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Abstract. We show that there are well separated families of quantum expanders with asymptot-
ically the maximal cardinality allowed by a known upper bound. This has applications to the
“growth” of certain operator spaces: It implies asymptotically sharp estimates for the growth of
the multiplicity of MN -spaces needed to represent (up to a constant C > 1) the MN -version of the
n-dimensional operator Hilbert space OHn as a direct sum of copies of MN . We show that, when
C is close to 1, this multiplicity grows as exp(βnN2) for some constant β > 0. The main idea is
to relate quantum expanders with “smooth” points on the matricial analogue of the Euclidean unit
sphere. This generalizes to operator spaces a classical geometric result on n-dimensional Hilbert
space (corresponding to N = 1). In an appendix, we give a quick proof of an inequality (related to
Hastings’s previous work) on random unitary matrices that is crucial for this paper.
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The term “quantum expander” is used by Hastings [11] and by Ben-Aroya and Ta-Shma
[3] to designate a sequence {U (N) | N ≥ 1} of n-tuples U (N) = (U

(N)
1 , . . . , U

(N)
n ) of

N×N unitary matrices such that there is an ε > 0 satisfying the following “spectral gap”
condition:

∀N ∀x ∈ MN

∥∥∥ n∑
j=1

U
(N)
j (x−N−1 tr(x))U (N)∗j

∥∥∥
2
≤ n(1−ε)‖x−N−1 tr(x)‖2, (0.1)

where ‖ · ‖2 denotes the Hilbert–Schmidt norm on MN . More generally, the term is ex-
tended to the case when this is only defined for infinitely many N ’s, and also to n-tuples
of matrices satisfying merely

∑
U
(N)
j U

(N)∗
j =

∑
U
(N)∗
j U

(N)
j = nI .

We will say that an n-tuple U (N) satisfying (0.1) is an ε-quantum expander. We refer
the reader to the survey [2] for more information and references on quantum expanders.

In analogy with the classical expanders (see below), one seeks to exhibit (and hope-
fully to construct explicitly) sequences {U (Nm) | m ≥ 1} of n-tuples of Nm ×Nm unitary
matrices that are ε-quantum expanders with Nm→∞ while n and ε > 0 remain fixed.
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When G is a finite group generated by S = {t1, . . . , tn} the associated Cayley graph
G(G, S) is said to have a spectral gap if the left regular representation λG satisfies∥∥∥∑ λG(tj )|I⊥

∥∥∥ < n(1− ε) (0.2)

where I denotes the constant function 1 on G. Obviously, this is equivalent to the con-
dition that the unitaries Uj = λG(tj ) satisfy (0.1) when restricted to diagonal matrices x
(here N = |G|). In this light, quantum expanders appear as a non-commutative version
of the classical ones.

More precisely, (0.2) holds iff the unitaries Uj = λG(tj ) satisfy (0.1) for all x in the
orthogonal complement of the right translation operators. This is easy to deduce from
the decomposition into irreducibles of λG ⊗ λ̄G, in which the component of the trivial
representation corresponds to the restriction to the right translation operators.

In addition, for any irreducible representation π of G, (0.2) implies that the unitaries
(π(tj )) satisfy (0.1) because the non-trivial irreducible components of the representation
π ⊗ π̄ are contained in λG. See Remark 1.6 for more on this.

A sequence of Cayley graphs G(G(m), S(m)) constitutes an expander in the usual sense
if (0.2) is satisfied with ε > 0 and n fixed while |G(m)| → ∞.

Expanders (equivalently expanding graphs) have been extremely useful, especially
(in the applied direction) since Margulis and Lubotzky–Phillips–Sarnak obtained explicit
constructions (as opposed to random ones). We refer to [17, 12] for more information and
references.

They have also been used with great success for operator algebras and in operator
theory (see e.g. [35, 6, 13], and also [27, 5]). In [13], it is crucial that when the dimensions
N,N ′ are suitably different, say ifN is much larger thanN ′, andU (N) satisfies (0.1), then
U (N) and U (N

′) are separated in the sense that there is a fixed δ = δ(ε) > 0 such that for
all x ∈ MN×N ′ , ‖

∑
U
(N)
j xU

(N ′)∗
j ‖2 ≤ n(1− δ)‖x‖2 (see Remark 1.13).

Motivated by operator theory considerations, it is natural to wonder what happens
when N = N ′. We will say that two n-tuples u = (uj ) and v = (vj ) of N × N unitary
matrices are δ-separated if

∀x ∈ MN

∥∥∥ n∑
j=1

ujxv
∗

j

∥∥∥
2
≤ n(1− δ)‖x‖2.

Equivalently this means that ∥∥∥ n∑
j=1

uj ⊗ v̄j‖ ≤ n(1− δ)

where v̄j denotes the complex conjugate of the matrix vj , and the norm is the operator

norm on `N2 ⊗ `
N
2 . This can be interpreted in operator space theory as a rough sort of

orthogonality related to the “operator space Hilbert space OH”.
Note for example that when (0.2) holds then, for any pair of inequivalent irreducible

representations π, σ on G, the n-tuples (π(tj )) and (σ (tj )) are ε-separated.
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Let U(N) ⊂ MN denote the group of unitary matrices. The main result of §1 asserts
that for any 0 < δ < 1 there is a constant β = βδ > 0 such that for each 0 < ε < 1, for
all sufficiently large integers n (i.e. n ≥ n0(ε, δ)), for any integer N there is a δ-separated
family {u(t) | t ∈ T } ⊂ U(N)n of ε-quantum expanders such that

|T | ≥ exp(βnN2).

Thus we can “pack” as many as m = exp(βnN2) δ-separated ε-quantum expanders
inside U(N)n. This number m is remarkably large. In fact, in some sense it is as large
as it can be. Indeed, it is known ([37, 10], see also Remark 1.5) that the maximal m is at
most exp(β ′nN2) for some constant β ′.

In §2, we use quantum expanders to investigate the analogue for operator spaces of a
well known geometric property of Euclidean space: The unit sphere in a Hilbert space is
smooth. Equivalently all its points admit a unique norming functional. In our extension of
this, “norming” will be with respect to the operator space duality. Moreover, unicity has
to be understood modulo an equivalence relation: for any x = (xj ) ∈ MN (E)

n we define
Orb(x) as the set of all x′ of the form x′ = (uxjv) ∈ MN (E)

n for some u, v ∈ U(N).
Then if x is “norming” some point, any x′ ∈ Orb(x) is also “norming” that same point.
When E is an operator space and x ∈ MN (E), we will say that y ∈ MN (E

∗) MN -
norms x if ‖

∑
xj ⊗ yj‖ = ‖x‖MN (E)‖y‖MN (E

∗). We will say that x is MN -smooth in
MN (E) if the only points y with ‖y‖MN (E

∗) = 1 that MN -norm x are all in a single orbit
in MN (E

∗). Let us now turn to the case E = OHn. There we show that, if x ∈ U(N)n is
viewed as an element of MN (`

n
2), then x is MN -smooth in MN (E) iff x is an ε-quantum

expander for some ε > 0.
More generally, in Lemma 1.12 we prove a more precise quantified version of this:

if x is an ε-quantum expander and if two points y, z ∈ MN (E
∗) both MN -norm x up to

some error δ, then the distance of the orbits Orb(y) and Orb(z) is uniformly small, i.e.
majorized by a function fε(δ) that tends to 0 when δ → 0. Here the distance is meant
with respect to the renormalized Euclidean norm y 7→ (nN)−1/2

‖y‖2 for which any
y ∈ U(N)n has norm 1 (where ‖ · ‖2 denotes the norm in `2(n×N

2)).
This also has a geometric application. Consider the following problem for an n-

dimensional normed space E: Given a constant C > 1, estimate the minimal number
k = kE(C) of functionals f1, . . . , fk in the dual E∗ such that

∀x ∈ E sup
1≤j≤k

|fj (x)| ≤ ‖x‖ ≤ C sup
1≤j≤k

|fj (x)|.

Geometrically this means that (in the real case) the symmetric convex body that is the
unit ball of E∗ is equivalent (up to the factor C) to a polyhedron with vertices included in
{±fj } and hence with at most 2k vertices (so its polar, which is equivalent to the unit ball
of E, has at most 2k faces). For instance, the n-dimensional cube has 2n vertices and 2n
faces. When E has (real) dimension n it is well known (see e.g. [25, pp. 49–50]) that

kE(C) ≤

(
3C
C − 1

)n
.
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For example if C = 2 we have kE(C) ≤ 6n. This exponential order of growth in n is
optimal for E = `n2 (or `np for 1 ≤ p < ∞); but of course kE(C) = n for E = `n∞, and
there is important available information and a conjecture (see [22]) about conditions on a
general sequence {E(n) | n ≥ 1} with dim(E(n)) = n ensuring that kE(n) ≥ exp(cn) for
some c > 0.

We now describe the matricial analogue of kE that we estimate using quantum ex-
panders. Let E be an operator space. Fix an integer N ≥ 1. We denote by kE(N,C) the
smallest k such that there are linear maps fj : E→ MN (1 ≤ j ≤ k) satisfying

∀x ∈ MN (E) sup
1≤j≤k

‖(Id⊗ fj )(x)‖MN (MN ) ≤ ‖x‖MN (E)

≤ C sup
1≤j≤k

‖(Id⊗ fj )(x)‖MN (MN ).

It is not hard to adapt the corresponding Banach space argument to show that for any
n-dimensional E, any C > 1 and any N we have

kE(N,C) ≤

(
3C
C − 1

)2nN2

= exp
(

2 log
(

3C
C − 1

)
nN2

)
.

Using the “packing” of ε-quantum expanders described above, we can show that the op-
erator space version of Hilbert space (i.e. the space OH from [26]) satisfies a lower bound
of the same order of growth, namely we show for E = OHn (see Theorem 2.8) that there
are numbers C1 > 1 and b > 0 such that for any n large enough and any N we have

kE(N,C1) ≥ exp(bnN2). (0.3)

Moreover, this also holds for E = `n1 with its maximal operator space structure and for
E = Rn + Cn (see Remark 2.10).

We also show (see Theorem 2.15) that for any R > 1 and for any n,N suitably large
there is a collection {Et | t ∈ T1} of n-dimensional subspaces of MN (each spanned by
an n-tuple of unitary matrices) with cardinality ≥ exp(βRnN2) such that the cb-distance
dcb(Es, Et ) of any distinct pair in T1 satisfies

dcb(Es, Et ) ≥ R.

The cb-distance dcb is the analogue of the Banach–Mazur distance for operator spaces.
The preceding shows that the metric entropy of the space of n-dimensional operator
spaces equipped with the (so-called) “distance” dcb is extremely large for small distances.
This can be viewed as a somewhat more quantitative version of the non-separability of
the space of n-dimensional operator spaces first proved in [13]. We plan to return to this
in a future publication (see [30]).

The above (0.3) suggests that the class of finite-dimensional operator spaces E such
that (log kE(N,C))/N2

→ 0 should be investigated. We call such spaces matricially
sub-Gaussian.

In the forthcoming paper [29] we introduce a class of operator spaces, which we
call “subexponential”, for which the same Grothendieck type factorization theorem from
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[13, 31] still holds (see the recent paper [32] for simpler proofs of the latter). We also give
there examples of non-exact subexponential operator spaces or C∗-algebras.

The definition of “subexponential” involves the growth of a sequence of integersN 7→
KE(N,C) attached to an operator spaceE (and a constant C > 1), in a way that is similar
but seems different from kE(N,C). We denote by KE(N,C) the smallest K such that
there is a single (embedding) linear map f : E→ MK satisfying

∀x ∈ MN (E) ‖(Id⊗ f )(x)‖MN (MK ) ≤ ‖x‖MN (E) ≤ C‖(Id⊗ f )(x)‖MN (MN ).

Roughly the latter sequence is bounded iff E is exact with exactness constant ≤ C

(in the sense of [27, §17]) while it is such that (logKE(N,C))/N → 0 iff E is
C-subexponential.

Note. There is an obvious upper bound (for a fixed constantC)KE(N,C)≤NkE(N,C),
so the growth of KE is dominated by that of kE , but we know nothing in the converse
direction. Various other questions are mentioned at the end of §3.

1. Quantum expanders

Fix integers n,N . Throughout this paper we denote by MN the space of N ×N complex
matrices and by U(N) the subset of N ×N unitary matrices.

We identify MN with the space B(`N2 ) of bounded operators on the N -dimensional
Hilbert space denoted by `N2 .

We denote by tr (resp. τN ) the usual trace (resp. the normalized trace) on MN . Thus
τN = N−1 tr. We denote by SN2 the Hilbert space obtained by equipping MN with the
corresponding scalar product. The associated norm is the classical Hilbert–Schmidt norm.

