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Abstract. We prove some results on the existence and compactness of solutions of a fractional
Nirenberg problem. The crucial ingredients of our proofs are the understanding of the blow up
profiles and a Liouville theorem.
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1. Introduction

The Nirenberg problem is the following: For which positive function K on the standard
sphere (Sn, gSn), n ≥ 2, does there exist a function w on Sn such that the scalar curvature
(Gauss curvature in dimension n = 2) Rg of the conformal metric g = ewgSn is equal to
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K on Sn? The problem is equivalent to solving

−1gSnw + 1 = Ke2w on S2,

and
−1gSn v + c(n)R0v = c(n)Kv

n+2
n−2 on Sn for n ≥ 3,

where c(n) = (n− 2)/(4(n− 1)), R0 = n(n− 1) is the scalar curvature of (Sn, gSn) and
v = e

n−2
4 w.

The first work on this problem is by D. Koutroufiotis [69], where the solvability on
S2 is established when K is assumed to be an antipodally symmetric function which is
close to 1. Moser [83] established the solvability on S2 for all antipodally symmetric
functionsK which are positive somewhere. Without assuming any symmetry assumption
on K , sufficient conditions were given in dimension n = 2 by Chang and Yang [32],
[33], and in dimension n = 3 by Bahri and Coron [7]. Compactness of all solutions in
dimensions n = 2, 3 can be found in work of Chang, Gursky and Yang [30], Han [58] and
Schoen and Zhang [91]. In these dimensions, a sequence of solutions cannot blow up at
more than one point. Compactness and existence of solutions in higher dimensions were
studied by Li [71], [72]. The situation here is very different, as far as the compactness
issues are concerned: In dimension n ≥ 4, a sequence of solutions can blow up at more
than one point, as shown in [72]. There have been many papers on the problem and related
ones: see, e.g., [1, 2, 3, 6, 8, 10, 17, 18, 26, 27, 28, 34, 35, 36, 37, 39, 46, 50, 59, 61, 64,
65, 70, 78, 80, 88, 89, 98, 100, 101].

In [56], Graham, Jenne, Mason and Sparling constructed a sequence of conformally
covariant elliptic operators, {P gk }, on Riemannian manifolds for all positive integers k if
n is odd, and for k ∈ {1, . . . , n/2} if n is even. Moreover, P g1 is the conformal Laplacian
Lg := −1g + c(n)Rg and P g2 is the Paneitz operator. The construction in [56] is based
on the ambient metric construction of [52]. Up to positive constants, P g1 (1) is the scalar
curvature of g and P g2 (1) is the Q-curvature. The problem of prescribing Q-curvature on
Sn was studied extensively: see, e.g., [9, 15, 42, 43, 44, 53, 96, 97].

Making use of a generalized Dirichlet to Neumann map, Graham and Zworski [57]
introduced a meromorphic family of conformally invariant operators on the conformal in-
finity of asymptotically hyperbolic manifolds (see Mazzeo and Melrose [81]). Recently,
Chang and González [29] reconciled the way of Graham and Zworski to define con-
formally invariant operators P gσ of non-integer order σ ∈ (0, n/2) and the localization
method of Caffarelli and Silvestre [21] for the fractional Laplacian (−1)σ on the Eu-
clidean space Rn. These lead naturally to a fractional order curvature Rgσ := P

g
σ (1),

which will be called σ -curvature in this paper. Fractional Yamabe problems about finding
constant σ -curvatures on the conformal infinity of given asymptotically hyperbolic mani-
folds have been studied by González, Mazzeo and Sire [54], González and Qing [55] and
Qing and Raske [87]. Related concentration-compactness results have been obtained by
Palatucci and Pisante [85].

We focus on the typical example, the standard conformal spheres (Sn, [gSn ]) which
are the conformal infinity of the Poincaré disks (Bn+1, gBn+1). In this case, the σ -cur-
vature can be expressed in the following explicit way. Let g be a representative in the
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conformal class [gSn ] and write g = v4/(n−2σ)gSn , where v is positive and smooth on Sn.
Then we have

P gσ (φ) = v
−
n+2σ
n−2σ P

gSn
σ (φv) for any φ ∈ C∞(Sn), (1.1)

and hence the σ -curvature for (Sn, g) can be computed as

Rgσ = v
−
n+2σ
n−2σ P

gSn
σ (v). (1.2)

P
gSn
σ , which is simply written as Pσ , is an intertwining operator (see, e.g., [14]) and

Pσ =
0(B + 1/2+ σ)
0(B + 1/2− σ)

, B =

√
−1gSn +

(
n− 1

2

)2

, (1.3)

where 0 is the Gamma function and 1gSn is the Laplace–Beltrami operator on (Sn, gSn).
Formula (1.3) goes back at least to the work of T. P. Branson [14]. The operator Pσ can be
seen more concretely on Rn using stereographic projection. The stereographic projection
from Sn \ {N} to Rn is the inverse of

F : Rn→ Sn \ {N}, x 7→

(
2x

1+ |x|2
,
|x|2 − 1
|x|2 + 1

)
,

where N is the north pole of Sn. Then it follows from the conformal invariance of Pσ that

(Pσ (φ))◦F = |JF |
−(n+2σ)/2n(−1)σ (|JF |

(n−2σ)/2n(φ◦F)) for φ ∈ C∞(Sn), (1.4)

where

|JF | =

(
2

1+ |x|2

)n
,

and (−1)σ is the fractional Laplacian operator (see, e.g., [93, p. 117]). When σ ∈ (0, 1),
Pavlov and Samko [86] showed that

Pσ (v)(ξ) = Pσ (1)v(ξ)+ cn,−σ

∫
Sn

v(ξ)− v(ζ )

|ξ − ζ |n+2σ d volgSn (ζ ) (1.5)

for v ∈ C2(Sn), where cn,−σ =
22σ σ0( n+2σ

2 )

πn/20(1−σ) and
∫
Sn is understood as limε→0

∫
|x−y|>ε

.
From (1.2), we consider the equation

Pσ (v) = c(n, σ )Kv
n+2σ
n−2σ on Sn, (1.6)

where c(n, σ ) = Pσ (1), and K > 0 is a continuous function on Sn. When K = 1,
(1.6) is the Euler–Lagrange equation for a functional associated to the fractional Sobolev
inequality on Sn (see [9]), and all positive solutions must be of the form

vξ0,λ(ξ) =

(
2λ

2+ (λ2 − 1)(1− cos distgSn (ξ, ξ0))

)(n−2σ)/2

, ξ ∈ Sn, (1.7)
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for some ξ0 ∈ Sn and positive constant λ. This classification can be found in [77], [38]
and [73]. In general, (1.6) may have no positive solution, since if v is a positive solution
of (1.6) with K ∈ C1(Sn) then it has to satisfy the Kazdan–Warner type condition∫

Sn
〈∇gSnK,∇gSn ξ〉v

2n/(n−2σ) dξ = 0. (1.8)

Consequently, if K(ξ) = ξn+1 + 2, (1.6) has no solutions. The proof of (1.8) is provided
in Appendix A.1.

In this paper and a subsequent one [66], we study (1.6) with σ ∈ (0, 1), the fractional
Nirenberg problem. A fractional Yamabe flow on Sn will be studied in [67]. Throughout
the paper, we assume that σ ∈ (0, 1) and n ≥ 2 without otherwise stated.

Definition 1.1. For d > 0, we say that K ∈ C(Sn) has flatness order greater than d at
ξ if, in some local coordinate system {y1, . . . , yn} centered at ξ , there exists a neighbor-
hood O of 0 such that K(y) = K(0)+ o(|y|d) in O .

Theorem 1.2. Let K ∈ C1,1(Sn) be an antipodally symmetric function, i.e., K(ξ) =
K(−ξ) for all ξ ∈ Sn, and suppose K is positive somewhere on Sn. If there exists a
maximum point ofK at whichK has flatness order greater than n− 2σ , then (1.6) has at
least one positive C2 solution.

For 2 ≤ n < 2 + 2σ , K ∈ C1,1(Sn) has flatness order greater than n − 2σ at every
maximum point. When σ = 1, the above theorem was proved by Escobar and Schoen
[49] for n ≥ 3.

Theorem 1.3. Suppose thatK ∈ C1,1(Sn) is a positive function such that for every criti-
cal point ξ0 of K , in some geodesic normal coordinates {y1, . . . , yn} centered at ξ0, there
exist a small neighborhood O of 0 and positive constants β = β(ξ0) ∈ (n − 2σ, n) and
γ ∈ (n− 2σ, β] such that K ∈ C[γ ],γ−[γ ](O) (where [γ ] is the integer part of γ ) and

K(y) = K(0)+
n∑
j=1

aj |yj |
β
+ R(y) in O,

where aj = aj (ξ0) 6= 0,
∑n
j=1 aj 6= 0, and R ∈ C[β]−1,1(O) satisfies∑[β]

s=0 |∇
sR(y)| |y|−β+s → 0 as y → 0. If∑

ξ∈Sn: ∇gSnK(ξ)=0,
∑n
j=1 aj (ξ)<0

(−1)i(ξ) 6= (−1)n,

where
i(ξ) = #{aj (ξ) : ∇gSnK(ξ) = 0, aj (ξ) < 0, 1 ≤ j ≤ n},

then (1.6) has at least one positive C2 solution. Moreover, there exists a positive con-
stant C depending only on n, σ and K such that for all positive C2 solutions v of (1.6),

1/C ≤ v ≤ C and ‖v‖C2(Sn) ≤ C.
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For n = 3, σ = 1, the existence part of the above theorem was established by Bahri and
Coron [7], and the compactness part was shown in Chang, Gursky and Yang [30], and
Schoen and Zhang [91]. For n ≥ 4, σ = 1, the above theorem was proved by Li [71].

We now consider a class of functionsK more general than that in Theorem 1.3, which
is modified from [71].

Definition 1.4. For any real number β > 1, we say that a sequence {Ki} of functions
satisfies condition (∗)′β for some sequence of constants L(β, i) in some region �i if
Ki ∈ C

[β],β−[β](�i) satisfies

[∇
[β]Ki]Cβ−[β](�i ) ≤ L(β, i),

and, if β ≥ 2,
|∇
sKi(y)| ≤ L(β, i)|∇Ki(y)|

(β−s)/(β−1)

for all 2 ≤ s ≤ [β], y ∈ �i , ∇Ki(y) 6= 0.

Note that the function K in Theorem 1.3 satisfies condition (∗)′β .

Remark 1.5. For 1 ≤ β1 ≤ β2, if {Ki} satisfies (∗)′β2
for some sequence of constants

{L(β2, i)} in some regions �i , then {Ki} satisfies (∗)′β1
for {L(β1, i)}, where

L(β1, i)=


L(β2, i)max

(
max

2≤s≤[β1]
‖∇Ki‖

β2−s
β2−1−

β1−s
β1−1

L∞(�i )
, diam(�i)β2−β1

)
if [β2] = [β1],

L(β2, i)max
(

max
2≤s≤[β1]

‖∇Ki‖

β2−s
β2−1−

β1−s
β1−1

L∞(�i )
, ‖∇Ki‖

β2−[β1]−1
β2−1

L∞(�i )
diam(�i)1+[β1]−β1

)
if [β2] > [β1],

in the corresponding regions.

The following theorem gives a priori bounds of solutions in L2n/(n−2σ) norm.

Theorem 1.6. Let K ∈ C1,1(Sn) be a positive function. If there exists some constant
d > 0 such that K satisfies (∗)′n−2σ for some constant L > 0 in �d := {ξ ∈ Sn :
|∇gSnK(ξ)| < d}, then for every positive solution v ∈ C2(Sn) of (1.6),

‖v‖L2n/(n−2σ)(Sn) ≤ C, (1.9)

where C depends only on n, σ , infSn K , ‖K‖C1,1(Sn), L, and d.

For n = 3, σ = 1, the above theorem was proved by Chang, Gursky and Yang [30] and
by Schoen and Zhang [91]. For n ≥ 4, σ = 1, it was proved by Li [71].

Denote by H σ (Sn) the closure of C∞(Sn) under the norm∫
Sn
vPσ (v) d volgSn .
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The estimate (1.9) for the solution v is equivalent to

‖v‖H σ (Sn) ≤ C.

However, the estimate (1.9) is not sufficient to imply an L∞ bound for v on Sn. For
instance, ∫

Sn
vξ0,λ(ξ)

2n/(n−2σ) d volgSn =
∫
Sn
d volgSn ,

but vξ0,λ(ξ0) = λ
(n−2σ)/2

→∞ as λ→∞. Furthermore, a sequence of solutions vi may
blow up at more than one point, and this is the case when σ = 1 (see [72]). The following
theorem shows that the latter situation does not happen when K satisfies a somewhat
stronger condition.

Theorem 1.7. Suppose that {Ki} ∈ C1,1(Sn) is a sequence of positive functions with
uniform C1,1 norm and 1/A1 ≤ Ki ≤ A1 on Sn for some A1 > 0 independent of i.
Suppose also that {Ki} satisfying condition (∗)′β for some constants β > n−2σ ,L, d > 0
in �d . Let {vi} ∈ C2(Sn) be a sequence of corresponding positive solutions of (1.6)
and vi(ξi) = maxSn vi for some ξi . Then, after passing to a subsequence, either {vi} is
bounded in L∞(Sn), or it blows up at exactly one point in the strong sense: There exists
a sequence {ϕi} of Möbius diffeomorphisms from Sn to Sn satisfying ϕi(ξi) = ξi and
|det dϕi(ξi)|(n−2σ)/2n

= v−1
i (ξi) such that

‖Tϕivi − 1‖C0(Sn)→ 0 as i →∞,

where Tϕivi := (v ◦ ϕi)|det dϕi |(n−2σ)/2n.

For n = 3, σ = 1, the above theorem was established by Chang, Gursky and Yang [30]
and by Schoen and Zhang [91]. For n ≥ 4, σ = 1, it was proved by Li [71].

Möbius diffeomorphisms ϕ from Sn to Sn are those given by ϕ = φ ◦ F , where
φ is a Möbius transformation from Rn ∪ {∞} to Rn ∪ {∞} generated by translations,
multiplications by nonzero constants and the inversion x 7→ x/|x|2.

Our local analysis of solutions of (1.6) relies on a localization method introduced
by Caffarelli and Silvestre [21] for the fractional Laplacian (−1)σ on the Euclidean
space Rn, through which (1.6) is connected to a degenerate elliptic differential equation
in one dimension higher,{

div
(
t1−2σ

∇U(x, t)
)
= 0 ∀(x, t) ∈ Rn+1

+ ,

− limt→0 t
1−2σ ∂tU(x, t) = K(x)U(x, 0)

n+2σ
n−2σ ∀x ∈ ∂Rn+1

+ .
(1.10)

We refer to Section 2 for more details.
We would also like to remark that when σ = 1/2, this fractional Nirenberg problem is

equivalent to prescribing mean curvature on ∂Bn+1 and zero scalar curvature in Bn+1, as
studied in, e.g., [31, 45, 47, 48], where the equations are without weights, and thus elliptic.
This connection can be seen from (1.10), or from [29] which is in a general setting. The
proofs of Theorems 1.6 and 1.7 make use of a blow up analysis of solutions of (1.6),
which is an adaptation of the analysis for σ = 1 developed in [91] and [71]. Our blow up
analysis requires a Liouville type theorem. For the definitions of weak solutions and of
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the space Hloc(t
1−2σ ,Rn+1

+ ) in the following theorem we refer to Definition 2.2 and the
beginning of Section 3.

Theorem 1.8. Let U ∈ Hloc(t
1−2σ ,Rn+1

+ ), with U ≥ 0 in Rn+1
+ and U 6≡ 0, be a weak

solution of div(t1−2σ
∇U(x, t)) = 0 in Rn+1

+ ,

− lim
t→0

t1−2σ ∂tU(x, t) = U(x, 0)
n+2σ
n−2σ on Rn. (1.11)

Then U(x, 0) takes the form

(Nσ c(n, σ )22σ )(n−2σ)/4σ
(

λ

1+ λ2|x − x0|2

)(n−2σ)/2

, (1.12)

where λ > 0, x0 ∈ Rn, c(n, σ ) is the constant in (1.6) and Nσ = 21−2σ0(1− σ)/0(σ).
Moreover,

U(x, t) =

∫
Rn

Pσ (x − y, t)U(y, 0) dy

for (x, t) ∈ Rn+1
+ , where Pσ (x) is the kernel given in (2.2).

Remark 1.9. If we replace U(x, 0)
n+2σ
n−2σ by U(x, 0)p for 0 ≤ p < n+2σ

n−2σ in (1.11), then
the only nonnegative solution of (1.11) is U ≡ 0. Moreover, for p < 0, (1.11) has
no positive solution. These can be seen from the proof of Theorem 1.8 with a standard
modification (see, e.g., the proof of Theorem 1.2 in [25]). For σ ∈ (1/2, 1) and 1 < p <
n+2σ
n−2σ , this result has been proved in [13].

Remark 1.10. We do not make any assumption on the behavior of U near ∞. If we
assume that U ∈ H(t1−2σ ,Rn+1

+ ), the theorem in the case of p = n+2σ
n−2σ follows from a

classification theorem in [38] and [73], as explained below.

Remark 1.11. When σ = 1/2, Theorem 1.8 and Remark 1.9 can be found in [62], [63],
[76], [84] and [75].

We provide more details for Remark 1.10, which connects Theorem 1.8 to earlier
results. If U ∈ H(t1−2σ ,Rn+1

+ ), then u(·) := U(·, 0) ∈ L2n/(n−2σ)(Rn) and (−1)σu is
well defined. Moreover, by a theorem of Caffarelli and Silvestre [21],

− lim
t→0

t1−2σ ∂tU(x, t) = Nσ (−1)
σu(x).

Thus, by the second line of (1.11), u satisfies

Nσ (−1)
σu = u

n+2σ
n−2σ on Rn. (1.13)

With a regularity assumption on u near infinity, equation (1.13) can be, modulo a positive
constant multiple, rewritten as the following integral equation:

u(x) =

∫
Rn

u(y)
n+2σ
n−2σ

|x − y|n−2σ dy, ∀x ∈ Rn. (1.14)
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Equation (1.14) is, modulo a positive constant multiple, the Euler–Lagrange equation for
maximal functions, f := u

n+2σ
n−2σ , for the Hardy–Littlewood–Sobolev inequality on Rn:∥∥∥∥∫

Rn

f (y)

| · −y|λ
dy

∥∥∥∥
Lq (Rn)

≤ Np,λ,n‖f ‖Lp(Rn), (1.15)

with Np,λ,n being the sharp constant and p = 2n/(n + 2σ), q = 2n/(n − 2σ) and
λ = n−2σ . Lieb [77] proved that all maximizers are, modulo a positive constant multiple,
given by (1.12). Lieb also raised the question [77, p. 361] of the (essential) uniqueness of
solutions of (1.14). Chen, Li and Ou [38] proved that all L∞loc(R

n) solutions of (1.14) are
given by (1.12), while the regularity assumption u ∈ L∞loc(R

n) was weakened by Li [73]
to u ∈ L2n/(n−2σ)

loc (Rn).
Since presenting the proofs of all our results requires much space, we leave the proofs

of Theorem 1.2 and the existence part of Theorem 1.3 to the subsequent paper [66]. The
needed ingredients for the proof of the existence part of Theorem 1.3 are all developed
in this paper. With these ingredients, the existence part of Theorem 1.3 follows from a
perturbation result and a degree argument which are given in [66].

