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An existence theorem for the Yamabe problem on
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Abstract. Let (M, g) be a compact Riemannian manifold with boundary. We consider the problem
(first studied by Escobar in 1992) of finding a conformal metric with constant scalar curvature in
the interior and zero mean curvature on the boundary. Using a local test function construction, we
are able to settle most cases left open by Escobar’s work. Moreover, we reduce the remaining cases
to the positive mass theorem.
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1. Introduction

The Yamabe problem, solved by Trudinger [14], Aubin [1], and Schoen [12], asserts that
any Riemannian metric on a closed manifold is conformal to a metric with constant scalar
curvature. Escobar [8], [9] has studied analogous questions on manifolds with boundary.
To fix notation, let (M, g) be a compact Riemannian manifold of dimension n > 3 with
boundary 0 M. We denote by R, the scalar curvature of (M, g) and by k, the mean cur-
vature of the boundary d M. There are two natural ways to extend the Yamabe problem to
manifolds with boundary:

(a) Find a metric g in the conformal class of g such that R; is constant and x; = 0.
(b) Find a metric g in the conformal class of g such that Rz = 0 and «; is constant.

The boundary value problem (a) was first proposed by Escobar [8]. The boundary value
problem (b) is studied in [9] and [11].

In this paper, we focus on the boundary value problem (a). The solvability of (a) is
equivalent to the existence of a critical point of the Yamabe functional, defined by
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where u is a smooth positive function on M. Moreover, the Yamabe constant is defined as

Y(M. oM. g) = ()<u€lg£°(M) Eg(w).
It is well known that Y (M, 0 M, g) is invariant under a conformal change of the metric g.
Moreover, Y (M, M, g) < Y (S, 0S"}), where Y (5"}, 95" ) denotes the Yamabe constant
of the hemisphere S’} equipped with the standard metric.
Proving the existence of a minimizer for the functional E, is a difficult problem,
as E, does not satisfy the Palais-Smale condition. The following existence result was
established by Escobar [8].

Theorem 1.1 (J. Escobar [8]). If Y(M,dM, g) < Y(S', 0S"}), then there exists a met-
ric g in the conformal class of g such that Ry is constant and i3 is equal to 0.

Theorem 1.1 should be compared with Aubin’s existence theorem for the Yamabe prob-
lem on manifolds without boundary (cf. [1]).

In dimension 3 < n < 5, Escobar showed that Y (M, dM, g) < Y (S, dS"}) unless
M is conformally equivalent to the hemisphere S’}. In dimension n > 6, Escobar was
able to verify this inequality under the assumption that d M is not umbilic.

Therefore, it remains to consider the case that n > 6 and 0 M is umbilic. For abbre-
viation, we put d = [(n — 2)/2]. As in [4], we denote by Z the set of all p € M such
that

limsupd(p, x)>~4| Wy (x)| =0,
x—>p
where W, denotes the Weyl tensor of (M, g). In other words, a point p € M belongs to Z
if and only if D" Wy (p) = Oforallm € {0, 1, ..., d —2}. Note that the set Z is invariant
under a conformal change of the metric.
The following is the main result of this paper:

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n > 6 with
umbilic boundary dM. Moreover, let p € dM be an arbitrary point on the boundary
of M. If p & Z, then Y(M,dM, g) < Y (S, 3S"}). Consequently, there exists a metric g
in the conformal class of g such that R; is constant and k3 is equal to 0.

In case p € Z, we are able to show that Y(M, oM, g) < Y (S}, BS_IX), provided that a
certain asymptotically flat manifold has positive ADM mass (see Theorem 4.4 below for
a precise statement). Thus, the solvability of the Yamabe problem on (M, dM, g) can be
reduced to the positive mass theorem.

We now give an outline of the proof of Theorem 1.2. By a theorem of Marques [11],
we may work in conformal Fermi coordinates around p. We define

s (n—2)/2
= —=——— . 1.1
u&(-x) <82+ |X|2) ( )
The function u, satisfies

Aug = —n(n — 2)u§"+2)/("_2)
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and

n n

— 2|dus|2)a,-k.

These identities reflect the fact that the metric ug/ ("_Z)Si « 1s Einstein.

