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Abstract. In this paper, the unproven half of Richard Brauer’s Height Zero Conjecture is reduced
to a question on simple groups.
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1. Introduction

The aim of this paper is to provide a reduction of the unproven half of Brauer’s famous
Height Zero Conjecture to a question on simple groups. Much of the research in the rep-
resentation theory of finite groups in the last years has been dedicated to proving several
deep conjectures that assert that certain global invariants of a finite group can be calcu-
lated locally. The so called counting conjectures include the McKay and the Alperin—
McKay (AM) conjectures, the Alperin Weight Conjecture, and a chain of conjectures by
E. C. Dade, the ultimate of these generalizing both the Alperin—-McKay and the Alperin
Weight conjectures. Brauer’s Height Zero Conjecture, of a different more structural type,
asserts that all complex irreducible characters in a p-block B with defect group D have
height zero if and only if D is abelian.

In [IMNO7] it was proven that if all finite simple groups are good then the McKay
conjecture is true. This result has been recently extended to include blocks: it is proved
in [Spdl3] that if all finite simple groups satisfy the inductive AM-condition, then the
Alperin—-McKay conjecture is true. Since the publication of [[IMN07] many simple groups
have been checked to be good ([Mal07], [MalO8], [Spa12]) and it is hoped that this ap-
proach will eventually lead to a proof of the McKay and Alperin—-McKay conjectures.

The “if” direction of Brauer’s Height Zero Conjecture (BHZC) was reduced long
time ago to quasisimple groups in [BK88], and only now the knowledge of the blocks of
quasisimple groups has been enough to complete a proof of this conjecture by R. Kessar
and G. Malle [KM13].
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The “only if” part of BHZC is even more complicated. While the “if”” direction, for
instance, is almost trivial for p-solvable groups, the proof of the only if direction for this
class of groups was a tour de force accomplished by D. Gluck and T. Wolf [GW84] in the
1980’s.

Recently, using the new techniques introduced in [IMNO7], P. H. Tiep and the first au-
thor [NT12] were able to prove the p = 2 maximal defect “only if”” case of the conjecture.
At the same time a general connection was pointed out between the Alperin-McKay con-
jecture and the Height Zero Conjecture. (This connection was previously known for the
principal blocks, [Mur95].) But also in [NT12], a major obstacle towards completing the
proof of BHZC was foreseen: the so called Gluck—Wolf theorem on relative p’-degrees
over a normal subgroup (a purely character-theoretical statement involving no modular
representation theory) had to be proved for every finite group in order to obtain BHZC.

Now that the general Gluck—Wolf theorem has been fully established by P. H. Tiep
and the first author [NT13], the main result of this paper tells us that if all the non-abelian
simple groups satisfy the inductive AM-condition, then Brauer’s Height Zero Conjecture
will be settled if it is proved for quasisimple groups.

But in fact, there is still more. Since G. Malle has communicated to us (([KM12]) that
he and R. Kessar have proved that all universal p’-covering groups of non-abelian simple
groups satisfy Brauer’s Height Zero Conjecture, the following constitutes now the main
result of this paper.

Theorem A. Let G be a finite group and let p be a prime. Suppose that every non-abelian
simple group involved in G satisfies the inductive AM-condition for p. Then Brauer’s
Height Zero Conjecture holds for G and the prime p.

In other words, what we show in this paper is that if the Alperin-McKay Conjecture
is proved via the method proposed in [Spd13], then Brauer’s Height Zero Conjecture is
automatically true.

Next, we are more specific. If B is a p-block of G, let Irrg(B) be the set of complex
irreducible height zero characters in B. If N isnormal in G and t € Irr(N), then Irr(B | 1)
is the set of irreducible characters in B that lie over 7. If b is a block of N, then Gy, is the
stabilizer of b in G. Theorem A will follow from the following.

Theorem B. Let G be a finite group, and let N <G. Let b € BI(N) have defect group D.
Assume that all the non-abelian simple groups involved in N satisfy the inductive AM-
condition for the prime p. Then there exists an Ng, (D)-equivariant bijection

Mp : Irrg(b) — Irrg(by),

where by € BI(Ny (D)) is the Brauer correspondent of b. Furthermore, if B is a block
of G covering b, then there exists a height preserving bijection between Irr(B | ) and
Irr(By | [1p (7)) for every T € Irrg(b), where By is the only block of NG (D) that induces B
and covers bj.

We wish to remark that if N is p-solvable, then the condition on the simple groups in-
volved in N in the previous theorem trivially holds, and therefore Theorem B is true in



On Brauer’s Height Zero Conjecture 697

this case. If N = G, Theorem B is telling us that if all the simple groups involved in G
satisfy the inductive AM-condition, then the Alperin-McKay conjecture is true (which is
the main result of [Spa13]). But also, Theorem B is telling more: if all the non-abelian
simple groups involved in N satisfy the inductive AM-condition for the prime p, then N
satisfies the equivariant form of the Alperin—-McKay conjecture.

G. R. Robinson [Rob02] pointed out that the existence of a bijection like the one in
Theorem B was a consequence of Dade’s Projective Conjecture (in the case where D is
abelian). Dade’s Projective Conjecture is considered more sophisticated than the Alperin—
McKay conjecture.

This article is structured in the following way: In the first section we establish our
notation and prove some of the most basic results. In the succeeding two sections we
introduce the convenient definition of block isomorphic character triples and determine
several fundamental properties of them. Afterwards we study and prove further results
on the so called Dade—Glauberman—Nagao (DGN) correspondence, and construct block
isomorphic character triples that are associated to DGN-correspondents. In the last two
sections we assume that the inductive AM-condition holds and construct a bijection such
that associated characters give block isomorphic character triples, therefore proving a
strong form of Theorem B.

2. Notation and basic observations

This section essentially gathers some basic results about induced blocks and heights. We
use the definition of induced blocks due to R. Brauer (see [Nav98, p. 87]). In general we
use the notation of [NT89, Nav98]. All groups in this paper are finite.

Notation 2.1. Let p be a prime. Let R be the ring of algebraic integers, and let S be
some localization of R at a maximal ideal containing pR. Let [F be the residue field of S,
whose characteristic is p (see [Nav98, Chapter 2] for details and exact definitions). Let
(* : S — T be the associated canonical epimorphism.

For every irreducible complex character x € Irr(G) of a finite group G, we denote
by A, : Z(FG) — T the associated central function. Analogously, for a p-block b of G
the central function A, : Z(FG) — F is defined as A, = A, for any x € Irr(d). Also, if
x € Irr(G) we denote by bl(x) the block of G containing x. By Irrg(G | D) we denote
the irreducible characters of G with height zero lying in a block having D as a defect
group. We denote by €lg(x) the G-conjugacy class containing x € G. For any subset
C C G we denote by C* the sum >, - x € FG.

Lemma 2.2. Letr K QG andlete : G — G/K = G be the canonical epimorphism. Let
0 € Irr(K) and suppose that 6 € Irr(G) is an extension of 6. Let i € Irr(G/K) and let
n:=noe€ €Ilrr(G). If x € G, then

Ay (€l () ) = Az, (€L () DAl E) D),

where L/K = Cg(x) and X = xK.
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Proof. Recall that 0 n € Irr(G) by Corollary (6.17) of [Isa76]. We observe that |€lg (x)|
=|G: L||L : Cg(x)| = |€lz()| |€lL (x)|. Hence

|¢la<x>|5n<x>>* _ (|¢IG<E>||¢IL<x)|5n(x>)*

hy@lg(0)h) = (

6(Dn(l) 6(Dn(1)
(L@@ \* (€@ \* PR
_< oD ) ( (D > _AQL(QIL(x) M7(€lz()™).

O

Proposition 2.3. Let N 4 G and H < G with NH = G. Write M = N N H. Let
0 € Irr(N) and suppose 6 e Irr(G) is an extension of 0. Let 0’ € Trr(M) and suppose
that ' € Irr(H) is an extension of 0'. Further assume that bl(GmH)J is deﬁned and
bl(@ QH)J = bl(GJ)for every N < J < G. Then bl(@ nu)C is defined and bl(@ )¢ =
bl(gn) for every n € Irr(G) with N < ker(n).

Proof. By definition, it is sufficient to show
2, (€l (0)T) = Az, (Clg(x) N H)T)  forevery x € G.
According to Lemma 2.2, we have
Ay (€l (0) ) = Az, (€L () HAz7(Clg N (xN)T),

where 7 is the character n viewed in G/N, and L/N = Cg/n(xN). Since bl(ginH)L =
bl(6;), we have

A5, (€l (0T =2z, (L) N HY ) ag(@loy (xN)).
Hence, we may assume now that x € H. Notice that
Clr(x) =Clg(x) NxN.

Write €lg(x) N H = Cly(x1) U--- ULl (x), adisjoint union. As {yM | y € Cly(x;)}
is the conjugacy class in H /M containing x M we can choose x; such that x;M = xM.
Then Cy/p(xjM) = (LN H)/M. Now

t
Mgy (g ()N H)T) = g, (€ly )™t
j=1

11
=D gy @Uan ) A (€lyv e M),
j=1

where 77 is the character ny viewed as a character of H/M. We conclude that

13
K (€l () N ) = (D" A (@ () ) ) A (€l (kM)
=1
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Since A (€l (x M) 1) = Az(€lg/n (xN)), it suffices to show that
t

(2; A, @on () = Az, (€00 0 HYD).
/:

Since xN N H = xM, we have

Clp () NH = (Clg(x) N H) N (xN N H) = €x(x) U---UCly(x) NxM
=Clnp(x1) U--- Ul ap (x),

which easily concludes the proof of the lemma. O

Next we prove the following relations between dominated and induced blocks. Recall
that a block of a quotient of G is contained in (or dominated by) a unique block of G (see
[Nav9g, p. 199]).

Proposition2.4. Let Z A< Gand Z < H < G. Let B € BI(G/Z) and let B € BI(G)
be the block dominating B. Let b € BI(H/Z) and let b € BI(H) be the block of H
dominating b.

(a) If EG/Z is defined and coincides with B, then the block bC is defined and coincides
with B.

(b) Assume that Z is a p’-group. Then BG/Z is defined and coincides with B if and only
if b9 is defined and coincides with B.

(c) Assume that Z is a central p-group and EG/Z is defined. If b° = B, then ZG/Z = B.
Proof. We notice that (a) is a generalization of Proposition 5.7 of [Dad96]. Let x € G. We

want to show that Ag(Clg(x)™) = Ay ((Clg(x) N H)T). It is easy to check (see [Nav98,
p. 199]) that

A€l (0)T) = |€Clg(x) NxZ|*A5(Clg z(xZ2)T).

In fact, if U is a union of conjugacy classes €lg (x;) with €lg,z (x; Z) = €lg,z(xZ), then
AU = U NxZ*A5(€lg,z(xZ2)™).

Since Az(Clg/z(xZ)") = A;((€lgz(xZ)NH /Z) ™), itis no loss of generality to assume
that x € H.

Now write Clg(x) N H = O(x) U --- U O(xg), where O(x;) is the union of the
conjugacy classes €ly(w) of H inside €lg(x) such that €ly,;z(wZ) = Cly,z(x; Z),
where

C[G/Z(XZ) NH/Z = €[H/Z(xlz) J---uU Q:[H/Z(XSZ)

is a disjoint union. Thus

A€l z(xZ2)1) = d (€l z(x1 Z2)T) + - + A€l 2 (xs Z) ).
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Now

A ((Clg () NH)Y) = [O(x1) Nx1 ZI" A€l z(x1 2) ) + - -
+ 19(xs) N X Z* 25 (€l 2 (xs 2) ™).

Notice that O (x;)Nx; Z = €l (x)Nx; Z. Since conjugation maps Clg (x)NxZ to Elg(x)N
x8Z bijectively, we have |O(x;) N x; Z| = |€lg(x) N xZ| for all i. Now

M ((€Clg(x) N H)Y) = |€lg(x) NxZ|* Zkg(¢[H/z(XiZ)+),

proving part (a).

For the missing direction in part (b) we assume that bG is defined, coincides with B,
and Z is a p’-group. Let y € G, and suppose that €l (y}), .. ., €lg(ys) are all the distinct
conjugacy classes of G such that €lg,z(y;Z) = Clg,z(yZ). Let U = Clg(y1) U ---
U €lg (ys), and notice that U N xZ = x Z. By the first paragraph in this proof,

15z = 121" ap(@e (™).

In the same way,

5(€lgyz(y2) N H/Z)Y) = | 2] Zkb((efla(yi) NH)".

Since b® = B, this implies 5° = B.

In the situation of (c), we have b¢ = B and C := EG/Z is defined. Let C € BI(G)
be the block dominating D By applying (a), we have b = B = C. By [Nav98,
Theorem (9.10)], C dominates a unique block of G/Z. Hence B and EG/Z coincide. O

We shall also need the following proposition in which we basically collect some results
on heights and defect groups. If x € Irr(G) is in the block B with defect group D, then
recall that x (1), = (IG|,/|D|) p™*), where ht(x) denotes the height of x. If N <G and
¢ € Irr(N), then we denote by Irr(G | ¢) the set of irreducible characters y of G such that
¢ is an irreducible constituent of the restriction .

Proposition 2.5. Let N < G.

(@) If ¢ € Irr(N) and x € Irr(G | ), then ht(x) > ht(¢). In particular, if x has height
zero, then ¢ has height zero.

(b) Let x € Irr(G) with xy € Irr(N) and let p € Irr(G/N), where p € Irr(G) contains
N in its kernel and corresponds to p. Then some defect group of bl(p) is contained
in DN/N, where D is a defect group of bl(xp).

(c) If xp is a height zero character in (b), then DN /N is a defect group of bl(p).

(d) Let x € Irr(G) be such that xy is irreducible. Let D be a defect group of bl(x). Then
p11G : ND|. Equivalently, DN /N is a Sylow p-subgroup of G/N.

(e) Supposethat x € Irr(G) has height zero, H < G and ¥ € Irr(H), such that x = wG.
Then ' has height zero, and a defect group of the block of \r is a defect group of the
block of x.
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) If x € Irr(G) has height zero and Q is a defect group of bl(x), then there exists
¢ € Irr(N) under x such that the block of the Clifford correspondent x. of x over ¢
has defect group Q. Any two of them are N (Q)-conjugate. Also, Q N N is a defect
group of bl(¢).

(g) Suppose that x € Irr(G), H < G and € Irr(H), such that x = y©. If the blocks
of ¥ and x share a common defect group, then r and x have the same height.

Proof. Part (a) is Lemma 2.2 of [Mur96]. Part (b) is exactly Corollary 1.5(i.b) of [Mur96].
We consider the situation in (c). By (a) and our hypothesis, xy has height zero, and
hence |D N N|x(1), = |[N|p. As xp has height zero, we also know that [D|x (1),0(1),
= |G]|p. The group Q := DN/N contains a defect group of bl(p) according to (b) and
satisfies
105D, = |G/NI,

by the above. Hence Q is a defect group of bl(p). This proves (c).

In (d) we have ht(x) > ht(xy) by (a). By straightforward computations using the
definition of height, this implies |G/N|, < |[D/(D N N)|.

To prove (e), using Corollary (6.2) and Lemma (4.13) of [Nav98], we know that a
defect group Q of v is contained in a defect group D of x. Now use the formula x (1) =
|G : H|Y¥ (1) and the definition of height.

Now for (f), let 8 be any irreducible constituent of yn and let ¢ € Irr(Gg) be the
Clifford correspondent of y over 6. By the previous part, every defect group Qi of the
block of v satisfies Q1 = Q¢ for some g € G. Then the Clifford correspondent y; :=

¥e “of xoverg = 68" has defect group Q. If v € Irr(N) is any other such constituent,
then {* = v, OF and Q are defect groups of the block of (x;)*, and therefore 0** = Q
for some z € G,,. This proves that v and ¢ are Ng(Q)-conjugate. By Theorem (9.26) of
[Nav98], QO N N is a defect group of bl(¢).

Part (g) follows from the definition of height using that |G : H|Y (1) = x(1). m]

3. Block isomorphic character triples

A character triple (G, N, 0) consists of a normal subgroup N < G and a G-invariant
0 € Irr(N). Isomorphisms of character triples (see [Isa76]) play a key role in the character
theory of finite groups. In the recent work [IMNO7] and [Spd13], some special types of
character triple isomorphisms have been needed. In this section we formalize all this and
explore this direction further. This is essential for constructing the bijection of Theorem B.

We follow the definition and notation of character triple isomorphisms given by Def-
inition (11.23) of [Isa76], although we shall also assume that all of our character triple
isomorphisms are strong in the sense of Exercise (11.13) of [Isa76]. Next we recall the
definition of the latter. Let (G, N, 6) be a character triple. Let Char(G | 9) be the set of
characters of G whose irreducible constituents are in Irr(G |0). Forg e G, N < J <G
and T € Char(J |0), we define 78" € Char(J¢ |0) by t8(x8) = t(x) forevery x € J.
We observe that 78" is well-defined. We say that the isomorphism

(t,o): (G,N,0) — (H,M, 8"
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is strong if
07(0)® =0 ,5(r%) foreveryg e G/N,N <J < G and t € Char(J |0).

Projective representations are essential to construct character triple isomorphisms.
A map P : G — GL,(C) is a projective representation if there exists a function « :
G x G — C* (the factor set) such that

P(g1)P(g2) = a(g1, g2)P(g182) forevery g1, 82 € G.

Although we recall the most important properties of projective representations in the fol-
lowing theorem, we refer the reader to Chapter 3.5 of [NT89] for further properties and
definitions.

Theorem 3.1. Let (G, N, 6) be a character triple.

