
ule for S of column vectors. The condition f(x) = x is equivalent to (x?)” gx = g, which
is equivalent to the requirement that x preserve the non-degenerate form B : V xV — F,
defined by B(v, w) = (v#)7 gw. Now the result will follow from

Lemma 2.9. Let V be an m-dimensional vector space over a finite field F, let ¢ be
an automorphism of F, and let B be a form on V which is non-degenerate and such
that B(av, fw) = a®BB(v, w) for any a, B € F. Then the subgroup G of elements
x € GL(V) that preserve B has size at most | F|"™"+1/2,

We omit the proof, an exercise in linear algebra. Note that Lemma 2.9 estimates the
fixed points of f in SL,;(g) which is the universal cover S of S. The trivial bound
IS, £11 = IS, f111Z(S)|~" together with log |Z(S)|/log |S| — 0 as rank(S) — oo then
completes the proof of case (b).

Case (c). The argument here also follows the idea in [NS2, Subsection 4.1.5]. Let X be
the algebraic group GL, . Let [¢] be the morphism x > x4 of X and let F be the
Frobenius morphism x +— x719) whose fixed point set on SL,4 is the universal cover
S = SU,+1(g) of S. By Lang’s theorem we can write g = ggi’]go_l for some gy € X.

Since g is fixed by F, the element i := gO_Fgo is fixed by [¢], i.e. h € GL,+1(g). Let
x € SL,+1. The following two conditions on x are equivalent:

(i) x € S and x is fixed by [¢]g,

(i) y := x89 € SLy41 is fixed by [g] and x = yg"_1 is fixed by F.

Therefore the number of fixed points of [¢]g on S is equal to the number of elements
y € SL,+1(q) such that

—1 —F -1
(ng )F = xF =x = (yF)gO = ygo

’

equivalently .
(yF)(gJ 80) — y.

Observing that for y € SL,41(g) we have y¥' = y7, the last condition becomes yh =y,
By Case (a) the number of such y is at most ¢"*+1"/2_ which is about |S|'/2. We have
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proved that IS, fll = |§|1/2=0M); the corresponding result for |[S, f]| follows just as in
case (b).

Case (d). Let U be the fixed point subgroup of the graph automorphism 7 in S = D, (q).
Then U = B,_1(q) and log |U|/log |S| — 1 asn — oo. Hence it is enough to prove that
log |Cs(f) N U|/log|S| < 1 — & for some fixed ¢ > 0. Now Cg(f) N U is contained in
the fixed point set of g¢ on S, which has size at most |S|' =€ by Case II (a) if ¢ # 1 and
by Case I otherwise.

Case (e). This is similar to Case (d) on putting U = Cs([g]) = B,—1(gq), noting that
log|U|/log|S| — 1 asn — oo, and applying Case I to Cg(g).

2.4. The general case

Assume now that G is a compact group with G/G° finitely generated. We will show
that G has a proper dense normal subgroup—say G has DNS—if and only if one of the
following holds:

(a) G® is infinite,
(b) G has a strictly infinite semisimple quotient,
(c) G has Q-almost-simple quotients of unbounded ranks.

Suppose that G is infinite and abelian. Then either G maps onto an infinite finitely
generated abelian profinite group, or G° has finite index in G. In the first case, G has
DNS by a remark in Subsection 2.2; in the second case, G maps onto a non-trivial torus
([HM, Proposition 8.15]), hence onto R/Z: then the inverse image of Q/Z is a dense
proper subgroup of G. Thus in general, if (a) holds then G has DNS. If (b) holds, a dense
normal subgroup is provided by the inverse image in G of the restricted direct product of
simple factors in a strictly infinite semisimple quotient of G.

Suppose that (c) holds but neither (a) nor (b) does. If G has Q-almost-simple finite
quotients of unbounded ranks then so does G/G", and then G has DNS by Subsection
2.2. Otherwise, there exists a strictly increasing sequence (n;) (with n; > 3) such that G
maps onto each Aut(S;) where S; = PSO(2n;) for each i. Then for each i, the inverse
image D; in G of Inn(S;) has index 2. Since G has only finitely many open subgroups of
index 2, we can replace (n;) with an infinite subsequence and reduce to the case where
D; = D is constant. Then G has closed normal subgroups N; < D such that D/N; = S;
and G/N; induces Aut(D/N;) on D/N;; replacing G by a quotient we may assume that
M2 Ni = 1.

