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Abstract. On the unit disk B1 ⊂ R2 we study the Moser–Trudinger functional

E(u) =

∫
B1

(eu
2
− 1) dx, u ∈ H 1

0 (B1),

and its restrictions E|M3
, where M3 := {u ∈ H 1

0 (B1) : ‖u‖
2
H 1

0
= 3} for 3 > 0. We prove that

if a sequence uk of positive critical points of E|M3k
(for some 3k > 0) blows up as k →∞, then

3k → 4π , and uk → 0 weakly in H 1
0 (B1) and strongly in C1

loc(B1 \ {0}).
Using this fact we also prove that when 3 is large enough, then E|M3

has no positive critical
point, complementing previous existence results by Carleson–Chang, Struwe and Lamm–Robert–
Struwe.

Keywords. Moser–Trudinger inequality, critical points, blow-up analysis, variational methods

1. Introduction

Let � b R2 be a smooth bounded and connected open set. It is well-known that there
is a Sobolev embedding W 1,p

0 (�) ↪→ L2p/(2−p)(�) for p ∈ [1, 2), but H 1
0 (�) :=

W
1,2
0 (�) X↪→ L∞(�). However it was proven by N. Trudinger [29] that eu

2
∈ L1(�)

whenever u ∈ H 1
0 (�). This embedding was sharpened by J. Moser [23] who showed that

sup
u∈H 1

0 (�), ‖u‖
2
H1

0
≤4π

∫
�

(eu
2
− 1) dx ≤ C|�|, ‖u‖H 1

0
:=

(∫
�

|∇u|2 dx

)1/2

, (1)

and
sup

u∈H 1
0 (�), ‖u‖

2
H1

0
≤4π+δ

∫
�

(eu
2
− 1) dx = +∞ for every δ > 0. (2)
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Since then, a formidable amount of work has been devoted to the study of the functional

E(u) :=

∫
�

(eu
2
− 1) dx, u ∈ H 1

0 (�),

and in particular of its critical points. Clearly u ≡ 0 is the only global minimum point
of E, but because of (2) we cannot look for a global maximizer of E in H 1

0 . Instead one
might hope to find a maximizer of E|M3 , i.e. of E constrained to the manifold

M3 := {u ∈ H
1
0 (�) : ‖u‖

2
H 1

0
= 3}

for 3 ∈ (0, 4π ], or to find other kinds of critical points (local maxima or minima, saddle
points, etc.) when 3 > 4π . As long as 3 < 4π the embedding (1) is in fact compact,
so the existence of a maximizer is elementary, but when 3 ≥ 4π compactness is lost and
also the Palais–Smale condition does not hold anymore (see [3]).

In spite of these difficulties Carleson and Chang [7] proved that when � = B1(0)
(the unit disk in R2), E|M4π has a maximizer. This result was extended by Struwe [26]
who proved the existence of a maximizer in M4π when � is close to a ball, and finally
by Flucher [13] for any bounded smooth � (see also [9] for a related result in higher
dimensions).

The existence of critical points on M3 in the supercritical regime, i.e. for 3 > 4π , is
even more challenging, and to the fundamental question of the existence of critical points
of E|M3 for 3 large only few answers have been given. Monahan [22] gave numerical
evidence that when � = B1(0) then for some 3∗ > 4π the functional E|M3 has a local
maximum and a mountain pass critical point for every 3 ∈ (4π,3∗). Assuming that a
local maximum of E|M4π exists (which was later shown to be true for arbitrary domains
by Flucher [13]) Struwe proved in [26] that for some 3∗ = 3∗(�) > 4π and for a.e.
3 ∈ (4π,3∗) two critical points exists. This result was then extended in [16] to all
values of 3 ∈ (4π,3∗) through the more precise information given by a parabolic flow,
compared to the one given by the Palais–Smale condition.

Further, using implicit function methods, del Pino, Musso and Ruf [11] were able to
characterize some of these critical points as one-peaked bubbling functions which blow
up as3↘ 4π . In the same paper they showed that if � is not contractible, then for some
3† > 8π the functionalE|M3 has a critical point of multi-peak type for all3 ∈ (8π,3†).
When� is a radially symmetric annulus they also proved for any 1 ≤ ` ∈ N the existence
of some3∗` > 4π` such that E|M3 has a critical point whenever3 ∈ (4π`,3∗`). We also
refer to [27] and [16] for related results on domains with small holes, in the spirit of [8]
(where the Yamabe equation was treated).