(a) Given an ordinary representation D affording 6, there exists a projective representa-
tion P of G with Py = D and such that its factor set « is trivial on (G x N)U(N x G).
Hence

Png) =Dn)P(g) and P(gn)=P(g)Dn) foreveryge G and neN.

Furthermore, ‘P can be chosen so that the values of o are roots of unity.

(b) Let P be as in (a) and let P’ be any projective representation of G with (P)y =
(P")n. Then P’ also satisfies (a) if and only if there exists a map & : G/N — C*
with P(g) = P'(g)§(gN) for every g € G. The values of & are finite roots of unity
and E(N) = 1.

(c) Let P be as in (a). Let Proj(G/N |a~!) be the set of all projective representations
of G/N with factor set a~', and let Rep(G | 6) be the set of representations of G
affording a character in Char(G | 6). Then the map Q — Q & P defines an injection

Proj(G/N |a~") — Rep(G | 6).
Also, Q ® P and Q' ® P are similar if and only if Q@ and Q' are (see [Nav98,

p- 172] for a definition of similar projective representations). The above map gives a
bijection between the similarity classes of projective representations and the ones of

representations.
Proof. This follows from Theorems 3.5.7-3.5.9 of [NT89]. For the first part, see also the
construction of P given in the proof of Theorem (8.28) of [Nav98]. O

We call a projective representation P with the properties described in (a) a projective
representation of G associated to 6. If « is the factor set associated with P, it is easy to
check that w(g1n1, gona) = a (g1, g2) forevery g; € G and n; € N. Hence « can be seen
as a functiona : G/N x G/N — C*.

Theorem 3.2. Let (G, N, 0) and (H, M, 8') be two character triples with NH = G and
NNH =M. Lett: G/N — H/M be the canonical isomorphism. Assume that there exist
two projective representations P and P’ of G and H associated to 0 and 0, respectively,
with factor sets a and o' such that @' (1(x), ((y)) = a@(x,y) forall x,y € G/N. Then
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there exists a strong isomorphism of character triples (1, o), where o; : Char(J |0) —
Char(J N H | 0") is given by

ot (Q®Py) =tr(QQ P)ny) forevery N <J <G,

where Q is a projective representation of J/N whose factor set is the inverse of the one

()f’PJ.

Proof. By Theorem 3.1(c), every y € Irr(J | 0) is the trace of some representation of
the form Q ® P, where Q is a projective representation of J/N whose factor set is the
inverse of the one of P;. Also, Q is uniquely defined up to similarity. It is straightforward
to check that this defines a strong isomorphism of character triples. O

We call (t,0) : (G,N,0) — (H, M,0’) as above an isomorphism of character triples
given by the projective representations P and P’.

It turns out that it is important to check the behaviour of C (N) in this type of charac-
ter triple isomorphism. Recall that if Py is an ordinary irreducible representation of N and
x € Cg(N), then P(x) is a scalar matrix by Schur’s Lemma. If / < H and ¢ € Irr(H),
we shall use the notation Irr( ;) to denote the set of irreducible constituents of ;.

Lemma 3.3. Let (1,0) : (G, N,0) — (H, M, 0") be an isomorphism given by the pro-
Jective representations P and P’ with Cg(N) < H. Then the following are equivalent:

(1) Forevery x € Cg(N) the matrices P(x) and P'(x) are associated to the same scalar.
(i) II‘I‘(}UCJ(N)) = II‘I‘(O‘](Iﬁ)CJ(N))fOV every N <J < Gand ¢ € Trr(J | 09).

Proof. Assume (i). Using Theorem 3.1, suppose that Y € Irr(J |0) is afforded by a
representation Q ® P, for some projective representation Q of J/N. Then ¢’ := o7 ()
is afforded by Q ® P/p. For x € C;(N) there exists some ¢, € C with tr(P(x)) =
0(1)¢y and tr(P'(x)) = 6'(1)¢y. This implies ¥ (x) = tr(Q(x))0(1)¢, and ¥'(x) =
tr(Q(x))0’(1)¢,. This proves

0'(Me, ) = 0MVE, )

and hence Irr(Yc, (v)) = Irr(w'CJ(N)).

Assume (ii). Let x € C;(N), and let ¢, and £, be the scalars associated to P (x) and
P’(x), respectively. If J = (N, x), then there exists an extension ¥ of 8 to J. Therefore
Y’ = o;(¢) is an extension of §’. Since C;(N) < Z(J), we see that Irr(Yc, vy) = {v}
for some v. Now Irr(Yc, (v)) = Irr(w’cj( N)) by hypothesis, and therefore

6 ¥/ (x)

v(x) = W = tr(Q(x)) and v(x) = o) = £, tr(Q(x)),
where Q is a projective representation of J/N such that Q@ ® Py affords ¢ and Q(X)P/m I
affords . This shows ¢y = ¢;. O

In the situation of Lemma 3.3, we say that (G, N, 0) and (H, M, 8') are central isomor-
phic character triples and that (¢, o) is a central isomorphism of character triples. This
situation is denoted by (G, N, 0) ~. (H, M, 0").

How are different central isomorphisms related?
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Remark 3.4. Let (¢,0), (t,01) : (G, N,0) — (H, M, 0’) be isomorphisms of character
triples given by projective representations.

(a) LetP; be a projective representation of G associated to 6. Then there exists a projec-
tive representation 731’ of H associated to 6’ such that (¢, o) coincides with (¢, o7) :
(G,N,0) — (H, M,0), where (¢, 07) is given by P; and Py.

(b) There exists a unique linear character u € Irr(H) with M < ker(u) such that

oj(¥) =01, 75(W)uy; forevery N <J <G and ¢ € Irr(J | 6).

(c) Assume that (¢, o) is central. Then (¢, o1) is central if and only if Cg(N) < ker(u).

Proof. Let P and P’ be projective representations associated to § and 6 giving (¢, o).
Then there exists a matrix X € GLg(1)(C) such that P; and PX coincide on M. Accord-
ing to Theorem 3.1(b) there exists a function ¢ : G/N — C* such that P = ¢PX. The
projective representations P; and P] := ¢P’ give an isomorphism of character triples
(t,01) : (G, N,0) — (H, M, 0") that coincides with (¢, o) by straightforward computa-
tions. This proves (a).

By (a) we may assume that (¢, o) is given by P and P’, and (¢, o1) by P and ¢ P’ for
some ¢ : H/M — C*. As the factor sets of P’ and {P’ coincide, ¢ has to be a linear
character. This proves (b) with u := {‘1. Part (c) is straightforward. ]

We shall often use the following lemma.

Lemma 3.5. Suppose that N < G, H < G, and G = NH. Let M = N N H and
suppose that ' € Irr(M) is H-invariant. Let D be a defect group of bl(0') and assume
Ny (D) < M. Then:

(a) H = MNg(D).

(b) Ifv € Irr(H | 6"), then bl(v)Y is defined.

(c) Let v € Irr(H |0'). Then bl(v) and bl(v)¢ have a common defect group Q with
QNN = QN M = D. In fact, there exists a block ¢ of Ng(D) such that cf =
bl(v), ¢ = bl(V)C = (¢)C, and ¢, ¥ and ¢C have a common defect group Q. If
by € BI(Ny (D) | D) is the Brauer correspondent of bl(0"), then ¢ covers by, and is
the common Harris—Knorr correspondent of ¢ and c©.

(d) Let v € Trr(H | 0'). Then bl(v) is the only block of H covering bl(0') that induces
bl(v)©.

Proof. Since D is a defect group of bl(9’) and 6 is invariant in H, D" is a defect group
of bl(9”) for every h € H. By the Frattini argument, this implies MNy (D) = H. Thus
NNpg(D) = G and Ng (D) = Ny (D)Ny (D) = Ny (D). This proves (a).

We have Ny (D) = Ny (D). By Brauer’s first main Theorem (4.17) of [Nav98], there
exists a block by € BI(Ny (D)) with defect group D such that bg’l = bl(8"). Also b =
(bo)" has defect group D by Brauer’s first main theorem. Since bl(v) covers bl(6), by the
Harris—Knorr Theorem (9.28) of [Nav98] applied in H there exists a block ¢ of Ng (D)
covering bg such that cH is defined and equals bl(v). By Theorem (4.14) of [Nav98], G
is defined. By Exercise (4.2) of [Nav98], bl(v)Y is defined. This proves (b).
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Now by Harris—Knérr, ¢¢ and ¢ have a common defect group, and the same happens
with ¢ and ¢®. Therefore ¢, bl(v) and bl(v)¢ have a common defect group Q inside
Ng (D). Since ¢ covers by that has defect group D, by Theorem (9.26) of [Nav98], we
have O N Ny(D) = D. Hence Ngny(D) = D and therefore Q N N = D. Since
0 < Ng(D) < H, therefore Q N N = Q N M. This proves (c).

Finally suppose that b; is a block of H covering bl(#’) and inducing bl(v)¢ = ¢C.
Since by covers bl(8’), let vy € Irr(b;) be over 6’. Now by (c), there exists a block ¢ of
Ng (D) such that cf1 =by, ch = ¢% and ¢; covers by. By uniqueness in the Harris—Knorr

correspondence, we conclude that ¢ = ¢; and cH = cf{ . O

Definition 3.6 (Block isomorphism of character triples). Let (t,0) : (G, N,6) —
(H, M, 0") be a central isomorphism of character triples. Assume that some defect group
D of bl(#) is a defect group of bl(9), and that Ny(D) < M.Ifforevery N < J < G
and ¢ € Irr(J | 9) the equation

bl(a; (¥))’ = bl(y)

holds, then we say that (¢, o) is a block isomorphism of character triples. In this situa-
tion we write (G, N, 0) ~y (H, M, 0’) and say that (G, N, 0) and (H, M, 6’) are block
isomorphic character triples. (Notice that by Lemma 3.5 the block bl(c; ())” is always
defined.)

To help the reader grasp this definition, we summarize the conditions that have to be
checked whenever we prove that two given character triples are block isomorphic.

Remark 3.7. Let (G, N, 6) and (H, M, 8’) be two character triples. Then (G, N, ) ~p
(H, M, 0") if the following conditions are satisfied:
i) G=NHand M =NNH.

(ii) There is a common defect group D of bl(#) and of bl(8") and Ny (D) < M.

(iii) There exist projective representations P and P’ associated to # and 6’ with factor
sets o and o’ such that a(hy, hy) = o'(hy, hy) for all hy, hp € H, and such that
for every x € C(N) the scalar matrices P(x) and P’(x) are associated to the same
scalar.

(iv) bl(o;(¥))? = bl(y) forevery N < J < G and € Irr(J |9), where o () =
tr(Q ® Plnpy). ¥ = tr(Q ® Py) and Q is a projective representation of J/N with
factor set o~ !

Proof. By Lemma 3.5 the first two conditions imply that G = NNg(D) and
Cg(N) < H. The projective representations P and P’ give a central isomorphism (¢, o)
of character triples, by Lemma 3.3. Forevery N < J < G and ¢ € Irr(J | 6) the charac-
ter oy () is defined as in (iv) and satisfies bl(y) = bl(o; (lﬂ))J. O

In the next results we prove some properties of block isomorphisms of character triples.

Lemma 3.8. (a) If (G, N,60) ~, (H,M,0") and (H, M, 0") ~, (Hy, M1, 0"), then
(G, N,0) ~y (Hy, M1,0").

(b) If (G,N,0) ~y (H, M, 0"), then (J,N,0) ~, (JNH, M,0) forevery N < J <G.
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Proof. Let P, P’ and P” be projective representations of G, H and H associated to 6,
0’ and 6", respectively, which determine the block isomorphisms

(t,o):(G,N,0) — (H,M,0") and (u,01):(H, M,0") — (H, M1,0")

in the sense of Theorem 3.2. The existence of such projective representations is implied
by Remark 3.4(a). We have Cg(N) < H and Cy (M) < Hj, and therefore Cg(N) < Hj.
Hence for x € Cg(N) the matrices P(x), P’(x) and P”(x) are associated to the same
scalar. Also, the factor sets of P, P’ and P” coincide via the natural isomorphisms be-
tween G/N, H/M and H|/M;. Hence using Lemma 3.3 and Remark 3.4(a), we easily
check that the composition of (¢, o) and (¢1, o1) defines a central isomorphism

(G,N,6) ~c (Hi, My,60").

Now, bl(6) and bl(9’) have a common defect group D with Ny (D) < M, and bl(8") and
bl(0”) have a common defect group Dy with Ny, (D) < M;. Thus D; = D™ for some
m € M, Ny(D™) < M; and D™ is a common defect group for bl(6) and bl(6”). For
every N < J < G and ¢ € Irr(J | 0), write ¥ := o1(o(¥)). Then the block bl(y")’
coincides with (bl(y")’"#)/ = bl(y), by Exercise (4.2) of [Nav98]. Part (b) is a direct
consequence of the definition of block isomorphism of character triples. O

When we have block isomorphisms of character triples, we have a good control of defect
groups and relative heights, as shown in the following result. If N << G and t € Irr(N),
recall that G is the stabilizer of T in G. Also, if B is a block of G, then Irr(B | 7) is the set
of irreducible characters in B lying over 7. Furthermore, if G = KH and H < Cg(K),
then recall that for every pair of characters 6 € Irr(H) and pu € Irr(K), there exists a
unique 0 - u € Irr(G) that lies over 6 and over w. (We refer the reader to Section 5 of
[IMNO7] for notation of central products.)

Proposition 3.9. Let (1,0) : (G, N,0) — (H, M, 0") be a block isomorphism of char-
acter triples. Suppose that N < J < G, and write o7 () = ' for ¢ € Irr(J | 9).
(@) If Y € Irr(J | 0), then
ht(y) — ht(®) = ht(y") — ht(0").
Also, bl(yr) and bl(Y") have a common defect group. In fact, if D is a common defect
group of 0 and 0, and Q is any defect group of bl(/) with Q N N = D, then Q is a
defect group of bl(y/").

(b) The map
oy :Irr(J|6) = Iir(JNH|0)

is an Ny (J)-equivariant bijection with
N7, J,T) ~ Ny (), JNH, T)

for every T € Irr(J | 9).
(c) Suppose J = NCj(N) and let T € Irr(J |0) be an extension of 6 with v €
Irr(tc, (v)). Then t' is the unique extension of 8 in Irr(J N H | v).
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(d) Assume that 0 and 6’ have the same height. Suppose N < J <G, B € BI(G) and t €
Irr(J | 8). Then the restriction of og to Irr(B | T) gives a height preserving bijection
between Irr(B | ) and Irt(B' | ©/), where B’ is the unique block of H covering bl(t’)
with B’ = B.

Proof. Let D be a common defect group of bl(9) and bl(9’). By Lemma 3.5(c) there
exists a common defect group Q1 of bl(v) and bl(v’) such that Q; N N = D. Now, if
Q is any other defect group of bl(y/) with Q N N = D, then Q* = Q for some x € J.
Then x € Ng(D) < H, by Lemma 3.5(a). Thusx € HN J and Q = (Ql))‘_1 is also a
defect group of bl(y"). Now, by Lemma (11.24) of [Isa76],

vy _y'd)
6(1) 6 ()°

This easily implies the part on heights in (a), and (a) is now proved.

As the character triples (G, N, 0) and (H, M, 0’) are strongly isomorphic, the bi-
jection oy is Ny (J)-equivariant. To prove (b), we may assume that J << G and that t
is G-invariant by Lemma 3.8(b). Let P and P’ be projective representations associated
to # and 0’ determining (¢, o), and « and o’ their respective factor sets. Let T € Irr(J | 9).
Then we know that 7 is afforded by Q@ ® P, where Q is a projective representation
of J/N. By Theorem 3.1, let D be a projective representation of G associated to T with
Dy = Q® Py. Suppose that D has factor set . Now, use the proof of Theorem (8.16) of
[Nav98] to check that we can write

D(g) =R(g) ®P(g)

forevery g € G, where R is a projective representation of G. This equation easily implies
that R is a projective representation of G with factor set Sa~!. Also, R; = Q. Now,
define D' = Ry ® P/, which is a projective representation of H associated with 7’
satisfying the conditions of Theorem 3.1(a). Now Cg(J) < Cg(N) < H.Ifx € Cg(J),
then D(x) and P(x) are scalar matrices, and we deduce that R(x) is a scalar matrix, too.
Hence D(x) and D’(x) are matrices associated to the same scalar. Thus (G, J, t) ~c
(H . HNJ, ).

For J < J; < G, letoy y : Char(J;|t) — Char(H N J;|t') be the associated
bijection, so that o ;, (¥) = tr(X¥ ® (R, ® P’J] Nify =tr(X @ (Ry, ® Py,)) and X' is
a projective representation of J; constant on J-cosets. Now, X ® R, is a projective rep-
resentation of J; constant on J cosets, and we see that o1y, () = o, (). In particular,
bl(a s, (¥)t =bl(¥).

Now by (a) there exists a defect group Q of bl(z) that is also a defect group of bl(z”’).
By Theorem (9.26) of [Nav98] the group Q N M is a defect group of bl(8”). This implies
that Ny (Q N M) < M (by definition of block isomorphisms of character triples) and
Ng(Q N M) < H by Lemma 3.5. Now, since Q is a defect group of bl(r), and bl(#) is
J-invariant, we also know that Q N N is a defect group of bl(#) by Theorem (9.26) of
[Nav98]. Since bl(0) and bl(0’) have the same defect group, we conclude that Q N N =
QO N M. Now we see that N;(Q) is contained in H N J.
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By Lemma 3.3, we deduce that ;(0 - v) € Irr(J N H|oyn(0)) NTrr(J N H | v) for
every v € Irr(C;(N)) and J with J = NC;(N).