The present paper is organized as follows. In Section 2 we derive some properties
of solutions of fractional Laplacian equations. In particular we prove that local Schauder
estimates hold for positive solutions. In Section 3, using the method of moving spheres,
we establish Theorem 1.8. This Liouville type theorem and the local Schauder estimates
are used in the blow up analysis of solutions of (1.6). In Section 4 we establish accurate
blow up profiles of solutions of (1.6) near isolated blow up points. In fact, most of the
estimates also hold for subcritical approximations to such equations as well as in bounded
domains of Rn. In Section 5, we provide H σ (Sn) norm a priori estimates, at most one
isolated simple blow up point, and L∞(Sn) norm a priori estimates for solutions of (1.6)
under appropriate hypotheses on K . The proofs of Theorem 1.3, 1.6 and 1.7 are given in
that section. In the Appendix we provide a Kazdan–Warner identity, Lemma 4.10 that is
in the same spirit of the classical Bôcher theorem, two lemmas on maximum principles
and some complements.

2. Preliminaries

2.1. A weighted Sobolev space

Let σ ∈ (0, 1), X = (x, t) ∈ Rn+1 where x ∈ Rn and t ∈ R. Then |t |1−2σ belongs to
the Muckenhoupt A2 class in Rn+1, that is, there exists a positive constant C such that for
every ball B ⊂ Rn+1,(

1
|B|

∫
B
|t |1−2σ dX

)(
1
|B|

∫
B
|t |2σ−1 dX

)
≤ C.

LetD be an open set in Rn+1. Denote by L2(|t |1−2σ ,D) the Banach space of all measur-
able functions U , defined on D, for which

‖U‖L2(|t |1−2σ ,D) :=

(∫
D

|t |1−2σU2 dX

)1/2

<∞.
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We say thatU ∈ H(|t |1−2σ ,D) ifU ∈ L2(|t |1−2σ ,D), and its weak derivatives ∇U exist
and belong to L2(|t |1−2σ ,D). The norm of U in H(|t |1−2σ ,D) is given by

‖U‖H(|t |1−2σ ,D) :=

(∫
D

|t |1−2σU2(X) dX +

∫
D

|t |1−2σ
|∇U(X)|2 dX

)1/2

.

It is clear that H(|t |1−2σ ,D) is a Hilbert space with the inner product

〈U,V 〉 :=

∫
D

|t |1−2σ (UV +∇U∇V ) dX.

Note that C∞(D) is dense in H(|t |1−2σ ,D). Moreover, if D is a domain, i.e. a bounded
connected open set, with Lipschitz boundary ∂D, then there exists a bounded linear ex-
tension operator from H(|t |1−2σ ,D) to H(|t |1−2σ ,Rn+1) (see, e.g., [41]).

Let� be an open set in Rn. Recall thatH σ (�) is the fractional Sobolev space defined
as

H σ (�) :=

{
u ∈ L2(�) :

|u(x)− u(y)|

|x − y|n/2+σ
∈ L2(�×�)

}
with the norm

‖u‖H σ (�) :=

(∫
�

u2 dx +

∫
�

∫
�

|u(x)− u(y)|2

|x − y|n+2σ dx dy

)1/2

.

Then C∞(�) is dense in H σ (�). If � is a domain with Lipschitz boundary, then there
exists a bounded linear extension operator from H σ (�) to H σ (Rn). Note that H σ (Rn)
with the norm ‖ · ‖H σ (Rn) is equivalent to the space

{u ∈ L2(Rn) : |ξ |σF (u)(ξ) ∈ L2(Rn)}

with the norm
‖ · ‖L2(Rn) + ‖ |ξ |

σF (·)(ξ)‖L2(Rn),

where F denotes the Fourier transform operator. It is known (see, e.g., [79]) that there
exists C > 0 depending only on n and σ such that for U ∈ H(t1−2σ ,Rn+1

+ ) ∩ C(Rn+1
+ ),

‖U(·, 0)‖H σ (Rn) ≤ C‖U‖
H(t1−2σ ,Rn+1

+ )
. Hence by a standard density argument, every

U ∈ H(t1−2σ ,Rn+1
+ ) has a well-defined trace u := U(·, 0) ∈ H σ (Rn).

We define Ḣ σ (Rn) as the closure of the set C∞c (Rn) of compactly supported smooth
functions under the norm

‖u‖Ḣ σ (Rn) = ‖ |ξ |
σF (u)(ξ)‖L2(Rn).

Then there exists a constant C depending only on n and σ such that

‖u‖L2n/(n−2σ)(Rn) ≤ C‖u‖Ḣ σ (Rn) for all u ∈ C∞c (R
n). (2.1)

For u ∈ Ḣ σ (Rn), set

U(x, t) = Pσ [u] :=
∫
Rn

Pσ (x−ξ, t)u(ξ) dξ, (x, t) ∈ Rn+1
+ := Rn×(0,∞), (2.2)
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where

Pσ (x, t) = β(n, σ )
t2σ

(|x|2 + t2)(n+2σ)/2

with a constant β(n, σ ) such that
∫
Rn Pσ (x, 1) dx = 1. Then U ∈ L2(t1−2σ ,K) for

any compact set K in Rn+1
+ , ∇U ∈ L2(t1−2σ ,Rn+1

+ ) and U ∈ C∞(Rn+1
+ ). Moreover, U

satisfies (see [21])
div(t1−2σ

∇U) = 0 in Rn+1
+ , (2.3)

‖∇U‖
L2(t1−2σ ,Rn+1

+ )
= Nσ‖u‖Ḣ σ (Rn), (2.4)

and
− lim
t→0

t1−2σ ∂tU(x, t) = Nσ (−1)
σu(x) in Rn (2.5)

in the distribution sense, where Nσ is the constant in (1.12). We refer to U = Pσ [u] in
(2.2) as the extension of u ∈ Ḣ σ (Rn).

For a domain D ⊂ Rn+1 with boundary ∂D, we denote by ∂ ′D the interior of
D ∩ ∂Rn+1

+ in Rn = ∂Rn+1
+ , and we set ∂ ′′D = ∂D \ ∂ ′D.

Proposition 2.1. Let D = �× (0, R) ⊂ Rn × R+ with R > 0 and ∂� Lipschitz.

(i) If U ∈ H(t1−2σ ,D) ∩ C(D ∪ ∂ ′D), then u := U(·, 0) ∈ H σ (�), and

‖u‖H σ (�) ≤ C‖U‖H(t1−2σ ,D),

where C is a positive constant depending only on n, σ , R and �. Hence every U ∈
H(t1−2σ ,D) has a well-defined trace U(·, 0) ∈ H σ (�) on ∂ ′D. Furthermore, there
exists Cn,σ > 0 depending only on n and σ such that

‖U(·, 0)‖L2n/(n−2σ)(�) ≤ Cn,σ‖∇U‖L2(t1−2σ ,D) for all U ∈ C∞c (D ∪ ∂
′D). (2.6)

(ii) If u ∈ H σ (�), then there exists U ∈ H(t1−2σ ,D) such that the trace of U on �
equals u and

‖U‖H(t1−2σ ,D) ≤ C‖u‖H σ (�),

where C is a positive constant depending only on n, σ , R and �.

Proof. The above results are well-known and here we just sketch the proofs. For (i),
by the previously mentioned result on the extension operator, there exists Ũ ∈

H(t1−2σ ,Rn+1) such that Ũ = U in D and

‖Ũ‖H(t1−2σ ,Rn+1) ≤ C‖U‖H(t1−2σ ,D).

Hence by the above mentioned result on the trace from H(t1−2σ ,Rn+1
+ ) to H σ (Rn), we

have

‖u‖H σ (�) ≤ ‖Ũ (·, 0)‖H σ (Rn) ≤ C‖Ũ‖H(t1−2σ ,Rn+1
+ )
≤ C‖U‖H(t1−2σ ,D).
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For (2.6), we extend U by zero outside of D and let V be the extension of U(·, 0) as
in (2.2). The inequality (2.6) follows from (2.1), (2.4) and

‖∇V ‖
L2(t1−2σ ,Rn+1

+ )
≤ ‖∇U‖

L2(t1−2σ ,Rn+1
+ )

,

where Lemma A.4 is used in the above inequality.
For (ii), since ∂� is Lipschitz, there exists ũ ∈ H σ (Rn) such that ũ = u in � and

‖ũ‖H σ (Rn) ≤ C‖u‖H σ (�). Then U = Pσ [ũ], the extension of ũ, satisfies (ii). ut

2.2. Weak solutions of degenerate elliptic equations

Let D be a domain in Rn+1
+ with ∂ ′D 6= ∅. Let a ∈ L2n/(n+2σ)

loc (∂ ′D) and b ∈ L1
loc(∂

′D).
Consider {

div(t1−2σ
∇U(X)) = 0 in D,

− limt→0+ t
1−2σ ∂tU(x, t) = a(x)U(x, 0)+ b(x) on ∂ ′D.

(2.7)

Definition 2.2. We say that U ∈ H(t1−2σ ,D) is a weak solution (resp. supersolution,
subsolution) of (2.7) in D if for every nonnegative 8 ∈ C∞c (D ∪ ∂

′D),∫
D

t1−2σ
∇U∇8 = (resp. ≥,≤)

∫
∂ ′D

(aU8+ b8). (2.8)

We denote QR = BR × (0, R) where BR ⊂ Rn is the ball with radius R and centered
at 0.

Proposition 2.3. Suppose a∈Ln/2σ (B1) and b∈L2n/(n+2σ)(B1). LetU ∈ H(t1−2σ ,Q1)

be a weak solution of (2.7) in Q1. There exists δ > 0 depending only on n and σ such
that if ‖a+‖Ln/2σ (B1)

< δ, then there exists a constant C depending only on n, σ and δ
such that

‖U‖H(t1−2σ ,Q1/2)
≤ C(‖U‖L2(t1−2σ ,Q1)

+ ‖b‖L2n/(n+2σ)(B1)
).

Consequently, if a ∈ Lp(B1) for p > n/2σ , then C depends only on n, σ , ‖a‖Lp(B1).

Proof. Let η ∈ C∞c (Q1 ∪ ∂
′Q1) be a cut-off function which is equal to 1 in Q1/2 and is

supported in Q3/4. By a density argument, we can choose η2U as a test function in (2.8).
Then we have, by the Cauchy–Schwarz inequality,∫

Q1

t1−2ση2
|∇U |2 dX ≤ 4

∫
Q1

t1−2σ
|∇η|2U2 dX + 2

∫
∂ ′Q1

(a+(ηU)2 + bη2U) dx.

By the Hölder inequality and Proposition 2.1,∫
∂ ′Q1

a+(ηU)2 dx ≤ δ‖ηU‖2
L2n/(n−2σ)(∂ ′Q1)

≤ δC(n, σ )‖∇(ηU)‖2
L2(t1−2σ ,Q1)

.
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By Young’s inequality, for all ε > 0,∫
∂ ′Q1

bη2U(·, 0) dx ≤ ε‖ηU‖2
L2n/(n−2σ)(∂ ′Q1)

+ C(ε)‖b‖2
L2n/(n+2σ)(∂ ′Q1)

≤ εC(n, σ )‖∇(ηU)‖2
L2(t1−2σ ,Q1)

+ C(ε)‖b‖2
L2n/(n+2σ)(∂ ′Q1)

.

The first conclusion follows immediately if δ is sufficiently small.
If a ∈ Lp(B1), we can choose r small such that ‖a‖Ln/2σ (Br (x0))

< δ for any ball
Br(x0) ⊂ B1. Then Û (x, t) = r(n−2σ)/2U(rx + x0, rt) satisfies (2.7) with â(x) =
r2σa(rx + x0) and b̂(x, t) = r(n+2σ)/2b(rx + x0) in Q1. Since ‖â‖Ln/2σ (B1)

< δ, ap-
plying the above result to Û , we have

‖U‖H(t1−2σ ,B1/2×(0,r/2)) ≤ C(‖U‖L2(t1−2σ ,Q1)
+ ‖b‖L2n/(n+2σ)(B1)

),

where C depends only on n, σ , ‖a‖L∞(B1). This, together with the fact that (2.7) is uni-
formly elliptic in B1 × (r/4, 1), finishes the proof. ut

Proposition 2.4. Suppose that a ∈ Ln/2σ (B1). There exists δ > 0 which depends only
on n and σ such that if ‖a+‖Ln/2σ (B1)

< δ, then for any b ∈ L2n/(n+2σ)(B1), there exists
a unique solution U in H(t1−2σ ,Q1) to (2.7) with U |∂ ′′Q1 = 0.

Proof. We consider the bilinear form

B[U,V ] :=

∫
Q1

t1−2σ
∇U∇V dX −

∫
∂ ′Q1

aUV dx, U, V ∈ A,

where A := {U ∈ H(t1−2σ ,Q1) : U |∂ ′′Q1 = 0 in the trace sense}. By Proposition 2.1,
it is easy to verify that B[·, ·] is bounded and coercive provided δ is sufficiently small.
Therefore, the proposition follows from the Riesz representation theorem. ut

Lemma 2.5. Suppose U ∈ H(t1−2σ ,D) is a weak supersolution of (2.7) in D with
a ≡ b ≡ 0. If U ≥ 0 on ∂ ′′D in the trace sense, then U ≥ 0 in D.

Proof. Use U− as a test function to conclude that U− ≡ 0. ut

The following result is a refined version of that in [94]. Such De Giorgi–Nash–Moser
type theorems for degenerate equations with Dirichlet boundary conditions have been
established in [51].

Proposition 2.6. Suppose a, b ∈ Lp(B1) for some p > n/2σ .

(i) Let U ∈ H(t1−2σ ,Q1) be a weak subsolution of (2.7) in Q1. Then for all ν > 0,

sup
Q1/2

U+ ≤ C(‖U+‖Lν (t1−2σ ,Q1)
+ ‖b+‖Lp(B1)),

where U+ = max(0, U), and C > 0 depends only on n, σ , p, ν and ‖a+‖Lp(B1).
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(ii) Let U ∈ H(t1−2σ ,Q1) be a nonnegative weak supersolution of (2.7) in Q1. Then
for any 0 < µ < τ < 1, 0 < ν ≤ (n+ 1)/n we have

inf
Qµ
U + ‖b−‖Lp(B1) ≥ C‖U‖Lν (t1−2σ ,Qτ )

,

where C > 0 depends only on n, σ , p, ν, µ, τ and ‖a−‖Lp(B1).
(iii) Let U ∈ H(t1−2σ ,Q1) be a nonnegative weak solution of (2.7) inQ1. Then we have

the following Harnack inequality:

sup
Q1/2

U ≤ C
(

inf
Q1/2

U + ‖b‖Lp(B1)

)
, (2.9)

where C > 0 depends only on n, σ , p, ‖a‖Lp(B1). Consequently, there exists α ∈
(0, 1) depending only on n, σ , p, ‖a‖Lp(B1) such that any weak solution U of (2.7)
is in Cα(Q1/2). Moreover,

‖U‖Cα(Q1/2)
≤ C(‖U‖L∞(Q1) + ‖b‖Lp(B1)),

where C > 0 depends only on n, σ , p, ‖a‖Lp(B1).

Proof. The proofs are modifications of those in [94], where the method of Moser iteration
is used. Here we only point out the changes. Let k = ‖b+‖Lp(B1) if b+ 6≡ 0, otherwise
let k > 0 be any number, and we will eventually let k→ 0. Define U = U+ + k and, for
m > 0, let

Um =

{
U if U < m,

k +m if U ≥ m.

Consider the test function

φ = η2(U
β

mU − k
β+1) ∈ H(t1−2σ ,Q1)

for some β ≥ 0 and some nonnegative function η ∈ C1
c (Q1 ∪ ∂

′Q1). Direct calculations
show that, if we set W = U

β/2
m U , then

1
1+β

∫
Q1

t1−2σ
|∇(ηW)|2 ≤ 16

∫
Q1

t1−2σ
|∇η|2W 2

+4
∫
∂ ′Q1

(
a++

b+

k

)
η2W 2. (2.10)

By Hölder’s inequality and the choice of k, we have∫
∂ ′Q1

(
a+ +

b+

k

)
η2W 2

≤ (‖a+‖Lp(B1) + 1)‖η2W 2
‖
Lp
′
(B1)

,

where p′ = p/(p − 1) < n/(n− 2σ). Choose 0 < θ < 1 such that 1/p′ = θ +

(1− θ)(n− 2σ)/n. The interpolation inequality shows that, for any ε > 0,

‖η2W 2
‖
Lp
′
(B1)
≤ ε‖ηW‖2

L2n/(n−2σ)(B1)
+ ε−(1−θ)/θ‖η2W 2

‖L1(B1)
.
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By the trace embedding inequality of Proposition 2.1, there exists C > 0 depending only
on n, σ , such that

‖ηW‖2
L2n/(n−2σ)(B1)

≤ C

∫
Q1

t1−2σ
|∇(ηW)|2.

By Lemma 2.3 in [94], there exist δ, C > 0, both depending only on n, σ , such that

‖η2W 2
‖L1(B1)

≤ ε1/θ
∫
Q1

t1−2σ
|∇(ηW)|2 + ε−δ/θ

∫
Q1

t1−2ση2W 2.

By choosing ε small, the above inequalities give∫
Q1

t1−2σ
|∇(ηW)|2 ≤ C(1+ β)δ/θ

∫
Q1

t1−2σ (η2
+ |∇η|2)W 2,

where C depends only on n, σ and ‖a+‖Lp(B1). Then the proof of Proposition 3.1 in [94]
goes through without any change. This finishes the proof of (i) for ν = 2. Hence (i) also
holds for any ν > 0, by standard arguments. For part (ii) we choose k = ‖b−‖Lp(B1) if
b− 6≡ 0, otherwise let k > 0 be any number, and we will eventually let k → 0. We can
show that there exists some ν0 > 0 for which (ii) holds, by exactly the same proof of
Proposition 3.2 in [94]. Finally, by using the test function φ = U

−β
η2 with β ∈ (0, 1) we

can repeat the proof of (i) to conclude (ii) for 0 < ν ≤ (n+ 1)/n. Part (iii) follows from
(i), (ii) and standard elliptic theory. ut

Remark 2.7. The Harnack inequality (2.9) without the lower order term b, has been
obtained earlier in [19] using a different method.

