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Abstract. We present an approach that allows one to bound the largest and smallest singular values
of anN×n random matrix with iid rows, distributed according to a measure on Rn that is supported
in a relatively small ball and for which linear functionals are uniformly bounded inLp for some p >
8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal
estimates of 1 ± c

√
n/N not only in the case of the above mentioned measure, but also when the

measure is log-concave or when it is a product measure of iid random variables with “heavy tails”.
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1. Introduction

The question of estimating the extremal singular values of a random matrix of the form
0 = N−1/2∑N

i=1〈Xi, ·〉ei , that is, of anN×nmatrix with iid rows, distributed according
to a probability measure µ on Rn, has attracted much attention in recent years. As a part
of the non-asymptotic approach to the theory of random matrices, obtaining sharp quan-
titative bounds has many important applications, for example, in asymptotic geometric
analysis and in statistics. Instead of listing some of those applications, we refer the reader
to [8, 16, 10, 6, 3, 4, 1, 18, 21] and references therein for more details on the history of
the problem and its significance. General surveys on the non-asymptotic theory of random
matrices may be found in [17, 20].

Our main motivation is to identify assumptions on the measure µ that allow one to
obtain the typical behavior of the extremal singular values of 0, i.e., assumptions that
ensure that for N ≥ n, with high probability,

1− c
√
n/N ≤ smin(0) ≤ smax(0) ≤ 1+ c

√
n/N,

where c is an absolute constant.
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Two particularly interesting cases are when µ is an isotropic, log-concave measure [8,
16, 10, 6, 11, 12, 3, 4, 1], and when we have some natural extension of the situation in the
asymptotic Bai–Yin theorem [21, 18, 13], formulated below.

Theorem 1.1 ([7]). LetA = AN,n be anN×n random matrix with independent entries,
distributed according to a random variable ξ , for which

Eξ = 0, Eξ2
= 1 and Eξ4 <∞.

If N, n→∞ and the aspect ratio n/N converges to β ∈ (0, 1], then

1
√
N
smin(A)→ 1−

√
β,

1
√
N
smax(A)→ 1+

√
β

almost surely. Also, without the fourth moment assumption, smax(A)/
√
N is almost surely

unbounded.

In a more general setting we assume that the n-dimensional rows Xi , 1 ≤ i ≤ N , of the
matrix 0 are independent and distributed according to an isotropic probability measure µ,
(that is, for every t ∈ Sn−1, E〈X, t〉 = 0 and E|〈X, t〉|2 = 1), and that every linear func-
tional has bounded p moments, i.e. that supt∈Sn−1 ‖〈X, t〉‖p ≤ κ1 (or in the “ψ1-case”,
that supt∈Sn−1 ‖〈X, t〉‖ψ1 ≤ κ2, where ‖〈X, t〉‖ψ1 = inf{s > 0 : E exp(|〈X, t〉|/s) ≤ 2}).
Note that obtaining the desired bound is equivalent to showing that with high probability,

sup
t∈Bn2

∣∣∣ N∑
i=1

(〈Xi, t〉
2
− 1)

∣∣∣ ≤ c√Nn, (1.1)

where c is a constant that depends only on p and κ1 (or just on κ2 in the ψ1 case), and Bn2
is the Euclidean unit ball in Rn. Since we are interested in CLT-type rates, with a decay of
∼ 1/
√
N , we will focus on the case p > 4, because for p < 4, CLT rates are false. Such

rates in the non-asymptotic Bai–Yin estimate have recently been established in [13] for
X = (ξi)

n
i=1, where the ξi’s are iid, mean-zero, variance 1 random variables that belong

to some Lp space for p > 4 (while different rates have been proved there for 2 < p ≤ 4).
The common threads linking the log-concave and “heavy tails” cases are that in

both, the random vector X is such that with high probability, the Euclidean norm ‖X‖
is of the order of

√
n, and that the linear functionals 〈X, t〉 are well behaved: for a log-

concave measure we have supt∈Sn−1 ‖〈X, t〉‖ψ1 ≤ κ2, while in the “heavy tails” case,
supt∈Sn−1 ‖〈X, t〉‖Lp ≤ κ1(p).