The previous results, in particular those in [11], suggest that at least when � is not
contractible, E|M3 might have critical points even when3 is much larger than 4π . In this
paper we will show that such a topological assumption on � is natural. In fact we will
prove that when� = B1(0), thenE|M3 has no positive critical points for3 large enough.

Theorem 1. For � = B1(0) there exists 3] > 4π such that the functional E|M3 has
(i) no positive critical points for 3 > 3],

(ii) at least two positive critical points for 3 ∈ (4π,3]),
(iii) at least one positive critical point for 3 ∈ (0, 4π ] ∪ {3]}.
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The proof of the non-existence part in Theorem 1(i) will be completely self-contained. To
prove (ii) and (iii) we will also use Theorem 1.7 from [26], which gives the existence of
some 3∗ > 4π such that a positive critical point of E|M3 exists for all 3 ∈ (4π,3∗).
Actually by [26, Theorem 1.8] and [16, Theorem 6.5], E|M3 has two positive critical
points whenever 3 ∈ (4π,3∗), for some 3∗ ∈ (4π,3∗]. Then Theorem 1 complements
these results by showing that, at least when � = B1, the existence of two positive critical
points of E|M3 for3 > 4π persists until we reach the energy threshold3 = 3], beyond
which we have non-existence. A qualitatively similar picture has also been shown in [15],
[21] (as well as in several subsequent papers in the literature) for the problem −1u =
µf (u) in bounded domains of Rn. Unlike those results, we focus on the Dirichlet energy
rather than on the parameter µ, and we deal with a faster growth of the nonlinearity.

In order to prove Theorem 1 we first notice that a critical point of E|M3 solves
−1u = λueu

2
in �,

u = 0 on ∂�,
‖u‖2

H 1
0
= 3,

(3)

for some λ > 0, and that when � = B1 a positive solution to (3) is radially symmetric by
[14, Theorem 1]. Then it will be crucial to understand the blow-up behavior of a sequence
of symmetric positive solutions to (3), i.e. solutions uk to

−1uk = λkuke
u2
k in B1,

uk = 0 on ∂B1,

uk > 0 in B1,

‖uk‖
2
H 1

0
= 3k.

(4)

In this direction a lot of work has already been done. For the sake of simplicity we
shall present only the radially symmetric versions of the results which we quote, referring
to the original papers for the general cases. For instance O. Druet proved (see also [4] and
[2] for previous related results, where the blow-up profile was identified, and [16] where
the parabolic case was treated): Let (uk) be a sequence of solutions to (4) with 3k ≤ C
and supB1

uk →∞. Then up to a subsequence λk → λ∞ ∈ [0, 2π ],1 uk → u∞ strongly
in C1

loc(B1 \ {0}) and weakly in H 1
0 (B1), where

−1u∞ = λ∞u∞e
u2
∞ in B1, (5)

and 3k → 4πL+ ‖u∞‖2
H 1

0
for some integer L ≥ 1. More precisely

|∇uk|
2 dx ⇀ 4πLδ0 + |∇u∞|

2 dx, λku
2
ke
u2
k dx ⇀ 4πLδ0 + λ∞u

2
∞e

u2
∞ dx (6)

weakly in the sense of measures. The questions whether u∞ and λ∞ can actually be non-
zero, and whether L can be greater than one (i.e. whether the blow-up can be non-simple,

1 The constant 2π is the first eigenvalue of −1 on B1. As proven by Adimurthi [1], problem (3)
has a positive solution if and only if λ ∈ (0, λ1(�)), where λ1(�) is the first eigenvalue of −1 on
� with Dirichlet boundary condition.
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using the terminology introduced in [24]) were left open (in fact also higher dimensional
generalization of the result of Druet, see e.g. [19], [20] and [28], produced analogous open
questions), but we are now able to give a negative answer to both questions, as stated in
the next theorem.

Theorem 2. Let uk be a sequence of solutions to (4). Then up to extracting a subsequence
we have for k→∞ either

(i) λk → λ∞ ∈ [0, 2π ], uk → u∞ in C1(B1), where u∞ solves (5), or
(ii) λk → 0, ‖uk‖2

H 1
0
→ 4π , uk → 0 weakly in H 1

0 (B1) and strongly in C1
loc(B1 \ {0})

and
|∇uk|

2 dx ⇀ 4πδ0, λku
2
ke
u2
k dx ⇀ 4πδ0 (7)

weakly in the sense of measures.