Part (d) is a consequence of (a) and (b). By (a) and the assumption that & and 6’ have
the same height, o preserves heights. Furthermore for every character ¢ € o (Irr(B | 7))
the block bl(¥/) induces the block B. Now apply Lemma 3.5. O

Corollary 3.10. Let N < G, H < G, M := N N H and suppose that D < M is a
p-subgroup such that MNg (D) = H. Assume that there exists an Ng(D)-equivariant
bijection
IT: Irrg(N | D) — Irrg(M | D)

such that (G, N, 1) ~p (Hy, M, t") for every T € Trrg(N | D), where ©' = TI(t). Let
T € Irrg(N | D) and ' := TI(z) € Irrg(M | D). Then, for every p-block b € BI(H)
covering the block of T, there exists a height preserving bijection between Irr(b® | T) and
Ire (b | T7).
Proof. Let T be the stabilizer in G of bl(r) (which contains G;). By the Frattini argu-
ment, T = NNr (D). Also, since the block of t’ induces the block of 7, Brauer’s first
main theorem implies that T N H is the stabilizer of bl(z’) in H. Let b; be the Fong—
Reynolds correspondent of b over the block of T/ (see [Nav98, Theorem (9.14].) Then
(b)T is the Fong—Reynolds correspondent of bY over bl(t). Now, the proof of [Nav9s,
Theorem (9.14] tells us that induction gives height preserving bijections Irr(b; | /) —
Irr(b | T') and Irr((b))T |7) — Trr(bY | 7). Hence, we may assume that G = T =
NNg (D). In particular, G = N H. Also, by hypothesis, Gy N H = Hy = H;. Fur-
thermore, by the Harris—Knorr correspondence [Nav98, Theorem (9.28)] (used for b and
for b°), b and b° have a defect group in common. Let B := bC.

Now, let cq, .. ., ¢, be the different blocks of H,: that cover bl(z’) and induce b. (If
cj covers bl(z’), then some irreducible character n; of ¢; lies over t’. Then (r/j)H is
irreducible and (cj)H is defined.) Then induction defines a bijection

s
U Irr(cj | /) — Tre(b | T').
j=1
Now, by Lemma 3.5, ¢; has a defect group Q; such that Q; is also a defect group of
di = (c,-)Gf. We easily check using Lemma 3.5 that dy, . . ., dy are all the different blocks
of G that cover bl(t) and induce B. Hence, induction defines a bijection
N
U Irr(dj | t) — Irr(B | 7).
j=1
Now, by Proposition 3.9(d), o, gives a height preserving bijection between Irr(d; | T)
and Irr(¢; | T/). This, together with the previous paragraph, provides a bijection Irr(b | T”)
— Irr(B | ) and we only have to check that it preserves heights.
Let ¥ € Irr(B | 1), and let ¥ € Irr(d;) with ¥§ = . Write ¥, := o6, (o) €
Irr(c; | /), which has the same height as . By Lemma (11.24) of [Isa76],

(wom) =<x/f5(1>>
/), \v/,
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The character ' := (w(’))H is contained in the block b and has degree |H : Hy|v(1).
We know that |G : G| = |H : Hy|. Thus

<¢(1)> _ <|G : Grllﬁo(l)) . (IH : Hrllﬁ{)(l)> _ <¢’(1))

M/, (1) » (1) , T/,

As 7 and 7/ have the same height and b and B have the same defect group, this proves
that ¥ and ¥’ have the same height. O

When analyzing whether two character triples are block isomorphic, it is helpful to as-
sume first that the characters extend. This will be used in Section 4 below.

Lemma 3.11. Let (G, N, 0) and (H, M, ") be two character triples and assume N H
= G and N N H = M. Assume that some defect group D of bl(0') is also a defect group
of bl(0), and that Ny (D) < M. Assume that there exist extensions 6 e Irr(G) of 0 and
0" € Irr(H) of 8’ with the following properties:

() Trr(Bcg ) = Tre(B (), and
(ii) forevery N < J < G we have bl(@}mH)J = bl(@y).

Then (G, N, 0) ~, (H, M, 0").
Note that by Lemma 3.5(a) we have Ng (D) < H and we can restrict 6 to Cg(N) in (3).

Proof. We check the conditions described in Remark 3.7. Let P and P’ be ordinary repre-
sentations of G and H affording 6 and 6’ in the sense of the definition after Theorem 3.1.
Hence P and P’ are projective representations associated to 6 and #’. The isomorphism
(1, o) of character triples given by these projective representations in Theorem 3.2 is the
following: if N < J < G, then o : Char(J |8) — Char(H N J |9’) satisfies

010 Opyryp
for every p € Irr(J) with N < ker(p). Then by hypothesis and Proposition 2.3,
bl(oj(w))J =bl(y) forevery ¥ € Irr(J | 9).

By assumption Irr(ch(N)) = Irr(géa( N)). Furthermore Irr(géc( N)) = {v} for some linear
character v_€ Trr(Cg (N)). Let ¢ € Irr(J | 0) and p € Irr(J) be such that N < ker(p)
and ¥ = 6;p. Then Irr(y¥rc,(n)) and Irr(o; (¥)c,(v)) are the sets of constituents of
Ve, (N)PCy (N)» and therefore the two sets coincide. The proof is complete by Lemma 3.3.

O

In the next two rather technical (but necessary) results we analyze the behaviour of block
isomorphic character triples with respect to certain quotients.

Lemma 3.12. Let Z <1G, N <1G and H < G be suchthat Z <M := HNN. Let G :=
G/Z, N :=N/Z H := H/Z and M := M/Z. Suppose that (G, N,0) ~, (H, M,0),
where & € Trc(N) and & € Trec(M). Let & € Trr(N) and ' € Trr(M) be the lifts of 0
and ©'. Assume that the blocks bl(0) and bl(8") have a common defect group D such that
D= DZ/Z is a defect group of both bl(0) and bl(g/). Then (G, N,0) ~y, (H, M, 0"). In
particular, this happens if both 6 and 6" are characters of height zero.
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Proof. Let € : G — G be the canonical epimorphism. As bl(6) covers the principal
block of Z the group D N Z is a Sylow p-subgroup of Z. This implies that D is a Sylow
p-subgroup of DZ. Hence Ng(DZ) = Ng(D)Z.

Since (G, N,8) ~, (H,M,0') we have G = N H, and, using Lemma 3.5, H =
MNg(D). This implies G = NH and H = MNg(D). In particular, Cg(N) < Cg(D)
< Hand Ny (D) < M.

Let P and P be projective representations of G and H associated to 6 and o giving
the block isomorphism of character triples

@.%): (G.N.9) - (H.M.7).
Then the factor sets of P and f/ coincide and for every element x € Cg(ﬁ) the scalar

matrices P(x) and 7_?/(x) are associated to the same scalar.
The projective representations of G and H defined by

P(x) = Pe(x)) and P'(h) = P (e(h)) foreveryx € Gandh € H

are associated to 6 and 6. By hypothesis, they have equal factor sets. Since Cg(N)Z/Z <
Cg(ﬁ), the matrices P(x) and P’(x) are associated to the same scalars for x € Cg(N).
By Lemma 3.3, we have shown that the projective representations P and P’ determine
a central isomorphism of character triples (¢,0) : (G, N,0) — (H, M, 8’). In order to
show that (¢, o) is also a block isomorphism of character triples it is sufficient to check
that

bl(crj(w))/ =bl(yy) forevery N <J <G andy € Irr(J |0).

ForN <J <Gandy €Irr(J |6) let J := J/Z and ¥ € Irr(J | ) be such that  is the

lift of v. By the definition of (¢, o') the character oy () is a lift of 07(). Then the block

bl(¥) is contained in bl(y) and bl(Ej(J)) is contained in bl(a; (v)). In such a situation
Proposition 2.4(a) implies bl(o s (1,0))] = bl(y).

Finally, if © and 6" have height zero, then we use Proposition 2.5(c) to finish the proof.

O

A kind of converse of this result holds under additional assumptions on Z. Recall that if
H < G,Z<Gand6 € Irr(H) contains H N Z in its kernel, then 6 uniquely determines
a character 0 e Irr(HZ/ Z).

Lemma 3.13. Suppose (G, N,0) ~v» (H, M, 9’)ﬁnd Z <HwithZ<1Gand NNZ = 1.
Let G:=G/Z, H:=H/Z, M :=MZ/Z and N := NZ/Z. Let 0 be the character of
N associated to 0 and let 8 be the character of M associated to 0.

(a) Assume that either Z is a p'-group or a central p-group. Then (G, N,0) ~yp
(H.M.0). o

(b) Assume that Z is central in G. Then (G, N,0) ~, (H, M, 0).

Proof. For the proof of (a) let P and P’ be the projective representations associated to

and @’ that define tlE bloc_k isomorphisri (¢, o) between character triples. Now, consider
the representation X of N defined by X' (Zn) = P(n) for n € N. This representation
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affords 6 € Irr(N), and by Theorem 3.1, there exists a projective representation P of G
associated to 6 such that P(Zn) = P(n) forn € N. Now, if we define D(g) = 5(Zg)
we check that D is a projective representation of G such that Dy = Py. According to
Theorem 3.1(b) there exists amap ¢ : G/N — C* such that

P(gZ) =t(gN)P(g) forevery g € G.

The projective representation £y P’ is a projective representation of H associated to 6 as
well. As the factor sets of P and P’ coincide via the canonical isomorphism ¢ : G/N —
H /M, the factor sets of P and ¢y P’ coincide as well. We see that ¢P and ¢gP’ give
the same isomorphism (¢, o).

Now notice that Cg,z(NZ/Z) = Cg(N)/Z, by using that Z <Gand NN Z = 1.
As P(x) and P’(x) are associated to the same scalar for x € Cg(N), the projective
representations P and ¢y P’ have the same property. Taking into account that the fac-
tor sets of ¢P and ¢y P’ are equal, this implies that £y P’ defines uniquely a projective
representation P of H /N as well.

The isomorphism of character triples (,5) : (G, N, 8) ~, (H,M,9), defined as
the one given by P and P/, is the restriction of (t, 0) to the characters having Z in their
kernel.

By these considerations it is clear that (5, N, 5) and (ﬁ, M, 5/) are central isomor-
phic character triples. Let NZ < J < G and ¥ € Irr(J | 0) for J := J/Z. By the defini-
tion of & the character Ej(w) lifts to the character o7 () on J N H where y € Irr(J | 6)
is the lift of ¥. According to Proposition 2.4(b) and (c) the equality bl(c; (¥))” = bl()

implies EJ/Z = B, where b is the block of (J N H)/Z contained in bl(o;(¥)) and
B the block of G dominating bl(yr). According to Lemma 5.8.6 of [NT89] the charac-
ters 0,z () and ¥ belong to b and B, respectively. Finally, notice that because of the
isomorphism N — NZ/Z, if D is a common defect group of bl(9) and bl(#’), then
DZ/Z is a defect group of bl(@) and of bl(@"). Also Ny (D) = Ny(D)Z/Z. This implies
(G,N,0) ~, (H, M, 5/) in the situation of (a).

For the proof of (b) let Z,, be the Sylow p-subgroup of Z. Then we apply part (a) to G
with respect to Z,, and afterwards to G/Z, with respect to the subgroup Z/Z,. O

To end this section, we prove the following statement which is often used in the context
of Clifford correspondence.

Theorem 3.14 (Irreducible induction giving block isomorphic character triples). Let
N<G H<Gand M = HNN be suchthat G = NH. Let G| < G, H := HN Gy,
N1 := NN Gy and My := M N Gy be such that HHM = H and G{N = G. Sup-
pose that (G1, N1, 01) ~y (Hp, My, 01’). Assume that for every J with N < J < G
induction gives a bijection between Irr(J N G |01) and Irr(J | 6), as well as between
Irr(J N Hy |6)) and Trr(J N H |6'), where 6 = GlN and 0" = (0{)M. Suppose that
ht(9) — ht(6;) = ht(9’) — ht(@i) and assume that for some defect group Q of bl(0")
the group Ny (Q) is contained in M. Then

(G, N, 0Ny ~y (H, M, 0)M).
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Proof. We argue by using Remark 3.7. Wehave G = NHand M = NN H.

Let D be a common defect group of bl(f;) and bl(&{). The block bl(@{)M is de-
fined and coincides with bl(8"), by Corollary (6.2) of [Nav98]. Also by Lemma (4.13) of
[Nav98] there exists a defect group Q of bl(0) with D < Q. As QIN is irreducible the
block bl(8;)Y is defined. The block bl(Gi)M is defined as well. Hence by Lemma 5.3.4
of [NT89] the block bl(8")" is defined and coincides with bl(@{)N = bl(0). Also, some
defect group é of bl(9) contains Q, thatis, Q < é -

By the definition of height we have |Q[0'(1), = |M|,p™®) and |Q|6(1), =
INI,p™@. Also, | D8] (1), = |M1],p™® and |DI6'(1), = |N1|,p™ . Since 6'(1) =
|M : My|6{(1) this implies

ht(’
|M|, p" @ 01y hie)—nue)

|0 : D| = =
M : M1|p9]/(])p | My |ppht(9|)

and analogously |¢ 0 : D| = pht®-ht@) Since ht(0) — ht(0;) = ht(8’) — ht(6;) these
equations prove Q = Q. Hence 0 and 6’ have a common defect group Q and it satisfies
Ny (Q) = M.

Let P; and P| be projective representations of G and H; respectively associated
to 61 and 6] such that they define a block isomorphism of character triples

(t1,01) : (G1, N1, 61) — (Hy, My, 6)),

where (1 : G1/N1 — Hp/M; is the canonical isomorphism.

Using the construction of (10.1) of [CR90] we can define a projective representation Q
of G, induced from the projective representation P. Letny, ..., ng; € N be representatives
of the Ny -cosets in N. By our hypotheses, n1, ..., ng are representatives of the G |-cosets
in G. Let P; ; be the map on G defined by

~ P(ni_lxnj), ni_lxnj € Gy,
Pijx) = )
0, otherwise.

Then Q : G — GLy(1)(C) is defined as

P ... Pryx)
Qx) = : :
7/53,1()‘) cee /ﬁs,s (x)

Straightforward computations show that the factor sets of Q and P coincide via the iso-
morphism G/N = G/Nj, and hence Q is a projective representation of G associated
to 6 = 91N . Analogously we obtain a projective representation Q" of H associated to
6 = (Gi)M . As P and P’ have the same factor sets, the factor sets of Q and Q’ coincide.

Next we prove that Cg(N) < Cg, (N1). Letx € Cg(N). Every extension 6ofh = QIN
to (N, x) has a non-zero value on x since x € Z({N, x}). For 6 there exists a character 51
of (N, x)NG with (51 )N, = 61 and 51<N’x> =6. By the definition of induced characters, x
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has to be (N, x)-conjugate to an element in (N, x) N G1. This implies x € G and hence
Cg(N) < Cg,(Ny). By the definition of P and P’ the matrices P(x) and P’(x) are
associated to the same scalar. By the construction Q and Q' then have the same property.
According to Lemma 3.3 this proves that Q and Q' determine a central isomorphism
of character triples (t,0) : (G,N,0) — (H,M,0"), where t : G/N — H/M is the
canonical isomorphism. Because of the definition of @ and Q' the bijections satisfy

oy W) = (o1, (1)

for every 1 € Irr(J1 |01), N < J <G and J; :=J NGq.

Let N <J <G,y € Irr(J |0) and ¢y € Irr(J N G| 0p) with 1//11 = . Then the
block bl(y) coincides by the definition of o with b](l//])l by Lemma 5.3.1(ii) of [NT89].
As (o1, t1) gives a block isomorphism between character triples we have bl(zﬂ{)’ =
bl(yr1), where 1/;{ = o01,5,(¥1). By Lemma 5.3.1(ii) of [NT89] the character ¢’ =
o () = (01,5, (¥1))’ " belongs to the block bl(y])/ ", hence bl(y)’ = bl(y)’ =
bl(yr). Hence the isomorphism (¢, o) has all the required properties. We conclude that
(G,N,0) ~, (H, M, 8. ]

4. Construction of block isomorphic character triples

In this section we go deeper into constructing block isomorphic character triples. The
strategy is the following. First we analyse when two character triples (G, N, ) and
(H, M, 0") are block isomorphic in the easiest case where 6 and 6’ extend to charac-
ters of G and H, respectively. Then, using the theory of projective representations, we
will analyze the general case. Let us first state in our language the standard tool that
allows us to go to the extending case from the general case. If we have a canonical epi-
morphism € : G — G with kernel Z, a Z-section of € is any maprep : G — G such that
€ orep = idg with rep(l) = 1.

Theorem 4.1. Let (G, K, &) be a character triple. Let P be a projective representation
of G associated to §. Then there is a group G, a surjective homomorphism e : G — G
with finite cyclic central kernel Z and a Z-section rep : G — G of € with the following
properties:
(a) K = Ko x Z, where K = e~ Y(K), Ko is isomorphic to K via the isomorphism
€k, : Ko - K and Ko < G. Also, the action ofa on Kq coincides with the action
of G on K via e. R
(b) TheAcharacter &0 := & o ek, € Irr(Ko) extends to G. There exists a representation D
of G with
D(rep(g)) = P(g) foreveryg € G

and this representation affords an extension EO € Irr(G) of &y. The Z-section rep :
G — G satisfies

rep(k) € Ko and rep(kg) = rep(k)rep(g) foreveryk € K and g € G.

(¢) The unique irreducible constituent v of ('50) z 1s faithful.
(d) IfK <N <G and N = e Y(N), then €(Cg(N)) =Cg(N).



