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Abstract. In this article we study the interplay between algebro-geometric notions related to
π -points and structural features of the stable Auslander–Reiten quiver of a finite group scheme.
We show that π -points give rise to a number of new invariants of the AR-quiver on the one hand,
and exploit combinatorial properties of AR-components to obtain information on π -points on the
other. Special attention is given to components containing Carlson modules, constantly supported
modules, and endo-trivial modules.
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0. Introduction

Let G be a finite group scheme over an algebraically closed field k of characteristic p > 0.
In their recent articles [35, 36], Friedlander and Pevtsova have expounded the theories
of p-points and π -points, which generalize and unify various concepts of rank varieties
defined earlier. One new feature arising via this vantage point is the notion of Jordan
type [37], providing new invariants for G-modules that are finer than those given by rank
varieties and support varieties. The ramifications of the additional information encoded
in Jordan types are only beginning to be understood, even for the class of modules of
constant Jordan type [10, 9].

Our investigations focus on two aspects that underscore the utility of this approach.
Sections 1 through 4 are concerned with the behavior of Jordan types on the components
of the stable Auslander–Reiten quiver 0s(G) of the algebra of measures kG of G. The
results of the first three sections can be generalized to perfect fields, while those of Section
4 rest on k being algebraically closed. The last four sections employ π -points to define
and study certain classes of modules and to determine their position within the AR-quiver.

Support varieties have played an important rôle in the investigation of the quiver
0s(G). It therefore seems expedient to explore the interplay between Jordan types and
the Auslander–Reiten theory of the group scheme G. Indeed, Jordan types turn out to
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provide new invariants for AR-components, enabling us to discern differences between
components that cannot be detected via their support varieties. On the other hand, the
Jordan types of all modules belonging to an Auslander–Reiten component may often be
computed from the information corresponding to one single vertex.

In dealing with the AR-quiver, our main tools are subadditive functions on stable
representation quivers, whose relevant properties are provided in Section 1. As we show
in Section 2, π -points of G define various additive functions on the so-called locally split
components of the stable Auslander–Reiten quiver. By definition, the pull-backs of the
almost split sequences of such components along any π -point are split exact. With the
exception of some infinite tubes, all infinite AR-components are locally split, so that
our methods usually apply whenever the representation-theoretic support of the ambient
block of kG has dimension at least 2. For these components we establish new invariants,
all of which arise via π -points. In particular, we discuss the number of Jordan types of a
module, the dominance order on π -points associated to an AR-component, and varieties
of non-maximal supports.

For infinite tubes that are not locally split, the relevant functions are eventually ad-
ditive, with their departure from additivity being controlled by the Cartan matrix Ap−1
and the structure of certain induced modules modules that are defined by π -points cor-
responding to closed points of the support scheme 5(G). As we show in Section 4, the
structure of these components as well as the associated functions are completely under-
stood in the cases where the group scheme G is trigonalizable, or G is reduced and the
relevant component contains a module with a cyclic vertex.

Applications concerning three closely related classes of G-modules, constantly sup-
ported modules, Carlson modules and endo-trivial modules, are the subject of the follow-
ing three sections. In terms of the hierarchy given by their sets of Jordan types, constantly
supported modules naturally follow the modules of constant Jordan type that were in-
vestigated in [10, 9]. In Section 5 we show that examples are given by direct summands
of the Carlson modules Lζ , associated to non-nilpotent homogeneous elements of the
even cohomology ring H•(G, k). This motivates the study of the Lζ in the following sec-
tion. Aside from their fundamental importance for theoretical purposes, Carlson modules
are also of interest because their structure is closely reflected by their support varieties.
For Carlson modules belonging to homogeneous non-nilpotent elements, we provide a
sufficient condition for their indecomposability. In classical contexts, such as the first
Frobenius kernels of semi-simple algebraic groups, it follows that these modules are usu-
ally quasi-simple. In particular, the almost split sequences originating in these Lζ have an
indecomposable middle term. If ζ ∈ H2n(G, k) \ {0} is nilpotent, then the module Lζ is
indecomposable, of constant Jordan type and usually quasi-simple. For elements of odd
degree, the set of Jordan types of Lζ may have two elements and we show that Lζ is
indecomposable, provided G possesses sufficiently many abelian unipotent subgroups of
complexity ≥ 2. Quillen’s dimension theorem implies that this condition is superfluous
whenever G corresponds to a finite group.

Endo-trivial modules were introduced by Dade [15, 16], who showed that, for abelian
p-groups, these modules are stably isomorphic to the syzygies of the trivial module. In our
context, endo-trivial modules are examples of modules of constant Jordan type that occur
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in connection with decomposable Carlson modules of non-nilpotent type. In Section 6,
we investigate AR-components containing endo-trivial modules and discuss Carlson’s
construction [8] of such modules from the perspective of π -points.

In the final section, we enhance recent results of Carlson–Friedlander [9] by studying
the Jordan types of certain finite algebraic groups of tame representation type. In par-
ticular, we determine the Jordan types of the indecomposable modules of the restricted
enveloping algebra U0(sl(2)) and classify its indecomposable endo-trivial modules.

1. Subadditive functions on stable translation quivers

Throughout this section, we shall be considering quivers 0 := (00, 01) without loops or
multiple arrows. For such a quiver 0, the set of arrows is given by a subset 01 ⊆ 00×00 of
the Cartesian product of the set 00 of vertices. We recall a few basic facts and definitions;
the interested reader may consult [4, 50, 39, 40] for further details.

Given a vertex x ∈ 00, we put

x+ := {y ∈ 00; (x, y) ∈ 01}, x− := {y ∈ 00; (y, x) ∈ 01},

so that x+ and x− are the sets of successors and predecessors of the vertex x, respectively.
The quiver (00, 01) is referred to as locally finite if x+ ∪ x− is finite for every x ∈ 00.
Henceforth all quivers are assumed to be locally finite.

Let 0 := (00, 01) be a quiver. A valuation of 0 is a map ν : 00 × 00 → N0 × N0
such that 01 = ν

−1(N× N). The triple (00, 01, ν) is then referred to as a valued quiver.
Homomorphisms of valued quivers are defined canonically.

An automorphism τ : 0→ 0 is called a translation if

a− = τ(a)+ ∀a ∈ 00.

We then refer to (00, 01, τ ) as a stable translation quiver.
If ν is a valuation of (00, 01) and τ is a translation of (00, 01) such that

ν(τ(b), a) = 1(ν(a, b)) ∀(a, b) ∈ 01,

where 1(m, n) = (n,m) for all (m, n) ∈ N × N, then (00, 01, ν, τ ) is a valued stable
translation quiver.

By work of Riedtmann [50, Struktursatz] (see also [4, (4.15)]), a connected stable
translation quiver 0 is of the form

0 ∼= Z[T0]/G,

where T0 is a directed tree andG ⊆ Aut(Z[T0]) is an admissible group. The isomorphism
class of 0 is determined by the associated undirected tree T̄0 , the so-called tree class
of 0. We refer the reader to [4, (4.15.6)] for further details and just recall that a subgroup
G ⊆ Aut(0) is admissible if |G · x ∩ ({y} ∪ y+)| ≤ 1 and |G · x ∩ ({y} ∪ y−)| ≤ 1 for
all x, y ∈ 00.

The aforementioned result rests on the following construction of the orbit quiver 0/G
associated to an admissible subgroup G ⊆ Aut(0):
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• By defining (0/G)1 := {([x], [y]) ∈ 00/G × 00/G; there are a ∈ [x] and b ∈ [y]
with (a, b) ∈ 01}, we endow 0/G with the structure of a quiver.
• The map ν̄ : 00/G×00/G→ N0 ×N0, given by ν̄([x], [y]) = ν(a, b) if a ∈ [x] and
b ∈ [y] are such that (a, b) ∈ 01, is a valuation, with the canonical map π : 0→ 0/G

being a morphism of valued quivers.
• The map τ̄ : 00/G → 00/G, τ̄ ([x]) = [τ(x)], is a translation such that π is a

morphism of valued stable translation quivers.

The presence of subadditive functions on valued stable translation quivers significantly
restricts the possible tree classes. Let pr1 : N0×N0 → N0 be the projection onto the first
coordinate.

Definition. Let (00, 01, ν, τ ) be a valued stable translation quiver. A function f :

00 → N0 is said to be subadditive if

f (y)+ f (τ(y)) ≥
∑
x∈y−

f (x) pr1(ν(x, y)) ∀y ∈ 00.

The function f is referred to as additive if we have equality for every y ∈ 00.

For future reference we record the following basic properties:

Proposition 1.1. Let 0 := (00, 01, ν, τ ) be a connected valued stable translation quiver.

(1) If f : 00 → N0 is a subadditive function with f ◦ τ = f . Then either f = 0, or
f (x) > 0 for every x ∈ 00.

(2) Let f0 : 00 → N be an additive function with f0 ◦ τ = f0 and such that every other
such function is an integral multiple of f0 . Then f0 ◦ g = f0 for every g ∈ Aut(0).

Proof. (1) We put X := {x ∈ 00; f (x) 6= 0} and Y := {x ∈ 00; f (x) = 0}. It
readily follows that X and Y are τ -invariant. Let x ∈ X and y ∈ Y . If x ∈ y+, then
τ(x) ∈ τ(y)+ = y−. Thus, the existence of an arrow between X and Y implies that there
are x1 ∈ X and y1 ∈ Y such that x1 ∈ y

−

1 . However, this yields

0 = 2f (y1) ≥
∑
x∈y−1

f (x) pr1(ν(x, y1)),

so that f (x1) = 0, a contradiction. Since 0 is connected, it follows that X = 00 or
Y = 00.

(2) Let A be the set of additive functions f : 00 → N satisfying f ◦ τ = f . By
assumption, we have A = Nf0 . The group Aut(0) of automorphisms of the stable valued
translation quiver 0 acts on A via

(g.f )(x) := f (g−1(x)) ∀g ∈ Aut(0), f ∈ A, x ∈ 00.

Given g ∈ Aut(0), there exists n(g) ∈ N with g.f0 = n(g)f0 . Consequently,

f0 = g
−1.(g.f0) = n(g

−1)n(g)f0,

implying n(g) = 1 for all g ∈ G. ut

We recall that a valued graph is a pair (I, d), consisting of a set I and a map d :
I × I → N0, such that
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(1) d(i, i) = 0 for all i ∈ I ,
(2) d(i, j) 6= 0 ⇔ d(j, i) 6= 0,
(3) for each i ∈ I , the set A(i) := {j ∈ I ; d(i, j) 6= 0} is finite.
One can equally well consider the Cartan matrix C(i, j) := 2δij − d(i, j) (cf. [39]). In
the graphical presentation two vertices i and j are linked by a bond if d(i, j) 6= 0, and
we endow this bond with the valuation

i (d(i,j),d(j,i)) j.

Let T = (T0, T1) be a quiver. We define a stable translation quiver Z[T ] by letting Z×T0
be the set of vertices. We have arrows

(n, s)→ (n, t) and (n, t)→ (n+ 1, s) ∀n ∈ Z

for every arrow s → t in T . The translation is given by

τ : Z[T ] → Z[T ], (n, t) 7→ (n− 1, t).

Below is the stable representation quiver Z[A∞], where A∞ has N as set of vertices and
arrows n→ n+ 1 for every n ∈ N. The dotted arrows represent the translation.
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We let Ãp,q be the quiver whose underlying graph is the circle with p+q vertices and with
p consecutive clockwise oriented arrows and q consecutive counter-clockwise oriented
arrows. Thus, Ã2,0 ∼= Ã0,2 is an oriented 2-cycle.

Lemma 1.2. Let T be a quiver that does not contain a quiver of type Ã2,0. Then 〈τ 〉
is an admissible subgroup of the automorphism group of the valued stable translation
quiver Z[T ].
Proof. We put G := 〈τ 〉 and note that G · (n, x) = G · (0, x) for all (n, x) ∈ Z[T ]. Let
(n1, z1), (n2, z2) ∈ G · (0, x)∩ ({(m, y)}∪ (m, y)+). Since (n1, z1), (n2, z2) ∈ G · (0, x),
we have z1 = z2 = x. Two cases arise:
(a) (n1, x), (n2, x) ∈ (m, y)

+. Then we have either n1 = m and y → x, or n1 = m+ 1
and x → y. Since T does not contain Ã2,0, the former alternative implies n2 = m,
while the latter yields n2 = m + 1. In either case, we arrive at (n1, x) = (n2, x), as
desired.

(b) (n1, x) = (m, y). Since there is no arrow from x to x, this readily implies (n2, x) =

(m, y).
The inequality |G · (0, x) ∩ ({(m, y)} ∪ (m, y)−)| ≤ 1 follows analogously. ut
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Definition. Let (I, d) be a valued graph. A function f : I → N0 is called subadditive if

2f (j) ≥
∑
i∈I

f (i)d(i, j) for every j ∈ I.

We say that f is additive if equality holds for every j ∈ I .

Lemma 1.3. Let 0 = (00, 01, ν, τ ) be a valued stable translation quiver such that 〈τ 〉 ⊆
Aut(0) is admissible.

(1) The function d : 00/〈τ 〉 × 00/〈τ 〉 → N0, given by

d([x], [y]) :=

{
pr1(ν̄([x], [y])) if [x] → [y],
0 otherwise,

endows 00/〈τ 〉 with the structure of a valued graph.
(2) If 0 is connected and f : 0 → N0 is a non-zero additive function with f ◦ τ = f ,

then there exists an additive function ϕ : 0/〈τ 〉 → N such that ϕ([x]) = f (x) for
every x ∈ 00.

(3) If ϕ : 0/〈τ 〉 → N is an additive function, then

f : 0→ N, x 7→ ϕ([x]),

is an additive function on 0 such that f ◦ τ = f .

Proof. (1) Since 〈τ 〉 is admissible, we have d([x], [x]) = 0 for all [x] ∈ 00/〈τ 〉. Let [x] ∈
00/〈τ 〉 be given. Since the quiver 0/〈τ 〉 is locally finite, it follows that d([x], [y]) 6= 0
for only finitely many [y] ∈ 00/〈τ 〉. Finally, we assume that d([x], [y]) 6= 0. Then
[x] → [y], and by definition of 0/〈τ 〉 there exist a ∈ [x], b ∈ [y] such that a → b.
Thus, a ∈ b− = τ(b)+, so that τ(b)→ a. This implies [y] → [x] and d([y], [x]) 6= 0.

(2) In view of Proposition 1.1, we have f (00) ⊆ N. Hence there is a function ϕ :
00/〈τ 〉 → N with ϕ([x]) = f (x) for every x ∈ 00. According to (1) we obtain, for every
y ∈ 00,

2ϕ([y]) = f (y)+ f (τ(y)) =
∑
x∈y−

f (x) pr1(ν(x, y))

=

∑
[x]∈00/〈τ 〉

ϕ([x]) d([x], [y]), (∗)

so that ϕ is indeed additive.
(3) This follows directly from (∗). ut

We conclude this section by discussing certain functions of stable translation quivers 0
of tree class A∞ that will make an appearance in the next section. If x ∈ 00 is a vertex,
then its distance to the end of 0 is referred to as the quasi-length q`(x) of x. Vertices of
quasi-length 1 are often called quasi-simple. Given ` ≥ 1, we let 0(`) be the full subquiver
of 0, whose vertices have quasi-length ≥ `. A function f : 00 → N0 is called eventually
additive if there exists ` ≥ 1 such that

f (y)+ f (τ(y)) =
∑
x∈y−

f (x) ∀y ∈ (0(`))0.

The minimal ` with this property will be denoted `(f ).
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Examples. (1) The additive functions are precisely those eventually additive functions
with `(f ) = 1.

(2) Every constant function f 6= 0 is eventually additive with `(f ) = 2.
(3) The function f : 00 → N0, x 7→ q`(x)− 1, is eventually additive with `(f ) = 2.

For future reference, we record the following simple observation:

Lemma 1.4. Let 0 = (00, 01, ν, τ ) be a valued stable translation quiver of tree class
T̄0 = A∞. Let f : 00 → N0 be an eventually additive function such that f ◦ τ = f .

(1) Let x`(f ) and x`(f )−1 be two vertices of quasi-lengths `(f ) and `(f )−1, respectively.
Then

f (x) = (f (x`(f ))− f (x`(f )−1))(q`(x)− `(f ))+ f (x`(f )) ∀x ∈ (0(`(f )))0,

where we put f (x0) = 0 in case `(f ) = 1. If f is bounded, then f |(0(`(f )−1))0 is
constant.

(2) If f is subadditive such that
(a) f (x1) = f (x2) for xi ∈ 00 with q`(xi) = i, and
(b) f (x) ≥ f (x1) for all x, x1 ∈ 00 with q`(x1) = 1 and q`(x) < `(f ),
then f is constant and `(f ) ≤ 2.

Proof. (1) Since f is eventually additive with f ◦ τ = f , the map f gives rise to a
function ϕ : A∞ → N0 on the orbit graph of 0 which satisfies ϕ(n) = f (x) whenever
q`(x) = n. The proof of Lemma 1.3 now yields

2ϕ(n) = ϕ(n+ 1)+ ϕ(n− 1) ∀n ≥ `(f ),

so that

ϕ(n) =
(
ϕ(`(f ))− ϕ(`(f )− 1)

)
(n− `(f ))+ ϕ(`(f )) ∀n ≥ `(f ).

(Here we define ϕ(0) = 0.) This readily yields the asserted formula. If f is bounded, then
`(f ) ≥ 2 and we obtain ϕ(`(f ))− ϕ(`(f )− 1) = 0, whence ϕ(n) = ϕ(`(f )− 1) for all
n ≥ `(f )− 1. Consequently, f |(0(`(f )−1))0 is constant.

(2) We are going to show f (x) = f (x1) by induction on n := q`(x), the cases
n = 1, 2 being trivial. Let n ≥ 3. Since f is subadditive and 0 has tree class A∞, there
exist vertices y, z ∈ 00 of quasi-lengths q`(y) = n− 1 and q`(z) = n− 2 such that

f (x) ≤ f (y)+ f (τ(y))− f (z) = 2f (y)− f (z) = f (x1),

with equality holding for n ≥ `(f ). For n < `(f ), condition (b) yields the reverse
inequality, so that f is constant. In particular, `(f ) ≤ 2. ut

2. Additive functions of π -points

Throughout, we let k be an algebraically closed field of characteristic char(k) = p > 0
and consider a finite group scheme G over k, whose coordinate ring and algebra of
measures will be denoted k[G] and kG, respectively. We shall identify G-modules and
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kG-modules and let modG be the category of finite-dimensional G-modules. If K : k is
a field extension, then GK := SpecK(k[G] ⊗k K) denotes the extended group, whose
algebra of measures is

KG := kGK ∼= kG⊗k K.

We refer the reader to [44] and [56] for background on group schemes and their represen-
tations.

Given M ∈ modG, we write MK := M ⊗k K for the corresponding GK -module. Let
T be an indeterminate over k and put

Ap,K := k[T ]/(T
p)⊗k K ∼= K[T ]/(T

p).

Following Friedlander–Pevtsova [36], we refer to a left flat algebra homomorphism αK :

Ap,K → KG as a π -point if there exists an abelian, unipotent subgroup U ⊆ GK such
that imαK ⊆ KU. Like any flat algebra homomorphism, αK gives rise to a pull-back
functor α∗K : modGK → modAp,K which is exact and sends projectives to projectives.
Two π -points αK and βL are equivalent if

α∗K(MK) projective ⇔ β∗L(ML) projective

for every M ∈ modG. The set of equivalence classes will be denoted 5(G). Given M in
modG, we let

5(G)M := {[αK ] ∈ 5(G); α
∗

K(MK) is not projective}

be the5-support ofM . In view of [36, (3.4), 5(3.6)] the sets5(G)M form the closed sets
of a noetherian topology on 5(G) such that

dim5(G)M = dimVG(M)− 1,

where VG(M) ⊆ MaxSpec(Hev(G, k)) is the cohomological support variety of the
G-module M (see [5, (5.7)] for the definition that also applies in our context).

Let αK : Ap,K → KG be a π -point. If M ∈ modG, then α∗K(MK) ∈ modAp,K
uniquely decomposes as

α∗K(MK) ∼=

p⊕
i=1

αK,i(M)[i],

where [i] represents the (up to isomorphism) unique indecomposable Ap,K -module of
dimension i. We will interpret the right-hand side as a base change of an Ap,k-module N ,
that is,

α∗K(MK) ∼= NK ,

with N =
⊕p

i=1 αK,i(M)[i] ∈ modAp,k . The isomorphism class of N is the Jordan type
of M with respect to αK , denoted Jt(M, αK).

Given a short exact sequence

E : (0)→ M ′→ M → M ′′→ (0)

of GK -modules, we write

α∗K(E) : (0)→ α∗K(M
′

K)→ α∗K(MK)→ α∗K(M
′′

K)→ (0).
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If M is a non-projective indecomposable GK -module, then

EM : (0)→ N → E→ M → (0)

denotes the almost split sequence terminating inM . The reader is referred to [3, Chap. V]
for the definition and basic properties of almost split sequences. We shall write X | Y to
indicate that X is isomorphic to a direct summand of Y .

For future reference we record a few basic properties of the functorM 7→ MK . In the
sequel, �3 denotes the Heller operator of the finite-dimensional k-algebra 3.

Lemma 2.1. Let 3 be a finite-dimensional k-algebra, K : k be a field extension, and M
be a finite-dimensional 3-module.

(1) If M is indecomposable, then the 3K -module MK is indecomposable.
(2) M is projective if and only if MK is projective.
(3) �3K (MK) ∼= �3(M)K .

Proof. (1) Let R := End3(M) and denote by J the Jacobson radical of R. Then R is
local and since k is algebraically closed, we have R/J ∼= k, whence RK/JK ∼= K . As
RK ∼= End3K (MK), it follows that MK is indecomposable.

(2) One implication is clear. Part (1) implies that P 7→ PK provides a bijection be-
tween the isomorphism classes of principal indecomposable modules for 3 and 3K , re-
spectively. Thus, if MK is projective, so is M .

