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Abstract. Let X and Y be smooth and projective varieties over a field k finitely generated over Q,
and let X and Y be the varieties over an algebraic closure of k obtained from X and Y , respectively,
by extension of the ground field. We show that the Galois invariant subgroup of Br(X)⊕Br(Y ) has
finite index in the Galois invariant subgroup of Br(X × Y ). This implies that the cokernel of the
natural map Br(X)⊕ Br(Y )→ Br(X× Y ) is finite when k is a number field. In this case we prove
that the Brauer–Manin set of the product of varieties is the product of their Brauer–Manin sets.
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Let k be a field with a separable closure k̄, and 0 = Aut(k̄/k). For an algebraic vari-
ety X over k we write X for the variety over k̄ obtained from X by extending the ground
field. Let Br(X) be the cohomological Brauer–Grothendieck group H2

ét(X,Gm) (see [4]).
The group Br(X) is naturally a Galois module. The image of the natural homomorphism
Br(X)→ Br(X) lies in Br(X)0; the kernel of this homomorphism is denoted by Br1(X),
so that Br(X)/Br1(X) is a subgroup of Br(X)0 . Recall that Br(X) and Br(X) are torsion
abelian groups whenever X is smooth (see [4, II, Prop. 1.4]).

Theorem A. Let k be a field finitely generated over Q. LetX and Y be smooth, projective
and geometrically integral varieties over k. Then the cokernel of the natural injective map

Br(X)0 ⊕ Br(Y )0 → Br(X × Y )0

is finite.
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See Theorem 3.1 for an analogue in finite characteristic. The proof uses the results of
Faltings and the second named author on Tate’s conjecture for abelian varieties.

Let k be a field finitely generated over its prime subfield. We proved in our previous
paper [15] that Br(X)0 is finite when X is an abelian variety and char(k) 6= 2, or X
is a K3 surface and char(k) = 0. As a corollary we deduce that if Z is a smooth and
projective variety over k such that Z is birationally equivalent to a product of curves,
abelian varieties and K3 surfaces, then the groups Br(Z)0 and Br(Z)/Br1(Z) are finite.

The following result easily follows from Theorem A (see Section 4).

Theorem B. Let k be a field finitely generated over Q. Let X and Y be smooth, pro-
jective and geometrically integral varieties over k. Assume that (X × Y )(k) 6= ∅ or
H3(k, k̄∗) = 0. Then the cokernel of the natural map

Br(X)⊕ Br(Y )→ Br(X × Y )

is finite.

Now let k be a number field. In this case H3(k, k̄∗) = 0 (see [9, Cor. I.4.21]), so by
Theorem B the Brauer group Br(X×Y ) is generated, modulo the image of Br(X)⊕Br(Y ),
by finitely many elements. The following result shows that these elements do not give any
new Brauer–Manin conditions on the adelic points of X × Y besides those already given
by the elements of Br(X) ⊕ Br(Y ). For the definition of the Brauer–Manin set X(Ak)Br

we refer to [14, Section 5.2].

Theorem C. Let X and Y be smooth, projective, geometrically integral varieties over a
number field k. Then

(X × Y )(Ak)Br
= X(Ak)Br

× Y (Ak)Br.

The key topological fact behind our proof of Theorem C is this: for any path-connected
non-empty CW-complexesX and Y , and any commutative ring R with 1 there is a canon-
ical isomorphism

H2(X × Y,R) = H2(X,R)⊕ H2(Y, R)⊕
(
H1(X,R)⊗R H1(Y, R)

)
.

See Proposition 2.2 for this exercise in algebraic topology. (This formula does not gen-
eralise to the third cohomology group, see Remark 2.3.) The proof of Theorem C uses
Theorem 2.6 that gives a similar result for the étale cohomology of connected varieties
over k̄.

T. Schlank and Y. Harpaz, using étale homotopy of Artin and Mazur, recently proved
a statement similar to our Theorem C where the Brauer–Manin set is replaced by the étale
Brauer–Manin set. In their result the varieties X and Y do not need to be proper (see [12,
Cor. 1.3]).

1. Preliminaries

1.1. Notation and conventions. In this paper ‘almost all’ means ‘all but finitely many’.
If B is an abelian group, we write Btors for the torsion subgroup of B. Let B/tors :=

B/Btors. If ` is a prime, then B(`) is the subgroup of Btors consisting of the elements
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whose order is a power of `, and B(non-`) is the subgroup of Btors consisting of the
elements whose order is not divisible by `. Ifm is a positive integer, then Bm is the kernel
of multiplication by m in B.

1.2. Tate modules. Let us recall some useful elementary statements that are due to Tate
[17, 19]. Let B be an abelian group. The projective limit of the groups B`n (where the
transition maps are multiplications by `) is called the `-adic Tate module of B, and is
denoted by T`(B). This limit carries a natural structure of a Z`-module; there is a natural
injective map T`(B)/` ↪→ B`. One may easily check that T`(B)` = 0, and hence T`(B)
is torsion-free.

Let us assume that B` is finite. Then all the B`n are obviously finite, and T`(B) is
finitely generated by Nakayama’s lemma. Therefore, T`(B) is isomorphic to Zr` for some
non-negative integer r ≤ dimF`(B`). Moreover, T`(B) = 0 if and only if B(`) is finite.
We denote by V`(B) the Q`-vector space T`(B)⊗Z` Q`. Clearly, V`(B) = 0 if and only
if B(`) is finite.

IfA is an abelian variety over a field k, and ` is a prime different from char(k), n = `i ,
then we write An for the kernel of multiplication by n in A(k̄). The group An is a free
Z/n-module of rank 2 dim(A) equipped with the natural structure of a 0-module [11].
We write T`(A) for T`(A(k̄)), and V`(A) for V`(A(k̄)). The Q`-vector space V`(A) has
dimension 2 dim(A) and carries the natural structure of a 0-module.

1.3. The Kummer sequence and the Picard variety. LetX be a smooth, projective and
geometrically integral variety over k. For a positive integer n coprime to char(k) we have
the Kummer exact sequence of sheaves of abelian groups in étale topology:

0→ µn→ Gm → Gm → 0.