Having this in mind, the goal of this note is to present a proof of the following result:

Theorem 1.2. Let µ be an isotropic probability measure on Rn, let N ≥ n and assume
that maxi≤N ‖Xi‖ ≤ C0(Nn)

1/4. Let κ1 ≥ 1 and let k0 be the first integer which satisfies
k0 log(eN/k0) ≥ n. If p > 8, supt∈Bn2 ‖〈t, ·〉‖Lp ≤ κ1 and 1 ≤ β ≤ c1k0, then with

µN -probability at least

1− c2

(
1
Nβ
+ exp(−c3n)

)
,
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we have

sup
t∈Sn−1

∣∣∣ N∑
i=1

〈Xi, t〉
2
− 1

∣∣∣ ≤ c4
√
nN,

where c1, c2, c3 and c4 depend only on β, p, C0 and κ1.

The proof of Theorem 1.2 can be used to establish the same result in theψ1 case but with a
better estimate on the probability. The following theorem already appeared in [3, 4, 2] and
recently M. Talagrand found a shorter proof of the same fact [19]. Instead of essentially
repeating the proof of Theorem 1.2 we will state at each step the corresponding result in
the ψ1 case and only sketch the changes required in the proof.

Theorem 1.3. Let µ be an isotropic probability measure on Rn, let N ≥ n and assume
that maxi≤N ‖Xi‖ ≤ C0(Nn)

1/4. If supt∈Bn2 ‖〈t, ·〉‖ψ1 ≤ κ2, then with µN -probability at
least

1− 2
(
exp(−c1(Nn)

1/4)+ exp(−c1n)
)
,

we have

sup
t∈Sn−1

∣∣∣ N∑
i=1

〈Xi, t〉
2
− 1

∣∣∣ ≤ c2
√
nN,

where c1 and c2 are constants that depend only on C0 and κ2.

As will be explained later, the probability estimate of exp(−cn) that appears in Theorems
1.2 and 1.3 is the correct one when N is larger than exp(cpn) and exp(cn) respectively.

The two theorems lead to the desired estimates on the extremal singular values of 0 by
a standard argument which we will not present in full. It is well understood that one may
replace the L∞ condition on ‖X‖with the assumption that Pr(maxi≤N ‖Xi‖ ≥ t (Nn)1/4)
is well behaved, and the modifications needed in the proofs are minimal. Moreover, in all
the examples mentioned above the probability Pr(maxi≤N ‖Xi‖ ≥ t (Nn)1/4) is well be-
haved. Indeed, if µ is log-concave then it follows from [15] that Pr(maxi≤N ‖Xi‖ ≥
t (Nn)1/4) ≤ 2 exp(−ct (Nn)1/4); and if ξ ∈ Lp for p > 4 and X = (ξi)

n
i=1 has inde-

pendent coordinates, distributed according to ξ , one may show that Pr(maxi≤N ‖Xi‖ ≥
t (Nn)1/4) ≤ cp(n/N)

p/4−1t−p. Since adapting the proof from the L∞ assumption to the
tail-based one is standard and has appeared in many places, we will not repeat it here.

Theorem 1.2 extends the recent result from [13] beyond the case in which X has iid
coordinates, distributed according to ξ ∈ Lp for some p > 4, and with a considerably
easier proof than the original one. On the other hand, it does not cover the range 4 <

p ≤ 8, nor can it be extended to a more general context than the case of the Euclidean
ball as an indexing set.

Theorem 1.3 was established in [3, 4], but with a weaker probability estimate of
1 − 2 exp(−c

√
n). Very recently the original proof from [3, 4] was simplified in [2] and

[19], and with the same probability estimate as we obtain here. In fact, several ideas used
in both these proofs are essential in ours as well, although we believe that our proof is sim-
pler. Moreover, the proofs from [3, 4] and [2], [19] use the ψ1 assumption in an essential
way and cannot be extended to the “heavy tails” case.
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2. The proof

Throughout, we will denote absolute constants by c1, c2, . . . . Their value may change
from line to line. We write A . B if there is an absolute constant c1 for which A ≤ c1B.
A ∼ B means that c1A ≤ B ≤ c2A for absolute constants c1 and c2. If the constants
depend on some parameter r we will write A .r B or A ∼r B. We will denote the
Euclidean norm by ‖ ‖. Finally, if (an) is a sequence, let (a∗n) be the non-increasing
rearrangement of (|an|).