For simplicity we write
H = L2(τN ),

i.e. H is the Hilbert space obtained by equipping the space MN with the norm

‖ξ‖H = (N
−1 tr(|ξ |2))1/2 = N−1/2

‖x‖SN2
.

We denote
H0 = {I }

⊥
⊂ H.

Throughout this paper, we consider operators of the form T =
∑
xj ⊗ ȳj , with

xj , yj ∈ MN , that we view as acting on `N2 ⊗ `
N
2 . Identifying as usual `N2 ⊗ `

N
2 with SN2 ,

we may consider T as an operator acting on MN defined by

∀ξ ∈ MN T (ξ) =
∑

xj ξy
∗

j ,

and we then have∥∥∥∑ xj ⊗ ȳj

∥∥∥ = sup
{∥∥∥∑ xj ξy

∗

j

∥∥∥
2

∣∣∣ ξ ∈ MN , ‖ξ‖2 ≤ 1
}

= sup
{∣∣∣∑ tr(xj ξy∗j η

∗)

∣∣∣ ∣∣∣ ‖ξ‖2 ≤ 1, ‖η‖2 ≤ 1
}
, (1.1)
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or equivalently ‖
∑
xj ⊗ ȳj : `

N
2 ⊗ `

N
2 → `N2 ⊗ `

N
2 ‖ = ‖T : S

N
2 → SN2 ‖. Actually it will

be convenient to view T as an operator acting on H = L2(τN ). We have trivially

‖T ‖B(H) = ‖T ‖B(SN2 )
.

Let x = (xj ) ∈ (MN )
n and y = (yj ) ∈ (MN )

n. Let Orb(x) denote the 2-sided unitary
orbit of x = (xj ), i.e.

Orb(x) = {(uxjv) | u, v ∈ U(N)}.

We will denote
d(x, y) =

(∑
j

‖xj − yj‖
2
L2(τN )

)1/2
,

and

d ′(x, y) = inf{d(x′, y) | x′ ∈ Orb(x)} = inf{d(x′, y′) | x′ ∈ Orb(x), y′ ∈ Orb(y)}.

The last equality holds because of the 2-sided unitary invariance of the norm in SN2 or
equivalently of H = L2(τN ).

Definition 1.1. Fix δ > 0. We will say that x, y in Mn
N are δ-separated if∥∥∥∑ xj ⊗ ȳj

∥∥∥ ≤ (1− δ)∥∥∥∑ xj ⊗ x̄j

∥∥∥1/2∥∥∥∑ yj ⊗ ȳj

∥∥∥1/2
.

A family of elements is called δ-separated if any two distinct members in it are δ-sepa-
rated.

Let x = (xj ) ∈ M
n
N and y = (yj ) ∈ M

n
N be normalized so that ‖

∑
xj ⊗ x̄j‖ =

‖
∑
yj ⊗ ȳj‖ = 1. Equivalently, this definition means that for any ξ, η ∈ MN in the unit

ball of SN2 we have ∣∣∣∑ tr(xj ξy∗j η
∗)

∣∣∣ ≤ 1− δ.

Using polar decompositions ξ = u|ξ | and η = v|η|, we obtain |
∑

tr(xj ξy∗j η
∗)| =

|
∑

tr(xju|ξ |y∗j |η|v
∗)|. Let x̂j = v∗xju. Equivalently we have, for any unitary u, v,∣∣∣∑ tr(x̂j |ξ |y∗j |η|)

∣∣∣ ≤ 1− δ.

A fortiori, taking |ξ | = |η| = N−1/2I we find |
∑
τN (x̂jy

∗

j )| ≤ 1− δ and hence

d(x̂, y)2 ≥ 2δ;

taking the inf over unitary u, v, the δ-separation of x, y implies

d ′(x, y) ≥ (2δ)1/2. (1.2)

In other words, rescaling this to the case when n1/2xj , n
1/2yj , ξ, η are all unitary, we have

proved:
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Lemma 1.2. Consider n-tuples x = (xj ) ∈ U(N)n and y = (yj ) ∈ U(N)n. If x, y are
δ-separated then d ′(x, y) ≥ (2δn)1/2.

Recall that we denote
H0 = {I }

⊥.

To any n-tuple u = (uj ) ∈ U(N)n we associate the operator (
∑
uj ⊗ ūj )(1− P) on

`N2 ⊗ `
N
2 where P denotes the ⊥-projection onto the scalar multiples of I =

∑
ej ⊗ ēj .

Equivalently, up to normalization, we will consider Tu : H0 → H0 defined for all ξ ∈ H0
by

Tu(ξ) =
∑

uj ξu
∗

j .

We will denote by
Sε = Sε(n,N) ⊂ U(N)

n

the set of all n-tuples u = (uj ) ∈ U(N)n such that

‖Tu : H0 → H0‖ ≤ εn.

Equivalently, this means that for all x ∈ MN , we have∥∥∥∑ uj (x − τN (x)I )u
∗

j

∥∥∥
H
≤ εn‖x‖H .

Our goal is to prove the following:

Theorem 1.3. For any 0 < δ < 1 there is a constant βδ > 0 such that for each 0 < ε < 1
and for all sufficiently large integers n (i.e. n ≥ n0 with n0 depending on ε and δ) and for
all N ≥ 1, there is a δ-separated subset T ⊂ Sε such that |T | ≥ exp(βδnN2).

Remark 1.4. Actually, the proof will show that if we are given sets AN ⊂ U(N)n such
that infN P(AN ) ≥ α > 0, then for each N we can find a subset T as above contained in
AN ∩ Sε, but with βδ and n0 now also depending on α.

Remark 1.5. The order of growth of our lower bound exp(βnN2) in Theorem 1.3 is
roughly optimal because of the upper bound given explicitly in [10] (and implicitly in
[37]). The latter upper bound can be proved as follows. Let mmax be the maximal number
of a δ-separated family in U(N)n. Consider the normed space obtained by equipping
M(N)n with the norm |||x||| = ‖

∑
xj ⊗ x̄j‖

1/2. Then since its (real) dimension is 2nN2,
by a well known volume argument [25, pp. 49–50] there cannot exist more than (1 +
2/δ′)2nN

2
elements in its unit ball at mutual ||| · |||-distance ≥ δ′. Note that d(x, y) ≤

|||x−y||| for any pair x, y inM(N)n. Thus, if u, v ∈ U(N)n are δ-separated in the above
sense then x = n−1/2u and y = n−1/2v are in the ||| · |||-unit ball and by (1.2) we have
|||x − y||| ≥ (2δ)1/2, therefore

mmax ≤ (1+
√

2/δ)2nN
2
≤ exp{2

√
2/δ nN2

}.



1190 Gilles Pisier

Remark 1.6. LetG be a Kazhdan group (see [1]) with generators t1, . . . , tn, so that there
is δ > 0 such that ‖

∑n
j=1 π(tj )‖ ≤ n(1 − δ) for any unitary representation without any

invariant (non-zero) vector. Let I = I(N) denote the set of N -dimensional irreducible
representations π : G→ U(N). It is known (see [1]) that the latter set is finite and in fact
there is a uniform bound on |I(N)| for each N . For any π ∈ I we set

uπj = π(tj ).

Then (here by π 6= σ we mean π is not equivalent to σ )

sup
π 6=σ∈I

∥∥∥∑ uπj ⊗ u
σ
j

∥∥∥ ≤ n(1− δ),
so that the family {uπ | π ∈ I} ⊂ U(N)n is δ-separated in the above sense. By Re-
mark 1.5, we know |I(N)| ≤ mmax ≤ exp(cδnN2). The problem to estimate the maximal
possible value of |I(N)| when N → ∞ (with δ and n remaining fixed, but G possi-
bly varying) is investigated in [19]: some special cases are constructed for which |I(N)|
grows like exp(cN); however, we feel that Theorem 1.3 gives evidence that there should
exist cases for which |I(N)| grows like exp(cN2).

Remark 1.7. Recall (see [27, p. 324, Th. 20.1]) that for any n-tuple of unitary operators
on any Hilbert space H we have∥∥∥∑ uj ⊗ ūj

∥∥∥ ≥ 2
√
n− 1.

Note that 2
√
n− 1 < n for all n ≥ 3 (so there is also an 0 < ε < 1 such that 2

√
n− 1+

εn < n).
Let 0 < ε < 1. In analogy with Ramanujan graphs (see [17]) an n-tuple u = (uj ) in

U(N)n will be called ε-Ramanujan if

‖Tu : H0 → H0‖ ≤ 2
√
n− 1+ εn.

We will denote by

Rε = Rε(n,N) ⊂ U(N)
n

the set of all such n-tuples.
We refer to [17, 12] for more information on expanders and Ramanujan graphs.
The next result due to Hastings [11] has been a crucial inspiration for our work:

Lemma 1.8 (Hastings). If we equip U(N)n with its normalized Haar measure P, then
for each n and ε > 0 the set Rε(n,N) defined above satisfies

lim
N→∞

P(Rε(n,N)) = 1.
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This is best possible in the sense that Lemma 1.8 fails if 2
√
n− 1 is replaced (in the def-

inition of Rε(n,N)) by any smaller number. However, we do not really need this sharp
form of Lemma 1.8 (unless we insist on making n0(ε) as small as possible in Theorem
1.3). So we give in the appendix a quicker proof of a result that suffices for our needs
(where 2

√
n− 1 is replaced by C′

√
n, C′ being a numerical constant) and which in sev-

eral respects gives us better estimates than Lemma 1.8.
Lemma 1.9 below can be viewed as a non-commutative variant of results in [24] (see

also [23] where the non-commutative case is already considered) in the style of [18] (see
also [7, 21]). We view this as a (weak) sort of non-commutative Sauer lemma, which it
might be worthwhile to strengthen.

In the next two lemmas, we equip U(N)n with the metric d (we also use d ′), and for
any subset A ⊂ U(N)n and any ε > 0 we denote by N(A, d, ε) the smallest number of
open d-balls of radius ε with center in U(N)n that cover A.

Lemma 1.9. Let a > 0. Let A ⊂ U(N)n be a (measurable) subset with P(A) > a.
Then, for any c <

√
2, N(A, d, c

√
n) ≥ a exp(KrnN2) where r = (1 − c2/2)2 and

K is a universal constant. Assuming moreover that a ≥ exp(−KrnN2/2) (note that
there is n0(a, r) such that this holds for all n ≥ n0(a, r) and all N ≥ 1), we find that
N(A, d, c

√
n) ≥ exp(bnN2) where b = Kr/2.

Proof. Let � = U(N)n. We may clearly assume (by Haar measure inner regularity) that
A is compact. Let N = N(A, d, c

√
n). By definition, A is included in the union of N

open balls with d-radius c
√
n. By translation invariance of d and P, all these balls have

the same P-measure equal to F(c). Therefore a < P(A) ≤ NF(c) and hence

aF(c)−1 < N .

Thus we need a lower bound for F(c)−1. Let u denote the unit in U(N)n so that uj = 1
for 1 ≤ j ≤ n. Using a ball centered at u to compute F(c), we have

F(c) = P
{
ω ∈ U(N)n

∣∣∣ n∑
j=1

tr(|ωj − 1|2) < c2nN
}
.

Since
∑n
j=1 tr(|ωj − 1|2) = 2Nn− 2

∑n
j=1< tr(ωj ), we have

F(c) = P
{
ω

∣∣∣ n∑
j=1

< tr(ωj ) > nN(1− c2/2)
}
.

We will now use the known sub-Gaussian property of
∑n
j=1< tr(ωj ): there is a universal

constant K such that for any λ > 0 we have

P
{
ω

∣∣∣ n∑
j=1

< tr(ωj ) > λ
}
≤ exp(−Kλ2/n). (1.3)

Taking this for granted, let us complete the proof. Fix c <
√

2. Recalling r = (1− c2/2)2

> 0, this yields
F(c) ≤ exp(−KnN2r).
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Thus we conclude that
N > a exp(KrnN2).