The proof of Theorem 2 is self-contained. In some parts we could have used previous
results of [4] or [12], but these hold for general domains, and consequently their proofs
are more involved and we did not want to rest on them. Our main argument is not based
on a Pohozaev-type identity as the results in [12], [16], [20] and [28], but on a simpler
decay estimate of uk away from the blow-up point, which has some partial analogies with
Lemma 3 of [18] (originating in [25], see also [6]). Notice that, in contrast to the previous
works, e.g. [12], in our Theorem 2 we do not assume uniform bounds on ‖uk‖2

H 1
0
, i.e.

3k ≤ C. This is crucial if we want to apply Theorem 2 to prove Theorem 1.
The final picture that we get is then much closer to the geometric situation of the Liou-

ville equation as studied by Brezis–Merle, Li–Shafrir and Li. More precisely, and working
again on B1 for simplicity, consider a sequence (vk) of radially symmetric solutions to

−1vk = Vke
2vk in B1 ⊂ R2, Vk → V0 > 0 in C0(B1),

‖e2vk‖L1 ≤ C, sup
B1

vk →+∞.

Then, as proven in [5, Theorem 3],

vk →−∞ uniformly locally in B1 \ {0}, (8)

Vke
2vk dx ⇀ αδ0 weakly as measures, for some α ≥ 2π. (9)

Here Vke2vk plays the role of the energy density λku2
ke
u2
k from (6) and (7). Then (8) and

(9) are the equivalent of λ∞u2
∞e

u2
∞ dx = 0 in (7) (compared with (6)).

Y.Y. Li and I. Shafrir [17], [18] complemented the result of Brezis–Merle by showing
that α = 4π in (9), finally yielding Vke2vk dx ⇀ 4πδ0, in analogy with (7). On the
other hand we remark that the proof of (7) is more subtle because the nonlinearity ueu

2

is more difficult to handle than e2v . In fact, as already noticed in previous works, e.g. [4],
suitable scalings ηk of blowing-up solutions of (4) converge inC1

loc(R
2) to a solution η0 of

−1v = 4e2v (see Lemma 3). Unfortunately this information is too weak for our purposes
and we need to linearize the equation satisfied by ηk ((14) below) to better understand its
asymptotics (Lemma 4), and to have a global estimate of ηk (Lemma 5).
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We also point out that an immediate consequence of the proof of Theorem 1 is the
existence of blowing-up solutions to (4) with bounded energies (3k → 4π ). This has
long been an open problem: Adimurthi and Prashanth [3] were only able to prove the
existence of blowing-up Palais–Smale sequences, while more recently del Pino, Musso
and Ruf [11], with an approach technically much richer, showed that blowing-up solutions
exist for any domain �. Our method applies only to the unit disk, but it is on the other
hand relatively elementary and explicit.

In the following the letter C denotes a large constant which may change from line to
line and even within the same line.

2. Proof of Theorem 2

By [14, Theorem 1] a positive solution u to (3) is radially symmetric. With a little abuse
of notation we shall write u(x) = u(r) for x ∈ B1 with |x| = r . Since 1u ≤ 0,

2πu′(r) =
∫
Br

1udx < 0, r > 0,

hence u(r) is decreasing.
Consider now a sequence uk as in the statement of the theorem. By elliptic estimates,

if maxB1 uk ≤ C, then we are in case (i). Let us therefore assume that, up to a subse-
quence,

µk := uk(0) = max
B1

uk →∞ as k→∞. (10)

Lemma 3. Let rk > 0 be such that r2
kλkµ

2
ke
µ2
k = 4. Then as k→∞ we have rk → 0,

ηk(x) := µk(uk(rkx)− µk)→ η0(x) := − log(1+ |x|2) in C1
loc(R

2), (11)

and
lim
R→∞

lim
k→∞

∫
BRrk

λku
2
ke
u2
k dx =

∫
R2

4e2η0 dx = 4π. (12)

Proof. We first prove that limk→∞ rk = 0. Otherwise up to extracting a subsequence we
have λkµ2

ke
µ2
k ≤ C. Then, using that u′k ≤ 0 in [0, 1] we see that

−µk1uk ≤ λkµ
2
ke
µ2
k ≤ C in B1.

Therefore as k → ∞ we get 1uk → 0 uniformly and by elliptic estimates uk → 0 in
C1(B1), contradicting (10).

Set now vk(x) = uk(rkx)−µk . We claim that vk → 0 in C1
loc(R

2) as k→∞. Indeed

−1vk(x) =
4
µk

uk(rkx)

µk
e(u(rkx)−µk)(u(rkx)+µk)→ 0 uniformly as k→∞

since 4/µk → 0, 0 ≤ uk/µk ≤ 1 and (uk(rkx) − µk)(uk(rkx) + µk) ≤ 0. Now notice
that vk ≤ 0 and vk(0) = 0. Then the Harnack inequality implies the claim.
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Therefore we have
−1ηk = Vke

2akηk in B1/rk ,

where

Vk(x) =
4uk(rkx)
µk

→ 4, ak =
1
2

(
uk(rkx)

µk
+ 1

)
→ 1 in C0

loc(R
2).