We then consider a sum of the form u, + w, where u, is given by (1.1) and w is a
correction term. This function is only defined in a small neighborhood of the point p. In
order to extend the test function to all of M, we glue the function u, + w to the Green’s
function of the conformal Laplacian with pole at p.

In order to show that the resulting test function has Yamabe energy less than
Y (S%, Z)Si), we make extensive use of techniques developed in [4] (see also [5], [6], [7]).
In [4], these techniques were used to prove a convergence theorem for the parabolic
Yamabe flow in dimension n > 6. The convergence of the Yamabe flow in dimension
3 < n < 5 was shown in [3].

1
Ug ;i g — 281-148 Oxlly = ;(usAug —

2. Auxiliary results

In this section, we consider the halfspace R = {x € R" : x,, > 0}. Moreover, we assume
that Hix(x) is a trace-free symmetric two-tensor on R’} which satisfies the following
conditions:

e Ateach point x € R" , we have H;,,(x) =0 foralli € {1,...,n}.
e Ateach pointx € 9R’,, we have )y, Hyx(x)xy = Oforalli € {1,...,n}.
e Ateach point x € R, we have 9, H;jx(x) = Oforalli,k € {1, ..., n}.

Finally, we assume that the components H;y(x) are polynomials of the form

Hix(x) = Y hikax®,

2<|a|=d

where the sum is taken over all multi-indices « of length 2 < |«| < d.
As in [4], we define

n n 1 n
Ak =D 0iOm Honke + D OOk Him — AHig = —— 3 | O Honp Sik
= =

m=1 - et
and
Zijki = ;0 Hj1 — 9; 0 Hji — 00k Hiy + 9;0 Hik
+ ﬁmﬂaik — Ajidii — Aitdjk + Aikdji).
Note that

n—3
0 Zijk = nTz(aiAjk —0jAir).

Lemma 2.1. We have A;,(x) =0 forall x € 0R" and alli € {1,...,n —1}.
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Proof. Note that 9, H;,,(x) = 0 forall x € dR", and all i,m € {1,...,n — 1}. If we
differentiate this identity in tangential direction, we obtain

n—1
Ain(x) =Y 80y Him(x) =0
m=1

forallx € 0R’, andalli e {1,...,n —1}.

Lemma 2.2. Assume that Z;ji(x) = 0 for all x € 0R and all i, j, k,1 € {1,...,n}.
Then Hjx(x) = Ajx(x) =0 forall x € am andalli,k e {1,...,n—1}.

Proof. We define
N n-l n—1
Ajg(x) = Z 0i O Hynk (x) + Z Om Ok Him (x)
m=1 el
n—1 ! "
_ mZ:l Om Om Hix (x) — P Z O O Hynp (X)8ik

m,p=1

forall x € am andalli, k € {1,...,n — 1}. By assumption, we have

1
050 Hig (x) + m(Aik(x) + App(X)6ik) = Zinkn(x) =0

forall x € 8R’}r and all i, k € {1, ...,n — 1}. This implies

1 n—1

Aik() = A (¥) + O () = oy m;I O p Hynp (x) S

1 n—23
= Air(x) + 0,0y Hif (x) + ——= App (X)8ix = —— Ajr(x)
n—2 n—2

forall x € 8R’jr and all i, k € {1, ...,n — 1}. Hence, we obtain
0; 0k Hjy(x) — 0;0) Hjy (x) — 0;0x Hjy (x) + 950y Hiy (x)
1
= _m(Ajl(x)‘sik — Aj(x)8; — A (x)8jx + Aik(x)dj1)
1 ~ o ~ n
= _m(Ajl(x)‘Sik — Ajk(x)8; — A (x)8jk + Aik(x)dj1)

forall x € B]R’_“1r andalli, j, k,I € {1, ..., n—1}. Using Proposition 7 in [4], we conclude
that Hix(x) = O forall x € 9R and all i,k € {1,...,n — 1}. This implies A;(x) =
122 Ajp(x) = Oforall x € R and all i,k € {1,....n — 1}.