(3) This is a direct consequence of [45, (3.5)]. ut

Definition. Let M be a G-module, and αK : Ap,K → KG be a π -point. We say that M
is relatively αK -projective if MK | (KG ⊗Ap,K α

∗

K(MK)). The G-module M is relatively
αK -injective if MK | HomAp,K (KG, α∗K(MK)).

Remark. Suppose that M is a G-module such that MK | (KG⊗Ap,K N) for some Ap,K -
moduleN . Then there exists a split surjective homomorphism ϕ : KG⊗Ap,K N → MK of
KG-modules. Direct computation shows that the composite µ ◦ψ of the homomorphism

ψ : KG⊗Ap,K N → KG⊗Ap,K α
∗

K(MK), a ⊗ n 7→ a ⊗ ϕ(1⊗ n),

with the canonical map

µ : KG⊗Ap,K α
∗

K(MK)→ MK , a ⊗m 7→ a.m,

coincides with ϕ. Hence µ is also split surjective. As a result, the following statements
are equivalent:

• M is relatively αK -projective.
• There exists an Ap,K -module N such that MK | (KG⊗Ap,K N).
• The map µ : KG⊗Ap,K α

∗

K(MK)→ MK , a ⊗m 7→ a.m, is split surjective.

The following subsidiary result, which elaborates on [10, (8.5)], is inspired by the
modular representation theory of finite groups (see [4, (4.12.10)]).
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Lemma 2.2. Let M be a non-projective indecomposable G-module, and let αK :

Ap,K → KG be a π -point.

(1) M is relatively αK -projective if and only if MK | (KG ⊗Ap,K [i]) for some i ∈
{1, . . . , p − 1} with αK,i(M) 6= 0.

(2) If M is relatively αK -projective, then MK is cyclic, and 5(G)M = {[αK ]}.
(3) M is relatively αK -projective if and only if the sequence α∗K(EM⊗kK) does not split.

Proof. (1) In view of Lemma 2.1 and the above remark, this is a direct consequence of
the Theorem of Krull–Remak–Schmidt.

(2) By (1), there exists i ∈ {1, . . . , p − 1} such that MK | (KG ⊗Ap,K [i]). Conse-
quently, MK is cyclic, and a consecutive application of [36, (5.5)] and [10, (8.4)] im-
plies ∅ 6= 5(GK)MK

⊆ 5(GK)KG⊗Ap,K
[i] = {[αK ]}, so that 5(GK)MK

= {[αK ]}. It
readily follows that [αK ] ∈ 5(G)M . Conversely, assume that βL is a π -point of G such
that [βL] ∈ 5(G)M . Consider a common extension field Q of L and K . Then βQ is a
π -point of GK such that β∗Q((MK)Q) ∼= β∗Q(MQ) ∼= β∗L(ML)Q is not projective. Con-
sequently, [βQ] ∈ 5(GK)MK

, so that the π -points αK and βQ of GK are equivalent. We
conclude that αK and βL are also equivalent, when considered as π -points of G, whence
5(G)M = {[αK ]}.

(3) Let
EM : (0)→ N → E→ M → (0)

be the almost split sequence terminating in M . According to Lemma 2.1, the GK -module
MK is indecomposable and non-projective. Thanks to [45, (3.8)], the sequence

EM ⊗k K : (0)→ NK → EK
π
−→ MK → (0)

is the almost split sequence terminating in MK . We consider the canonical surjection
µ : KG ⊗Ap,K α

∗

K(MK) → MK , a ⊗ m 7→ am. If this map does not split, then
EM ⊗k K being almost split implies that there exists ω : KG ⊗Ap,K α

∗

K(MK) → EK
such that π ◦ ω = µ. The adjoint isomorphism HomKG(KG ⊗Ap,K α

∗

K(MK),−) ∼=

HomAp,K (α
∗

K(MK),−) ◦ α
∗

K thus provides a map ω̃ : α∗K(MK)→ α∗K(EK) with

α∗K(π) ◦ ω̃ = idα∗K (MK ).

Thus, if α∗K(EM⊗kK) does not split, thenMK | (KG⊗Ap,K α
∗

K(MK)), andM is relatively
αK -projective.

Let M be relatively αK -projective. According to [3, (VI.3.6)], α∗K(EM ⊗k K) being
split entails that EM ⊗k K is split. Since EM ⊗k K is almost split, this cannot happen, so
that α∗K(EM ⊗k K) is non-split in that case. ut

Remarks. (1) Part (2) of the above lemma implies that the π -points αK : Ap,K → KG

for which a given G-module M is relatively αK -projective give rise to closed points
[αK ] ∈ 5(G). In view of [36, (4.7)], the class [αK ] is therefore represented by some
p-point βk : Ap,k → kG.

(2) Let αK ∈ 5t(G) be a π -point such that [αK ] is not closed. Then Lemma 2.2
implies that no non-projective direct summand N of the induced module KG⊗Ap,K [i] is
defined over k, that is, there does not exist a G-module M with MK

∼= N .
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(3) Lemma 2.2 could equally well be stated in terms of relatively injective modules.
In particular, the sequence α∗K(EM ⊗k K) does not split if and only if M is relatively
αK -injective.

We let 0s(G) denote the stable Auslander–Reiten quiver of the Frobenius algebra kG.
By definition, 0s(G) is a valued stable translation quiver whose vertices are the isoclasses
of the non-projective indecomposable G-modules. There is an arrow X → Y if X is
a direct summand of the middle term E of the almost split sequence EY . This arrow
carries the valuation (m,m) if X occurs in E with multiplicity m (see [3, (V.1.3)]). The
Auslander–Reiten translation τG is given by

τG = �
2
G ◦ νG = νG ◦�

2
G,

where νG := HomG(−, kG)
∗ denotes the Nakayama functor of modG. By virtue of [3,

(V.1.14)], τG(M) is the initial term of the almost split sequence terminating in M .
Let2 ⊆ 0s(G) be a connected component. In view of [24, (3.1)], whose proof can be

easily modified to cover our context, we have

5(G)M = 5(G)N ∀M,N ∈ 2.

Accordingly, we shall speak of the 5-support 5(G)2 of 2.

Definition. Let 2 ⊆ 0s(G) be a component. Given a π -point αK : Ap,K → KG, we say
that 2 is αK -split if the exact sequence α∗K(EM ⊗k K) splits for every M ∈ 2.

By abuse of notation, we will write f : 2 → N0 for a function f that is defined on
the set of vertices of2. If N is an Ap,K -module, then Npf denotes its projective-free part,
that is, the direct sum of all non-projective indecomposable summands of N .

Proposition 2.3. Let 2 ⊆ 0s(G) be a component, and αK : Ap,K → KG be a π -point.

(1) αK,i ◦ τG = αK,i for i ∈ {1, . . . , p − 1}.
(2) If 2 is not αK -split, then 5(G)2 = {[αK ]} and 2 is either finite or isomorphic to

Z[A∞]/〈τn〉 for some n ∈ N.
(3) Given m ∈ {1, . . . , p − 1}, the function

ψm : 2→ N0, M 7→

m−1∑
i=1

iαK,i(M)+m
(p−1∑
i=m

αK,i(M)
)
,

is subadditive with ψm ◦ τG = ψm.
(4) Suppose that αK,i : 2→ N0 is additive for 1 ≤ i ≤ p − 1. Then 2 is αK -split.

Proof. (1) Let ζ : kG→ k be the modular function of the Hopf algebra kG. According to
[31, (1.5)], the convolution

µ := ζ ∗ idkG

is a Nakayama automorphism of the Frobenius algebra kG, so that νG coincides with the
pull-back functor µ∗ : modG→ modG, defined by µ.
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Since (ζ ⊗ idK)|KU = εKU for every unipotent subgroup U ⊆ GK and αK factors
through some unipotent subgroup U ⊆ GK , we have (µ ⊗ idK) ◦ αK = αK , whence
α∗K ◦ (µ⊗ idK)∗ = α∗K . As α∗K is exact and sends projectives to projectives, Lemma 2.1
implies

α∗K(τG(M)K)
∼= α
∗

K((µ⊗ idK)∗(�2
G(M)K))

∼= α
∗

K(�
2
G(MK))

∼= �
2
Ap,K

(α∗K(MK))⊕ (proj.).

Observing �2
Ap,K

([j ]) ∼= [j ] for 1 ≤ j ≤ p − 1, we conclude that

�2
Ap,K

(α∗K(MK))⊕ (proj.) ∼= α∗K(MK).

Consequently,
α∗K(τG(M)K)⊕ (proj.) ∼= α∗K(MK)⊕ (proj.),

so that αK,i(τG(M)) = αK,i(M) for i ∈ {1, . . . , p − 1}.
(2) By assumption, there exists M ∈ 2 such that the exact sequence α∗K(EM ⊗k K)

does not split. In view of (2) and (3) of Lemma 2.2, we have5(G)2 = 5(G)M = {[αK ]}.
We may now apply [24, (3.3)] to see that2 is either finite or an infinite tube Z[A∞]/〈τn〉.

(3) We write Ap,K = K[t] with tp−1
6= 0 = tp. Let m ∈ {1, . . . , p − 1}. Given

an Ap,K -module N , we let tmN be the left multiplication on N effected by tm. Direct
computation yields

ker tm
α∗K (MK )

=

m−1⊕
i=1

αK,i(M)[i] ⊕
( p∑
i=m

αK,i(M)
)
[m],

so that
dimK ker tm

α∗K (MK )
= ψm(M)+mαK,p(M) ∀M ∈ modG.

We denote the right-hand side by ϕm and consider a short exact sequence (0)→ M ′ →

M → M ′′→ (0) of G-modules. Observing the left-exactness of kernels, we obtain

ϕm(M) ≤ ϕm(M
′)+ ϕm(M

′′).

For X ∈ {M,M ′,M ′′} we write α∗K(XK) = α
∗

K(XK)pf ⊕ PX, with PX projective. Then
(PM ′ ⊕ PM ′′) |PM , so that

pαK,p(M) ≥ pαK,p(M
′)+ pαK,p(M

′′).

We therefore obtain

ψm(M
′)+ ψm(M

′′) = ϕm(M
′)+ ϕm(M

′′)−mαK,p(M
′)−mαK,p(M

′′)

≥ ϕm(M)−mαK,p(M) = ψm(M).

Consequently, ψm is subadditive on 2 and (1) implies ψm ◦ τG = ψm.
(4) Let M be an element of 2, and consider the almost split sequence

(0)→ N → E→ M → (0)
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terminating in M . Since each αK,i is additive for 1 ≤ i ≤ p − 1, we obtain

α∗K(MK)pf ⊕ α
∗

K(NK)pf ∼= α
∗

K(EK)pf.

For X ∈ {M,N,E} we write α∗K(XK) = α∗K(XK)pf ⊕ PX, with PX projective. Then
(PN ⊕ PM) |PE and a comparison of dimensions yields PE ∼= PM ⊕ PN , so that

α∗K(MK)⊕ α
∗

K(NK)
∼= α
∗

K(EK).

Consequently, the exact sequence

(0)→ α∗K(NK)→ α∗K(EK)→ α∗K(MK)→ (0)

splits. As a result, the component 2 is αK -split. ut

We say that an AR-component 2 ⊆ 0s(G) is regular if the middle terms of the almost
split sequences terminating in the vertices of 2 have no non-zero projective summands.
By general theory (cf. [3, (V.5.5)]), an almost split sequence, whose middle term has the
principal indecomposable module P as a direct summand, is isomorphic to the sequence

(0)→ Rad(P )→ P ⊕ (Rad(P )/Soc(P ))→ P/Soc(P )→ (0).

Hence all but finitely many AR-components of kG are regular.
By providing the converse to Proposition 2.3(4), the following basic result indicates

the utility of those π -points αK for which a component 2 is αK -split.

Theorem 2.4. Let2 ⊆ 0s(G) be a component, and αK : Ap,K → KG be a π -point such
that 2 is αK -split.

(1) For every i ∈ {1, . . . , p − 1}, the map

αK,i : 2→ N0 , M 7→ αK,i(M)

is an additive function on 2 such that αK,i ◦ τG = αK,i .
(2) The map

αK,<p : 2→ N0, M 7→ dimkM − pαK,p(M),

is an additive function on 2 such that αK,<p ◦ τG = αK,<p.
(3) The map

αK,p : 2→ N0, M 7→ αK,p(M),

is a subadditive function on 2, which is additive if and only if 2 is regular.

Proof. Let M be a non-projective indecomposable G-module, and consider the almost
split sequence

(0)→ τG(M)→ E→ M → (0)

terminating in M . Since 2 is αK -split, the sequence

(0)→ α∗K(τG(M)K)→ α∗K(EK)→ α∗K(MK)→ (0)
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is split exact, so that the Theorem of Krull–Remak–Schmidt implies

αK,i(E) = αK,i(τG(M))+ αK,i(M)

for 1 ≤ i ≤ p. Upon decomposing E into its indecomposable constituents E = n1E1 ⊕

· · · ⊕ nrEr ⊕ (proj.) with Ei 6∼= Ej for i 6= j , we obtain

αK,i(E) =

r∑
j=1

njαK,i(Ej )

for i ≤ p − 1, while

αK,p(E) =

r∑
j=1

njαK,p(Ej )+ αK,p(proj.).

Consequently, αK,i is an additive function on2 for i ≤ p−1, while αK,p is a subadditive
function, which is additive if and only if there is no middle term E such that EK has
a non-zero projective summand. Owing to Lemma 2.1, the functor M 7→ MK sends
indecomposables to indecomposables and preserves and reflects projectives. Thus, EK
has a non-zero projective summand if and only if E does. As a result, αp,K is additive if
and only if 2 is regular.

Being a sum of additive functions, αK,<p =
∑p−1
i=1 iαK,i is also additive. According

to Proposition 2.3(1), the additive functions of (1) and (2) are τG-invariant. ut

Setting max∅ := 0, we record the following consequence of the proof of Theorem 2.4:

Corollary 2.5. Let 2 ∼= Z[A∞]/〈τn〉 be an infinite tube, and αK : Ap,K → KG be a
π -point with5(G)2 = {[αK ]}. The functions αK,i, ψm : 2→ N0 are eventually additive
for i, m ∈ {1, . . . , p − 1}, with `(αK,i), `(ψm) ≤ 1 + max{q`(M); M is relatively αK -
projective}.

Proof. Given i ∈ {1, . . . , p − 1}, we put f := αK,i . Owing to Lemma 2.2(1), at most
finitely many M ∈ 2 are relatively αK -projective. Hence setting

` := 1+max{q`(M); M is relatively αK -projective},

we see that no M ∈ 2(`) is relatively αK -projective. The proof of Theorem 2.4 in con-
junction with Lemma 2.2(3) now ensures that f is eventually additive with `(f ) ≤ `. By
the same token, the subadditive functions ψm are eventually additive with `(ψm) ≤ `. ut

Let 2 ⊆ 0s(G) be a component with 5(G)2 = {[αK ]}. If 2 ⊆ 0s(G) is finite, then [24,
(3.3)] ensures that the tree class T̄2 is a finite Dynkin diagram. Since the corresponding
Cartan matrix is invertible, f = 0 is the only τG-invariant additive function on 2.

More specifically, consider the algebra kGa(1) associated to the first Frobenius ker-
nel Ga(1) of the additive group Ga . Then kGa(1) is isomorphic to Ap,k and 0s(Ga(1)) is
connected. For every j ∈ {1, . . . , p} there is an indecomposable module Mj of dimen-
sion j , and the isomorphism αk : Ap,k → kGa(1) gives αk,i(Mj ) = δi,j . This shows that,
for p ≥ 3, none of the functions αk,i (1 ≤ i ≤ p−1) is subadditive (see Proposition 1.1).
For p = 2, the function αk,1 = ψ1 is subadditive.
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Corollary 2.6. Suppose that dim5(G) ≥ 1. Let2 ∼= Z[A∞]/〈τn〉 be a periodic compo-
nent of 0s(G) and αK be a π -point. If there exist G-modulesM1,M2 ∈ 2 with q`(Mj )=j
and dimK α

∗

K((Mj )K)pf = p for 1 ≤ j ≤ 2, then αK,i : 2(`(αK,i )−1) → N0 is constant
for each i ∈ {1, . . . , p − 1} and 2 contains a relatively αK -projective module.

Proof. Since 2 is a periodic component, we have dim5(G)2 = 0. It follows that
5(G) 6= 5(G)2, and there exists a π -point βL such that β∗L(ML) is projective for every
M ∈ 2. Consequently, the dimension of every module M ∈ 2 is divisible by p, so that

p | dimK α
∗

K(MK)pf = ψp−1(M)

for all M ∈ 2. Thanks to Proposition 2.3, the function ψp−1 is subadditive and satisfies
ψp−1 ◦ τG = ψp−1. Lemma 1.4(2) now yields

ψp−1(M) = p ∀M ∈ 2.

In particular, each of the functions αK,i : 2 → N0 (1 ≤ i ≤ p − 1) is bounded
and a consecutive application of Corollary 2.5 and Lemma 1.4(1) now ensures that each
αK,i |2(`(αK,i )−1) is constant.

Since not all αK,i are identically zero, we conclude that at least one αK,i is not addi-
tive. A consecutive application of Theorem 2.4 and Lemma 2.2 now yields the existence
of a vertex M ∈ 2 which is relatively αK -projective. ut

3. Invariants of Auslander–Reiten components

In this section we show that various notions introduced in [10, 37] give rise to invariants
of stable Auslander–Reiten components of kG. In view of Theorem 2.4, we shall focus on
those components 2 ⊆ 0s(G) that are αK -split for every π -point αK . Thanks to Lemma
2.2 and [24, (3.3)], the remaining components are either of the form Z[A∞]/〈τn〉 or are
of finite Dynkin type, in which case their vertices form the non-projective modules of a
block B ⊆ kG of finite representation type (see [3, (VI.1.4)]). In the following, we let
5t(G) be the set of π -points of G.

Definition. A component 2 ⊆ 0s(G) is called locally split if 2 is αK -split for every
αK ∈ 5t(G).

3.1. The fundamental invariants

Given a component 2 ⊆ 0s(G), we define

5t(G,2) := {αK ∈ 5t(G); 2 is αK -split}.

Our first result provides for every infinite component 2 ⊆ 0s(G) a function d2 :

5t(G,2)→ Np0 on which our new invariants will depend.
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Theorem 3.1.1. Let 2 ⊆ 0s(G) be an infinite component. Then there exist an additive
function f2 : 2→ N and a function d2 : 5t(G,2)→ Np0 with

αK,i(MK) = d
2
i (αK)f2(M) (1 ≤ i ≤ p − 1) and αK,<p(MK) = d

2
p (αK)f2(M)

for every M ∈ 2 and every αK ∈ 5t(G,2).

Proof. According to [24, (3.2)], the tree class T̄2 is either a simply laced finite or infinite
Dynkin diagram, a simply laced Euclidean diagram, or Ã12. If T̄2 is a finite Dynkin
diagram, then [24, (3.3)] implies that each vertex of 2 is periodic, so that 2 is finite.
Consequently, the tree class T̄2 belongs to {A∞, A∞∞, D∞, Ã12, D̃n, Ẽ6,7,8}, with each
tree carrying the standard valuation.

For each tree class T̄2 there exists an additive function ϕT̄2 : T̄2 → N such that
any other additive function on T̄2 is an integral multiple of ϕT̄2 (cf. [3, p. 243ff] or [40,
Thm. 2, Rem. p. 328]). We define

fZ[T2] : Z[T2] → N, (n, x) 7→ ϕT̄2(x).

By Lemmas 1.2 and 1.3, T̄2 is the orbit graph of Z[T2], and Lemma 1.3(3) ensures that
fZ[T2] is an additive function on Z[T2] such that

fZ[T2] ◦ τ = fZ[T2].

Moreover, any other additive function f : Z[T2] → N with f ◦ τ = f is an integral
multiple of fZ[T2].

The Riedtmann structure theorem [4, (4.15)] provides an admissible subgroup G of
Aut(Z[T2]) such that

2 ∼= Z[T2]/G.

SinceG is admissible, the canonical projection map π : Z[T2] → 2 is a covering of val-
ued stable translation quivers, i.e., π induces bijections x+

∼
−→ π(x)+ and x−

∼
−→ π(x)−

for every x ∈ Z[T2]0. Thanks to Proposition 1.1(2), we have fZ[T2] ◦ g = fZ[T2] for
every g ∈ G. Consequently, there exists a function f2 : 2→ N with

f2 ◦ π = fZ[T2].

As π a covering, f2 is additive and any other additive function f : 2→ N is an integral
multiple of f2.

Let αK ∈ 5t(G,2) be a π -point. Since 2 is αK -split, Theorem 2.4 ensures that
each αK,i (1 ≤ i ≤ p − 1) is an additive function, with αK,i ◦ τG = αK,i . In view of
Proposition 1.1, we either have αK,i = 0 or αK,i(M) ∈ N for every M ∈ 2. We thus set
d2i (αK) = 0 whenever αK,i = 0.

Suppose that αK,i 6= 0. Since αK,i ◦ τG = αK,i , there exists d2i (αK) ∈ N with
αK,i = d

2
i (αK)f2. The same reasoning yields the existence of d2p (αK). ut

For future reference, we record a few special instances:
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Corollary 3.1.2. Let 2 ⊆ 0s(G) be a component.

(1) If 2 has tree class T̄2 ∼= A∞, then

αK,i(MK) = d
2
i (αK) q`(M) and αK,<p(MK) = d

2
p (αK) q`(M)

for every i ∈ {1, . . . , p − 1}, every M ∈ 2 and every αK ∈ 5t(G,2).
(2) If T̄2 ∼= Ã12, A

∞
∞, then

αK,i(MK) = d
2
i (αK) and αK,<p(MK) = d

2
p (αK)

for every i ∈ {1, . . . , p − 1}, every M ∈ 2 and every αK ∈ 5t(G).

Proof. (1) If 2 has tree class A∞, then f2(M) = q`(M) for every M ∈ 2. Since 2 is
infinite, our assertion follows from Theorem 3.1.1.