The proof begins with the following simple observation on a monotone rearrangement
of iid random variables. Recall that k0 satisfies k0 log(eN/k0) ∼ n if log(eN) . n, and
k0 = 1 otherwise.

Lemma 2.1. Let Z1, . . . , ZN be iid random variables, distributed according to Z.

1. If p > 4 and C0, β > 0, then there exist constants c0, c1, c2 and c3 that depend only
on p, C0 and β for which the following hold. If ‖Z‖L∞ ≤ C0(Nn)

1/4 and u ≥ c0,
then

∑
i≤uk0

(Z∗i )
2
≤ c1(1 + u‖Z‖2Lp )(Nn)

1/2 with probability at least 1 − c2N
−β ,

and
∑N
i=uk0+1(Z

∗

i )
4
≤ c1‖Z‖

4
Lp
N with probability at least 1− 2 exp(−c3un).

2. There exist absolute constants c4, . . . , c7 for which the following hold. If Z ∈ Lψ1 ,
then

∑
i≤k0

(Z∗i )
2
≤c5‖Z‖

2
ψ1
(Nn)1/2 with probability at least 1−2 exp(−c4(Nn)

1/4).

Also, for u ≥ c6, we have
∑N
i=k0+1(Z

∗

i )
4
≤ c5u

4
‖Z‖4ψ1

N with probability at least
1− 2 exp(−c7un).

Proof. The fact that Pr(Z∗2s ≥ t) ≤
(
N
2s
)
(Pr(|Z| ≥ t))2

s
is the main ingredient in the

proof. We will also assume that k0 > 1, and in particular that k0 log(eN/k0) ∼ n. If
k0 = 1, the modifications required are minimal and we will omit the proof in that case.

First, consider the Lp case. Fix ε = p/4− 1, let β ≥ 1 and pick s1 that depends only
on β and p and will be specified later. For 2s1≤2s≤k0 put αs = (eN/2s)(1+ε)/p/(Nn)1/4

= 2s/4/n1/4. Since Pr(|Z| ≥ ‖Z‖Lp t) ≤ t
−p, in that range, Pr(Z∗2s ≥ ‖Z‖Lpαs(Nn)

1/4)

≤ (eN/2s)−ε2
s
. Hence, for a right choice of s1(β, p), and since 4(1 + ε)/p = 1, with

probability at least 1− (eN/2s1)−cε2
s1
≥ 1− c0N

−β ,∑
2s≤uk0

2s(Z∗2s )
2
≤ ‖Z‖2L∞2s1 + ‖Z‖2Lp (Nn)

1/2
∑

2s1≤2s≤uk0

2sα2
s

.C0 2s1(Nn)1/2 + ‖Z‖2LpN
1/2

∑
2s1≤2s≤un

2s/2 .β,p (1+ u1/2
‖Z‖2Lp )(Nn)

1/2.

For the second part, take ts = ‖Z‖Lp (eN/2
s)(1+ε)/p = ‖Z‖Lp (eN/2

s)1/4 and let
max{2/ε, 1} < u . (N/k0)

1/2. Hence, with probability at least

1−
∑

uk0≤2s≤N

exp(−ε2s log(eN/2s)) ≥ 1− exp(−c1εuk0 log(eN/k0))

≥ 1− exp(−c2εun),
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we have ∑
uk0≤2s≤N

2s(Z∗2s )
4 . ‖Z‖4Lp

∑
uk0≤2s≤N

2s(eN/2s)4(1+ε)/p .p ‖Z‖
4
Lp
N.