Proposition 2.3. Assume that Z;jy(x) =0 for all x € R’i andalli, j, k,l € {1,...,n}.
Then Hi(x) =0 forallx e R, and alli,k € {1,...,n—1}.
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Proof. Without loss of generality, we may assume that H;x(x) is homogeneous of degree
d’ > 2. By assumption, Zijri(x) = 0forall x € R’_ﬁ_ and all i, j, k,l € {1, ...,n}. This
implies

n—2<
B Ajk(x) = 0 A (x) = — ; N Zijr(x) =0
forall x € Ri and alli, j, k € {1, ..., n}. We next define

1

p(x) = d’(d’——l) i,k2=:1 A (x)x;xk

for all x € R'}. Clearly, ¢(x) is a homogeneous polynomial of degree d’. Moreover,

1 n
dep(x) = —— > Ai)xi
=l

forall x € RQ’_ and all k € {1, ..., n}. This implies
0; 0k (x) = Ajr(x)
forall x € Ri and all i, k € {1, ..., n}. Using the identity Zl’f:_ll H;; (x) = 0, we obtain

1 n—1 1 n—1
Bndap(X) = A () = ——— ;Aum =-— ; 3;9;¢p(x)

for all x € R. By Lemma 2.1, 3,¢(x) = ﬁ Z?Z_ll Ajp(x)x; = 0 for all x € ORY.
Moreover, it follows from Lemma 2.2 that ¢(x) = d,(dl—,_l) Zf;il Air()xix = 0 for
all x € dR’} . Putting these facts together, we conclude that ¢(x) = O for all x € R’

Therefore, Ajx(x) = 9;dkp(x) = Oforall x € R’} and all i,k € {1,...,n}. This
implies

1
0n0n Hik(x) = Zinjn(x) — m(Aik(X) + Apn(X)3ik) =0

forall x e R and alli,k € {I,...,n — 1}. On the other hand, H;;(x) = 8, Hjx(x) =0

forall x € OR’ and alli,k € {1,...,n — 1}. It follows that H;(x) = O for all x € R}
and alli, k € {1, ..., n — 1}. This completes the proof of Proposition 2.3.

For each r > 0, we denote by U, C R’ the open ball of radius r/4 centered at the
point (0, ..., 0, 3r/2). Moreover, let u, : R, — R be defined by (1.1).

Proposition 2.4. There exists a constant K1, depending only on n, such that
n n
2 2)a|—4 2
> PP < gy [ (ZuwP ds
2<lal<d i,k=1 Ur i, j k=1
forallr > 0.

Proof. Tt follows from Proposition 2.3 that the assertion holds for r = 1. The general
case follows by scaling.
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Proposition 2.5. Let V be a smooth vector field on R,. Moreover, let
2 .
Tir = Hip — 0; Vi — 0 Vi + = divV 81
n

and

2
Qi =ug0Tik — P aiue Ty —

P Za Ug Tlp(sk] + Za Ug Tkp il-

zakue T

+

Then there exists a constant K3, depending only on n, such that
n
2.n—=272 2—
SO g2l usf 3 10wl dx
2<|a|<d i,k=1 (Bar (O\B-(ODNRY ; 37—

forallr > e.

Proof. In [4], the first author showed that

1 n n
2 -1
7 Z |Zijki|™ = Z j(ug  Qik1)Zijki
i jkil=1 i jkol=1
2 n
-2
+n_ ug “Okue Qi j Zijkl

(cf. [4, p. 555]). Let us fix a smooth cut-off function 1 : R” — [0, 1] such that n(x) =1
for x € Uy and n(x) = 0 for x ¢ (B2(0) \ B1(0)) NR’.. In particular, we have n(x) =0
for all x € dR’} . Integration by parts gives

l n
/M S 1 Ziu @ Pae/r) dx
L=

= _'/R Z us(x)_lQik‘l(x)aj[Zijkz(x)r)(x/r)]dx

Vi jki=1

2 n
+ /R D ue() Pohue(x) Qir,j (¥) Ziju (x)n(x/r) dx.

nn—2, AT
Using Hoélder’s inequality, we obtain

n 1/2
/ 3 1Ziu @R dx < Kye 022 (XD thialPr?eim)
Ur

i,j,k,I=1 2<|a|<d i,k=1

n 12
. ( [ 3 |Q,-k,1<x>|2dx)
(Bor\Br (O)NRY, ; 1 71=1
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for all » > €. Here, K3 is a positive constant that depends only on . On the other hand, it
follows from Proposition 2.4 that

n n
DD e <k [>T Ziu () dx.