(2) According to [24, (3.3)], we have dim5(G)2 ≥ 1, so that 2 is locally split and
5t(G,2) = 5t(G). Since f2 ≡ 1 for T̄2 ∼= Ã12, A

∞
∞ (cf. [40, Thm. 2, Rem. p. 328]),

our assertion follows directly from Theorem 3.1.1. ut

3.2. Sets of Jordan types

Let M be a G-module. Then

Jt(M) := {Jt(M, αK);αK ∈ 5t(G)}

is a finite set, the set of Jordan types of M . Following [10], we say that a G-module M
has constant Jordan type, provided Jt(M) is a singleton. In that case, we call Jt(M) the
Jordan type of M .

Our first application, which generalizes [10, (8.7)], provides a new invariant for lo-
cally split Auslander–Reiten components.

Corollary 3.2.1. Let 2 ⊆ 0s(G) be a locally split component. Then

|Jt(M)| = |im d2|

for every M ∈ 2.

Proof. Let M be an element of 2, αK , βL ∈ 5t(G) be π -points. Thanks to Theorem
3.1.1, we have Jt(M, αK) = Jt(M, βL) if and only if d2(αK) = d2(βL). Consequently,
|Jt(M)| = |im d2|, as desired. ut

In view of Corollary 3.2.1, the presence of a module M of constant Jordan type in a
locally split component 2 implies that all modules of 2 have constant Jordan type. This
is the content of [10, (8.7)], provided that dim5(G) ≥ 1. In the remaining case, 5(G)
is a singleton (cf. [10, (3.4)]), so that every G-module has constant Jordan type (cf. [37,
(4.10)]).

Let M be a G-module, αK : Ap,K → KG be a π -point. Then the isomorphism class
of

p−1⊕
i=1

αK,i(M)[i] ∈ modAp,K
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is referred to as the stable Jordan type StJt(M, αK) of M with respect to αK . We let
StJt(M) be the set of stable Jordan types of M . Obviously, a G-module has constant
Jordan type if and only if it has constant stable Jordan type.

Corollary 3.2.2. Suppose that 2 ⊆ 0s(G) is a component with dim5(G)2 ≥ 1 and
T̄2 6∼= A∞. If αK is a π -point, then |{StJt(M, αK); M ∈ 2}| = |im f2| ≤ 6.

Proof. According to [24, (3.2), (3.3)], the tree class of 2 belongs to {Ã12, D̃n, Ẽ6,7,8,

A∞∞,D∞}. It follows from Theorem 3.1.1 that |{StJt(M, αK); M ∈ 2}| is equal to the
cardinality of im f2. According to [40, Thm.2, Rem. p. 328] this number is 1 for T̄2 =
Ã12, A

∞
∞; 2 for T̄2 = D̃n,D∞; 3 for T̄2 = Ẽ6; 4 for T̄2 = Ẽ7; and 6 for T̄2 = Ẽ8. ut

Remark. If G = Gr is a Frobenius kernel of a reductive group G, then the support of
every component 2 ⊆ 0s(Gr) of tree class T̄2 6= A∞ has dimension dim5(Gr)2 ≥ 1
and the trees Ẽ6,7,8 do not occur (cf. [22, (4.1)]). Therefore |{StJt(M, αK); M ∈ 2}| ≤ 2
for every component with T̄2 6∼= A∞.

Let αK ∈ 5t(G) be a π -point and M ∈ modG be a G-module. Then

suppαK (M) := {i ∈ {1, . . . , p − 1};αK,i(M) 6= 0}

is the αK -support of M . The following immediate consequence of Theorem 3.1.1 pro-
vides useful invariants for locally split components, enabling us to distinguish compo-
nents having the same π -supports (cf. Corollary 8.1.2 below).

Corollary 3.2.3. Let 2 ⊆ 0s(G) be a component. If αK ∈ 5t(G,2), then

suppαK (M) = {i ∈ {1, . . . , p − 1}; d2i (αK) 6= 0}

for every M ∈ 2. �

3.3. Dominance ordering and non-maximal supports

Let αK and βL be π -points andM ∈ modG be a G-module. In [37], the authors introduce
a relation by setting

αK �M βL :⇔ dimK im tm
α∗K (MK )

≤ dimK im tm
β∗L(MK )

∀m ∈ {1, . . . , p}.

The proof of Proposition 2.3 readily yields

αK �M βL :⇔

p∑
i=j

(i − j)αK,i(MK) ≤

p∑
i=j

(i − j)βL,i(ML), 1 ≤ j ≤ p.

In view of [14, (6.2.2)], this relation corresponds to the usual dominance ordering on the
partitions of dimkM , associated to α∗K(MK) and β∗L(ML), respectively. More precisely,

αK ∼M βL :⇔ Jt(M, αK) = Jt(M, βL)
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defines an equivalence relation on5t(G) and �M is a partial ordering on the set of equiv-
alence classes.1

Our next result shows that the relation defined by an indecomposable module is an
invariant of its stable AR-component.

Proposition 3.3.1. Let 2 ⊆ 0s(G) be a locally split component. If αK and βL are
π -points such that αK �M0 βL for some M0 ∈ 2, then αK �M βL for all M ∈ 2.

Proof. According to Theorem 3.1.1, we can find d2i (αK), d
2
i (βL) ∈ N0 such that

γi(M) = d
2
i (γ )f2(M) (1 ≤ i ≤ p− 1) and γ<p(M) = d2p (γ )f2(M) (γ ∈ {αK , βL}),

for allM ∈ 2. For any G-moduleM ∈ 2, we have γp(M) = 1
p
(dimkM−d

2
p (γ )f2(M))

and thus

αK�M βL ⇔

p−1∑
i=j

(i−j)d2i (αK)−
p − j

p
d2p (αK) ≤

p−1∑
i=j

(i−j)d2i (βL)−
p − j

p
d2p (βL)

for 1 ≤ j ≤ p. Since the right-hand side does not depend on M , our assertion follows.
ut

LetM be a G-module. We say that αK ∈ 5t(G) is maximal for �M if βL ∼M αK for every
βL ∈ 5t(G) with αK �M βL. In [37], the authors introduce the variety of non-maximal
supports. Given a G-module M , we write

5̃(G)M := {x ∈ 5(G); there exists αK ∈ x that is not maximal for �M}.

By [37, (5.2)], this set is a closed subspace of 5(G)M , which coincides with 5(G)M if
and only if 5(G)M 6= 5(G).

Theorem 3.3.2. Let2 ⊆ 0s(G) be a component such that5(G)2 = 5(G). Then 5̃(G)M
= 5̃(G)N for M,N ∈ 2.

Proof. We first assume that dim5(G) ≥ 1, so that2 is locally split. Suppose that x is not
in 5̃(G)M and let αK ∈ x be a π -point. Then αK is maximal for �M . If βL �N αK is an-
other π -point, then Proposition 3.3.1 implies βL�M αK , so that Jt(M, βL) = Jt(M, αK).
As a result, d2(βL) = d2(αK), giving Jt(N, βL) = Jt(N, αK). We conclude that αK is
maximal for �N , whence x 6∈ 5̃(G)N . Consequently, 5̃(G)N ⊆ 5̃(G)M , implying our
assertion.

If dim5(G) = 0, then [10, (3.4)] ensures that5(G) is a singleton. We may now apply
[37, (4.10)] to see that every G-module has constant Jordan type. Consequently, we have
5̃(G)M = ∅ = 5̃(G)N in that case. ut

1 Note that our formula above differs from the one given in [10, §1], where the authors set
αK �M βL :⇔

∑p
i=j

iαK,i(MK ) ≤
∑p
i=j

iβL,i(ML) for 1 ≤ j ≤ p. The choice p = 3
and (α3, α2, α1) = (2, 0, 1), (β3, β2, β1) = (1, 2, 0) defines two partitions α and β of 7 such that
α ≥ β with respect to our definition, while the one of [10] leads to α 6≥ β.
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4. Components containing relatively projective modules

Throughout this section, we are working over an algebraically closed ground field k. We
shall study stable AR-components 2 ⊆ 0s(G) which are not locally split. According to
Lemma 2.2 these are precisely those components that contain a relatively αK -projective
G-module for some αK ∈ 5t(G).

4.1. Quasi-simple relatively projective modules

In order to record detailed information on the functions αK,i : 2 → N0 for infinite
components2 ⊆ 0s(G) that are not αK -split, we introduce the tridiagonal (p×p)-matrix

A :=



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


whose coefficients are denoted aij . Note that the ((p − 1)× (p − 1))-principal minor of
this matrix is just the Cartan matrix of the Dynkin diagram Ap−1.

By Proposition 2.3, every infinite component 2 ⊆ 0s(G) which is not locally split
is of the form 2 ∼= Z[A∞]/〈τn〉, so that we can speak of the quasi-length q`(M) of a
module belonging to 2.

Proposition 4.1.1. Let αK : Ap,K → KG be a π -point, and 2 ⊆ 0s(G) be an infinite
component such that

(a) 2 is not αK -split, and
(b) if N ∈ 2 is relatively αK -projective, then q`(N) = 1.

Then there exist a vector (n1, . . . , np−1) ∈ Np−1
0 \{0} and a quasi-simple moduleM ∈ 2

such that

αK,i(X) =
(
αK,i(M)−

p−1∑
j=1

aijnj

)
q`(X)+

p−1∑
j=1

aijnj , 1 ≤ i ≤ p − 1,

for every X ∈ 2.

Proof. Given i ∈ {1, . . . , p}, we put Ni := KG ⊗Ap,K [i]. Conditions (a) and (b) in
conjunction with Lemma 2.2 ensure the existence of a quasi-simple module M ∈ 2 that
is relatively αK -projective. We define ni ∈ N0 to be the multiplicity of MK in Ni , that is,

Ni ∼= niMK ⊕N
′

i with MK - N ′i .

Thanks to Lemma 2.2(1), at least one of the ni is not zero. Since MK is not projective,
we have np = 0.

We consider the almost split sequence

EM : (0)→ τG(M)→ E→ M → (0)
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terminating in M . Since k is algebraically closed, [45, (3.8)] ensures that

EM ⊗k K : (0)→ τG(M)K → EK → MK → (0)

is an almost split sequence terminating in MK . Let ϕ : Ni → MK be a homomor-
phism and write ϕ = (ϕ1, . . . , ϕni , ϕ

′) with ϕt in EndGK (MK) for 1 ≤ t ≤ ni and ϕ′

in HomGK (N
′

i ,MK). Then ϕ is split surjective if and only if ϕt 6∈ Rad(EndGK (MK)) for
some t ∈ {1, . . . , ni}. Since EM ⊗k K is almost split, we obtain an exact sequence

(0)→ HomGK (Ni, τG(M)K)→ HomGK (Ni, EK)

→ ni Rad(EndGK (MK))⊕ HomGK (N
′

i ,MK)→ (0)

for every i ∈ {1, . . . , p}. As k is algebraically closed, the right-hand term above has
dimension dimK HomGK (Ni,MK)− ni and Frobenius reciprocity implies

dimK HomAp,K ([i], α
∗

K(EK))

= dimK HomAp,K ([i], α
∗

K(MK))+ dimK HomAp,K ([i], α
∗

K(τG(M)K))− ni .

From the formula

dimK HomAp,K ([s], [t]) = min{s, t} ∀s, t ∈ {1, . . . , p}

we get
p∑
`=1

min{i, `}αK,`(E) =
p∑
`=1

min{i, `}(αK,`(M)+ αK,`(τG(M)))− ni, 1 ≤ i ≤ p.

Let B := (min{i, `})1≤i,`≤p ∈ Matp(Z) and n = (n1, . . . , np)
tr
∈ Zp. The above identi-

ties then amount to
Bx = By − n,

where

x := (αK,1(E), . . . , αK,p(E))
tr,

y :=
(
αK,1(M)+ αK,1(τG(M)), . . . , αK,p(M)+ αK,p(τG(M))

)tr
.

Direct computation reveals that B is invertible with inverse B−1
= A. Consequently,

x = y − An, whence

αK,i(E) = αK,i(M)+ αK,i(τG(M))−

p−1∑
j=1

aijnj for 1 ≤ i ≤ p. (∗)

Since q`(M) = 1, we have
E ∼= M2 ⊕ P,

where M2 ∈ 2 has quasi-length 2 and P is indecomposable projective or (0). Hence (∗)
implies

αK,i(M2) = αK,i(M)+ αK,i(τG(M))−

p−1∑
j=1

aijnj (∗∗)

for 1 ≤ i ≤ p − 1.
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Now suppose that i ≤ p − 1. Proposition 2.3(1) yields αK,i ◦ τG = αK,i , while
Corollary 2.5 and condition (b) ensure that `(αK,i) ≤ 2. Thus, if

∑p−1
j=1 aijnj = 0, then

αK,i is additive, and our assertion follows from Lemma 1.4. Alternatively, `(αK,i) = 2,
and Lemma 1.4 implies

αK,i(X) = (αK,i(M2)− αK,i(M))(q`(X)− 2)+ αK,i(M2)

=

(
αK,i(M)−

p−1∑
j=1

aijnj

)
q`(X)+

p−1∑
j=1

aijnj

for every X ∈ 2. ut

Remarks. (1) Suppose that 2 ∼= Z[A∞]/〈τ 〉 is a homogeneous tube. If E = M2 ⊕ P ,
with P 6= (0), thenM ∼= P/Soc(P ) andM ∼= τG(M) ∼= Rad(P ) (see [3, (V.5.5)]). Thus,
Rad(P ) ∼= P/Soc(P ) and the block B ⊆ kG containing P is a Nakayama algebra. Hence
2 is finite, a contradiction. It now follows from (∗) that the formula of Proposition 4.1.2
also holds for i = p.

(2) The foregoing result can be stated more formally by letting nj (M, αK) be the
multiplicity of MK as a summand of KG ⊗Ap,K [j ]. As noted in [24, (3.2)], there is an
isomorphism

τGK (KG⊗Ap,K [j ])⊕ (proj.) ∼= KG⊗Ap,K [j ],

whence nj (M, αK) = nj (τG(M), αK) for 1 ≤ j ≤ p − 1. Thus, Proposition 4.1.1 holds
for every quasi-simple module M ∈ 2.

Let 2 ⊆ 0s(G) be an infinite component that is not αK -split for some π -point αK
in 5t(G). The utility of the above result crucially depends on

(a) all relatively αK -projective modules M ∈ 2 being quasi-simple, and
(b) the knowledge of the multiplicity nj of MK as a summand of KG ⊗Ap,K [j ] for

1 ≤ j ≤ p − 1.

Proposition 4.1.3 below addresses these issues for relatively αK -projective modules
whose tops contain one-dimensional modules. We begin with the following easy obser-
vation:

Lemma 4.1.2. Let αK ∈ 5t(G) be a π -point and j ∈ {1, . . . , p}. If S is a simple
G-module, then SK is a simple GK -module that occurs in TopGK (KG ⊗Ap,K [j ]) with

multiplicity dimK ker tj
α∗K (SK )

.

Proof. Since k is algebraically closed, we have EndG(S) ∼= k, whence EndGK (SK) ∼=
K ⊗k k ∼= K . Hence SK is simple, and Frobenius reciprocity implies

HomGK (KG⊗Ap,K [j ], SK)
∼= HomAp,K ([j ], α

∗

K(SK)).

Since dimK EndGK (SK) = 1, the dimension of the former space counts the multiplic-
ity of SK in TopGK (KG ⊗Ap,K [j ]). Writing α∗K(SK) ∼=

⊕p

i=1 αK,i(S)[i], we obtain
dimK HomAp,K ([j ], α

∗

K(SK)) =
∑p

i=1 min{i, j}αK,i(S). As observed in the proof of

Proposition 2.3, the latter number coincides with dimK ker tj
α∗K (SK )

. ut
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Proposition 4.1.3. Suppose that p ≥ 3, and let G be a finite group scheme of infinite
representation type. LetM be a non-projective, indecomposable, relatively αK -projective
G-module such that TopG(M)⊕ SocG(M) contains a one-dimensional submodule.

(1) The component 2 ⊆ 0s(G) containing M is isomorphic to Z[A∞]/〈τm〉 for some
m ≥ 1.

(2) The module M is quasi-simple.
(3) There exists a non-zero vector (n1, . . . , np−1) ∈ {0, 1}p−1 such that

αK,i(X) =
(
αK,i(M)−

p−1∑
j=1

aijnj

)
q`(X)+

p−1∑
j=1

aijnj , 1 ≤ i ≤ p − 1,

for every X ∈ 2.

Proof. (1) By assumption, there exists an algebra homomorphism λ : kG→ k such that
the one-dimensional G-module kλ associated to λ occurs as a summand of the module
TopG(M)⊕ SocG(M).

In view of Proposition 2.3, the component 2 is either a finite or an infinite tube.
In the former case, Auslander’s Theorem [3, (VII.2.1)] implies that 2 contains all non-
projective indecomposable modules of the block BM containing M . Thus, BM has finite
representation type and kλ belongs to BM . The convolution idkG ∗λ is an automorphism
of kG that sends the block BM onto the principal block B0(G) of kG. Consequently, B0(G)

is representation-finite, and [28, (3.1)] implies that kG enjoys the same property, a contra-
diction.

(2) We first assume that TopG(M) contains a one-dimensional module. SinceM is rel-
atively αK -projective, Lemma 2.2 provides a j ∈ {1, . . . , p− 1} such that MK is a direct
summand ofKG⊗Ap,K [j ]. ThenKλ ∼= kλ⊗KK is a direct summand of TopGK (MK) (cf.
[45, (3.5)]), and Lemma 4.1.2 shows thatKλ occurs in Top(KG⊗Ap,K [j ])with multiplic-
ity 1. Accordingly, MK is the unique indecomposable direct summand of KG ⊗Ap,K [j ]

such that Kλ | TopGK (MK).
As observed in the preceding remarks, we have

τGK (KG⊗Ap,K [j ])⊕ (proj.) ∼= KG⊗Ap,K [j ],

so that τGK (MK) is also a direct summand of KG ⊗Ap,K [j ]. We now define ` :=
min{n ≥ 1; τnG(M)

∼= M}. Since τ `G|2 is an automorphism of2 preserving quasi-lengths,
we conclude that τ `G|2

∼= id2. Consequently, 2 ∼= Z[A∞]/〈τ `〉.
Suppose that the G-module kλ belongs to 2. Then kλ has complexity ≤ 1, and the

formula cxG(M ⊗k kλ) ≤ cxG(kλ) implies that every G-module has complexity ≤ 1. By
general theory (cf. [56, (6.8)]),

G = G0 o Gred

is the semidirect product of an infinitesimal normal subgroup G0 and a reduced group Gred.
Thus, the complexities of the trivial modules for the subgroups Gred and G0 are also
bounded by 1.
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Suppose that cxGred(k) = 1. Then Gred is not linearly reductive and there exists a
closed subgroup P ⊆ Gred such that P(k) ∼= Z/(p). If cxG0(k) = 1, then the proof of
[28, (3.1)] ensures the existence of a closed subgroup U ⊆ G0 such that U ∼= Ga(1) is
isomorphic to the first Frobenius kernel of the additive group and with P acting trivially
on U. Consequently,

2 = cxU×P(k) ≤ cxG(k),

a contradiction. We conclude that cxG0(k) = 0. Hence the normal subgroup G0 � G is
linearly reductive, and [23, (1.1)] provides a normal subgroup N � Gred such that

(a) p - ord(N(k)), and
(b) the principal block B0(G) is isomorphic to B0(Gred/N).

In particular, the trivial module of the finite group G(k)/N(k) has complexity 1 and is
thus periodic (cf. [5, (5.10.4)]). Owing to [13, (XII.11.6)], this implies that the Sylow-p-
subgroups of G(k)/N(k) are either cyclic, or generalized quaternion. In the former case,
Higman’s Theorem [42, Thm. 4] ensures that B0(G) ∼= B0(Gred/N) has finite representa-
tion type, and [28, (3.1)] yields a contradiction. Alternatively, p = 2, which contradicts
our current assumption.

Consequently, cxGred(k) = 0, and the group Gred is linearly reductive. A consecu-
tive application of [28, (2.7)] and [28, (3.1)] now shows that G is representation-finite, a
contradiction.

Thus, we have kλ 6∈ 2, and the defining property of almost split sequences implies
that the function X 7→ dimk HomG(τ

n
G(X), kλ) is additive on 2 for every n ≥ 0. Since

2 ∼= Z[A∞]/〈τ `〉, the map

dλ : 2→ N, X 7→

`−1∑
n=0

dimk HomG(τ
n
G(X), kλ),

is a τG-invariant, additive function. By Lemma 1.4, there exists r ∈ N with

dλ(X) = r q`(X) ∀X ∈ 2.

Owing to [45, (2.5), (3.6)], the modules τnGK (MK), 0 ≤ n ≤ ` − 1, are pairwise non-
isomorphic summands of KG ⊗Ap,K [j ]. Consequently, dλ(M) = 1, so that q`(M) = 1
and M is quasi-simple.

If SocG(M) contains a one-dimensional module, then observing that kG is a Frobe-
nius algebra, we conclude that the top of the injective hull E(M) of M contains a one-
dimensional module. Consequently, TopG(�

−1
G (M)) has a one-dimensional constituent.

The isomorphism

�−1
GK
(KG⊗Ap,K [i])⊕ (proj.) ∼= KG⊗Ap,K [p − i] (∗)

ensures that �−1
G (M) is relatively αK -projective. As a result, the module �−1

G (M) is
quasi-simple. Since �−1

G induces an automorphism of the quiver 0s(G), the module M
enjoys the same property.

(3) Now let N ∈ 2 be an arbitrary relatively αK -projective G-module. Since
2 ∼= Z[A∞]/〈τm〉 andM is quasi-simple, there exist a surjection τ `G(N)→ M as well as
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an injection M → τ sG(M) for some `, s ∈ {0, . . . , m− 1}. As τ `G(N) and τ sG(N) are also
relatively αK -projective, part (2) ensures that τ `G(N) or τ sG(N) are quasi-simple. Thus, N
is also quasi-simple.