Recall that H1
ét(X,Gm) = Pic(X). Thus the Kummer sequence gives rise to an isomor-

phism of 0-modules
H1

ét(X,µn) = Pic(X)n. (1)

Let Pic0(X) be the 0-submodule of Pic(X) consisting of the classes of divisors alge-
braically equivalent to 0. By definition, the Néron–Severi group of X is the 0-module
NS(X) = Pic(X)/Pic0(X). The abelian group NS(X) is finitely generated by a theorem
of Néron and Severi.

Let A be the Picard variety of X (see [7]). Then A is an abelian variety over k such
that the 0-module A(k̄) is identified with Pic0(X). Since the multiplication by n is a
surjective endomorphism of A, we have an exact sequence of 0-modules

0→ An→ Pic(X)n→ NS(X)n→ 0. (2)

Setting n = `m, where ` 6= char(k) is a prime, we deduce from (1) and (2) a canonical
isomorphism of 0-modules

H1
ét(X,Z`(1)) = T`(A) = T`(Pic(X)). (3)

In particular, this is a free Z`-module of finite rank.
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Again, by surjectivity of multiplication by `m on A(k̄) = Pic0(X) we obtain from the
Kummer sequence the following exact sequence of 0-modules:

0→ NS(X)/`m→ H2
ét(X,µ`m)→ Br(X)`m → 0. (4)

Passing to the projective limit in m gives rise to the well known exact sequence

0→ NS(X)⊗ Z`→ H2
ét(X,Z`(1))→ T`(Br(X))→ 0. (5)

It shows that the torsion subgroup of H2
ét(X,Z`(1)) coincides with NS(X)(`) (cf. [15,

Sect. 2.2]). In particular, if ` does not divide the order of the torsion subgroup of NS(X),
then H2

ét(X,Z`(1)) is a free Z`-module of finite rank.

1.4. Products of varieties. LetX and Y be smooth, projective and geometrically integral
varieties over k. We have the natural projection maps

πX : X × Y → X, πY : X × Y → Y.

We denote by the same symbols the projections X × Y → X and X × Y → Y . Fixing
k̄-points x0 ∈ X(k̄) and y0 ∈ Y (k̄), we define closed embeddings

qy0 : X = X × y0 ↪→ X × Y , qx0 : Y = x0 × Y ↪→ X × Y .

Then πXqy0 = idX and πY qx0 = idY . On the other hand,

πY qy0(X) = y0 ⊂ Y , πXqx0(Y ) = x0 ⊂ X.

Let F be an étale sheaf defined by a commutative k-group scheme (see [8, Cor.
II.1.7]). For example, F can be the sheaf defined by the multiplicative group Gm, or
by the finite k-groups Z/n or µn, where n is not divisible by the characteristic of k. The
induced map π∗X : Hiét(X,F) → Hiét(X × Y ,F) is a homomorphism of 0-modules,
whereas q∗x0

: Hiét(X × Y ,F)→ Hiét(Y ,F) is a priori only a homomorphism of abelian
groups. If x0 ∈ X(k), then q∗x0

is also a homomorphism of 0-modules.
The next proposition easily follows from the definitions and the above considerations.

Proposition 1.5. For any i ≥ 1 we have the following statements.

(i) The induced maps

π∗X : H
i
ét(X,F)→ Hiét(X × Y ,F), π∗Y : H

i
ét(Y ,F)→ Hiét(X × Y ,F)

are injective homomorphisms of 0-modules.
(ii) The induced maps q∗y0

and q∗x0
define isomorphisms of abelian groups

q∗y0
: π∗X(H

i
ét(X,F))→ Hiét(X,F), q∗x0

: π∗Y (H
i
ét(Y ,F))→ Hiét(Y ,F).
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(iii) The subgroup π∗X(H
i
ét(X,F)) lies in the kernel of

q∗x0
: Hiét(X × Y ,F)→ Hiét(Y ,F),

and similarly π∗Y (H
i(Y ,F)) lies in the kernel of

q∗y0
: Hiét(X × Y ,F)→ Hiét(X,F).

Hence π∗X(H
i
ét(X,F)) ∩ π

∗

Y (H
i
ét(Y ,F)) = 0.

(iv) The map (a, b) 7→ π∗X(a)+π
∗

Y (b) defines an injective homomorphism of 0-modules

Hiét(X,F)⊕ Hiét(Y ,F)→ Hiét(X × Y ,F).

1.6. Picard groups of products of varieties. We identify Pic(X)⊕Pic(Y )with its image
in Pic(X × Y ). It is well known that

Pic0(X × Y ) = Pic0(X)⊕ Pic0(Y ).

Let A be the Picard variety of X, and let B be the Picard variety of Y . The dual abelian
variety At of A is the Albanese variety of X. When X(k) 6= ∅, the choice of a point
x0 ∈ X(k) defines a morphism Albx0 : X → At that sends x0 to 0. The pair (At ,Albx0)

can be characterized by the universal property that any morphism from X to an abelian
variety A′ that sends x0 to 0 is the composition of Albx0 and a morphism of abelian
varieties At → A′. See [11], [7] for more details. It is clear that the Albanese variety ofX
is At .

Proposition 1.7. We have a commutative diagram of 0-modules with exact rows and
columns, where the exact sequence in the bottom row is split:

0 0
↓ ↓

A(k̄)⊕ B(k̄) = A(k̄)⊕ B(k̄)

↓ ↓

0→ Pic(X)⊕ Pic(Y )→ Pic(X × Y ) → Hom(B t , A)→ 0
↓ ↓ ||

0→ NS(X)⊕ NS(Y )→ NS(X × Y ) → Hom(B t , A)→ 0
↓ ↓

0 0

If (X × Y )(k) 6= ∅, then the exact sequence in the middle row is also split.

Proof. Choose a k̄-point (x0, y0) in X × Y , and let Px0,y0 be the kernel of the group
homomorphism

Pic(X × Y )→ Pic(X)⊕ Pic(Y ), L 7→ (q∗y0
L, q∗x0

L).