714 Gabriel Navarro, Britta Spith

Suppose now that (G, K, &) ~. (H, M,&"). Let P’ be a projective representation of H
associated to &' such that the isomorphism of character triples determined by P and P’
is central. Then:

(e) M= My x Z, where M= e~ L (M), My := Ko ﬂe_l(il/l).
() The character &) := &' o €y, € Irr(My) extends to H := e~ V(H). There exists a
representation D' of H with

D'(rep(h)) = P'(h) foreveryh € H

and this regresemation cgﬁ‘ords an extension E(’) € Irr(ﬁ ) of E(’).

(&) (v} =Tr((§))z) = Trr((50) 2)-

(h) The central isomorphism of character triples (t,0) : (G, K,&) — (H, M, ') given
by P and P’ lifts to a central isomorphism of character triples (1, 0) : (6, Ko, &) —
(H, My, &)) given by D and D' and further for every K < J < G and ¢ € Irr(J | §)
we have

o7(f)oe =07 o€7),

whete\’ J = e~ 1. R
() If (G, Ko,é) ~v (H, Mo, &) via the isomorphism (1,7), then (G, K,&) ~y
(H,M,&") via (1, 0).

Proof. The construction of G that we use can be found in the proof of Theorem (8.28) of
[Nav98] and in the proof of Lemma (11.28) of [Isa76]. We fix a finite subgroup Z of C*
that contains all the values of the factor set o associated with P. We define the group
G ={(g,2) | g € G, z € Z}, where multiplication is given by

(g1, 21)(g2, 22) = (8182, 21220¢(g1, &2)).

Lete : G — G be the epimorphism given by (g, 2) = g, with kernel 1 x Z < 2(6),
which we will identify with Z. We define rep : G — G by g +— (g, ). Then Ky :=
{(k,1) | k € K} is a normal subgroup of G that is isomorphic to K via eg,. Let §y :=
& o ek, € Irr(Kp). The map D defined on G by

D((g,z)) =zP(g) foreveryze Z and g€ G,

is an irreducible representation of G. Let Eo € Irr(a | £&») be the character afforded by D,
an extension of &y. This proves the first three statements.

IfU < G,letusdenote U := e '(U) = {(u,2) lu e U,z € Z} < G.

If c € Cg(N) < Cg(K), then the matrix P(c) is scalar by Schur’s Lemma. Using
this and that P(c¢) = P(n~'cn) forn € N, we see that e(Cg(f\?)) = Cg(N), as claimed
in (d).

Now, we prove the remaining parts, starting with (e). The factor set o’ of P’ coincides
with o via . In particular the values of o’ are also in Z, and therefore the subgroup
H:= e '(H) of G provides a central extension of H satisfying all the requirements,
now for H, of the first three statements. In fact, the map D’ defined on H by

D'((h,z)) =zP'(h) foreveryze Zandh e H
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is an irreducible representation of H. If E(; e Irr(H | &) is the character afforded by D',
then it is an extension of &). Also, {v} = Irr((§})z) = Irr((§9) 7). We see that e ' (M) =
My x Z.

Now, using (d), we have C5(Ko) = C@(I/(\) = (Z(?) < ﬁ, because Cg(K) < H,
by hypothesis. Also it is clear that D(x, z) and D’(x, z) for (x,z) € C/G-(E) are associ-
ated to the same scalar (because P(x) and P’(x) are). Thus we see that (G, Ko, &) ~c
(H, Mo, ). ~ ~

Finally suppose that (G, Ko, &) ~b (H, Mo, &)). Then (G, K, &) ~, (H, M,&') by
Lemma 3.13(b). This proves that (¢, o) is a block isomorphism of character triples. ]

When checking if two character triples are block isomorphic, usually the most compli-
cated task is to verify the equality on induced blocks between character correspondents.
In the next results, ending up in Theorem 4.4, we try to facilitate that. First we start with
the case where the characters extend, and later we shall use Theorem 4.1 to prove the
general case. For a finite group G we denote by GV the set of p-regular elements in G.

Lemmad4.2. Let N <G and H < G with NH = G. Write M = N N H. Let 6 € Irr(N)
and assume that 0 € Ir(G) is an extension of 0. Let 0’ € Trr(M) and assume that
0’ € Irr(H) is an extension of 0'. Suppose that D is a defect group of bl(8’) and bl(0)
with Ny(D) < M.

(a) Suppose that x € GO with D € Sylp(CN(x)). If Ji1 := (N, x), then

IN1,6(x) )

_ +\
M, @y ()7) = (|CN(X)|p/pht(0)9(1)p,

In particular, 5(x)/pht(9) is a local integer. Also, |Cj(x)|,y = |Cjny (x)|, mod p for
every N < J < G.
(b) bl(Q}mH)J = bl(@y) for every N < J < G if and only if

INIO() \* ([ IM]p0'(x) \* @
pht(e)g(l)p, - pht(e/)e/(l)p/ :
for every x € HO with D € Sylp(CN(x)).

Proof. By Lemma 3.5, we know that Ng(D) < H. Let x € GO be such that D €
Sylp(CN(x)), and let J; := (N, x). Notice that x € H. Since J;/N is a p’-group, we
have D € Sylp(CJI (x)). Also notice that |[Cy, (x)|/|Cn(x)| = |J1/N|. By the definition
of height, |D|6(1), = |N|,p"®. Now

S IR RARIORY
Ay (€l Ty = (—) = ( b ) =
oy =\ i e IC (0], DI6(D)

=< INIplJ1/NIN|y6 ) )=( NIy 0 >
[Cy (@)l 171 /NT1DIO(D) Cy )y P @8, )
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Now suppose that N < J < G and let Q € Sylp(CJ(x)) be such that D = Q N Cy (x).
Hence Nc,(x)(Q) < Ng(D) < H. Therefore Nc,x)(Q) = Nc,~y)(Q). By Sylow
theory we know that |C;(x) : N¢,x)(Q)| = 1 mod p, and |[Cyjng (x) : No,npy ) (Q)] =
1 mod p. This shows

ICs () |y = ICinm (x)]y mod p.

This proves (a).
Now, suppose that x € HO with D € Sylp(CN(x)). Set J1 := (N, x). By (a),

N1y x) )

~ +y
)%)11 €)M = <|CN(X)|p/Pht(0)9(1)p’

Since D € Sylp(CM (x)), we apply (a) to 6 to get

|M |6 (x) )

Ay ¢l =
ellﬁH( JINH (-x) ) <|CM (x)|p/pht(9/)9’(l)p/

By (a), we have
|ICn(xX)|p = ICpr(x)|,y mod p.

Hence the equation in part (b) is equivalent to
g, (€L, 0* = k@lm (€lynm ()T). 4.2)

Let N < J < G. Now suppose that x € J is such that Q € Syl,(Cy(x)), 0NN =D
and ON/N € Syl,(J/N). Hence |C;(x)|, = |Ql and |Q/D|p, = |J/N|p. Thus |J|, =
|QIIN|p/ID]. We get

116 \* M J0()  \*
o (€L (0)F) = (—> :< b » )
o D = e, opm 1016(1), 1C; ()|, 0(1),

B ( 171 6(x) ) B ( [J/N |y )( NIy (x) )

—IC, @I, p@e), ) — \IC;wly ) \ph®@e(1),

- < /Ny >*x~ (€L, )T)*,  where J; = (N, x).
ICy )| /ICh ),y ) 00 ’ ’

Since Q < Ng(D) < H,QNM = D and QM/M € Syl,((J N H)/M), analogously
we also have

|(J N H)/ M|y
1Conm ()] /1Cu (X))

Mg Clag™) = ( ) Ag}mH(Q:[JmH(X)JF)o

By the second part of (a) we have

ICinu (xX)]p =|Cy(x)]y mod p.
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Together with (4.2) this proves that for every x € J 0 such that (S Sylp(C J(x)),
QNN =Dand QN/N € Syl,(J/N), we have

A, (€T =2z (€lan)T)

if and only if
A, (€ 0P =, (@Uan )

where J; := (N, x).

Now we prove that the second statement implies the first in (b). Suppose that Q is a
defect group of bl(6;) which we can choose such that Q N N = D by Theorem (9.26) of
[Nav98]. By Proposition 2.5(d), QN/N is a Sylow p-subgroup of J/N. By the definition
of defect groups and defect classes, there exists xg € J 0 with Qe Sylp (Cy(x0)) and

0 # 25, (€l (x0)") = A (Clyna (x0)™).

By the Min-Max Theorem (4.4) of [Nav98] this implies that some defect group Q of
bl(@}m ) is contained in Q. By Proposition 2.5(d) the groups Q/D and Q/D are isomor-
phic to a Sylow p-subgroup of J/N. This proves that é = Q.Letc, ¢ € BIN/(Q)) be
the Brauer correspondents of bl(gj) and bl(g}ny) Notice that Ng(Q) < Ng(D) < H.
For every x € JO with 0 e Syl[,(CJ(x)), we have €l; (x)NC;(Q) = Clyng(x)NCy(Q)
by Lemma (4.16) of [Nav98]. Then A, and A coincide on all p-regular classes of C;(Q)
with defect group Q, again by Lemma (4.16) of [Nav98]. As additionally ¢ and ¢’ have
the same defect group Q, the blocks ¢ and ¢’ coincide by Exercise (4.5) of [Nav98]. This
implies ~ ~
bl(&) )7 = bl(6)).

Finally, we prove that the second statement implies the first in (b). Let x € H 0 with
D € Syl,(Cy(x)), and let J; := (N, x), so that Ji/N is a p’-group. By hypothesis, we
have bl(@}mH)J' = bl(g:]] ). By Lemma 3.5, D is a common defect group of bl(§510H)
anqv bl(5 7). Now, | let ¢ be the block of Ny, (D) which is the Brauer correspondent of
bl(@}mH) and bl(6;,). Then X = Cl;, (x) N Cy, (D) = Clynua(x) N Cy (D) by Lemma
(4.16) of [Nav98]. Now clearly Agjl €Ly, (0)") = Mg (€1y,nm (x)T), since both coin-
cide with A.(X ™). ! O

Lemma 4.3. Let (G, N, 0) be a character triple and let P be a projective representation
of G associated to 0. Let D be a defect group of bl(0). Then tr(P(x))/p™® is a local
integer for every x € G with D € Sylp (Cy (x)).

Proof. Letx € G with D € Sylp (Cy(x)). As the factor set of P has finite order, the
matrix P(x) has finite order as well. For a representation D of (N, x) with 51\/ = Pn
the matrices D(x) and P(x) differ by a scalar ¢. As both have finite order, this scalar ¢
is a finite root of unity. Now apply Lemma 4.2(a) to the character 6 afforded by D, with
H=G=(N,x). O
Using Lemma 4.2 one can give a characterization of block isomorphic character triples,
similar to the one given in Lemma 3.3 for central isomorphic character triples.



718 Gabriel Navarro, Britta Spith

Theorem 4.4. Let (G, N,0) and (H, M,0’) be two character triples with H < G,
NH = G and N N H = M. Suppose there is a common defect group D of both bl(6)
and bl(0") with Ny (D) < M. Let P and P’ be projective representations associated to 0
and 0. Then the following two statements are equivalent:

(1) The projective representations P and P’ of G and H satisfy:

(a) the factor sets of P and P’ coincide on H,
(b) for every x € Cg(N) the matrices P(x) and P’(x) are scalar matrices associ-

ated with the same scalar, and
) INly te(PC)N* (M| (P (x)
(C ph‘(9)9(1),,/ - phl(g/)el(l)p/

*
) for every x € HO with D € Sylp(CN(x)).

(ii) (G, N, 0) ~p (H, M, 0") via an isomorphism of character triples determined by P
and P'.

Proof. By Lemma 3.5, notice that H = MNg (D). In particular, D € Syl,(Cy (x)) if and
only if D € Sylp (Cy(x)), and Cg(N) < H. Note that by Lemma 4.3 the elements of F
occurring in the equation of 4.4(i)(c) are well-defined.

First we prove that (i) implies (ii). By Lemma 3.3 the projective representations P
and P’ determine a central isomorphism (¢, o) : (G, N,0) — (H, M, 0") of character
triples. By assumption, 6 and 6" have a common defect group D with M > Ny (D).

Now, by Theorem 4.1 the projective representation P with factor set o determines
agroup G = {(g,2)|g € G,z € Z}, where Z < G is a cyclic subgroup of C*
containing the values of the factor set of P. We see that N is naturally isomorphic to
No = {(n,1)|n € N} <G, and let 6y € Irr(Np) be the character corresponding to 6.
Also, let 6y € Irr(G) be the extension of 6y € Irr(Ny) afforded by the representation of G
given by

D((g,z)) =zP(g) foreveryge G,z € Z.

Also, it is easy to check that
(n,2) & = (nf,7) foreveryge G,z,z1 € Z,n€N.

Since the factor set o’ of P’ coincides with o on H, we use Theorem 4.1 and we
know that (G, No, 60) ~c (H, Mo, 6}), where H = {(h,2)|h € H,z € Z}, My =
{(m,1)|m € M} and 96 € Trr(My) is the character of My corresponding to 6’. The
character 5{) of H afforded by the representation

D'((h,2)) =zP'(h) foreveryhe H zeZ

extends 6.

Let ,3) : (G, No,6) — (H, Mo, 6,) be the central isomorphism of character
triples determined by 50 and 5;’). By Theorem 4.1(i) it is sufficient to prove that (7, o)
is a block isomorphism of character triples, as this implies (G, N, 9) ~y (H, M, 8").

We do this by checking the conditions in Remark 3.7. We do have G = Noﬁ and
No N H= M. Also since D < M is a defect group of bl(6) and bl(#’), by the natural
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isomorphism, we see that Dy = {(d, 1) |d € D} is a common defect group of bl(6p) and
bl(%). Because of Ny (D) < M the group Ny, (Do) = Ny (D) x 1 is contained in M.

By using Lemma 4.2(b), we only need to verify (4.1) for those (x,z) € H° with
Do € Syl,(Cny(x, z)). We easily check that Cy,(x,z) = Cy(x) x Z, and therefore
D e Syl (Cy(x)). Also, it is clear that x € H°. Now the equation in (c) multlphed by z*
gives us (4.1), and hence bl((@o)mH)J = bl((@o)J) for every No < J < G. By Lemma
3.11 this implies that (z, &) is a block isomorphism of character triples.

We now prove that (ii) implies (i). Let P and P’ be projective representations of G
associated to 6 and @', that give the block isomorphism (¢, o) : (G, N,0) — (H, M, 0")
of character triples. According to Lemma 3.3 the projective representations P and P’ have
the properties described in (a) and (b). It remains to verify the equation in (c) for every
x € HO with D € Syl (Cy(x)).Let J := (N, x) and let 6 € Irr(J | #) be an extension
of 6. Let Q be the projective representation of J/N whose factor set is the inverse of P
and such that Q ® P, affords the character 8. Let 6/ = o 7y @) = r(Q® P’ Ap)» which
is an extension of ’. By hypothesis, we have bl(9) = bl(9 ")/, and the same happens for
every subgroup N < J; < J. By Lemma 4.2(b), we have

INLO) \* [ M0 (x) \*

pht(e)Q(l)p/ - ph“‘”)O’(l)p/ .
Now 5()6) = tr(P(x)) tr(Q(x)) and 5’(x) = tr(P’(x)) tr(Q(x)). As Q is one-dimensional
and hence tr(Q(x)) # 0, this finishes the proof of the theorem. ]

A useful observation when applying the previous theorem is the following: If D <
Nny(D) < M, then D € Sylp(CN(x)) if and only if D € Sylp(CM(x)). This follows
from elementary group theory.

In addition to Lemma 3.13 we derive the following lemma that concerns quotients
lying in the kernel of characters.

Corollary 4.5. Suppose that (G, N,0) ~y (H, M,0"), where 0 and 0' are characters
of height zero. Let Z < Z(G) Nker(9) Nker(9") with CG(N)/Z = Cg,z(N/Z). Then
(G/Z,N/Z,0) ~y (H/Z,M]Z,0), where 6 € Irt(N/Z) and & € Trr(M/Z) are the
associated characters of the quotients.

Proof. If D is a common defect group of the blocks of # and 8’, then DZ/Z is the defect
group of bl(@) and bl(a/) by Proposition 2.5(c). Since the Sylow p-subgroup Z,, of Z is
contained in O, (N) < D, wehave DZ = D x Z,y and Ng,z(DZ/Z) = Ng(D)/Z.

Let P and P’ be the projective representations associated to 6 and 6’ and giving the
block isomorphism (¢, o) : (G, N, 0) — (H, M, 0’). By Theorem 3.1(a), these projective
representations are constant on Z-cosets and hence define also projective representations
P and P associated to 0 and 0.

As P and P’ have the same factor sets, th_e factor sEt/s of P and 5/ coincide. Also,
since Cg(N)/Z = Cg/z(N/Z) the matrices P(x) and P (x) are associated to the same
scalar for every x € Cg,z(N/Z).
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Let yZ € (H/Z)" with DZ/Z € Syl ,(Cn;z(yZ)) and y € H* N yZ. Now, DZ/Z
is centralized by y, so D/Z,, is centralized by y. Since [Z,, y] = 1 and y is p-regular,
we find that y centralizes D by coprime action. So D < Cy(y). Since Cy(y)Z/Z <
Cy/z(yZ), we easily conclude that D e Sylp (Cn(»)). Now, by Theorem 4.4,

<|N|p/ tr(P(y)))* _ <|M|p’ tr(P’(y))>*
o(1), 0'(1), '

Since P(y) = P(yZ) and P'(y) = f/(yZ) we have

(|N/Z|p/ x(P(y2)) ) _ (|M/Z|,,f (P (y2)) )
0(1), 0'(1) '

The projective representations P and P’ have all required properties from Theorem 4.4
and hence (G/Z, N/Z,8) ~v (H/Z,M]Z.,0). O

Theorem 4.6 (Block isomorphic character triples via multiplication). Let N <G, H <G
withG = NH. Let K < G with K <M := HN N, and d let § € Irr(N) be a G-invariant
height zero character such that {x is irreducible. Let G = G/K N = N/K, H =
H/K and M : = M/K. Suppose that (G,N ,P0) ~b (H M, 0). Let p € Irr(N) and
o' € Irr(M) be the characters associated to p and p’ containing K in their kernel. Assume
that p, p' and © := ¢p have height zero. Then

(G7 N’ T) Nb (H’ M’ T/)’

where T’ = p'Cy.