Considering that ηk ≤ 0, 1ηk is locally bounded and ηk(0) = 0 we have ηk → η∗ in
C1

loc(R
2) by the Harnack inequality, where −1η∗ = 4e2η∗ and η∗(0) = 0. On the other

hand
−1η0 = 4e2η0 in R2, η0(0) = 0, (13)

hence it follows from the uniqueness of solutions to the Cauchy problem (recall that all
functions here are radially symmetric) that η∗ = η0.

Finally (12) follows from Fatou’s lemma. ut

Notice that

−1ηk = 4
(

1+
ηk

µ2
k

)
e(2+ηk/µ

2
k)ηk . (14)

Lemma 4. Set wk := µ2
k(ηk − η0). Then wk → w in C1

loc(R
2), where

w(r) := η0(r)+
2r2

1+ r2 −
1
2
η2

0(r)+
1− r2

1+ r2

∫ 1+r2

1

log t
1− t

dt (15)

is the unique solution to the ODE

−1w = 4e2η0(η0 + η
2
0 + 2w), w(0) = 0, w′(0) = 0. (16)

Moreover w satisfies ∫
R2
1w dx = −4π, (17)

sup
r∈[0,∞)

|w(r)− η0(r)| <∞. (18)

Proof. Set εk := µ−2
k → 0 as k→∞. Using (13) and (14) we compute

−1wk =
1
εk

[
4(1+ εkηk)e(2+εkηk)ηk − 4e2η0

]
=

4e2η0

εk

[
(1+ εk(η0 + (ηk − η0)))e

2(ηk−η0)+εkη
2
0+2εkη0(ηk−η0)+εk(ηk−η0)

2
− 1

]
.

(19)
By Lemma 3 for every R > 0 we have ηk(r)− η0(r) = o(1)→ 0 as k →∞ uniformly
for r ∈ [0, R], and we can use a Taylor expansion:

e2(ηk−η0)+εkη
2
0+2εkη0(ηk−η0)+εk(ηk−η0)

2
= 1+2(ηk−η0)+ εkη

2
0+o(1)εk+o(1)(ηk−η0),
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with errors o(1)→ 0 as k→∞ uniformly for r ∈ [0, R]. Going back to (19) we get

−1wk = 4e2η0 [η0 + η
2
0 + 2wk + o(1)+ o(1)wk],

with o(1) → 0 as k → ∞ uniformly for r ∈ [0, R]. By ODE theory wk(r) is locally
bounded, and by elliptic estimates wk → w̃ in C1

loc(R
2), where w̃ satisfies (16).

Since the solution to the Cauchy problem (16) is unique, in order to prove that w̃ = w
(with w given in (15)) it is enough to show that w solves (16). It is easily seen that
w(0) = 0. First computing(

−
1
2
η2

0(r)

)′
+

1− r2

1+ r2
d

dr

∫ 1+r2

1

log t
1− t

dt = −
2 log(1+ r2)

r(1+ r2)
,

we get

w′(r) =
2r(1− r2)

(1+ r2)2
−

2 log(1+ r2)

r(1+ r2)
−

4r
(1+ r2)2

∫ 1+r2

1

log t
1− t

dt, (20)

w′(0) = 0, and using 1w(r) = w′′(r)+ w′(r)
r

we finally obtain

−1w(r) =
16r2

(1+ r2)3
−

12 log(1+ r2)

(1+ r2)2
+

8(1− r2)

(1+ r2)3

∫ 1+r2

1

log t
1− t

dt

= 4e2η0

[
4r2

1+ r2 + 3η0 + 2
1− r2

1+ r2

∫ 1+r2

1

log t
1− t

dt

]
= 4e2η0 [η0 + η

2
0 + 2w].

To prove (17) we use the divergence theorem and (20) to get∫
R2
1w dx = lim

r→∞
2πrw′(r) = −4π.

Similarly from (20) we bound

|w′(r)− η′0(r)| ≤
C

1+ r2 for r ∈ [0,∞),

and integrating in r also (18) follows. ut

Lemma 3 tells us that for R > 0 and k ≥ k0(R) we have ηk → η0 in C1(BR). On the
other hand ηk is defined on B

r−1
k

with r−1
k → ∞ as k → ∞, and Lemma 3 gives us no

information on the behavior of ηk on B
r−1
k
\ BR . We shall now use Lemma 4 to fill this

gap and have a crucial estimate of ηk in all of B
r−1
k

.