Taking c = 1, r = 1/4, the last assertion becomes obvious.
Let us now give a quick argument for the known inequality (1.3): We will denote

by Y (N) a random N × N -matrix with i.i.d. complex Gaussian entries with mean zero
and second moment equal to N−1/2, and we denote by (Y (N)j ) a sequence of i.i.d. copies
of Y (N). It is well known that the polar decomposition Y (N) = U |Y (N)| is such that
U is uniformly distributed over U(N) and independent of |Y (N)|. Moreover there is an
absolute constant χ > 0 such that E|Y (N)| = χ−1I . See e.g. [18, p. 80]. Therefore, we
have a conditional expectation operator E (corresponding to integrating the modular part)
such that

∑
< tr(ωj ) = χE(

∑
< tr(Y (N)j )), where ωj denotes the unitary part in the polar

decomposition of Y (N)j .
Then, since x 7→ exp(wx) is convex for any w > 0, we have the announced sub-

Gaussian property

E exp
(
w
∑
< tr(ωj )

)
≤ E exp

(
wχ

∑
< tr(Y (N)j )

)
= exp(χ2w2n/4),

from which it follows, by Chebyshev’s inequality, that P{
∑
< tr(ωj ) > λ} ≤

exp(χ2w2n/4− λw), and optimising w so that λ = χ2wn/2 we finally obtain

P
{∑
< tr(ωj ) > λ

}
≤ exp(−Kλ2/n),

withK = χ−2. The above simple argument follows [18, Ch. 5], but, in essence, (1.3) can
be traced back to [8, Lemma 3]. ut

The next lemma is a simple covering argument.

Lemma 1.10. Fix b, c>0. Let A⊂U(N)n be a subset with N(A, d, c
√
n)≥exp(bnN2).

Fix c′ < c and b′ < b. Then there is an integer n0 (depending only on b − b′ and c − c′

and independent of N) such that if n ≥ n0 we have N(A, d ′, c′
√
n) ≥ exp(b′nN2) and

there is a subset T ′ ⊂ A with |T ′| ≥ exp(b′nN2) such that d ′(s, t) ≥ c′
√
n whenewer

s 6= t ∈ T ′.

Proof. Fix ε > 0. It is well known that there is an ε-net Nε ⊂ U(N) with respect to
the operator norm with |Nε| ≤ (K/ε)2N

2
. Indeed, since the real dimension of MN is

2N2, a classical volume argument (see e.g. [25, pp. 49–50]) produces such a net inside
the unit ball of MN . It can then be adjusted to be inside U(N). See also [33, p. 175] for
more delicate estimates. For any x ∈ U(N)n, we have d(uxv, u′xv′) ≤ (‖u − u′‖ +

‖v − v′‖)
√
n for any u, u′, v, v′ ∈ U(N). Therefore we have N(Orb(x), d, 2ε

√
n) ≤

|Nε|
2
≤ exp(4N2) log(K/ε). From this it follows immediately that

N(A, d, c′
√
n+ 2ε

√
n) ≤ N(A, d ′, c′

√
n) exp(4N2) log(K/ε).

Since c′ < c we can choose ε > 0 so that c′ + 2ε = c. Then by our assumption
N(A, d, c′

√
n+ 2ε

√
n) = N(A, d, c

√
n) ≥ exp(bnN2). Thus we find

N(A, d ′, c′
√
n) ≥ exp(bnN2) exp(−4N2) log(K/ε).
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Since b−b′ > 0 there is clearly an integer n0 (depending only on b−b′ and ε = (c−c′)/2)
such that 4 log(K/ε) < (b − b′)n for all n ≥ n0. Thus we obtain

N(A, d ′, c′
√
n) ≥ exp(b′nN2).

The last assertion is then clear: any maximal subset T ′ ⊂ A such that d ′(s, t) ≥ c′
√
n for

all s 6= t ∈ T ′ must satisfy (by maximality) N(A, d ′, c′
√
n) ≤ |T ′|. ut

In general, for a pair u, v ∈ U(N)n, δ-separation is a much stronger condition than sepa-
ration with respect to the distance d ′. The main virtue of the next two lemmas is to show
that for a pair u, v ∈ Sε with ε suitably small, the two conditions become essentially
equivalent. To prove these, we will now crucially use the spectral gap.

Lemma 1.11. Let 0 < ε, ε′ < 1. Let u = (uj ) ∈ U(N)n and v = (vj ) ∈ Mn
N be merely

such that ‖
∑
vj ⊗ v̄j‖ ≤ n. Assume u ∈ Sε and also

d ′(u, v) ≥
√

2n(1− ε′). (1.4)

Then ∥∥∥∑ uj ⊗ v̄j

∥∥∥ ≤ n(ε′1/5(2−4/5
+ 26/5)+ 2ε1/2).

Moreover, if we assume in addition that v ∈ Sε, then the preceding estimate can be
improved to ∥∥∥∑ uj ⊗ v̄j

∥∥∥ ≤ n(3ε′1/3 + 2ε). (1.5)

Conversely, it is easy to show that for any pair u, v ∈ Mn
N such that

∑
τN (|uj |

2) =∑
τN (|vj |

2) = n (in particular for any u, v ∈ U(N)n),∥∥∥∑ uj ⊗ v̄j

∥∥∥ ≤ nε′ (1.6)

implies
d ′(u, v) ≥

√
2n(1− ε′). (1.7)

Proof. Let ‖v‖2H = (1/n)
∑
j τN |vj |

2. Note that ‖v‖H ≤ 1 and ‖u‖H ≤ 1. For any
x ∈ MN , we will denote ‖x‖L2(τN ) = (τN |x|

2)1/2 and ‖x‖L1(τN ) = τN |x|. Note for later
use that a consequence of Cauchy–Schwarz is

∀x, y ∈ MN ‖xy‖L1(τN ) ≤ ‖x‖L2(τN )‖y‖L2(τN ). (1.8)

Recall that ∥∥∥∑ uj ⊗ v̄j

∥∥∥ = sup
{∣∣∣∑ τN (ujxv

∗

j y
∗)

∣∣∣ ∣∣∣ x, y ∈ BL2(τN )

}
.

Let us denote x.u.y = (xujy)1≤j≤n and let F be the bilinear form on MN ×MN defined
by

F(x, y) = 〈x.u.y, v〉H =
1
n

∑
j

τN (xujyv
∗

j ).
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Then ∥∥∥∥1
n

∑
uj ⊗ v̄j

∥∥∥∥ = ‖F : L2(τN )× L2(τN )→ C‖.

We start with the proof of (1.5), assuming that both u, v belong to Sε. Firstly we claim
that for any x, y ∈ MN we have

|F(x, y)| ≤ τN |x|τN |y| + ε‖(1− P)(|x|)‖L2(τN )‖(1− P)(|y|)‖L2(τN )

and hence assuming x, y ∈ BL2(τN ) we have

|F(x, y)| ≤ τN |x|τN |y| + ε. (1.9)

To check this claim we use the polar decompositions x = U |x|, y = V |y| and we write

F(x, y) = 〈U |x|.u.V |y|, v〉H =
1
n

∑
j

τN ([|x|
1/2ujV |y|

1/2
][|y|1/2v∗j U |x|

1/2
])

= 〈|x|1/2.u.V |y|1/2, |x|1/2U∗v|y|1/2〉H.

Therefore
|F(x, y)| ≤

∥∥|x|1/2.u.V |y|1/2∥∥H∥∥|x|1/2U∗v|y|1/2∥∥H. (1.10)

Now we observe that if we denote again by Tu the operator acting on L2(τN ) defined by
Tu(x) =

∑
ujxu

∗

j − nτN (x)I (equivalently Tu = (
∑
uj ⊗ ūj )(1− P)) we have, for any

a, b ∈ MN ,

‖a.u.b‖2H = (1/n)τN ((nτN (bb
∗)+ Tu(bb

∗))a∗a)

= τN (bb
∗)τN (a

∗a)+ (1/n)τN (Tu(bb∗)a∗a)

and hence, since ‖Tu‖ ≤ εn and Tu = (1− P)Tu(1− P),

‖a.u.b‖2H ≤ τN (bb
∗)τN (a

∗a)+ ε‖(1− P)(bb∗)‖L2(τN )‖(1− P)(a
∗a)‖L2(τN ).

This yields∥∥|x|1/2.u.V |y|1/2∥∥2
H ≤ τN |x|τN |y| + ε‖(1− P)(|x|)‖L2(τN )‖(1− P)(|y|)‖L2(τN ).

A similar bound holds for
∥∥|x|1/2U∗v|y|1/2∥∥H. Thus (1.10) leads to our claim.

Secondly by (1.4) for any U,V ∈ U(N) we have

‖U.u.V − v‖2H ≥ n
−1d ′(u, v)2 ≥ 2(1− ε′)

and hence
<〈U.u.V, v〉H ≤ ε

′.

Recall that the unit ball of MN is the closed convex hull of U(N). Thus we have

‖F : MN ×MN → C‖ ≤ ε′.
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Let us assume x, y ∈ BL2(τN ). Let p (resp. q) denote the spectral projection of |x|
(resp. |y|) corresponding to the spectral set {|x| ≤ λ} (resp. {|y| ≤ λ}). Note that by
Chebyshev’s inequality we have τN (1 − p) ≤ 1/λ2 (resp. τN (1 − q) ≤ 1/λ2). Let
x′ = (1− p)|x| and y′ = (1− q)|y|. By (1.8) (since ‖1− p‖L2(τN ) ≤ λ

−1/2) we have

τN |x
′
| ≤ λ−1.

Similarly
τN |y

′
| ≤ λ−1.

We now write

F(|x|, |y|) = F(p|x|+x′, q|y|+y′) = F(p|x|, q|y|)+F(x′, |y|)+F(p|x|, y′). (1.11)

By (1.9) we have
|F(x′, |y|)| ≤ τN |x

′
|τN |y| + ε ≤ λ

−1
+ ε

and similarly
|F(p|x|, y′)| ≤ λ−1

+ ε.

Thus we deduce from (1.11) that

|F(|x|, |y|)| ≤ ε′λ2
+ 2(λ−1

+ ε).

Choosing λ = (ε′)−1/3 to minimize over λ > 0 yields the upper bound 3ε′1/3+ 2ε, when
restricting to x, y ≥ 0. Since our assumptions on the pair u, v are shared by the pair
UuV, v for any U,V ∈ U(N), we may apply the polar decompositions x = U |x| and
y = V |y| to deduce the same upper bound for an arbitrary pair x, y. Thus we obtain (1.5).

We now turn to (1.4). There we assume only u ∈ Sε and ‖
∑
vj ⊗ v̄j‖ ≤ n. Then

(since we still have
∥∥|x|1/2U∗v|y|1/2∥∥H ≤ 1) inequality (1.9) can be replaced by

|F(x, y)| ≤ (τN |x|τN |y| + ε)
1/2, (1.12)

and the preceding reasoning leads to

|F(x, y)| ≤ ε′λ2
+ 2(λ−1

+ ε)1/2 ≤ ε′λ2
+ 2λ−1/2

+ 2ε1/2.

Choosing λ = (2ε′)−2/5 to minimize, we obtain the announced upper bound ε′1/5(2−4/5
+

26/5)+ 2ε1/2, thus completing the proof of (1.4).
The converse implication (1.6)⇒(1.7) is obvious: Indeed, for any U,V ∈ U(N),

inequality (1.6) implies |
∑
τN (UujV v

∗

j )| ≤ nε
′ and hence since we assume

∑
τN (u

∗

j uj )

=
∑
τN (v

∗

j vj ) = n we have

d(U.u.V , t)2 = 2n− 2<
∑

τN (UujV v
∗

j ) ≥ 2n(1− ε′),

and taking the infimum over U,V ∈ U(N) we obtain (1.7). ut

Proof of Theorem 1.3. Our original proof was based on Hastings’s Lemma 1.8, but the
current proof, based instead on (4.6), allows for more uniformity with respect to N . Note
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however that if we could prove a sharper form of (1.5) (e.g. with ε in place of 2ε) then
Lemma 1.8 would allow us to cover values of n as small as n = 3, for all N large enough
(while using (4.6) requires C′n−1/2 < n).

By (4.6) there is a constant C′ such that

∀N ≥ 1 E
∥∥∥ n∑
j=1

Uj ⊗ Ūj (1− P)
∥∥∥ ≤ C′√n

where E is with respect to the normalized Haar measure on U(N)n. By Chebyshev’s
inequality, this implies P(Sε) > 1/2 for all N ≥ 1, assuming only that n > n0(ε) for a
suitably adjusted value of n0(ε) (say we require ε−1C′n−1/2 < 1/2). We will now apply
Lemmas 1.9 and 1.10 to the subset A = Sε.