Let Nx0,y0 be the image of Px0,y0 in NS(X × Y ). By Proposition 1.5 the intersection of
Px0,y0 with Pic(X)⊕ Pic(Y ) inside Pic(X × Y ) is zero, hence the natural surjective map
Px0,y0 → Nx0,y0 is an isomorphism of abelian groups.
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For any L ∈ Px0,y0 we have q∗y0
L = 0, hence q∗yL ∈ Pic0(X) for any y ∈ Y (k̄). Thus

Nx0,y0 is the kernel of the group homomorphism

NS(X × Y )→ NS(X × y)⊕ NS(x × Y )

for any x ∈ X(k̄) and y ∈ Y (k̄). In particular, Nx0,y0 does not depend on the choice of
(x0, y0), so we can drop x0 and y0, and write N = Nx0,y0 . It follows that N is a Galois
submodule of NS(X × Y ), so that we have a decomposition of 0-modules

NS(X × Y ) = NS(X)⊕ NS(Y )⊕N.

It remains to show that the 0-modules N and Hom(B t , A) are canonically isomorphic.
The Poincaré sheaf PX on At × A is a certain canonical invertible sheaf that restricts

trivially to both {0}×A and At ×{0} (see [11], [7]). Every morphism of abelian varieties
u : B t → A gives rise to the invertible sheaf (Albx0 , u Alby0)

∗(PX) on X × Y , whose
isomorphism class is in Px0,y0 . It is well known that this defines a group isomorphism

Hom(B t , A)
∼
−→ Px0,y0 . (6)

The Poincaré sheaf is defined over k so from (6) we deduce a canonical isomorphism of
0-modules Hom(B t , A)

∼
−→ N . The last statement of the proposition is clear: it is enough

to choose (x0, y0) ∈ (X × Y )(k). ut

The following corollary is well known. See Proposition 2.2 below for a topological ana-
logue.

Corollary 1.8. Let n be a positive integer not divisible by char(k). Then we have a canon-
ical decomposition of 0-modules

H1
ét(X × Y ,µn) = H1

ét(X,µn)⊕ H1
ét(Y , µn). (7)

Proof. The middle row of the diagram of Proposition 1.7 gives an isomorphism of
0-modules Pic(X)n ⊕ Pic(Y )n and Pic(X × Y )n. It remains to use the canonical iso-
morphism (1). ut

Remark 1.9. The abelian group Hom(B t , A) is finitely generated and torsion-free, hence
H1(k,Hom(B t , A)) is finite. It follows that the cokernel of the natural map

H1(k,Pic(X))⊕ H1(k,Pic(Y ))→ H1(k,Pic(X × Y ))

and the kernel of the natural map

H2(k,Pic(X))⊕ H2(k,Pic(Y ))→ H2(k,Pic(X × Y ))

are both finite.
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2. Künneth decompositions

2.1. Künneth decomposition with coefficients in a field. We continue to assume thatX
and Y are smooth, projective and geometrically integral varieties over k. Let ` 6= char(k)
be a prime. We have the Künneth decomposition of 0-modules

H2
ét(X × Y ,Q`) = H2

ét(X,Q`)⊕ H2
ét(Y ,Q`)⊕

(
H1

ét(Y ,Q`)⊗Q` H1
ét(X,Q`)

)
(see [8, Cor. VI.8.13]). From (3) we have a canonical isomorphism

H1
ét(X,Q`(1)) = V`(A).

When n is a positive integer coprime to char(k), the non-degeneracy of the Weil pairing
gives rise to a canonical isomorphism of Galois modules Bn = Hom(B tn, µn), and hence
to a canonical isomorphism

H1
ét(Y ,Q`) = V`(B)(−1) = HomQ`(V`(B

t ),Q`).

Therefore we have an isomorphism of 0-modules [18, p. 143]

H1
ét(Y ,Q`)⊗Q` H1

ét(X,Q`(1)) = HomQ`(V`(B
t ), V`(A)),

and hence a decomposition of Galois modules

H2
ét(X × Y ,Q`(1)) = H2

ét(X,Q`(1))⊕ H2
ét(Y ,Q`(1))⊕ HomQ`(V`(B

t ), V`(A)). (8)

Our next result, Theorem 2.6, is probably well known to experts; we give a proof as
we could not find it in the literature. As a motivation and for the sake of completeness we
present a similar result for CW-complexes (we shall not need it in the rest of the paper).

Proposition 2.2. Let X and Y be non-empty path-connected CW-complexes. For any
commutative ring R with 1 we have canonical isomorphisms of abelian groups

H1(X × Y,R) = H1(X,R)⊕ H1(Y, R)

and
H2(X × Y,R) = H2(X,R)⊕ H2(Y, R)⊕

(
H1(X,R)⊗R H1(Y, R)

)
.

Proof. To simplify notation we write Hn(X) for Hn(X,Z). The universal coefficients
theorem [6, Thm. 3.2] gives the following (split) exact sequence of abelian groups:

0→ Ext(Hn−1(X), R)→ Hn(X,R)→ Hom(Hn(X), R)→ 0. (9)

Since X is non-empty and path-connected we have H0(X) = Z (see [6, Prop. 2.7]). This
gives a canonical isomorphism

H1(X,R) = Hom(H1(X), R). (10)
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The Künneth formula for homology is

0→
n⊕
i=0

(
Hi(X)⊗ Hn−i(Y )

)
→ Hn(X × Y )→

n−1⊕
i=0

Tor(Hi(X),Hn−1−i(Y ))→ 0

(see [6, Thm. 3.B.6]). We deduce from it canonical isomorphisms

H1(X × Y ) = H1(X)⊕ H1(Y ) (11)

and
H2(X × Y ) = H2(X)⊕ H2(Y )⊕

(
H1(X)⊗ H1(Y )

)
. (12)

Our first isomorphism follows from (10) and (11).
The exact sequence (9) for n = 2 gives rise to the commutative diagram

0 → Ext(H1(X)⊕ H1(Y ), R) → H2(X,R)⊕ H2(Y, R) → Hom(H2(X)⊕ H2(Y ), R) → 0
↑ ↑ ↑

0 → Ext(H1(X × Y ), R) → H2(X × Y,R) → Hom(H2(X × Y ), R) → 0

By (11) the left vertical arrow is an isomorphism, hence the kernels of the other two
vertical arrows are isomorphic. Hence, by (12), the kernel of the middle vertical map is
isomorphic to Hom(H1(X) ⊗ H1(Y ), R), which by (10) is isomorphic to H1(X,R) ⊗R
H1(Y, R). Moreover, H2(X,R) and H2(Y, R) are direct factors of H2(X × Y,R), so our
second isomorphism follows. ut

Remark 2.3. Let X = RP2. Then H1(X) = Z/2 and Hn(X) = 0 for n ≥ 2. From
the universal coefficients theorem (9) we obtain H1(X,Z) = 0, H2(X,Z) = Z/2 and
Hn(X,Z) = 0 for n ≥ 3 (cf. [6, Ex. 3.9]). Combining the calculation of homology of X2

in [6, Ex. 3.B.3] with the universal coefficients theorem we obtain

H3(X2,Z) = Z/2 6=
3⊕
i=0

(
Hi(X,Z)⊗ H3−i(X,Z)

)
.