Next, consider the ψ1 case. Let s2 be the first integer for which 2s log(eN/2s) ≥
(Nn)1/4 and assume without loss of generality that 2s2 ≤ k0. Put αs ∼ 1/2s for s ≤ s2
and let αs ∼ log(eN/2s)/(Nn)1/4 for 2s2 ≤ 2s ≤ k0. Note that if s ≤ s2 then

Pr(Z∗2s ≥ ‖Z‖ψ1αs(Nn)
1/4) ≤ exp(2s log(eN/2s)− c1(Nn)

1/4) ≤ exp(−c2(Nn)
1/4),

and if 2s2 ≤ 2s ≤ k0 then

Pr(Z∗2s ≥ ‖Z‖ψ1αs(Nn)
1/4) ≤ exp(−c32s log(eN/2s)).

Since k0 log2(eN/k0) . n log(eN/n),

∑
2s≤k0

2sα2
s ≤

∑
2s≤k0

2−s +
2s log2(eN/2s)

(Nn)1/2
. 1+

(
n

N

)1/2

log
(
eN

n

)
. c4.

Summing the probabilities, it follows that with probability at least 1−2 exp(−c5(Nn)
1/4),

k0∑
i=1

(Z∗i )
2 .

∑
2s≤k0

2s(Z∗2s )
2 . ‖Z‖2ψ1

√
Nn,

which proves our first claim in the ψ1 case.
Turning to the second part, fix u ≥ 2 and consider ts = u‖Z‖ψ1 log(eN/2s). Observe

that Pr(Z∗2s ≥ ts) ≤ exp(−(u − 1)2s log(eN/2s)) and k0 log(eN/k0) ∼ n. By summing
the probabilities, it is evident that∑

k0≤2s≤N

2s(Z∗2s )
4
≤ u4
‖Z‖4ψ1

∑
k0≤2s≤N

2s log4(eN/2s) . u4
‖Z‖4ψ1

N

with probability at least 1− 2 exp(−c6un). ut

The following corollary uses the same idea as in Lemma 2.1 and we will need it only
when k0 > 1. To formulate it, fix 0 < γ < 1 and κ3 to be specified later, let k` = γ `k0
and let `0 be the first integer satisfying k`0 log(eN/k`0) ≤ κ3(Nn)

1/4. The constants γ
and κ3 will depend only on p and their value will be specified in the proof of Lemma 2.3
below.

Corollary 2.2. There exists a constant c1 such that for every 0 < γ < 1 there exists a
constant c2 = c2(γ ) for which the following holds. Let p > 4 and ε = p/4−1, let `1 > 0
be any integer for which k`1 ≥ 1, and let Z1, . . . , ZN be iid random variables, distributed
according to Z with ‖Z‖p < ∞. Then, for every 0 ≤ ` < `1, with probability at least
1 − (eN/k`+1)

−εk`+1 , we have (
∑k`
j=k`+1

(Z∗j )
2)1/2 ≤ c1‖Z‖pη`, where η` ∼ (Nk`)1/4.

In particular
∑`1−1
`=0 η` ≤ c2(Nn)

1/4.
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Moreover, if Z1, . . . , ZN are iid random variables, distributed according to Z with
‖Z‖ψ1 < ∞, there exist absolute constants c3, c4 and c5 for which the following holds.
Let γ = 1/2. Then for every 0 ≤ ` < `0 and u ≥ c3, with probability at least
1− 2 exp(−c4uk` log(eN/k`)),

( k∑̀
j=k`+1

(Z∗j )
2
)1/2
≤ c5u‖Z‖ψ1 η̄`, where

`0−1∑
`=0

η̄` ≤ c5(Nn)
1/4.

Corollary 2.2 follows from the same argument used in the second parts of the Lp and ψ1
cases in Lemma 2.1, with the choice of ts = (eN/k`)

(1+ε)/p
= (eN/k`)

1/4 in the Lp
case and ts = u log(eN/k`) in the ψ1 case, combined with a straightforward calculation.

Next, let us turn to the main ingredient of the proof. Consider Uk = {x ∈ SN−1
:

|supp(x)| ≤ k} and set Ak = supa∈Uk ‖
∑N
i=1 aiXi‖. The motivation for studying this

quantity is that for every k ≤ N , Ak = supt∈Bn2 (
∑k
i=1(〈Xi, t〉

∗)2)1/2, but for reasons that
will become clear later, we only need to bound Ak0 .