Fix 0 < ε, δ < 1. Let 0 < ε′ < 1 be such that 3ε′1/3 = (1 − δ)/2 and let ε0 be
such that 2ε0 = (1 − δ)/2. Let c′ =

√
2(1− ε′) and c =

√
2(1− ε′/2) so that we have

c′ < c <
√

2.
Assume ε ≤ ε0. Let r = ε′2 and b = Kε′2/2 and say b′ = b/2 so that b−b′ and c−c′

depend only on ε′ (or equivalently on δ). For n ≥ n0(ε, ε
′), Lemmas 1.9 and 1.10 give us

a subset T ⊂ Sε such that |T | ≥ exp(Kε′2nN2/4) and such that d ′(s, t) ≥
√

2(1− ε′)
for all s 6= t . Then Lemma 1.12 (specifically (1.5)) gives us that s, t are δ-separated since
ε ≤ ε0 and our choice of ε0, ε

′ is adjusted so that 3ε′1/3 + 2ε0 = 1 − δ. This completes
the proof for any ε ≤ ε0 and in particular for ε = ε0. The remaining case ε0 < ε < 1
then follows automatically since Sε0 ⊂ Sε if ε0 < ε. ut

One defect of Lemma 1.11 is that when ε′ is close to 1, its conclusion is void (however
small ε can be). This is corrected by the next lemma, the main interest of which is the
case when δ and fε(δ) are small.

Lemma 1.12. Fix 0 < ε < 1. There is a positive function δ 7→ fε(δ) defined for 0 <
δ < 1, such that fε(δ) = Oε(δ1/4) when δ→ 0, and satisfying the following property:

Consider u = (uj ) ∈ Sε ⊂ U(N)n and v = (vj ) ∈ Mn
N such that ‖

∑
vj ⊗ v̄j‖ ≤ n.

The condition
d ′(u, v) ≥ fε(δ)

√
n (1.13)

implies ∥∥∥∑ uj ⊗ v̄j

∥∥∥ ≤ n(1− δ). (1.14)

Proof. Assume for contradiction that ‖
∑
uj ⊗ v̄j‖ > n(1− δ). Then there are ξ, η in the

unit sphere of H = L2(τN ) such that

<τN

(∑
uj ξv

∗

j η
∗

)
> n(1− δ).

Let ξ = U |ξ | and η = V |η| be their polar decompositions, and let wj = V ∗ujU so that
we can write

<τN

(∑
wj |ξ |v

∗

j |η|
)
> n(1− δ). (1.15)



Quantum expanders and geometry of operator spaces 1197

Recall Tu(ξ) =
∑
uj ξu

∗

j . Note that since U ⊗ Ū and V ⊗ V̄ preserve I (and hence I⊥),
we have ‖Tw‖ = ‖Tu‖. Therefore w ∈ Sε. Using the scalar product in H we have

<

∑
〈|η|1/2wj |ξ |

1/2, |η|1/2vj |ξ |
1/2
〉 > n(1− δ),

and by Cauchy–Schwarz(∑∥∥|η|1/2wj |ξ |1/2∥∥2
H

)1/2(∑∥∥|η|1/2vj |ξ |1/2∥∥2
H

)1/2
> n(1− δ).

Note that since ‖
∑
vj ⊗ v̄j‖ ≤ n we have 〈(

∑
vj ⊗ v̄j )|ξ |, |η|〉 =

∑∥∥|η|1/2vj |ξ |1/2∥∥2
H

≤ n, and similarly with wj in place of vj . Thus the last inequality implies a fortiori〈(∑
wj ⊗ w̄j

)
|ξ |, |η|

〉
> n(1− δ)2, (1.16)

and the same with vj in place of wj .
Let e = (1 − P)|ξ | and d = (1 − P)|η|. Recall that P(|ξ |) = τN (|ξ |)I and

P(|η|) = τN (|η|)I , and |ξ |, |η| are unit vectors, so that τN (|ξ |) = (1 − ‖e‖2H )
1/2

and τN (|η|) = (1 − ‖d‖2H )
1/2. Let ω = ‖e‖H‖d‖H . By Cauchy–Schwarz we have

ω+ (1− ‖e‖2H )
1/2(1− ‖d‖2H )

1/2
≤ 1 and hence (1− ‖e‖2H )

1/2(1− ‖d‖2H )
1/2
≤ 1− ω.

Since w ∈ Sε, we have〈(∑
wj ⊗ w̄j

)
|ξ |, |η|

〉
= 〈Twe, d〉 + nτN (|ξ |)τN (|η|) ≤ εnω + n(1− ω).

Thus, (1.16) yields
ω ≤ (1− ε)−1(2δ − δ2). (1.17)

Moreover, (1.16) implies

n−1
∑∥∥wj |ξ |w∗j − |η|∥∥2

H
= 2− 2n−1

〈(∑
wj ⊗ w̄j

)
|ξ |, |η|

〉
< 2(2δ − δ2). (1.18)

But since (I − P)(wj |ξ |w∗j − |η|) = wj ew
∗

j − d for each j , we have∣∣‖e‖H − ‖d‖H ∣∣ = ∣∣‖wj ew∗j ‖H − ‖d‖H ∣∣ ≤ ‖wj ew∗j − d‖H ≤ ∥∥wj |ξ |w∗j − |η|∥∥H
so that (1.18) implies (‖e‖H − ‖d‖H )2 < 2(2δ − δ2). Therefore

‖e‖2H + ‖d‖
2
H < 2ω + 2(2δ − δ2) ≤ 2(2δ − δ2)((1− ε)−1

+ 1). (1.19)

We can write

wj |ξ |v
∗

j |η| = wjP(|ξ |)v
∗

j P(|η|)+ wj ev
∗

j P(|η|)+ wjP(|ξ |)v
∗

j d + wj ev
∗

j d

and we find

n(1− δ) < <τN
(∑

wj |ξ |v
∗

j |η|
)

≤ <τN

(∑
wjv
∗

j

)
τN (|ξ |)τN (|η|)+ n‖e‖H τN (|η|)+ nτN (|ξ |)‖d‖H + n‖e‖H‖d‖H
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and a fortiori

n(1− δ) < <τN
(∑

wjv
∗

j

)
τN (|ξ |)τN (|η|)+ n‖e‖H + n‖d‖H + n‖e‖H‖d‖H .

Note that n‖e‖H +n‖d‖H +n‖e‖H‖d‖H ≤ n21/2(‖e‖2H +‖d‖
2
H )

1/2
+n‖e‖H‖d‖H . By

(1.19) and (1.17), we obtain

τN (|ξ |)τN (|η|)<τN

(∑
wjv
∗

j

)
> n(1− θ)

with

θ = δ + 21/2(2(2δ − δ2)((1− ε)−1
+ 1)

)1/2
+ (1− ε)−1(2δ − δ2).

Note that θ is O(δ1/4) when δ→ 0 and there is clearly some δε > 0 such that 0 < θ < 1
for all δ ≤ δε. Thus, assuming 0 < δ ≤ δε we have 1− θ > 0 and we find

<τN

(∑
wjv
∗

j

)
> n(1− θ).

This is a lower bound for the real part of the scalar product in `n2(H) of w = (wj ) and
v = (vj ) which are both in the ball of radius

√
n. Therefore we deduce from this

d(w, v)2 ≤ 2n− 2<τN
(∑

wjv
∗

j

)
< 2nθ.

If we now set fε(δ) = (2θ)1/2 for all δ ≤ δε, and fε(δ) = 3 (say) for δε < δ < 1, we
have in any case d(w, v) < fε(δ)

√
n.

Thus we have proved that ‖
∑
uj ⊗ v̄j‖ > n(1− δ) implies d ′(u, v) < fε(δ)

√
n. This

is equivalent to the fact that (1.13) implies (1.14), and moreover for each 0 < ε < 1 there
is a constant cε > 0 such that for any 0 < δ < 1 we have fε(δ) ≤ cεδ1/4. ut

Remark 1.13. Let fε(δ) be any function such that (1.13)⇒(1.14). Then Lemma 1.12 has
the following consequence: Assume u = (uj ) ∈ Sε. Then for any v = (vj ) ∈ U(k)n with
k ≤ (1− fε(δ)2)N we have ∥∥∥∑ uj ⊗ v̄j

∥∥∥ ≤ n(1− δ).
Indeed, if ‖

∑
uj⊗v̄j‖ > n(1−δ), then we set v′j = vj⊕0 ∈ MN so that ‖

∑
v′j⊗v̄

′

j‖ ≤ n,
and also ‖

∑
uj ⊗ v̄

′

j‖ > n(1− δ). By Lemma 1.12, it follows that d ′(u, v′) < fε(δ)
√
n.

But since |〈u′j , v
′

j 〉| ≤ k/N for any u′j ∈ U(N), we have d(u′, v′)2 = n + n(k/N) −

2
∑
〈u′j , v

′

j 〉 ≥ n(1 − k/N), and hence d ′(u, v′) ≥
√
n(1 − k/N)1/2, which leads to

(1− k/N)1/2 < fε(δ). This contradiction concludes the proof.
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2. Application to operator spaces

We start with a specific notation. Let u : E→ F be a linear map between operator spaces.
We denote, for any given N ≥ 1,

uN = Id⊗ u : MN (E)→ MN (F ).

Moreover, if E,F are two operator spaces that are isomorphic as Banach spaces, we set

dN (E, F ) = inf{‖uN‖ ‖(u−1)N‖}

where the inf runs over all the isomorphisms u : E→ F . We set dN (E, F ) = ∞ if E,F
are not isomorphic.

Recall that
‖u‖cb = sup

N≥1
‖uN‖.

Recall also that, if E,F are completely isomorphic, we set

dcb(E, F ) = inf{‖u‖cb‖u−1
‖cb}

where the inf runs over all the complete isomorphisms u : E→ F .
When E,F are both n-dimensional, a compactness argument shows that

dcb(E, F ) = sup
N≥1

dN (E, F ).

We will apply the preceding to MN -spaces. When N = 1, the latter coincide with the
usual Banach spaces. When N > 1, roughly the complex scalars are replaced by MN .

Let (Ai)i∈I be a family of von Neumann or C∗-algebras. Let Y =
⊕

i∈I Ai denote
their direct sum. This can be described as the algebra of bounded families (ai)i∈I with
ai ∈ Ai for all i ∈ I , equipped with the norm ‖a‖ = supi∈I ‖ai‖. We will concentrate on
the case when Ai = MN for all i ∈ I . In that case, following the Banach space tradition,
we denote the space Y =

⊕
i∈I Ai by `∞(I ;MN ).

Definition 2.1. An operator space X is called an MN -space if, for some set I , it can be
embedded completely isometrically in `∞(I ;MN ).

Our main interest will be to try to understand for which spaces the cardinality of I is
unusually small.

To place things in perspective, we recall that for any (complex) Banach space X there
is an isometric embedding J : X→ `∞(I ;C) defined by (Jx)(φ) = φ(x). Here I is the
unit ball, denoted by BX∗ , of the space X∗.

In analogy with this, for any MN -space there is a canonical completely isometric
embedding Ĵ : X → `∞(Î ;MN ) defined again by (Jx)(φ) = φ(x), but with Î =
BCB(X,MN ) in place of BX∗ . The space `∞(Î ;MN ) can alternatively be described as⊕

i∈Î
Zi with Zi = MN for all i ∈ Î .

Just like operator spaces,MN -spaces enjoy a nice duality theory (see [16, 20] for more
information). Indeed, by Roger Smith’s lemma, we have ‖u‖cb = ‖uN‖ for any u with
values in an MN -space (see e.g. [27, p. 26]), and MN -spaces are characterized among
operator spaces by this property. The following reformulation of Smith’s lemma is useful.
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Lemma 2.2. Fix an integer N ≥ 1. Let E ⊂ B(H) be a finite-dimensional operator
space and let c ≥ 1 be a constant. The following properties are equivalent:

(i) For any operator space F and any u : F → E we have ‖u‖cb ≤ c‖uN‖.
(ii) There is an MN -space such that dcb(E, Ê) ≤ c.

(iii) Let C be the class of all (compression) mappings v : E → B(H ′, H ′′) of the form
x 7→ PH ′′x|H ′ where H ′, H ′′ are arbitrary subspaces of H of dimension at most N .
Let Ĵ : E →

⊕
v∈C Zv with Zv = B(H ′, H ′′) be defined by Ĵ (x) =

⊕
v∈C v(x),

and let Ê = Ĵ (E). Then dcb(E, Ê) ≤ c.

Proof. (ii)⇒(i) follows from Roger Smith’s lemma and (iii)⇒(ii) is trivial. Conversely,
if (i) holds, let Ê be the MN -space obtained using the embedding Ĵ : E →

⊕
v∈C Zv

appearing in (iii). Obviously ‖E → Ê‖cb ≤ 1. Let us denote by u : Ê → E the inverse
mapping. A simple verification shows that ‖uN‖ = 1 and hence (i) implies ‖u‖cb ≤ c. In
other words (i)⇒(iii). ut

Therefore, when X is an MN -space, the knowledge of the space MN (X) determines that
of Mn(X) for all n > N , and hence the whole operator space structure of X.