2<|a|<d i,k=1 Uri jki=1
Putting these facts together, the assertion follows.
Corollary 2.6. Let V be a smooth vector field on R",. Moreover, let
Tix = Hik — 9; Vi — Vi + %divV&'k
and

Qik,) = ug0Tig —

2
281'”3 Ty — 28k”s T;

2 & 2 &
+ 5 E Opue Tipdps + PR E Opue Tipdis.
p=l1 p=1

Then there exists a constant K4, depending only on n, such that

n
> iwale ™ [ ek e
Bs(O)NR",

2<|a|<d i,k=1
n

2
< Kq / Qi ()2 dx
Bs(OONRY j & 1=1

forall § > 2e.

3. The main estimate

We now describe the construction of the test function. Let (M, g) be a compact Rieman-
nian manifold of dimension n > 6 with umbilic boundary d M. After changing the metric
conformally, we may assume that d M is totally geodesic.

Letus fix apoint p € M, and let (x1, .. ., x,) denote the Fermi coordinates around p.
In these coordinates, the metric has the following properties:

o Ateachx € R, we have g;;,(x) = §;, foralli € {1,...,n}.
e Ateach x € dR'}, we have Y ey 8ik(X)xi = x; foralli € {1,...,n}.
o Ateach x € dR'}, we have 9, gix(x) =0 foralli, k € {1,...,n}.

By a theorem of Marques, there exists a system of conformal Fermi coordinates around p
(see [11, Proposition 3.1]). Hence, after performing a conformal change of the metric, we
may assume that det g(x) = 1 + O(|x|*¥*?), where d = [(n — 2)/2].

In the next step, we write g(x) = exp(h(x)), where h(x) is a smooth function tak-
ing values in the space of symmetric n x n matrices. This function has the following
properties:
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e Ateachx € R, we have h;,(x) =O0foralli € {1,...,n}.
o Ateach x € 3R}, we have Zzzl hir(x)xy =0foralli € {1,...,n}.
e Ateachx € 8R’jr, we have 0,h;x(x) =0foralli, k € {1,...,n}.

Moreover, we have trz(x) = O (]x|??*2). For abbreviation, we denote by
Hix(x) = Y higax®
2<|a|=d

the Taylor polynomial of order d associated with the function /4 (x). Clearly, Hj;(x) is a
trace-free symmetric two-tensor on R’ . Moreover, hi (x) = Hix(x) + O (|x|4th.

Let us fix a non-negative smooth function such that x (#) = 1 fort <4/3and x(¢) =0
for t > 5/3. Given any § > 0, we define a cut-off function x5 : R* — R by xs(x) =
x(lx]/8). By Theorem A .4, there exists a smooth vector field V on R’} with the following
properties:

e Ateach x € R}, we have
& 2
Z Ok [Mgn/("_z) (XaHik —0; Vi —0Vi+ —divV &k)] =0
k=1 n
foralli e {1,...,n}.
e Ateach x € dR’}, we have V,,(x) = 3, V;(x) =0foralli e {1,...,n — 1},
By Corollary A.6, the vector field V satisfies the estimate
n
PVED @) <C D0 D ikl (e + [x 1A 3.1)
2<|a|=<d i,k=1

for every multi-index § and all x € R’,. Here, C is a positive constant that depends only
onn and |B|.
For abbreviation, we define

2
Sik = 0; Vi + 0 Vi — = divV i,
n

Tix = Hix — Sik,
2 2
Qikg =uedTix — — 281'”6 T — — zak”s T;
2 & 2 1
+ P Z 8pue Tip8kl + m Z ap”g Tkpails
p=1 p=1
w = Za,ug Vi+ n2— usdivV.
=1 n
By definition of V, we have
n
DT =0 (3.2)

k=1
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forall x € B5(0) "R and alli € {1, ..., n}. This implies

1 2n
Z(ugaknk + Ogtt m) =0 (3.3)
= n—2
forall x € Bs(0)NR andalli € {1,..., n}. The following result was established in [4]:

Proposition 3.1 (S. Brendle [4]). There exists a smooth vector field & on R’} such that