Then D = []; S; where S; = ﬂj#i N; = PSO(2n;). Also G = D(y) where y2eD

and y acts on S; like s;7;, where 5; € S§; = Inn(S;) and t; is the non-trivial graph
automorphism of S; given by conjugation by the diagonal matrix diag(1, 1,...,1, —1) €
O(2n).

Lett = (Si_l)ieN -y € Dy. Then t induces t; on each S; and = Cg(D) = 1. Put
N = (rG). Then for each i we have S; N N 2_[51-, ] # 1, 50 Si_ﬁ N is a non-trivial
gosed normal subgroup of S; and hence S; < N. Therefore D < N and it follows that
N =G.
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We claim that N # G. To see this, observe that dim(S;) = 2n2 —n while dim(Cg, (7;))
= dim(0OQ2n — 1)) = 2(n — 1)®> — n + 1; therefore

dim [Si , 7,',']
dim(S;)
This implies that for each m there exist i (m) € N and s;¢m) € Sign) \ [Sign), T1™", and we
may choose i(m) > i(m — 1) for each m > 1. Now let & € D be such that /() = 8i(m)
for all m. We claim that i ¢ N.
Indeed, suppose that

— 0 asi— oo.

m
w = l_[tgf e D,
j=I1

where without loss of generality g; = (g;,;); € D. Then m is even and
wi = [x1, Tllxg, Tl =1, Tllx,,, T] € [Si, T1™
where x; = g; ;. Therefore w;(n) # higm), S0 h # w.
Thus N is a proper dense normal subgroup of G.
For the converse, let N be a proper dense normal subgroup of G, and assume that
neither (a) nor (b) holds; we will show that (c) must hold.

1.If G°N < G we are done by the profinite case. So we may assume that GON = G.

2. Let Z = Z(GO). Suppose that NZ = G. Then G’ < N; but we have assumed
that G® is finite, so N has finite index in G, hence contains GO, whence N = G,a
contradiction. Therefore NZ < G, and replacing N by N Z we may assume that Z < N.
Now replacing G by G/Z we may suppose that Z = 1. In this case we have

G =]]s
iel
where each S; is a compact connected simple (and centreless) Lie group.
3.Put D = G N N. Then [G°, N] < D < G°. It follows that
G"=6"<16° G1=1G", N1< D,

so D is dense in G°. Suppose that S; % D for some i. As S; is abstractly simple, we

have S; N D = 1, whence D < C;0(S;), a proper closed subgroup of GY. 1t follows that
S; < D forevery i. Since D < D this implies that the index set / must be infinite.

Since G/ G is finitely generated, we have G = G%{y1, ..., yq) for some y; € N.
Then [G°, y;] € D for each I. Applying [NS2, Proposition 5.18] we deduce that there
exists an infinite subset J of I such that each y; normalizes S; for every i € J. As NG (S;)
is closed and contains GV, it follows that S; is normal in G for every i € J. We may take
J={iel]|S <G}

Put P =[], Si and C = C;(P). Suppose that CN = G. Then

P=P <[P,G]=[P,N]<N.
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Now apply the preceding argument to G/ P: since (G/P)° = (ITicsy S)P/ P, this im-
plies that G normalizes S; for infinitely many j € I \. J, which contradicts the definition
of J.

It follows that CN < G. So replacing N by CN and then replacing G by G/C, we
may assume that C = 1. As C N G° = [[;;; Si, this means in particular that S; < G
for all i € I (renaming J to I), and that Cg (G% = 1.

Now Out(S;) embeds in Sym(3) for each i. As G/G" is a finitely generated profinite
group, it admits only finitely many continuous homomorphisms to Sym(3), so G has an
open normal subgroup H > G such that H induces inner automorphisms on each S;.
Then H = Cy(G°)G° = GY; thus G/GY is finite. Hence there exists a finite subset Y
of N such that G = G°Y.

4. Put C; = Cg(Sj) andnow set J = {i € I | C;S; = G}. Fori € J put K; =
(Nizjes Cjand X =(;c, Ci. Then fori € J we have

Si=XSi/X < Ki/X=G/C; =S,

so K; = X x S;. Hence the image of G/ X in the product [ [, ; G/C; =[], Si contains
the restricted direct product, and it follows that G/ X = ]_[i <y Si. Since we have assumed
that G has no strictly infinite semisimple quotient, it follows that J is finite.