Suppose that kλ ⊆ TopG(M). Let j ∈ {1, . . . , p − 1}. If nj is the multiplicity of MK

in KG⊗Ap,K [j ], then the one-dimensional module Kλ occurs in TopGK (KG⊗Ap,K [j ])

with multiplicity mj ≥ nj . Lemma 4.1.2 now shows that mj is bounded by 1.
If kλ ⊆ SocG(M), then nj (�−1

G (M), αK) ∈ {0, 1}. In view of (∗), we have nj (M, αK)
= np−j (�

−1
G (M), αK), so that nj (M, αk) ∈ {0, 1}. The assertion thus follows from

Proposition 4.1.1. ut

Remarks. (1) The proof shows that Proposition 4.1.3 also holds for p = 2 as long as the
Sylow 2-subgroup of G(k) is not generalized quaternion.

(2) Let αk ∈ 5t(G) be a π -point that is defined over k, and denote by P(k) the
projective cover of the trivial G-module k. The canonical map

µ : kG⊗Ap,k k→ k, a ⊗ 1 7→ ε(a),

affords an Ap,k-linear splitting γ : k→ kG⊗Ap,k k, s 7→ 1⊗ s. If

kG⊗Ap,k k = P(k)⊕X,

then Lemma 4.1.2 implies that k is not a top composition factor ofX, whenceµ(X) = (0).
Consequently, the trivial Ap,k-module k is a direct summand of the projective module
α∗k (P (k)), a contradiction. As a result, kG ⊗Ap,k k possesses a non-projective, indecom-
posable constituent with k being a composition factor of its top. The arguments of Lemma
4.3.1 below show that this applies to every one-dimensional G-module.

4.2. Special types of π -points

In this section we shall provide another two criteria ensuring that certain relatively pro-
jective modules are quasi-simple. We fix a π -point αK ∈ 5t(G) such that [αK ] ∈ 5(G)
is closed.

Proposition 4.2.1. Let M be a non-projective indecomposable relatively αK -projective
module which is contained in an infinite component 2 ⊆ 0s(G). If either

(a) KGαK(t) is an ideal of KG, or
(b) there exists an abelian unipotent normal subgroup U⊆GK of complexity cxU(K)=1

such that imαK ⊆ KU,

then M is quasi-simple.

Proof. Assuming (a), we have αK(t)KG ⊆ KGαK(t), whence αK(t)iKG ⊆ KGαK(t)
i

for all 1 ≤ i ≤ p − 1. Thus, Ii := KGαK(t)
i is an ideal of KG. Since M is relatively

αK -projective, there exists i ∈ {1, . . . , p − 1} such that MK |KG ⊗Ap,K [i]. Since the
homomorphism αK factors through an abelian unipotent subgroup, it is also right flat and
the natural map KG → KG ⊗Ap,K [i], a 7→ a ⊗ 1, induces an isomorphism KG/Ii ∼=
KG ⊗Ap,K [i]. Thus, MK is isomorphic to a principal indecomposable (KG/Ii)-module
and hence has a simple top. Consequently, M enjoys the same property (cf. [45, (3.3)]).
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Assuming (b), we infer thatMK is a direct summand ofKG⊗KUN for some indecom-
posable KU-module N . Since cxU(K) = 1, it follows that KU ∼= K[X]/(Xp

n
) as well

as N ∼= K[X]/(Xi) for some i ∈ {1, . . . , pn− 1}. Thus, KG⊗KU N ∼= KG/KGxi , with
x being the canonical generator of KU. As U is normal, the left ideal KGKU†

= KGx is
an ideal of KG, and the arguments employed above guarantee that TopG(M) is simple.

Recall that the indecomposable G-module �−1
G (M) is also relatively αK -projective.

Consequently, �−1
G (M) has a simple top, implying that M has a simple socle.

Since τ `G(M) is relatively αK -projective for all ` ∈ Z and 2 is infinite, we may apply
[19, (1.2)] to conclude that M is quasi-simple. ut

Corollary 4.2.2. Suppose that imαK is contained in the center Z(KG) of KG. Let M be
a non-projective indecomposable relatively αK -projective module which is contained in
an infinite component2 ⊆ 0s(G). Then there exist j ∈ {1, . . . , p−1} andm, n ∈ N with
m ≥ 2n such that

αK,i(X) =

 (m− 2n) q`(X)+ 2n for i = j,
n(q`(X)− 1) for i = j − 1, j + 1,
0 for i 6= j, j + 1, j − 1,

for every X ∈ 2 and i ∈ {1, . . . , p − 1}.

Proof. By assumption, KGαK(t) is an ideal of KG. Let j ∈ {1, . . . , p − 1} be such that
MK |KG⊗Ap,K [j ]. Since αK(t) is central, we obtain α∗K(KG⊗Ap,K [j ])

∼=
( dimk kG

p

)
[j ].

Hence there exists m ∈ N with

α∗K(MK) ∼= m[j ].

This readily implies ni(M, αK) = nδij , 1 ≤ i ≤ p − 1, for some n ∈ N. The as-
serted formula now follows by applying Propositions 4.2.1 and 4.1.1 consecutively. Since
αK,j (X) ≥ 0 for all X ∈ 2, we also conclude that m ≥ 2n. ut

4.3. Trigonalizable group schemes

Throughout this section we consider a trigonalizable finite group scheme G. By definition,
all simple G-modules are one-dimensional. The Theorem of Lie–Kolchin ensures that the
Frobenius kernels of the smooth connected solvable algebraic groups belong to this class.

By general theory (cf. [17, IV, §2,3.5]), G = U o D is a semidirect product of a
unipotent normal subgroup U and a diagonalizable factor D. Thus, the coordinate ring
k[D] = kX(D) is the group algebra of the finite group X(D) of characters of D. If K : k
is a field extension, then

K[DK ]
∼= k[D] ⊗k K ∼= KX(D),

so that DK is diagonalizable with character group X(DK) = X(D).
Since U is unipotent, the canonical restriction map X(G) → X(D) is an isomor-

phism. Given λ ∈ X(G), we let kλ be the one-dimensional G-module defined by λ. Thus,
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{kλ; λ ∈ X(G)} is a complete set of representatives for the isomorphism classes of simple
G-modules. By the above, these observations also apply to the group GK given by an
extension field K of k. We will henceforth identify X(GK) with X(G).

Lemma 4.3.1. Let αK ∈ 5t(G) be a π -point, and j ∈ {1, . . . , p}.

(1) TopGK (KG⊗Ap,K [j ])
∼=
⊕

λ∈X(G)Kλ.
(2) (KG⊗Ap,K [j ])⊗K Kλ

∼= KG⊗Ap,K [j ] for all λ ∈ X(G).
(3) τGK (KG⊗Ap,K [j ])

∼= KG⊗Ap,K [j ] for 1 ≤ j ≤ p − 1.

Proof. (1) This follows directly from Lemma 4.1.2.
(2) Since G/U is diagonalizable, every π -point αK of G factors through U. Define

V [j ] := KU⊗Ap,K [j ], so that

KG⊗Ap,K [j ]
∼= KG⊗KU V [j ].

The tensor identity [44, (I.3.6)] then yields

(KG⊗KU V [j ])⊗k Kλ ∼= KG⊗KU (V [j ] ⊗K (Kλ|U)) ∼= KG⊗KU V [j ]

for every character λ ∈ X(G).
(3) Let j ∈ {1, . . . , p − 1}. Consider the exact sequence

(0)→ KG⊗Ap,K [p − j ] → KG
π
−→ KG⊗Ap,K [j ] → (0).

According to (1), we have TopGK (KG) = TopGK (KG ⊗Ap,K [j ]), so that (KG, π) is a
projective cover ofKG⊗Ap,K [j ]. Consequently,�GK (KG⊗Ap,K [j ])

∼= KG⊗Ap,K [p−j ],
and �2

GK
(KG⊗Ap,K [j ])

∼= KG⊗Ap,K [j ]. Since τGK is the composite of �2
GK

with the
functor M → M ⊗K Kζ , defined by the modular function ζ ∈ X(G), part (2) yields the
desired isomorphism. ut

Given a G-module M , we let

StabX(G)(M) := {λ ∈ X(G); M ⊗k Kλ ∼= MK}

be the stabilizer of M . Let K be an extension field of k. By the above observations, we
haveMK ⊗K Kλ ∼= (M ⊗k kλ)K for every λ ∈ X(G). It now follows from [45, (2.5)] that

StabX(G)(M) = StabX(G)(MK).

Recall that a GK -module N is said to be defined over k if there exists a G-module M such
that N ∼= MK .

Lemma 4.3.2. Let M ∈ modG be a non-projective indecomposable G-module, and let
αK ∈ 5t(G) be a π -point. If M is relatively αK -projective, then there exists a unique
j ∈ {1, . . . , p − 1} and a subset XM ⊆ X(G) of cardinality [X(G) : StabX(G)(M)] such
that

KG⊗Ap,K [j ]
∼=

⊕
λ∈XM

MK ⊗K Kλ.

In particular, dimk TopG(M) = ord(StabX(G)(M)), and the module KG ⊗Ap,K [j ] is
defined over k.
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Proof. By virtue of Lemma 2.2, the Gk-moduleMK is a direct summand ofKG⊗Ap,K [j ]

for some j ∈ {1, . . . , p − 1}. We decompose

KG⊗Ap,K [j ]
∼= M1 ⊕ · · · ⊕Mn

into its indecomposable constituents, where M1 ∼= MK . In view of Lemma 4.3.1(1), the
corresponding decomposition of its top yields a partition

X(G) =
n⊔
i=1

Xi,

where TopGK (Mi) ∼=
⊕

λ∈Xi
Kλ. Note that the isoclass of Mi is uniquely determined

by Xi .
Let λ ∈ X(G). Owing to Lemma 4.3.1, theKG-moduleM1⊗K Kλ is an indecompos-

able direct summand of KG⊗Ap,K [j ]. Hence there exists exactly one i(λ) ∈ {1, . . . , n}
such thatM1⊗K Kλ ∼= Mi(λ). It readily follows that Xi(λ) = λ.X1. Let XM ⊆ X(G) be a
complete set of left coset representatives for StabX(G)(M). Since StabX(G)(M).X1 = X1,
we obtain

X(G) =
⋃

λ∈X(G)

λ.X1 =
⋃
λ∈XM

λ.X1 =
⊔
λ∈XM

λ.X1.

Thus, N :=
⊕

λ∈XM
M1⊗K Kλ is a direct summand ofKG⊗Ap,K [j ] with TopGK (N)

∼=⊕
λ∈X(G)Kλ

∼= TopGK (KG ⊗Ap,K [j ]), whence KG ⊗Ap,K [j ]
∼=
⊕

λ∈XM
MK ⊗K Kλ.

By definition, we have |XM | = [X(G) : StabX(G)(M)]. Since

dimk kG

p
j = [X(G) : StabX(G)(M)] dimkM,

the number j is completely determined by M .
In view of [45, (3.5)], we have TopG(M)K ∼= TopGK (MK), whence

dimk TopG(M) = dimK TopGK (MK) = |X1| = ord(StabX(G)(MK))

= ord(StabX(G)(M)),

as desired. ut

Theorem 4.3.3. Let M be a non-projective, indecomposable, relatively αK -projective
G-module. Suppose that G is not of finite representation type.

(1) The component 2 ⊆ 0s(G) containing M is a tube of rank `, where ` | ord(X(G)).
(2) The module M is quasi-simple.
(3) There exists j ∈ {1, . . . , p − 1} such that

αK,i(X) = (αK,i(M)− aij ) q`(X)+ aij , 1 ≤ i ≤ p − 1,

for every X ∈ 2.
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Proof. (1) By Lemma 4.3.1(3) and [45, (3.6)], the module τG(M)K ∼= τGK (MK) is a
direct summand of KG ⊗Ap,K [j ]. Hence Lemma 4.3.2 provides a character λ0 ∈ X(G)

such that τGK (MK) ∼= MK ⊗K Kλ0 . In view of [45, (2.5)], we thus obtain

τG(M) ∼= M ⊗k kλ0 .

Hence there exists a divisor ` of ord(X(G)) such that τ `G(M)
∼= M and τ `−1

G (M) 6∼= M .
As observed in the proof of Proposition 4.1.3, this implies that 2 ∼= Z[A∞]/〈τ `〉.

(2) Suppose there exists γ ∈ X(G) with kγ ∈ 2. In view of the above, the functor

tλ0 : modG→ modG, X 7→ X ⊗k kλ0 ,

is an auto-equivalence of modG that commutes with τG. Moreover, t−λ0 ◦ τG sends 2
to 2 and fixes M . As t−λ0 ◦ τG preserves the quasi-length of a module, it follows that
t−λ0 ◦ τG|2 = id2, whence τG = tλ0 . This implies τG(kγ ) ∼= kλ0+γ .

Now let ω ∈ X(G) be an arbitrary character. Then

τG(kω) ∼= τG(kγ ⊗k kω−γ ) ∼= τG(kγ )⊗k kω−γ ∼= kγ+λ0 ⊗k kω−γ
∼= kω+λ0 .

As a result, τG sends simple modules to simple modules and [3, (IV.2.10)] implies that
kG is a Nakayama algebra. In particular, kG is representation-finite, a contradiction.

The arguments for Proposition 4.1.3(2) now show that M is quasi-simple.
(3) By Lemma 4.3.2, there exists a unique j ∈ {1, . . . , p−1} such thatMK is a direct

summand of KG ⊗Ap,K [j ]. Since MK occurs in KG ⊗Ap,K [j ] with multiplicity 1, it
follows that the multiplicities ni of MK in Ni := KG⊗Ap,K [i] are given by

ni = δij .

In view of (2), Proposition 4.1.1 implies

αK,i(X) =
(
αK,i(M)−

p−1∑
`=1

ai`n`

)
q`(X)+

p−1∑
`=1

ai`n` = (αK,i(M)− aij ) q`(X)+ aij

for every X ∈ 2 and i ∈ {1, . . . , p − 1}. ut

Remark. If G is an infinitesimal supersolvable group of infinite representation type, then
the principal block B0(G) is isomorphic to the algebra of measures of a trigonalizable
group G′ (cf. [28, (2.3), (2.4)]). Hence the foregoing result also holds for indecomposable
relatively projective modules that belong to B0(G).

Corollary 4.3.4. Let U be a unipotent finite group scheme of infinite representation type,
and αK : Ap,K → KU be a π -point. Suppose that M is an indecomposable, relatively
αK -projective U-module.

(1) The module TopU(M) is simple andMK
∼=KU⊗Ap,K [j ] for some j ∈{1, . . . , p−1}.

(2) The component 2M ⊆ 0s(U) containing M is isomorphic to Z[A∞]/〈τ 〉, and M is
quasi-simple.

(3) There exists j ∈ {1, . . . , p − 1} such that

αK,i(X) = (αK,i(M)− aij ) q`(X)+ aij , 1 ≤ i ≤ p,

for every X ∈ 2M .
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Proof. Since X(U) = {1}, our assertions are direct consequences of Lemma 4.3.2, Theo-
rem 4.3.3, and the remark succeeding Proposition 4.1.1, respectively. ut

Remarks. (1) Corollary 4.3.4 shows in particular that, among the functions αK,i :
2→ N0, at least p − 3 are additive.

(2) According to [26, (1.3)], a unipotent group U whose algebra of measures has finite
representation type either corresponds to the group Z/(p), or is “V-uniserial”. A classifi-
cation of the latter groups is given in [26, (1.2)]. The algebra kU is a truncated polynomial
ring k[X]/(Xp

n
).

In the following examples, we shall be concerned with enveloping algebras of re-
stricted Lie algebras. By definition, a restricted Lie algebra is a pair (g, [p]) consisting
of a Lie algebra g and a map g → g, x 7→ x[p], that enjoys the formal properties of an
associative p-th power. We refer the reader to [52, Chap. II] for further details. For our
present purposes, it suffices to know that, given a Lie algebra g with basis (xi)i∈I , any
map xi 7→ x

[p]
i with ad x[p]i = (ad xi)p uniquely extends to a p-map on g.

In view of [17, II, §7, no. 4], restricted Lie algebras correspond to infinitesimal groups
of height ≤ 1 in the sense that

kG ∼= U0(g),

whereU0(g) is the restricted enveloping algebra of the restricted Lie algebra g := Lie(G).
By definition,

U0(g) = U(g)/({x
p
− x[p]; x ∈ g})

is a finite-dimensional Hopf algebra quotient of the ordinary universal enveloping alge-
bra U(g). In particular, unipotent infinitesimal group schemes of height ≤ 1 correspond
to unipotent restricted Lie algebras, that is, to Lie algebras with a nilpotent p-map.

Examples. (1) Let U be a unipotent group scheme such that dim5(U) ≥ 1. Suppose
that αK : Ap,K → KU is a π -point that factors through the center Z(KU) of KU. Let
2 ⊆ 0s(U) be a component that is not αK -split. Then 2 ∼= Z[A∞]/〈τ 〉, and the quasi-
simple module M ∈ 2 satisfies MK

∼= KU ⊗Ap,K [j ] for some j ∈ {1, . . . , p − 1}, so
that there exists r ∈ N with αK,i(M) = δij

( dimk kU
p

)
= δijp

r for 1 ≤ i ≤ p (cf. [56,
(6.7), (14.4)]). Corollary 4.2.2 thus yields

αK,i(X) =

 (p
r
− 2) q`(X)+ 2 for i = j,

q`(X)− 1 for i = j − 1, j + 1,
0 for i 6= j, j + 1, j − 1,

for every X ∈ 2 and 1 ≤ i ≤ p − 1.
(2) We consider the three-dimensional Heisenberg algebra h = kx ⊕ ky ⊕ kz, with

product and p-map given by

[x, y] = z, [x, z] = 0 = [y, z] and x[p] = y[p] = z[p] = 0.
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The U0(h)-module Mx := U0(h) ⊗U0(kx) k is indecomposable and relatively projective
with respect to the π -point αk : Ap,k → U0(h) that sends t to x. The Cartan–Weyl
identities (cf. [52, (I.1.3)]) yield

xyn = ynx + nyn−1z ∀n ≥ 0,

so that x.(ynzm⊗ 1) = nyn−1zm+1
⊗ 1. Consequently, for every ` ∈ {0, . . . , 2p− 2}, the

k-space Mx(`) :=
⊕

n+m=` k(y
nzm ⊗ 1) is a U0(kx)-submodule of M . We thus obtain

α∗k (Mx) =

p−1⊕
`=0

α∗k (Mx(`))⊕

2p−2⊕
`=p

α∗k (Mx(`)) ∼=

p−1⊕
`=0

[`+ 1] ⊕
2p−2⊕
`=p

[2p − `− 1]

∼=

p−1⊕
`=1

2[`] ⊕ [p].

Now let 2 ⊆ 0s(h) be the component containing Mx . Given X ∈ 2, Corollary 4.3.4
implies

αk,i(X) =

2 for i = 1,
(3− δp,2) q`(X)− 1 for i = 2,
(2− δi,p) q`(X) for 3 ≤ i ≤ p.

Since z ∈ Z(U0(h)), the choice αk(t) := z and Mz := U0(h) ⊗U0(kz) k leads to the
formulae of (1) with r = 2.

(3) According to Lemma 2.2, the π -points αK for which a given G-module is relatively
αK -projective all belong to one equivalence class. The following example shows that the
converse does not hold. Let u := kx ⊕ ky be the two-dimensional abelian restricted Lie
algebra with trivial p-mapping. ThenMx := U0(u)⊗U0(kx)k is an indecomposableU0(u)-
module of dimension p. Let αk : Ap,k → U0(u) be the π -point given by αk(t) := x.
ThenM is relatively αk-projective and α∗k (Mx) = p[1]. According to [35, (2.2)], the map
βk : Ap,k → U0(u) defined via βk(t) := x + yp−1 is a π -point such that βk ∼ αk . Since

βk(t)
i.(yj ⊗ 1) =


yj ⊗ 1 for i = 0,
yp−1

⊗ 1 for (i, j) = (1, 0),
0 else,

we see that βk(Mx) = (p − 2)[1] ⊕ [2]. In view of (1), the module Mx is not relatively
βk-projective whenever p ≥ 3.

Examples. For p ≥ 3 we consider the restricted Lie algebra g := kt ⊕ kx ⊕ ky, whose
bracket and p-map are given by

[t, x] = x, [t, y] = 2y, [x, y] = 0 and t [p] = t, x[p] = 0 = y[p].

Every simple U0(g)-module is annihilated by the p-ideal kx ⊕ ky and thus one-dimen-
sional. Hence g is trigonalizable.
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(1) Suppose that αk : Ap,k → U0(g) is given by αk(t) := ky. We consider the U0(g)-
module

V := U0(g)⊗U0(ky) k.

Direct computation shows that y annihilates V , so that V ∼= U0(g/ky) is a U0(g/ky)-
module. As such it has p-indecomposable constituents, each having a simple top.

(2) Suppose that αk(t) = x + y =: v and consider

V := U0(g)⊗U0(kv) k.

Consider the π -point βk defined by βk(t) := x. Since β∗k (V ) is projective, the dimension
of every constituent M |V is a multiple of p. Lemma 4.3.2 now shows that dimkM = p

for every proper summand M . Using techniques from [25] one can then show that V is
indecomposable.

Corollary 4.3.5. Let G be a trigonalizable finite group scheme of infinite representation
type, and M be a non-projective indecomposable G-module. If αK : Ap,K → KG is a
π -point such that αK,j (M) ≤ 1 for 1 ≤ j ≤ p−1, thenM is not relatively αK -projective.

Proof. Suppose thatM is relatively αK -projective and let2 be the stable AR-component
containing M . Theorem 4.3.3 provides j ∈ {1, . . . , p − 1} such that

αK,j (X) = (αK,j (M)− 2) q`(X)+ 2 ≤ 2− q`(X)

for all X ∈ 2. Since αK,j (X) ≥ 0, this cannot happen. ut

Remark. Let G = SL(2)1 be the first Frobenius kernel of SL(2). In Section 8 below, we
shall see that, for every non-projective baby Verma module Z(λ), the π -points αK giving
rise to elements of 5(SL(2)1)Z(λ) all satisfy αK,j (M) ≤ 1 for 1 ≤ j ≤ p − 1. On the
other hand, one can show that Z(λ) is relatively αK -projective for each of these π -points.