1 1 1 n
Z“? _ 2 O Hix 0y Hjx — Eug 2 O Hiy 01 Hy
ik I=1 idi=1
< 2n—1)
— 2u, Z Okue Hip0 Hip — P Oxle e Hip Hi
il=1 =2 k=
- 8n—1) &
—2u,w Z 0; 0 Hix + —2 Z Oiug Orw Hip
ik=1 TS k=1
4(n—1 4(n —1
_ (n—z)|dw|2 + (n—z)n(n + Z)Mg/(n—2)w2
_ n_
1 <& n
=7 Z Qiki Qi + 2u?/ =2 Z TixTix +divé
i,k,[=1 i.k=1

forall x € Bs(0) NIRY.

The vector field & can be expressed in terms of the tensor H;; and the vector field V (cf.

[4, Section 2]). In the next step, we show that £ is tangential along 8R’i. To that end, we
need the following lemma:

Lemma 3.2. At each x € Bs(0) N OR", we have
Sin(x) =Tin(x) =0 and 08,Six(x) = 9, Tix(x) =0

foralli,k € {1,...,n — 1}. Moreover, 3,Sp;,(x) = 0, Tpn(x) = 0 and 9, w(x) = 0.

Proof. By assumption, we have V,(x) = 9,V;(x) = 0 for all x € dR’}. This implies
Sin(x) = Tj(x) =0foralli € {1,...,n — 1}. It follows that

n—1

Z(us(mﬂkn (x) +

k=1

2n

Zakus(x) Tkn(x)) =0.

n—
Using (3.3), we obtain
2n
e (x)0, Tpn (x) + manue(x) Tn(x) =0.

This implies 8,7y, (x) = 0, hence 9,,5,,(x) = 0. Consequently, we have 9,3,V (x) = 0.
From this, the assertion follows easily.

Lemma 3.3. We have &,(x) = 0 for all x € Bs(0) N R’
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Proof. The vector field £ satisfies

£, = —ZZustank + 223 (usw) Hip
i=1

2 Ug Z O Sik Hik —Ug Z 01Sit Hin — 2u, Z Ojue SitHip,
i,k=1 i,l=1 i,l=1

+usw Z Ok Snk — Z 0;i (ugw) Sin

i=1

- —u Z O Sik Sik + —u Z 0;Sit Sin + ue Z Oue SiiSin
i,k=1 i,l=1

4(n—-1) 4(n -1
+ — p— 12;8 iue WSin — ﬁwanw + Sl Z OkueTik Ty

i,k=1
(see [4, Section 2]). Using Lemma 3.2, we conclude that &, (x) =0 for all x € Bs(0)NoR"

Proposition 3.4. We have

1, L I, 1
—u o Hip 0jHijy — —u o Hix 01 Hj;
Lo (372 32 vt = 522 3~ g

ik, I=1 ik, =1

5 Z Ok Oue Hix Hip
L k=1 i li=1

r 2n—1) &
—/ 2u Z Okus H, kalHll+—
Bs(O)NRL

[ &(n 1) ]
— 2ugw 0;0Hjy — —— 0;jug opw Hiy
/MW w3 oo o S dhue dhw )

o i,k=1 i,k=1

4(n —1 4(n —1
_ / (n ) |du)|2 _ (n )n(n + 2)ug/(n—2)w2i|
Bs(O)NR™. L n—2 n—2

>2% Y Z hikale"

, / (e + I3 dx
2<lal<d i, k=1 Bs (ONRL

n
_ C Z Z |hik,a|282‘a|+2_n8n_2~
2<|a|<d i,k=1

for & = 2¢. Here, A and C are positive constants that depend only on n

Proof. We consider the identity in Proposition 3.1 and integrate over Bs(0) N R” . By
Corollary 2.6, we have

n
/ Z Qik1Qik,1
Bs(ONRY ;& 1=1

=8 ) Z |hik.al*e" 2 / (e + [x)** 372" dx,
Bs(0)NR™.

2<|a|<d ik=1

where A = 1/(8K4) is a positive constant that depends only on n. Moreover, it follows
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from 3.1 that )
E@I < Ce" 2 Y Jhikal(e + [x])H3 72

2<|a|=d i,k=1
for all x € R . Using Lemma 3.3 and the divergence theorem, we obtain

. "y
[ ave= | Z—l&-—f £,
Bs (0)NR". aBs)nR". = |x| Bs (0)N9R".