The above proofs can be improved to yield the following result.

Lemma 2.8. Suppose a∈Ln/2σ (B1), b∈Lp(B1) with p > n/2σ and U ∈H(t1−2σ ,Q1)

is a weak subsolution of (2.7) in Q1. There exists δ > 0 which depends only on n and σ
such that if ‖a+‖Ln/2σ (B1)

< δ, then

‖U+(·, 0)‖Lq (∂ ′Q1/2) ≤ C(‖U
+
‖H(t1−2σ ,Q1)

+ ‖b+‖Lp(B1)),

where C > 0 depends only on n, p, σ , δ, and q = min
( 2(n+1)
n−2σ ,

n(p−1)
(n−2σ)p ·

2n
n−2σ

)
.

Remark 2.9. Analogous estimates were established for−1u = au in [16, Theorem 2.3]
and for − div(|∇u|p−2

∇u) = a|u|p−2u in [4, Lemma 3.1].
Proof of Lemma 2.8. We start from (2.10), where we choose β = min

( 2
n
,

2(2σp−n)
(n−2σ)p

)
. By

the Hölder inequality and Proposition 2.1,∫
∂ ′Q1

(
a+ +

b+

k

)
η2W 2

≤ δ‖η2W 2
‖Ln/(n−2σ)(B1)

+ ‖η2W 2
‖
Lp
′
(B1)

≤ C(n, σ )δ

∫
Q1

t1−2σ
|∇(ηW)|2 + Cn,σ,p‖U‖H(t1−2σ ,Q1)

.

By Poincaré’s inequality of [51], we have∫
Q1

t1−2σ
|∇η|2W 2

≤ Cn,σ,p‖U‖H(t1−2σ ,Q1)
.
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If δ is sufficiently small, then the above together with (2.10) implies that∫
Q1

t1−2σ
|∇(ηW)|2 ≤ Cn,σ,p‖U‖H(t1−2σ ,Q1)

.

Hence it follows from the Hölder inequality and Proposition 2.1 that, by letting m→∞,

‖U(·, 0)‖Lq (∂ ′Q1/2) ≤ Cn,σ,p

∫
Q1

t1−2σ
|∇(ηW)|2 ≤ Cn,σ,p‖U‖H(t1−2σ ,Q1)

.

This finishes the proof. ut

Corollary 2.10. Suppose that K ∈ L∞(B1), U ∈ H(t1−2σ ,Q1) with U ≥ 0 in Q1
satisfies, for some 1 ≤ p ≤ (n+ 2σ)/(n− 2σ),{

div(t1−2σ
∇U(X)) = 0 in Q1,

− limt→0+ t
1−2σ ∂tU(x, t) = K(x)U(x, 0)p on ∂ ′Q1.

Then

(i) U ∈ L∞loc(Q1 ∪ ∂
′Q1), and hence U(·, 0) ∈ L∞loc(B1).

(ii) There exist C > 0 and α ∈ (0, 1) depending only on n, σ , p, ‖u‖L∞(B3/4) and
‖K‖L∞(B3/4) such that U ∈ Cα(Q1/2) and

‖U‖H(t1−2σ ,Q1/2)
+ ‖U‖Cα(Q1/2)

≤ C.

Note that the regularity of solutions of −1u = u
n+2
n−2 was proved by Trudinger in [95].

When σ = 1/2, the above regularity result was proved in [40].

Proof of Corollary 2.10. By Proposition 2.1, U(·, 0) ∈ H σ (B1) ⊂ L
2n/(n−2σ)(B1). Thus

U(·, 0)p−1
∈ Ln/2σ (B1). Then part (i) follows from Lemma 2.8 and Proposition 2.6. Part

(ii) follows from Propositions 2.3 and 2.6. ut

2.3. Local Schauder estimates

Let � be a domain in Rn, a ∈ L2n/(n+2σ)
loc (�) and b ∈ L1

loc(�). We say u ∈ Ḣ σ (Rn) is a
weak solution of

(−1)σu = au+ b in �

if for any φ ∈ C∞(Rn) supported in �,∫
Rn
(−1)σ/2u(−1)σ/2φ =

∫
�

(auφ + bφ).

Then by (2.5), u ∈ Ḣ σ (Rn) is a weak solution of

(−1)σu =
1
Nσ

(au+ b) in B1
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if and only if U = Pσ [u], the extension of u defined in (2.2), is a weak solution of (2.7)
in Q1.

For α ∈ (0, 1), Cα(�) denotes the standard Hölder space over the domain �. For
simplicity, we use Cα(�) to denote C[α],α−[α](�) when 1 < α /∈ N (the set of positive
integers).

In this part, we shall prove the following local Schauder estimates for nonnegative
solutions of a fractional Laplace equation.

Theorem 2.11. Suppose a, b ∈ Cα(B1) with 0 < α 6∈ N. Let u ∈ Ḣ σ (Rn) and u ≥ 0
in Rn be a weak solution of

(−1)σu = au+ b in B1.

Suppose that 2σ + α is not an integer. Then u ∈ C2σ+α(B1/2). Moreover,

‖u‖C2σ+α(B1/2)
≤ C

(
inf
B3/4

u+ ‖b‖Cα(B3/4)

)
, (2.11)

where C > 0 depends only on n, σ , α, ‖a‖Cα(B3/4).

Remark 2.12. If we replace the assumption u ≥ 0 in Rn by u ≥ 0 in B1, estimate (2.11)
may fail (see [68]). Without the sign assumption on u, (2.11) holds with infB3/4 u replaced
by ‖u‖L∞(Rn), which is proved in [22], [23] and [24] in a much more general setting of
fully nonlinear nonlocal equations.

The following proposition will be used in the proof of Theorem 2.11.

Proposition 2.13. Let a, b ∈ Ck(B1), and U ∈ H(t1−2σ ,Q1) be a weak solution of
(2.7) in Q1, where k is a positive integer. Then

k∑
i=0

‖∇
i
xU‖L∞(Q1/2) ≤ C(‖U‖L2(t1−2σ ,Q1)

+ ‖b‖Ck(B1)
),

where C > 0 depends only on n, σ , k, ‖a‖Ck(B1)
.

Proof. We know from Proposition 2.6 that U is Hölder continuous in Q8/9. Let h ∈ Rn
with |h| sufficiently small. Denote Uh(x, t) = (U(x + h, t)− U(x, t))/|h|. Then Uh is
a weak solution of{

div(t1−2σ
∇Uh(X)) = 0 in Q8/9,

− limt→0+ t
1−2σ ∂tU

h(x, t) = a(x + h)Uh + ahU + bh on ∂ ′Q8/9.
(2.12)

By Propositions 2.3 and 2.6,

‖Uh‖H(t1−2σ ,Q2/3)
+ ‖Uh‖Cα(Q2/3)

≤ C(‖Uh‖L2(t1−2σ ,Q3/4)
+ ‖b‖C1(B1)

)

≤ C(‖∇U‖L2(t1−2σ ,Q4/5)
+ ‖b‖C1(B1)

)

≤ C(‖U‖L2(t1−2σ ,Q1)
+ ‖b‖C1(B1)

)
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for some α ∈ (0, 1) and positive constant C > 0 depending only on n, σ , ‖a‖C1(B1)
.

Hence ∇xU ∈ H(t1−2σ ,Q2/3) ∩ C
α(Q2/3), and it is a weak solution of{

div(t1−2σ
∇(∇xU) = 0 in Q2/3,

− limt→0+ t
1−2σ ∂t (∇xU) = a∇xU + U∇xa +∇xb on ∂ ′Q2/3.

Then this proposition follows immediately from Propositions 2.3 and 2.6 for k = 1. We
can continue this procedure for k = 2, 3, . . . (by induction). ut

To prove Theorem 2.11 we first obtain Schauder estimates for solutions of the equation{
div(t1−2σ

∇U(X)) = 0 in QR,

− limt→0+ t
1−2σ ∂tU(x, t) = g(x) on ∂ ′QR.

(2.13)

Theorem 2.14. Let U ∈ H(t1−2σ ,Q2) be a weak solution of (2.13) with R = 2 and g ∈
Cα(B2) for some 0 < α 6∈ N. If 2σ + α is not an integer, then U(·, 0) is in C2σ+α(B1/2).
Moreover,

‖U(·, 0)‖C2σ+α(B1/2)
≤ C(‖U‖L∞(Q2) + ‖g‖Cα(B2)),

where C > 0 depends only on n, σ , α.

This theorem together with Proposition 2.6 implies the following

Theorem 2.15. Let U ∈ H(t1−2σ ,Q1) be a weak solution of (2.7) with D = Q1 and
a, b ∈ Cα(B1) for some 0 < α 6∈ N. If 2σ + α is not an integer, then U(·, 0) is in
C2σ+α(B1/2). Moreover,

‖U(·, 0)‖C2σ+α(B1/2)
≤ C(‖U‖L∞(Q1) + ‖b‖Cα(B1)),

where C > 0 depends only on n, σ , α, ‖a‖Cα(B1).

Proof. From Proposition 2.6, U is Hölder continuous in Q3/4. Theorem 2.15 follows
from bootstrap arguments by applying Theorem 2.14 with g(x) := a(x)U(x, 0)+ b(x).

ut

Proof of Theorem 2.14. Our arguments are in the spirit of those in [20] and [74]. We
denote by C various constants that depend only on n and σ . Let ρ = 1/2, Qk = Qρk (0),
∂ ′Qk = Bk , k = 0, 1, 2, . . . . (Note that we have abused notation a bit. Only in this proof
we write Qk, Bk for Qρk , Bρk .) We also denote M = ‖g‖Cα(B2). From Proposition 2.6
we already know that U is Hölder continuous in Q0. First, we assume that α ∈ (0, 1).

Step 1. We consider the case of 2σ + α < 1. Let Wk be the unique weak solution (guar-
anteed by Proposition 2.4) of

div(t1−2σ
∇Wk(X)) = 0 in Qk,

− limt→0+ t
1−2σ ∂tWk(x, t) = g(0)− g(x) on ∂ ′Qk,

Wk(X) = 0 on ∂ ′′Qk.

(2.14)
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Let Uk = Wk + U in Qk and hk+1 = Uk+1 − Uk in Qk+1. Then

‖Wk‖L∞(Qk) ≤ CMρ
(2σ+α)k. (2.15)

Indeed, (2.15) follows by applying Lemma 2.5 to the equation of ρ−2σkWk(ρ
kx) ±

(t2σ − 3)Mραk in Q0. Hence by this weak maximum principle again we have

‖hk+1‖L∞(Qk) ≤ CMρ
(2σ+α)k.

By Proposition 2.13, we have, for i = 0, 1, 2, 3,

‖∇
i
xhk+1‖L∞(Qk+2) ≤ CMρ

(2σ+α−i)k. (2.16)

Similarly, applying Proposition 2.13 to U0, we obtain

‖∇
i
xU0‖L∞(Q2) ≤ C(‖U0‖L∞(Q1) +M) ≤ C(‖U‖L∞(Q0) +M). (2.17)

For any given point z near 0, we have

|U(z, 0)− U(0, 0)|

≤ |Uk(0, 0)− U(0, 0)| + |U(z, 0)− Uk(z, 0)| + |Uk(z, 0)− Uk(0, 0)|
= I1 + I2 + I3.

Let k be such that ρk+4
≤ |z| ≤ ρk+3. By (2.15),

I1 + I2 ≤ CMρ
(2σ+α)k

≤ CM|z|2σ+α.

For I3, by (2.16) and (2.17),

I3 ≤ |U0(z, 0)− U0(0, 0)| +
k∑

j=1

|hj (z, 0)− hj (0, 0)|

≤ C|z|
(
‖∇xU0‖L∞(Qk+3) +

k∑
j=1

‖∇xhj‖L∞(Qk+3)

)

≤ C|z|
(
‖U‖L∞(Q0) +M +M

k∑
j=1

ρ(2σ+α−1)j
)

≤ C|z|
(
‖U‖L∞(Q0) +M(1+ |z|

2σ+α−1)
)
.

Thus, for 2σ + α < 1, we have

|U(z, 0)− U(0, 0)| ≤ C(M + ‖U‖L∞(Q0))|z|
2σ+α,

which finishes the proof of Step 1.

Step 2. For 1 < 2σ + α < 2, the arguments in Step 1 imply that

‖∇xU(·, 0)‖L∞(B1) ≤ C(‖U‖L∞(Q0) +M). (2.18)

Applying (2.18) to the equation of Wk we have, together with (2.15),

‖∇xWk(·, 0)‖L∞(Bk+1) ≤ CMρ
(2σ+α−1)k.
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By (2.16) and (2.17),

|∇xUk(z, 0)−∇xUk(0, 0)|

≤ |∇xU0(z, 0)−∇xU0(0, 0)| +
k∑

j=1

|∇xhj (z, 0)−∇xhj (0, 0)|

≤ C|z|
(
‖∇

2
xU0‖L∞(Qk+3) +

k∑
j=1

‖∇
2
xhj‖L∞(Qk+3)

)
≤ C|z|

(
‖U‖L∞(Q0) +M +M

k∑
j=1

ρ(2σ−2+α)j
)

≤ C|z|
(
‖U‖L∞(Q0) +M(1+ |z|

2σ+α−2)
)
.

Hence,

|∇xU(z, 0)−∇xU(0, 0)| ≤ |∇xWk(0, 0)| + |∇xWk(z, 0)| + |∇xUk(z, 0)−∇xUk(0, 0)|

≤ CMρ(2σ+α−1)k
+ C|z|

(
‖U‖L∞(Q0) +M(1+ |z|

2σ+α−2)
)

≤ C(M + ‖U‖L∞(Q0))|z|
2σ+α−1,

which finishes the proof of Step 2.

Step 3. For 2σ + α > 2, the arguments in Step 2 imply that

‖∇
2
xU(·, 0)‖L∞(B1) ≤ C(‖U‖L∞(Q0) +M). (2.19)

Applying (2.19) to the equation of Wk we have, together with (2.15),

‖∇
2
xWk(·, 0)‖L∞(Bk+1) ≤ CMρ

(2σ+α−2)k.

By (2.16) and (2.17),

|∇
2
xUk(z, 0)−∇2

xUk(0, 0)| ≤ |∇2
xU0(z, 0)−∇2

xU0(0, 0)|+
k∑

j=1

|∇
2
xhj (z, 0)−∇2

xhj (0, 0)|

≤ C|z|
(
‖∇

3
xU0‖L∞(Qk+3)+

k∑
j=1

‖∇
3
xhj‖L∞(Qk+3)

)
≤ C|z|

(
‖U‖L∞(Q0)+M+M

k∑
j=1

ρ(2σ+α−3)k
)

≤ C|z|
(
‖U‖L∞(Q0)+M(1+|z|

2σ+α−3)
)
.

Hence,

|∇
2
xU(z, 0)−∇2

xU(0, 0)|

≤ |∇
2
xWk(0, 0)| + |∇2

xWk(z, 0)| + |∇2
xUk(z, 0)−∇xUk(0, 0)|

≤ CMρ(2σ+α−2)k
+ C|z|

(
‖U‖L∞(Q0) +M(1+ |z|

2σ+α−3)
)

≤ C(M + ‖U‖L∞(Q0))|z|
2σ+α−2,

which finishes the proof of Step 3. This finishes the proof of Theorem 2.14 for α ∈ (0, 1).
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For α > 1, we may apply ∇x to (2.13) [α] times, as in the proof of Proposition 2.13,
and repeat the above three steps. Theorem 2.14 is proved. ut

Proof of Theorem 2.11. Since u ∈ Ḣ σ (Rn) is nonnegative, its extensionU is nonnegative
in Rn+1

+ and U ∈ H(t1−2σ ,Q1) is a weak solution of (2.7) in Q1. The theorem follows
immediately from Theorem 2.15 and Proposition 2.6. ut

Remark 2.16. Another way to show Theorem 2.11 is the following. Let u ∈ Ḣ σ (Rn)
and u ≥ 0 in Rn be a solution of

(−1)σu = g in B1,

where g ∈ Cα(B1). Let η be a nonnegative smooth cut-off function supported in B1 and
equal to 1 in B7/8. Let v ∈ Ḣ σ (Rn) be the solution of

(−1)σ v = ηg in Rn,

where ηg is considered as a function defined in Rn and supported in B1, i.e., v is a Riesz
potential of ηg:

v(x) =
0
(
n−2σ

2

)
22σπn/20(σ)

∫
Rn

η(y)g(y)

|x − y|n−2σ dy.

Then if 2σ + α and α are not integers, we have (see, e.g., [93])

‖v‖C2σ+α(B1/2)
≤ C(‖v‖L∞(Rn) + ‖ηg‖Cα(Rn)) ≤ C‖g‖Cα(B1).

Let w = u− v; it belongs to Ḣ σ (Rn) and satisfies

(−1)σw = 0 in B7/8.

LetW = Pσ [w] be the extension ofw, and W̃ = W+‖v‖L∞(Rn) ≥ 0 in Rn+1
+ . Notice that

W̃ is a nonnegative weak solution of (2.7) with a ≡ b ≡ 0 and D = Q1. By Propositions
2.13 and 2.6, we have

‖w + ‖v‖L∞(Rn)‖C2σ+α(B1/2)
≤ C‖W̃‖L2(t1−2σ ,Q7/8)

≤ C inf
Q3/4

W̃

≤ C
(

inf
Q3/4

u+ ‖v‖L∞(Rn)
)
.

Hence

‖u‖C2σ+α(B1/2)
≤ ‖v‖C2σ+α(B1/2)

+ ‖w‖C2σ+α(B1/2)
≤ C

(
inf
B3/4

u+ ‖g‖Cα(B1)

)
.

Using bootstrap arguments as in the proof of Theorem 2.15, we conclude the proof of
Theorem 2.11.
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Remark 2.17. In fact, our proofs also yield the following. If we only assume that a, b, g
are in L∞(B1), and let U , u be those of Theorems 2.14 and 2.11 respectively, then the
estimates

‖U(·, 0)‖C2σ (B1/2)
≤ C1(‖U‖L∞(Q1) + ‖g‖L∞(B1)),

‖u‖C2σ (B1/2)
≤ C2

(
inf
B3/4

u+ ‖b‖L∞(B3/4)

)
hold provided σ 6= 1/2 , where C1 > 0 depends only on n, σ , α, and C2 > 0 depends
only on n, σ , α, ‖a‖L∞(B3/4). For σ = 1/2, we have the following log-Lipschitz property:
for any y1, y2 ∈ B1/4, y1 6= y2,

|U(y1, 0)− U(y2, 0)|
|y1 − y2|

≤ C1
(
‖U‖L∞(Q1) − ‖g‖L∞(B1) log |y1 − y2|

)
,

|u(y1)− u(y2)|

|y1 − y2|
≤ −C2 log |y1 − y2|

(
inf
B3/4

u+ ‖b‖L∞(B3/4)

)
,

where C1 > 0 depends only on n, σ , and C2 > 0 depends only on n, σ , ‖a‖L∞(B3/4).