Given a general operator spaceX ⊂ B(H), by restricting toMN (X) (and “forgetting”
Mn(X) for n > N), we obtain anMN -spaceMN -isometric toX. We will say that the latter
MN -space is induced by X.

Conversely, given an MN -space X there is a minimal and a maximal operator space
structure on X inducing the same MN -space. When N = 1, we recover the Blecher–
Paulsen theory of minimal and maximal operator spaces associated to Banach spaces (see
[16, 20] for more on this).

Let E be a finite-dimensional operator space. For each integer N , let E[N ] denote
the induced MN -space. Then it is easy to check that E can be identified (completely
isometrically) with the ultraproduct of {E[N ]} relative to any free ultraproduct on N.
Thus the operator space structure of E can be encoded by the sequence of MN -spaces
{E[N ] | N ≥ 1}. Note that E[N ] is induced by E[N + 1] for any N , so that one could
picture the set of n-dimensional operator spaces as infinite branches of trees where the
N -th node consists of an MN -space, and any node is induced by any successor.

We can associate to each MN -space a dual one X†, isometric to the operator space
dual X∗, but defined by

∀n ∈ N ∀y ∈ Mn(X
†) ‖y‖Mn(X†) = sup

f∈MN (X)

‖(I ⊗ f )(y)‖Mn(MN ),

where we view MN (X) as a subset of CB(X∗,MN ) in the usual way. In other words we
have a completely isometric embedding J† : X

†
→ `∞(I ;MN ) defined by

J†(z) =
⊕

f∈MN (X)

f (z) =
⊕

f∈MN (X)

[fij (z)].

Just as for operator spaces, there is a notion of “Hilbert space” forMN -spaces. We will
denote it by OH(n,N). The latter can be defined as follows. First we have an analogue
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of the Cauchy–Schwarz inequality due to Haagerup: for all x = (xj ) ∈ M
n
N and y =

(yj ) ∈ M
n
N , ∥∥∥∑ xj ⊗ ȳj

∥∥∥ ≤ ∥∥∥∑ xj ⊗ x̄j

∥∥∥1/2∥∥∥∑ yj ⊗ ȳj

∥∥∥1/2
. (2.1)

Fix N . Let S(n,N) (resp. B(n,N)) denote the set of n-tuples x = (xj ) in MN such that
‖
∑
xj ⊗ x̄j‖ = 1 (resp. ‖

∑
xj ⊗ x̄j‖ ≤ 1). Then S(n,N) (resp. B(n,N)) is the analogue

of the unit sphere (resp. ball) in the MN -space OH(n,N). The space X = OH(n,N)
is isometric to `n2 , with its orthonormal basis (ej ), and embedded into `∞(I ;MN ) with
I = B(n,N) (we could also take I = S(n,N)). The embedding Joh : OH(n,N) →
`∞(I ;MN ) is defined by

∀j = 1, . . . , n Joh(ej ) =
⊕

x∈B(n,N)

xj .

The latter is the analogue of n-dimensional Hilbert space among MN -spaces, and
indeed when N = 1 we recover the n-dimensional Hilbert space.

Definition 2.3. Let E be an operator space with basis (ej ). Let ξj be the biorthogonal
basis of E∗. Let x =

∑
xj ⊗ ej ∈ MN (E) and y =

∑
yj ⊗ ξj ∈ MN (E

∗). Assuming
x 6= 0 and y 6= 0, we say that y MN -norms x (with respect to MN (E)) if∥∥∥∑ xj ⊗ yj

∥∥∥ = ‖x‖MN (E)‖y‖MN (E
∗).

In the particular case when E = OHn, we slightly modify this (since E∗ = Ē): Given
x, y ∈ MN (OHn), we say that y MN -norms x if∥∥∥∑ xj ⊗ ȳj

∥∥∥ = ∥∥∥∑ xj ⊗ x̄j

∥∥∥1/2∥∥∥∑ yj ⊗ ȳj

∥∥∥1/2
.

Let x ∈ MN (E). For a, b ∈ MN we denote by axb the matrix product (that is,
(a ⊗ 1)x(b ⊗ 1) in tensor product notation using MN (E) = MN ⊗ E). We denote

Orb(x) = {uxv ∈ MN (E) | u, v ∈ U(N)}.

Note that if y ∈ MN (E
∗) MN -norms x then the same is true for any y′ ∈ Orb(y) ⊂

MN (E
∗). Actually, any y′ ∈ Orb(y) MN -norms any x′ ∈ Orb(x).

Definition 2.4. We say that x ∈ MN (E) is an MN -smooth point of MN (E) if the set of
points y in the unit sphere of MN (E

∗) that MN -norm x is reduced to a single orbit.

The following simple proposition explains the direction we will be taking next.

Proposition 2.5. Let x, y ∈ MN (OHn). Assume

x = (xj ) ∈ U(N)
n and ‖Tx : H0 → H0‖ < n,

where Tx =
∑
xj ⊗ x̄j (1 − P) (i.e. Tx has a spectral gap at n). Then y norms x with

respect to MN (OHn) iff y is a multiple of an element of Orb(x), i.e. iff there are λ > 0
and u, v ∈ U(N) such that yj = λvxju for all 1 ≤ j ≤ n.
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Proof. Recall that whenever the xj ’s are finite-dimensional unitaries we have
‖
∑
xj ⊗ x̄j‖

1/2
=
√
n. Assume y is a multiple of an element of Orb(x), i.e. yj =

λvxju for some non-zero scalar λ (which may well be taken positive if we wish). Then
‖
∑
xj⊗yj‖ = |λ|n, ‖x‖MN (OHn) =

√
n and ‖y‖MN (OHn) = |λ|

√
n, so indeed y norms x.

Conversely, assume that y norms x. Multiplying y by a scalar we may assume that
‖y‖MN (OHn) =

√
n, and ‖

∑
xj ⊗ ȳj‖ = ‖

∑
xj ⊗ x̄j‖

1/2√n = n. Let ξ, η in the unit
sphere of H = L2(τn) be such that∑

τN (xj ξy
∗

j η
∗) = n.

Let ξ = u|ξ | and η = v|η| be the polar decompositions, and let x′j = v
∗xju. Using the

trace property, this can be rewritten using the scalar product in H as∑
〈|η|1/2x′j |ξ |

1/2, |η|1/2yj |ξ |
1/2
〉 = n,

and hence since n−1/2(|η|1/2x′j |ξ |
1/2), n−1/2(|η|1/2yj |ξ |

1/2) are both in the unit ball of the
(smooth!) Hilbert space `n2(H), they must coincide. Moreover they both must be on the

unit sphere. Therefore
∑∥∥|η|1/2x′j |ξ |1/2∥∥2

H
= n. Equivalently

∑
τN (x

′

j |ξ |x
′

j
∗
|η|) = n.

But we have obviously ‖Tx′ : H0 → H0‖ = ‖Tx : H0 → H0‖ < n. Therefore |ξ | and
|η| must be multiples of I , so that by our normalization we have |ξ | = |η| = I , and we
conclude that y = x′. ut

In other words, the preceding proposition shows that quantum expanders constitute
MN -smooth points of MN (OHn):

Corollary 2.6. Assume x = (xj ) ∈ U(N)n. Then x =
∑
xj ⊗ ej is anMN -smooth point

in MN (OHn) iff ‖Tx : H0 → H0‖ < n.

Proof. The “if” part follows from the preceding statement. Conversely, we claim that if
‖Tx : H0 → H0‖ = n then x is not an MN -smooth point in MN (OHn). Since this claim
is unchanged if we replace x by any x′ in Orb(x), we may assume that x1 = 1. Then
if ‖Tx : H0 → H0‖ = n, there is 0 6= ξ ∈ H0 such that ‖Tx(ξ)‖ = n‖ξ‖, and hence
(by the uniform convexity of Hilbert space) xj ξx∗j = x1ξx

∗

1 = ξ for all j . This implies
that the commutant of {xj } is not reduced to the scalars, and hence in a suitable basis,
xj = x

1
j ⊕ x

2
j ∈ MN1 ⊕MN2 for some N1, N2 ≥ 1 with N1 + N2 = N . Then the choice

of yj = x1
j ⊕ 0 produces y ∈ Mn

N not in Orb(x) and such that ‖
∑
xj ⊗ ȳj‖ = n. Thus x

is not an MN -smooth point in MN (OHn), proving our claim. ut

Remark 2.7. Let E be any n-dimensional operator space with a basis (ej ). Assume that
for any u = (uj ) ∈ U(N)n we have ‖

∑
uj ⊗ ej‖MN (E) =

√
n and also that ‖

∑
aj ⊗

ej‖MN (E) ≤ ‖
∑
aj⊗āj‖

1/2 for all a = (aj ) ∈ Mn
N . Then, by the same proof, for any x =

(xj ) ∈ U(N)
n such that ‖Tx : H0 → H0‖ < n as above, the point x =

∑
xj ⊗ ej is an

MN -smooth point inMN (E). Indeed, any y in the unit ball ofMN (E
∗) thatMN -norms x

with respect to MN (E) is a fortiori in the unit ball of MN (OHn).
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Lemma 1.12 above can be viewed as a refinement of this: assuming ‖Tx : H0 → H0‖

< εn we have a certain form of “uniform smoothness” of OHn at x, the points that almost
MN -norm x up to δn are in the orbit of x up to fε(δ)n. See Remark 2.9 for more on this
point.

Notation. Let E be a finite-dimensional operator space. Fix C > 0. We denote by
kE(N,C) the smallest integer k such that there is a subspace F of MN ⊕ · · · ⊕ MN

(with MN repeated k times) such that dN (E, F ) ≤ C.
Note that for any E ⊂ Mn we have kE(N, 1) = 1 for any N ≥ n.
The next statement is our main result in this section. It gives a lower bound for

kE(N,C1) when E = OHn. We will show later (see Lemma 2.11) that a similar up-
per bound holds for all n-dimensional operator spaces. Thus for E = OHn (and also for
E = `n1 or E = Rn +Cn, see Remark 2.10) the growth of N 7→ kE(N,C1) is essentially
extremal.

Theorem 2.8. There are numbers C1 > 1, b > 0, n0 > 1 such that for any n ≥ n0 and
N ≥ 1, we have

kOHn(N,C1) ≥ exp(bnN2).

We start by recalling the classical argument dealing with the Banach space case, i.e. the
case N = 1. Let E be an n-dimensional Banach space. Assume that, for some C > 1,
E embeds C-isomorphically into `k∞. For convenience we write C = (1− δ)−1 for some
δ > 0. Our embedding assumption means that there is a set T in the unit ball of E∗ such
that for any x ∈ E we have

(1− δ)‖x‖ ≤ sup
t∈T
|t (x)| ≤ ‖x‖. (2.2)

Then for any x in the unit ball of E, there are tx ∈ T and ωx ∈ C with |ωx | = 1 such that
1− δ ≤ <(ωx tx(x)).

Now assume E = `n2 . Then identifying E and E∗ as usual, we see that 1 − δ ≤
<(ωx tx(x)) implies ‖x − ωx tx‖2 ≤ 2δ. In the case of real Banach spaces, ωx = ±1 and
we conclude quickly, but let us continue for the sake of analogy with the case N > 1. We
have just proved that the set {ωt | ω ∈ T, t ∈ T } is a

√
2δ-net in the unit ball of E = `n2 .

Fix ε > 0. Let N(ε) ≈ 2π/ε be such that there is an ε-net in T. It follows that there is a
(
√

2δ + ε)-net N in the unit ball of E = `n2 with |N | ≤ N(ε)|T |. But by a well known
volume estimate (see e.g. [25, pp. 49–50] ), any δ′-net in the unit ball of E = `n2 must
have cardinality at least (1/δ′)n. Thus we conclude that (

√
2δ + ε)−n ≤ N(ε)|T |. This

yields

(2π)−1ε(
√

2δ + ε)−n ≤ |T |.