For every k, let δk be determined later and let N k be a subset of BN2 such that for
every x ∈ RN ,

sup
y∈Nk

〈y, x〉 ≥ (1− δk) sup
z∈Uk

〈y, x〉.

It is standard to verify that there is a set Nk as above of cardinality at most
exp(k log(eN/kδk)).

The main application of Corollary 2.2 is the following lemma.

Lemma 2.3. For every p > 8, C0, κ1 and β > 0 as in Theorem 1.2, there exist con-
stants c1 and c2 that depend only on p, C0, κ1 and β and for which the following holds.
If I ⊂ {1, . . . , N}, then in the Lp case, with µN -probability at least 1− c1/N

β ,

sup
a∈Uk0

sup
b∈Uk0

〈∑
i∈I

aiXi,
∑
i∈I c

biXi

〉
≤ c2(Nn)

1/4Ak0 .

Also, in the ψ1 case, there are constants c3 and c4 that depend only on C0 and κ2, for
which, with µN -probability at least 1− 2 exp(−c3(Nn)

1/4),

sup
a∈Uk0

sup
b∈Uk0

〈∑
i∈I

aiXi,
∑
i∈I c

biXi

〉
≤ c4(Nn)

1/4Ak0 .

Again, we will restrict ourselves to the case in which k0 > 1, since the modifications
needed when k0 = 1 are minor.

Proof. Let us begin with the Lp case. Consider the sets Uk` as above and let

Bk` = sup
a∈Uk`

sup
b∈Uk`

〈∑
i∈I

aiXi,
∑
i∈I c

biXi

〉
.
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The main observation is that for every 0 ≤ ` ≤ `1,

ρk`Bk` ≤ Bk`+1 + sup
b∈Nk`

( k∑̀
i=k`+1+1

(〈∑
j∈I c

bjXj , Xi

〉∗)2)1/2

+ sup
a∈Nk`+1

( k∑̀
j=k`+1+1

(〈∑
i∈I

aiXi, Xj

〉∗)2)1/2
, (2.1)

where ρk` = (1− δk`)(1− δk`+1) and `1 will be defined later.
Indeed, fix a ∈ Uk` and let Za,j = 〈

∑
i∈I aiXi, Xj 〉. By the definition of Nk` ,

sup
b∈Uk`

∑
j∈I c

bjZa,j ≤ (1− δk`)
−1 sup

b∈Nk`

∑
j∈I c

bjZa,j .

Note that

sup
a∈Uk`

sup
b∈Nk`

∑
j∈I c

bjZa,j = sup
b∈Nk`

sup
a∈Uk`

∑
i∈I

ai

〈
Xi,

∑
j∈I c

bjXj

〉
= (∗);

setting Wb,i = 〈Xi,
∑
j∈I c bjXj 〉 for i ∈ I , it is evident that

(∗) ≤ sup
b∈Nk`

( k∑̀
i=1

(W ∗b,i)
2
)1/2

≤ sup
a∈Uk`+1

sup
b∈Nk`

〈∑
i∈I

aiXi,
∑
j∈I c

bjXj

〉
+ sup
b∈Nk`

( k∑̀
i=k`+1+1

(W ∗b,i)
2
)1/2

.

Replacing Uk`+1 by Nk`+1 and repeating the argument used above for the first term
(while reversing the roles of a and b) proves (2.1).

Since |Nk` | ≤ exp(k` log(eN/k`δk`)), and using the independence of (Xj )j∈I c and
(Xi)i∈I , a straightforward application of Corollary 2.2 shows that with probability at
least

1− 2 exp
(
−(p/4− 1)k`+1 log(eN/k`+1)+ k` log(eN/k`δk`)

)
= (∗∗),

for every b ∈ Nk` and every a ∈ Nk`+1 we have

( k∑̀
i=k`+1+1

(〈∑
j∈I c

bjXj , Xi

〉∗)2)1/2
≤ (cNk`)

1/4Ak0

and ( k∑̀
j=k`+1+1

(〈∑
i∈I

aiXi, Xj

〉∗)2)1/2
≤ (cNk`)

1/4Ak0 .
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Since p/4 > 2, there is γ < 1 for which (p/4 − 1)γ > 1. Thus, for p > 8 there are γ ,
c1 and c2 that depend only on p, and for which one may take δk` = (k`/N)

c1 , satisfying

(∗∗) ≥ 1− 2 exp(−c2k`+1 log(eN/k`+1)).