Next we have

Lemma 2.18 ([19, Lemma 4.5]). Let g ∈ Cα(B1) for some α ∈ (0, 1) andU ∈ L∞(Q1)

∩H(t1−2σ ,Q1) be a weak solution of (2.13). Then there exists β ∈ (0, 1) depending only
on n, σ , α such that t1−2σ ∂tU ∈ C

β(Q1/2). Moreover, there exists a positive constant
C > 0 depending only on n, σ and β such that

‖t1−2σ ∂tU‖Cβ (Q1/2)
≤ C(‖U‖L∞(Q1) + ‖g‖Cα(B1)).

Proposition 2.19. Suppose that K ∈ C1(B1), and U ∈ H(t1−2σ ,Q1) with U ≥ 0 in Q1
is a weak solution of{

div(t1−2σ
∇U) = 0 in Q1,

− limt→0 t
1−2σ ∂tU(x, t) = K(x)U

p(x, 0) on ∂ ′Q1,
(2.20)

where 1 ≤ p ≤ n+2σ
n−2σ . Then there exist C > 0 and α ∈ (0, 1), both depending only on n,

σ , p, ‖U‖L∞(Q1), ‖K‖C1(Q1)
, such that ∇xU and t1−2σ ∂tU are in Cα(Q1/2) and

‖∇xU‖Cα(Q1/2)
+ ‖t1−2σ ∂tU‖Cα(Q1/2)

≤ C.

Proof. We use C and α to denote various positive constants with dependence specified
as in the proposition, which may vary from line to line. By Corollary 2.10, we know that
U ∈ L∞loc(Q1 ∪ ∂

′Q1) and
‖U‖Cα(Q8/9)

≤ C.

With the above, we may apply Theorem 2.15 to obtain U(·, 0) ∈ C1,σ (B7/8) and

‖U(·, 0)‖C1,σ (B7/8)
≤ C.
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Hence we may differentiate (2.20) with respect to x (which can be justified from the proof
of Proposition 2.13) and apply Proposition 2.6 to ∇xU to obtain

‖∇xU‖Cα(Q1/2)
≤ C.

Finally, we can apply Lemma 2.18 to obtain

‖t1−2σ ∂tU‖Cα(Q1/2)
≤ C. ut

3. Proof of Theorem 1.8

We first introduce some notations. We write U ∈ L∞loc(R
n+1
+ ) if U ∈ L∞(QR) for any

R > 0. Similarly, we write U ∈ Hloc(t
1−2σ ,Rn+1

+ ) if U ∈ H(t1−2σ ,QR) for any
R > 0. In the following BR(X) is the ball in Rn+1 with radius R and center X, B+R (X)
is BR(X) ∩ Rn+1

+ , and BR(x) is the ball in Rn with radius R and center x. We also write
BR,B+R , BR for BR(0),B+R (0), BR(0) respectively.

We start with a lemma which is a version of the strong maximum principle.

Proposition 3.1. Suppose U ∈ H(t1−2σ ,Dε) ∩ C(B+1 ∪ B1 \ {0}) with U > 0 in B+1 ∪
B1 \ {0} is a weak supersolution of (2.7) with a ≡ b ≡ 0 and D = Dε := B+1 \ B

+
ε for

any 0 < ε < 1. Then
lim inf
(x,t)→0

U(x, t) > 0.

Proof. For any δ > 0, let

Vδ = U +
δ

|(x, t)|n−2σ − min
∂ ′′B+0.8

U.

Then V is also a weak supersolution inDδ2/(n−2σ) . Applying Lemma 2.5 to Vδ inDδ2/(n−2σ)

for sufficiently small δ, we have Vδ ≥ 0 in Dδ2/(n−2σ) . For any (x, t) ∈ B+0.8 \ {0}, we have
limδ→0 Vδ(x, t) ≥ 0, i.e., U(x, t) ≥ min∂ ′′B+0.8 U . ut

The proof of Theorem 1.8 uses the method of moving spheres and is inspired by [76],
[75] and [25]. For each x ∈ Rn and λ > 0, we write X = (x, 0), and define

UX,λ(ξ) :=

(
λ

|ξ −X|

)n−2σ

U

(
X +

λ2(ξ −X)

|ξ −X|2

)
, ξ ∈ Rn+1

+ \ {X}, (3.1)

the Kelvin transformation of U with respect to the ball Bλ(X). We point out that if U is a
solution of (1.11), then Ux̄,λ is a solution of (1.11) in Rn+1

+ \ B+ε , for every x̄ ∈ ∂Rn+1
+ ,

λ > 0, and ε > 0.
By Corollary 2.10 any nonnegative weak solution U of (1.11) belongs to L∞loc(R

n+1
+ ),

and hence by Proposition 2.6, U is Hölder continuous and positive in Rn+1
+ . By Theorem

2.14, U(·, 0) is smooth in Rn. From classical elliptic theory, U is smooth in Rn+1
+ .
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Lemma 3.2. For any x ∈ Rn, there exists a positive constant λ0(x) such that for any
0 < λ < λ0(x),

UX,λ(ξ) ≤ U(ξ) in Rn+1
+ \ B+λ (X). (3.2)

Proof. Without loss of generality we may assume that x = 0 and write Uλ = U0,λ.

Step 1. We show that there exist 0 < λ1 < λ2, which may depend on x, such that

Uλ(ξ) ≤ U(ξ), ∀ 0 < λ < λ1, λ < |ξ | < λ2.

For every 0 < λ < λ1 < λ2 and ξ ∈ ∂ ′′Bλ2 , we have λ2ξ/|ξ |2 ∈ B+λ2
. Thus we can

choose λ1 = λ1(λ2) small such that

Uλ(ξ) =

(
λ

|ξ |

)n−2σ

U

(
λ2ξ

|ξ |2

)
≤

(
λ1

λ2

)n−2σ

sup
B+λ2

U ≤ inf
∂ ′′B+λ2

U ≤ U(ξ).

Hence Uλ ≤ U on ∂ ′′(B+λ2
\ B+λ ) for all λ2 > 0 and 0 < λ < λ1(λ2).

We will show that Uλ ≤ U on B+λ2
\ B+λ if λ2 is small and 0 < λ < λ1(λ2). Since Uλ

satisfies (1.11) in B+λ2
\ B+λ1

, we havediv(t1−2σ
∇(Uλ − U)) = 0 in B+λ2

\ B+λ ,
lim
t→0

t1−2σ ∂t (Uλ − U) = U(x, 0)
n+2σ
n−2σ − Uλ(x, 0)

n+2σ
n−2σ on ∂ ′(B+λ2

\ B+λ ).
(3.3)

Let (Uλ − U)+ := max(0, Uλ − U), which is 0 on ∂ ′′(B+λ2
\ B+λ ). Hence, by a density

argument, we can use (Uλ − U)+ as a test function in the definition of weak solution of
(3.3). We will make use of the narrow domain technique from [11]. With the help of the
mean value theorem, we have∫
B+λ2
\B+λ

t1−2σ
|∇(Uλ − U)

+
|
2
=

∫
Bλ2\Bλ

(Uλ(x, 0)
n+2σ
n−2σ − U(x, 0)

n+2σ
n−2σ )(Uλ − U)

+

≤ C

∫
Bλ2\Bλ

((Uλ − U)
+)2U

4σ/(n−2σ)
λ

≤ C

(∫
Bλ2\Bλ

((Uλ − U)
+)2n/(n−2σ)

)(n−2σ)/n(∫
Bλ2\Bλ

U
2n/(n−2σ)
λ

)2σ/n

≤ C

(∫
B+λ2
\B+λ

t1−2σ
|∇(Uλ − U)

+
|
2
)(∫

Bλ2

U2n/(n−2σ)
)2σ/n

,

where Proposition 2.1 is used in the last inequality and C is a positive constant depending
only on n and σ . We fix λ2 small such that

C

(∫
Bλ2

U2n/(n−2σ)
)2σ/n

< 1/2.
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Then∇(Uλ−U)+ = 0 in B+λ2
\B+λ . Since (Uλ−U)+ = 0 on ∂ ′′(B+λ2

\B+λ ), (Uλ−U)+ = 0
in B+λ2

\ B+λ . We conclude that Uλ ≤ U on B+λ2
\ B+λ for 0 < λ < λ1 := λ1(λ2).

Step 2. We show that there exists λ0 ∈ (0, λ1) such that for 0 < λ < λ0

Uλ(ξ) ≤ U(ξ), |ξ | > λ2, ξ ∈ Rn+1
+ .

Let φ(ξ) = (λ2/|ξ |)
n−2σ inf∂ ′′Bλ2

U , which satisfies{
div(t1−2σ

∇φ) = 0 in Rn+1
+ \ B+λ2

,

− limt→0 t
1−2σ ∂tφ(x, t) = 0 on Rn \ Bλ2 ,

and φ(ξ) ≤ U(ξ) on ∂ ′′Bλ2 . By the weak maximum principle (Lemma 2.5),

U(ξ) ≥

(
λ2

|ξ |

)n−2σ

inf
∂ ′′Bλ2

U, ∀ |ξ | > λ2, ξ ∈ Rn+1
+ .

Let λ0 = min(λ1, λ2(inf∂ ′′Bλ2
U/ supBλ2

U)1/(n−2σ)). Then for any 0 < λ < λ0 and
|ξ | ≥ λ2, we have

Uλ(ξ) ≤

(
λ

|ξ |

)n−2σ

U

(
λ2ξ

|ξ |2

)
≤

(
λ0

|ξ |

)n−2σ

sup
Bλ2

U ≤

(
λ2

|ξ |

)n−2σ

inf
∂ ′′Bλ2

U ≤ U(ξ).

Lemma 3.2 is proved. ut

With Lemma 3.2 we can define, for all x ∈ Rn,

λ̄(x) = sup{µ > 0 : UX,λ ≤ U in Rn+1
+ \ B+λ , ∀ 0 < λ < µ}.

By Lemma 3.2, λ̄(x) ≥ λ0(x).

Lemma 3.3. If λ̄(x) <∞ for some x ∈ Rn, then UX,λ̄(x) ≡ U .

Proof. Without loss of generality we assume that x = 0 and write Uλ = U0,λ and λ̄ =
λ̄(0). By the definition of λ̄, Uλ̄ ≥ U in B+

λ̄
\ {0}, and therefore, for all 0 < ε < λ̄,{

div(t1−2σ
∇(Uλ − U)) = 0 in B+λ \ B

+
ε ,

− limt→0 t
1−2σ ∂t (Uλ − U) ≥ 0 on ∂ ′(B+λ \ B

+
ε ).

(3.4)

Arguing towards a contradiction, ifUλ̄ does not identically equalU , applying the Harnack
inequality (Proposition 2.6) to (3.4), we have Uλ̄ > U in Bλ̄ \ {{0} ∪ ∂ ′′Bλ̄}, and in view
of Proposition 3.1,

lim inf
ξ→0

(Uλ̄(ξ)− U(ξ)) > 0.

Hence there exist ε1, c > 0 such that Uλ̄(ξ) > U(0) + c for 0 < |ξ | < ε1. Choose ε2
small such that (

λ̄

λ̄+ ε2

)n−2σ

(U(0)+ c) > U(0)+
c

2
.
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Thus for all 0 < |ξ | < ε1 and λ̄ < λ < λ̄+ ε2,

Uλ(ξ) =

(
λ̄

λ

)n−2σ

Uλ̄

(
λ̄2ξ

λ2

)
≥

(
λ̄

λ̄+ ε2

)n−2σ

(U(0)+ c) ≥ U(0)+ c/2.

Choose ε3 small such that for all 0 < |ξ | < ε3, U(0) > U(ξ) − c/4. Hence for all
0 < |ξ | < ε3 and λ̄ < λ < λ̄+ ε2,

Uλ(ξ) > U(ξ)+ c/4.

For δ small, which will be fixed later, denote Kδ = {ξ ∈ Rn+1
+ : ε3 ≤ |ξ | ≤ λ̄− δ}. Then

there exists c2 = c2(δ) such that

Uλ̄(X)− U(X) > c2 in Kδ.

By the uniform continuity of U on compact sets, there exists ε4 ≤ ε2 such that for all
λ̄ < λ < λ̄+ ε4,

Uλ − Uλ̄ > −c2/2 in Kδ.

Hence
Uλ − U > c2/2 in Kδ.

Now let us focus on the region {ξ ∈ Rn+1
+ : λ̄− δ ≤ |ξ | ≤ λ}. Using the narrow domain

technique as that in Lemma 3.2, we can choose δ small (notice that we can choose ε4 as
small as we want) such that

Uλ ≥ U in {ξ ∈ Rn+1
+ : λ̄− δ ≤ |ξ | ≤ λ}.

In conclusion, there exists ε4 such that for all λ̄ < λ < λ̄+ ε4,

Uλ ≥ U in {ξ ∈ Rn+1
+ : 0 < |ξ | ≤ λ},

which contradicts the definition of λ̄. ut

Proof of Theorem 1.8. It follows from Lemma 3.3 and arguments similar to those in [75]
that:

(i) Either λ̄(x) = ∞ for all x ∈ Rn, or λ̄(x) <∞ for all x ∈ Rn [75, Lemma 2.3].
(ii) If for all x ∈ Rn, λ̄(x) = ∞ then U(x, t) = U(0, t) for all (x, t) ∈ Rn+1

+ [75,
Lemma 11.3].

(iii) If λ̄(x) <∞ for all x ∈ Rn, then by [75, Lemma 11.1],

u(x) := U(x, 0) = a
(

λ

1+ λ2|x − x0|2

)(n−2σ)/2

, (3.5)

where λ > 0, a > 0 and x0 ∈ Rn.
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We claim that (ii) never happens, since this would imply, using (1.11), that

U(x, t) = U(0)− U(0)
n+2σ
n−2σ

t2σ

2σ
,

which contradicts the positivity of U . Thus (iii) holds.
We are only left to show that V := U − Pσ [u] ≡ 0 where u(x) is given in (3.5) and

belongs to Ḣ σ (Rn). Notice that V satisfies{
div(t1−2σ

∇V ) = 0 in Rn+1
+ ,

V = 0 on ∂Rn+1
+ .

By Lemma 3.3, we know that Vλ̄ can be extended to be a smooth function near 0. Multi-
plying the above equation by V and integrating by parts leads to

∫
Rn+1
+

t1−2σ
|∇V |2 = 0.

Hence V ≡ 0.
Finally, a = (Nσ c(n, σ )22σ )(n−2σ)/4σ follows from (1.4) with φ = 1 and (2.5). ut

4. Local analysis near isolated blow up points

The analysis in this section and the next adapts the blow up analysis developed in [91] and
[71] to give accurate blow up profiles for solutions of degenerate elliptic equations. For
σ = 1/2, similar results have been proved in [60] and [48], where equations are elliptic.

Let � ⊂ Rn (n ≥ 2) be a domain, let τi ≥ 0 satisfy limi→∞ τi = 0, let pi =
(n+ 2σ)/(n− 2σ)− τi , and let Ki ∈ C1,1(�) satisfy, for some constants A1, A2 > 0,

1/A1 ≤ Ki(x) ≤ A1 for all x ∈ �, ‖Ki‖C1,1(�) ≤ A2. (4.1)

Let ui ∈ L∞(�) ∩ Ḣ σ (Rn) with ui ≥ 0 in Rn satisfy

(−1)σui = c(n, σ )Kiu
pi
i in �. (4.2)

We say that {ui} blows up if ‖ui‖L∞(�)→∞ as i →∞.

Definition 4.1. Suppose that {Ki} satisfies (4.1) and {ui} satisfies (4.2). We say a point
y ∈ � is an isolated blow up point of {ui} if there exist 0 < r < dist(y,�), C > 0, and a
sequence yi tending to y, such that yi is a local maximum point of ui , ui(yi)→∞ and

ui(y) ≤ C|y − yi |
−2σ/(pi−1) for all y ∈ Br(yi).

Let yi → y be an isolated blow up point of ui , and define

ui(r) =
1
|∂Br |

∫
∂Br (yi )

ui, r > 0, (4.3)

and
wj (r) = r

2σ/(pi−1)ui(r), r > 0.
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Definition 4.2. We say yi → y ∈ � is an isolated simple blow up point if yi → y is an
isolated blow up point such that for some ρ > 0 (independent of i), wi has precisely one
critical point in (0, ρ) for large i.

In this section, we are mainly concerned with the profile of blow up of {ui}. And
under certain conditions, we can show that isolated blow up points have to be simple.

Let ui ∈ C2(�) ∩ Ḣ σ (Rn) with ui ≥ 0 in Rn satisfy (4.2) with Ki satisfying (4.1).
Without loss of generality, we assume throughout this section that B2 ⊂ � and yi → 0 is
an isolated blow up point of {ui} in�. Let Ui = Pσ [ui] be the extension of ui (see (2.2)).
Then we have{

div(t1−2σ
∇Ui) = 0 in Rn+1

+ ,

− limt→0 t
1−2σ ∂Ui (x,t)

∂t
= c0Ki(x)Ui(x, 0)pi for any x ∈ �,

(4.4)

where c0 = Nσ c(n, σ ) with Nσ = 21−2σ0(1− σ)/0(σ).

Lemma 4.3. Suppose that ui ∈ C2(�) ∩ Ḣ σ (Rn) with ui ≥ 0 in Rn satisfies (4.2) with
{Ki} satisfying (4.1), and yi → 0 is an isolated blow up point of {ui}, i.e., for some
positive constants A3 and r̄ independent of i,

|y − yi |
2σ/(pi−1)ui(y) ≤ A3 for all y ∈ Br̄ ⊂ �. (4.5)

Denote Ui = Pσ [ui] and Yi = (yi, 0). Then for any 0 < r < 1
3 r , we have the following

Harnack inequality:

sup
B+2r (Yi )\B

+

r/2(Yi )

Ui ≤ C inf
B+2r (Yi )\B

+

r/2(Yi )

Ui,

where C is a positive constant depending only on n, σ,A3, r̄ and supi ‖Ki‖L∞(Br (yi )).

Proof. For 0 < r < r̄/3, set

Vi(Y ) = r
2σ/(pi−1)Ui(Yi + rY ) for Y ∈ B+3 .