This shows that Proposition 2.2 does not generalise to the third cohomology group, at
least when R = Z.

2.4. The type of a torsor. After this digression into algebraic topology we return to
smooth, projective and geometrically integral varieties X and Y over a field k. We now
introduce some notation. Let SX be the finite commutative k-group of multiplicative type
whose Cartier dual ŜX := Homk̄-gr.(SX,Gm) is

ŜX = H1
ét(X,µn) = Pic(X)n.

Then we have a canonical identification

Hom(SX,Z/n) = H1
ét(X,Z/n). (13)
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For any finite k̄-group schemeG of multiplicative type annihilated by n we have a canon-
ical isomorphism, functorial in X and G:

τG : H1
ét(X,G)

∼
−→ Hom(Ĝ,Pic(X)) = Hom(Ĝ, ŜX)

(see [14, Cor. 2.3.9]; it is enough to check this for G = µm, where m is an integer
dividing n). It can be defined via the natural pairing

H1
ét(X,G)× Ĝ→ H1

ét(X,µn) = ŜX (14)

(see [14, Section 2.3]). If Z/X is a torsor under G, then the associated homomorphism
τG(Z) : Ĝ→ ŜX is called the type of Z/X. If we take G = SX, then there exists a torsor
TX/X under SX, unique up to isomorphism, whose type is the identity map. Thus there is
a well defined class [TX] ∈ H1

ét(X, SX). This class can be used to describe τ−1
G explicitly.

For ϕ ∈ Hom(Ĝ, ŜX) let ϕ̂ ∈ Hom(SX,G) be the homomorphism that corresponds to ϕ
under the identification

Hom(Ĝ, ŜX) = Hom(SX,G).

The functoriality of τG in G implies that τ−1
G (ϕ) is the push-forward ϕ̂∗[TX], which can

also be defined as the class of the X-torsor (TX ×k G)/SX.
If we take G = SX in (14) we obtain a natural pairing

H1
ét(X, SX)× ŜX → H1

ét(X,µn) = ŜX.

The definition of TX implies that pairing with the class [TX] gives the identity map on ŜX.
After a twist we obtain a natural pairing

H1
ét(X, SX)× H1

ét(X,Z/n)→ H1
ét(X,Z/n);

moreover, pairing with [TX] gives the identity map on H1
ét(X,Z/n).

Remark 2.5. There is a natural cup-product map

H1
ét(X, SX)⊗ H1

ét(Y , SY )→ H2
ét(X × Y , SX ⊗ SY ).

Let us denote the image of [TX] ⊗ [TY ] by [TX] ∪ [TY ]. From (13) we obtain a natural
pairing

H2
ét(X × Y , SX ⊗ SY )× H1

ét(X,Z/n)⊗ H1
ét(Y ,Z/n)→ H2

ét(X × Y ,Z/n).

Since pairing with [TX] induces identity on H1
ét(X,Z/n), and similarly for Y , we see that

pairing with [TX] ∪ [TY ] gives the cup-product map

∪ : H1
ét(X,Z/n)⊗ H1

ét(Y ,Z/n)→ H2
ét(X × Y ,Z/n).
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Theorem 2.6. Let n be a positive integer coprime to char(k). Then the homomorphism
of 0-modules

H2
ét(X,Z/n)⊕ H2

ét(Y ,Z/n)⊕
(
H1

ét(X,Z/n)⊗ H1
ét(Y ,Z/n)

)
→ H2

ét(X × Y ,Z/n)

given by π∗X on the first summand, by π∗Y on the second summand, and by the cup-product
on the third summand, is an isomorphism.

Proof. It is enough to establish this decomposition at the level of abelian groups. Choose
x0 ∈ X(k̄), y0 ∈ Y (k̄). Using the notation of Section 1.4 we define

H2
ét(X×Y ,Z/n)prim=Ker [(q∗y0

, q∗x0
) : H2

ét(X×Y ,Z/n)→H2
ét(X,Z/n)⊕H2

ét(Y ,Z/n)].

The étale (or Zariski) sheaf RqπX∗(Z/n) is the constant sheaf associated with the
finite abelian group Hqét(Y ,Z/n). Thus we have the Leray spectral sequence

E
p,q

2 = Hpét(X,Hqét(Y ,Z/n))⇒ Hp+qét (X × Y ,Z/n). (15)

We have seen in Proposition 1.5 that the maps π∗X and π∗Y make the abelian groups
Hmét(X,Z/n) and Hmét(Y ,Z/n) direct summands of Hmét(X × Y ,Z/n), for all m ≥ 1.
By the standard theory of spectral sequences this gives a canonical isomorphism

β : H2
ét(X × Y ,Z/n)prim

∼
−→ H1

ét(X,H1
ét(Y ,Z/n)).

Taking G = ŜY in (14) we get an isomorphism τ
ŜY
: H1

ét(X, ŜY )
∼
−→ Hom(SY , ŜX).

Using (13), after a twist we obtain an isomorphism

τ : H1
ét(X,H1

ét(Y ,Z/n))
∼
−→ H1

ét(X,Z/n)⊗ H1
ét(Y ,Z/n).

This gives some isomorphism as in the statement of the theorem. To complete the proof
we need to check that for any x ∈ H1

ét(X,Z/n) and any y ∈ H1
ét(Y ,Z/n) we have

x ∪ y = β−1τ−1(x ⊗ y).