4.4. Modules with cyclic vertices

For finite groups, the Mackey decomposition theorem along with the theory of vertices of
indecomposable modules provides better control over relatively projective modules. Let
G be a finite group, and M be an indecomposable G-module. Recall that a p-subgroup
D ⊆ G is called a vertex ofM ifM | (kG⊗kDV ) for someD-module V andD is minimal
subject to this property. All vertices of M are conjugate, and we write D = vx(M) (cf.
[4, (3.10)]).

Theorem 4.4.1. Suppose that p ≥ 3. Let G be a finite group, and αK ∈ 5t(G) be a
π -point that factors through a cyclic p-subgroup C ⊆ G. Let M be a non-projective
indecomposable relatively αK -projective G-module belonging to a block of infinite rep-
resentation type.

(1) M is quasi-simple with component 2 ∼= Z[A∞]/〈τ q〉.
(2) If βL ∈ 5t(G) is a π -point factoring through C, then M is relatively βL-projective.
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(3) There exist j ∈ {1, . . . , p − 1} and m, n ∈ N with m ≥ 2n such that

βL,i(X) =

 (m− 2n) q`(X)+ 2n for i = j,
n(q`(X)− 1) for i = j − 1, j + 1,
0 for i 6= j, j + 1, j − 1,

for every X ∈ 2 and every βL ∈ 5t(G) that factors through C.
(4) vx(M) ∼= Z/(p).

Proof. (1) By assumption, there exists a KC-module V such that the indecomposable
KG-module MK is a direct summand of

KG⊗Ap,K α
∗

K(MK) ∼= KG⊗KC V.

As a result, the vertex vx(MK) of MK is contained in C and hence is cyclic. If the block
of KG containing the indecomposable KG-module MK has finite representation type,
then [45, (2.5)] implies that the block containing M enjoys the same property, a con-
tradiction. In view of [19, Theorem], the module MK is quasi-simple. According to [45,
(3.8)], EM⊗kK is the almost split sequence terminating inMK . HenceM also has exactly
one predecessor in 2. As a result, the G-module M is also quasi-simple.

(2) Let X ∈ 2 be arbitrary. Since C is cyclic, we have dim5(C) = 0, so that every
π -point of C is generic. According to [37, (4.2)], we have

Jt(X|C, αK) = Jt(X|C, βL),

whence αK,i(X) = βL,i(X) for 1 ≤ i ≤ p − 1.
By (1), every relatively αK -projective module belonging to 2 is quasi-simple. Hence

Proposition 4.1.1 provides (n1, . . . , np−1) ∈ Np−1
0 \ {0} such that

αK,i(X) =
(
αK,i(M)−

p−1∑
j=1

aijnj

)
q`(X)+

p−1∑
j=1

aijnj , 1 ≤ i ≤ p − 1,

for every X ∈ 2. Hence this formula also holds for the functions βL,i : 2→ N0, so that
`(βL,i) ≤ 2 with equality holding for at least one i ∈ {1, . . . , p − 1}. In view of (1) and
Corollary 2.5 the module M is relatively βL-projective.

(3) The subgroup C ⊆ G contains an element g of order p, and we define α(g)k :
Ap,k → kG via α(g)k(t) := g − 1. By (2), there exists j ∈ {1, . . . , p − 1} such that the
G-module M is a direct summand of kG⊗kCp [j ], where we set Cp := 〈g〉. The Mackey
decomposition theorem yields

α(g)∗k(kG⊗kCp [j ])
∼= (kG⊗kCp [j ])|kCp

∼= `[j ] ⊕ s[p],

so that α(g)∗k(M) ∼= m[j ] ⊕ t[p] for some m ≥ 1. This implies in particular that the
number j defined above is uniquely determined, whence ni(M, α(g)k) = δi,jn for some
n ∈ N. In view of Proposition 4.1.1, the asserted formula holds for the π -point α(g). As
noted earlier, it thus holds for any π -point βL factoring through C.

Finally, since α(g)∗k,j (X) ≥ 0 for all X ∈ 2, we have m ≥ 2n.



958 Rolf Farnsteiner

(4) Since M is a direct summand of kG ⊗kCp [j ], the vertex vx(M) is either trivial,
or isomorphic to Z/(p). In the former case, M is projective, a contradiction. ut

We can endow the truncated polynomial ring Ap,k with the structure of a Hopf algebra
such that Ap,k ∼= kZ/(p). Then we have:

Corollary 4.4.2. Let αK ∈ 5t(G) be a π -point, which is a homomorphism KZ/(p)→
KG of Hopf algebras. If M is a non-projective indecomposable relatively αK -projective
module with infinite AR-component 2, then 2 ∼= Z[A∞]/〈τ q〉 and there exist j ∈
{1, . . . , p − 1} and m, n ∈ N with m ≥ 2n such that

αK,i(X) =

 (m− 2n) q`(X)+ 2n for i = j,
n(q`(X)− 1) for i = j − 1, j + 1,
0 for i 6= j, j + 1, j − 1,

for every X ∈ 2. ut

Remark. Proposition 8.1.1 below shows that the formulae of Corollary 4.4.2 do not nec-
essarily hold for infinitesimal group schemes G and π -points defined by Hopf algebra
homomorphisms kGa(1)→ kG.

5. Constantly supported modules

Retaining the general assumptions of Section 2, we consider those G-modules that have
constant Jordan type on their 5-supports. In case a G-module M has full 5-support
5(G)M = 5(G), this amounts to M being of constant Jordan type. We are thus led to
the following:

Definition. A G-module M is referred to as constantly supported if

(a) 5(G)M 6= 5(G), and
(b) |Jt(M)| = 2.

By virtue of Corollary 3.2.1, locally split stable Auslander–Reiten components either
contain no constantly supported modules, or consist entirely of such modules.

Our fundamental examples are given by direct summands of the Carlson modules Lζ .
Let (Pn, dn)n≥0 be a minimal projective resolution of the trivial G-module k. Then

HomG(�
n
G(k), k)→ Hn(G, k), ζ̂ 7→ [ζ̂ ◦ dn],

is an isomorphism. If ζ := [ζ̂ ◦ dn] 6= 0, then the Carlson module

Lζ := ker ζ̂ ⊆ �nG(k)

does not depend on the choice of the representing cocycle. In view of [5, (5.9.4)], we
postulate that the zero element corresponds to the modules Ln0 := �

n
G(k)⊕�G(k). Being

submodules of �nG(k) ⊕ �G(k), Lζ and Ln0 are projective-free, that is, they do not have
non-zero projective summands.
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Given ζ ∈ Hn(G, k) \ {0}, we note that Lζ = (0) if and only if �nG(k)
∼= k. Since

�nG(k) has constant Jordan type [p− 1] for n odd, we see that, for p ≥ 3, this degenerate
case can only occur if n is even. In view of

dim5(G) = dimVG(k)− 1 = cxG(k)− 1,

it follows that Lζ 6= (0) whenever dim5(G) ≥ 1.

Remark. If G is an infinitesimal group scheme andLζ = (0) for some ζ ∈ Hn(G, k)\{0},
then [28, (2.1)] implies that G is supersolvable. In view of [28, (2.4)], all simple modules
of the principal block B0(G) ⊆ kG are one-dimensional. Owing to [28, (2.7)], this block
is a Nakayama algebra, so that [3, (IV.2.10)] implies that dimk �

2m
G (k) = 1 for allm ≥ 0.

Thus, G affords no non-zero Carlson modules of even degree.

The cohomology ring
H∗(G, k) :=

⊕
m≥0

Hm(G, k)

is graded commutative, so that H•(G, k) :=
⊕

m≥0 H2m(G, k) is a commutative subal-
gebra. The importance of Carlson modules resides in their support varieties often being
hyperplanes of VG(k): The variety

VG(Lζ ) = Z(ζ )

is the zero locus of the homogeneous element ζ ∈ H•(G, k) (see [5, (5.9.1)], [35, (4.11)]).
In particular, Lζ 6= (0) for every non-zero nilpotent element ζ of even degree.

Recall that a G-module M is referred to as endo-trivial if

Endk(M) ∼= k ⊕ (proj.).

The following subsidiary result elaborates on [7, (4.1)].

Lemma 5.1. Let ζ ∈ H2n(G, k) \ {0} and write Lζ ∼= M1 ⊕ · · · ⊕Mr , with Mi indecom-
posable.

(1) If ζ is not nilpotent and M |Lζ is a non-zero summand, then M is constantly sup-
ported and

Jt(M) =
{(

dimkM

p

)
[p], [1] ⊕ [p − 1] ⊕ nM [p]

}
.

(2) If ζ is not nilpotent, then

5(G)Lζ =
r⊔
i=1

5(G)Mi

is the decomposition of 5(G)Lζ into its connected components.
(3) If ζ is nilpotent, then Lζ has constant Jordan type Jt(Lζ ) = {[1]⊕ [p− 1]⊕ nζ [p]}.

Moreover, Lζ is either indecomposable or a direct sum of two endo-trivial modules.
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Proof. We begin by proving a number of auxiliary statements.

(a) If [αK ] ∈ 5(G)Lζ , then Jt(Lζ , αK) = [1] ⊕ [p − 1] ⊕ nζ [p] for some nζ ∈ N0.

We consider the short exact sequence

(0)→ Lζ → �2n
G (k)

ζ̂
−→ k→ (0).

A π -point αK ∈ 5t(G) induces an exact sequence

(0)→ α∗K((Lζ )K)→ K ⊕ (proj.)
(f,g)
−−−→ K → (0).

Since [αK ] ∈ 5(G)Lζ , the module α∗K((Lζ )K) is not projective and we have f = 0.
Hence

α∗K((Lζ )K)
∼= K ⊕�Ap,K (K)⊕ (proj.),

so that
Jt(Lζ , αK) = [1] ⊕ [p − 1] ⊕ nζ [p]

for some nζ ∈ N0. 3

(b) Let M |Lζ be a non-zero summand such that dimkM ≡ 0 mod(p). Then

Jt(M, αK) = [1] ⊕ [p − 1] ⊕ nM [p] for all [αK ] ∈ 5(G)M .

If αK ∈ 5t(G) is a π -point with [αK ] ∈ 5(G)M ⊆ 5(G)Lζ (cf. [36, (3.3)]), then (a)
implies

α∗K(MK) | ([1] ⊕ [p − 1] ⊕ nζ [p]).

Accordingly, the projective-free part X of α∗K(MK) is a direct summand of [1] ⊕ [p− 1].
Since [αK ] ∈ 5(G)M , the Ap,K -module X is non-zero. Our assumption on M yields
dimK X ≡ 0 mod(p), so that X ∼= [1] ⊕ [p − 1]. Consequently, M has the asserted
Jordan type with respect to αK . 3

(c) Let i 6= j ∈ {1, . . . , r} be such that dimkMi, dimkMj ≡ 0 mod(p). Then 5(G)Mi
∩

5(G)Mj = ∅.

If [αK ] ∈ 5(G)Mi
∩5(G)Mj , then (b) yields

α∗K((M`)K) ∼= [1] ⊕ [p − 1] ⊕m`[p]

for ` ∈ {i, j}, which contradicts α∗K((Mi)K) ⊕ α
∗

K((Mj )K) being a direct summand of
α∗K((Lζ )K). 3

(1) Since the element ζ ∈ H•(G, k) is not nilpotent, [36, (3.3)] implies 5(G)M ⊆
5(G)Lζ 6= 5(G), so that dimkM ≡ 0 mod(p). The result now follows from (b).

(2) Arguing as in (1), we see that dimkMi ≡ 0 mod(p) for every i ∈ {1, . . . , r}. As
a result, [36, (3.3)] in conjunction with (c) implies

5(G)Lζ =
r⊔
i=1

5(G)Mi
,

while [10, (3.4)] (see also [7]) ensures the connectedness of each subspace 5(G)Mi
.
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(3) Since ζ 6= 0 is nilpotent, we have VG(Lζ ) = VG(k) 6= {0}. Thanks to [36, (3.4),
(3.6)], this implies5(G)Lζ = 5(G) 6= ∅. By (a), the module Lζ has constant Jordan type
Jt(Lζ ) = {[1] ⊕ [p− 1] ⊕ nζ [p]}. Let αK be a π -point. Each of the modules α∗K((Mi)K)

is a direct summand of [1] ⊕ [p − 1] ⊕ nζ [p], whence dimkMi ≡ 1,−1, 0 mod(p).
Suppose there exists i ∈ {1, . . . , r} such that dimkMi ≡ ` mod(p) for ` ∈ {1, p−1}.

Then 5(G)Mi
= 5(G), and there exists ni ∈ N such that α∗K((Mi)K) = [`] ⊕ ni[p]

for every π -point αK ∈ 5t(G). There also exists j ∈ {1, . . . , r} such that α∗K((Mj )K =
[p−`]⊕nj [p] for all αK ∈ 5t(G). Consequently, all other summands ofLζ are projective,
so that Lζ being projective-free yields r = 2. We may now apply [10, (5.6)] to see that
each summand is endo-trivial.

Alternatively, dimkMi ≡ 0 mod(p) for every i ∈ {1, . . . , r}. According to (c), this
implies

5(G) = 5(G)Lζ =
r⊔
i=1

5(G)Mi
,

which, in view of 5(G) being connected (cf. [10, (3.4)]), yields r = 1. ut

Remarks. (1) The above result shows in particular that, for a non-nilpotent element ζ ∈
H2n(G, k), the indecomposable summands of Lζ occur with multiplicity one. By the same
token, the G-module Mi ⊗k Mj is projective whenever i 6= j (cf. [36, (3.2)]).

(2) We shall see in Theorem 6.3.1 that the second alternative in Lemma 5.1(3) does
not occur.

Theorem 5.2. Suppose that ζ ∈ H2n(G, k) is a non-nilpotent element. LetM be an inde-
composable summand of Lζ , 2 ⊆ 0s(G) be the component containing M .

(1) If 2 is locally split, then every N ∈ 2 is constantly supported and

Jt(N) =
{(

dimk N

p

)
[p], f2(N)[1] ⊕ f2(N)[p − 1] ⊕mN [p]

}
.

(2) If T̄2 ∼= A∞ and 2 is locally split, then M is quasi-simple.

Proof. (1) Let αK be a π -point with [αK ] ∈ 5(G)2. Lemma 5.1 implies d2i (αK) =
δi,1 + δi,p−1 for 1 ≤ i ≤ p − 1, so that the assertion follows from Theorem 3.1.1.

(2) This follows directly from (1), Lemma 5.1 and Corollary 3.1.2. ut

Corollary 5.3. Suppose that dim5(G) ≥ 2. For every non-nilpotent homogeneous ele-
ment ζ ∈ H•(G, k) there exists a component 2ζ ⊆ 0s(G) such that

Jt(M) =
{(

dimkM

p

)
[p], f2ζ (M)[1] ⊕ f2ζ (M)[p − 1] ⊕ nM [p]

}
for every M ∈ 2ζ .

Proof. Let ζ ∈ H2n(G, k) be a non-nilpotent element. According to [36, (3.4), (3.6)], we
have

dim5(G)Lζ = dimVG(Lζ )− 1 ≥ dimVG(k)− 2 = dim5(G)− 1 ≥ 1.
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Lemma 5.1 provides an indecomposable summand Mζ |Lζ such that dim5(G)Mζ ≥ 1
and

Jt(Mζ ) =

{(
dimkMζ

p

)
[p], [1] ⊕ [p − 1] ⊕ nMζ [p]

}
.

Thus, letting 2ζ ⊆ 0s(G) be the stable AR-component containing Mζ , our assertion is a
consequence of Theorem 5.2. ut

We conclude this section with an application concerning trigonalizable group schemes.

Corollary 5.4. Suppose that p ≥ 3. Let G be a trigonalizable finite group scheme of
infinite representation type, and ζ ∈ H2n(G, k) be a non-nilpotent element. Then every
component 2 ⊆ 0s(G) containing an indecomposable direct summand of Lζ is locally
split.

Proof. Let X |Lζ be an indecomposable direct summand such that X ∈ 2. If αK :
Ap,K → KG is a π -point such that 2 is not αK -split, then Theorem 4.3.3 implies that
2 ∼= Z[A∞]/〈τm〉 for some m ≥ 1. By the same token, every relatively αK -projective
vertex of 2 is quasi-simple. Given such a module M , there is j ∈ {1, . . . , p − 1} with

αK,i(X) = (αK,i(M)− aij ) q`(X)+ aij , 1 ≤ i ≤ p − 1.

In view of Lemma 5.1 and Corollary 4.3.5, the module X is not relatively αK -projective,
so that q`(X) ≥ 2. Specializing i = j , we obtain

δj,1 + δj,p−1 − 2 = q`(X)(αK,j (M)− 2).

Since p ≥ 3, the left-hand side belongs to {−2,−1}, whence q`(X) = 2, as well as
j 6∈ {1, p − 1}. Consequently,

1 = (αK,i(M)− aij )2+ aij for i ∈ {1, p − 1},

so that a1,j 6= 0 6= ap−1,j . Since j 6= {1, p−1}, we obtain 2 = j = p−2, a contradiction.
ut

Remark. Let G = SL(2)1 be the first Frobenius kernel of SL(2). If ζ ∈ H2n(SL(2)1, k)
is a non-zero element, then ζ is not nilpotent and each indecomposable summand of Lζ
belongs to a homogeneous tube. We shall see in Section 8 that none of these components
is locally split and that each quasi-simple SL(2)1-module has dimension p. On the other
hand, the examples succeeding Theorem 6.1.5 show that certain Carlson modules have
indecomposable summands of dimension 2p. Thus, Theorem 5.2 may fail for components
of tree class A∞ that are not locally split.

6. Indecomposable Carlson modules

In view of the foregoing results, the question when a Carlson module Lζ is indecompos-
able arises. In this section, we provide indecomposability criteria for Carlson modules.
Depending on properties of ζ , these are established by means of support varieties or Jor-
dan types.
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6.1. Carlson modules of non-nilpotent elements

Here we study the case where ζ ∈ H•(G, k)\{0} is a non-nilpotent homogeneous element
of even degree.

Theorem 6.1.1. Suppose that m is a positive integer such that the variety VG(k) ⊆ Am
is equidimensional of dimension n ≥ (m+ 3)/2. If ζ ∈ H•(G, k) is a non-nilpotent
homogeneous element of positive degree, then Lζ is indecomposable.

Proof. In view of Lemma 5.1, it suffices to show that Proj(Z(ζ )) = Proj(VG(Lζ )) ∼=

5(G)Lζ is connected.
LetX, Y ⊆ Z(ζ ) be closed, conical subsets such that Z(ζ ) = X∪Y andX∩Y = {0}.

We denote by Irr(ζ ) the set of irreducible components of Z(ζ ). By general theory (cf. [46,
(I.§8)]), every Z ∈ Irr(ζ ) has dimension ≥ n− 1, and the equality

Z = (Z ∩X) ∪ (Z ∩ Y )

implies that Irr(ζ ) = I (X) ∪ I (Y ), where the subsets I (X), I (Y ) ⊆ Irr(ζ ) con-
tain those irreducible components lying inside X and Y , respectively. The assumption
I (X), I (Y ) 6= ∅ provides Z,Z′ ∈ Irr(ζ ) with Z ∩ Z′ = {0}. The affine dimension
theorem [41, (I.7.1)] then implies

0 = dimZ ∩ Z′ ≥ 2n− 2−m ≥ m+ 3− 2−m = 1,

a contradiction. Hence we may assume that I (Y ) = ∅, whence Irr(ζ ) = I (X) and
X = Z(ζ ). Consequently, the variety Proj(Z(ζ )) is connected. ut

Remark. Let nG be the minimum of the dimensions of the irreducible components of
VG(k). Then the conclusion of Theorem 6.1.1 also holds if nG ≥ (m+ 3)/2. For a finite
group G, the invariant nG coincides with the saturation rank srk(G) of G, which we
consider in Section 6.4.

Corollary 6.1.2. Let U be an abelian unipotent group scheme with dimVU(k) ≥ 3. Then
the Carlson module Lζ associated to a homogeneous non-nilpotent element ζ ∈ H•(U, k)
is indecomposable.

Proof. Let r := dimVU(k) be the dimension of the support variety of U. In view of
[56, (14.4)], the ring H∗(U, k) ∼= Ext∗

kU(k, k) is isomorphic to the cohomology ring of
an abelian p-group. Thanks to [4, (3.5.5), (3.5.6)], the support variety VU(k) ∼= Ar is
irreducible. Since r ≥ (r + 3)/2 for r ≥ 3, it follows from Theorem 6.1.1 that the module
Lζ is indecomposable. ut

Remark. The foregoing results fail for group schemes whose support varieties have di-
mension ≤ 2: see our discussion below concerning restricted Lie algebras.

We now turn to infinitesimal groups and their rank varieties. Let G be an infinites-
imal k-group. Given r ∈ N, the authors of [53] introduce the scheme of infinitesimal
1-parameter subgroups of G of height ≤ r , whose variety of k-rational points is

Vr(G) := Hom(Ga(r),G).
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Here Ga(r) := Speck(k[X]/(X
pr )) is the r-th Frobenius kernel of the additive group Ga .

We set x := X + (Xp
r
), so that {xi; 0 ≤ i ≤ pr − 1} is a basis of k[X]/(Xp

r
).

If {δ0, . . . , δpr−1} ⊆ kGa(r) denotes the dual basis, then, setting ui := δpi , we ob-
tain a canonical set of generators {u0, . . . , ur−1} of the algebra kGa(r). We consider
Ar := k[ur−1] ⊆ kGa(r), the p-dimensional subalgebra generated by ur−1. Given a
G-module M , Suslin et al. [54, §6] define the r-th rank variety of M via

Vr(G)M := {α ∈ Vr(G);α
∗(M)|Ar is not projective}.

Suppose that G has height ≤ r , that is, G coincides with its r-th Frobenius kernel Gr .
Thanks to [54, (5.2), (6.8)], there exists a morphism 9 : Vr(G) → VG(k) which is a
homeomorphism such that

9(Vr(G)M) = VG(M)

for every M ∈ modG. We thus obtain the following analogue of Theorem 6.1.1 for rank
varieties:

Corollary 6.1.3. Let G be an infinitesimal group of height ≤ r . Suppose that m is a
positive integer such that Vr(G) ⊆ Am is equidimensional of dimension n ≥ (m+ 3)/2.
If ζ ∈ H•(G, k) is a non-nilpotent homogeneous element of positive degree, then Lζ is
indecomposable.