For any δ < 1/2, we may choose ε > 0 so that
√

2δ + ε < 1, thus we find that there is
a number b > 0 for which we obtain |T | ≥ exp(bn), and hence kOHn(1, (1 − δ)

−1) ≥

exp(bn).
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Remark 2.9. The preceding argument still works whenE is uniformly convex with mod-
ulus ε 7→ δ(ε). This means that if x1, x2 in the unit ball BE satisfy ‖x1 − x2‖ ≥ ε then
‖(x1 + x2)/2‖ ≤ 1− δ(ε). Indeed, the only property we used is that for any ε > 0 there
is r > 0 such that x1, x2 ∈ BE and ξ1, ξ2 ∈ BE∗ satisfy

<(ξ1(x1)) > 1− r, <(ξ2(x2)) > 1− r and ‖ξ1 − ξ2‖ < r,

then we must have ‖x1 − x2‖ < ε. To check this, note that

‖(x1+ x2)/2‖ ≥ |ξ1(x1+ x2)/2| ≥ |ξ1(x1)/2+ ξ2(x2)/2| − ‖ξ1− ξ2‖/2 > 1− r − r/2,

thus if r = δ(ε)/2 then ‖(x1+x2)/2‖ > 1−δ(ε) and hence we must have ‖x1−x2‖ < ε.
Recall that a Banach space E is uniformly convex iff its dual E∗ is uniformly smooth

(see [4]). Thus since E = OHn is self-dual, Lemma 1.12 can be interpreted as the
MN -analogue of the uniform smoothness of E∗.

A completely different proof, with no restriction on δ or equivalently on the con-
stant C, can be given by a well known argument using real or complex Gaussian random
variables. We restrict ourselves to the real case for simplicity. Let γn be the canonical
Gaussian measure on Rn. Assume (2.2) holds. Let q =

∫
exp(x2/4) γ1(dx) < ∞. Note

that since T is included in the unit ball we have∫
exp

(
sup
t∈T

t (x)2/4
)
γn(dx) ≤

∑
t∈T

∫
exp(t (x)2/4) γn(dx) ≤ q|T |.

But by (2.2), if we reset C = (1− δ)−1, we find C−1
‖x‖ ≤ supt∈T |t (x)| and hence(∫

exp(C−2
|x|2/4) γ1(dx)

)n
≤

∫
exp

(
C−2

∑
|xj |

2/4
)
γn(dx)

≤

∫
exp

(
sup
t∈T

t (x)2/4
)
γn(dx) ≤ q|T |.

Thus if we define b = bC > 0 by
∫

exp(C−2
|x|2/4) γ1(dx) = exp b, we find |T | ≥

q−1 exp(nb) and we conclude

kOHn(1, C) ≥ q
−1 exp(bCn).

See [29] for random matrix versions of this argument.

Proof of Theorem 2.8. The proof follows the strategy of the first proof outlined above
for N = 1, but using Theorem 1.3 instead of the lower bound on the metric entropy of
the unit ball of `n2 . Consider an n-dimensional operator space E. Let k = kE(N,C). Let
again C = (1 − δ)−1. Then there is a set T with |T | = k and completely contractive
mappings φt : E→ MN such that

∀x ∈ MN (E) (1− δ)‖x‖MN (E) ≤ sup
t∈T
‖(φt )N (x)‖MN (MN ). (2.3)



Quantum expanders and geometry of operator spaces 1205

Let ej be a basis for E so that each x can be developed as x =
∑
xj ⊗ ej ∈ MN ⊗ E.

Let y(t) ∈ MN (E
∗) be the element associated to φt : E → MN . Let e+j ∈ E

∗ be the
basis of E∗ that is biorthogonal to (ej ). Then y(t) (or equivalently φt ) can be written as
y(t) =

∑
yj (t)⊗ e

+

j ∈ MN ⊗ E
∗, and (2.3) can be rewritten as

∀x ∈ MN (E) (1− δ)‖x‖MN (E) ≤ sup
t∈T

∥∥∥∑ xj ⊗ yj (t)

∥∥∥
MN (MN )

. (2.4)

Moreover each y(t) is in the unit ball of MN (E
∗) = CB(E,MN ). We now assume

E = OHn. Let us denote by T (ε, δ) ⊂ U(N)n the set appearing in Theorem 1.3. Fix
0 < ε < 1 and 0 < δ0 < 1. By Lemma 1.12 we can choose 0 < δ < 1 small enough so
that

2fε(2δ) <
√

2δ0. (2.5)

We then set T0 = T (ε, δ0). Thus we have |T0| ≥ exp(β0nN
2) for some β0 > 0, and the

elements of T0 are δ0-separated. By (2.4),

∀x = (xj ) ∈ T0 (1− δ)n1/2
≤ sup
t∈T

∥∥∥∑ xj ⊗ yj (t)

∥∥∥
MN (MN )

.

Let (vj (t)) = (n1/2yj (t)) so that we have

∀x = (xj ) ∈ T0 (1− δ)n ≤ sup
t∈T

∥∥∥∑ xj ⊗ vj (t)

∥∥∥
MN (MN )

.

For any x ∈ T0 there is a point tx ∈ T such that

(1− δ)n ≤
∥∥∥∑ xj ⊗ vj (tx)

∥∥∥.
Let vx = (vj (tx)). By Lemma 1.12, the last inequality implies d ′(x, vx) < fε(δ

′)
√
n for

any δ′ > δ. Moreover by the converse (much easier) part of Lemma 1.11, we know that
d ′(x, y) ≥

√
2δ0n for any x 6= y ∈ T0, since x, y are δ0-separated. We claim that after

suitably adjusting the parameters δ, ε we have |T0| ≤ |T |. Indeed, assume that |T0| > |T |;
then there must exist x 6= y ∈ T0 such that vx = vy . We then have, for any δ′ > δ,√

2δ0n ≤ d
′(x, y) ≤ d ′(x, vx)+ d

′(vx, y) = d
′(x, vx)+ d

′(vy, y) ≤ 2fε(δ′)
√
n

and hence
√

2δ0 ≤ 2fε(2δ), which is impossible by (2.5). This proves our claim that
|T0| ≤ |T |, and hence |T | ≥ exp(β0nN

2). Let C1 = (1− δ)−1. Thus, with δ determined
by (2.5), we have proved kOHn(N,C) ≥ exp(β0nN

2). ut

Remark 2.10. Let E be any n-dimensional operator space with a basis (ej ). Assume
that there is a scaling factor λ > 0 (which does not play any role in the estimate)
such that for any u = (uj ) ∈ U(N)

n we have λ‖
∑
uj ⊗ ej‖MN (E) =

√
n and also

λ‖
∑
aj ⊗ ej‖MN (E) ≤ ‖

∑
aj ⊗ āj‖

1/2 for all a = (aj ) ∈ M
n
N . Then, arguing as in

Remark 2.7, we find kE(N,C1) ≥ exp(βnN2). This shows that this estimate is valid for
Rn+Cn (take λ = 1) and for `n1 equipped with its maximal operator space structure (take
λ = n−1/2).
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We now turn to the reverse inequality to that in Theorem 2.8. This general estimate is
easy to check by a rather routine argument.

Lemma 2.11. Let E be an n-dimensional operator space. Then for any 0 < δ < 1 we
have

kE(N, (1− δ)−1) ≤ (1+ 2δ−1)2nN
2
.

Therefore, for any operator spaceX and any finite-dimensional subspaceE ⊂ X we have

∀C > 1 lim sup
N→∞

log kE(N,C)
N2 <∞.

Proof. Let x ∈ MN (E) and let x̂ : E∗ → MN denote the associated linear mapping.
Recall ‖x‖ = ‖x̂‖cb. By Lemma 2.2, ‖x̂‖cb = sup{‖(x̂)N (y)‖MN (MN ) | y ∈ BN } where
we denote by BN the unit ball of MN (E

∗) viewed as a real space. Since the latter ball is
2nN2-dimensional, it contains a δ-net {yi | i ≤ m} with cardinality m ≤ (1+ 2δ−1)2nN

2

(see e.g. [25, pp. 49–50]). By an elementary estimate, we then have (for any x ∈ MN (E))

sup
i≤m

‖(x̂)N (yi)‖ ≤ ‖x̂‖cb = ‖x‖ ≤ (1− δ)−1 sup
i≤m

‖(x̂)N (yi)‖. (2.6)

Let u : E →
⊕

i≤mMN be the mapping defined by (here again ŷi : E → MN is
associated to yi)

u(e) =
⊕
i≤m

ŷi(e)

for any e ∈ E. Let F ⊂
⊕

i≤mMN be the range of u. Then (2.6) says that ‖uN‖ ≤ 1 and
‖u−1
N ‖ ≤ 1+ δ, and hence dN (E, F ) ≤ (1− δ)−1. Thus kE(N, (1− δ)−1) ≤ m. ut

Definition 2.12. An operator space X will be called matricially C-sub-Gaussian if

lim sup
N→∞

log kE(N,C)
N2 = 0

for any finite-dimensional subspace E ⊂ X. We say that X is matricially sub-Gaussian if
it is matricially C-sub-Gaussian for some C ≥ 1. (See Remark 3.2 for the reason behind
“matricially”.)

Note. If X itself is finite-dimensional, it suffices to consider E = X.

We will denote by Cg(X) the smallest C such that X is matricially C-sub-Gaussian.

The preceding result (resp. Remark 2.10) shows that when C < C1, then OH (resp.
`1 or R + C) is not matricially C-sub-Gaussian. In sharp contrast, any C-exact operator
space E (we recall the definition below) is clearly matricially C-sub-Gaussian since, for
any c > C, it satisfies kE(N, c) = 1 for all N large enough. We do not know whether
conversely the latter property implies that E is C-exact (but we doubt it).
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Remark 2.13. Given an operator space X, it is natural to introduce the following param-
eter:

kX(N,C; d) = sup{kE(N,C) | E ⊂ X, dim(E) = d}.

We will say that X is uniformly matricially sub-Gaussian if there is C such that

∀d ≥ 1 lim sup
N→∞

log kX(N,C; d)
N

= 0.

It is easy to check that ifX is uniformly exact (resp. uniformly subexponential, uniformly
matricially sub-Gaussian) then all ultrapowers of X are exact (resp. subexponential, ma-
tricially sub-Gaussian). Note however (I am indebted to Yanqi Qiu for this remark) that
the converse is unclear.

For example, R or C (or R ⊕ C), any commutative C∗-algebra A, or any space of
the form A⊗minMN is uniformly exact. It would be interesting to characterize uniformly
exact operator spaces.

We now turn to a different application of quantum expanders to operator spaces, which
requires a refinement of our main result.

For any n×nmatrixw and any v ∈ Mn
N , we denote byw.v ∈ Mn

N the n-tuple defined
by

(w.v)i =
∑
j

wijvj .

Note that if w is unitary, i.e. w ∈ U(n), then∑
i

(w.v)i ⊗ (w.v)i =
∑
j

vj ⊗ v̄j . (2.7)

Also note that if w ∈ U(n), for any v, v′ ∈ Mn
N we have

d(w.v,w.v′) ≤ d(v, v′). (2.8)

Moreover, it is easy to check (e.g. using (1.1)) that for all w ∈ Mn with operator norm
‖w‖ and for all v ∈ Mn

N we have∥∥∥∑(w.v)i ⊗ (w.v)i

∥∥∥ ≤ ‖w‖2∥∥∥∑
j

vj ⊗ v̄j

∥∥∥, (2.9)

and hence by (2.1), for any u, v ∈ U(N)n,∥∥∥∑ ui ⊗ (w.v)i

∥∥∥ ≤ ‖w‖n. (2.10)

Also
d(w.v,w.v′) ≤ ‖w‖d(v, v′).

We will say that u, v ∈ U(N)n are strongly δ-separated if v and w.u are δ-separated
for any w ∈ U(n). Equivalently, for any pair w,w′ ∈ U(n) the pair (w.u,w′.v) is
δ-separated.
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Explicitly, this can be written like this:

∀w ∈ U(n)

∥∥∥∑
i,j

wijuj ⊗ v̄i

∥∥∥ ≤ n(1− δ). (2.11)

We will use again (see Lemma 1.10) the following elementary fact: There is a positive
constant D such that for each 0 < ξ < 1 and each n there is a ξ -net Nξ ⊂ U(n), with
respect to the operator norm, of cardinality

|Nξ | ≤ (D/ξ)
2n2
.

We will need the following refinement of Theorem 1.3.

Lemma 2.14. For each 0 < δ < 1 there is a constant β ′δ > 0 such that for any 0 < ε < 1
and for all n ≥ n0 and all N such that N2/n ≥ N0 (with n0 depending on ε and δ, and
N0 depending on δ), there is a strongly δ-separated subset T1 ⊂ Sε such that |T1| ≥

exp(β ′δnN
2). More generally, for each α > 0, there are β ′δ,α > 0 and n0 = n0(ε, δ, α)

such that, if n ≥ n0 andN2/n ≥ N0, any subset AN ⊂ U(N)n with P(AN ) > α contains
a strongly δ-separated subset of Sε with cardinal ≥ exp(β ′δ,αnN

2).