We have seen above that τ−1(x⊗ y) is the push-forward of the class [TX] by the map
SX → Hom(SY ,Z/n) defined by

x ⊗ y ∈ H1
ét(X,Z/n)⊗ H1

ét(Y ,Z/n) = Hom(SX ⊗ SY ,Z/n).

In other words, τ−1(x⊗y) is obtained by pairing [TX] with x⊗y. In view of Remark 2.5,
in order to finish the proof, it remains to check that β−1 can be described via the pairing

H1
ét(X,Hom(SY ,Z/n))× H1

ét(Y , SY )→ H2
ét(X × Y ,Z/n),

namely, as pairing with [TY ]. This calculation is more or less standard (cf. [14, Thm. 4.1.1]
or, more recently, [5, Thm. 1.4]).
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Let us write D(Z) for the bounded derived category of étale sheaves of abelian groups
on a variety Z. Let RπX∗ : D(X × Y ) → D(X) be the derived functor of πX. Let
ρ : Y → Spec(k̄) be the structure morphism, and let Rρ∗ : D(Y ) → D(Ab) be the
corresponding derived functor to the bounded derived category of the category of abelian
groups Ab. Each of these derived categories has the canonical truncation functors τ≤m.
We need to recall the definition of the type map of a group G of multiplicative type (see
[14, Section 2.3]). This is the composite map

H1
ét(Y ,G)→ Ext1(Ĝ, τ≤1Rρ∗Gm)→ Hom(Ĝ,Pic(Y )). (16)

The Hom- and Ext-groups without subscript are taken in Ab or D(Ab). The second map
in (16) is induced by the obvious exact triangle in D(Ab)

k̄∗→ τ≤1Rρ∗Gm → (Pic(Y ))[−1],

where we used the facts that H0
ét(Y ,Gm) = k̄∗, since Y is reduced and connected, and

H1
ét(Y ,Gm) = Pic(Y ). To define the first map in (16) consider the local-to-global spectral

sequence of Ext-groups

E
p,q

2 = Hpét(Y , Ext
q

Y
(Ĝ,Gm))⇒ Extp+q

Y
(Ĝ,Gm).

It completely degenerates since Extq
Y
(Ĝ,Gm) = 0 for q ≥ 1, thus giving an isomorphism

Hqét(Y ,G)
∼
−→ Extq

Y
(Ĝ,Gm) [14, Lemma 2.3.7]. It remains to use the identities

Extq
Y
(Ĝ,Gm) = Extq(Ĝ,Rρ∗Gm) = Extq(Ĝ, τ≤qRρ∗Gm)

stemming from the fact that RHomY (ρ
∗Ĝ, ·) = RHom(Ĝ,Rρ∗(·)). When G is annihi-

lated by n, the image of the type map lies in Hom(Ĝ,Pic(Y )n), and thus τG can be written
as the composition of the maps

H1
ét(Y ,G)→ Ext1(Ĝ, τ≤1Rρ∗µn)→ Hom(Ĝ,Pic(Y )n).

We claim that these maps fit into the following commutative diagram of pairings:

H1
ét(X, Ĝ) × H1

ét(Y ,G) → H2
ét(X × Y ,µn)

|| ↓ ||

H1
ét(X, Ĝ) × Ext1

Y
(Ĝ, µn) → H2

ét(X × Y ,µn)

|| || ↑

H1
ét(X, Ĝ) × Ext1(Ĝ, τ≤1Rρ∗µn)→ H2

ét(X, τ≤1RπX∗µn)
|| ↓ ↓

H1
ét(X, Ĝ) × Hom(Ĝ,Pic(Y )n) → H1

ét(X,Pic(Y )n)

The first two pairings are compatible by [8, Prop. V.1.20]. The two lower pairings are
natural, and the compatibility of the rest of the diagram is clear.
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Now takeG = SY , so that Ĝ = Pic(Y )n. By pairing with [TY ], after a twist we obtain
a map

γ : H1
ét(X,H1(Y ,Z/n))→ H2

ét(X × Y ,Z/n),

which factors through the injective map

H2
ét(X, τ≤1RπX∗(Z/n))→ H2

ét(X × Y ,Z/n).

Since k̄ is separably closed we have H1
ét(y0,G) = H1

ét(k̄,G) = 0, so that q∗y0
γ = 0.

A similar argument gives q∗x0
γ = 0, thus Im(γ ) ⊂ H2

ét(X× Y ,Z/n)prim. By the standard
theory of spectral sequences the map β is obtained from the right hand downward map in
the diagram (after a twist). Since the type of TY is the identity in Hom(Pic(Y )n,Pic(Y )n),
the commutativity of the diagram implies that βγ = id. ut

Corollary 2.7. Let n be a positive integer coprime to char(k), |NS(X)tors| and
|NS(Y )tors|. Then we have a canonical decomposition of 0-modules

H2
ét(X × Y ,µn) = H2

ét(X,µn)⊕ H2
ét(Y , µn)⊕ Hom(B tn, An). (17)

Proof. For any prime ` dividing n we have NS(X)(`) = 0 and NS(Y )(`) = 0. Thus from
the isomorphism (1) and the exact sequence (2) we obtain canonical isomorphisms

H1
ét(X,µ`m) = A`m , H1

ét(Y , µ`m) = B`m ,

for any m ≥ 1. From the non-degeneracy of the Weil pairing we deduce a canonical
isomorphism of 0-modules

H1(Y ,Z/`m) = B`m(−1) = Hom(B t`m ,Z/`
m).

We conclude that the Galois modules H1
ét(Y ,Z/`

m)⊗ H1
ét(X,µ`m) and Hom(B t`m , A`m)

are canonically isomorphic. Hence, after a twist by µn, the isomorphism of Theorem 2.6
can be written as (17). ut

2.8. First Chern classes. Let ` be a prime different from char(k). Tensoring (5) with Q`
we obtain the following exact sequence of 0-modules

0→ NS(X)⊗Q`→ H2
ét(X,Q`(1))→ V`(Br(X))→ 0, (18)

The injective maps from (18) and (4) are both called the first Chern class maps (see, e.g.,
[8, VI.9]):

c1 : NS(X)⊗Q` ↪→ H2
ét(X,Q`(1)), c̄1 : NS(X)/`m ↪→ H2

ét(X,µ`m).