As S; < D for each i, we may now replace G by G/ [[;; Si, and so assume that J is
empty. Then for each i there exists y(i) € Y such that y(i) induces an outer automorphism
on S;.

5. In the next subsection we will prove

Proposition 2.10. Letr S be a compact connected simple and centreless Lie group and y
an outer automorphism of S. Then

S = (S, y]- IS,y 'p*

where
k=ko if S 2 PSO(2n) Vn,

k <k(m) if S=PSO(2n),
ko € N is an absolute constant and k(n) € N depends on n.
Now let ¢ > 3 and let
J@)={i el|S; 2PSOQ2n)Vn > t}.
Put k(t) = max{kg, k(n) (n < t)}. Then for each i € J(¢) we have
Si = [ ]S, y1- 18, y~ "D,

yeY

[1s=T1(IT 5] [T] s ew

ieJ(t) yeY ieJ(t) ieJ(t)

Therefore
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since the product in the middle is a closed set. As N < G = GON it follows that
[Ticsy Si < G% thus J (1) # 1.

Thus for every ¢ there exist n > ¢t and i € [ such that §; = PSO(2n), and then G has
the Q-almost-simple quotient G/C; = Aut(PSO(2n)). Thus (c) holds.

2.5. More lemmas

Throughout this section, we take S to be a compact connected simple Lie group (see for
example [H, Table IV, p. 516]). We assume that S has an outer automorphism. Such an
automorphism is the product of an inner automorphism and a non-trivial graph automor-
phism; this only exists when S has type A, D,, or E¢. We choose and fix a maximal torus
T of S, aroot system @ of characters of T, and a set of fundamental roots {1, ..., & }.
Throughout, » = r(S) will denote the rank of S, and W the Weyl group.

We need not assume that Z(S) = 1, but will sometimes for brevity identify elements
of § with the corresponding inner automorphisms.

The function A : T — [0, 1] was defined in [NS2, Subsection 5.5.4]:

M) = (@r) ™ e (@)
i=1

where [(¢!?) = 6 for 6 € (-7, 7].
Proposition 2.10 depends on Lemma 5.19 of [NS2] which we restate here in the fol-
lowing form:

Proposition 2.11. For each € > 0 there is an integer k = k'(€¢) such that if g € T
satisfies 1(g) > € then S = (g5 U g=5)*k.

We shall prove

Lemma 2.12. (i) There exists € = €(S) > 0 such that for each f € Aut(S) ~\ Inn(S)
there exist an element g € [S, f]and a conjugate g1 of g with g1 € T and A(g1) > €.
(i) If S = (P)SU(n) where n > 30, we can take €(S) = (2007)~".

A simple calculation shows that if ¢ € [S, f] then g5 < [S, F1[S, f~'1and g5 C
[S, £~NIS, f1, and so

S Ug™SH™ c (s, £IS, £7MIS, FUS, £ = (8, IS, £

Now if r > 6, then S has type D, or A,. Among centreless compact simple groups,
the one of type D, is PSO(2r) and the one of type A, is PSU(r 4 1). So Proposition 2.10
will follow from these results on setting

ki = max{k’(e(S)) | r(S) < 30},
ko = 2max{k;, K'(200m)" D),  k(n) = 2k (e(PSO(2n)))

(this makes sense because only finitely many groups S have rank at most 30).
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Proof of Lemma 2.12(i). For g € S, choose an S-conjugate g’ of g inside T and set

n(g) = max{l(a(g") |« € d};

as different choices for g’ lie in the same orbit of W on T, this definition is independent
of the choice of g’. It is clear that (g) = 0 is equivalent to g € Z(S).

Now given g € S . Z(S), we have n(g) = I(x(g’)) > 0 for some root @ € ®, and
there exists w € W with «” = «; for some j. Setting g; = g’* we see that

Ag1) = (r) (e (gn) = () a(g) = (xr) " 'n(g).