Proof. We denote by ψ : H•(G, k)/
√
(0) → k[Vr(G)] the comorphism of 9. Owing to

[53, (1.14)], the map ψ is a homomorphism of k-algebras which multiplies degrees by
pr/2. Let η ∈ k[Vr(G)] be the image of the residue class ζ̄ of ζ under ψ . Then we have

Z(η) = 9−1(Z(ζ̄ )) = 9−1(VG(Lζ )) = Vr(G)Lζ .

As before, it suffices to show that Proj(Z(η)) is connected, and the arguments of the proof
of Theorem 6.1.1 yield our assertion. ut

In the special case where our group G has height ≤ 1, the foregoing result can be formu-
lated in the language of restricted Lie algebras. Given a restricted Lie algebra (g, [p]), we
let

Vg := {x ∈ g; x[p] = 0}

be the nullcone of g. If M is a U0(g)-module, then

Vg(M) := {x ∈ Vg; M|U0(kx) is not projective} ∪ {0}

is the rank variety of M (see [33, 34]). Thanks to [53, (1.6)], we obtain:

Corollary 6.1.4. Let (g, [p]) be a restricted Lie algebra. Suppose that m is a positive
integer such that Vg ⊆ Am is equidimensional of dimension n ≥ (m+ 3)/2. If ζ ∈
H•(U0(g), k) is a non-nilpotent homogeneous element of positive degree, then Lζ is in-
decomposable.
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In many cases of interest, the nullcone Vg is known to be irreducible. Let g := Lie(G)
be the Lie algebra of a smooth reductive group G. If p is good for G, then [47, (6.3.1)]
ensures the irreducibility of Vg. Moreover, there is a formula expressing dimVg in terms
of the root system of G. For the case where G is simple and simply connected explicit
formulae may be found in [11]. Recall that the rank rk(G) of G is the dimension of any
maximal torus T ⊆ G. By way of example, we provide the following result:

Theorem 6.1.5. Suppose that g := Lie(G) is the Lie algebra of a semi-simple, simply
connected algebraic group G 6∼= SL(2) × SL(2) of rank rk(G) ≥ 2, whose Coxeter
number h satisfies p ≥ h. Let ζ ∈ H•(U0(g), k) be a non-nilpotent homogeneous element
of positive degree.

(1) The Carlson module Lζ is indecomposable.
(2) Lζ ∈ Z[A∞] is quasi-simple.

Proof. In virtue of our present assumption, [47, (6.3.1)] implies that Vg is irreducible of
dimension

dimVg = dimk g− rk(G).

The latter number is ≥ (dimk g+ 3)/2 in case rk(G) ≥ 3. For groups of rank 2, a case-
by-case analysis yields the same conclusion, unless G is of type A1 ×A1. Since Vg ⊆ g,
Corollary 6.1.4 ensures the indecomposability of Lζ .

Since dimVg = dimk g−rk(G) ≥ 3 rk(G)−rk(G) ≥ 4, we see that dimVg(Lζ ) ≥ 3.
Thanks to [22, (2.2)], the module Lζ thus belongs to a stable AR-component of type
Z[A∞], and Theorem 5.2 shows that Lζ is actually quasi-simple. ut

Remarks. (1) If g is as in Theorem 6.1.5 with p > h, then H∗(U0(g), k) = H•(U0(g), k)
is a reduced k-algebra (see [2] or [32]), so that the above result actually describes all
Carlson modules of the Lie algebra g.

(2) The results of [11] give rise to refinements of the above theorem. For instance, if
G = SL(n)(k) and p ≥ 3, [11, (3.1)] implies that

dimVsl(n) ≥
n2
+ 2
2

,

unless n = 4 and p = 3. Hence Theorem 6.1.5 holds for SL(n)(k) for p ≥ 3 and
(n, p) 6= (4, 3).

Let (g, [p]) be a restricted Lie algebra. The connection between rank varieties and
support varieties is conveyed by the Hochschild map

8 : S(g∗)→ H•(U0(g), k)

between the algebra S(g∗) of polynomial functions on g (whose variables are given de-
gree 2) and the even cohomology ring H•(U0(g), k) (cf. [43, p. 571]). Given f ∈ S(g∗),
Friedlander and Parshall [34, p. 560] have shown that

Vg(L8(f )) = Z(f ) ∩ Vg,

where Z(f ) ⊆ g denotes the set of zeros of the polynomial function f .
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If g := Lie(G) is the Lie algebra of an algebraic groupG, thenG× k× acts on g∗ via

(g, α).η := αη ◦ Ad(g−1) ∀(g, α) ∈ G× k×, η ∈ g∗.

Here Ad denotes the adjoint representation of G on g. The G-invariance of Vg readily
yields

Z((g, α).η) ∩ Vg = Ad(g)(Z(η) ∩ Vg).

Examples. (1) For p ≥ 3 we consider the Lie algebra sl(2) with its standard basis
{e, h, f }, so that

Vsl(2) = {ah+ be + cf ∈ sl(2); a2
+ bc = 0}

is a two-dimensional irreducible variety. Thus, the pair (Vg, g) violates the condition
dimVg ≥ (dimk g+ 3)/2.

Let η ∈ g∗\{0}. By the proof of [27, (2.2)], the group SL(2)(k)×k× acts on sl(2)∗\{0}
with two orbits, whose representatives η1, η2 have kernels kh⊕ ke and ke ⊕ kf , respec-
tively. Thus, Vsl(2)(L8(η1)) = ke while Vsl(2)(L8(η2)) = ke ∪ kf . In view of Lemma 5.1
and the observations above, the 3p-dimensional Carlson modules L8(η) of degree 2 are
either indecomposable, or decomposable with two constituents (of dimensions p and 2p,
respectively). Moreover, since the Chevalley–Eilenberg cohomology groups Hi(sl(2), k)
vanish for i = 1, 2, the exact sequence of [43, p. 575] implies that the Hochschild map in-
duces an isomorphism sl(2)∗ ∼= H2(U0(sl(2)), k). Hence all Carlson modules of degree 2
are of the form indicated above.

(2) Let u := kx ⊕ ky be the two-dimensional abelian restricted Lie algebra with
trivial p-map. Let f : u → k be the polynomial map given by f (ax + by) = ab. Then
Proj(Vu(L8(f ))) consists of two points and L8(f ) is decomposable.

6.2. Subsidiary results

In this subsection we collect a few results that will be applied in our investigation of
Carlson modules corresponding to homogeneous nilpotent elements of the cohomology
ring H∗(G, k).

Lemma 6.2.1. Suppose that ζ ∈ Hn(G, k) \ {0} has positive degree. If Lζ 6= (0), then
there exists an exact sequence

(0)→ �1−n
G (k)→ �−nG (Lζ )→ k→ (0).

Proof. According to [5, (5.9.4)] (which only holds for Lζ 6= (0)), the element ζ ∈
Hn(G, k) ∼= Ext1G(�

n−1
G (k), k) corresponds to the exact sequence

(0)→ k→ �−1
G (Lζ )→ �n−1

G (k)→ (0).

Application of �1−n
G thus yields an exact sequence

(0)→ �1−n
G (k)

(fg)
−−→ �−nG (Lζ )⊕ P

(ϕ,ψ)
−−−→ k→ (0),



Jordan types for indecomposable modules 967

with a projective G-module P . This gives a commutative diagram

�1−n
G (k)

g
−−−−→ P

−f

y ψ

y
�−nG (Lζ )

ϕ
−−−−→ k

which, by virtue of [3, (I.5.7)], is both a pull-back and a push-out diagram. If ϕ = 0, then

�1−n
G (k) = ker(0, ψ) = �−nG (Lζ )⊕ kerψ.

Since �1−n
G (k) is indecomposable, we obtain kerψ = (0) or �−nG (Lζ ) = (0). Since

Lζ 6= (0) is not injective, we may rule out the latter case, whence kerψ = (0) and P ∼= k.
This, however, implies �nG(k) = (0), a contradiction. Consequently, ϕ is surjective and
[3, (I.5.6)] ensures the surjectivity of g. Hence P is a direct summand of�1−n

G (k), so that
P = (0). ut

Recall that a G-module is endo-trivial if and only if it has constant stable Jordan type [1]
or [p − 1] (see [10, (5.6)]).

Lemma 6.2.2. Suppose that ζ ∈ Hn(G, k) \ {0} is an element such that Lζ = X ⊕ Y is
the direct sum of two indecomposable endo-trivial modules with

StJt(X) =
{
[1], n even,
[p − 1], n odd, and StJt(Y ) = [p − 1].

(1) Let M := �−nG (X) and N := �−nG (Y ). There exists a commutative diagram

(0) (0)y y
V Vy y

(0) −−−−→ W −−−−→ �1−n
G (k)

g
−−−−→ N −−−−→ (0)∥∥∥ −f

y ψ

y
(0) −−−−→ W −−−−→ M

ϕ
−−−−→ k −−−−→ (0)y y

(0) (0)

with exact rows and colums.
(2) Let αK ∈ 5t(G) be a π -point. Then α∗K(ϕK) is split surjective or α∗K(ψK) is split

surjective.



968 Rolf Farnsteiner

Proof. We shall only consider the case where n is even. The arguments for odd n are
analogous.

(1) Since n is even, we have �−nG (Lζ ) ∼= M ⊕ N , with both constituents being inde-
composable endo-trivial modules of constant stable Jordan types [1] and [p− 1], respec-
tively. Lemma 6.2.1 furnishes an exact sequence

(0)→ �1−n
G (k)

(fg)
−−→ M ⊕N

(ϕ,ψ)
−−−→ k→ (0).

With V := ker f and W := ker g, our claim is a consequence of [3, (I.5.6)], once we
know that ϕ,ψ 6= 0.

If ϕ = 0, then
�1−n

G (k) = ker(0, ψ) = M ⊕ kerψ.

As �1−n
G (k) is indecomposable, this implies kerψ = (0), so N ↪→ k, a contradiction.

If ψ = 0, then
�1−n

G (k) = ker(ϕ, 0) = N ⊕ kerϕ.

Hence �1−n
G (k) ∼= N and M ∼= k, so that �−nG (Lζ ) ∼= �

1−n
G (k) ⊕ k. As a result, Lζ ∼=

�G(k)⊕�
n
G(k), which contradicts Lζ ⊆ �nG(k).

(2) We apply α∗K to the exact sequence

(0)→ �1−n
GK

(K)→ �−nGK
((Lζ )K)

(ϕK ,ψK )
−−−−−→ K → (0)

and obtain an exact sequence

(0)→ [p − 1] ⊕Q
(cd)
−−→ ([1] ⊕ [p − 1])⊕ P

(a,b)
−−−→ [1] → (0), (∗)

with projective Ap,K -modules P,Q satisfying dimK P = dimK Q. Since Ap,K is local,
this implies P ∼= Q. As a result, the middle term of (∗) is isomorphic to the direct sum
of the extreme terms, so that (∗) is split exact. There thus exist γ : K → α∗K(MK) and
η : K → α∗K(NK) such that

idK = (α∗K(ϕK), α
∗

K(ψK)) ◦

(
γ

η

)
= α∗K(ϕK) ◦ γ + α

∗

K(ψK) ◦ η.

This readily implies our claim. ut

6.3. Carlson modules of nilpotent elements of even degree

In contrast to the results of Section 6.1, the structure of the Carlson modules associated
to nilpotent elements of even degree does not depend on the internal structure of the
underlying group scheme G.

Theorem 6.3.1. Suppose that p ≥ 3. Let ζ ∈ H2n(G, k) \ {0} be nilpotent. Then Lζ is
indecomposable.



Jordan types for indecomposable modules 969

Proof. Recall from Section 5 thatLζ 6= (0). Assume thatLζ is decomposable. According
to Lemma 5.1, the Carlson module Lζ = X ⊕ Y is the direct sum of two endo-trivial
modules of constant stable Jordan types [1] and [p − 1], respectively. We consider the
associated commutative diagram of Lemma 6.2.2 and note that the stable Jordan types of
the modules M and N coincide with those of X and Y , respectively.

Let αK ∈ 5t(G) be a π -point. If α∗K(ψK) is split surjective, then

α∗K(NK)
∼= α
∗

K(VK)⊕ [1],

whence [p − 1] ⊕ (proj.) ∼= α∗K(VK) ⊕ [1]. Since p ≥ 3, the trivial module [1] is not a
direct summand of [p− 1]⊕ (proj.), and we have reached a contradiction. It now follows
from Lemma 6.2.2 that α∗K(ϕK) is split surjective. Thus,

[1] ⊕ (proj.) ∼= α∗K(WK)⊕ [1],

so that α∗K(WK) is projective.
As a result,5(G)W = ∅, and [36, (5.3)] ensures thatW is a projective G-module. The

upper row of our diagram thus splits and

�1−2n
G (k) ∼= W ⊕N.

As the Heller shift is projective-free, we see that W = (0), whence N ∼= �1−2n
G (k)

and M ∼= k. Consequently, �−2n
G (Lζ ) ∼= M ⊕ N ∼= k ⊕ �1−2n

G (k), whence Lζ ∼=
�2n

G (k)⊕�G(k), a contradiction. ut

Corollary 6.3.2. Suppose that p ≥ 3 and let 2ζ ⊆ 0s(G) be the stable Auslander–
Reiten component containing an indecomposable Carlson module Lζ of the nilpotent
element ζ ∈ H2n(G, k) \ {0}.

(1) If dim5(G) ≥ 2, then 2ζ ∼= Z[A∞], Lζ is quasi-simple and every N ∈ 2ζ has
constant Jordan type Jt(N) = {q`(N)[1] ⊕ q`(N)[p − 1] ⊕ nN [p]}.

(2) If G is infinitesimal, or trigonalizable and representation-infinite, then 2ζ is locally
split.

Proof. (1) According to Lemma 5.1, the Carlson module Lζ has constant Jordan type
Jt(Lζ ) = {[1] ⊕ [p − 1] ⊕ nζ [p]}. Thus, 5(G)2ζ = 5(G), and [24, (3.3)] implies
2ζ ∼= Z[A∞]. Our assertion now follows from Corollary 3.1.2.

(2) If 2ζ is not locally split, then cxG(k) = dim5(G) + 1 = 1. If G is infinitesi-
mal, then a consecutive application of [28, (2.1)] and [28, (2.4)] shows that all simple G-
modules belonging to the principal block B0(G) of kG are one-dimensional. By virtue of
[28, (2.7)], B0(G) is a Nakayama algebra, and [3, (IV.2.10)] now yields dimk �

2n
G (k) = 1.

Thus, Lζ = (0), a contradiction.
In case G is trigonalizable and of infinite representation type, we consider a 5-point

αK such that2ζ is not αK -split. A consecutive application of Corollary 4.3.5 and Lemma
5.1 shows that the G-module Lζ is not αK -projective. Theorem 4.3.3 now implies q`(Lζ )
≥ 2, and the arguments in the proof of Corollary 5.4 yield a contradiction. ut
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6.4. Carlson modules of odd degree

In order to address the case where Lζ is defined by an element ζ ∈ H∗(G, k) of
odd degree, we recall that the map αK : Ap,K → KG induces a homomorphism
α∗K : H∗(GK ,K) → H∗(Ap,K ,K). The latter algebra is known: for p > 2 we have
H∗(Ap,K ,K) ∼= K[X, Y ]/(Y 2) with deg(X) = 2 and deg(Y ) = 1.

Given a field extension K : k, we shall identify H∗(G, k) with the subalgebra
H∗(G, k) ⊗ 1 ⊆ H∗(G, k) ⊗k K ∼= H∗(GK ,K). Thus, we can consider α∗K(ζ ) ∈
H∗(Ap,K ,K) for every ζ ∈ H∗(G, k) and αK ∈ 5t(G).

Throughout this section, we assume that p ≥ 3.

Lemma 6.4.1. Let n be odd and ζ ∈ Hn(G, k) \ {0}.

(1) Jt(Lζ , αK) =
{

2[p − 1] ⊕mζ [p] if α∗K(ζ ) = 0,
[p − 2] ⊕ nζ [p] if α∗K(ζ ) 6= 0.

(2) If |Jt(Lζ )| = 2, then Lζ is indecomposable.
(3) If Lζ has constant Jordan type, then Lζ is either indecomposable or the direct sum

of two endo-trivial modules of constant stable Jordan type [p − 1].

Proof. (1) Recall that 5(G)Lζ = 5(G) and let αK ∈ 5t(G) be a π -point. Since n is odd,
we obtain an exact sequence

(0)→ α∗K((Lζ )K)
( ϕ−γ)
−−→ [p − 1] ⊕m[p]

(f,g)
−−−→ K → (0),

where α∗K(ζ ) ∈ Hn(Ap,K ,K) corresponds to f . If f = 0, then g 6= 0 and

α∗K((Lζ )K)
∼= [p − 1] ⊕ ker g ∼= 2[p − 1] ⊕m′[p].

Alternatively, [3, (I.5.6), (I.5.7)] provides a commutative diagram

(0) −−−−→ ker γ −−−−→ α∗K((Lζ )K)
γ

−−−−→ m[p] −−−−→ (0)∥∥∥ ϕ

y g

y
(0) −−−−→ ker f −−−−→ [p − 1]

f
−−−−→ K −−−−→ (0)

with exact rows. Consequently,

α∗K((Lζ )K)
∼= ker γ ⊕m[p] ∼= ker f ⊕m[p] ∼= [p − 2] ⊕m[p],

as desired.
(2) Suppose that |Jt(Lζ )| = 2, so that

Jt(Lζ ) = {2[p − 1] ⊕mζ [p], [p − 2] ⊕ nζ [p]}.

Let M be a direct summand of Lζ , so that dimkM ≡ −1,−2, 0 mod(p).
If dimkM ≡ 0 mod(p), then, for any π -point αK , p divides the dimension of the

projective-free part X of α∗K(M). As X | 2[p− 1] or X | [p− 2], it follows that X = (0).
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Consequently, α∗K(MK) is projective and, thanks to [36, (5.3)], M is also projective, so
that M = (0).

If dimkM ≡ −1 mod(p), then α∗K(MK) ∼= [p − 1] ⊕ nM [p] for any αK ∈ 5t(G).
Since there exists a π -point αK with α∗K((Lζ )K) ∼= [p − 2] ⊕ n′ζ [p], we have reached a
contradiction.

Finally, if dimkM ≡ −2 mod(p), then the dimension of a direct complement N of
M is divisible by p. By the first step, N = (0), so that M = Lζ . As a result, Lζ is
indecomposable.

(3) Owing to [10, (3.7)], every direct summand of Lζ has constant Jordan type. Thus,
if Lζ is decomposable, then Jt(Lζ ) = {2[p − 1] ⊕ nζ [p]} and each indecomposable
summand M 6= Lζ of Lζ has dimension dimkM ≡ −1 mod(p). Consequently, such a
summand has Jordan type Jt(M) = {[p − 1] ⊕ nM [p]}, and there are exactly two such
summands. By virtue of [10, (5.6)], each of these summands is endo-trivial. ut

Remarks. (1) Let n be odd and ζ ∈ Hn(G, k)\{0}. If p = 2, then H∗(Ap,K ,K) ∼= K[X],
so that α∗K(ζ ) = 0 for every αK ∈ 5t(G). Consequently, we have

Jt(Lζ ) = {2[1] ⊕mζ [2]}

in that case.
(2) If n = 1, then Lζ ⊆ �G(k) is a submodule of the projective cover of k and hence

is either zero or indecomposable.
(3) Let U be an abelian unipotent group scheme, and K ⊇ k be an extension field

of k. General theory [4, §3.5], [44, (I.4.27)] provides an isomorphism

H∗(UK ,K) ∼= S(H2(UK ,K))⊗k 3(H1(UK ,K))

of graded-commutative K-algebras, where S(−) and 3(−) denote the symmetric alge-
bra and the exterior algebra of a space, whose elements are homogeneous of the given
cohomological degree. Let αK ∈ 5t(U) be a π -point. Writing H2(Ap,K ,K) = KX

and H1(Ap,K ,K) = KY , we see that the graded homomorphism α∗K : H∗(UK ,K) →
H∗(Ap,K ,K) annihilates 3j (H1(UK ,K)) for j ≥ 2. Consequently,

α∗K(H
2n+1(UK ,K)) = α

∗

K(S
n(H2(UK ,K)))α

∗

K(H
1(UK ,K))

for every n ≥ 0.

Examples. (1) Let U = G3
a(1) be the product of three copies of the first Frobenius kernel

of the additive group. Then we have dimk H1(U, k) = 3. Let αi : Ap,k → U be the
π -points given by the three canonical embeddings Ga(1) ↪→ U. Recall that

H∗(U, k) = H∗(Ga(1), k)⊗3.

Let ζ1 = ζ ⊗ 1 ⊗ 1 ∈ H1(U, k) be given by ζ ∈ H1(Ga(1), k) \ {0}. Then we have
α∗j (ζ1) = δj,1ζ . Accordingly, |Jt(Lζ1)| = 2 and Lζ1 is indecomposable.
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(2) Let U be as in (1), and consider ζ2 ∈ 3
3(H1(U, k)) \ {0}. The foregoing remarks

imply
α∗K(ζ2) = 0 ∀αK ∈ 5t(U),

so that Lζ2 has constant Jordan type 2[p−1]⊕nζ [p]. We shall see in Teorem 6.4.4 below
that Lζ2 is indecomposable.

Let ζ ∈ Hn(G, k) \ {0} be an element of odd degree such that Lζ is decomposable. In
view of Lemma 6.4.1,

Lζ ∼= X ⊕ Y

is the direct sum of two endo-trivial modules of constant stable Jordan type [p − 1]. We
may therefore consider the commutative diagram of Lemma 6.2.2.

Lemma 6.4.2. Let ζ ∈ Hn(G, k) \ {0} be an element of odd degree n 6= 1 such that Lζ is
decomposable. Set U := ker(ψ ◦ g).