It is easy to see that
div(s1−2σ

∇Vi) = 0 in B+3 ,

and
− lim
s→0

s1−2σ ∂sVi(y, s) = c0K(yi + ry)Vi(y, 0)pi on ∂ ′B+3 .

Since yi → 0 is an isolated blow up point of ui ,

Vi(y, 0) ≤ A3|y|
−2σ/(pi−1) for all y ∈ B3.

Lemma 4.3 follows after applying to Vi Proposition 2.6 and the standard Harnack in-
equality for uniformly elliptic equations in the domain B+5/2 \ B

+

1/4. ut
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Proposition 4.4. Suppose that ui ∈ C2(�) ∩ Ḣ σ (Rn) with ui ≥ 0 in Rn satisfies (4.2)
with Ki ∈ C1,1(�) satisfying (4.1). Suppose also that yi → 0 is an isolated blow up
point of {ui} with (4.5). Then for any Ri →∞ and εi → 0+, we have, after passing to a
subsequence (still denoted as {ui}, {yi}, etc.),

‖m−1
i ui(m

−(pi−1)/2σ
i · +yi)− (1+ ki | · |2)(2σ−n)/2‖C2(B2Ri (0))

≤ εi,

Rim
−(pi−1)/2σ
i → 0 as i →∞,

where mi = ui(yi) and ki = Ki(yi)1/σ /4.

Proof. Let
φi(x) = m

−1
i ui(m

−(pi−1)/2σ
i x + yi) for x ∈ Rn.

It follows that

(−1)σφi(x) = c(n, σ )Ki(m
−(pi−1)/2σ
i x + yi)φ

pi
i ,

0 < φi(x) ≤ A3|x|
−2σ/(pi−1), |x| < rm

(pi−1)/2σ
i , (4.6)

and
φi(0) = 1, ∇φi(0) = 0.

Let 8i = Pσ [φi] be the extension of φi (see (2.2)). Then 8i satisfies
div(t1−2σ

∇8i(x, t)) = 0, |(x, t)| < r̄m
(pi−1)/2σ
i ,

− limt→0 t
1−2σ ∂t8i(x, t) = Nσ c(n, σ )Ki(m

−(pi−1)/2σ
i x + yi)8i(x, 0)pi ,

|x| < r̄m
(pi−1)/2σ
i .

By the weak maximum principle, for any 0 < r < 1, we have 1 = φi(0) = 8i(0, 0) ≥
min∂ ′′Br 8i . It follows from Lemma 4.3 that

max
∂Br

φi ≤ max
∂ ′′Br

8i ≤ C min
∂ ′′Br

8i ≤ C.

Thus,
max
B1

φi ≤ C

for some C > 0 depending on n, σ,A1, A2, A3. This and (4.6) imply that for any R > 1,

max
BR

φi ≤ C(R)

for some C(R) > 0 depending on n, σ , A1, A2, A3 and R. Then by Corollary 2.10 there
exists some α ∈ (0, 1) such that for every R > 1,

‖8i‖H(t1−2σ ,QR)
+ ‖8i‖Cα(QR) ≤ C1(R),

where α and C1(R) are independent of i. Bootstrapping using Theorem 2.11 we have, for
every 0 < β < 2 with 2σ + β 6∈ N,

‖φi‖C2σ+β (BR)
≤ C2(R, β),
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where C2(R, β) is independent of i. Thus, after passing to a subsequence we have, for
some nonnegative functions 8 ∈ Hloc(t

1−2σ ,Rn+1) ∩ Cαloc(Rn+1) and φ ∈ C2(Rn),
8i ⇀ 8 weakly in Hloc(t

1−2σ ,Rn+1
+ ),

8i → 8 in Cα/2loc (R
n+1
+ ),

φi → φ in C2
loc(R

n).

It follows that
8(·, 0) ≡ φ, φ(0) = 1, ∇φ(0) = 0,

and 8 satisfies{
div(t1−2σ

∇8) = 0 in Rn+1,

− limt→0 t
1−2σ ∂t8(x, t) = c0K8(x, 0)(n+2σ)/(n−2σ) on ∂ ′Rn+1,

where K = limi→∞Ki(yi). By Theorem 1.8, we have

φ(x) =
(

1+ lim
i→∞

ki |x|
2
)(2σ−n)/2

,

where ki = Ki(yi)1/σ /4. Proposition 4.4 follows immediately. ut

Note that since passing to subsequences does not affect our proofs, we will always choose
Ri → ∞ first, and then εi → 0+ as small as we wish (depending on Ri) and only then
choose our subsequence {ui} to work with.

Proposition 4.5. Under the hypotheses of Proposition 4.4, there exists some positive con-
stant C = C(n, σ,A1, A2, A3) such that

ui(y) ≥ C
−1mi(1+ kim

(pi−1)/σ
i |y − yi |

2)(2σ−n)/2, |y − yi | ≤ 1.

In particular, for any e ∈ Rn with |e| = 1, we have

ui(yi + e) ≥ C
−1m

−1+((n−2σ)/2σ)τi
i ,

where τi = (n+ 2σ)/(n− 2σ)− pi .

Proof. Denote ri = Rim
−(pi−1)/2σ
i . It follows from Proposition 4.4 that ri → 0 and

ui(y) ≥ C
−1miR

2σ−n
i for all |y − yi | = ri .

By the Harnack inequality of Lemma 4.3, we have

Ui(Y ) ≥ C
−1miR

2σ−n
i for all |Y − Yi | = ri,

where Ui = Pσ [ui] is the extension of ui , Y = (y, s) with s ≥ 0, and Yi = (yi, 0).
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Set

9i(Y ) = C
−1R2σ−n

i rn−2σ
i mi(|Y − Yi |

2σ−n
− (3/2)2σ−n), ri ≤ |Y − Yi | ≤ 3/2.

Clearly, 9i satisfies

div(s1−2σ
∇9i) = 0 = div(s1−2σ

∇Ui), ri ≤ |Y − Yi | ≤ 3/2,
9i(Y ) ≤ Ui(Y ) on ∂ ′′Bri ∪ ∂

′′B3/2,

− lim
s→0+

s1−2σ ∂s9i(y, s) = 0 ≤ − lim
s→0+

s1−2σ ∂sUi(y, s), ri ≤ |y − yi | ≤ 3/2.

By the weak maximum principle of Lemma 2.5 applied to Ui −9i , we have

Ui(Y ) ≥ 9i(Y ) for all ri ≤ |Y − Yi | ≤ 3/2.

Therefore, Proposition 4.5 follows immediately from Proposition 4.4. ut

Lemma 4.6. Under the hypotheses of Proposition 4.4, and in addition that yi → 0 is also
an isolated simple blow up point with constant ρ, there exist δi > 0, δi = O(R

−2σ+o(1)
i ),

such that

ui(y) ≤ C1ui(yi)
−λi |y − yi |

2σ−n+δi for all ri ≤ |y − yi | ≤ 1,

where λi = (n − 2σ − δi)(pi − 1)/2σ − 1 and C1 is some positive constant depending
only on n, σ , A1, A3 and ρ.

Proof. From Proposition 4.4, we see that

ui(y) ≤ Cui(yi)R
2σ−n
i for all |y − yi | = ri . (4.7)

Let ui(r) be the average of ui over the sphere of radius r centered at yi . It follows from
the assumption of isolated simple blow up and Proposition 4.4 that

r2σ/(pi−1)ui(r) is strictly decreasing for ri < r < ρ. (4.8)

By Lemma 4.3, (4.8) and (4.7), we have, for all ri < |y − yi | < ρ,

|y − yi |
2σ/(pi−1)ui(y) ≤ C|y − yi |

2σ/(pi−1)ui(|y − yi |)

≤ r
2σ/(pi−1)
i ui(ri) ≤ CR

(2σ−n)/2+o(1)
i ,

where o(1) denotes some quantity tending to 0 as i → ∞. Applying Lemma 4.3 again,
we obtain

Ui(Y )
pi−1
≤ O(R

−2σ+o(1)
i )|Y − Yi |

−2σ for all ri ≤ |Y − Yi | ≤ ρ. (4.9)

Consider the operators{
L(8) = div(s1−2σ

∇8(Y)) in B+2 ,
Li(8) = − lims→0+ s

1−2σ ∂s8(y, s)− c0Kiu
pi−1
i (y)8(y, 0) on ∂ ′B+2 .

Clearly, Ui > 0 satisfies L(Ui) = 0 in B+2 and Li(Ui) = 0 on ∂ ′B+2 .
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For 0 ≤ µ ≤ n− 2σ , a direct computation yields

L(|Y − Yi |
−µ
− εs2σ

|Y − Yi |
−(µ+2σ))

= s1−2σ
|Y − Yi |

−(µ+2)
{
−µ(n− 2σ − µ)+

ε(µ+ 2σ)(n− µ)s2σ

|Y − Yi |2σ

}
and

Li(|Y −Yi |
−µ
− εs2σ

|Y −Yi |
−(µ+2σ)) = |Y −Yi |

−(u+2σ)(2εσ − c0Kiu
pi−1
i |Y −Yi |

2σ ).

It follows from (4.9) that we can choose εi = O(R
−2σ+o(1)
i ) > 0, and then choose

δi = O(R
−2σ+o(1)
i ) > 0 such that for ri < |y − yi | < ρ,

Li(|Y − Yi |
−δi − εis

2σ
|Y − Yi |

−(δi+2σ)) ≥ 0,

Li(|Y − Yi |
2σ−n+δi − εis

2σ
|Y − Yi |

−n+δi ) ≥ 0,

and for ri < |Y − Yi | < ρ,

L(|Y − Yi |
−δi − εis

2σ
|Y − Yi |

−(δi+2σ)) ≤ 0,

L(|Y − Yi |
2σ−n+δi − εis

2σ
|Y − Yi |

−n+δi ) ≤ 0.

Set Mi = 2 max∂ ′′B+ρ Ui , λi = (n− 2σ − δi)(pi − 1)/2σ − 1 and

8i = Miρ
δi (|Y − Yi |

−δi − εis
2σ
|Y − Yi |

−(δi+2σ))

+ 2Aui(yi)−λi (|Y − Yi |2σ−n+δi − εis2σ
|Y − Yi |

−n+δi ),

where A > 1 will be chosen later. By the choice of Mi and λi , we immediately have

8i(Y ) ≥ Mi ≥ Ui(Y ) for all |Y − Yi | = ρ,

8i(Y ) ≥ AUi(Yi)R
2σ−n+δi
i ≥ AUi(Yi)R

2σ−n
i for all |Y − Yi | = ri .

Due to (4.9), we can choose A sufficiently large such that

8i ≥ Ui for all |Y − Yi | = ri .

Therefore, applying the maximum principles of Section A.3 to8i −Ui in Bρ \Bri yields

Ui ≤ 8i for all ri ≤ |Y − Yi | ≤ ρ.

For ri < θ < ρ, the same arguments as in (4.9) yield

ρ2σ/(pi−1)Mi ≤ Cρ
2σ/(pi−1)ui(ρ) ≤ Cθ

2σ/(pi−1)ui(θ)

≤ Cθ2σ/(pi−1)
{Miρ

δi θ−δi + Aui(yi)
−λi θ2σ−n+δi }.

Choose θ = θ(n, σ, ρ,A1, A3) sufficiently small so that

Cθ2σ/(pi−1)ρδi θ−δi ≤ 1
2ρ

2σ/(pi−1).

It follows that Mi ≤ Cui(yi)
−λi . Then Lemma 4.6 follows from the Harnack inequality.

ut
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Below we are going to improve the estimate in Lemma 4.6. First, we prove a Pohozaev
type identity.

Proposition 4.7. Suppose that K ∈ C1(B2R). Let U ∈ H(t1−2σ ,B+2R) with U ≥ 0 in
B+2R be a weak solution of{

div(t1−2σ
∇U) = 0 in B+2R,

− limt→0 t
1−2σ ∂tU(x, t) = K(x)U

p(x, 0) on ∂ ′B+2R,
(4.10)

where p > 0. Then∫
∂ ′B+R

B ′(X,U,∇U,R, σ)+

∫
∂ ′′B+R

t1−2σB ′′(X,U,∇U,R, σ) = 0, (4.11)

where

B ′(X,U,∇U,R, σ) =
n− 2σ

2
KUp+1

+ 〈X,∇U〉KUp,

B ′′(X,U,∇U,R, σ) =
n− 2σ

2
U
∂U

∂ν
−
R

2
|∇U |2 + R

∣∣∣∣∂U∂ν
∣∣∣∣2.

Proof. Let �ε = B+R ∩ {t > ε} for small ε > 0. Multiplying (4.10) by 〈X,∇U〉 and
integrating by parts in �ε, we have, with the notations ∂ ′�ε = interior of �ε ∩ {t = ε},
∂ ′′�ε = ∂�ε \ ∂

′�ε and ν = unit outer normal of ∂�ε,

−

∫
∂ ′�ε

t1−2σ ∂tU〈X,∇U〉 +

∫
∂ ′′�ε

t1−2σR

∣∣∣∣∂U∂ν
∣∣∣∣2

=

∫
�ε

t1−2σ
|∇U |2+

1
2

∫
�ε

t1−2σX ·∇(|∇U |2)

= −
n−2σ

2

∫
�ε

t1−2σ
|∇U |2+

1
2

∫
∂ ′′�ε

t1−2σR|∇U |2−
1
2

∫
∂ ′�ε

t2−2σ
|∇U |2. (4.12)

Multiplying (4.10) by U and integrating by parts in �ε, we have∫
�ε

t1−2σ
|∇U |2 = −

∫
∂ ′�ε

t1−2σU∂tU +

∫
∂ ′′�ε

t1−2σ ∂U

∂ν
U. (4.13)

By Corollary 2.10 and Proposition 2.19, there exists some α ∈ (0, 1) such that U , ∇xU ,
and t1−2σ ∂tU belong to Cα(B+r ) for all r < 2R. With this we can let ε → 0 as follows.
By (4.10),

−t1−2σ ∂tU(x, t)→ K(x)U(x, 0)p uniformly in B3R/2 as t → 0.

Hence (4.11) follows by letting ε→ 0 in (4.12) and (4.13). ut

Lemma 4.8. Under the assumptions of Lemma 4.6, we have

τi = O(ui(yi)
−2/(n−2σ)+o(1)), and thus ui(yi)

τi = 1+ o(1).
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Proof. Since Ui satisfies (4.4) and div(y − yi) = n, we have, using integration by parts,

1
c0

∫
∂ ′B+1 (Yi )

B ′(Y, Ui,∇Ui, 1, σ )

=
n− 2σ

2n

∫
∂ ′B+1 (Yi )

div(y − yi)KiUpi+1
+

1
pi + 1

∫
∂ ′B+1 (Yi )

〈y − yi,∇yU
pi+1
i 〉Ki

= −
n− 2σ

2n

∫
∂ ′B+1 (Yi )

[〈y − yi,∇yKi〉U
pi+1
i + 〈y − yi,∇yU

pi+1
i 〉Ki]

+
n− 2σ

2n

∫
∂B1(yi )

KiU
pi+1
i +

1
pi + 1

∫
∂ ′B+1 (Yi )

〈y − yi,∇yU
pi+1
i 〉Ki

=
τi(n− 2σ)2

2n(2n− τi(n− 2σ))

∫
∂ ′B+1 (Yi )

〈y − yi,∇yU
pi+1
i 〉Ki

−
n− 2σ

2n

∫
∂ ′B+1 (Yi )

〈y − yi,∇yKi〉U
pi+1
i +

n− 2σ
2n

∫
∂B1(yi )

KiU
pi+1
i

and ∫
∂ ′B+1 (Yi )

〈y − yi,∇yU
pi+1
i 〉Ki

= −n

∫
∂ ′B+1 (Yi )

KiU
pi+1
i −

∫
∂ ′B+1 (Yi )

〈y − yi,∇yKi〉U
pi+1
i +

∫
∂B1(yi )

KiU
pi+1
i .

Combining the above two, together with Proposition 4.7, we conclude that

τi

∫
∂ ′B+1 (Yi )

U
pi+1
i ≤ C(n, σ,A1, A2)

{∫
∂ ′B+1 (Yi )

|y − yi |U
pi+1
i

+

∫
∂B1(yi )

U
pi+1
i +

∫
∂ ′′B+1 (Yi )

t1−2σ
|B ′′(Y, Ui,∇Ui, 1, σ )|

}
. (4.14)

Since Ui = ui on ∂ ′B1(Yi) = B1(yi)× {0}, it follows from Proposition 4.5 that∫
∂ ′B1(Yi )

U
pi+1
i =

∫
B1(yi )

u
pi+1
i ≥ C−1

∫
B1(yi )

m
pi+1
i

(1+|m(pi−1)/2σ
i (y−yi)|2)(n−2σ)(pi+1)/2

≥ C−1m
τi (n/2σ−1)
i

∫
B
m
(pi−1)/2σ
i

1
(1+|z|2)(n−2σ)(pi+1)/2

≥ C−1m
τi (n/2σ−1)
i , (4.15)

where we have used the change of variables z = m
(pi−1)/2σ
i (y − yi) in the second in-

equality.
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By Proposition 2.19 and Lemma 4.6, it is easy to see that the last two integral terms
of the right-hand side of (4.14) are O(m−2+o(1)

i ). By Proposition 4.4, we have∫
∂ ′Bri (Yi )

|Y − Yi |U
pi+1
i =

∫
Bri (yi )

|y − yi |u
pi+1
i

≤ C

∫
Bri (yi )

|y − yi |m
pi+1
i

(1+ |m(pi−1)/2σ
i (y − yi)|2)(n−2σ)(pi+1)/2

≤ Cm
−2/(n−2σ)+o(1)
i

∫
BRi

|z|

(1+ |z|2)n+o(1)
Cm
−2/(n−2σ)+o(1)
i . (4.16)

By Lemma 4.6, as Ri →∞, we have∫
∂ ′B1(Yi )\∂ ′Bri (Yi )

|Y − Yi |U
pi+1
i =

∫
B1(yi )\Bri (yi )

|y − yi |u
pi+1
i

≤ m
−λi (pi+1)
i r

n+1+(2σ−n+δi )(pi+1)
i = o(m

−2/(n−2σ)+o(1)
i ). (4.17)

Combining (4.14)–(4.17) and τi = o(1), we complete the proof. ut

Proposition 4.9. Under the assumptions of Lemma 4.6, we have

ui(y) ≤ Cu
−1
i (yi)|y − yi |

2σ−n for all |y − yi | ≤ 1.

Our proof of this proposition makes use of

Lemma 4.10. Suppose that for all ε ∈ (0, 1), U ∈ H(t1−2σ ,B+1 \ B
+
ε ) with U > 0 in

B+1 \ B
+
ε is a weak solution of{

div(t1−2σ
∇U) = 0 in B+1 \ B

+
ε ,

− limt→0 t
1−2σ ∂tU(x, t) = 0 on B1 \ B

+
ε .