Suppose now that the statement (i) is false. Then we can find a sequence f; = g;s; €
Aut(S), with g; € S and s; a non-trivial graph automorphism, such that

sup{n(g) | g €[S, fil} > 0 asi — oo. (15)

Since S is a compact group and Out(S) is finite we can find a subsequence fi(;) =
8i(pHSi(j) with s;(jy = s the same non-trivial graph automorphism for all j > 1 and
(gi(j)); converging to an element g € §. Thus the subsequence f;(j) converges to the
automorphism f, = gs in Aut(S). Now (15) implies that [S, foo] € Z(S) and hence that
foo = 1 since S =[S, S], a contradiction since s = g_l foo 1s not inner.

For Lemma 2.12(ii), we fix § = SU(n) with n > 30 and choose T to be the group
of diagonal matrices A = diag(xy, ..., x,) in S; then ® consists of all characters «o; ;
defined by «; j(A) = x,~xj_1. The Weyl group W of S is Sym(n) acting on T by permuting
the eigenvalues. The function A : T — [0, 1] is given by

n—1

MA) = (i — 1) I x I
i=1

The only non-trivial graph automorphism of SU(n) is induced by complex conjuga-
tion of the matrix entries.

Lemma 2.13. Suppose that A € T satisfies L(A") < € for every w € W. Let x1, ..., x,
be all the eigenvalues of A listed with multiplicities. Then there exists an eigenvalue x
of A such that |l(xxl-_1)| < 20me for at least On /10 values of i € {1, ..., n}.

Proof. Suppose the claim is false. Then for any eigenvalue x of A, at least one tenth of
the other eigenvalues x; satisfy [/(xx;” 1)| > 20me. Hence we can reorder xq, ..., x, as

Y1, ..., Yn SO that |l(yl-yi_+11)| > 20me foreachi = 1, ..., [n/10]. This means that
A(diag(yy, -, ) = (w(n — 1))71 x 20me x [n/10] > €,

contradicting the hypothesis. O

Proof of Lemma 2.12(ii). Consider an element a € SU(n) which has eigenvalues 1, @ :=
exp(mi/3) and —1, each with multiplicity m := [(n — 1)/3]. Then a/ has eigenvalues 1,
™! and —1 with the same multiplicity .
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We claim that the element b := a~'a’/ has an S-conjugate by € T with A(b) >
(2007)~!. Suppose this is not true. Then by Lemma 2.13 there exist a b-invariant sub-
space Vi of C" with dim V| > 9r/10 and a complex number ¢ such that all eigenvalues
of b on V; are of the form o exp(it) with || < 1/10. As a consequence, for any unit
vector v € Vi we have |b-v —ov| < |1 —exp(i/10)| < 1/10 (because all eigenvalues of
b — old on V] have norm at most |1 — exp(i/10)]).

Whatever the complex number o, there is some u € {1, w, —1} such that [(uo) €
[7/6,57/6] U [—7/2, —57m/6]. This means that l(o,ux_l) > m/6 for each x =
1, -1, w™!. Therefore |oju — x| > 1/2 for each such x.

Let V, be the u-eigenspace of a and let V3 be the sum of the 1,—1 and a)’l—eigen—
spaces of al. We have dim V3 = 3m, dimV, = m, while n < 3m + 3 and dim V; >
9n/10. As n > 30 we have

dim V| + dim V, + dim V3 > 2n,

which implies that V| N V, N V3 is non-empty. Pick a unit vector v € Vi N Vo N V3.
Since b = a~'a’ we have ab - v = af - v. We can write bv = ov + u where u
is a vector of norm less than 1/10. Since v and ov belong to V, we have ab - v =
uwov + uy where u; = au has norm less than 1/10. On the other hand v € V3 and so
we may write v = w; + wy + w3 where w;, wy, w3 are xi—eigenvectors of a/ where
(x1,x2,x3) = (1, ™!, —1). But distinct eigenspaces of a unitary operator are mutually
orthogonal, hence lwi|? + |wa|? + |w3]? = |v|? = 1. Now

uo(wy +wy+w3)4+uy =puov+uy =ab-v= al v = xjw1 + xowy + x3w3,
giving
3
D (o — xpwi = —uy,
i=1
and since |puo — x;| > 1/2 for each i = 1, 2, 3 by the choice of u, this implies that

3 3
1
10_2>M2= o’—_x-zw»2>_ w2=14
lug] ;:1 | il 7wl _4;:1' il /

This contradiction completes the proof.
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