(1) 5(G)V ∩5(G)W = ∅.
(2) There is a split exact sequence (0)→ W → U

g
−→ V → (0).

(3) There is a split exact sequence (0)→ V → U
f
−→ W → (0).

(4) 5(G)U = 5(G)V t5(G)W .
(5) The map ψ ◦ g : �1−n

G (k)→ k corresponds to a non-split extension

(0)→ k→ �−1
G (U)→ �−nG (k)→ (0).

Proof. (1) Let αK ∈ 5t(G) be a π -point such that [αK ] ∈ 5(G)V ∩ 5(G)W . Note that
M = �−1

G (X) and N = �−1
G (Y ) are G-modules of constant stable Jordan type [1]. By

Lemma 6.2.2(2), one of the maps α∗(ϕK) or αK(ψK) is split surjective. By symmetry, we
may assume that α∗K(ϕK) is split surjective. Consequently, the sequence

(0)→ α∗K(WK)→ α∗K(MK)→ α∗K(K)→ (0)

splits, so that [1]⊕(proj.) ∼= [1]⊕α∗K(WK). Hence α∗K(WK) is projective, a contradiction.
(2)&(3) We have U = ker(ψ ◦g) = g−1(kerψ) = g−1(V ) as well as U = ker(ϕ ◦f )

= f−1(kerϕ) = f−1(W). Hence the two sequences are exact. In view of (1), a con-
secutive application of [36, (3.2)] and [36, (3.3)] implies that the G-module V ∗ ⊗k W is
injective. Consequently, Ext1G(V ,W)

∼= Ext1G(k, V
∗
⊗k W) = (0), so that the sequence

in (2) is split exact. The corresponding result for (3) follows by interchanging the rôles
of V and W .

(4) This follows from (2), (3) and [36, (3.3)].
(5) By general theory, the extension associated to ψ ◦ g is the lower row of the fol-

lowing diagram, whose left-hand square is a push-out:

(0) −−−−→ �1−n
G (k) −−−−→ P −−−−→ �−nG (k) −−−−→ (0)yψ◦g yλ ∥∥∥

(0) −−−−→ k −−−−→ E −−−−→ �−nG (k) −−−−→ (0)
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The Snake Lemma yields U ∼= ker λ as well as im λ = E. If U = (0), then (2)
and (3) yield V = (0) = W , so that Lemma 6.2.2 gives N ∼= k ∼= M . Consequently,
Lζ ∼= �

n
G(k)⊕�

n
G(k), a contradiction. Since �1−n

G (k) is indecomposable and dimk U =

dimk �
1−n
G (k) − 1, it now follows that SocG(U) = SocG(�1−n

G (k)) = SocG(P ). As a
result, P is an injective hull of U , whence E ∼= �−1

G (U). ut

Let G be a finite group scheme. We say that G is linearly reductive if the algebra kG is
semi-simple. Following Voigt [55, (I.2.37)], we let Glr � G be the unique largest linearly
reductive normal subgroup of G.

We consider the set Maxau(G) of maximal abelian unipotent subgroups of G, as well
as its subsets

Maxau(G)` := {U ∈ Maxau(G); cxU(k) ≥ `}

for every ` ≥ 1.
If H ⊆ G is a subgroup, then the canonical inclusion ι : H ↪→ G induces a continuous

map ι∗,H : 5(H)→ 5(G). Setting 5(G)` :=
⋃

U∈Maxau(G)`
ι∗,U(5(U)), we define the

saturation rank of G via

srk(G) := max{` ≥ 1; 5(G) = 5(G)`}.

Note that srk(G) ≤ cxG(k). If G is a finite group, then Quillen’s dimension theorem [1]
implies that srk(G)− 1 is the minimum of the dimensions of the irreducible components
of5(G). This does not hold for infinitesimal group schemes, as the example of the group
SL(2)1 shows.

The following lemma is a direct consequence of the proof of [10, (6.3)]:

Lemma 6.4.3. Suppose that n < 0 and let

E : (0)→ k→ E→ �n−1
G (k)→ (0)

be a short exact sequence of G-modules. If αK ∈ 5t(G) factors through an abelian unipo-
tent subgroup U of complexity ≥ 2, then the sequence α∗K(E⊗k K) splits. �

Theorem 6.4.4. Suppose that srk(G/Glr) ≥ 2. If ζ ∈ Hn(G, k) \ {0} has odd degree, then
Lζ is indecomposable.

Proof. According to [23, (1.1)], the canonical map π : kG → k(G/Glr) induces an iso-
morphism π : B0(G)

∼
−→ B0(G/Glr) between the corresponding principal blocks. Thus,

π∗ : modG/Glr → modG induces an equivalence modB0(G/Glr)
∼
−→ modB0(G). The

isomorphism π∗ : H∗(G/Glr, k)→ H∗(G, k) yields

π∗(Lζ ) ∼= Lπ∗(ζ ) ∀ζ ∈ H∗(G/Glr, k).

Since Carlson modules belong to the principal block, it suffices to verify our assertion
under the assumption that srk(G) ≥ 2.

Assume that Lζ is decomposable, so that n ≥ 3. Lemma 6.4.2(5) provides an exact
sequence

(0)→ k→ �−1
G (U)→ �−nG (k)→ (0).
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Let x be a point of 5(G). Since srk(G) ≥ 2, there exists a π -point αK representing x
which factors through an abelian unipotent subgroup U ⊆ G with cxU(k) ≥ 2. Since
1− n ≤ −2, Lemma 6.4.3 guarantees that the sequence

(0)→ α∗K(K)→ α∗K(�
−1
GK
(U)K)→ α∗K(�

−n
GK
(K))→ (0)

splits. Consequently,

�−1
Ap,K

(α∗K(UK))⊕ (proj.) ∼= [1] ⊕ [p − 1] ⊕ (proj.),

so that �−1
Ap,K

(α∗K(UK)) 6= (0). Hence the Ap,K -module α∗K(UK) is not projective, and
we conclude that x = [αK ] ∈ 5(G)U . Thus, 5(G)U = 5(G), and Lemma 6.4.2(4)
implies

5(G) = 5(G)V t5(G)W .

In view of [10, (3.4)] (see also [7]) and [36, (5.5)]), it follows that one of the modules V or
W is projective. As both of these spaces are submodules of �1−n

G (k), we obtain V = (0)
or W = (0). In either case, Lemma 6.2.2 implies that �−nG (Lζ ) ∼= �

1−n
G (k)⊕ k, whence

Lζ ∼= �G(k)⊕�
n
G(k), which contradicts Lζ ⊆ �nG(k). ut

Examples. (1) Let h := kx ⊕ ky ⊕ kz be the Heisenberg algebra with p-map defined by

x[p] = 0 = y[p], z[p] = z.

If G is the infinitesimal group corresponding to h, then Glr corresponds to the p-ideal kz.
Hence srk(G/Glr) = 2, while srk(G) = 1.

(2) Now consider the p-map on h that is defined via

x[p] = z = y[p], z[p] = 0.

Since Vh = k(x − y)⊕ kz is an abelian unipotent p-subalgebra of complexity 2, general
theory (cf. [24, p. 68f]) implies that every p-point of U0(h) is equivalent to one factoring
through U0(Vh). Accordingly, srk(h) = 2, and every Carlson module Lζ of odd degree
is indecomposable.

Corollary 6.4.5. Suppose that ζ ∈ Hn(G, k) \ {0} has odd degree. If there exists an
abelian unipotent subgroup U ⊆ G such that resU(ζ ) 6= 0, then the Carlson module Lζ
is indecomposable.
Proof. Let η ∈ Hn(U, k) \ {0} be such that η = resU(ζ ). General theory (cf. [5, p. 190])
provides a projective U-module P such that

Lζ |U ∼= Lη ⊕ P.

If Lζ is decomposable, then Lemma 6.4.1 shows that Lζ ∼= M⊕N , withM andN having
constant stable Jordan type [p − 1]. Thus, M|U and N |U are non-projective U-modules
whose projective-free parts are summands of Lη. Consequently, Lη is decomposable, and
Theorem 6.4.4 implies that dim5(U) = 0.

In view of [56, (14.4)], there exist r1, . . . , rn ∈ N such that kU is isomorphic to
k[X1, . . . , Xn]/(X

pr1

1 , . . . , X
prn

n ). Consequently, n = dimVU(k) = dim5(U) + 1 = 1,
so that kU is a Nakayama algebra. As noted earlier, the Auslander–Reiten translation τU
of the local algebra kU coincides with the square of the Heller translate �U. Thus, [3,
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(IV.2.10)] yields �nU(k)
∼= �U(k), implying that SocU(�nU(k))

∼= k is simple. Hence
Lη ⊆ �

n
U(k) is indecomposable, a contradiction. ut

We finally address the case of finite groups:

Corollary 6.4.6. Let G be a finite group. If ζ ∈ Hn(G, k) \ {0} has odd degree, then Lζ
is indecomposable.

Proof. In view of Theorem 6.4.4 and its proof, we may assume that srk(G) = 1.

(∗) We have cxG(k) = 1.

Thanks to [36, (4.2)], we have

5(G) =
⋃
E

ι∗,E(5(E)),

where E runs through the maximal p-elementary abelian subgroups of G. Since
srk(G) = 1, there exists a maximal p-elementary abelian subgroup E0 ⊆ G such that
cxE0(k) = 1. Consequently, E0 ∼= Z/(p).

Let P ⊆ G be a Sylow p-subgroup ofG containingE0 and let C(P )p := {x ∈ C(P );
xp = 1} be the subgroup of those elements of the center C(P ) of P whose order is a
divisor of p. Then C(P )p is a non-trivial normal subgroup of P and, given a maximal
p-elementary abelian subgroup F ⊆ P , the group C(P )pF is p-elementary abelian,
whence

{e} ( C(P )p ⊆ F.

In particular, C(P )p = E0, so that F = E0.
Now let E be a maximal p-elementary abelian subgroup of G. Sylow’s theorem

provides an element g ∈ G such that gEg−1
⊆ P . By the above, we conclude that

gEg−1
= E0, whence rk(E) = 1. Quillen’s dimension theorem (cf. [1]) now implies

cxG(k) = 1, as desired. �

Let P ⊆ G be a Sylow p-subgroup. Owing to [21, (4.2.2)], the canonical restriction map

res : H∗(G, k)→ H∗(P, k)

is injective, so that η := res(ζ ) 6= 0. By (∗), we have cxG(k) = 1, and [13, (XII.11.6)]
shows that P is cyclic. The assertion now follows from Corollary 6.4.5. ut

Remark. Suppose that G is a finite group scheme. Let ζ ∈ Hn(G, k)\{0} be an element of
arbitrary positive degree such that Lζ is quasi-simple. Then Lζ has exactly one successor
in 0s(G) and the middle term of the almost split sequence originating in Lζ either is
indecomposable or has a non-zero projective summand. In the latter case, [3, (V.5.5)]
provides a principal indecomposable G-module P such that Lζ ∼= Rad(P ). Consequently,
�−1

G (Lζ ) is simple. On the other hand, there is a short exact sequence

(0)→ k→ �−1
G (Lζ )→ �n−1

G (k)→ (0)

(see [5, (5.9.4)]). Thus, the left-hand arrow is an isomorphism, so that �n−1
G (k) = (0),

a contradiction. As a result, the almost split sequence originating in Lζ has an indecom-
posable middle term.
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7. Endo-trivial modules

Endo-trivial modules play an important rôle in the modular representation theory of finite
groups, where they occur in connection with the study of sources of simple modules. The
reader may consult [12] for the classification of endo-trivial modules over p-groups.

In view of [10, (5.6)], a G-module M is endo-trivial if and only if there exists
i ∈ {1, p−1} such thatM has constant stable Jordan type StJt(M) = {[i]}. Consequently,
the τG-orbit of an indecomposable endo-trivial module consists entirely of endo-trivial
modules.

The following immediate consequence of recent work by Dave Benson [6] character-
izes endo-trivial modules as being precisely the modules of constant Jordan type with one
non-projective block:

Proposition 7.1. Let G be a finite group scheme possessing an abelian unipotent sub-
group U ⊆ G of complexity cxU(k) ≥ 2. If M ∈ modG has constant Jordan type
[i] ⊕ n[p], then i ∈ {1, p − 1}. In particular, M is endo-trivial.

Proof. Since every π -point of U is also a π -point of G, it readily follows that the U-
module M|U has constant Jordan type [i] ⊕ n[p]. We may therefore assume that G = U.
As noted in [24, (1.6)], this implies that kG = U0(u) is the restricted enveloping algebra
of an abelian p-unipotent restricted Lie algebra u. By assumption, the nullcone

Vu := {x ∈ u; x[p] = 0}

is a p-subalgebra of dimension ≥ 2, and M|Vu is a Vu-module of constant Jordan type
[i] ⊕ n[p]. Writing r := dimVu, we have an isomorphism U0(Vu) ∼= k(Z/(p))r of
k-algebras, and [6, (1.1)] yields i ∈ {1, p − 1}. In view of [10, (5.6)], this implies that M
is endo-trivial. ut

Remarks. (1) If G is a finite group, then Quillen’s dimension theorem implies that the
condition of the proposition is equivalent to cxG(k) ≥ 2.

(2) The infinitesimal group SL(2)1 has complexity 2, but also has indecomposable
modules of stable constant Jordan types [2], . . . , [p − 2] (see Proposition 8.1.1 below).

Theorem 7.2. Let 2 ⊆ 0s(G) be a component containing an indecomposable endo-
trivial module M0. Suppose that dim5(G) ≥ 1.

(1) A G-module M in 2 is endo-trivial if and only if f2(M) = 1.
(2) If T̄2 ∼= Ã12, A

∞
∞, then every G-module M ∈ 2 is endo-trivial.

(3) If dim5(G) ≥ 2, then 2 ∼= Z[A∞].
(4) If 2 ∼= Z[A∞], then q`(M0) = 1 and M ∈ 2 is endo-trivial if and only if M ∼=

τnG(M0) for some n ∈ Z.

Proof. (1) In view of [10, (5.6)], the module M0 has constant Jordan type, so that

dim5(G)2 = dim5(G) ≥ 1.
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By the same token, there exist i ∈ {1, p − 1} and m0 ∈ N0 such that M0 has constant
Jordan type

Jt(M0) = [i] ⊕m0[p].

Since dim5(G)2 ≥ 1, Lemma 2.2 implies that the component 2 is locally split. Con-
sequently, Theorem 3.1.1 yields d2j ≡ 0 for 1 ≤ j 6= i ≤ p − 1 and d2i ≡ 1, so
that

Jt(M, αK) = f2(M)[i] ⊕ αK,p(M)[p] ∀M ∈ 2, αK ∈ 5t(G).

Applying [10, (5.6)] again, we conclude that M ∈ 2 is endo-trivial exactly when f2(M)
= 1.

(2) In this case, we have f2 ≡ 1, so that (1) yields the assertion.
(3) In view of 5(G) = 5(G)2, the assertion follows directly from [24, (3.3)].
(4) If 2 ∼= Z[A∞], then f2(M) = q`(M) for every M ∈ 2. Hence the endo-trivial

modules are the quasi-simple modules. As these form the τG-orbit of M0, our assertion
follows. ut

Remark. Part (1) of the foregoing result implies that components of tree class D∞, D̃n,
Ẽ6, Ẽ7 and Ẽ8 containing an endo-trivial module have 2, 4, 3, 2 and 1 τG-orbits of endo-
trivial modules, respectively.

We turn to Carlson’s construction [8, (4.5), (9.3), (9.4)] of endo-trivial modules, which
we shall study from the vantage point of 5-supports and Jordan types.

Let ζ ∈ H2n(G, k) \ {0} for some n ≥ 1. Given a proper summand M |Lζ , we write
Lζ = M ⊕M

′ and consider the push-out diagram

(0) (0)y y
M ′ M ′y y

(0) −−−−→ Lζ −−−−→ �2n
G (k) −−−−→ k −−−−→ (0)y y ∥∥∥

(0) −−−−→ M −−−−→ NM −−−−→ k −−−−→ (0)y y
(0) (0)

(7.1)

The following application of Lemma 5.1 shows that decomposable Carlson modules of-
ten give rise to indecomposable endo-trivial modules that are not syzygies of the trivial
module.
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Theorem 7.3. Suppose that ζ ∈ H•(G, k) is a non-nilpotent homogeneous element of
positive degree. Let M |Lζ be a proper summand.

(1) The G-module NM is endo-trivial, indecomposable, and of constant stable Jordan
type [1].

(2) If p ≥ 3 and dim5(G) ≥ 2, then NM 6∼= �mG(k) for all m ∈ Z.
(3) If p ≥ 3 and dim5(G) ≥ 2, then the module NM ∈ Z[A∞] is quasi-simple and does

not belong to the stable AR-components containing k or �G(k).

Proof. (1) Let αK ∈ 5t(G) be a π -point. Application of the exact functor α∗K to diagram
(7.1) yields

(0) (0)y y
α∗K(M

′

K) α∗K(M
′

K)y y
(0) −−−−→ α∗K((Lζ )K) −−−−→ K ⊕ (proj.) −−−−→ K −−−−→ (0)y y ∥∥∥
(0) −−−−→ α∗K(MK) −−−−→ α∗K((NM)K) −−−−→ K −−−−→ (0)y y

(0) (0)

where we have used α∗K(�
2n
G (k)K)

∼= �2n
Ap,K

(K) ⊕ (proj.) ∼= K ⊕ (proj.). Lemma 5.1
ensures that at least one of the Ap,K -modules α∗K(MK) and α∗K(M

′

K) is projective. If
α∗K(MK) is projective, then the lower row is split exact and

α∗K((NM)K)
∼= K ⊕ (proj.).

Alternatively, the right-hand column splits, so that

α∗K((NM)K)⊕ (proj.) ∼= K ⊕ (proj.).

We thus obtain Jt(NM , αK) = [1] ⊕ n[p] in either case, and [10, (5.6)] shows that NM is
endo-trivial.

Any indecomposable summand ofNM is either endo-trivial or projective, with exactly
one summand being endo-trivial. The right-hand column of diagram (7.1) shows that the
projective summands of NM are also summands of �2n

G (k) and thus are equal to zero.
Consequently, the module NM is indecomposable.

(2) Since Jt(NM) = [1] ⊕ n[p] and p ≥ 3, it follows that NM 6∼= �mG(k) whenever
m ∈ Z is odd.



Jordan types for indecomposable modules 979

Assume that NM ∼= �2m
G (k) for some m ∈ Z. As M and M ′ are both non-zero,

we have m 6= n, 0, and the right-hand exact column of diagram (7.1) provides an exact
sequence

(0)→ M ′→ �2n
G (k)→ �2m

G (k)→ (0).

Lemma 5.1 in conjunction with [36, (3.2)] implies that ∅ = 5(G)M ∩ 5(G)M ′ =

5(G)M⊗KM ′ , so thatM⊗kM ′ is projective (cf. [36, (5.3)]). Tensoring the above sequence
with M thus yields an isomorphism

�2n
G (M)⊕ (proj.) ∼= �2m

G (M)⊕ (proj.).

As M is projective-free, we obtain �2(n−m)
G (M) ∼= M . Accordingly, the G-module M is

periodic, and
dim5(G)M = dimVG(M)− 1 = cxG(M)− 1 = 0.

On the other hand, the lower exact row of diagram (7.1) now reads

(0)→ M → �2m
G (k)→ k→ (0),

and tensoring with M ′ yields

�2m
G (M ′)⊕ (proj.) ∼= M ′ ⊕ (proj.).

SinceM ′ has no projective summands, we conclude thatM ′ is periodic with dim5(G)M ′

= 0. It follows that

dim5(G) ≤ dim5(G)Lζ + 1 = max{dim5(G)M , dim5(G)M ′} + 1 ≤ 1,

a contradiction.
(3) Since NM is endo-trivial, we have 5(G)NM = 5(G), and Theorem 7.2 ensures

that NM ∈ Z[A∞] is quasi-simple. By the same token, the assumption that NM belongs
to the component containing k or �G(k) implies that

NM ∼= �
m
G ◦ ν

n
G(k)

for some m, n ∈ Z. The arguments for (2) now show that this cannot happen. ut

Remarks. (1) Note that the module NM belongs to the principal block B0(G) of kG.
There are of course group schemes having endo-trivial modules that do not belong to the
principal block: Any one-dimensional module is endo-trivial, so the simple modules of
trigonalizable group schemes belong to this class. In view of [28, (2.4)], the algebras of
measures of such groups often have more than one block.

(2) Consider the abelian restricted Lie algebra u := kx ⊕ ky with trivial p-map.
If f ∈ S(u∗) is a homogeneous polynomial function which is not a power of an irre-
ducible polynomial function, then Proj(Vu(L8(f ))) = Proj(Z(f )) is not connected, so
that L8(f ) is decomposable. By Dade’s Theorem [15, 16] and [10, (5.6)], the endo-trivial
modules of U0(u) ∼= k(Z/(p))2 are Heller shifts of the trivial module. Hence (2) of The-
orem 7.3 may fail for groups G whose 5-support 5(G) has dimension ≤ 1.
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8. Examples

In their recent article [9], Carlson and Friedlander endow the category C(G) of mod-
ules of constant Jordan type with an exact structure and study realizability problems via
K0(C(G)). In this section we explicitly compute the Jordan types of the indecomposable
modules for a few group schemes of tame representation type and in particular classify
their indecomposable modules of constant Jordan type. We refer the reader to [20] for the
definition of tameness. For our purposes, it suffices to know that only representation-finite
and tame algebras admit (in principle) a classification of their indecomposables. As noted
earlier, the stable Auslander–Reiten components belonging to blocks of finite represen-
tation type are not locally split. Hence the next more complicated class of tame algebras
serves as testing ground for the invariants of AR-components defined via π -points.

Throughout, we assume that char(k) = p ≥ 3.

8.1. The groups SL(2)1Tr

Consider the infinitesimal group scheme G = SL(2)1, that is, the first Frobenius kernel
of SL(2). General theory provides an isomorphism k SL(2)1 ∼= U0(sl(2)) between the
algebra of measures on SL(2)1 and the restricted enveloping algebra U0(sl(2)) of the re-
stricted Lie algebra sl(2) (see [17, II, §7, no. 4]). In [49] Premet explicitly determined the
indecomposable U0(sl(2))-modules. We shall use the interpretation of his result within
the framework of Auslander–Reiten theory (cf. [25, §4]).