Proof. Suppose that D is a common defect group of the blocks of 5 and o’ with Nﬁ(ﬁ) <
‘M. By Proposition 2.5(c) let D be a defect group of bl(t) such that D = DK /K. Let
€ : G — G := G/K be the canonical epimorphism.

As a first step in the proof we show that bl(t) and bl(z”) have a common defect group.
Since T and 7’ lie over £k, by Theorem (9.26) of [Nav98] we can choose a defect group
Q of bl(z’) such that DN K = QN K. According to Proposition 2.5(b) the group QK /K
contains a defect group of bl(p"), hence |OK /K| > |DK/K|.

As T has defect group D there exists an element x € N O with D Sylp (Cn(x)) such
that A; (€ly (x)™) # 0. By Lemma 2.2,

A (€ly () = A, (C1L () DA5(EHET),

where L/K = Cy/g(X) with ¥ := xK. Thus A, (€l (x)T) # 0 # Ap(Cly@)T).
Since A, (€l (x)T) # 0, by the Min-Max Theorem (4.4) of [Nav98], D € Syl (Cr(x))
contains a defect group of bl(¢z). Hence DK /K is a Sylow p-subgroup of L/K by
Proposition 2.5(d), and therefore €l5(X) has D as defect group. Since D < Cw 7(X), we

have ¥ € NN(D) < M. Now bl(p )N = bl(p), these blocks have a common Brauer
correspondent, and we easily check that Az (€l7(X)*) = A5(Clg(x) ™) # 0.

Let Ly := LNM. We compute A, (€I, (x)7). As D is a Sylow p-subgroup of L/K
and since D < M, we deduce that D is contained in L1 = M N L and the integer |L : L1]|
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is a p’-number. On the other hand, D is a Sylow p-subgroup of Cy,(x) and Cy, (x). This
implies that |€ly (x)|/|€l, (x)] is a p’-number. Now

1€z, ()] |€[L(X)I§(X)>* _ (|€[L1(x)|>*<|€[L(x)|§(x)>*
Il (x)] ¢() 1€l ()] ¢

¢l *

Thus Az, (€I, () M)A5 (Cl7(X)T) # 0 and by Lemma 2.2, A, (€ly (x)*) # 0. Hence,
by the Min-Max Theorem, some M-conjugate of Q is contained in D. Therefore | QK /K |
< |DK/K|and we conclude that | QK /K| = |[DK/K|.Then |Q : QNK| = |D : DNK].
Since Q N K = D N K, we conclude that |Q| = |D|, and therefore D is a defect group
of both bl(t) and bl(t’).

Since N7(D) < M, we have Ny (D) < M.

By Theorem 4.4 there exist projective representations P and P of G and H associated
to p and p’ with the three properties of Theorem 4.4(i), such that they define a block
isomorphism (7, o) between the character triples (G, N, p) and (H, M, 2.

Now let P := Poe and P' := P oey. Then P and P’ are projective representations
of G and H with the following properties:

hey, (€1, (07 = (

(a) the factor sets of P and P’ coincide via the canonical isomorphism G/N — H/M,

(b) if xK € Cg/kx(N/K), then the matrices P(x) and P’(x) are scalar matrices with
respect to the same scalar, and

(c) we have

(Wm tr(P(x)))* _ <|M|p/ tr(P’(x)))*
p(Dy Py

for every x € H? with D € Syl,(Cy;(x)), as ht(p) = ht(p') = 0.

Now, let Q be a projective representation of G associated to ¢. Then @ ® P and
Qpu ® P’ are projective representations of G and H respectively associated to T and 7,
respectively, and we check next that they satisfy the three conditions stated in Theorem
4.4(i). This will finish the proof of this theorem.

First, it is straightforward to check that @ ® P and Qy ® P’ have factor sets that
coincide on the elements of H. Also, if x € Cg(N), then xK € Cg/x(N/K) and the
matrices Q(x) ® P(x) and Q(x) ® P’(x) are scalar matrices associated with the same
scalar.

In the final step we verify the equation from Theorem 4.4(i)(c) for every x € H°
with D € Syll7 (Cn(x)). Without loss of generality we may assume G = (N, x) and
H = (M, x). Since G/ N is now cyclic, we may also assume that P, P" and Q are ordinary
representations. Suppose that they afford characters p € Irr(G | p), p’ € Irr(H | p) and
¢ € Irr(G | ¢), respectively. Let T = ¢ p be the character afforded by QP and T/ = ¢y 0’
the character afforded by Qy ® P’. We need to check

<|N|pf?(x>) _ <|M|p/?’<x>> | ws)
(1), T'(1),
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Let ¥ := xK. Assume first D = DK/K € Sylp(Cﬁ(f)). Then we multiply the

. [Nl BOON* (1M 5 () \* . /o 1K1,y (e Y *
equatlon( 20, ) = (p’(—l)p/> from 4.4(i)(c) for P and P w1th( T, )

to obtain

INLy P\ [ IM]y B () (x)\*
C * Az (1 y* — <P—) = <P—>
ICv ([ 27(Clg (x) ™) oD, (), (D, (D),

= |Cu ()5 Az (€l () ),

where the first and last equalities follow from Lemma 4.2(a).

Assume now that DK /K is not a Sylow p-subgroup of C57(x). Hence DK /K is not
a Sylow p-subgroup of Cy;7(x) (see the remark after Theorem 4.4). Let L1/K = Cxz(x)
and let Q be a defect group of the block of {L - As ;K is irreducible, the group QK /K
is a Sylow p-subgroup of L1/K by Proposition 2.5(d). Since DK /K is not a Sylow p-
subgroup of C37(X), D contains no defect group of bl(EL1 ). By the Min-Max Theorem
[Nav98, Theorem (4.4)] this implies )‘EL, (€lL,(x)T) = 0, as D is a defect group of
€Iy, (x). According to Lemma 2.2 we know

2 (€l (0)7) = dy (EF () DA, (€, (),

where V' is a character of H/K.Lemma 4.2(a) together with Lemma 2.2 shows

M1y 7)) )
(&T) = (ICu @) ) 2 (€l (x)F)

= (ICu ()|, 2 (€l (@) gy, (€l (0)F) = 0.

Arguing in the same way, we prove )‘EL (€l (x)T) = 0, where L/K = Cg(x). This
implies

N, T(x)\* —
(ﬁ) = (ICN () [p)*17 (€l () T) = (ICN (1) |,) A (Clg (@) A, (€L () F)
=0,
where ¥ is some character of G. This proves the theorem. O

In our final statement of this section, we adapt the above results to the terminology that
is going to be used while proving Theorem B. If Q is a p-subgroup of G, recall that
Irrg (G | Q) is the set of irreducible characters of G with height zero, lying in blocks
with defect group Q. If K << G and G € Irr(K), sometimes in this paper we denote by
Irrg (G | Q, G) the set of characters belonging to Irr(G | ¥) NTrrg(G | Q) for some ¥ € G.

We have already remarked (see Lemma 3.8) that whenever we have block isomorphic
character triples, then there are several possible choices of block isomorphisms of char-
acter triples. In the next result, and under certain circumstances, we show how to choose
them in a compatible way.
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Proposition4.7. Let K << G and H < G be such that G = KH. Let Dqy be a p-
subgroup of M := K N H such that H = MNg(Dy). Let G := Trrg(K | Do) and G’ :=
Irro(M | Dg). Assume that there exists an Ng (Dy)-equivariant bijection A : G — G’ such
that (Gg, K, 0) ~, (Hg, M, 0") for every 0 € G and 0 := A(0).

(a) There exists a choice of block isomorphisms of character triples, {(o (ON LGo/K)}0eG
such that the isomorphism

(@9, 16y/k) : (Go, K, 0) — (Hg, M, A(9))
satisfies
oo = (e
for every x € Ng(Dg), 0 € G, K < J < Gy, and ¢ € Irr(J | 9).

(b) Suppose J < G with K < J. Let Q < J be a p-subgroup with Q N K = Dy. Then
there exists an Ny (Q)-equivariant bijection

Iy :Irrg(J | Q) = Irrg(U N H | Q)

with (G, J, ) ~p (Hy, J N H, T') for every T € G with v’ := T1; (7).

Proof. We fix a complete set G| of representatives of N (Dg)-orbits in G := Irrg (K | Dy)
and let g; = A(Gy). For every 01 € G and 9{ := A(6) there exists a block isomorphism
of character triples

@16y, 1K)  (Goy, K 01) = (Hoy, M, A(0).

Notice that Hy, = H(’f since A is H-equivariant. Furthermore, by Proposition 3.9 for all
X € NG61 (Dp) and N < J;1 < Gg,, and all 1 € Irr(J; | 61), we have

(05" )" = 03 ). (4.4)

Let & € G. Then there exists x € Ng(Dp) and unique 6; € §G; such that 6 = 6.
Suppose that y € N (Dy) is another element such that & = ;. Then xy~! € NG, (Do)

Suppose that N < J < Gy and ¢ € Irr(J | 8). Notice that the characters o;i‘_)l ({x_l) and
a;(i',)l (0’71) are well-defined. Since xy~! € Ng,, (Do) (and using (4.4)), we have

@', ¢ Ty =06 eIy h.

Hence (o;f[)l (;Xﬁl))x = (oﬁ‘fl (;“»V* ))Y. Thus we have shown that 0}9)(5) is well-
defined by
-1
o) @) = o
If z € Ng(Dy), we have
o () =0 () =0T ).

Now it is straightforward to check that part (a) holds.
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From now on we consider part (b) and its assumptions, e.g. J < G. By Proposi-
tion 3.9, for every 6§ € G the map aj(g) 2 Irr(Jp |0) — Tir(Jp N Hy | A(B)) is Hpy-
equivariant, preserves heights, the blocks of corresponding characters share defect groups,
and for any p-group Q with Q N K = Dy the restriction of 0}2) to Irrg(Jg | Q,0) —
Irrg(Jo N Hy | Q, A(6)) is a bijection. Furthermore, for every 1y € Irro(Jy | 0) the charac-
ter 7 := oﬁz) (to) satisfies

((GG)T()s ]97 7:0) ~b ((HQ)'L'()’ JQ N Hv t(/))

Further the block of ‘L'(/) induces the block of .

Since K N Q = Dy, it follows that Q < Ng(Q) < Ng(Dg) < H. Now, let T €
Irrg(J | Q). By Proposition 2.5(a)&(f), there exists & € G such that the Clifford correspon-
dent 79 of 7 over 0 satisfies 7y € Irrg(Jy | O, 0). Let 0 € G and 19,1 € Irrg(Jp, | O, 61) be
another pair of characters with ‘L’OJ’ | = T. By Proposition 2.5(f), there exists y € Nj(Q)

with 07 = 6; and 7y = 10,1.
Now let ¢ = Uj(f)(ro) € Irrg(Jg N Hy | Q, 0') where 6’ := A(0). By part (a) we have

(2 (2 ) 0 )
o () = oy, (1) = 0} () = ¥,

as y € N;(Q) < J N H. The characters 7’ := /™ and (/”)’™ coincide and 7/ :=
¥ /"H is well-defined and independent of the choice of 6.

Since bl(y)” = bl(tg)’ = bl(z), we have bl(r’)’ = bl(t). Then, every defect group
of bl(z’) is contained in some J-conjugate of Q (by Lemma (4.13) of [Nav98]), and we
conclude that t/ € Trr(J N H | Q, A(0)). Now by the definition of height we see that 7’ is
a height zero character of J N H, i.e.

U (DplQl =1 NH): (Jo NH)p¥(1D),|Q = | N Hp.

Hence we can define I1; : Irro(J | Q) — Irrg(J N H | Q) by [T, (7) = 7.

From (a) and the construction of T we see that the map is Ny (Q)-equivariant. We
observe that , 7o, ¥ and 7’ are height zero characters. By Clifford theory, Theorem 3.14
applies with G| := Gy, since the assumption N; (Q) < J N H holds. Hence the character
triples associated to 7 and t’ satisfy

(Gf7 J? T) ~b (H‘[a JmH’ T/)-

For the proof of (b) it remains to check that I is a bijection. By Proposition 2.5(f),
for every t/ € Irrg(J N H | Q) there exist 8’ € G’ and ¥ € Trrg(Jor N H | Q, ') with
t/me = t’. Via the bijection o}e) this character corresponds to some 1 := (cr}(g))’1 )
€ Irrg(Jg | Q,0) where 6 = A7N@). As A is Ng (Dp)-equivariant, the character
T .= rOJ is irreducible.

Now bl(7) coincides with the block bl(zg)’ = bl(y)’. Since ¥/ = ¢/, we have
bl(z") = bl(y)’™ . Thus bl(z")’ = bl(t). By the Harris—Knorr Theorem [Nav98, The-
orem (9.28)] these blocks are Harris—Knorr correspondents and have the same defect

group. This proves that t € Irrg(J | Q) and the map I, is surjective.
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Let 71,10 € Irrg(J | Q) with T1;(t;) = IT;(12). Then there exist 6; € G and
w0, € Trro(Jg, | Q. 6;) such that g, = 7. Since I1,(1y) = I1,(r2), o}jl”(ro,l)mﬂ

and 0532)(10,2)1 NH have to coincide. The characters A(6;) and A(6,) are constituents
2

of IT;(t1)Ng(py) and ITy(72)Ng (Dy)- Hence A(01) and A(6>) are J N H-conjugate, i.e.
A(61)" = A(6) for some x € J N H. Analogously we see

o 6
0591')@0,1)" = U;Hj)(fo,z)-

Using (4.4) this implies
©)

(62)
0—‘/9;( (T())C,l) = 01622 (T0,2)~
As o is a bi.jectio.l} th?s proves r.(’)"l = 70,2 and t(){] = r({z. Accordingly IT; is an
N (Q)-equivariant bijection as required. O

5. A generalization of the Dade—-Glauberman-Nagao correspondence

In [NS14] the DGN-correspondence was generalized to characters in blocks with a nor-

mal defect group. We will use this new correspondence (but only in a special case). If a

group Y acts on some group X, then Irry (X) denotes the Y-invariant irreducible charac-

ters of X. If b is a block of X, then Irry () is the set of Y-invariant characters in b.
Frequently we shall assume the following hypothesis:

Hypothesis 5.1. Let K < M be such that M/K is a p-group. Let Dy be a normal p-
subgroup of K contained in Z(M). Suppose that b € BI(K) is M-invariant and has defect
group Dyp. Assume that B, the only block of M covering b, has defect group D. Let
L =Nk (D).

It is easy to check that our hypotheses imply that M = KD and K N D = Dy (see
[NS14]). Also Dy = O, (K).

Theorem 5.2. Assume Hypothesis 5.1.

(a) If b’ is the only block of L covered by B’, the Brauer first main correspondent of B,
then there is a natural bijection

p : Irrp(b) — Irrp (D).
In fact, if 0 € Irrp(b), then
O =ed + pA+ ¥ 6.1

where 0’ = Tlp(0) € Irr(L) is such that 6'(1), = |L : Dolp, p does not divide e,
every irreducible constituent y of A satisfies y(1), = |L : Dylp, and every irre-
ducible constituent y of W is such that y (1), < |L : Dg|p.

) If 6 € Irrp(b), we have

0(1), = e|K : L|y0'(1),y modp and e=+1mod p.

Also, if x € K is p-regular with D € Syl ,(Cp(x)), then 6(x)* = ef'(x)*.
(c) Suppose that K, M <1 G, where G is a finite group. Then Ilp is Ng, (D)-equivariant.
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Proof. Since every u € Irr(Dy) is M-invariant, we apply Theorem (2.8) of [NS14] to get
(a) and (b). Since this bijection is natural, using (5.1) we easily check that it is Ng, (D)-
equivariant. O

Definition 5.3. Suppose that K and D are subgroups of some finite group G, where D is
a p-subgroup that normalizes K. Let 6 € Irrp(K). We say that the D-correspondent of 6
is defined if

(@) DNK = Dy CZ(KD), and
(b) the block bl(6) has defect group Dg and the unique block of K D covering bl(6) has
defect group D.

In this case, there is a unique 8’ = TIp(0) € Iir(Ng (D)) defined, which we call the
D-correspondent of 6.

(Let us mention that in order for 6 to have a D-correspondent for some p-subgroup D, it
is enough to assume that Dy is normal in K, as shown in [NS14]. We shall not need this
more general result here.)

If the D-correspondent of 0 is defined, then notice that Dy = O,(Z(K)) because
O, (K) is contained in every defect group of K. Also, if Dy =1, then the D-correspondent
of 0 is the so called DGN-correspondent. If K is a p’-group, then this is the Glauberman
correspondent.

Some of the characters that we are considering in Theorem 5.2 are relative defect zero
or defect zero characters.

Notation 5.4 (Defect zero characters and relative defect zero characters). Let N < G.
We define dz(G) to be the set of x € Irr(G) with x (1), = |G|,. For u € Irr(N), we set

rdz(G | n) := {x € Irr(G|w) ‘ (ﬁ) =|G: N|p}.
n)/,

The following statement goes back to results by [Dad80, Pui86] and was recently proven
in wider generality by F. Ladisch.