Lemma 5. Fix R0 ∈ (0,∞) such that w ≤ −1 on [R0,∞), where w is given by (15);
such an R0 exists thanks to (18). Then for k large enough,

ηk(r) ≤ η0(r) for r ∈ [R0, r
−1
k ], (21)

or equivalently

uk(r) ≤ µk −
1
µk

log
(

1+
(
r

rk

)2)
for r ∈ [R0rk, 1]. (22)



900 Andrea Malchiodi, Luca Martinazzi

Proof. Write εk := µ−2
k = u

−2
k (0) and ηk = η0 + εkw + φk . Then (14) is equivalent to

−1ηk = 4 (1+ εk(η0 + εkw + φk)) e
(2+εk(η0+εkw+φk))(η0+εkw+φk),

and taking (13) and (16) into account we find

−1φk = 8k(φk),

where for any function φ,

8k(φ) := 4(1+ εk(η0 + εkw + φ))e
(2+εk(η0+εkw+φ))(η0+εkw+φ) − 4e2η0

− 4e2η0εk[η0 + η
2
0 + 2w].

We now expand

(2+ εk(η0 + εkw + φ))(η0 + εkw + φ) = 2η0 + 2εkw + 2φ + εkη2
0 + 2ε2

kwη0 + ε
3
kw

2

+ εkφ (2η0 + 2εkw + φ) =: 2η0 + hk(φ).

To avoid cumbersome notations we will also write, for a given function φ and any given k,

h := hk(φ) = 2εkw + 2φ + εkη2
0 + 2ε2

kwη0 + ε
3
kw

2
+ εkφ(2η0 + 2εkw + φ),

η := η0 + εkw + φ,

so that

e(2+εkη)η = e2η0+h, 8k(φ) = 4e2η0
[
(1+ εkη)eh − 1− εkη0 − εkη

2
0 − 2εkw

]
.

Then with a Taylor expansion we can write

e(2+εkη)η = e2η0 [1+ h+O(h2)],

where |O(h2)| ≤ Ch2 for a fixed positive constant C, provided |h| ≤ 1. Then, using (18)
to bound |w(r)| ≤ C(1+ log(1+ r2)),

(1+ εkη)eh = 1+ εkη0 + 2εkw + εkη2
0 + 2φ

+O(φ)
(
O(φ)+O(εk(1+ log(1+ r2))2)

)
+O(ε2

k(1+ log(1+ r2))3)

where |O(s)| ≤ Cs. Then

8k(φ) = 4e2η0
[
2φ+O(φ)

(
O(φ)+O(εk(1+ log(1+r2))2)

)
+O(ε2

k(1+ log(1+r2))3)
]
,

(23)
as long as |h| ≤ 1, which is true provided for some δ > 0 small enough

|φ| ≤ δ, εk(1+ log(1+ r2))2 ≤ δ. (24)

Similarly if φ̃ is another function with |φ̃(r)| ≤ δ, one has

|8k(φ)−8k(φ̃)|

≤ 4e2η0
[
2|φ − φ̃| +O(φ − φ̃)

(
|φ + φ̃| +O(εk(1+ log(1+ r2))2)

)]
. (25)
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We shall now use the contraction mapping theorem to bound φk . We restrict our atten-
tion to an interval [0, sk] with sk = o(1)eµk and to functions φ : [0, sk] → R satisfying
φ(r) ≤ O(ε2

k)(1+ log(1+ r2)), so that (23) and (24) hold for k large enough. With these
restrictions (25) gives

|8k(φ)−8k(φ̃)| ≤ (8+ o(1))e2η0 |φ − φ̃|, (26)

with error o(1)→ 0 as k→∞.
By the above computations, ηk = η0 + εw + φk solves (14) if and only if φk satisfies

−1φk = 8k(φk), φk(0) = 0, φ′k(0) = 0.

Setting φ = φk and ψ = rφ′, the last equation gives the system{
φ′ = 1

r
ψ,

ψ ′ = −r8k(φ),
(φ(0), ψ(0)) = (0, 0). (27)

The solutions of (27) are the fixed points of some integral equation. For technical reasons,
it will be convenient to integrate starting from some value T > 0 (to be fixed later) of the
r parameter rather than from r = 0. If we let (27) evolve up to time T , by the smooth
dependence on initial data then (for εk small) the solution will satisfy

|φ(r)| ≤ C(T )ε2
k , |ψ(r)| ≤ C(T )ε2

k , for r ∈ [0, T ], (28)

uniformly in εk . Notice that φ(T ) = φk(T ) and φ(T ) = T φ′k(T ).
We then consider the functions

F1,(φ,ψ)(r) := φ(T )+

∫ r

T

ψ(s)
ds

s
, r ≥ T ,

F2,(φ,ψ)(r) := ψ(T )−

∫ r

T

s8k(φ)(s) ds, r ≥ T .