Proof. Fix 0 < δ < 1 and let ξ = (1 − δ)/2 so that δ1 = δ + ξ = (1 + δ)/2. Note that
0 < δ < δ1 < 1. We define ε0 so that 2ε1/2

0 = (1−δ1)/2 and ε′ so that ε′1/5(2−4/5
+26/5)

= (1− δ1)/2. Note that 0 < ε0, ε
′ < 1 and

1− δ1 = ε
′1/5(2−4/5

+ 26/5)+ 2ε1/2
0 .

Now assume 0 < ε ≤ ε0. By Lemma 1.11 we know that for any u ∈ Sε and any v ∈
U(N)n such that ‖

∑
vj ⊗ v̄j‖ ≤ n we have∥∥∥∑ uj ⊗ v̄j

∥∥∥ > n(1− δ1) ⇒ d ′(u, v) <
√

2n(1− ε′). (2.12)

By Lemmas 1.9 and 1.10 and using (4.6) as in the proof of Theorem 1.3 we know that for
n ≥ n0(ε, ε

′),
N(Sε, d

′,
√

2n(1− ε′)) ≥ exp(b′nN2)

for some b′ depending only on δ (more precisely, we set again r = ε′2, b = Kε′2/2 and
b′ = b/2).

Let T1 ⊂ Sε be a maximal subset such that any two points in T1 are strongly δ-
separated. By maximality of T1 for any u ∈ Sε there is x ∈ T1 such that u, x are not
strongly δ-separated. This means that there is w ∈ U(n) such that∥∥∥∑ uj ⊗ (w.x)j

∥∥∥ > n(1− δ).

Choose w′ ∈ Nξ such that ‖w − w′‖ ≤ ξ . Then by (2.10) and the triangle inequality we
have ∥∥∥∑ uj ⊗ (w′.x)j

∥∥∥ ≥ ∥∥∥∑ uj ⊗ (w.x)j

∥∥∥− nξ > n(1− δ − ξ) = 1− δ1.
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By (2.12) it follows that d ′(u,w′.x) <
√

2n(1− ε′). In other words, we find that the set
T2 = {w

′.x | w′ ∈ Nξ , x ∈ T1} is a
√

2n(1− ε′)-net for Sε, and hence

exp(b′nN2) ≤ N(Sε, d
′,
√

2n(1− ε′)) ≤ |T2| ≤ |Nξ | |T1| ≤ (D/ξ)
2n2
|T1|.

This yields
|T1| ≥ (2D/(1− δ))−2n2

exp(b′nN2).

Assuming ε ≤ ε0, this completes the proof, since for N2/n ≥ N0(δ) the first factor can
be absorbed, say, by choosing β ′δ = b

′/2. The case ε0 < ε < 1 follows a fortiori since
Sε0 ⊂ Sε.

The last assertion follows (for suitably adjusted values of β ′δ and n0) as in Remark
1.4. Indeed, choosing n0 large enough (depending on α) we can make sure that P(Sε) >
1 − α/2 so that P(AN ∩ Sε) > α/2. We can then run the preceding proof using the set
AN ∩ Sε in place of Sε. ut

Theorem 2.15. For any R > 1, there are numbers β1 > 0, n0 > 1 and a function
n 7→ N0(n) from N to itself such that for any n ≥ n0 and N ≥ N0(n), there is a family
{Et | t ∈ T1} of n-dimensional subspaces ofMN , of cardinality |T1| ≥ exp(β1nN

2), such
that for any s 6= t ∈ T1 we have

dcb(Es, Et ) > R.

Proof. Fix 0 < δ < 1. We will prove this for R = (1− δ)−1. We will use the set T1 from
the preceding lemma and we let Et = span{t1, . . . , tn}. We may clearly assume (say by
perturbation) that {t1, . . . , tn} are linearly independent for all t ∈ T1 so that dim(Et ) = n
(but this will be automatic, see below). Consider s 6= t ∈ T1. Let W ∈ Mn, and let
W : Es → Et denote the associated linear map so that Wsj =

∑
i Wij ti .

We claim that we can “make sure” that for all N large enough

tr |W | ≤ n(1− δ)1/2.

We first clarify what we mean here by “N large enough”. Let 0 < γ1 < 1 be such that

(1− γ1)
−1(1− δ) = (1− δ)1/2, (2.13)

and let
1N,n(t) = n

2 sup
i 6=j

|τN (ti t
∗

j )|.

Then we require that N is large enough (depending on a fixed n) so that with respect to
the uniform probability on U(N)n we have

P{t ∈ U(N)n | 1N,n(t) < γ1} > 1/2. (2.14)

Clearly this is possible because, by the almost sure weak convergence, we know that
τN (ti t

∗

j )→ 0 when N →∞ for any 1 ≤ i 6= j ≤ n.
Using the last assertion in the preceding lemma, we see that we may assume

∀t ∈ T1 1N,n(t) < γ1.
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To verify the above claim, we will use an idea from [20] (refining one in [13]). First we
note that for any matrix a = [aij ] and for any t ∈ U(N)n, if we assume τN (ti t∗j ) = 0 for
all i 6= j , then we have, by (1.1),

|tr(a)| ≤
∥∥∥∑ aij ti ⊗ t̄j

∥∥∥.
More generally, with the notation from (1.1), we have 〈

∑
aij ti ⊗ t̄j (I ), I 〉 =

∑
aii +∑

i 6=j aij τN (ti t
∗

j ) and |
∑
i 6=j aij τN (ti t

∗

j )| ≤ 1N,n supi 6=j |aij |. Therefore, without this
assumption, we still have

|tr(a)| ≤
∥∥∥∑ aij ti ⊗ t̄j

∥∥∥+ γ1‖a‖1. (2.15)

By (2.11) and an extreme point argument (since the unitaries are the extreme points of the
unit ball of Mn) we have, for any s 6= t ∈ T1 and any w ∈ Mn,∥∥∥∑ w̄ij si ⊗ t̄j

∥∥∥ ≤ ‖w‖n(1− δ). (2.16)

Now we can write for any W : Es → Et , by (2.16),∥∥∥∑Wsj ⊗ (w.t)j

∥∥∥ ≤ ‖W‖cb∥∥∥∑ sj ⊗ (w.t)j

∥∥∥ ≤ ‖W‖cb‖w‖n(1− δ).
Therefore ∥∥∥∑

i,j,k

Wi,j w̄jkti ⊗ t̄k

∥∥∥ ≤ ‖W‖cb‖w‖n(1− δ),
hence (replacing w by its transpose) by (2.15) we have

|tr(Ww∗)| ≤ ‖W‖cb‖w‖n(1− δ)+ γ1‖Ww
∗
‖1,

and hence taking the sup over all w ∈ U(n),

‖W‖1 = tr |W | ≤ ‖W‖cbn(1− δ)+ γ1‖W‖1.

Thus, we conclude by (2.13) that

tr |W | ≤ ‖W‖cbn(1− γ1)
−1(1− δ) = n‖W‖cb(1− δ)1/2. (2.17)

Applying (2.17) with W−1 in place of W we find

tr |W−1
| ≤ n‖W−1

‖cb(1− δ)1/2,

and hence
tr |W | tr |W−1

| ≤ n2
‖W‖cb‖W

−1
‖cb(1− δ),

but we will justify below that any invertible matrix in Mn satisfies

n2
≤ tr |W | tr |W−1

|, (2.18)

so that we obtain
dcb(Es, Et ) ≥ (1− δ)−1

= R.

To check (2.18) recall that for any pair W1,W2 ∈ Mn the Schatten p-norms ‖ · ‖p satisfy,
whenever 0 < p, q, r and 1/r = 1/p + 1/q,

‖W1W2‖r ≤ ‖W1‖p‖W2‖q .

Moreover ‖I‖r = n1/r . Therefore, (2.18) follows by taking r = 1/2 and p = q = 1. ut
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3. Random matrices and subexponential operator spaces

In a forthcoming sequel [29] to this paper, we introduce and study a generalization of the
notion of exact operator space that we call subexponential. We briefly outline this here.

Our goal is to study a generalization of the notion of exact operator space for which
the version of Grothendieck’s theorem obtained in [31] is still valid.

Notation. Let E be a finite-dimensional operator space. Fix C > 0. We denote by
KE(N,C) the smallest integer K such that there is an operator subspace F ⊂ MK such
that

dN (E, F ) ≤ C.

Note that obviously

KE(N,C) ≤ NkE(N,C). (3.1)

Definition 3.1. We say that an operator space X is C-subexponential if

lim sup
N→∞

logKE(N,C)
N

= 0

for any finite-dimensional subspace E ⊂ X. We say that X is subexponential if it is
C-subexponential for some C ≥ 1.

Note. If X itself is finite-dimensional, it suffices to consider E = X.

We will denote by C(X) the smallest C such that X is C-subexponential.

Recall that an operator space X is called C-exact if for any finite-dimensional sub-
space E ⊂ X and any c > C there k and F ⊂ Mk such that dcb(E, F ) < c. We denote
by ex(X) the smallest such C. We say that X is exact if it is C-exact for some C ≥ 1.

We observe in [29] that a finite-dimensional E is C-exact iff for any c > C the
sequence N 7→ KE(N, c) is bounded. In this light “subexponential” seems considerably
more general than “exact”.

As shown by Kirchberg, a C∗-algebra is exact iff it is 1-exact. We do not know
whether the analogue of this for subexponential (or for matricially sub-Gaussian) C∗-
algebras is true. See [27, Ch. 17] or [5] for more background on exactness.

In [29] we show that for essentially all the results proved in either [13] or [31] we can
replace exact by subexponential in the assumptions. Moreover, we show that there is a
1-subexponential C∗-algebra that is not exact.

Remark 3.2. In the same vein, it is natural to call an operator space X C-sub-Gaussian
if lim supN→∞N

−2logKE(N,C) = 0 for any finite-dimensional subspace E ⊂ X. We
do not have significant information about this class at this point, but to avoid confusion,
we decided to call the spaces in Definition 2.12 “matricially sub-Gaussian”. Clearly by
(3.1) “matricially sub-Gaussian” implies “sub-Gaussian” but the converse is unclear.



1212 Gilles Pisier

Problems. 1) LetC>1. Assume that a finite-dimensional spaceE satisfies kE(N,C)≤1
for all N . What does that imply about E? Is E exact with a control on its exactness
constant?

2) Assume E is subexponential for some constant C. What growth does that imply
for N 7→ kE(N,C) (here C could be a different constant)?

3) What is the order of growth (when N → ∞) of logKE(N,C) for E = `n1 or
E = OHn? In particular, when C is close to 1, is itO(N)? or to the contrary does it grow
like N2?

4. Appendix

In this appendix we give a quick proof of an inequality that can be substituted in §2 for
Hastings’s result from [11], quoted above as Lemma 1.8. Our inequality is less sharp
in some respects but stronger in some other. We only prove that (for some numerical
constant C) P{(uj ) ∈ U(N)n | ‖(

∑
uj ⊗ ūj )(1 − P)‖ > 4C

√
n + εn} → 1 when

N → ∞ for any ε > 0, while Hastings proves this with 2
√
n− 1 in place of 4C

√
n,

which is best possible. However the inequality below remains valid with more general
(and even matricial) coefficients, and it gives a bound valid uniformly for all sizes N
(see (4.6)). It shows that up to a universal constant all moments of the norm of a linear
combination of the form

S =
∑
j

ajUj ⊗ Ūj (1− P)

are dominated by those of the corresponding Gaussian sum

S′ =
∑
j

ajYj ⊗ Ȳ
′

j .

The advantage is that S′ is now simply separately a Gaussian random variable with respect
to the independent Gaussian random matrices (Yj ) and (Y ′j ).

We recall that we denote by P the orthogonal projection onto the multiples of the
identity. Also recall we denote by SN2 the space MN equipped with the Hilbert–Schmidt

norm (recall SN2 ' `N2 ⊗2 `
N
2 ). We will view elements of the form

∑
xj ⊗ ȳj with

xj , yj ∈ MN as linear operators acting on SN2 as follows:

T (ξ) =
∑
j

xj ξy
∗

j ,

so that ∥∥∥∑ xj ⊗ ȳj

∥∥∥ = ‖T ‖B(SN2 ). (4.1)

We denote by (Uj ) a sequence of i.i.d. random N ×N matrices uniformly distributed
over the unitary groupU(N). We will denote by (Yj ) a sequence of i.i.d. Gaussian random
N ×N matrices, more precisely each Yj is distributed like the variable Y that is such that
{Y (i, j)N1/2

} is a standard family of N2 independent complex Gaussian variables with
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mean zero and variance 1. In other words Y (i, j) = (2N)−1/2(gij +
√
−1 g′ij ) where

gij , g
′

ij are independent Gaussian normal N(0, 1) random variables.
We denote by (Y ′j ) an independent copy of (Yj ).
We will denote by ‖ · ‖q the Schatten q-norm (1 ≤ q ≤ ∞), i.e. ‖x‖q = (tr(|x|q))1/q ,

with the usual convention that for q = ∞ this is the operator norm.