Proposition 1.7 gives a natural isomorphism of Galois modules

NS(X × Y ) = NS(X)⊕ NS(Y )⊕ Hom(B t , A).

Since the maps c1 and c̄1 are functorial in X, we see that the map

c1 : NS(X × Y )⊗Q` ↪→ H2
ét(X × Y ,Q`(1))
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forms obvious commutative diagrams with the maps

c1 : NS(X)⊗Q` ↪→ H2
ét(X,Q`(1)), c1 : NS(Y )⊗Q` ↪→ H2

ét(Y ,Q`(1)),

c1 : Hom(B t , A)⊗Q` ↪→ HomQ`(V`(B
t ), V`(A)).

Similarly, for ` coprime to char(k), |NS(X)tors| and |NS(Y )tors|, the map

c̄1 : NS(X × Y )/`m ↪→ H2
ét(X × Y ,µ`m)

forms similar commutative diagrams with the maps

c̄1 : NS(X)/`m ↪→ H2
ét(X,µ`m), c̄1 : NS(Y )/`m ↪→ H2

ét(Y , µ`m),

c̄1 : Hom(B t , A)/`m ↪→ Hom(B t`m , A`m) = H1
ét(Y ,Z/`

m)⊗ H1
ét(X,µ`m).

2.9. Brauer groups of products of varieties. Let ` be a prime different from char(k).
Applying (18) to X, Y and X× Y , using (8) and the compatibilities from Section 2.8, we
obtain the following decomposition of Galois modules:

V`(Br(X×Y )) = V`(Br(X))⊕V`(Br(Y ))⊕
(
HomQ`(V`(B

t ), V`(A))/Hom(B t , A)⊗Q`
)
.

(19)

When ` is also coprime to |NS(X)tors| and |NS(Y )tors|, we apply (4) to X, Y and X × Y ,
and obtain from Corollary 2.7 and Section 2.8 the decomposition of 0-modules

Br(X × Y )`m = Br(X)`m ⊕ Br(Y )`m ⊕ Hom(B t`m , A`m)/(Hom(B t , A)/`m). (20)

The case when X and Y are elliptic curves was considered in [16, Prop. 3.3].

3. Proof of Theorem A

The proof of Theorem A crucially uses the following properties. Let C and D be abelian
varieties over a field k finitely generated over its prime subfield. Then

(1) the 0-modules V`(C) and V`(D) are semisimple, and the natural injective map

Hom(C,D)⊗Q` ↪→ Hom0(V`(C), V`(D))

is bijective;
(2) for almost all primes ` the 0-modules C` and D` are semisimple, and the natural

injective map
Hom(C,D)/` ↪→ Hom0(C`,D`)

is bijective.

Statement (1) was proved by the second named author in characteristic p > 2 [20, 21],
and by Faltings [2, 3] in characteristic zero. In characteristic p = 2 this follows from the
results of S. Mori [10, Thm. 2.5, pp. 244–245] (see also [26, Sect. 1]). Statement (2) was
proved by the second named author in [22, Thm. 1.1], [23, Cor. 5.4.3 and Cor. 5.4.5] and
[26, Cor. 2.3 and Cor. 2.7] (see also [15, Prop. 3.4], [24, Thm. 4.4], [27] and [25]).

Theorem A is a consequence of the following result.
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Theorem 3.1. Let k be a field finitely generated over its prime subfield. Let X and Y be
smooth, projective and geometrically integral varieties over k.

(i) If char(k) = 0, then [Br(X × Y )/(Br(X)⊕ Br(Y ))]0 is finite.
(ii) If char(k) = p, then the group [Br(X × Y )/(Br(X)⊕ Br(Y ))]0(non-p) is finite.

Proof. Since Br(X × Y ) is a torsion group, it is enough to prove these statements:

(a) If ` is a prime, ` 6= char(k), then V`
(
(Br(X × Y )/(Br(X)⊕ Br(Y )))0

)
= 0.

(b) For almost all primes ` we have
(
Br(X × Y )`/(Br(X)` ⊕ Br(Y )`)

)0
= 0.

Let us prove (a). Using (19) we obtain

V`
(
(Br(X×Y )/(Br(X)⊕Br(Y )))0

)
= V`

(
Br(X×Y )/(Br(X)⊕Br(Y ))

)0
=
(
V`(Br(X×Y ))/(V`(Br(X))⊕V`(Br(Y )))

)0
=
(
HomQ`

(
V`(B

t ), V`(A)
)
/Hom(B t , A)⊗Q`

)0
.

By a theorem of Chevalley [1, p. 88] the semisimplicity of the 0-modules V`(B t ) and
V`(A) implies the semisimplicity of the 0-module HomQ`(V`(B

t ), V`(A)). This implies

V`
(
(Br(X× Y )/(Br(X)⊕Br(Y )))0

)
= Hom0(V`(B

t ), V`(A))/Hom(B t , A)⊗Q` = 0,

thus proving (a).
Let us prove (b). By (20) it is enough to show that(

Hom(B t`, A`)/(Hom(B t , A)/`)
)0
= 0.

Since Hom(B t , A)0 = Hom(B t , A), the exact sequence

0→ Hom(B t , A)0/`→ (Hom(B t , A)/`)0 → H1(k,Hom(B t , A))

implies that for all but finitely many primes ` we have

(Hom(B t , A)/`)0 = Hom(B t , A)/`.

If we further assume that ` > 2 dim(A) + 2 dim(B) − 2, then, by a theorem of Serre
[13], the semisimplicity of the 0-modules B t` and A` implies the semisimplicity of
Hom(B t`, A`). Hence we obtain(

Hom(B t`, A`)/(Hom(B t , A)/`)
)0
= Hom(B t`, A`)

0/(Hom(B t , A)/`)0

= Hom0(B
t
`, A`)/(Hom(B t , A)/`) = 0,

thus proving (b). ut

Corollary 3.2. Let k be a field finitely generated over its prime subfield. Let X and Y be
smooth, projective and geometrically integral varieties over k.