<ce 2 Y Z g 821142,

2<lal<d i,k=1
Putting these facts together yields the assertion.

Finally, we need the following estimate for the scalar curvature Ry.

Proposition 3.5. The scalar curvature R, satisﬁes the estimates

= Z dHir| <€ 53 i e 4 €l (34)
2<ja|<d i,k=1
and
n 1 n 1 n
Rg — Z 0; Oxhix + Z O (it Hip) — = Z O Hig 01 Hit + Z O Hix 0y Hik
i,k=1 i,k,l=1 i,k,I=1 i,k, =1
n
<Cc > Z hika X7+ C Y Jhigal I Ol 3.5)
2<|a|<d i,k=1 2<|a|=<d i,k=1

if |x| is sufficiently small.
Proof. This follows easily from [5, Proposition 25] (see also [4, Corollary 12], where
geodesic normal coordinates are considered).

Our goal is to estimate the Yamabe energy of u, + w. To that end, we proceed in
several steps:

Proposition 3.6. There exist positive constants ), C, 8o such that

4n— 1)
/ (—|d(us+w)| +R (us+w)>
By()NRL \ 1 —

—1 4(n —1
< / 4 )|d e +/ dm—l) )n(n + 2)ud/ (=D y?
Bs(O)NRY 1 — Bs()nRL 1 —2

n
+/ —(M Okhix — 2ugdxug hig)
3B5(0)NR"™. ,;ﬂ |

Z |hik,a|28n_2/ (6 + |x])2le+2=2n g
2<lal<d ik=1 Bs(ONR™

n
+ C Z Z |hik,a|8|a|+2_n8n_2 + C82d+4_n8n_2
2<|a|<d ik=1
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if 0 < 2e < 8§ < &o. The constant ) depends only on n. The constants C, §y depend on
the underlying manifold (M, g).

Proof. Let us write

4n —1)
— 5 ld e + WG+ Re(ue + w)?
4n — 1 4n — 1
= An—1) due)® + dr—1) )n(n + 2)ud/ (=D y?
n—2 n—2
8 =D 1y, ;@ 4 ;64 @ L 15 g6 o D
+ = IV TP 4 IO 4 IO 4 IO 1O 4D,
P
where

n
T =" ducdw,
i=1

Jo_ 4D ¢ 2V
= _j Z 0jug Oxltg hix + Ug Z 9; Ochik,
n ik=1 ik=1

n n
JO = —ul 3" O (Hid Hyp) —2ue Y Opue Hig 0 Hir,
i,k,l=1 i,k,l=1
@) 1 & 2 1 & 2
JYV = ~1 i ];;1 ug O Hix Oy Hix + 3 i ];;1 ug O Hiy 01 Hjp

1 2 —1) <
+2ue Y Oktee HigdyHip + =———= 3 | ke dyue HigcHiy
iki=1 =2 k=
1 8(n—1) <&
4+ 2u.w Z 0; o Hi — (—2) Z Ojug rw Hiy
k=1 =< =1
4n—1 4n—1
-2 -2
®) 4in—1) & ik 1<
IV == Z 8" — ik + hik — EZHilHkl Ojue Ope
ik=1 I=1
n n
+ [Rg — > %idkhi+ Y O (Hyx 0 Hy)
ik=1 iki=1
1 & 1 &
3 O Hix & Hi + 7 Z O Hik 31Hik:|u§,
idel=1 i=1
8n—1) <~ n
JO = — — Z (g"" — 8ix + Hix)diue dpw + Z[Rg - 3i3kHik]MsU),
n—2 . )
i,k=1 i,k=1
4in —1) & :
JD = ng2 + P Z (glk — Sir)0iw o w.

i, k=1
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It follows from the divergence theorem that

« n—2)2
/ J(l) :/ Zaj [8iusw + ( ) ugn/(n—Z)Vi:|
Bs(0)NR} B;(0)NR” 2

+ i=1

n . -2 2
_ f 3 X_l[a,-ugw L %ugn/(n—mvi]
]

Bs)nR" = 1x|

n
S C Z Z |hik,a|5|a‘+27n5n72~
2<|a|<d i,k=1

‘We next observe that

n n n
IO 57 iuloihix — 2uedhue hig) =2y (“saiSk”s — —0iue 8kus>hik

i,k=1 i,k=1
2 n
= —<u£Au8 — |du8|2) trh
n n—2
S CSn—2(€ + |x|)2d+4—2n.