(4.18)

Then
U(X) = A|X|2σ−n +W(X),

where A is a nonnegative constant and W ∈ H(t1−2σ ,B+1 ) satisfies{
div(t1−2σ

∇W) = 0 in B+1 ,
− limt→0 t

1−2σ ∂tW(x, t) = 0 on B1.
(4.19)

The proof of Lemma 4.10 is provided in Appendix A.2.

Proof of Proposition 4.9. For |y − yi | < ri , it follows from Proposition 4.4 that

ui(y) ≤ Cmi

(
1

1+ |m(pi−1)/2σ
i (y − yi)|2

)(n−2σ)/2

≤ Cm
−1− n−2σ

2σ τi
i |y − yi |

2σ−n
≤ Cm−1

i |y − yi |
2σ−n, (4.20)

where Lemma 4.8 is used in the last inequality.
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Suppose |y−yi | ≥ ri . Let e ∈ Rn+1
+ with |e| = 1, and set Vi(Y ) = Ui(Yi+e)−1Ui(Y ).

Then Vi satisfies{
div(s1−2σ

∇Vi) = 0 in B+2 ,
− lims→0 s

1−2σ ∂sVi(y, s) = c(n, σ )KUi(Yi + e)
pi−1V

pi
i for y ∈ B+2 .

Note that Ui(Yi + e)→ 0 by Lemma 4.6, and for any r > 0,

Vi(Y ) ≤ C(n, σ,A1, r) for all r < |y − yi | ≤ 1, (4.21)

which follows from Lemma 4.3. It follows that {Vi} converges to some positive function
V in C∞loc(B

+

3/2) ∩ C
α
loc(B

+

3/2 \ {0}) for some α ∈ (0, 1), and V satisfies{
div(s1−2σ

∇V ) = 0 in B+1 ,
− lims→0 s

1−2σ ∂sV (y, s) = 0 for y ∈ B1 \ {0}.

Hence limi→∞ r
2σ/(pi+1)v̄i(r) = rn−2σ v̄(r), where v(y) = V (y, 0). Since ri → 0,

and yi → 0 is an isolated simple blow up point of {ui}, it follows from Lemma 4.3
that r(n−2σ)/2V (r) is almost decreasing for all 0 < r < ρ, i.e., there exists a positive
constant C (which comes from the Harnack inequality in Lemma 4.3) such that for any
0 < r1 ≤ r2 < ρ,

r
(n−2σ)/2
1 V (r1) ≥ Cr

(n−2σ)/2
2 V (r2).

Therefore, V has to have a singularity at Y = 0. Lemma 4.10 implies

V (Y ) = A|Y |2σ−n +W(Y), (4.22)

where A > 0 is a constant and W is as in Lemma 4.10.
We first establish the inequality in Proposition 4.9 for |Y −Yi | = 1. Namely, we prove

that
Ui(Yi + e) ≤ CU

−1
i (Yi). (4.23)

Suppose that (4.23) does not hold. Then along a subsequence we have

lim
i→∞

Ui(Yi + e)Ui(Yi) = ∞. (4.24)

By integration by parts (using �ε and letting ε → 0, as in the proof of Proposition 4.7),
we obtain

0 = −
∫
B+1

div(s1−2σ
∇Vi)

=

∫
∂ ′′B+1

s1−2σ ∂Vi

∂ν
+ c(n, σ )Ui(Yi + e)

−1
∫
∂ ′B+1

KU
pi
i . (4.25)

By Lemma 4.8 and similar computations to (4.16) and (4.17), we see that∫
∂ ′B+1

KU
pi
i ≤ CUi(Yi)

−1.
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Due to (4.24),

lim
i→∞

Ui(Yi + e)
−1
∫
∂ ′B+1

KU
pi
i = 0.

A direct computation yields with (4.21) (again using �ε and letting ε→ 0)

lim
i→∞

∫
∂ ′′B+1

s1−2σ ∂Vi

∂ν
= lim
i→∞

∫
∂ ′′B+1

s1−2σ ∂

∂ν
(A|Y |2σ−n +W(Y))

= A(2σ − n)
∫
∂ ′′B+1

s1−2σ < 0,

which contradicts (4.25). Thus we have proved (4.23). By Lemma 4.3, we have estab-
lished the inequality in Proposition 4.9 for ρ ≤ |Y − Yi | ≤ 1.

By a standard scaling argument, we can reduce the case of ri ≤ |Y − Yi | < ρ to
|Y − Yi | = 1. We refer to [71, p. 340] for details. ut

Propositions 4.5 and 4.9 give a clear picture of ui near the isolated simple blow up point.
By the estimates there, it is easy to deduce the following result.

Lemma 4.11. We have

∫
|y−yi |≤ri

|y − yi |
sui(y)

pi+1
=


O(ui(yi)

−2s/(n−2σ)), −n < s < n,

O(ui(yi)
−2n/(n−2σ) log ui(yi)), s = n,

o(ui(yi)
−2n/(n−2σ)), s > n,

and

∫
ri<|y−yi |≤1

|y − yi |
sui(y)

pi+1
=


o(ui(yi)

−2s/(n−2σ)), −n < s < n,

O(ui(yi)
−2n/(n−2σ) log ui(yi)), s = n,

O(ui(yi)
−2n/(n−2σ)), s > n.

Proof. The first set of estimates follows from Proposition 4.4 and Lemma 4.8, and the
second one from Proposition 4.9 and Lemma 4.8. ut

For later application, we replace Ki by Ki(x)Hi(x)τi in (4.2) and consider

(−1)σui(x) = c(n, σ )Ki(x)Hi(x)
τiui(x)

pi in B2, (4.26)

where Hi ∈ C1,1(B2) satisfies

A−1
4 ≤ Hi(y) ≤ A4 for all y ∈ B2, and ‖Hi‖C1,1(B2)

≤ A5 (4.27)

for some positive constants A4 and A5.
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Lemma 4.12. Suppose that {Ki} satisfies (4.1) and condition (∗)′β with β < n for some
positive constants A1, A2, {L(β, i)}, and that {Hi} satisfies (4.27) with A4, A5. Let ui ∈
Ḣ σ (Rn) ∩ C2(B2) with ui ≥ 0 in Rn be a solution of (4.26). If yi → 0 is an isolated
simple blow up point of {ui} with (4.5) for some positive constant A3, then

τi ≤ Cui(yi)
−2
+ C|∇Ki(yi)|ui(yi)

−2/(n−2σ)

+ C(L(β, i)+ L(β, i)β−1)ui(yi)
−2β/(n−2σ),

where C > 0 depends only on n, σ , A1, A2, A3, A4, A5, β and ρ.
Proof. Using Lemma 4.8 and arguing as in the proof of Lemma 4.8, we have

τi ≤ Cui(yi)
−2
+ C

∣∣∣∣∫
B1(yi )
〈y − yi,∇y(KiH

τi
i )〉u

pi+1
i

∣∣∣∣
≤ Cui(yi)

−2
+ Cτi

∣∣∣∣∫
B1(yi )

|y − yi |u
pi+1
i

∣∣∣∣+ C∣∣∣∣∫
B1(yi )
〈y − yi,∇Ki〉H

τi
i u

pi+1
i

∣∣∣∣.
Making use of Lemma 4.11, we have∣∣∣∣∫
B1(yi )
〈y − yi,∇Ki〉H

τi
i u

pi+1
i

∣∣∣∣
≤ C|∇Ki(yi)|

∫
B1(yi )

|y − yi |u
pi+1
i + C

∫
B1(yi )

|y − yi | |∇Ki(y)−∇Ki(yi)|u
pi+1
i

≤ C|∇Ki(yi)|ui(yi)
−2/(n−2σ)

+ C

∫
B1(yi )

|y − yi | |∇Ki(y)−∇Ki(yi)|u
pi+1
i .

Recalling the definition of (∗)′β , a direct computation yields

|∇Ki(y)−∇Ki(yi)|

≤

{ [β]∑
s=2

|∇
sKi(yi)| |y − yi |

s−1
+ [∇

[β]Ki]Cβ−[β](B1(yi ))
|y − yi |

β−1
}

≤ CL(β, i)
{ [β]∑
s=2

|∇Ki(yi)|
(β−s)/(β−1)

|y − yi |
s−1
+ |y − yi |

β−1
}
. (4.28)

By the Cauchy–Schwarz inequality, we have

L(β, i)|∇Ki(yi)|
(β−s)/(β−1)

|y − yi |
s

≤ C
(
|∇Ki(yi)| |y − yi | + (L(β, i)+ L(β, i)

β−1)|y − yi |
β
)
. (4.29)

Hence, by Lemma 4.11 we obtain∫
B1(yi )

|y − yi | |∇Ki(y)−∇Ki(yi)|u
pi+1
i

≤ C|∇Ki(yi)|ui(yi)
−2/(n−2σ)

+ C(L(β, i)+ L(β, i)β−1)ui(yi)
−2β/(n−2σ). (4.30)

Lemma 4.12 follows immediately. ut
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Lemma 4.13. Under the hypotheses of Lemma 4.12,

|∇Ki(yi)| ≤ Cui(yi)
−2
+ C(L(β, i)+ L(β, i)β−1)ui(yi)

−2(β−1)/(n−2σ),

where C > 0 depends only on n, σ , A1, A2, A3, A4, A5, β and ρ.

Proof. Choose a cut-off function η ∈ C∞c (B1/2) satisfying

η(Y ) = 1, |Y | ≤ 1/4, and η(Y ) = 0, |Y | ≥ 1/2.

Let Ui(Y ) be the extension of ui(y), namely,{
div(s1−2σ

∇Ui) = 0 in Rn+1
+ ,

− lims→0 s
1−2σ ∂sU(y, s) = c0Ki(y)H

τi
i U

pi
i on B2.

(4.31)

Multiplying (4.31) by η(Y − Yi)∂yjUi(y, s), j = 1, . . . , n, and integrating by parts
over B+1 , we obtain

0 =
∫
B+1

div(s1−2σ
∇Ui)η∂yjUi

= −

∫
B+1
s1−2σ

∇Ui∇(η∂yjUi)+c0

∫
∂ ′B+1 (Yi )

ηKiH
τi
i ∂yjUiU

pi
i

=
1
2

∫
B+1/2\B

+

1/4

s1−2σ (|∇Ui |
2∂yj η−2∇Ui∇η∂yjUi)−

c0

pi+1

∫
∂ ′B+1

∂yj (KiH
τi
i η)U

pi+1
i .

By Proposition 4.9, we have

Ui(Y ) ≤ CUi(Yi)
−1 for all 1/2 ≥ |Y | ≥ 1/4

and ∫
B+1/2\B

+

1/4

s1−2σ
|∇Ui |

2
≤ CUi(Yi)

−2.

Therefore, by Lemma 4.11 we conclude that∣∣∣∣∫
B1

∂yjKiH
τi
i u

pi+1
i

∣∣∣∣ ≤ Cui(yi)−2
+ Cτi . (4.32)

Hence∣∣∣∣∂jKi(yi) ∫
B1

H
τi
i u

pi+1
i

∣∣∣∣− Cui(yi)−2
− Cτi ≤

∫
B1

|∂jKi(yi)− ∂jKi(y)|H
τi
i u

pi+1
i .

Summing over j , then making use of (4.28), (4.29) and Lemma 4.11, we have

|∇Ki(yi)| ≤ Cui(yi)
−2
+ Cτi +

1
2 |∇Ki(yi)|

+ C(L(β, i)+ L(β, i)β−1)ui(yi)
−2(β−1)/(n−2σ).

Then Lemma 4.13 follows from Lemma 4.12. ut
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Lemma 4.14. Under the assumptions of Lemma 4.12 we have

τi ≤ Cui(yi)
−2
+ C(L(β, i)+ L(β, i)β−1)ui(yi)

−2β/(n−2σ).

Proof. This follows immediately from Lemmas 4.12 and 4.13. ut

Corollary 4.15. In addition to the assumptions of Lemma 4.12, further assume that one
of the following two conditions holds:

(i) β = n− 2σ and L(β, i) = o(1),
(ii) β > n− 2σ and L(β, i) = O(1).

Then for any 0 < δ < 1 we have

lim
i→∞

ui(yi)
2
∫
Bδ(yi )

(y − yi) · ∇(KiH
τi
i )u

pi+1
i = 0.

Proof. We have∣∣∣∣∫
Bδ(yi )

(y − yi) · ∇(KiH
τi
i )u

pi+1
i

∣∣∣∣
≤

∣∣∣∣∫
Bδ(yi )

(y − yi) · ∇KiH
τi
i u

pi+1
i

∣∣∣∣+ τi∣∣∣∣∫
Bδ(yi )

(y − yi) · ∇HiH
τi−1
i Kiu

pi+1
i

∣∣∣∣
≤ C|∇Ki(yi)|

∫
Bδ(yi )

|y − yi |u
pi+1
i

+ C

∫
Bδ(yi )

|y − yi | |∇Ki(y)−∇Ki(yi)|u
pi+1
i + τi

∫
Bδ(yi )

|y − yi |u
pi+1
i .

The corollary follows immediately from Lemma 4.13, (4.30) and Lemma 4.14. ut

Proposition 4.16. Suppose that {Ki} satisfies (4.1) and condition (∗)′n−2σ for some pos-
itive constants A1, A2, L independent of i, and that {Hi} satisfies (4.27) with A4, A5. Let
ui ∈ Ḣ

σ (Rn) ∩ C2(B2) be a solution of (4.26). If yi → 0 is an isolated blow up point of
{ui} with (4.5) for some positive constant A3, then yi → 0 is an isolated simple blow up
point.

Proof. By Proposition 4.4, r2σ/(pi−1)ui(r) has precisely one critical point in the interval
0 < r < ri , where ri = Riui(yi)−(pi−1)/2σ as before. Suppose yi → 0 is not an isolated
simple blow up point and let µi be the second critical point of r2σ/(pi−1)ui(r). Then we
see that

µi ≥ ri, lim
i→∞

µi = 0. (4.33)

Without loss of generality, we assume that yi = 0. Set

φi(y) = µ
2σ/(pi−1)
i ui(µiy), y ∈ Rn.
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Clearly, φi satisfies

(−1)σφi(y) = K̃i(y)H̃
τi
i (y)φ

pi
i (y),

|y|2σ/(pi−1)φi(y) ≤ A3, |y| < 1/µi,
lim
i→∞

φi(0) = ∞,

r2σ/(pi−1)φi(r) has precisely one critical point in 0 < r < 1,

d

dr
{r2σ/(pi−1)φi(r)}

∣∣∣∣
r=1
= 0,

where K̃i(y) = Ki(µiy), H̃i(y) = Hi(µiy) and φi(r) = |∂Br |−1 ∫
∂Br

φi .
Therefore, 0 is an isolated simple blow up point of φi . Let 8i(Y ) be the extension of

φi(y) in the upper half-space. Then Lemma 4.3, Proposition 4.9, Lemma 4.10 and elliptic
theory together imply that

8i(0)8i(Y )→ G(Y) = A|Y |2σ−n +W(Y) in Cαloc(R
n+1
+ \ {0}) ∩ C2

loc(R
n+1
+ )

and

φi(0)φi(y)→ G(y, 0) = A|y|2σ−n +W(y, 0) in C2
loc(R

n
\ {0}) (4.34)

as i →∞, where A > 0, W(Y) satisfies{
div(s1−2σ

∇W) = 0 in Rn+1
+ ,

− lims→0 s
1−2σ ∂sW(y, s) = 0 for y ∈ Rn.

Noting that G(Y) is nonnegative, we have lim inf|Y |→∞W(Y) ≥ 0. It follows from
the weak maximum principle and the Harnack inequality that W(Y) is a nonnegative
constant function. Since

d

dr
{r2σ/(pi−1)φi(0)φi(r)}

∣∣∣∣
r=1
= φi(0)

d

dr
{r2σ/(pi−1)φi(r)}

∣∣∣∣
r=1
= 0,

we have, after letting i →∞ and making use of (4.34),

W(Y) ≡ A > 0.

We are going to derive a contradiction to the Pohozaev identity of Proposition 4.7, by
showing that for small positive δ,

lim sup
i→∞

8i(0)2
∫
∂ ′B+δ

B ′(Y,8i,∇8i, δ, σ ) ≤ 0, (4.35)

and
lim sup
i→∞

8i(0)2
∫
∂ ′′B+δ

s1−2σB ′′(Y,8i,∇8i, δ, σ ) < 0. (4.36)

And thus, Proposition 4.16 will be established.
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By Proposition 2.19, it is easy to see that

lim sup
i→∞

8i(0)2
∫
∂ ′′B+δ

s1−2σB ′′(Y,8i,∇8i, δ, σ )

=

∫
∂ ′′B+δ

s1−2σB ′′(Y,G,∇G, δ, σ ) = −
(n− 2σ)2

2
A2
∫
∂ ′′B+1

t1−2σ < 0,

which shows (4.36). On the other hand, via integration by parts, we have∫
∂ ′B+δ

B ′(Y,8i,∇8i, δ, σ ) =
n− 2σ

2

∫
Bδ

K̃iH̃
τi
i φ

pi+1
i +

∫
Bδ

〈y,∇φi〉K̃iH̃
τi
i φ

pi
i

=
n− 2σ

2

∫
Bδ

K̃iH̃
τi
i φ

pi+1
i −

n

pi + 1

∫
Bδ

K̃iH̃
τi
i φ

pi+1
i

−
1

pi + 1

∫
Bδ

〈y,∇(K̃iH̃
τi
i )〉φ

pi+1
i +

δ

pi + 1

∫
∂Bδ

K̃iH̃
τi
i φ

pi+1
i

≤ −
1

pi + 1

∫
Bδ

〈y,∇(K̃iH̃
τi
i )〉φ

pi+1
i + Cφi(0)−(pi+1).

where Proposition 4.9 is used in the last inequality. It is easy to see that {K̃i} satisfies
(∗)′n−2σ with L(β, i) = o(1). Therefore, (4.35) follows from Corollary 4.15. ut

Proposition 4.17. Suppose the assumptions of Proposition 4.16 hold except condition
(∗)′n−2σ for Ki . Then |∇Ki(yi)| → 0 as i →∞.

Proof. Suppose that
|∇Ki(yi)| → d > 0. (4.37)

Without loss of generality, we assume yi = 0. There are two cases.

Case 1: 0 is an isolated simple blow up point. In this case, we argue as in the proof of
Lemma 4.13 and obtain ∣∣∣∣∫

B1

∇KiH
τi
i u

pi+1
i

∣∣∣∣ ≤ Cui(0)−2
+ Cτi .