Lemma 4.1. There is an absolute constant C such that for any p ≥ 1 we have, for any
scalar sequence (aj ) and any 1 ≤ q ≤ ∞,

E
∥∥∥ n∑
j=1

ajUj ⊗ Ūj (1− P)
∥∥∥p
q
≤ CpE

∥∥∥ n∑
j=1

ajYj ⊗ Ȳ
′

j

∥∥∥p
q

(in fact, this holds for all k and all matrices aj ∈ Mk with aj⊗ in place of aj ).

Proof. We assume that all three sequences (Uj ), (Yj ) and (Y ′j ) are mutually independent.
The proof is based on the well known fact that the sequence (Yj ) has the same distribution
as Uj |Yj |, or equivalently that the two factors in the polar decomposition Yj = Uj |Yj |

of Yj are mutually independent. Let E denote the conditional expectation operator with
respect to the σ -algebra generated by (Uj ). Then we have UjE|Yj | = E(Uj |Yj |) = E(Yj ),
and moreover

(Uj ⊗ Ūj )E(|Yj | ⊗ |Ȳj |) = E(Uj |Yj | ⊗ Uj |Yj |) = E(Yj ⊗ Yj ).

Let
T = E(|Yj | ⊗ |Ȳj |) = E(|Y | ⊗ |Ȳ |).

Then we have∑
aj (Uj ⊗ Ūj )T (I − P) = E

((∑
ajYj ⊗ Ȳj

)
(I − P)

)
.

Note that by rotational invariance of the Gaussian measure we have (U ⊗ Ū )T (U∗⊗ Ū∗)
= T . Indeed, since UYU∗ and Y have the same distribution it follows that also UYU∗⊗
UYU∗ and Y ⊗ Ȳ have the same distribution, and hence so do their moduli.

Viewing T as a linear map on SN2 = `
N
2 ⊗ `

N
2 , this yields

∀U ∈ U(N) T (UξU∗) = UT (ξ)U∗.

Representation theory shows that T must be simply a linear combination of P and I −P .
Indeed, the unitary representation U 7→ U ⊗ Ū on U(N) decomposes into exactly two
distinct irreducibles, by restricting to either the subspace CI or its orthogonal. Thus,
by Schur’s Lemma we know a priori that there are two scalars χ ′N , χN such that T =
χ ′NP + χN (I − P). We may also observe that E(|Y |2) = I so that T (I) = I and hence
χ ′N = 1, therefore

T = P + χN (I − P).
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Moreover, since T (I) = I and T is self-adjoint, T commutes with P and hence T (I−P)
= (I − P)T , so that we have

n∑
j=1

aj (Uj ⊗ Ūj )(1− P)T = E
( n∑
j=1

aj (Yj ⊗ Ȳj )(I − P)
)
. (4.2)

We claim that T is invertible and there is an absolute constant C0 so that

‖T −1
‖ = χN

−1
≤ C0.

From this and (4.2) it follows immediately that for any p ≥ 1,

E
∥∥∥ n∑
j=1

aj (Uj ⊗ Ūj )(1− P)
∥∥∥p
q
≤ C

p

0 E
∥∥∥ n∑
j=1

aj (Yj ⊗ Ȳj )(1− P)
∥∥∥p
q
. (4.3)

To check the claim it suffices to compute χN . For i 6= j we have a priori T (eij ) =
eij 〈T (eij ), eij 〉 but (since tr(eij ) = 0) we know T (eij ) = χNeij . Therefore for any i 6= j
we have χN = 〈T (eij ), eij 〉, and the latter we can compute:

〈T (eij ), eij 〉 = E tr(|Y |eij |Y |∗e∗ij ) = E(|Y |ii |Y |jj ).

Therefore,

N(N − 1)χN =
∑
i 6=j

E(|Y |ii |Y |jj ) =
∑
i,j

E(|Y |ii |Y |jj )−
∑
j

E(|Y |2jj )

= E(tr |Y |)2 −NE(|Y |211).

Note that E(|Y |211) = E〈|Y |e1, e1〉
2
≤ E〈|Y |2e1, e1〉 = E‖Y (e1)‖

2
2 = 1, and hence

N(N − 1)χN =
∑
i 6=j

E(|Y |ii |Y |jj ) ≥ E(tr |Y |)2 −N.

Now it is well known that E|Y | = bN I where bN is determined by bN = N−1E tr |Y | =
N−1
‖Y‖1 and infN bN > 0 (see e.g. [18, p. 80]). Actually, by a well known limit theorem

originating in Wigner’s work (see [36]), when N →∞, N−1
‖Y‖1 tends almost surely to

theL1-norm denoted by ‖c‖1 of a circular random variable c normalized inL2. Therefore,
N−2E(tr |Y |)2 tends to ‖c‖1. We have

χN = (N(N − 1))−1
∑
i 6=j

E(|Y |ii |Y |jj ) ≥ (N(N − 1))−1E(tr |Y |)2 − (N − 1)−1,

and this implies
lim inf
N→∞

χN ≥ ‖c‖
2
1,

and actually χN → ‖c‖21. In any case, we have

inf
N
χN > 0,

proving our claim with C0 = (infN χN )−1.
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We will now deduce from (4.3) the desired estimate by a classical decoupling argu-
ment for multilinear expressions in Gaussian variables.

We first observe E((Y⊗Ȳ )(I−P)) = 0. Indeed, by orthogonality, a simple calculation
shows that E(Y ⊗ Ȳ ) =

∑
ij E(Yij Ȳij )eij ⊗ ēij =

∑
ij N

−1eij ⊗ ēij = P , and hence
E((Y ⊗ Ȳ )(I − P)) = 0.

We will use
(Yj , Y

′

j )
dist
= ((Yj + Y

′

j )/
√

2, (Yj − Y ′j )/
√

2)

and if EY denotes the conditional expectation with respect to Y we have (recall that
E(Yj ⊗ Ȳj )(I − P) = 0)

n∑
j=1

ajYj ⊗ Ȳj (I − P) = EY
( n∑
j=1

ajYj ⊗ Ȳj (I − P)−

n∑
j=1

ajY
′

j ⊗ Ȳ
′

j (I − P)
)
.

Therefore

E
∥∥∥ n∑
j=1

ajYj ⊗ Ȳj (1− P)
∥∥∥p
q
≤ E

∥∥∥ n∑
j=1

ajYj ⊗ Ȳj (1− P)−
n∑
j=1

ajY
′

j ⊗ Ȳ
′

j (I − P))

∥∥∥p
q

= E
∥∥∥ n∑
j=1

aj (Yj + Y
′

j )/
√

2⊗ (Yj + Y ′j )/
√

2 (1− P)

−

n∑
j=1

aj (Yj − Y
′

j )/
√

2⊗ (Yj − Y ′j )/
√

2 (I − P))
∥∥∥p
q

= E
∥∥∥ n∑
j=1

aj (Yj ⊗ Ȳ
′

j + Y
′

j ⊗ Ȳj )(1− P)
∥∥∥p
q

and hence by the triangle inequality

≤ 2pE
∥∥∥ n∑
j=1

aj (Yj ⊗ Ȳ
′

j )(1− P)
∥∥∥p
q
.

Thus we conclude a fortiori that

E
∥∥∥ n∑
j=1

ajUj ⊗ Ūj (1− P)
∥∥∥p
q
≤ (2C0)

pE
∥∥∥ n∑
j=1

aj (Yj ⊗ Ȳ
′

j )

∥∥∥p
q
,

so that we can take C = 2C0. ut

Theorem 4.2. Let C be as in the preceding lemma. Let

Ŝ(N) =

n∑
j=1

ajUj ⊗ Ūj (1− P).

Then
lim sup
N→∞

E‖Ŝ(N)‖ ≤ 4C
(∑
|aj |

2
)1/2

. (4.4)
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Moreover we have almost surely

lim sup
N→∞

‖Ŝ(N)‖ ≤ 4C
(∑
|aj |

2
)1/2

. (4.5)

In addition, there is a constant C′ > 0 such that for any scalars (aj ),

∀N ≥ 1 E‖Ŝ(N)‖ ≤ C′
(∑
|aj |

2
)1/2

. (4.6)

Proof. A very direct argument is indicated in Remark 4.5 below, but we prefer to base
the proof on [9] in the style of [29] in order to make it clear that it remains valid with
matrix coefficients. By [29, (1.1)] applied twice (for k = 1) (see also [29, Remark 1.5])
one finds, for any even integer p,

E tr
∣∣∣ n∑
j=1

aj (Yj ⊗ Ȳ
′

j )

∣∣∣p ≤ (E tr |Y |p)2
(∑
|aj |

2
)p/2

. (4.7)

Therefore, by the preceding lemma,

E tr |Ŝ(N)|p ≤ Cp(E tr |Y |p)2
(∑
|aj |

2
)p/2

,

and hence a fortiori

E‖Ŝ(N)‖p ≤ N2Cp(E‖Y‖p)2
(∑
|aj |

2
)p/2

.

We then complete the proof, as in [29], using only the concentration of the variable ‖Y‖.
We have an absolute constant β ′ and ε(N) > 0 tending to zero when N →∞, such that

(E‖Y‖p)1/p ≤ 2+ ε(N)+ β ′
√
p/N,

and hence

(E‖Ŝ(N)‖p)1/p ≤ N2/pC(2+ ε(N)+ β ′
√
p/N)2

(∑
|aj |

2
)1/2

.

Fix 0 < ε < 1. If we choose p to be the minimal even integer so that N2/p
≤ exp ε, i.e.

p = 2([ε−1 logN ] + 1) (note that p > 2ε−1 logN and also p ≥ 2), we obtain

E‖Ŝ(N)‖ ≤ (E‖Ŝ(N)‖p)1/p ≤ 4eεC(1+ ε−1ε′(N))
(∑
|aj |

2
)1/2

where ε′(N) is independent of ε and satisfies ε′(N) → 0 when N → ∞. Clearly (4.4)
and (4.6) follow.

Let RN =4C(1+ε−1ε′(N))(
∑
|aj |

2)1/2. By Chebyshev’s inequality, (E‖Ŝ(N)‖p)1/p
≤ eεRN implies

P{‖Ŝ(N)‖ > e2εRN } ≤ exp(−εp) = N2.

From this it is immediate that almost surely

lim sup
N→∞

‖Ŝ(N)‖ ≤ e2ε4C
(∑
|aj |

2
)1/2

,

and hence (4.5) follows. ut
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Remark 4.3. The same argument can be applied when aj ∈ Mk for any integer k > 1.
Then we find

lim sup
N→∞

E
∥∥∥ n∑
j=1

aj ⊗ Uj ⊗ Ūj (1− P)
∥∥∥ ≤ 4Cmax

{∥∥∥∑ a∗j aj

∥∥∥1/2
,

∥∥∥∑ aja
∗

j

∥∥∥1/2}
.

Moreover we have almost surely

lim sup
N→∞

∥∥∥ n∑
j=1

aj ⊗ Uj ⊗ Ūj (1− P)
∥∥∥ ≤ 4Cmax

{∥∥∥∑ a∗j aj

∥∥∥1/2
,

∥∥∥∑ aja
∗

j

∥∥∥1/2}
.

Remark 4.4. The preceding also allows us to majorize double sums of the form∑
i 6=j

aij ⊗ Ui ⊗ Ūj .

Indeed, we have E(Yi ⊗ Ȳj ) = (Ui ⊗ Ūj )(E|Y | ⊗ E|Y |) for any i 6= j , and there is a
constant b > 0 (independent of N ) such that E|Y | ≥ bI . Therefore, for any p ≥ 1, any k,
any sequence (aij ) in Mk , and any 1 ≤ q ≤ ∞, we have

E
∥∥∥∑
i 6=j

aij ⊗Ui ⊗ Ūj

∥∥∥p
q
≤ b−2pE

∥∥∥∑
i 6=j

aij ⊗Yi ⊗ Ȳj

∥∥∥p
q
≤ 2pb−2pE

∥∥∥∑
i 6=j

aij ⊗Yi ⊗ Ȳ
′

j

∥∥∥p
q
.

Remark 4.5. We refer the reader to [28, Theorem 16.6] for a self-contained proof of
(4.7) for double sums of the form

∑
i,j aijYi ⊗ Ȳ

′

j for scalar coefficients aij .
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