Now let `1 be the largest integer ` for which both k` − k`+1 > 1 and∑̀
j=0

exp(−c2kj+1 log(eN/kj+1)) ≤ N
−β .

Therefore, `1 is the first integer satisfying (p/4 − 2)k` log(eN/k`) ≤ κ3β logN for an
appropriate choice of κ3.

Observe that there is a constant c3 that depends only on p for which
∏`1
`=0(1− δk`)

2

≥ c3. Hence, repeating this dimension reduction procedure up to ` = `1 and then applying
the “large coordinates” estimate from Lemma 2.1 for Bk`1 (while observing that k`1 ≤ k0)
concludes the proof.

The proof in the ψ1 case is similar—only with a different termination point for the
dimension reduction process: k`0 instead of k`1 . We omit the details of this case. ut

Note that in the proof of the previous lemma we needed that p/4 − 1 > 1. This is the
only point in our proof where the fact p > 8 is required.

Theorem 2.4. Under the assumptions of Theorem 1.2, there are constants c1 and c2,
depending only on β, p, C0 and κ1, for which Ak0 ≤ c2(Nn)

1/4 with probability at least
1− c1N

−β .
Under the assumptions of Theorem 1.3, there are constants c3 and c4, depending only

onC0 and κ2, for whichAk0≤ c4(Nn)
1/4 with probability at least 1−2 exp(−c3(Nn)

1/4).

Proof. We will only present a proof in the Lp case, as the ψ1 case has an almost identical
proof. Clearly, for every a ∈ Uk0 , ‖

∑N
i=1 aiXi‖

2
=
∑
i 6=j aiaj 〈Xi, Xj 〉+

∑N
i=1 a

2
i ‖Xi‖

2,
and since ‖a‖ ≤ 1, the second term is at most maxi≤N ‖Xi‖2 ≤ C2

0(Nn)
1/2.

To bound the first term, let (εi)Ni=1 be independent Bernoulli random variables. Note
that

Eε
∑
i 6=j

(1+ εi)(1− εj )aiaj 〈Xi, Xj 〉 =
∑
i 6=j

aiaj 〈Xi, Xj 〉,

and thus it suffices to control

sup
a∈Uk0

Eε
∑
i 6=j

(1+ εi)(1− εj )aiaj 〈Xi, Xj 〉

≤ Eε sup
a∈Uk0

∑
i 6=j

(1+ εi)(1− εj )aiaj 〈Xi, Xj 〉 ≡ EεH((εi)Ni=1, (Xi)
N
i=1).

Observe that if Iε = {i : εi = 1} then

H((εi)
N
i=1, (Xi)

N
i=1) = 4 sup

a∈Uk0

〈∑
i∈Iε

aiXi,
∑
j∈I cε

ajXj

〉
for every realization of (εi)Ni=1.
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Fix (εi)Ni=1. Then

H((εi)
N
i=1, (Xi)

N
i=1) . sup

a∈Uk0

sup
b∈Uk0

〈∑
i∈Iε

aiXi,
∑
j∈I cε

bjXj

〉
.

By Lemma 2.3, if p > 8, then H((εi)Ni=1, (Xi)
N
i=1) .p (Nn)

1/4Ak0 with µN -probability
at least 1 − cN−β . Thus, by a Fubini argument, there exists a set B ⊂ �N of µN -
probability at least 1 − c1N

−β/2 on which H((εi)Ni=1, (Xi)
N
i=1) .p (Nn)1/4Ak0 with

µNε -probability at least 1− c2N
−β/2. Hence, for every (Xi)Ni=1 ∈ B,

EεH((εi)Ni=1, (Xi)
N
i=1) .p Ak0(Nn)