It follows from the mean value theorem, Lemma 4.8 and Lemma 4.11 that

|∇Ki(0)| ≤ C
∫
B1

|∇Ki(y)−∇Ki(0)|H
τi
i u

pi+1
i + o(1) = o(1).

Case 2: 0 is not an isolated simple blow up point. In this case we argue as in the proof
of Proposition 4.16. The only difference is that we cannot derive (4.35) from Corollary
4.15, since condition (∗)′n−2σ for Ki is not assumed. Instead, we will use (4.37) to show
(4.35).
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Let µi, φi,8i , K̃i and H̃i be as in the proof of Proposition 4.16. The computation at
the end of the proof of Proposition 4.16 gives∫

∂ ′B+δ
B ′(Y,8i,∇8i, δ, σ ) ≤ −

1
pi + 1

∫
Bδ

〈y,∇(K̃iH̃
τi
i )〉φ

pi+1
i + Cφi(0)−(pi+1).

Now we estimate the integral term
∫
Bδ
〈y,∇(K̃iH̃

τi
i )〉φ

pi+1
i . Using Lemma 4.8 and

arguing as in the proof of Lemma 4.8, we have

τi ≤ Cφi(0)−2
+ C

∫
Bδ

|y| |∇K̃i(y)|H
τi
i φ

pi+1
i ≤ Cφi(0)−2

+ Cµiφi(0)−2/(n−2σ).

By (4.32), ∣∣∣∣∫
Bδ

∇K̃iH̃
τi
i φ

pi+1
i

∣∣∣∣ ≤ Cφi(yi)−2
+ Cτi .

It follows that

|∇K̃i(0)| ≤ C
∫
Bδ

|∇K̃i(y)−∇K̃i(0)|φ
pi+1
i + Cφi(0)−2

+ Cτi

≤ Cµiφi(0)−2/(n−2σ)
+ Cφi(0)−2

+ Cτi .

Since |∇K̃i(0)| = µi |∇Ki(0)| ≥ (d/2)µi , we have

µi ≤ Cφi(0)−2
+ Cτi .

It follows that τi ≤ Cφi(0)−2 and µi ≤ Cφi(0)−2. Therefore,∣∣∣∣∫
Bδ

〈y,∇(K̃iH̃
τi
i )〉φ

pi+1
i

∣∣∣∣ ≤ Cφi(0)−2−2/(n−2σ),

and (4.35) follows immediately. ut

5. Estimates on the sphere and proofs of main theorems

Consider
Pσ (v) = c(n, σ )Kv

p on Sn, (5.1)

where p ∈
(
1, n+2σ

n−2σ

]
and K satisfies

A−1
1 ≤ K ≤ A1 on Sn, (5.2)

and
‖K‖C1,1(Sn) ≤ A2. (5.3)
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Proposition 5.1. Let v ∈ C2(Sn) be a positive solution of (5.1). For any 0 < ε < 1 and
R > 1, there exist large positive constants C1, C2 depending on n, σ , A1, A2, ε and R
such that, if

max
Sn

v ≥ C1,

then n+2σ
n−2σ − p < ε, and there exists a finite set ℘(v) ⊂ Sn such that:

(i) If P ∈ ℘(v), then it is a local maximum point of v and in the stereographic projec-
tion coordinate system {y1, . . . , yn} with P as the south pole,

‖v−1(P )v(v−(p−1)/2σ (P )y)− (1+ k|y|2)(2σ−n)/2‖C2(B2R)
≤ ε, (5.4)

where k = K(P )1/σ /4.
(ii) If P1, P2 belonging to ℘(v) are two different points, then

BRv(P1)−(p−1)/2σ (P1) ∩ BRv(P2)−(p−1)/2σ (P2) = ∅.

(iii) v(P ) ≤ C2{dist(P, ℘ (v))}−2σ/(p−1) for all P ∈ Sn.

Proof. Given Theorem 1.8, Remark 1.9 and the proof of Proposition 4.4, the proof of
Proposition 5.1 is similar to that of [71, Proposition 4.1] and [91, Lemma 3.1], and is
omitted here. We refer to [71] and [91] for details. ut

Proposition 5.2. Assume the hypotheses of Proposition 5.1 hold. Suppose that there is
some constant d > 0 such that K satisfies (∗)′n−2σ for some L in �d = {P ∈ Sn :
|∇K(P )| < d}. Then, for ε > 0, R > 1 and any solution v of (5.1) with maxSn v > C1,
we have

|P1 − P2| ≥ δ
∗ > 0 for any P1, P2 ∈ ℘(v), P1 6= P2,

where δ∗ depends only on n, σ , δ, ε, R, A1, A2, L2, d .

Proof. Suppose the contrary: there exist sequences {pi} and {Ki} satisfying the above
assumptions, and a sequence of corresponding solutions {vi} such that

lim
i→∞
|P1i −P2i | = 0, P1i, P2i ∈ ℘(vi), |P1i −P2i | = min

P1,P2∈℘(vi )
P1 6=P2

|P1−P2|. (5.5)

SinceBRvi (P1i )
−(pi−1)/2σ (P1i) andBRvi (P2i )

−(pi−1)/2σ (P2i) have to be disjoint, we infer from
(5.5) that vi(P1i)→∞ and vi(P2i)→∞. Therefore, we can pass to a subsequence (still
denoted vi) with Ri → ∞, εi → 0 as in Proposition 4.4 (εi depends on Ri and can
be chosen as small as we need in the following arguments) such that, for y being the
stereographic projection coordinate with south pole at Pji , j = 1, 2, we have

‖m−1
i vi(m

−(pi−1)/2σ
i y)− (1+ kji |y|2)(2σ−n)/2‖C2(B2Ri (0))

≤ εi, (5.6)

where mi = vi(0), kji = Ki(qji)1/σ /4, j = 1, 2, i = 1, 2, . . . .
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In the stereographic coordinates with P1i being the south pole, the equation (5.1) is
transformed into

(−1)σui(y) = c(n, σ )Ki(y)H
τi
i (y)ui(y)

pi , y ∈ Rn, (5.7)

where

ui(y) =

(
2

1+ |y|2

)(n−2σ)/2

vi(F (y)), Hi(y) =

(
2

1+ |y|2

)(n−2σ)/2

, (5.8)

and F is the inverse of the stereographic projection. Let us still use P2i ∈ Rn to denote
the stereographic coordinates of P2i ∈ Sn and set ϑi = |P2i | → 0. For simplicity, we
assume P2i is a local maximum point of ui : we can always reselect a sequence of points
as in the proof of Proposition 5.1 to substitute for P2i .

From (ii) in Proposition 5.1, there exists some constant C, depending only on n, σ ,
such that

ϑi >
1
C

max{Riui(0)−(pi−1)/2σ , Riui(P2i)
−(pi−1)/2σ

}. (5.9)

Set
wi(y) = ϑ

2σ/(pi−1)
i ui(ϑiy) in Rn.

It is easy to see that wi , which is positive in Rn, satisfies

(−1)σwi(y) = c(n, σ )K̃i(y)H̃
τi
i (y)wi(y)

pi in Rn (5.10)

and
wi ∈ C

2(Rn), lim inf
|y|→∞

wi(y) <∞,

where K̃i(y) = Ki(ϑiy) and H̃i(y) = Hi(ϑiy).
By Proposition 5.1, ui satisfies

ui(y) ≤ C2|y|
−2σ/(pi−1) for all |y| ≤ ϑi/2,

ui(y) ≤ C2|y − P2i |
−2σ/(pi−1) for all |y − P2i | ≤ ϑi/2.

In view of (5.9), we therefore have

lim
i→∞

wi(0) = ∞, lim
i→∞

wi(|P2i |
−1P2i) = ∞,

|y|2σ/(pi−1)wi(y) ≤ C2, |y| ≤ 1/2,∣∣y − |P2i |
−1P2i

∣∣2σ/(pi−1)
wi(y) ≤ C2,

∣∣y − |P2i |
−1P2i

∣∣ ≤ 1/2.

After passing to a subsequence if necessary, there exists a point P ∈ Rn with |P | = 1
such that |P2i |

−1P2i → P as i → ∞. Hence 0 and P are both isolated blow up points
of wi .

If |∇Ki(0)| ≤ d/2, then 0 is an isolated simple blow up point of wi by condition
(∗)′n−2σ and Proposition 4.16. If |∇Ki(0)| ≥ d/2, arguing as in the proof of Proposition
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4.17 we conclude that 0 is an isolated simple blow up point of wi . Similarly, P is also an
isolated simple blow up point of wi .

By Proposition 4.9,

wi(0)wi(y) ≤ Cε for all ε ≤ |y| ≤ 1/2,

where Cε is independent of i. Let Wi be the extension of wi . Due to Proposition 5.1,
the Harnack inequality of Lemma 4.3, and the choice of P1i, P2i , there exists an at most
countable set ℘ ⊂ Rn such that

inf{|x − y| : x, y ∈ ℘, x 6= y} ≥ 1,

and

lim
i→∞

Wi(0)Wi(Y ) = G(Y) in C0
loc(R

n+1
+ \ ℘),

G(Y ) > 0 for Y ∈ Rn+1
+ \ ℘.

Let ℘1 ⊂ ℘ contain those points near which G is singular. Clearly, 0, P ∈ ℘1. Since
pi > 1, it follows from (5.10) that{

div(s1−2σ
∇G) = 0 in Rn+1

+ ,

− lims→0 s
1−2σ ∂sG(y, s) = 0 for all y ∈ Rn \ ℘1.

By Lemma 4.10 and the maximum principle, there exist positive constants N1, N2 and
some nonnegative function H satisfying{

div(s1−2σ
∇H) = 0 in Rn+1

+ ,

− lims→0 s
1−2σ ∂sH(y, s) = 0 for all y ∈ Rn \ {℘1 \ {0, P }},

such that

G(Y) = N1|Y |
2σ−n
+N2|Y − P |

2σ−n
+H(Y), Y ∈ Rn+1

+ \ {℘1}.

Applying Proposition 2.19 toH , it is not difficult to verify (4.36) with8i replaced byWi .
On the other hand, we can establish (4.35) with 8i replaced by Wi if |∇Ki(0)| ≤ d/2,
because condition (∗)′n−2σ with L = o(1) holds for K̃i and thus Corollary 4.15 holds. If
|∇Ki(0)| ≥ d/2, we can apply the argument in the proof of Proposition 4.17 to conclude
that ϑi, τi ≤ wi(0)−2, and hence (4.35) also holds for Wi .

Proposition 5.2 is established. ut

Consider

Pσ (v) = c(n, σ )Kiv
pi
i on Sn,

vi > 0 on Sn,

pi =
n+ 2σ
n− 2σ

− τi, τi ≥ 0, τi → 0.

(5.11)
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Theorem 5.3. Suppose Ki satisfies the assumptions on K in Proposition 5.2. Let vi be
solutions of (5.11). Then

‖vi‖H σ (Sn) ≤ C, (5.12)

where C > 0 depends only on n, σ , A1, A2, L, d . Furthermore, after passing to a sub-
sequence, either {vi} stays bounded in L∞(Sn), or {vi} has only isolated simple blow up
points and the distance between any two such points is bounded below by some positive
constant depending only on n, σ , A1, A2, L, d.

Proof. The theorem follows immediately from Propositions 5.2, 4.17, 4.16, 4.4 and Lem-
ma 4.11. ut

Proof of Theorem 1.6. This follows immediately from Theorem 5.3. ut

In the next theorem, we impose a stronger condition on Ki such that {ui} has at most one
blow up point.

Theorem 5.4. Suppose the assumptions of Theorem 5.3 hold. Suppose further that either
{Ki} satisfies condition (∗)′n−2σ for some sequences L(n − 2σ, i) = o(1) in �d,i =
{q ∈ Sn : |∇gSnKi | < d}, or {Ki} satisfies condition (∗)′β with β > n − 2σ in �d,i .
Then, after passing to a subsequence, either {vi} stays bounded in L∞(Sn), or {vi} has
precisely one isolated simple blow up point.

Proof. The strategy is the same as in the proof of Proposition 5.2. We assume there are
two isolated blow up points. After some transformation, we can assume that they are in
the same half-sphere. The condition of {Ki} guarantees that Corollary 4.3 holds for ui ,
where ui is as in (5.8). Hence (4.35) holds for Ui , which is the extension of ui . Moreover,
(4.36) for Ui is also valid, since the distance between these blow up points is uniformly
bounded below due to Proposition 5.2. ut

Proof of Theorem 1.7. By Theorem 5.4, we only need to show the latter case of the
theorem. After passing a subsequence, ξi → ξ is the only isolated simple blow up point
of vi . For simplicity, assume that ξi is identical to the south pole and K(ξi) = 1. Let
F : Rn → Sn be the inverse of the stereographic projection defined at the beginning of
the paper. Define, for any λ > 0,

ψλ : x 7→ λx, ∀x ∈ Rn.

Set ϕi = F ◦ ψλi ◦ F
−1 with λi = vi(ξi)−2/(n−2σ). Then Tϕivi satisfies

Pσ (Tϕivi) = c(n, σ )K ◦ ϕiTϕiv
n+2σ
n−2σ
i on Sn.

For x ∈ Rn, let

ui(x) =

(
2

1+ |x|2

)(n−2σ)/2

vi ◦ F(x)

and

ũi(x) =

(
2

1+ |x|2

)(n−2σ)/2

Tϕivi ◦ F(x).
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Note that

|det dϕi(F (x))|(n−2σ)/2n
=

((
2

1+ |λix|2

)n
λni

(
2

1+ |x|2

)−n)(n−2σ)/2n

.

Hence, ũi(x) = λ(n−2σ)/2ui(λix) for any x ∈ Rn and 0 < ui ≤ 2(n−2σ)/2. Arguing as
before, we see that

ũi(x)→

(
2

1+ |x|2

)(n−2σ)/2

in C2
loc(R

n).

Therefore, vi → 1 in C2
loc(S

n
\ {N}), where N is the north pole of Sn.

Since Tϕivi is uniformly bounded near the north pole, it follows from Hölder estimates
that there exists a constant α ∈ (0, 1) such that Tϕivi → f in Cα(Bδ(N)) for a small
constant δ > 0 and some function f ∈ Cα(Bδ(N)). It is clear that f = 1. Thus, the proof
is complete. ut

Theorem 5.5. Suppose that {Ki} ⊂ C∞(Sn) satisfies (5.3), and for some P0 ∈ Sn,
ε0 > 0, A1 > 0 independent of i and 1 < β < n,

{Ki} is bounded in C[β],β−[β](Bε0(q0)), Ki(P0) ≥ A1

and

Ki(y) = Ki(0)+Q
(β)
i (y)+ Ri(y), |y| ≤ ε0,

where y is the stereographic projection coordinate with P0 as the south pole, Q(β)
i (y)

satisfies Q(β)
i (λy) = λβQ

(β)
i (y) for all λ > 0 and y ∈ Rn, and Ri(y) satisfies

[β]∑
s=0

|∇
sRi(y)| |y|

−β+s
→ 0

uniformly for i as y → 0.
Suppose also that Q(β)

i → Q(β) in C1(Sn−1) and for some positive constant A6,

A6|y|
β−1
≤ |∇Q(β)(y)|, |y| ≤ ε0, (5.13)

and (∫
Rn ∇Q

(β)(y + y0)(1+ |y|2)−n dy∫
Rn Q

(β)(y + y0)(1+ |y|2)−n dy

)
6= 0, ∀y0 ∈ Rn. (5.14)

Let vi be positive solutions of (1.6) with K = Ki . If P0 is an isolated simple blow up
point of vi , then vi has to have at least another blow up point.
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Proof. Suppose the contrary: P0 is the only blow up point of vi .
We make a stereographic projection with P0 being the south pole to the equatorial

plane of Sn, with inverse F . Then the equation (1.6) is transformed to

(−1)σui = c(n, σ )Ki(y)u
n+2σ
n−2σ
i in Rn, (5.15)

with

ui(y) =

(
2

1+ |y|2

)(n−2σ)/2

vi(F (y)).

Let yi → 0 be the local maximum point of ui . It follows from Lemma 4.13 that

|∇Ki(yi)| = O(ui(yi)
−2
+ ui(yi)

−2(β−1)/(n−2σ)).

First, we establish
|yi | = O(ui(yi)

−2/(n−2σ)). (5.16)

Since we have assumed that vi has no blow up point other than P0, it follows from Propo-
sition 4.9 and the Harnack inequality that ui(y) ≤ C(ε)|y|2σ−nui(yi)−1 for |y| ≥ ε > 0.

By Proposition A.1, we have∫
Rn
∇Kiu

2n/(n−2σ)
i = 0. (5.17)

It follows that for ε > 0 small we have∣∣∣∣∫
Bε

∇Ki(y + yi)ui(y + yi)
2n/(n−2σ)

∣∣∣∣ ≤ C(ε)ui(yi)−2n/(n−2σ).

Using our hypotheses on ∇Q(β) and Ri , we have∣∣∣∣∫
Bε

(1+ oε(1))∇Q
(β)
i (y + yi)ui(y + yi)

2n/(n−2σ)
∣∣∣∣ ≤ C(ε)ui(yi)−2n/(n−2σ).

Multiplying the above by m(2/(n−2σ))(β−1)
i with mi = ui(yi), we have∣∣∣∣∫

Bε

(1+ oε(1))∇Q
(β)
i (m

2/(n−2σ)
i y + ỹi)ui(y + yi)

2n/(n−2σ)
∣∣∣∣

≤ C(ε)ui(yi)
(2/(n−2σ))(β−1−n),

where ỹi = m
2/(n−2σ)
i yi . Suppose (5.16) is false, namely, ỹi → +∞ along a subse-

quence. Then it follows from Proposition 4.4 (we may choose Ri ≤ |ỹi |/4) that∣∣∣∣∫
|y|≤Rim

−2/(n−2σ)
i

(1+ oε(1))∇Q
(β)
i (m

2/(n−2σ)
i y + ỹi)ui(y + yi)

2n/(n−2σ)
∣∣∣∣

=

∣∣∣∣∫
|z|≤Ri

(1+ oε(1))∇Q
(β)
i (z+ ỹi)

(
m−1
i ui(m

−2/(n−2σ)
i z+ yi)

)2n/(n−2σ)
∣∣∣∣ ∼ |ỹi |β−1.
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On the other hand, it follows from Lemma 4.11 that∣∣∣∣∫
Rim

−2/(n−2σ)
i ≤|y|≤ε

(1+ oε(1))∇Q
(β)
i (m

2/(n−2σ)
i y + ỹi)ui(y + yi)

2n/(n−2σ)
∣∣∣∣

≤ C

∣∣∣∣∫
Rim

−2/(n−2σ)
i ≤|y|≤ε

(|m
2/(n−2σ)
i y|β−1

+|ỹi |
β−1)ui(y+ yi)

2n/(n−2σ)
∣∣∣∣ ≤ o(1)|ỹi |β−1.