Fixing S = sk > T with sk = o(1)eµk , we next define the norms

‖f ‖1 = sup
r∈(T ,S]

∣∣∣∣ f (r)

log r − log T

∣∣∣∣, ‖f ‖2 = 2 sup
r∈[T ,S]

|f (r)|.

For a large constant C̃ > 0 to be fixed later, we will work with the following set of
functions:

B
C̃
=
{
(φ, ψ) : ‖φ−φk(T )‖1 ≤ C̃ε

2
k , ‖ψ‖2 ≤ C̃ε

2
k , φ(T )= φk(T ), ψ(T )= T φ

′

k(T )
}
.

We now check that the map (φ, ψ) 7→ (F1,(φ,ψ), F2,(φ,ψ)) sends B
C̃

into itself, for suit-
able choices of C̃ and T , and that it is a contraction. In fact, for (φ, ψ) ∈ B

C̃
one has

|F1,(φ,ψ)(r)− φ(T )| ≤
1
2
C̃ε2

k(log r − log T ),

which implies ‖F1,(φ,ψ) − φ(T )‖1 ≤
1
2 C̃ε

2
k , as desired.
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Moreover by (23) and (28) one has

|F2,(φ,ψ)(r)|

≤ |ψ(T )| +

∫ r

T

s4e2η0(s)
[
2φ(s)+O(φ(s))

(
O(φ(s))+O(εk(1+ log(1+ s2))2)

)
+O(ε2

k(1+ log(1+ s2))3)
]
ds

≤ C(T )ε2
k + 8

∫
∞

T

s(φ(s)(1+ o(1))
(1+ s2)2

ds +

∫
∞

T

C0ε
2
ks(1+ log(1+ s2))3)

(1+ s2)2
ds

≤ C(T )ε2
k + 9

∫
∞

T

sε2
k(C(T )+ C̃ log s)
(1+ s2)2

ds + C0ε
2
k

∫
∞

T

s(1+ log(1+ s2))3

(1+ s2)2
ds

≤ ε2
k

[
C(T )

(
1+ 9

∫
∞

T

s

(1+ s2)2
ds

)
+ 9C̃

∫
∞

T

s log s
(1+ s2)2

ds + C0

∫
∞

T

s(1+ log(1+ s2))3

(1+ s2)2
ds

]
for some fixed C0 independent of C̃ and εk . Now first choosing T ≥ 1 so large that

9
∫
∞

T

s log sds
(1+ s2)2

<
1
2
, (29)

and then C̃ large enough compared to C(T ) and C0, we obtain

‖F2,(φ,ψ)‖2 ≤ C̃ε
2
k ,

so we have shown that (F1,(·,·), F2,(·,·)) maps B
C̃

in itself.
Let us verify that F is a contraction. We easily estimate, for (φ, ψ), (φ̃, ψ̃) ∈ B

C̃
,

‖F1,(φ,ψ) − F1,(φ̃,ψ̃)‖1 ≤
1
2
‖ψ − ψ̃‖2.

Using (26) and (29) we also find, for k large enough,

‖F2,(φ,ψ) − F2,(φ̃,ψ̃)‖2 ≤ 9
∫ S

T

s|φ(s)− φ̃(s)|

(1+ s2)2
ds

≤ 9‖φ − φ̃‖1

∫ S

T

s(log s − log T )
(1+ s2)2

ds ≤
1
2
‖φ − φ̃‖1,

so that indeed F is a contraction. In particular the map (φ, ψ) 7→ (F1,(φ,ψ), F2,(φ,ψ)) has
a fixed point in (φ, ψ) ∈ B

C̃
, which satisfies (27). Then, by uniqueness for the Cauchy

problem, we have (φ(r), ψ(r)) = (φk(r), rφ′k(r)) for r ∈ [T , S], whence the bounds

φk(r) ≤ C(T )ε
2
k + C̃ε

2
k(log r − log T ), φ′k(r) ≤

C̃ε2
k

2r
, for T ≤ r ≤ S = o(1)eµk .