Theorem 5.5. Assume Hypothesis 5.1, and assume that K, M < G, where G is a finite
group. Let H = Ng (D). Suppose that 0 € Irrp(b) has defect zero (that is, Dy = 1),
and let 0’ := Tl p(0) be defined as in Theorem 5.2. Then 0 extends to G if and only if 9’
extends to H.

Proof. Use [Ladl0, Corollary 11.3 and Theorem 4.3]. O
Lemma 5.6. Let (G, N, i) be a character triple, where N is a p-group.
(a) There exists a natural bijection

G :dz(G/N) — rdz(G | ).

(b) Let Gy be a group with N < G| < G. Assume that u(1) = 1. Let k1 € dz(G1/N)
and k € dz(G/N). Then « is an extension of k1 if and only if T'G,,, () is an extension
of Ty u(k).
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Proof. For g € G such that g, € N, there exists a canonical extension pg of pu to
(N, g), by Corollary (8.16) of [Isa76]. Let i be the map defined on the elements g € G
with g, € N such that ji(g) = ug(g). If x € dz(G/N), then I'g ,,(x) is defined by
Feu(x)(g) =0if g, ¢ N, and ', . (x)(g) = (g)x(g) if g, € N. This a natural
bijection by Theorem 2.1 of [Nav04].

For the character triple (G, N, ) this defines also I'g, , : dz(G1/N) —1dz(G | p).
If (1) = 1 then u(g) = wu(gp) whenever g, € N. Now, suppose for instance that
I'G, . («) is an extension of I'g, , («1). We prove that k (g) = k1(g) forg € G1.If g, € N,
both are zero; otherwise « (g)11(gp) = k1(g)11(gp), so the assertion follows. ]

‘We use the above bijection to extend Theorem 5.5.

Theorem 5.7. Assume Hypothesis 5.1, and assume that K, M <1 G, where G is a finite
group. Let H = Ng(D). Let 6 € Irrp(b) and let 8’ = Tlp(0) be defined as in Theo-
rem 5.2. Then 0’ extends to H if and only if 6 extends to G.

Proof. Suppose first that g e Irr(G) extends 6. Then b is G-invariant, and therefore B is
also G-invariant. Hence G = K H by the Frattini argument. By Theorem 5.2, the charac-
ter 6 uniquely determines 6" € Irr(L). Hence 6’ is H-invariant. According to Corollary
(11.31) of [Isa76] it is sufficient to prove that 6’ extends to Q for every prime ¢, where
Q/L is a Sylow g-subgroup of H/L. Hence, we may assume that M Q = G.

First we consider the case ¢ = p. Then H/L is a p-group. By Theorem 5.2 the
character 6’ € Irr(L) has p/-multiplicity e in 6y . Hence there is an irreducible constituent
7 € Irr(H) of Oy such that 7, contains 6’ with p’-multiplicity. Since 7(1)/6’(1) divides
|H : L| by [Isa76, (11.29)], we conclude that 7 is an extension of 6" to H.

Suppose now that ¢ # p. By hypothesis 6 extends to K Q. Let k := FI_(}M @) €
dz(K /Dy), where u € Irr(Dyp) is the only irreducible constituent of p,. Now « extends
to K Q/ Dy by Lemma 5.6. The character « has a D/ Dy-correspondent «’, which extends
to Q/Dg by Theorem 5.5. By Lemma (2.7) of [NS14], we have 8’ = I'y , () (see
also the remark before the proof of Theorem A of [NS14]). Hence 6’ extends to Q by
Lemma 5.6.

The same considerations also prove that 6 extends to G if 8" extends to H. O

We need the following property, which in the case where K is a p’-group is a special case
of Theorem A(b) of [IN91].

Proposition 5.8. Suppose that K and D are subgroups of some finite group G, where D
is a p-subgroup that normalizes K. Suppose that K << K1 € KCg (D), where K1 /K is a
p’-group. Let 0 € Trrp(K) and let € Trrp (K1) be over 0.

(a) The D-correspondent 0" of 9 is defined if and only if the D-correspondent ' of  is
defined.

(b) Suppose that K{/K is supersolvable and assume that 0' is defined. If g = 0, then
Y’ extends 0.

Proof. Suppose that the D-correspondent of 6 is defined. We have K1 = KCkg, (D) so
that D normalizes K. Also KD <1 K1 D. Since K| /K is a p’-group, we have D N K| =
D N K = Dy which is central in K. Also, by Theorem (9.26) of [Nav98], Dy is a defect
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group of the block of 1. Let C be the unique block of K; D covering the block ¢ of ¥,
and let B be the unique block of K D covering the block b of 8. Since C covers b, it
necessarily covers B. Now, since K1D/KD = K1/K is a p’-group, by Theorem (9.26)
of [Nav98], D is a defect group of C. This proves that the D-correspondent of i is
defined. The converse is proved in the same way.

Now, write O, (p) = €6’ + pA + W as in Theorem 5.2. Also, write YNy (D) =
dy’ + pAg + Wo. Since Y = 6, it follows that 6 is Nk, (D)-invariant and

AV, (py T P(D0INk (D) + (W0)Ng (D) = €0’ + pA + .

Now, since Nk, (D)/Ng (D) is a p’-group, any t € Irr(Ng, (D)) has Dy-relative defect
zero if and only if some irreducible constituent of v (p) has Do-relative defect zero. We
easily deduce that 8’ lies under v'. If K1/K is cyclic, this implies that v/’ extends 6.
Since K1/K is supersolvable, we can apply the same argument to a chief series from K
to K, to deduce that (Y )ny (p) = 0’. O

The extension 6’ from Theorem 5.7 can be chosen to have several additional properties.

Proposition 5.9. Assume Hypothesis 5.1, and that K, M <| G, where G is a finite group.
Write H = NQ (D). Suppose that § € Irrp(b) and let ' € Trr(L) be its D-correspondent.
Suppose that 6 € Itr(G) extends 6. Let C < Cg(M) be abelian with C < G. Then there
exists an extension 0’ € Irr(H) of 0" with

Irr(Oc) = Irr(9)).

Proof. First of all notice that C < Cg(D) < H.Let M1 := MC and K7 := KC. Then
M /K is a p-group.

Let ¢ := 0, k¢ and let Py be a defect group of bl(v). Now Py/ Dy is isomorphic to a
Sylow p-subgroup of KC/K by Proposition 2.5(d). As C is abelian, KO,(C)/K is the
only Sylow p-subgroup of KC/K, so PhK = KO, (C). Since O,(C) is contained in Py,
this proves that Py = Dy ! 0,(C).

The character ¢ := 6 is then an extension of ¥y to G. We determine a defect group P
of bl(l?/JM1 ). This can be chosen to contain D as M <1 M1 by Theorem (9.26) of [Nav98].
By Proposition 2.5(d) the group P/ Py is a Sylow p-subgroup of M{/K;. Hence M P =
M O,(C), and by the same argument as above P = D O, (C).

Now ¢ has a P-correspondent " € Irr(Ng, (P)) in the sense of Definition 5.3. Since
C < Z(K) and ¥ is an irreducible constituent of YN, (), we have Irr(Y¢) = Irr(Y ().

By Theorem 5.7, v has an extension 1/7’ € Irr(Ng, (P)).

Since C < Z(K1) we have Nk (P) = Nk (D). Furthermore every character of Ng (P)
extends to Ng,(P) = Ng(P)C. As C/0,(C) is a p’-group, we have [Nk, (P) : Pyl,
= [Nk (P) : Dog|p. By Theorem 5.2(b) the restriction wNKl (p) contains exactly one con-
stituent " with p’-multiplicity and Dy-relative defect zero. Then ¥, ( P) = ONg(p)
has only one character with p’-multiplicity and Dy-relative defect zero, namely wl/\IK (P
Hence v extends 6’.

Since O,(C) is normal in G, we have Ng(D) < Ng(P). Also every x € Ng(P)
stabilizes P N M = D because M <1 G. This implies Ng(P) < Ng(D) and we notice
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that Ng (D) = Ng(P). We see that J’ is an extension of 8’ to Ng (D) with the required
properties. O

The DGN-correspondence behaves well with respect to kernel of characters, although
this is not a complete triviality. Suppose that E <1 G, writt G = G/E and use the bar-
convention. If K < G, then K /(E N K) is naturally isomorphic to the subgroup K E/E
of G/E. Consequently, all the characters T of K that contain £ N K in its kernel can be
seen as characters T of K = KE/E, where T(k) = T(Ek) = t(k) forall k € K.

Lemma 5.10. Suppose that K and D are subgroups of a finite group G, where D is a
p-subgroup of G that normalizes K, with K N D = Dy < Z(K). Suppose that the D-
correspondent 0’ € Irr(Ng (D)) of 0 € Irr(K) is defined, and suppose that E <1 G is such
that ENK < ker(0). LetG = G / E and use the bar convention. Then Ng (D) = NK(B),
the D-correspondent of 0 € Irr(K) is defined and

©) =6'.
Proof. This is a special case of Theorem (2.11) of [NS14]. The definition of being D-

defined in [NS14] does not require that Dy is central in K D, but only normal. This extra
condition is easily checked in this theorem. O

We use this lemma to generalize Proposition 5.9.

Proposition 5.11. Assume Hypothesis 5.1, and that K, M <\ G, where G is a finite group.
Write H = Ng (D). Suppose that 6 € Irrp(b) and let 0’ € Trr(L) be its D-correspondent.
Suppose that 6 e Irr(G) extends 6. Then there exists an extension 0 e Irr(H) of 0" with

II‘I‘(@CG(M)) = II‘r(QéG(M)).
Proof. If Cg(M) is abelian then this follows from Proposition 5.9 for C := Cg(M).
Let E := [C,C] < G. Since GM is irreducible, E is contained in the kernel of 6 by
elementary character theory. Thus K N E < ker(9). Now, we apply Lemma 5.10, noticing

that H = Ng(D) = Ng(D), and then Proposition 5.9 to the abelian normal subgroup
Co(M)/E. O

Proposition 5.12. Assume Hypothesis 5.1, and that K, M <1 G, where G is a finite group.
Write H = Nq(D). Suppose that 0 € Irrp (b) and let 8’ € Irr(L) be its D-correspondent.
Quppose that 8 € Irr(G) extends 6. Write [0, 0] = e. Then there exists an extension
0" € Irr(H) of 6’ with - ~

O(x)* = e(®'(x))*

for all p-regular elements x € G with D € Syl,,(Cp (x)) and

It (@cg o) = IO, 4))-

Progf. According to Proposition 5.11 the character 6’ has an extension x € Irr(H) with
Irr(@CG( m)) = Irr(kc(m)). For the proof it is sufficient to verlfy that there exists a linear
character ¢ € Irr(H) with Cg(M)L < ker(¢) such that, if g = Lk, then

0(x)* = e(@ (x)*
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for all p-regular elements x € Cg (D) with D € Syl » (Cpr(x)). In afirst step we construct
{cq(p) such that the equation on the values is satisfied. Later we verify that Cg(M)L <
ker(¢).

Suppose that x € Cg(D) is p-regular. Consider Ky = K (x) which is a normal
subgroup of KD such that K, D/K is a p-group. Let L, = Ng (D). Then (6)k, is a
D-invariant extension of € and is contained in a block with normal defect group Dy, such
that the character in Irr(fp, ) is G-invariant. By Proposition 5.8 the same happens for the
corresponding characters: ~

(Gx,))L =0
Since (5KX)’ is an extension of 6’ to Ly, by Gallagher’s Corollary (6.17) of [Isa76], there
exists a unique linear character €, € Irr(L,/L) such that

€KL, = (5KX)/-

We define a complex function
€:Co(D)L - C by €e(y)=¢, ()

and we prove that € is a linear character of Cg (D)L that extends to Ng (D). First, we
claim that €(y") = €(y)" = €(y) forn € H and y € Cg(D)L. We may assume
that y is p-regular. Since the correspondence from Theorem 5.2 satisfies (5.1), we have
(€y)" = €yn and this proves the claim. In particular, € is a class function that is constant

on L-cosets. Now, notice that €y = €,-1, 50 that

ey H=em L

Hence the value of the inner product on (e, €) is 1.

Next, we prove that € is a generalized character of Cg (D)L by using Brauer’s char-
acterization of characters (see [Isa76, Corollary (8.12)]). Suppose that E = P x Q C
Cg (D)L is elementary, where P is a p-group and Q is a p’-group.

Again, (6)k ¢ is D-invariant and extends 6. Since k¢ is an extension of 6" to LQ =
Nk o (D), by Gallagher there exists a unique linear character vg € Irr(L Q/L) such that

vokLo = (Fk o)

By the definition of € we deduce e = 1p x v, and this proves that € is a generalized
character. Since €(1) = 1, we deduce that € is a character.

We show that € extends to Ng (D). Again, by Corollary (11.31) of [Isa76] it is enough
to show that € extends to LCg (D) Q for Q/L € Squ (NG (D)/L) and every prime g. This
is clear if ¢ = p, since the order of € is not divisible by p. So we assume that ¢ # p. Let
01 = QN LCg(D). Since e is linear, it suffices to show that g, extends to Q.

Since QO < Ng(D), the group G| := (K D)Q is well-defined. The groups K| :=
KQiand M| := KQD are nornlal subgroups of G such that K; << M| and M/K] is
a p-group. The character ¥ := (f)k, has a D-correspondent ' € Irr(L;) with L :=
Nkg,(D) = LQ;. As ¥ is an extension of 0, the character ¥’ is an extension of 6’
by Proposition 5.8. Further as v extends to G, ¥’ has an extension 1 to Ng, (D), by
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Theorem 5.5. By Gallagher there exists a linear character § € Irr(Ng, (D)/L) with n =
(SKNG1 (D)- On the other hand, by our definition, Y= €p,k@,. This implies §p, = €g,
and ¢ is an extension of €g,. Thus € has an extension to Ng (D).

The character k€ satisfies by definition the equation

K(x)e(x) = Mp(Bk,)(x)

for every p-regular element x € Cg (D). If the p-regular element x € Cg (D) satisfies
additionally that D € Syl » (Cy(x)), then Theorem 5.2(b) shows

Mp(Bk,) ()" = eB @),
where e is the multiplicity of 6’ in 6, and hence
K (x) e (x)* = e*0(x)*.

For C := Cg(M) it remains to verify Irr(éb) = Irr((k€)c). As k is an extension
of an irreducible character of ¢ the set Irr((k€)c) consists of only one linear charac-
ter v/, and analogously Irr(f¢c) = {v}. The kernel of ¢ contains [C, C] as « and ke
are extensions of 0. Further € is by definition trivial on p-elements. Thus € is trivial
on O with O/[C, C] = O,(C/[C, C]). By the definition of « this character satisfies
Irr(6c) = Irr(kc), hence vo = vy,.

For every y € Cg(M)/ O there exists a p-regular element x € Cg(M) withy = xO.
Let Ly and K, be defined as above. By the definition we have «; €, = Il D(gkx). Also
the chara~cter kL, €L, is covered by a block B’ of L, D that is the Brauer correspondent of
B = bl(0k, p). According to Theorem (4.14) of [Nav98] this implies

A (Clg, p(X)T)* = Ap ((Clg, p(x) N Ly D)T)*.

Since x € Cg (M) the element x is central in Ky D and by Theorem (9.5) of [Nav98], we
have

) . (0N
)\.B(Q[KXD(X)J’_) :A@'(@[KXD(X)J’_) :<?)16)> ’

)\,B’(Q:[L_XD(X)—F)* = )\KE(Q:[LXD(X)+)* = <KK6((IX))) ’

Hence N
Kke(x) oy 0(x) _
W =v'(x) and _5(1) =v(x).

This implies v(x) = v'(x) for every p-regular element x of Cg(M). Together with the
fact vp = vy, this proves v = v'. Thus

Irr(ch(M)) = II"I’((KG)CG(M)). ]

Finally we can prove the main results of this section.
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Theorem 5.13. Assume Hypothesis 5.1, and suppose that K, M <1 G. Let H = Ng (D).
Suppose that 0 € Irr(b) is G-invariant, and let 0’ € Irr(L) be the D-correspondent of 6.
Then there exists an H-equivariant bijection

My,p : Trrg(M | 6) — Trig(Nw (D) |6")

with (Gg,, M, 61) ~v (Hp,, Ny (D), Iy p(61)) for every 61 € Irro(M | 0).

Proof. By Corollary (9.18) of [Nav98], every & € Irro(M | 6) extends 6. Hence, using
Proposition 5.7, we may assume that 8 extends to M.

Now, let P be a projective representation of G associated to 8, and construct the group
G as in the proof of Theorem 4.1, where Z is a subgroup of C* containing the values of
the factor set of P, and use the same notation. Write € : G — G for the canorgcal epimor-
phism €(g, z) = g. Thus K¢ := {(k, 1) | kK € K} is a normal subgroup of G that is iso-
morphic to K. Let 6y € Irr(K() be the character corresponding to 6. Let Doy = {(d,Al) |
d € Dy}, which is the central defect group of the block of 6y. The map D defined on G by

D((g,z)) =zP(g) foreveryze Zandg € G

defines an irreducible representation of G. Let 5() € Irr(@ | 90)~be the character afforded
by D, which extends 6y. Set K:=KxZ , and notice that ¢ := 6y is contained in a block
with defect group Py = Do X Zp, where Z,, is the Sylow p-subgroup of Z. (This follows
easily since Do x Z, = O, (K ) should be contamed in every defect group of bl(y), and
every defect group intersects K in Dgg.) Now let M=l (M). The group Mi  is anormal
subgroup of G and M / K= M/K is a p-group. Notice that Py is central in M.