1/4
+N−β/2 sup

a∈Uk0

∣∣∣∑
i 6=j

aiaj 〈Xi, Xj 〉

∣∣∣
.p,C0 Ak0(Nn)

1/4
+N−β/2(A2

k0
+ (Nn)1/2), (2.2)

where the last inequality follows from the Cauchy–Schwarz inequality and the definition
of Ak0 . Therefore, on B, if β > 0 and N is large enough, then A2

k0
.p,β,C0 Ak0(Nn)

1/4
+

(Nn)1/2, and the claim follows. ut

The final observation we need is a straightforward application of Lemma 2.1 to the ran-
dom variables Zt = 〈X, t〉, for vectors t in a 1/2-net in Bn2 .

Lemma 2.5. Under the assumptions of Theorem 1.2 there exist constants c1, c2 and c3
depending only on κ1 for which the following holds. If N is a maximal 1/2-separated
subset of Bn2 then with probability at least 1− 2 exp(−c1n),

sup
t∈N

( N∑
i=c3k0+1

(〈Xi, t〉
∗)4
)1/2
≤ c2
√
N.

Moreover, under the assumptions of Theorem 1.3, there exist absolute c4 and c5 de-
pending only on κ2 for which with probability at least 1− 2 exp(−c4n),

sup
t∈N

( N∑
i=k0+1

(〈Xi, t〉
∗)4
)1/2
≤ c5
√
N.

Proof of Theorem 1.2. Let N be a maximal 1/2-separated subset of Bn2 and let C be
the intersection of the events from Theorem 2.4 and Lemma 2.5. Note that on C, with
µNε -probability at least 1− 2 exp(−c1n),

sup
t∈Bn2

∣∣∣ N∑
i=1

εi〈Xi, t〉
2
∣∣∣ .C0,p

√
Nn.

Indeed, let c3 be the constant from Lemma 2.5, fix t, t ′ ∈ N and let J be the union of
the sets of the largest c3k0 coordinates of (|〈Xi, t〉|)Ni=1 and (|〈Xi, t ′〉|)Ni=1. By Höffding’s
inequality, for every v > 0, with µNε -probability at least 1− 2 exp(−c4v

2),
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∣∣∣ N∑
i=1

εi〈Xi, t〉〈Xi, t
′
〉

∣∣∣ .∑
i∈J

|〈Xi, t〉〈Xi, t
′
〉| + v

(∑
i∈J c

〈Xi, t〉
2
〈Xi, t

′
〉
2
)1/2

≤ 2c3

( k0∑
i=1

(〈Xi, t〉
∗)2
)1/2( k0∑

i=1

(〈Xi, t
′
〉
∗)2
)1/2

+ v
( N∑
i=c3k0+1

(〈Xi, t〉
∗)4
)1/4( N∑

i=c3k0+1

(〈Xi, t
′
〉
∗)4
)1/4

. A2
k0
+ v
√
N. (2.3)

Let v ∼
√
n. Since |N | ≤ 5n, there is a set D ⊂ {−1, 1}N of µNε -probability at least

1 − 2 exp(−c5n) on which (2.3) holds for any pair t, t ′ taken from N × N . Since each
t ∈ Bn2 can be written as

∑
∞

i=1 βi ti with 0 ≤ βi . 2−i and ti ∈ N , on D we have

sup
t∈Bn2

∣∣∣ N∑
i=1

εi〈Xi, t〉
2
∣∣∣ . (Nn)1/2

∞∑
i,j=1

2−i2−j . (Nn)1/2,

with constants that depend on κ0, C0, p and β. The assertion now follows from a stan-
dard application of a variation of the Giné–Zinn symmetrization theorem [9] (see also
[13, §5.3]). ut

The proof of 1.3 follows the same lines and we will not present the details.
Finally, let us point out that the estimate on the probability in Theorem 1.2 (and in

Theorem 1.3 as well) is of the right order when N ≥ ecpn, where cp > 0 is a constant
that depends only on p; observe that in that range, the dominant term in the probability
estimate is e−cn.