(30)
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For every k large enough, fix now S = sk = o(1)eµk such that sk ≥ 2µk . From (28),
(30) and our choice of R0, we get, for k large enough,

ηk(r) ≤ η0(r)− εk + (C(T )+ C̃ log r)ε2
k < η0(r) for r ∈ [R0, sk]. (31)

We shall now prove that ∫
Bsk

1ηk dx < −4π

for k large enough. Indeed, we have

−

∫
Bsk

1η0 dx =

∫
Bsk

4
(1+ r2)2

dx = 4π
(

1−
1

1+ s2
k

)
= 4π −

4π
s2
k

+
o(1)
s2
k

.

From (17) we have

−

∫
Bsk

εk1w dx = 4π(1+ o(1))εk =
4π(1+ o(1))

µ2
k

.

Finally, using (30) and the divergence theorem,∣∣∣∣∫
Bsk

1φk dx

∣∣∣∣ = 2πsk|φ′k(sk)| = O(ε
2
k) = O(µ

−4
k ).

Summing up we infer

−

∫
Bsk

1ηk dx = 4π −
4π(1+ o(1))

s2
k

+
4π(1+ o(1))

µ2
k

+O(µ−4
k ) > 4π

for k large enough, by our choice of sk . Since 1ηk < 0 on all of B1/rk , we infer that

2πrη′k(r) =
∫
Br

1ηk dx <

∫
Bsk

1ηk dx < −4π <
∫
Br

1η0 dx

= 2πrη′0(r), r ∈ [sk, 1/rk].

This, together with (31), completes the proof of (21). ut

Proof of Theorem 2 (completed). From (22) it follows that λk → 0 as k → ∞. Indeed,
the function −(2/µk) log(r/rk) + µk vanishes for r = ρk = 2/(

√
λk µk). Since uk > 0

in B1, we must have ρk ≥ 1 for k large enough, hence

λk ≤ 4/µ2
k → 0 as k→∞. (32)

Set fk := λku2
ke
u2
k . We now want to prove

lim
R→∞

lim
k→∞

∫
B1\BRrk

fk dx = 0, (33)

which together with (12) yields the convergence of fk dx in (7).
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Using the definition of rk and (22) we have, for r ∈ [R0rk, 1] and k large enough,

r2fk(r) = 4
(
r

rk

)2(
uk(r)

µk

)2

e(1+uk(r)/µk)ηk(r/rk)

≤ 4
(
r

rk

)2(
uk(r)

µk

)2(
1+

(
r

rk

)2)−1−uk(r)/µk

≤ 4
(
uk(r)

µk

)2(
1+

(
r

rk

)2)−uk(r)/µk
.

In order to further estimate the right-hand side, we notice that the function

αk(t) := t
2(1+ (r/rk)2)−t

satisfies, for any fixed r > 0,

αk ≥ 0, αk(0) = 0, lim
t→∞

αk(t) = 0, α′k(t) = 0⇔ t = tk :=
2

log(1+ (r/rk)2)
.

Hence αk ≤ αk(tk) and we conclude

r2fk(r) ≤
16

log2(1+ (r/rk)2)
(1+ (r/rk)2)−2 log−1(1+(r/rk)2) for r ≥ R0rk, k large,

which can be weakened to

log2(r/rk)
2r2fk(r) ≤ log2(1+ (r/rk)2)r2fk(r) ≤ 16, for r ≥ R0rk, k large. (34)

Finally, it follows from (34) that

lim
R→∞

lim
k→∞

∫
B1\BRrk

fk dx ≤ lim
R→∞

lim
k→∞

∫ 1

Rrk

2πrfk(r) dr

≤ lim
R→∞

lim
k→∞

∫ 1

Rrk

32π
r[log(r/rk)]2

dr = lim
R→∞

lim
k→∞

[
−

32π
log(r/rk)

]1

Rrk

= 0. (35)

Then (33) is proven, and as already noticed the first part of (7) follows.
Integrating by parts we also obtain

‖uk‖
2
H 1

0
=

∫
B1

uk(−1uk) dx =

∫
B1

fk dx → 4π as k→∞.