Let Bj; be the block of M covering bl(). Next we claim that we can choose a defect
group P of this block such that e(P) = D. We know that PK = M and P N K = Pp.
Thus [P : Po| = |M : K| = |D : Dgl|. Also, [e(P)| = |P/P NZ| = |P|/|Z,| = |D|.
Since P is a defect group of Bj; there exists a p-regular (x,z) € M such that P is a
Sylow p-subgroup of Cj;(x, z) and A (€15 (x, z)T) # 0. Since (x, z) is p-regular, it

fql\lows that (x, z) € K and x € K is p-regular. Also Cj;(x,z) = C/M\(x) Furthermore,
M :Cij(x,2)| =K : Cg(x,2)| = |K : Cg(x)|. Finally,

0 # Apg (€l (x, DF) = Ay (€l (x, D) = hgy (Cliy (1)) = Ap(Clx (1))
= A (Cly (x)T),

where B is the only block of M covering b, and we deduce that D is contained in a Sylow
p-subgroup of Cys(x) by the Min-Max Theorem. Since €(P) is a Sylow p-subgroup of
Cp(x), the claim easily follows. In particular, we conclude that N7 (P) = Nm) and
Ng(P) = Ng(D). R R

By Theorem 5.2 the character ¥ has a P-correspondent ' € Irr(L) with L :=
NK(P) = Nk, (D) x Z. This character v’ is the umque constituent of v; that has
p -multiplicity and Py-relative defect zero. Since |L Pylp = [Nk (D) : Dylp, and Z
is central in G we easily check that /] Lo coincides with 6’ via the isomorphism €z,,.
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As 1/#\ has an ex/t\ension 1} = 50 € Irr(a | 80), the character ¥’ has an extension 1%’ €
Irr(H | ') for H := Ng(P) with the properties described in Proposition 5.12, namely

Ifr(l//cg(ﬁ)) = Irr(l//éa(ﬁ)) and

U(0)* = e" (P (x)*
for all p-regular elements x € C5(P) with P € Syll7 (Cj;(x)), where e is the multiplicity
of ¥ in ¥;. According to Theorem 5.2(b) the integer e also satisfies e = =1 mod p and
Y (1), =e*|K : L|yy'(1), mod p. (5.2)
Now by Theorem 4.1(d), we have e(Ca(M)) = Cg(M). Also, if x € Cg(M) then
the scalar matrix P(x) is associated to the scalar p((x, 1)), where {u} = Irr(w%( i)
Now, let D’ be a representation affording 1;’ . We define P’ : H — GLy(1,(C) by

P'(h) =D'((h,1)) foreveryh € H

which defines a projective representation of H. Recall that 1//}40 coincides with 6 via er,,.
Hence P, affords 0’. Since the factor set o’ of P’ satisfies

o' (hy, hy) = (hy, 1)(ha, 1)(h1hy, )71 forevery by, hy € H

by the definition of P/, we see that ’ is the restriction of « to H x H and hence P’ is a
projective representation associated to 8’. We can also check that the scalar matrix P’ (x)

(x € Cg(M)) is associated to the scalar p((x, 1)) where {u} = IH(J’CA(M)).
G
Let x € G be a p-regular element with D € Syl » (Cp(x)). Then there exists z € Z <

2(6) such that y := (x, z) is p-regular. This element centralizes P/Z,,.
The group (y) acts on P. Since (|{y}|, |P|) = 1, Theorem (3.28) of [Isa08] implies
that

P/Zy =Cpr/z,(y) =Cr(Zp/Zp.
This proves P < C5((x, 1)) and P € Syl,(Cg((x, 1))). The extensions 1; and 17}/ satisfy
V) =0
and this implies by the definition of P and P’ that
tr(P(x))* = e* tr(P' (x))*.

For any character 6 € Irro(M | 6) there exists an associated projective representation
R of Gg, such that Rx = Pg. The projective representation R can be obtained from
Pg,, by multiplying with a map § : G, /K — Cwith R = §PGy, -

Let R’ := &p,, 73}_191 . Then R and R’ have the same factor sets. In particular, R has a
factor set that is constant on Nz (D)-cosets. This implies that ’R&N (D) affords a character
n1 that is an extension of #’. In this way, we obtain a well-defined bijection

My, p : Trrg(M | 6) — Trig(Nw (D) |6")

with 61 — n1. By the construction Iy p is Hy-equivariant.
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In the next step we prove that (Gg,, M, 01) ~p (NG (D)g,, Ny (D), n1). According to
Theorem 4.4 it is sufficient to ensure that R and R’ satisfy the conditions described there.
Observe first that the groups M <1 Gy, and Ny (D) <1 H,), satisfy the required equations
there.

We now check the properties on the defect group. Let Q be a defect group of bl(#1).
By the considerations above, bl(9’) has Dy as a defect group. By Theorem (9.26) of
[Nav98] the group Q satisfies Q N L = Dy. Since D <1 Ny (D), Q contains D. All this
implies Q = D. Hence D is a defect group of bl(8;) and of bl(n1).

As P and P’ have the same factor sets, the projective representations R and R’
have the analogous property. For x € Cg(M) the matrices P(x) and P’(x) were as-
sociated to the same scalar ((x, 1)), and R(x) and R’ (x) are scalar matrices associated
to £(x)u((x, 1)).

It remains to check the equation from 4.4(i)(c). Let x € G be a p-regular element
with D € Syl, (Cu (x)). The characters 01 and 7 have height zero. We already know that

tr(P(x))* = e* tr(P'(x))*. 5.3)
As 01(1) = ¥ (1) and 1 (1) = ¥'(1), equation (5.2) implies
01(1)y =e|lK : L|yn1(1), mod p.

<|I]M(L)|b/) — (e IIM|D/ )
” (l)p/ 61(1)]7/ )
VVlth (5.3), thlS ShOWS

<|M|p’ tr(P(X))>* _ (|NM(D)|p’ tr(P/(X)))*

This proves

O1(1)p N1 (1)
for every p-regular element x € H with D € Sylp (Cp(x)). Now Theorem 4.4 implies
that (G(-)l,M’Ql)Nb (Hvav T]]) I:I

Corollary 5.14. Let G be a finite group, and K, M <1 G with K < M be such that M /K
is a p-group. Let Dy <1 K be a p-subgroup with Dy < Z(M). Let D be a p-subgroup of
M and let H := Ng (D). Then there exists an H-equivariant bijection

[Mp : Irrg(M | D) — TIrrg(Nps (D) | D)
with (G¢, M, t) ~y (Hy, Ny (D), I p (7)) for every T € Irrg(M | D).

Proof. Let t € Irrg(M | D). Then 6 := 1k is an irreducible character, as 7 is a height
zero character and M /K is a p-group. This implies that t € Irro(M | 8). Let T be the set
of characters 0 € Irrg(K | Dg) such that the block of M covering bl(6) has D as defect
group and 6 extends to a character of M. Then Irro(M | D) can be written as

Irrg(M | D) = | Trro(M | 6).
0eT

Now we choose a set T inside T that is a complete set of representatives of H-orbits.
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For t € Irrg(M | 0) with 8 € T we define
[p(z) =Ty p(7),

where Ilg p is the Gy-invariant bijection from Theorem 5.13. Now IIp p(t) belongs
to Irrg(Np (D) |6), where 0’ is the D-correspondent of 6. This character belongs to
Irrg(Nps (D) | D). Furthermore we have

(G'L’s M, T) ~b (HTa H m Mv HD(T))

Every character t € Irrg(M | D) is H-conjugate to some character in Irrg(M | 6) with
0 e T], ie.
" € Trrg(M | 9)

for some h € H. By the definition of T the coset & Hy is unique. We set
-1
Mp(r) =g p(t"" .

As Tly, p is Hp-equivariant and as 6 and & Hp are uniquely determined by t, we see that
[Tp(7) is well-defined. By the definition, I[1p satisfies

(G2, M, ")~y (HE, HO M, TIp(1)").
Now, we easily check that conjugation is compatible with the relation “~,”. This implies

(G, M, t) ~y (H, HN M, IIp(7)). O

6. A height preserving bijection coming from the inductive AM-condition

In this section we concentrate on the proof of a height preserving bijection in the presence
of semisimple normal subgroups.

Theorem 6.1 (Theorem 7.9 of [Spdl3]). Let K be a finite perfect group such that
K/Z(K) = S" for some non-abelian simple group S. Let Do % Z(K) be a radical p-
subgroup of K. Assume that S satisfies the inductive AM-condition for p from Definition
7.2 of [Spal3]. Then:

(a) There exists an Aut(K) p,-stable subgroup M < K with Ng (Do) < M.
(b) There exists an Aut(K)p,-equivariant bijection Q : Irro(K | Do) — Irro(M | Do)
with
Irr(2(x)z(k)) = Irt(xz(k)) ~ for every x € Irro(K | Do) (6.1)

and
QIrrg(b)) = Irrg(by)  for every b € BI(K | Dg) and by € BI(M | Dy),

whenever b and by have the same Brauer correspondent in BI(Ng (Dy)).



736 Gabriel Navarro, Britta Spith

(c) Suppose K <1 G for some finite group G with Z(K) < Z(G) and let B € BI(G) be
such that some defect group D of B satisfies D N K = Dy. Let 8 € Irro(K | Do),
0 := Q(0) € Irrg(M | Dy), and By € BI(MNg(Dy)) the block with BlG = B that
covers bl(8"). Then

|Trr(G | 6) NIrro(B)| = [Trr(MNg (Do) |8") N Trro(B1)|.

Proof. By the construction of €2 given in the proof of Theorem 7.9 of [Spil3] the bijec-
tion 2 depends only on the epimorphism 7 : X — K, where X is the universal covering
group of S'. Using the bijection from Proposition 7.7 of [Spil3] we deduce that Q is
Aut(K) p,-equivariant. The remaining parts of the statement are identical with the ones
of Theorem 7.9 of [Spdl3]. m]

We extend this statement by including the non-height zero characters of G that lie above
a height zero character of K.

Proposition 6.2. Let K be a perfect group such that K/Z(K) = S, where S is a
non-abelian simple group satisfying the inductive AM-condition from Definition 7.2 of
[Spil3]. Let Dy be a non-central radical p-subgroup of K and let 6 € Irrg(K | Dg). Let
M be the NG (Dy)-stable group with Nx (Dg) < M < K and

Q : Irrg(K | Do) — Irro(M | Do)

the N¢ (Dg)-equivariant bijection from Theorem 6.1. Suppose that K <1 G. Then for every
0 € Irrg(K | Dg) and ' := Q(0), we have

(Go, K, 6) ~b (MNG(Do)er, M, 0").

Proof. Let X be the universal covering group of S, X=X and:: X > K be an
epimorphism that exists as K is a perfect group and a central extension of S”. Let D be
the Sylow p-subgroup of t 1(Do) and M < X be the group from Proposmon 7.7(a) of
[SpalS] Accordingly M is Aut(X)D—stable and satisfies N3 (D) <M < X. The group
= ((M) has the required properties. _
By Proposition 7.7(b) of [Spi13] there also exists an Aut(X) 5-equivariant bijection

Q : Trro(X | D) — Trro(M | D)

such that Q(Irro(X | D) NTrr(X | v)) € Irr(M | v) for every v € Irr(Z(X)).
The bijection
Q : Irrg(K | Do) — Irrg(M | Do)

defined by Q(x) oty = EZ(X o) for every x € Irrg(K | Do) is NG (Dg)-equivariant.
Let 6 € Irrg(K | Do) and assume first that 6 is faithful. Without loss of generality we
may assume Gy = G. Then the assumptions of Theorem 6.1 are satisfied by the groups
K <G as Z(K) < Z(G). In the following we assume without loss of generality Gg = G.
In the proof of Theorem 7.9 of [Spidl3] a projective representation P of G associated
to 6 is given, and a projective representation of P’ of H associated to 8’ := Q(0) €
Irrg(M | Dg). Using Section 3 of [Spidl3], we check that the factor sets of P and P’
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coincide. Furthermore for every x € Cg(K) the matrices P(x) and P’(x) are associated
to the same scalar. According to (7.13) of [Spdl3] the projective representations satisfy

(|K|p’ trU’(X)))" _ ('Mlp’ tr(P’(X))>*
O (1) 0’ (1)p

for every p’-element x € MNg(Dyp) with Dy € Syl » (Cp(x)). According to Theorem 4.4
this implies

(Go, K,0) ~p (MNG(Do)g', M,0’) forevery 8 € Irro(K | Dy),

where 0" := Q(9).

Let 6 € Irrg(K | Do) and Z := Z(K) Nker(9),G := G/Z, K :=K/Z, M := M/Z,
and Dg := DyZ/Z and M := M/Z. As above, Q defines also an NE(BO)-equivariant
bijection Q : Irrg(K | Do) — Irro(M | Dg). Let 6 € Irr(K) be the character associated
to #, which is also of height zero and belongs to a block with defect group Dg := DyZ/Z
by Proposition 2.5(c). The character 52( k),z is faithful. Hence the above considerations

imply

(G5.K.0) ~» (MNg(D);. M. 7)),
where 8’ := Q(0). By Lemma 3.12, this implies

(Go, K, 0) ~ (MNG(D)gr, M, 0,

where 6’ € Trr(M) is_the character associated to 8 . This character 6’ coincides with )
by the definition of €. |

We next relax the assumption that K/Z(K) is the direct product of isomorphic non-
abelian simple groups.

Corollary 6.3. Let K be a finite group such that K/ Z(K) is the direct product of non-
abelian simple groups which satisfy the inductive AM-condition from Definition 7.2 of
[Spdl3]. Let Dg be a radical non-central p-subgroup of K. Then there exist an N (Dy)-
stable group M with Ng (Do) < M < K and an Ng (Dy)-equivariant bijection

Q : Irrg(K | Do) — Irrg(M | Dg).
Suppose K <1 G for some finite group G. Then
(Go, K, 0) ~, (MNG(Do)er, M, 0")

for every 0 € Trrg(K | Do) and 6" .= Q(0).

Proof. By hypothesis, there exist non-isomorphic non-abelian simple groups Si, ..., S;
and integers 1, ..., r; such that

K/Z(K) = S x -+ x S;j.
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For each group S; there exists a group K; with K; < K, [K;, K;] = K; and K; / Z(K;)
= Sl.r’. Let D; := Dy N K; and 6 € Irrg(K | Dp). If D; £ Z(K;) then there exists an
N¢ (D;)-equivariant bijection 2; : Irrg(K; | D;) — Irrg(M; | D;) with

(Go,, Ki, 6;) ~v (Hi g, M;,0)) forevery 0; € Irrg(K; | D;) and 0] := Q; (6;),

where M; with K; > M; > N, (D;) is given by Proposition 6.2 and H; := M;Ng(D;)
(see Proposition 6.2). For i with D; < Z(K;) let M; := K; and £2; : Irro(K; | D;) —
Irrg(M; | D;) with 6; — 6/ := 6; be the identity map.

Let 6 elrro(K | Dg). We can write 6 as central product of characters 6; € Irro(K; | D;)
and a character v € Irr(Z(K)). Without loss of generality we may assume Gg = G.

We observe that by Proposition 3.9(c) the block isomorphism of character triples be-
tween (G, K1, 61) and (Hy, My, 6) maps 6 - 6> to 0] - 6, because K» < Cg(K1). (See
Section 5 of [IMNO7] for the notation of characters of central products.) This implies that

(G, K1K>, 61 -62) ~, (Hi, M1K>, 0] -65),

using Proposition 3.9(b).

Analogously, we know (Hy, K2, 62) ~, (HoNHy, M>, Gé) from the properties of €2;.
This implies (Hy, M1K2, 6] - 62) ~p (Hy N Ha, M1 M>, 6] - 6)), as above. According to
Lemma 3.8(a) this implies

(G, K1K2,01 - 02) ~, (Hi N Hyy, M{ M3, 6] - 65).
Successively applying this procedure we obtain
(G, K,0) ~, (NG(Do)M, M, 6",
where M = (M, M>, ...), and 6’ ::9{~-~9jf-v. O

7. A bijection above height zero characters

In this section we finally prove Theorem B, which is a direct consequence of our Theorem
7.1 below and Corollary 3.10.

Recall that Irrg(N | D) denotes the set of height zero characters of N that lie in a
block with defect group D. If Z << N and v € Irr(Z), then we write Irro(N | D, v) =
Irrg(N | D) N Ire(N | v).

Theorem 7.1. Let S be a collection of finite non-abelian simple groups of order divisible
by p that satisfy the inductive AM-condition (Definition 7.2 of [Spil3]) for the prime p.
Assume that N is a finite group such that all the non-abelian simple groups involved in N
of order divisible by p are in S. Suppose that N < G for some finite group G, and let D
be any p-subgroup of N. Then there exists an N (D)-equivariant bijection

[Ip : Irrg(N | D) — Irrg(Ny (D) | D)
with

(G¢. N, 1) ~, NG(D)y,Ny(D), T')
for every T € Irrg(N | D) and t/ := T p (7).
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We prove Theorem 7.1 by induction on |N : Z(N)|, and we do this in a series of interme-
diate results.

Remark 7.2. Without loss of generality we can assume G = NNg (D).

Proof. Assume that Theorem 7.1 holds for N and G| := NNg(D). The bijection I1p
has then the required equivariance properties since Ng, (D) = Ng (D). Now, for every
T € Irrg(N | D) the group G+ is contained in G1. Hence Theorem 7.1 holds for the groups
N <1 G if it holds for N <t NNg (D). ]

Lemma 7.3. Let K << G where K < N and [N : K| < |N : Z(N)|. Suppose that
¢ € Irrg(K | Do) is N-invariant, where Do := K N D. Then there exists an NG{ (D)-
equivariant bijection

Yp,c : Irrg(N | D, ¢) — Irrg(KNn (D) | D, ¢)

such that (G¢, N, t) ~p (KNg, (D), KNy (D), Yp (1)) for every T € Irrg(N | D, {).