Indeed, set A = supt∈Bn2 |N
−1/2∑N

i=1(〈Xi, t〉
2
− 1)|, and note that for any fixed

t ∈ Sn−1, Pr(A > cn1/2) ≥ Pr(|N−1/2∑N
i=1(〈Xi, t〉

2
− 1)| > cn1/2). By a variant of the

Berry–Esseen theorem (see [14, Theorem 2.2]) it follows that∣∣∣Pr
(∣∣∣N−1/2

N∑
i=1

(〈Xi, t〉
2
− 1)

∣∣∣ > cn1/2
)
− Pr(|g| > cn1/2)

∣∣∣ . 1
Nα

,

where α depends only on p (and is positive for any p > 4), and g is a standard Gaussian
variable. Hence, under our assumptions and for those very large values of N , it is evident
that Pr(A > cn1/2) > (1/2) exp(−c1n).

2.1. Final remarks

Many of the ideas used in the proof of Theorem 1.2 can actually be traced back to Bour-
gain [8], who studied the log-concave case and obtained estimates on the random variables
max|I |≤m ‖

∑
i∈I Xi‖ using a combination of self-bounding and decoupling arguments.

This led to a bound on the non-increasing rearrangement of vectors (〈Xi, t〉)Ni=1, uni-
formly for t ∈ Bn2 .

In [11], similar uniform bounds were obtained in the more general, empirical
processes setup, and under a ψ1-tail assumption; that is, estimates on the quantity
supf∈F max|I |=m |

∑
i∈I f (Xi)| for a general class of functions F with a bounded di-
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ameter in Lψ1 . In both cases, the quantity that was estimated was not the right one for
the problem at hand, and thus the approach resulted in slightly suboptimal estimates on
supf∈F |

∑N
i=1 f

2(Xi)− Ef 2
|.

Bourgain’s method was extended and improved in [3, 4], in which the parameters
Am were introduced. This, combined with the correct level of truncation ((Nn)1/4 rather
than n1/2) were the main ingredients in the solution of the log-concave case, though only
with the probability estimate of 1− 2 exp(−c

√
n).

At the same time, it was noted in [12] that one may use a chaining argument to control
supf∈F max|I |=m(

∑
i∈I f

2(Xi))
1/2 for a general class of functions F with a bounded di-

ameter inLψ1 . Of course, when considering F = {〈t, ·〉 : t ∈ Bn2 }, this quantity is justAm.
This approach was extended further in [13], allowing one to control the empirical process
supf∈F |

∑N
i=1 f

2(Xi)−Ef 2
| for classes that are only bounded in Lp rather than in Lψ1 .

To see why our proof follows the same ideas as [12, 13], one should observe that
the key point in [12, 13] was to study the fine structure of the random coordinate pro-
jection V = {(f (Xi))Ni=1 : f ∈ F }, and then use this structure to handle the Bernoulli
process indexed by V 2 (without reverting to the Gaussian process indexed by the same
set!). To that end, one obtains information on the monotone rearrangement of each “link”
((πs+1f − πsf )(Xi))

N
i=1 in the chain given by the admissible sequence (Fs), where at

each step, one balances the cardinality of the set of links and
(
N
k

)
. In this way, one may ob-

tain uniform information on the k largest coordinates of ((πs+1f −πsf )(Xi))
N
i=1 for that

value of k. Moreover, these k largest coordinates are controlled in terms of a “global”
notion of complexity of F (e.g. the γ2 functional), while the smaller coordinates are
estimated in the same way we did here—using tail estimates on each random variable
(πsf − πs+1f )(X).

Unlike the general case, here, the structure is rather simple because Bn2 is both large
and very regular. In particular, one should not expect chaining to have any advantage
over the union bound—which can be viewed as “one-step chaining”, or alternatively,
chaining that starts at a set of cardinality exp(cn). Having this in mind, our proof follows
the path mentioned above: the balance should be between the “cardinality” of Bn2 , i.e.
exp(cn), and

(
N
k

)
, which is precisely the definition of k0. What happens on the “large” k0

coordinates (i.e.Ak0 ) depends on a “global” property, maxi≤N ‖Xi‖ (Theorem 2.4), while
the “small” coordinates are estimated using only individual tail estimates (Lemma 2.5).
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