Then, up to extracting a subsequence we have uk ⇀ u∞ weakly in H 1
0 (B1) for some

u∞ ∈ H
1
0 (B1). Moreover, using that λk → 0 as k→∞, we get, for any L > 0,∫
B1

λkuke
u2
k dx ≤ λk

∫
{x∈B1: uk(x)≤L}

uke
u2
k dx +

1
L

∫
{x∈B1: uk(x)<L}

fk dx

≤ o(1)C(L)+
4π + o(1)

L
,
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with error o(1)→ 0 as k →∞. Then, by letting L→∞ we infer that λkukeu
2
k → 0 in

L1(B1), and it follows that, for every ϕ ∈ C1
c (B1),∫

B1

(−1u∞)ϕ dx = lim
k→∞

∫
B1

(−1uk)ϕ dx = lim
k→∞

∫
B1

−λkuke
u2
kϕ dx = 0,

hence −1u∞ = 0 in B1, i.e. u∞ ≡ 0.
This also implies the convergence of |∇uk|2 dx in (7). Indeed, integrating by parts and

using that uk → 0 in L2(B1) by the compactness of the embedding H 1
0 (B1) ↪→ L2(B1),

we have, for any ϕ ∈ C2
c (B1),∫

B1

|∇uk|
2ϕ dx =

∫
B1

1(u2
k)

2
ϕ dx +

∫
B1

fkϕ dx =

∫
B1

u2
k

2
1ϕ dx +

∫
B1

fkϕ dx

=

∫
B1

fkϕ dx + o(1),

with error o(1)→ 0 as k→∞. Hence fk dx and |∇uk|2 dx have the same weak limit in
the sense of measures.

Now, using uk(1) = 0 and (7) we infer that uk → 0 in L∞loc(B1 \ {0}). Indeed for a
fixed δ ∈ (0, 1) and any r ∈ [δ, 1] we have, by Hölder’s inequality,

uk(r) = uk(r)− uk(1) ≤
∫ 1

δ

|u′k(ρ)|dρ

≤ ‖∇uk‖L2(B1\Bδ)

(
1

2π
log

1
δ

)1/2

→ 0 as k→∞.

Then by elliptic estimates uk → 0 in C1
loc(B1 \ {0}). This completes the proof of Theo-

rem 2. ut

3. Proof of Theorem 1

Given µ, λ > 0 let uµ,λ ∈ C∞([0, Tµ,λ)) be the solution to the ODE

−
∂2u

∂r2 −
1
r

∂u

∂r
= λueu

2
, u(0) = µ, u′(0) = 0, (36)

where [0, Tµ,λ) is the maximal interval of existence for (36) (in fact Tµ,λ = ∞, but we
will not prove this). Then uµ,λ(x) := uµ,λ(|x|) satisfies

−1uµ,λ = λuµ,λe
u2
µ,λ in BTµ,λ , uµ,λ(0) = µ.

Set
τ(µ) := inf {r ∈ (0, Tµ,1] : uµ,1(r) = 0}.
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We claim that τ(µ) < ∞ for every µ > 0. To see this, fix r0 ∈ (0, τ (µ)). Then for
r ∈ [r0, τ (µ)] the divergence theorem yields

u′µ,1(r) =
1

2πr

∫
Br

1uµ,1 dx ≤
1

2πr

∫
Br0

1uµ,1 dx < −
ε

r
,

for some positive ε. The claim easily follows from standard comparison arguments.
Now notice that, for any λ, λ′ > 0,

uµ,λ

(√
λ′

λ
r

)
= uµ,λ′(r),

and for every µ > 0 set uµ := uµ,τ 2(µ) = uµ,λµ , where λµ := τ 2(µ). Then uµ is
positive in [0, 1), it solves (36) with λ = λµ, and uµ(1) = 0. By ODE theory the function
8 : µ 7→ uµ|[0,1] belongs to C0((0,∞), C2([0, 1])).

Now given 3 > 0 every non-negative critical point of E|M3 is smooth and satisfies

−1u = λueu
2

in B1, u = 0 on ∂B1, (37)

for some λ > 0. By [14, Theorem 1], u is radially symmetric, i.e. we can write u(x) =
u(|x|), where u satisfies (36) with µ = u(0) and the additional condition that u > 0 on
[0, 1) and u(1) = 0. This is possible only if u = uµ. Hence we have proven that every
solution 0 ≤ u 6≡ 0 of (37) is of the form u(x) = uµ(x) := uµ(|x|) for some µ > 0.
Define

E(µ) := ‖uµ‖2H 1
0 (B1)

, 3] := sup
µ∈(0,∞)

E(µ).

We claim that 3] < ∞. Indeed, E is continuous and it is clear that uµ → 0 smoothly
as µ ↓ 0, hence limµ↓0 E(µ) = 0. Moreover Theorem 2 gives limµ→∞ E(µ) = 4π ,
hence by continuity 3] < ∞. This completes the proof of part (i) of the theorem. By
[26, Theorem 1.7] it follows that3] > 4π , and parts (ii) and (iii) follow at once from the
continuity of E . �
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