It follows that

|ỹi |
β−1
≤ C(ε)m

(2/(n−2σ))(β−1−n)
i ,

which implies that

|yi | ≤ C(ε)m
−(2/(n−2σ))(n/(β−1))
i = o(m

−2/(n−2σ)
i ).

This contradicts ỹi →∞. Thus (5.16) holds.
We are going to find some y0 such that (5.14) fails.
It follows from the Kazdan–Warner condition of Proposition A.1 that∫

Rn
〈y,∇Ki(y + yi)〉ui(y + yi)

2n/(n−2σ)
= 0. (5.18)

Since P0 is an isolated simple blow up point and the only blow up point of vi , we have
for any ε > 0,∣∣∣∣∫

Bε

〈y,∇Ki(y + yi)〉ui(y + yi)
2n/(n−σ)

∣∣∣∣ ≤ C(ε)ui(yi)−2n/(n−2σ).

It follows from Lemma 4.11 and the expression of Ki that∣∣∣∣∫
Bε

〈y,∇Q
(β)
i (y + yi)〉ui(y + yi)

2n/(n−2σ)
∣∣∣∣

≤ C(ε)ui(yi)
−2n/(n−2σ)

+ oε(1)
∫
Bε

|y| |y + yi |
β−1ui(y + yi)

−2n/(n−2σ)

≤ C(ε)ui(yi)
−2n/(n−2σ)

+ oε(1)
∫
Bε

(|y|β + |y| |yi |
β−1)ui(y + yi)

−2n/(n−2σ)

≤ C(ε)ui(yi)
−2n/(n−2σ)

+ oε(1)ui(yi)−2β/(n−2σ),

we used (5.16) in the last inequality.
Multiplying the above by ui(yi)2β/(n−2σ), due to β < n we obtain

lim
i→∞

ui(yi)
2β/(n−2σ)

∣∣∣∣∫
Bε

〈y,∇Q
(β)
i (y + yi)〉ui(y + yi)

2n/(n−2σ)
∣∣∣∣ = oε(1). (5.19)
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Let Ri → ∞ as i → ∞. We assume that ri := Riui(yi)
−2/(n−2σ)

→ 0 as we did in
Proposition 4.4. By Lemma 4.11, we have

ui(yi)
2β/(n−2σ)

∣∣∣∣∫
ri≤|y|≤ε

〈y,∇Q
(β)
i (y + yi)〉ui(y + yi)

2n/(n−2σ)
∣∣∣∣

≤ lim
i→∞

ui(yi)
2β/(n−2σ)

∣∣∣∣∫
ri≤|y|≤ε

(|y|β + |y||yi |
β−1)ui(y + yi)

2n/(n−2σ)
∣∣∣∣→ 0 (5.20)

as i →∞. Combining (5.19) and (5.20), we conclude that

lim
i→∞

ui(yi)
2β/(n−2σ)

∣∣∣∣∫
Bri

〈y,∇Q
(β)
i (y + yi)〉ui(y + yi)

2n/(n−2σ)
∣∣∣∣ = oε(1).

It follows from the change of variable z = ui(yi)2/(n−2σ)y, applying Proposition 4.4 and
then letting ε→ 0 that∫

Rn
〈z,∇Q(β)(z+ z0)〉(1+ k|z|2)−n = 0, (5.21)

where z0 = limi→∞ ui(yi)
2/(n−2σ)yi and k = limi→∞Ki(yi)

1/σ /4.
On the other hand, from (5.17),∫

Rn
∇Ki(y + yi)ui(y + yi)

2n/(n−2σ)
= 0. (5.22)

Arguing as above, we will have∫
Rn
∇Q(β)(z+ z0)(1+ k|z|2)−n = 0. (5.23)

It follows from (5.21) and (5.23) that∫
Rn
Q(β)(z+ z0)(1+ k|z|2)−n dz

= β−1
∫
Rn
〈z+ z0,∇Q

(β)(z+ z0)〉(1+ k|z|2)−n dz = 0.

Therefore, (5.14) does not hold for y0 =
√
k z0. ut

Theorem 5.6. Suppose that K ∈ C1,1(Sn) and for some constant A1 > 0,

1/A1 ≤ K(ξ) ≤ A1 for all ξ ∈ Sn.

Suppose also that for any critical point ξ0 of K , under the stereographic projection coor-
dinate system {y1, . . . , yn} with ξ0 as south pole, there exist some small neighborhood O
of 0, a positive constant L, and β = β(ξ0) ∈ (n− 2σ, n) such that

‖∇
[β]K‖Cβ−[β](O) ≤ L
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and
K(y) = K(0)+Q(β)

(ξ0)
(y)+ R(ξ0)(y) in O,

where Q(β)
ξ0
∈ C[β]−1,1(Sn−1) satisfies Q(β)

ξ0
(λy) = λβQ

(β)
ξ0
(y) for all λ > 0 and y ∈ Rn,

and for some positive constant A6,

A6|y|
β−1
≤ |∇Q(β)(y)|, y ∈ O,

and (∫
Rn ∇Q

(β)(y + y0)(1+ |y|2)−n dy∫
Rn Q

(β)(y + y0)(1+ |y|2)−n dy

)
6= 0, ∀y0 ∈ Rn,

and Rξ0 ∈ C
[β]−1,1(O) satisfies limy→0

∑[β]
s=0 |∇

sR|ξ0(y)|y|
−β+s

= 0. Then there exists
a positive constant C ≥ 1 depending on n, σ,K such that for any solution v of (1.6),

1/C ≤ v ≤ C on Sn.
Proof. This follows directly from Theorems 5.4 and 5.5. ut

Proof of the compactness part of Theorem 1.3. It is easy to check that, if K satisfies the
condition in Theorem 1.3, then it must satisfy the condition in Theorem 5.6. Therefore,
we have the lower and upper bounds of v. The C2 norm bound of v follows immediately.

ut

Appendix

A.1. A Kazdan–Warner identity

In this section we are going to show (1.8), which is a consequence of the following

Proposition A.1. Let K > 0 be a C1 function on Sn, and let v be a positive function in
C2(Sn) satisfying

Pσ (v) = Kv
n+2σ
n−2σ on Sn. (A.1)

Then, for any conformal Killing vector field X on Sn, we have∫
Sn
(∇XK)v

2n/(n−2σ) dVgSn = 0. (A.2)

Let ϕt : Sn → Sn be a one-parameter family of conformal diffeomorphisms (in this case
they are Möbius transformations), depending smoothly on t , |t | < 1, and ϕ0 = identity.
Then

X :=
d

dt
(ϕt )
−1
∣∣∣∣
t=0

is a conformal Killing vector field on Sn. (A.3)

Proof. The proof is standard (see, e.g., [12] for a Kazdan–Warner identity for prescribed
scalar curvature problems) and we include it here for completeness. Since Pσ is a self-
adjoint operator, (A.1) has a variational structure:

I [v] :=
1
2

∫
Sn
vPσ (v) dVgSn −

n− 2σ
2n

∫
Sn
Kv2n/(n−2σ) dVgSn .
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Let X be a conformal Killing vector field. Then there exists {ϕt } satisfying (A.3). Let

vt := (v ◦ ϕt )wt ,

where wt is given by
gt := ϕ

∗
t gSn = w

4/(n−2σ)
t gSn .

Then

I [vt ] =
1
2

∫
Sn
vPσ (v) dVgSn −

n− 2σ
2n

∫
Sn
K(ϕ−1

t (x))v2n/(n−2σ) dVgSn .

It follows from (A.1) that

0 = I ′[v]
(
d

dt

∣∣∣∣
t=0
vt

)
=
d

dt
I [vt ]

∣∣∣∣
t=0
= −

n− 2σ
2n

∫
Sn
(∇XK)v

2n/(n−2σ) dVgSn . ut

A.2. The proof of Lemma 4.10

The classical Bôcher theorem in harmonic function theory states that a positive harmonic
function u in a punctured ball B1 \ {0} must be of the form

u(x) =

{
−a log |x| + h(x), n = 2,
a|x|2−n + h(x), n ≥ 3,

where a is a nonnegative constant and h is a harmonic function in B1.
We are going to establish a similar result, Lemma 4.10, in our setting. Denote B+R =

{X : |X| < R, t > 0}, ∂ ′B+R = {(x, t) : |x| < R} and ∂ ′′B = ∂B+R \ ∂
′B+R .

Proof of Lemma 4.10. We adapt the proof of the Bôcher theorem given in [5]. Define

A[U ](r) =

∫
∂ ′′B+r t

1−2σU(x, t) dSr∫
∂ ′′B+r t

1−2σ dSr
,

where r = |(x, t)| > 0 and dSr is the volume element of ∂ ′′Br .
By direct computations we have

d

dr
A[U ](r) =

∫
∂ ′′B+r t

1−2σ
∇U(x, t) ·

(x,t)
r
dSr∫

∂ ′′B+r t
1−2σ dSr

.

Let

f (r) =

∫
∂ ′′B+r

t1−2σ
∇U(x, t) ·

(x, t)

r
dSr .

Since U satisfies (4.18), by integration by parts we have

f (r1) = f (r2), ∀ 0 < r1, r2 < 1.
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Notice that ∫
∂ ′′B+r

t1−2σ dSr = r
n+1−2σ

∫
∂ ′′B+1

t1−2σ dS1.

Thus there exists a constant b such that

d

dr
A[U ](r) = br−n−1+2σ .

So there exist constants a and b such that

A[U ](r) = a + br2σ−n.

Since we have the Harnack inequalities for U as in the proof of Lemma 4.3, the rest
of the arguments are rather similar to those in [5] and are omitted here. We refer to [5] for
details. ut

A.3. Two lemmas on maximum principles

Lemma A.2. There exists ε = ε(n, σ ) such that for all |a(x)| ≤ ε|x|−2σ , if U ∈
H(t1−2σ , Q1), U ≥ 0 on ∂ ′′Q1, and is a supersolution of (2.7) in Q1 with b ≡ 0,
then

U ≥ 0 in Q1.

Proof. By a density argument, we can use U− as a test function. Hence we have∫
Q1

t1−2σ
|∇U−|2 ≤

∫
B1

|a|(U−(·, 0))2. (A.4)

We extend U− to be zero outside of Q1 and still denote it by U−. Then its trace satisfies
U−(·, 0) ∈ Ḣ σ (Rn). Since

N2
σ‖U

−(·, 0)‖2
Ḣ σ (Rn) =

∫
Rn+1
+

t1−2σ
|∇Pσ ∗ U−(·, 0)|2 ≤

∫
Rn+1
+

t1−2σ
|∇U−|2,

we have

N2
σ‖U

−(·, 0)‖2
Ḣ σ (Rn) ≤

∫
B1

|a|(U−(·, 0))2.

By Hardy’s inequality (see, e.g., [99])

C1(n, σ )

∫
Rn
|x|−2σ (U−(·, 0))2 ≤ ‖U−(·, 0)‖2

Ḣ σ (Rn),

where C1(n, σ ) = 22σ 0((n+2σ)/4)
0((n−2σ)/4) is the best constant. Hence if ε < N2

σC1(n, σ ), then
U−(·, 0) ≡ 0 and hence by (A.4), U− ≡ 0 in Q1. ut
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Lemma A.3. Let a ∈ L∞(B1). Let W ∈ C(Q1) ∩ C
2(Q1) satisfy ∇xW ∈ C(Q1),

t1−2σ ∂tW ∈ C(Q1), and
− div(t1−2σ

∇W) ≥ 0 in Q1,

− limt→0 t
1−2σ ∂tW(x, t) ≥ a(x)W(x, 0) on ∂ ′Q1,

W > 0 in Q1.

(A.5)

If U ∈ C(Q1) ∩ C
2(Q1) satisfies ∇xU ∈ C(Q1), t1−2σ ∂tU ∈ C(Q1), and
− div(t1−2σ

∇U) ≥ 0 in Q1,

− limt→0 t
1−2σ ∂tU(x, t) ≥ a(x)U(x, 0) on ∂ ′Q1,

U ≥ 0 in ∂ ′′Q1.

(A.6)

Then U ≥ 0 in Q1.

Proof. Let V = U/W . Then
− div(t1−2σ

∇V )− 2t1−2σ ∇V∇W

W
−

div(t1−2σ
∇W)V

W
≥ 0 in Q1,

− limt→0 t
1−2σ ∂tV +

V

W

(
− limt→0 t

1−2σ ∂tW(x, t)− a(x)W(x, 0)
)
≥ 0 on ∂ ′Q1,

V ≥ 0 in ∂ ′′Q1.

(A.7)

We are going to show that V ≥ 0 in Q1. If not, then we choose k such that infQ1 v <

k ≤ 0. Let
Vk = V − k and V −k = max(−Vk, 0).

Multiplying by V −k the first inequality in (A.7) and integrating by parts, we have∫
Q1

t1−2σ
|∇V −k |

2
≤ 2

∫
Q1

t1−2σW−1V −k ∇V
−

k ∇W. (A.8)

Case 1: 1 − 2σ ≤ 0. Denote 0k = supp(∇V −k ). Then by the Hölder inequality and the
bounds of ∇xW and t1−2σ ∂tW ,

2
∫
Q1

t1−2σW−1V −k ∇V
−

k ∇W ≤ C

(∫
Q1

t1−2σ
|∇V −k |

2
)1/2(∫

0k

t1−2σ
|V −k |

2
)1/2

.

Hence it follows from (A.8) that∫
Q1

t1−2σ
|∇V −k |

2
≤ C

∫
0k

t1−2σ
|V −k |

2. (A.9)

Since V −k = 0 on ∂ ′′Q1, by Lemma 2.1 in [94],(∫
Q1

t1−2σ
|V −k |

2(n+1)/n
)n/(n+1)

≤ C

∫
Q1

t1−2σ
|∇V −k |

2. (A.10)
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By (A.9), (A.10) and the Hölder inequality,∫
0k

t1−2σ
≥ C.

This yields a contradiction when k → infQ1 v, since ∇V = 0 on the set where V ≡
infQ1 V .

Case 2: 1 − 2σ > 0. Denote 0k = supp(V −k ). Then by the Hölder inequality and the
bounds of ∇xW and t1−2σ ∂tW ,∫

Q1

t1−2σ
|∇V −k |

2
≤ 2

∫
Q1

t1−2σW−1V −k ∇V
−

k ∇W ≤ C

∫
Q1

V −k ∇V
−

k

≤ C

(∫
Q1

t1−2σ
|∇V −k |

2
)1/2(∫

Q1

t2σ−1
|V −k |

2
)1/2

.

Hence∫
Q1

t1−2σ
|∇V −k |

2
∫
Q1

t1−2σ
|∇V −k |

2
≤ C

∫
Q1

t1−2σ
|∇V −k |

2
∫
Q1

t2σ−1
|V −k |

2.

Since V −k = 0 on ∂ ′′Q1, by the proof of Lemma 2.3 in [94] we have, for any β > −1,∫
Q1

tβ |V −k |
2
≤ C(β)

∫
Q1

t1−2σ
|∇V −k |

2.

In the following we choose β = σ − 1. Hence,∫
Q1

t1−2σ
|∇V −k |

2
∫
Q1

tσ−1
|V −k |

2
≤ C

∫
Q1

t1−2σ
|∇V −k |

2
∫
Q1

t2σ−1
|V −k |

2,

i.e. ∫
0k

t1−2σ
|∇V −k |

2
∫
0k

tσ−1
|V −k |

2
≤ C

∫
0k

t1−2σ
|∇V −k |

2
∫
0k

t2σ−1
|V −k |

2.

Fix ε > 0 sufficiently small which will be chosen later. By the strong maximum principle,
infQ1 V has to be attained only on ∂ ′Q1, then we can choose k sufficiently close to infQ1 V

such that 0k ⊂ B1 × [0, ε]. Then

ε−σ
∫
0k

t2σ−1
|V −k |

2
≤ C

∫
0k

tσ−1
|V −k |

2.

Choose ε small enough such that ε−σ > C + 1. It follows that∫
0k

t1−2σ
|∇V −k |

2
∫
0k

t2σ−1
|V −k |

2
= 0.

Hence one of them has to be zero, which yields a contradiction immediately. ut
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A.4. Complements

Lemma A.4. Let u ∈ C∞c (Rn) and V (·, t) = Pσ (·, t) ∗ u(·). Then for any U in
C∞c (R

n+1
+ ∪ ∂Rn+1

+ ) with U(x, 0) = u(x),∫
Rn+1
+

t1−2σ
|∇V |2 ≤

∫
Rn+1
+

t1−2σ
|∇U |2.

Proof. Let 0 ≤ η(x, t) ≤ 1, supp(η) ⊂ B+2R , η = 1 in B+R and |∇η| ≤ 2/R. In the

end we will let R → ∞ and hence we may assume that U is supported in B+R/2. Since
div(t1−2σ

∇V ) = 0, we have

0 =
∫
Rn+1
+

t1−2σ
∇V∇(η(U − V ))

=

∫
Rn+1
+

t1−2ση∇U∇V −

∫
Rn+1
+

t1−2ση|∇V |2 −

∫
B+2R\B

+

R

t1−2σV∇η∇V,

where we used η(U − V ) = 0 on the boundary of B+2R in the first equality.
Note that for (x, t) ∈ B+2R \ B

+

R ,

|V (x, t)| = β(n, σ )

∣∣∣∣∫
Rn

t2σ

(|x − ξ |2 + t2)(n+2σ)/2 u(ξ) dξ

∣∣∣∣
≤ β(n, σ )

∫
Rn

(|x|2 + t2)σ

(|x|2/4+ t2)(n+2σ)/2 |u(ξ)| dξ

≤ C(n, σ )(|x|2 + t2)−n/2‖u‖L1 ,

where in the first inequality we have used that U is supported in B+R/2.
Direct computations yield that∣∣∣∣∫

B+2R\B
+

R

t1−2σV∇η∇V

∣∣∣∣ ≤ (∫
B+2R\B

+

R

t1−2σ
|∇V |2

)1/2(∫
B+2R\B

+

R

t1−2σV 2
|∇η|2

)1/2

≤

(∫
B+2R\B

+

R

t1−2σ
|∇V |2

)1/2

C(n, σ )|u|L1(Rn)(R
n+2−2σ−2−2n)1/2 → 0 as R→∞,

where we have used (2.4) that
∫
Rn+1
+

t1−2σ
|∇V |2 <∞. Therefore,∫

Rn+1
+

t1−2σ
|∇V |2 ≤

∣∣∣∣∫
Rn+1
+

t1−2σ
∇U∇V

∣∣∣∣.
Finally, by the Hölder inequality,∫

Rn+1
+

t1−2σ
|∇V |2 ≤

∫
Rn+1
+

t1−2σ
|∇U |2. ut
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