(i) Assume char(k) = 0. The group Br(X×Y )0 is finite if and only if the groups Br(X)0

and Br(Y )0 are finite.
(ii) Assume that char(k) is a prime p. The group Br(X× Y )0(non-p) is finite if and only

if the groups Br(X)0(non-p) and Br(Y )0(non-p) are finite.
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4. Proof of Theorem B

It is enough to prove the following statements:

(a) The subgroup of Br(X × Y ) generated by Br1(X × Y ) and the images of Br(X) and
Br(Y ), has finite index.

(b) The cokernel of the natural map Br1(X)⊕ Br1(Y )→ Br1(X × Y ) is finite.

Each of these statements formally follows from Theorem A, the functoriality of the
Hochschild–Serre spectral sequence

E
p,q

2 = Hp(k,Hqét(X,Gm))⇒ Hp+qét (X,Gm) (21)

with respect to X, and the finiteness property stated in Remark 1.9.
Let us recall how (21) is usually applied. If X(k) 6= ∅, then the canonical map

E
3,0
2 = H3(k, k̄∗)→ H3

ét(X,Gm)

has a section given by a k-point on X, and hence is injective. The same is obviously true
if H3(k, k̄∗) = 0. The standard theory of spectral sequences now implies that the kernel
of the canonical map

E
0,2
2 = Br(X)0 → E

2,1
2 = H2(k,Pic(X))

is the image of Br(X) in Br(X)0 .

Let us prove (a). By functoriality of the spectral sequence (21) we have the following
commutative diagram with exact rows:

Br(X × Y ) → Br(X × Y )0 → H2(k,Pic(X × Y ))
↑ ↑ ↑

Br(X)⊕ Br(Y )→ Br(X)0 ⊕ Br(Y )0 → H2(k,Pic(X))⊕ H2(k,Pic(Y ))

Note that the middle vertical map here is injective. To prove (a) we must show that the
image of Br(X)⊕ Br(Y ) in Br(X × Y )0 has finite index in the subgroup of the elements
that go to 0 in H2(k,Pic(X × Y )). This follows from Theorem 3.1(i) and Remark 1.9.

To prove (b) we consider another commutative diagram with exact rows, also con-
structed using the functoriality of the spectral sequence (21):

Br(k)→ Br1(X × Y ) → H1(k,Pic(X × Y )) → 0
↑ ↑

Br1(X)⊕ Br1(Y )→ H1(k,Pic(X))⊕ H1(k,Pic(Y ))→ 0

Statement (b) follows from this diagram and Remark 1.9.

5. Proof of Theorem C

The inclusion of the left hand side into the right hand side follows from functoriality of
the Brauer group. Thus we can assume that X(Ak)Br and Y (Ak)Br are not empty. Since
the Brauer group of a smooth projective variety is a torsion group, to prove the opposite
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inclusion it is enough to show that for any positive integer n the subgroup Br(X × Y )n
is generated by the images of Br(X)n and Br(Y )n, together with some elements that pair
trivially withX(Ak)Br

×Y (Ak)Br with respect to the Brauer–Manin pairing. The Kummer
sequence gives a surjective map H2

ét(X×Y,µn)→ Br(X×Y )n, so it suffices to show that,
modulo the images of H2

ét(X,µn) and H2
ét(Y, µn), the group H2

ét(X× Y,µn) is generated
by the elements that pair trivially with X(Ak)Br

× Y (Ak)Br.
If Z/X is a torsor under a k-group of multiplicative type G annihilated by n, then

the type of Z/X, as recalled in Section 2.4, is the image of the class [Z/X] under the
composite map

H1
ét(X,G)→ H1

ét(X,G)
0
→ Homk(Ĝ,Pic(X)) = Homk(Ĝ,Pic(X)n).

Recall that SX denotes the k-group scheme of multiplicative type that is dual to the 0-
module Pic(X)n.

Lemma 5.1. If X(Ak)Br is not empty, then there exists an X-torsor under SX whose type
is the identity map on ŜX.

Proof. One of the main results of the descent theory of Colliot-Thélène and Sansuc says
that ifX(Ak)Br

6= ∅, then for any homomorphism of 0-modules Ĝ→ Pic(X) there exists
an X-torsor under G of this type (see [14, Cor. 6.1.3(1)]). ut

Let us choose one such X-torsor under SX, and call it TX. (It is unique up to twisting by
a k-torsor under SX.) Then TX is isomorphic to the X-torsor TX from Section 2. As in
Remark 2.5 we form the class

[TX] ∪ [TY ] ∈ H2
ét(X × Y, SX ⊗ SY ).

Pairing with it gives a map

ε : Homk(SX ⊗ SY , µn) = Homk(SX, ŜY )→ H2
ét(X × Y,µn).

For ϕ ∈ Homk(SX, ŜY ) we can write ε(ϕ) = ϕ∗[TX] ∪ [TY ], where ∪ stands for the
cup-product pairing

H1
ét(X, ŜY )× H1

ét(Y, SY )→ H2
ét(X × Y,µn).

Remark 2.5 gives a commutative diagram

Homk(SX, ŜY )
ε

−−−−−−−→ H2
ét(X × Y,µn)

|| ↓(
H1

ét(X,Z/n)⊗ H1
ét(Y , µn)

)0 ∪
−−→ H2

ét(X × Y ,µn)
0

(22)

It is clear that Theorem C is a consequence of Lemmas 5.2 and 5.3 below.

Lemma 5.2. We have H2
ét(X × Y,µn) = π

∗

XH2
ét(X,µn)+ π

∗

YH2
ét(Y, µn)+ Im(ε).
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Lemma 5.3. For any positive integer n we have the inclusion

X(Ak)Br1(X)[n] × Y (Ak)Br1(Y )[n] ⊂ (X × Y )(Ak)Im(ε).