Recall that the algebra k SL(2)1 has (p − 1)/2 non-simple blocks B1, . . . ,B(p−1)/2,
with each Bi having two simple modules, of dimensions i and p − i, respectively. The
stable Auslander–Reiten quiver 0s(Bi) is the full subquiver of 0s(G), whose vertices
belong to the block Bi .

Part (2) of the following result shows in particular that the stable AR-components
2 ⊆ 0s(SL(2)1) with dim5(SL(2)1)2 = 0 are not locally split.

Proposition 8.1.1. Let 2 ⊆ 0s(SL(2)1) be a component.

(1) If dim5(G)2 = 1, then 2 ∼= Z[Ã12] and every module belonging to 2 has constant
Jordan type. Moreover, there exists s2 ∈ {1, . . . , p − 1} such that

Jt(M) =
{
[s2] ⊕

(
dimkM − s2

p

)
[p]

}
for every M ∈ 2.

(2) If dim5(G)2 = 0, then 2 ∼= Z[A∞]/〈τ 〉 and every module belonging to 2

is constantly supported. Moreover, there exists i2 ∈ {1, . . . , (p − 1)/2} such that
2 ⊆ 0s(Bi2) and

Jt(M) = {q`(M)[p], [i2] ⊕ [p − i2] ⊕ (q`(M)− 1)[p]}

for every M ∈ 2.
(3) An indecomposable SL(2)1-module M is endo-trivial if and only if M ∼= �nG(S) for

n ∈ Z and S simple of dimension 1 or p − 1.
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Proof. By work of Drozd [18], Fischer [30] and Rudakov [51], each of the (p − 1)/2
non-simple blocks of k SL(2)1 is Morita equivalent to the trivial extension KrnKr∗ of the
path algebra Kr = k[• ⇒ •] of the Kronecker quiver. As a result, the Auslander–Reiten
quiver 0s(B) of each such block B ⊆ k SL(2)1 has two components of type Z[Ã12], and
infinitely many components of type Z[A∞]/〈τ 〉 (see [38, (V.3.2), (I.5.5), (I.5.6)]).

(1) Since dim5(SL(2)1)2 = 1, the above in conjunction with [24, (3.3)] implies
2 ∼= Z[Ã12]. It follows from [57, (2.4)] that such a component contains a simple SL(2)1-
module S. As S is the restriction of an SL(2)-module, [10, (2.5)] implies that S has con-
stant Jordan type.

Let {e, h, f } be the standard basis of sl(2). Recall that simple U0(sl(2))-modules are
cyclic f -spaces (cf. [52, p. 208]). Hence S has constant Jordan type Jt(S) = {[dimk S]}.

We define s2 := dimk S. Corollary 3.1.2 now yields d2i (αK) = δi,s(2) for every
π -point αK of SL(2)1 and i ∈ {1, . . . , p − 1}. We therefore conclude that Jt(M) ={
[s2] ⊕

( dimkM−s2
p

)
[p]
}

for every M ∈ 2.
(2) By the above, we have 2 ∼= Z[A∞]/〈τ 〉. In view of [25, (4.1.2)], there exist

g ∈ SL(2)(k) and a ∈ {0, . . . , p − 2} such that the unique module M ∈ Ad(g)∗(2) of
quasi-length s is the maximal submoduleW(sp+a) of dimension sp of the Weyl module
V (sp + a). Recall that Vsl(2)(W(sp + a)) = ke.

Let αK : Ap,K → U0(sl(2))K be a π -point. Then there exists an element x ∈ Vsl(2)K
such that imαK ⊆ U0(Kx). We write x = α(e ⊗ 1) + β(h ⊗ 1) + γ (f ⊗ 1) with
β2
+αγ = 0. If γ 6= 0, thenW(sp+a)K |K[x] is projective, so that Jt(W(sp+a), αK) =

{s[p]}. Alternatively, β = γ = 0 and α∗K(W(sp + a)K) ∼= W(sp + a)K |K[e⊗1], whence
Jt(W(sp+a), αK) = {[a+1]⊕[p−a−1]⊕(s−1)[p]}. Owing to [25, (4.1.2)], the com-
ponent Ad(g)∗(2) contains the baby Verma module with highest weight a. Consequently,
Ad(g)∗(2) ⊆ 0s(Bi), where i := min{a + 1, p − a − 1}.

Since Jt(M) = Jt(Ad(g)∗(M)) for any SL(2)1-module M , and the connected group
SL(2)(k) acts trivially on the blocks of k SL(2)1, our assertion follows.

(3) Suppose that M ∼= �nG(S), where S is a simple k SL(2)1-module of dimension
s ∈ {1, p − 1}. According to (1) we have Jt(S) = {[s]} and [10, (5.6)] implies that
S is endo-trivial. Being a Heller shift of an endo-trivial module, the module M is also
endo-trivial.

Let M be an indecomposable endo-trivial module. Then 5(SL(2)1)M = 5(SL(2)1)
is one-dimensional, so that M belongs to a component 2 ∼= Z[Ã12]. In view of (1) and
[10, (5.6)], the simple module S ∈ 2 has dimension s2 ∈ {1, p − 1} and thus belongs to
the principal block of k SL(2)1. Let T be the other simple module of the principal block.
The standard AR-sequence involving the projective cover P(T ) of T has the form

(0)→ Rad(P (T ))→ P(T )⊕ (Rad(P (T ))/Soc(P (T )))→ P(T )/Soc(P (T ))→ (0)

(see [3, (V.5.5)]). Since Rad(P (T ))/Soc(P (T )) ∼= S⊕ S (cf. [48, Thm. 3]), we conclude
that S and �G(T ) are representatives of the two τG-orbits of 2 (cf. [20, (IV.3.8.3)]). As
k SL(2)1 is symmetric, it follows that {�2n

G (S),�
2n+1
G (T ); n ∈ Z} is the set of vertices

of 2. Consequently, there exists a simple k SL(2)1-module S of dimension dimk S in
{1, p − 1} and n ∈ Z with M ∼= �nG(S). ut
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Remarks. (1) Since the principal block B0(SL(2)1) ⊆ k SL(2)1 is Morita equivalent
to the trivial extension of the Kronecker algebra, it follows that Hn(SL(2)1, k) = (0),
whenever n is odd. Let n be even and ζ ∈ Hn(SL(2)1, k) \ {0} be nilpotent. In view
of Theorem 6.3.1, the Carlson module Lζ is indecomposable of constant Jordan type
Jt(Lζ ) = {[1]⊕[p−1]⊕nζ [p]} (cf. Lemma 5.1). As this contradicts Proposition 8.1.1(1),
we have retrieved the well-known fact that the algebra H∗(SL(2)1, k) = H•(SL(2)1, k) is
reduced.

(2) Let 2 ⊆ 0s(SL(2)1) be a component with zero-dimensional 5-support. If αK is
a π -point such that [αK ] ∈ 5(SL(2)1)2, then Proposition 8.1.1 shows that `(αK,i) ≤ 2
for 1 ≤ i ≤ p− 1. One can show that the quasi-simple module of2 is the only relatively
αK -projective module belonging to 2.

Let T ⊆ SL(2) be the standard maximal torus of diagonal matrices. Our next example,
G = SL(2)1Tr (r ≥ 2), the product of the first Frobenius kernel of SL(2) and the r-th
Frobenius kernel of T , is closely related to the previous one. In fact, k SL(2)1Tr is a Galois
extension of k SL(2)1 with Galois group Z/(pr−1). According to [29, (5.5)], the groups
SL(2)1Tr are precisely the semi-simple infinitesimal groups whose principal blocks have
tame representation type.

By the proof of [29, (5.5)], the algebra k SL(2)1Tr has non-simple blocks B1, . . . ,

B(p−1)/2 with Bi possessing pr−1 simple modules of dimensions i and p−i, respectively.

Corollary 8.1.2. Let 2 ⊆ 0s(SL(2)1Tr) be a component.

(1) If dim5(SL(2)1Tr)2 = 1, then 2 ∼= Z[Ãpr−1,pr−1 ], and there exists s2 in
{1, . . . , p − 1} such that

Jt(M) =
{
[s2] ⊕

(
dimkM − s2

p

)
[p]

}
for every M ∈ 2.

(2) If dim5(SL(2)1Tr)2 = 0, then 2 ∼= Z[A∞]/〈τ 〉, Z[A∞]/〈τp
r−1
〉, and there exists

i2 ∈ {1, . . . , (p − 1)/2} such that 2 ⊆ 0s(Bi2) and

Jt(M) =
{(

dimkM

p

)
[p], [i2] ⊕ [p − i2] ⊕

(
dimkM

p
− 1

)
[p]

}
for every M ∈ 2.

(3) An indecomposable SL(2)1Tr -module M is endo-trivial if and only if M ∼=

�nSL(2)1Tr
(S) for n ∈ Z and S simple of dimension 1 or p − 1.

Proof. According to [29, (5.6)], the stable Auslander–Reiten quiver of each non-simple
block B ⊆ k SL(2)1Tr has two components of type Z[Ãpr−1,pr−1 ], four components of

type Z[A∞]/〈τp
r−1
〉, and infinitely many components of type Z[A∞]/〈τ 〉.

Let αK : Ap,K → K SL(2)1Tr be a π -point. Then there exists an abelian, unipo-
tent subgroup U ⊆ (SL(2)1Tr)K such that we have imαK ⊆ KU. Since the group
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(SL(2)1Tr)K/(SL(2)1)K ∼= (Tr−1)K is diagonalizable, we obtain U ⊆ (SL(2)1)K . Ac-
cordingly, we have

α∗K(MK) = α
∗

K(MK |(SL(2)1)K ) (∗)

for every SL(2)1Tr -module M .
(1) If dim5(SL(2)1Tr)2 = 1 and M ∈ 2, then [25, (2.1.2)] ensures that M|SL(2)1

belongs to a component with one-dimensional 5-support. Hence Proposition 8.1.1 in
conjunction with (∗) provides s ∈ {1, . . . , p − 1} such that

Jt(M) =
{
[s] ⊕

(
dimkM − s

p

)
[p]

}
.

By the above, 2 ∼= Z[Ãpr−1,pr−1 ] has tree class A∞∞, so that our assertion follows from
Corollary 3.1.2.

(2) Assume that dim5(SL(2)1Tr)2 = 0. Let M0 ∈ 2. Then the restriction M0|SL(2)1
belongs to a homogeneous tube Z[A∞]/〈τ 〉, so that [25, (4.1.2)], Proposition 8.1.1 and
(∗) imply

• dimkM0 = p q`(M0|SL(2)1), and
• Jt(M0) = {q`(M0|SL(2)1)[p], [i]⊕ [p− i]⊕ (q`(M0|SL(2)1)− 1)[p]}, whereM0|SL(2)1

belongs to the block Bi ⊆ k SL(2)1.

Since the restrictions of simple SL(2)1Tr -modules are simple (cf. [29, (5.1)]), we con-
clude that M0 belongs to Bi ⊆ k SL(2)1Tr . Hence any M ∈ 2 will yield the same data
for Jt(M).

(3) Let M be an indecomposable, endo-trivial SL(2)1Tr -module. Owing to [25,
(2.1.2)], the module M|SL(2)1 is indecomposable. Moreover, a two-fold application of
[10, (5.6)] in conjunction with (∗) implies that M|SL(2)1 is endo-trivial. Proposition
8.1.1 now provides n ∈ Z such that �nSL(2)1

(M|SL(2)1) is a simple SL(2)1-module of
dimension 1 or p − 1. Since �nSL(2)1Tr

(M)|SL(2)1 is indecomposable, it follows that
�nSL(2)1Tr

(M)|SL(2)1
∼= �nSL(2)1

(M|SL(2)1) is also simple. Consequently, �nSL(2)1Tr
(M) is

simple.
If S is a simple SL(2)1Tr -module of dimension 1 or p − 1, then S|SL(2)1 has the

same properties (see [29, (5.1)]), so that (1) and [10, (5.6)] imply that S is endo-trivial.
Consequently, �nSL(2)1Tr

(S) is also endo-trivial. ut

Remarks. (1) The foregoing results indicate the utility of π -points. In either case, com-
ponents with one-dimensional 5-supports cannot be distinguished via their support vari-
eties, yet their Jordan types nicely separate them (cf. Corollary 3.2.3). On the other hand,
Jordan types do not reflect the ranks of the tubes occurring in Corollary 8.1.2.

(2) In each of the cases above, the indecomposable modules are either projective,
constantly supported or of constant Jordan type. It is therefore possible to compute Jt(M)
for any G-module M whose indecomposable constituents are known.
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8.2. A central extension of sl(2)

Our next example necessitates a simple technical preparation. Recall that Ap,K = K[t],
where tp = 0. Given j ∈ {1, . . . , p} and 1 ≤ ` ≤ bp/jc, the unique `-dimensional
indecomposable module of the local subalgebra K[tj ] ⊆ Ap,K will also be denoted [`].
(Here b c denotes the floor function.)

Lemma 8.2.1. Let i, j ∈ {1, . . . , p}. Then

[i]|K[tj ] =

{
(j − r)[a] ⊕ r[a + 1] if i = aj + r with 0 ≤ r < j ≤ i,

i[1] otherwise.

Proof. Let {v1, . . . , vi} be a basis of the cyclic Ap,K -module [i] such that t.v` = v`+1
(vi+1 = 0). If j ≥ i, then tj acts trivially on [i], whence [i]|K[tj ] = i[1]. Alternatively,
for 1 ≤ ` ≤ j we have

K[tj ]v` =

a∑
q=0

Kvvqj+` =

{⊕a
q=0Kvvqj+` , 1 ≤ ` ≤ r,⊕a−1
q=0Kvvqj+` , r + 1 ≤ ` ≤ j.

Hence [i]|K[tj ] = (j − r)[a] ⊕ r[a + 1]. ut

We consider the 4-dimensional restricted Lie algebra sl(2)s := sl(2)⊕kv0, whose bracket
and p-map are given by

[(x, αv0), (y, βv0)] = ([x, y], 0) and (x, αv0)
[p]
= (x[p], ψ(x)v0)

respectively, where the p-semilinear map ψ : sl(2)→ k satisfies ψ(e) = 0 = ψ(f ) and
ψ(h) = 1. Note that the nullcone

Vsl(2)s = (Vsl(2) ∩ kerψ)× kv0 = (ke ⊕ kv0) ∪ (kf ⊕ kv0)

is 2-dimensional and reducible.
Since kv0 is a unipotent p-ideal of sl(2)s , the simple U0(sl(2)s)-modules are just

the pull-backs of the simple U0(sl(2))-modules. Moreover, the p-dimensional simple
U0(sl(2)s)-module belongs to a block which is a Morita equivalent to a truncated poly-
nomial ring k[X]/(Xn) (a Nakayama algebra).

According to [27, §7], each stable AR-component2 ⊆ 0s(sl(2)s)with 2-dimensional
support is isomorphic to Z[A∞∞], so that f2 ≡ 1 (cf. Corollary 3.1.2). We shall consider
two types of these components. One type contains a simple module, the others are given
by certain induced modules.

Recall that {e, h, f } is the standard basis of sl(2). Let λ : kh ⊕ ke ⊕ kv0 → k be
a linear form such that λ(h) ∈ {0, . . . , p − 2} and λ(e) = 0 = λ(v0). Observing that
bs := kh⊕ ke ⊕ kv0 is a p-subalgebra of sl(2)s , we consider the “Verma module”

Z(λ) := U0(sl(2)s)⊗U0(bs ) kλ.

Owing to [27, (7.3)], we have ke⊕kv0 ⊆ Vsl(2)s (Z(λ)), while general results on induced
modules (see for instance [37, (4.12)]) guarantee the reverse inclusion. Thus, Z(λ) is not
of constant Jordan type and belongs to a component 2(λ) ∼= Z[A∞∞].
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Proposition 8.2.2. (1) Let 2S ⊆ 0s(sl(2)s) be the component containing the simple
module S. If n := dimk S ≤ p − 1, then 2S ∼= Z[A∞∞] and

Jt(M) =
{
(j − r)[a]⊕ r[a+1]⊕

(
dimkM − n

p

)
[p]; n = aj + r, 0 ≤ r < j ≤ n

}
for every M ∈ 2S . In particular, |Jt(M)| = n for every M ∈ 2S .

(2) Let 2(λ) ⊆ 0s(sl(2)s) be the component containing Z(λ). Then 2(λ) ∼= Z[A∞∞] and
setting i := min{λ(h)+ 1, p − λ(h)− 1} we have

StJt(M) = {(j − r)[a] ⊕ r[a + 1] ; p = aj + r, 1 ≤ r < j ≤ p}

∪ {i[1] ⊕ (j − r)[a] ⊕ r[a + 1]; p − i = aj + r, 0 ≤ r < j, i ≤ j ≤ p − i}

∪ {(j − r ′)[b] ⊕ r ′[b + 1] ⊕ (j − r)[a] ⊕ r[a + 1]; i = bj + r ′, p − i = aj + r,

0 ≤ r, r ′ < j < i}

for every M ∈ 2(λ).
(3) Every M ∈ 2k ∪2�sl(2)s (k)

is endo-trivial.

Proof. (1) The central, nilpotent element v0 ∈ U0(sl(2)s) acts trivially on every simple
U0(sl(2)s)-module S. Let αK : Ap,K → U0(sl(2)s)K be a π -point. Then there exists a p-
unipotent subalgebra u ⊆ (sl(2)s)K with imαK ⊆ U0(u). Hence we can find x ∈ sl(2)K
with x[p] ∈ K(v0 ⊗ 1) and u ⊆ Kx ⊕Kx[p]. If x[p] 6= 0, then the condition αK(t)p = 0
entails imαK ⊆ (v0⊗1)U0(sl(2)s)K , so that Jt(S, αK) = n[1]. Alternatively, x ∈ Vsl(2)s
and u ⊆ K(e⊗ 1)⊕K(v0⊗ 1) or u ⊆ K(f ⊗ 1)⊕K(v0⊗ 1). Both cases being similar,
we write αK(t) =

∑p−1
i,j=0 γi,j (e ⊗ 1)i(v0 ⊗ 1)j (γ0,0 = 0) and note that αK(t)w =

(
∑p−1
i=1 γi,0(e⊗1)i).w for allw ∈ SK . Since S|K[e⊗1] = [n], Lemma 8.2.1 in conjunction

with [35, (2.2)] gives

Jt(S) = {(j − r)[a] ⊕ r[a + 1]; 1 ≤ j ≤ n, n = aj + r, 0 ≤ r ≤ j − 1}.

As 2S ∼= Z[A∞∞], Corollary 3.1.2 yields the first assertion. Moreover, each Jordan type
of S is uniquely determined by j ∈ {1, . . . , n}, whence |Jt(S)| = n. Thanks to Corollary
3.2.1, this implies |Jt(M)| = n for every M ∈ 2S .

(2) Let αK : Ap,K → U0(sl(2)s)K be a π -point, and u ⊆ (sl(2)s)K be a p-unipotent
subalgebra through which αK factors. Since v0 acts trivially on Z(λ), the arguments of
part (1) imply Jt(Z(λ), αK) = p[1] whenever u[p] 6= (0). By the same token, the remain-
ing cases are u ⊆ K(e ⊗ 1)⊕K(v0 ⊗ 1) and u ⊆ K(f ⊗ 1)⊕K(v0 ⊗ 1).

Since Z(λ)|K[f⊗1] = [p], Lemma 8.2.1 implies

Jt(Z(λ), αK) ∈ {(j − r)[a] ⊕ r[a + 1]; p = aj + r, 0 ≤ r < j ≤ p}

in the latter case.
In view of Z(λ)|K[e⊗1] = [i] ⊕ [p − i] and i < p − i, the assumption imαK ⊆

K(e ⊗ 1)⊕K(v0 ⊗ 1) in conjunction with Lemma 8.2.1 gives

Jt(Z(λ), αK) ∈ {i[1]⊕ (j − r)[a]⊕ r[a+1]; p− i = aj + r, 0 ≤ r < j, i ≤ j ≤ p− i}

∪ {(j − r ′)[b] ⊕ r ′[b + 1] ⊕ (j − r)[a] ⊕ r[a + 1]; i = bj + r ′, p − i = aj + r,
0 ≤ r, r ′ < j < i}.
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Owing to [35, (2.2)], all types in the sets above actually occur, so that we have in fact
determined Jt(Z(λ)). Since 2(λ) ∼= Z[A∞∞], Corollary 3.1.2 gives the result.

(3) Since the trivial module k and its Heller shift�sl(2)s (k) are endo-trivial, the asser-
tion is a direct consequence of Theorem 7.2(2). ut

Remarks. (1) In Proposition 8.1.1 and Corollary 8.1.2, the indecomposable periodic
modules are constantly supported. This is in general not the case. Consider the group
scheme Ga(2) with algebra of measures kGa(2) = k[u0, u1], where kGa(1) = k[u0].
Then M := kGa(2) ⊗k[u0] k is indecomposable and periodic. We consider the π -points
αk, βk : Ap → kGa(2) given by αk(t) = u0 and βk(t) = u0+u

2
1. Then [35, (2.2)] implies

αk ∼ βk , while Lemma 8.2.1 yields

Jt(M, αk) = p[1] and Jt(M, βk) =
[
p − 1

2

]
⊕

[
p + 1

2

]
,

so that
{
[p], p[1],

[p−1
2

]
⊕
[p+1

2

]}
⊆ Jt(M).

Also, since k[u0] = kGa(1) ⊆ kGa(2), the module M|Ga(1) has constant Jordan type.
Thus, G-modules M whose restrictions to a subgroup H ⊆ G are of constant Jordan type
with 5(G)M = 5(H) are not necessarily constantly supported.

(2) Note that the modules belonging to the components2S are usually not annihilated
by v0. In fact, direct computation shows that �2

sl(2)s (S) is too big to be annihilated by v0.
Thus, our method of computing Jt(S) does not carry over to all modules of 2S .
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