Proof. Since G; < G, forevery t € Irro(N | D, {), we may assume that G; = G.
Let P be a projective representation of G associated to ¢. Then P determines a group
={(g,2)|g€G,z€ Z},where 1 xZ < Z(G) and an epimorphism € : G—G given
by (g, z)Ar—> g, as in the proof of Theorem 4.1. (We identify Z with 1 x Z.) Furthermore,
let Ko <G be defined as in Theorem 4.1(a). This group K| is isomorphic to K via ek, and
via this isomorphism the character ¢ delines also a character ¢y € Irr(Kg) from Theorem
4.1(b). This character has an extension ¢ € Irr(@). .

Below, sometimes it is useful to identify certain subgroups U/Z of G/Z with
€(U) = G. Also, if X < G, then X = = e 1(X) = {(x,2) |z € Z} is a subgroup of
G of order |X||Z], and X/Z X.

Now, e “1(D)/Z = D is a p-group, hence let 50 be the unique Sylow p-subgroup of
D=c¢"! (D). Thus ~!(D) = Dy Z. Notice that Nz (D) = Ng(Dp) = Ng (D).

Now, N / K=N /K, and therefore all non-abelian simple groups involved in N /Ko
are also 1nvolved in N and contained in S. Also, K/Ko < Z(N/Ko) < N/Ko, and we
conclude that |N/Ko : Z(N/K0)| <|N : K| < |N :Z(N)|. Now, we apply induction to
the groups G := G/Ko, N = 1’\7/1(0 and D := BOKO/KO. We conclude that there exists
an NE(B)—equivariant bijection

M : Irrg(N | D) — Irrg(N#(D) | D),
such that for every p € Irry (N | D) we have
(G5. N7. D) ~b (Naﬁ(ﬁ), Nz(D), ),
where p’ := II5(p). R
Now, let T € I/l:r()(N | Do, ¢o). By Corollary (6.17) gf [Isa76] there exists a unique

character p € Irr(N) with Ko < ker(p) such that T = {5 p. Proposition 2.5(c) implies
that the character p € Irr(N) associated to p has height zero and lies in a block with
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defect group D Do Ko/Kop, since T is a character of height zero and lies in a block with
defect group Do Hence p € Irro(N | D). Now, 0" := II5(p) is defined and satisfies

(G5. N3.P) ~b (NG, (D), Ng(D). p).

Let p € IH(Nﬁ(BQKo)) be the lift of p’. Theorem 4.6 shows that the character 7/ :=
KN,\*,(ﬁoKo)pl satisfies

-~

(G:. N.7) ~p (Ng,(DoKo). Nj(DoKo). 7).

We define

Tp

0.z o (N | Do £o) — Trrg(Ng(DoKo) | Do. o)

by T = Eﬁp — EN (50K0)p/ Let 7/ = EN,v(ﬁoKO)p/' As Eﬁ is G-invariant and Iy is
G(D) equivariant, the map TD % is Na(ﬁoKO)-equivariant.

Also, using the definition of block isomorphism, we also have Irr(tz) = Irr(t,) for
every T € Irro(ﬁ | 50, Zo). Hence Tﬁo, ¢, Maps the characters t € Irro(ﬁ | 50, Zo) with
Z < ker(t) to the characters in Irrg (Nﬁ(ﬁoKo) | 50, o) which contain Z in its kernel.
Now we observe that the characters in Irro(ﬁ | 50 go_x 17) correspond naturally to the
characters Irrg(N | D, ¢). (Use that Z is central in N and Theorems 5 8.8 and 5.8.11
of [NT89].) Hence there is a natural correspondence between Irro(N | Do Zo x 17) and
Irrg(N | D, ¢).

Recall Ng(D) = Ng(Dg) = @) and hence (KoNg(D))/Z = KNg(D).

Just as before, the set Irrg(N5 (D Ko) | D, {o x 1z) naturally corresponds to the set
Irrg(KNy (D) | D, &o). Via these correspondences, Tﬁo, % defines a bijection

Yp,c :Iro(N | D, &) — Irg(KNy (D) | D, ©).

IfT elirg(N|D,¢), lett € Irro(ﬁ | 5, Zo X 1z) denote the corresponding element.
Then

(Gr. N. 1) ~ (N5 (DKo). Ng(DKo). 7).

where 7/ := Tp. % (7). Let T’ be the corresponding character in Ny (DK).

Finally, using that C@(ﬁ)/z = Cg(N) by Theorem 4.1(d), and Corollary 4.5, we
have

(G7, N.T) ~p (KNG(D)z, KNy(D), T)
forevery T € Irrg(N | D, ¢). m]

In the proof of the following statement, for K <N, v € Irr(N) and ¢ € Irr(tg) we denote
by 7; the unique character in Irr(N; | ¢) with réfv =T.
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Proposition 7.4. Let K <1 G where K < N and |N : K| < |N : Z(N)|. Then there exists
an Ng (D)-equivariant bijection

Yp.x : Irrg(N | D) — Irrg(KNy (D) | D)
with

(G¢. N, 1) ~ (KNg_, (D), KNy (D), t')
forevery T € Irrg(N | D) and ' := Yp g (7).

Proof. Let Do = KN D. Let {1, ..., ¢} beacomplete set of representatives of Ng (D)-
orbits on the D-invariant characters in Irrg(K | Do). Let N; = N and G; = Gg;. We
have |N; : K| < |N : K| < [N : Z(N)|. By Lemma 7.3 applied to N;, there exists a
Ng, (D)-equivariant bijection

Yp,g : Irrg(N; | D, §;) — Irrg(KNy, (D) | D, ;)

with ((G,’)y, Ni,y) ~p (KN(G,-)V (D), KNN,. (D), T]_),{,. (y)) forall y € Irr(N; | D, &;).
Let t € Irrg(N | D). By Proposition 2.5(f), let ¢ € Irrg(K | Do) be under t (where
Dy = D N K) such that the character 7; € Irr(N¢ | D, ¢) with rgN = 1. We also know

that if ¢’ is chosen instead of ¢, then ¢’ = ¢* for some u € Ny (D). Now, ¢ = ¢; for
some i € Ng (D), and a unique i.
We define

Y.k (1) = (Yp g ((z)" KN D)
= (Ypq ()" XN D) € Lir(KNy (D) | 0).
(Notice that Y'p g ((t;)h) € Irrg(KNy, (D) | D, &;), and therefore it induces irreducibly
to KNy (D) by the Clifford correspondence.)
First, we check that this is a well-defined N¢ (D)-equivariant map. Suppose that ¢*

is chosen instead of ¢ for some u € Ny (D), and suppose that (g“”)hl = ¢; for some
h1 € Ng (D). We have to check that

-1 -1
(Tp.g ()" HYENVD) — (vp, o () )M KRN D),
Now, t;v = (17)" and h=Yuh, € Ng, (D). Then

Yoo ()™)Y = Y., (1)) 11y = Y, () e,

and therefore
S -1
Yoo (7)™ =Yp o ()"

Since u € Ny (D), both characters induce the same character of KNy (D). Hence Tp g
is well-defined.
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Now, we prove that Y'p g is Ng (D)-equivariant. Let T € Irrg(N | D) and x € Ng (D).
Let ¢ € Irrg(K | Do) be under 7 such that 7, € Irr(N¢ | D, ¢). Suppose that gh = ¢;. Now

Tex = (1¢)7, ({X)x_]h = ¢; and we have

Yok (%) = (T ((xe)* @ MY KNV D) — ((pp, ()" ) KNV (D))

= Tp k(0)".

Next we prove that the block of Y'p g (t) has defect group D and that Yp g (r) has
height zero. The block of (Q)h has defect group D, and induces bl(z") which also has
defect group D. Now let b be the block Yp ¢, ((r;)h) which also has defect group D. We
know that Vi = bl((t; )"). Also, b induces a block ¢ of KNy (D), which has defect group
R containing D. Now, ¢ is the block of (7)" that has defect group D, and therefore R is
contained in some conjugate of D. We conclude that ¢ has defect group D. By Proposition
2.5(g), we conclude that Yp g (t) has height zero.

Now, we prove that Yp g is one-to-one. Suppose that Yp x () = Yp x (), where
7,% € Irro(N | D). Let ¢ € Irr(K) be such that 7, € Irrg(N; | D, ¢). We know that
Yp.k(t) elir(KNy (D) | ¢). Therefore if ¢’ € Irr(K) is such that Yy €lrrg(Ny | D, ",
then we conclude that ¢’ = ¢" for some n € Ny (D), by Clifford’s theorem applied
to Tp x(r) = Yp k() for the normal subgroup K <1 KNy (D). Now, suppose that

¢" = ¢;, where h € Ng(D). Then (¢/)" " = ¢;. Now

(Yp.g ()Y KNV DN p (1) = Y () = (Ypg, ()™ MYKNNDIYI I,

Now, using that n € Ny (D) < KNy (D) and that 2~! normalizes KNy (D), we obtain
-1
TD,qi((‘[;)h)KNN(D) — TD,{,-((l/fg")n h)KNN(D)-

By the Clifford correspondence, we have
-1
.o ((7)") = Yoo (e ™M),

and using that Yp , is a bijection, (t;)" = (Y¢» Y ' and e = (Yen o Inducing to N,
we get T = .

Next we prove that [1p g is surjective. Given y € Irro(KNy (D) | D), by Proposition
2.5(f), let ¢ € Irr(K) be such that y; € Irrg(KNy, (D) | D, ¢). Now ¢ = ¢ for some i
and 4 € Ng (D). Using that conjugation by hlisa bijection Irrg(KNy, (D) | D, &) —
Trrg(KNw, (D) | D, ¢), we write y; = p" for some p € Trg(KNy, (D) | D, &). Now
using that Yp ; is a bijection and that conjugation by 4 is a bijection Irro(N¢ | D, ¢) —
Irro(N; | D, &;), we can write p = Tp g, (,uh) for some pu € Irrg(N¢ | D, ¢). It is enough
to check that the irreducible character t = u" lies in Irro(N | D). Since bl(y) has defect
group D, by Brauer’s first main theorem, bl(y)" is defined and has defect group D.
Since bl(y;)KN¥(P) = bl(y), also bl(y,)" is defined and has defect group D. Since

bl(p)"" = bl(y¢), it follows that bl(y;)™¢ is defined and equals bl(11). Hence we see
that bl(u)N = bl(y)N has defect group D. Since t = u”, we find that bl(z) has defect
group D. By Proposition 2.5(g), t has height zero and I1p x () = y.
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It remains to show that
(G¢. N, 1) ~ (KNG _, (D), KNy(D), T')

forevery T € Irrg(N | D) and " := T p g (7).

First we prove this statement in the case where for v € Irrg(N | D) there exists some
¢ € Irr(K) such that 7 has a Clifford correspondent 7, € Irro(Ny; | D, ¢;) for some i.
We know that

((Gi)y, Ni, ) ~b (KNg;), (D), KNy, (D), y").

We may assume that t is G-invariant and that t’ is Ng (D)-invariant. Now, for every
N < J < G and J; := G; N J, by the Clifford correspondence, induction gives a
bijection between Irr(J; | y) and Irr(J | T) as J; is the stabilizer of ¢; in J. Analogously
for H := KNg (D) induction gives a bijection between Irr(J;NH | y') and Irr(HNJ | T/).
Let M = KNy (D). Since 1 is G-invariant, we have G = N G; by the Frattini argument.
Also H = M H;. All the hypotheses of Theorem 3.14 are satisfied, and we conclude that

(GT’ N7 T) ~b (H‘[/’ KNN(D)a T/)’

where 7/ := (y/)KNVD) = v (7).
By conjugation with elements of Ng (D) we see that

(Gt, N, ) ~p (Hr, KNN(D), Yp k(7))
for all characters 7 € Irrg(K | D). O

Corollary 7.5. Let K << G where K < N, |N : K| < [N : Z(N)| and KNy(D) # N.
Then there exists an Ng (D)-equivariant bijection

Mp : Irrg(N | D) — Trrg(Ny (D) | D)
with

(G¢. N, 1) ~, NG(D)r,Ny(D), ')
forevery T € Trrg(N | D) and t’ := Tl p (7).

Proof. By hypothesis, Ni := KNy (D) is a proper subgroup of N. We see that every
non-abelian simple group involved in Ny is in S and |Nj/Z(N1)| < |N/Z(N)|. Let
G := KNg (D). By induction, there exists an Ng, (D)-equivariant bijection

'y : Irrg(Ny | D) — Trrg(Ny, (D) | D),

such that ((G1)z, N1, ) ~b (Ng, (D), Ny, (D), t) for every © € Irro(N; | D) with
v’ :=IT’5 (7). Note that Ng, (D) = Ng (D).
Now, by Proposition 7.4, we have an N (D)-equivariant bijection

Yp.x : Irrg(N | D) — Irrg(KNy (D) | D)

with
(G¢, N, 1)~ (KNg_, (D), KNy (D), t')
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for every T € Irro(N | D) and t/ := Yp g (t). Using Lemma 3.8(a), we check that the
map I1p := 1,0 Yp g is an N (D)-equivariant bijection that satisfies the requirements.
O

In the next result, we consider the case where there exists a normal subgroup K such that
K N Discentralin N.

Proposition 7.6. Suppose that there exists a subgroup K <{G with Z(N) < K < N with
K N D < Z(N). Then there exists an Ng(D)-equivariant bijection

Mp : Irrg(N | D) — Trrg(Ny (D) | D)

with
(G¢, N, 1) ~, (NGg(D)p, Ny(D), T')

forevery T € Trrg(N | D) and t’ := Tl p (7).

Proof. By Corollary 7.5, we may assume that N = KNy (D). By Remark 7.2, we have
G = KNg (D). Hence the group M := K D is a normal subgroup of G and M/K is a
p-group with Dy := K N D < Z(M). By Corollary 5.14 there exists a bijection

Ap :Irrg(M | D) — Irtg(Np (D) | D),
such that for every 0 € Irro(M | D) and H := Ng (D) we have
(Go, M, 0) ~p (Hp, M N H, Ap(0)).

We now apply Proposition 4.7(b) with G := Irrg(M | D), G’ := TIrrg(Npy (D) | D), Q := D
and J := N. Hence there exists an Ng (D)-equivariant bijection

Ip : Irrg(N | D) — Irrg(Ny (D) | D),
such that for every t € Irrg(N | D) and t’ := I1p(r) we have
(G‘(aNa T) Nb (H‘[’NmHa T/)' O

The next statement concerns the case where Proposition 7.6 cannot be applied, completing
the proof of Theorem 7.1.

Proposition 7.7. Suppose that there exists no normal subgroup K < G with Z(N) <
K < Nand K N D < Z(N). Then there exists an Ng (D)-equivariant bijection

Ip : Irrg(N | D) — Irrg(Ny (D) | D)

with
(G:, N, ) ~p NG(D)r,Ny(D), 7'

forevery T € Irrg(N | D) and t' := T p (7).
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Proof. Since Oy (N)Z(N) N D < Z(N), we know that O, (N) < Z(N) by hypothesis.
If O, (N) is not contained in Z(N), then Corollary 7.5 implies O, (N)Ny (D) = N. Since
D contains O, (N) (Theorem (4.8) of [Nav98]) we conclude that Ny (D) = N and the
theorem is trivial in this case. Also, the theorem is trivial if N is abelian. Hence we may
assume that the Fitting subgroup F(N) of N is central and that N is non-abelian.

Now let K := E(N) be the layer of N (see [Isa08, p. 274] for an exact defini-
tion). Since the generalized Fitting subgroup F*(N) = K F(N) contains its own cen-
tralizer in N, we deduce that K is not contained in Z(N). Also Z(K) < Z(N) since
Z(K) < F(N). Now by hypothesis, Dy := D N K is not contained in Z(K). By Corol-
lary 6.3 there exists an Ng (Dg)-stable group M with Ng (Do) < M < K and an Ng (Dy)-
equivariant bijection

Q : Irrg(K | Do) — Irrg(M | Do)

such that
(G¢, K, ) ~b (MNg, (Do), M, 2(¢)) forevery ¢ € Irro(K | Do).

We can apply Proposition 4.7(b) for G := Irrg(K | Dg), G’ := Irro(M | Dg), Q := D
and J := N. Since Ng (D) is contained in Ng(Dg), we conclude that there exists an
N¢ (D)-equivariant bijection

Ip : Irrg(N | D) — Irrg(MNy (Do) | D)
such that for every t € Irrg(N | D) and t’ = [Ip(t’) we have
(G, N, 1) ~p (MNG (Do), MNy (Do), T').

Now we apply the inductive hypothesis to the group MNy(Dg) < N. This and Remark
3.8 imply the final statement. O

We can now complete the proof of Theorem A.

Theorem 7.8. Let G be a finite group and let p be a prime. Suppose that every non-
abelian simple group involved in G satisfies the inductive AM-condition for p. Then
Brauer’s Height Zero Conjecture holds for G and the prime p.

Proof. The “if” direction of Brauer’s Height Zero Conjecture (BHZC) has been proved
in [KM13]. The proof of the main result in [Murl 1] shows that Theorem B, together with
the generalized Gluck—Wolf theorem, and a proof of the “only if” direction of BHZC for
quasisimple groups, implies the “only if” direction of BHZC for every finite group. Now,
the generalized Gluck—Wolf theorem has been proved in [NT13], while the BHZC has
been proved for quasisimple groups in [KM12]. O
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