Proof of Lemma 5.2. We use the spectral sequence

E
p,q

2 = Hp(k,Hqét(X,µn))⇒ Hp+qét (X,µn). (23)

Let us make a few observations in the case when X is a smooth, projective and geometri-
cally integral variety over a number field k such that X(Ak) 6= ∅. The canonical maps

E
p,0
2 = Hp(k, µn)→ Hpét(X,µn)

are injective for p ≥ 3. Indeed, for such p the natural map

Hp(k,M)→
⊕
kv'R

Hp(kv,M)

is a bijection for any finite Galois module M (see [9, Thm. I.4.10(c)]). Next, the natural
map Hp(kv,M)→ Hpét(X×k kv,M) is injective for any p since any kv-point ofX defines
a section of it. It follows that the composite map

Hp(k,M)→ Hpét(X,M)→
⊕
kv'R

Hpét(X ×k kv,M)

is injective, and this implies our claim. We note that

E
2,0
2 = H2(k, µn)→ H2

ét(X,µn)

is also injective. The argument is similar once we identify H2(k, µn) = Br(k)n using the
Kummer sequence and Hilbert’s Theorem 90, and use the embedding of Br(k) into the
direct sum of Br(kv), for all completions kv of k, provided by global class field theory,
together with the existence of kv-points on X for every place v. This implies the triviality
of all the canonical maps in the spectral sequence whose target is Ep,02 = Hp(k, µn) for
p ≥ 2.

Let us write H̃2
ét(X,µn) for the quotient of H2

ét(X,µn) by the (injective) image of
H2(k, µn). Using the above remarks we obtain from (23) the following exact sequence:

0→ H1(k,H1
ét(X,µn))→ H̃2

ét(X,µn)→ H2
ét(X,µn)

0
→ H2(k,H1

ét(X,µn)). (24)

There are similar sequences for Y and X × Y linked by the maps π∗X and π∗Y .
Let us define

H = π∗XH2
ét(X,µn)+ π

∗

YH2
ét(Y, µn)+ Im(ε) ⊂ H2

ét(X × Y,µn).

It is clear that the (injective) image of H2(k, µn) in H2
ét(X × Y,µn) is contained in H, so

to prove Lemma 5.2 it is enough to prove that the natural map H → H̃2
ét(X × Y,µn) is

surjective.
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By (7) the image of H1(k,H1
ét(X × Y ,µn))→ H̃2

ét(X × Y,µn) is contained in H. In
view of (24) it remains to show that every element of the kernel of the map

H2
ét(X × Y ,µn)

0
→ H2(k,H1

ét(X × Y ,µn))

comes from H. By Theorem 2.6 and (7) this map can be written as

H2
ét(X,µn)

0
⊕H2

ét(Y , µn)
0
⊕Homk(SX, ŜY )→ H2(k,H1

ét(X,µn))⊕H2(k,H1
ét(Y , µn)).

By the commutativity of the diagram (22) for any ϕ ∈ Homk(SX, ŜY ), the element ε(ϕ)
of H2

ét(X × Y,µn) maps to

ϕ ∈ Hom(SX, ŜY )0 ⊂ H2
ét(X × Y ,µn)

0.

This implies that for any a ∈ H2
ét(X × Y,µn) there exists an element b ∈ H such that

the image of a − b in H2
ét(X × Y ,µn)

0 is π∗X(x) + π
∗

Y (y) for some x ∈ H2
ét(X,µn)

0

and y ∈ H2
ét(Y , µn)

0 . From the exact sequence (24) for X × Y we see that π∗X(x) +
π∗Y (y) goes to zero in H2(k,H1

ét(X,µn)) ⊕ H2(k,H1
ét(Y , µn)), hence x goes to zero in

H2(k,H1
ét(X,µn)), and y goes to zero in H2(k,H1

ét(Y , µn)). By (24) for X we see that x
is the image of some c ∈ H2

ét(X,µn). Similarly, y is the image of some d ∈ H2
ét(Y, µn).

This proves that a − (b + π∗X(c) + π
∗

Y (d)) goes to zero in H2
ét(X × Y ,µn)

0 , and hence
belongs to H. Thus a ∈ H. ut

Proof of Lemma 5.3. Let M be a finite 0-module such that nM = 0. Let MD be the
dual module Hom(M, k̄∗). If v is a non-archimedean place of k, we write H1

nr(kv,M)

for the unramified subgroup of H1(kv,M). By definition, it consists of the classes that
are annihilated by the restriction to the maximal unramified extension of kv . We write
P 1(k,M) for the restricted product of the abelian groups H1(kv,M) relative to the sub-
groups H1

nr(kv,M), where v is a non-archimedean place of k. By [9, Lemma I.4.8] the
image of the diagonal map

H1(k,M)→
∏
all v

H1(kv,M)

is contained in P 1(k,M). Let us denote this image by U1(k,M).
The local pairings H1(kv,M) × H1(kv,M

D) → H2(kv, µn) give rise to the global
Poitou–Tate pairing

( , ) : P 1(k,M)× P 1(k,MD)→ Z/n.

It is a perfect duality of locally compact abelian groups; moreover, the subgroups
U1(k,M) and U1(k,MD) are exact annihilators of each other [9, Thm. I.4.10(b)].

Let ϕ ∈ Homk(SX, ŜY ). Let (Pv) ∈ X(Ak) be an adelic point that is Brauer–Manin or-
thogonal to Br1(X)[n], and let (Qv) ∈ Y (Ak) be an adelic point orthogonal to Br1(Y )[n].
The Brauer–Manin pairing of the adelic point (Pv × Qv) with the image of ε(ϕ) =
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ϕ∗[TX] ∪ [TY ] in Br(X × Y ) is given by the Poitou–Tate pairing, so to prove Lemma 5.3
we need to show that

(ϕ∗[TX](Pv), [TY ](Qv)) = 0, (25)

where in the above notationM = ŜY ,MD
= SY . We point out that for any a ∈ H1(k, ŜY )

we have a ∪ [TY ] ∈ Br1(Y )[n], and hence (a, [TY ](Qv)) = 0. If an element of P 1(k, SY )

is orthogonal to U1(k, ŜY ), then it belongs to U1(k, SY ). Therefore, we must have

[TY ](Qv) ∈ U
1(k, SY ). (26)

Similarly, for any b ∈ H1(k, SY ) we have ϕ∗[TX] ∪ b ∈ Br1(X)[n], and hence
(ϕ∗[TX](Pv), b) = 0. Since every element of P 1(k, ŜY ) orthogonal to U1(k, SY ) belongs
to U1(k, ŜY ), this implies

ϕ∗[TX](Pv) ∈ U1(k, ŜY ). (27)

Now (26) and (27) imply (25). ut
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