Using the divergence theorem, we obtain

n
/ J? < Z 3; (u2dphix — 2uedug hiy) + C8¥H4ngn=2
Bs(ONRY ik=1

n

Xi N

/ —l(ugakh,-k — Qugdug hig) + C8XTAgn =2,
aBsONRY 7= X1

A

IA

Moreover, we have

n

/ JO® = _/ ak(ugHikazHil)
Bs(0)NR”. Bs(ONRL ; k=1

n

.xk 2

—/ —ug Hix 0y Hjj
dBs(ONRY. ; 7=y X1

n
C Z Z |hik,a|252|a‘+2_n8n_2‘

2<|a|<d i,k=1

IA

Using Proposition 3.4, we obtain

n
/ J(4) 5 _2)\‘ Z Z |hik,a|28n_2/ (8 + |x|)2|a\+2—2n d.x
Bs (ONRY, 2<lal<d i k=1 Bs (O)NRY.

n
+ C Z Z |hik,a|282‘a|+2_n8n_2-

2<|a|=d i,k=1
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It remains to estimate the terms J©®, J© and J ., Using Proposition 3.5, we obtain the
pointwise estimate

n
J(S) + J(6) + J(7) <C Z Z |hik,a|28n_2(8 + |x|)2|0t|+4—2n
2<|e|<d i,k=1

n
+C YD lhikale" e + [t
2<|a|<d i,k=1

for x € Bs(0) NR’}.. Using Young’s inequality, we deduce that

n
J® _|_J(6)+J(7) <A Z Z |hik,a|28n_2(8+|x|)2|a‘+2_2n
2<lal<d ik=1

+ Cel‘lfz(g + |x|)2d+472n

for x € Bs(0) NR’}. Integration over Bs(0) N R’ yields

/ IO+ 7O 4 D)
Bs(0)NR'.

n
<A Z Z |hik,a|28’1_2f (e + |x|)2|a|+2—2n dx +C82d+4_n8n_2.
2<la|=d i,k=1 B5 (0)NR’}

Putting these facts together gives the assertion.

Proposition 3.7. If & is sufficiently small, then

n+2 n/(n—=2)
/ (uﬁ + —2w2>
B5 (0)NRY} n—

<[ wewe
Bs (O)NR.

n
+C |h'k, |28n/ (8+ |x|)2\(x|+2—2n d)C
2 2 Mhal |

2<lal<d ik=1

+C Yy fm,-k,aw‘“'—"e"

2<|a|=d i,k=1

forall0 <2e <§ <.

Proof. The proof is analogous to the proof of [4, Proposition 14]. We omit the details.
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Proposition 3.8. If &g is sufficiently small, then

4n—1 4 —1
/ M|a'u£|2 + / Mn(n + 2)14?/("_2)w2
Bs(O)nRY 1 —2 Bs()nRL 1 —2

n—2/(n)
=< Y(S" y 351) </ (ug + w)2ﬂ/(n—2)>
Bs(0)NRY,.

4(n — 1) &K x;
+/ — iU u
aBs(ONRY 1 — 2 lel e

i=1

n
+C > D |hik,a|2€”/ (e + [x2el2=2n gx
2<|a|<d i k=1 Bs(0)NR™

+C Y fmik,aw‘“'—”e"

2<|a|<d ik=1
forall0 < 2e <§ < .

Proof. The proof is similar to the proof of [4, Proposition 15]. We first observe that

2/n
4n(n—1)(/ uﬁ”/m—?)) =Y (5", 35%).

RY

Using Holder’s inequality, we obtain

4(n—1) 4n — 1) &K x;
[ b [ g
Bs()NR: N —2 aBs0) n—2 = |x]

4(n — 1
[ eob
Bs)NRL 1 — 2

4 —1 4 —1
_ / —(n )Au‘E us + / —(n )n(n + 2)ug/(”—2)w2
Bs()nRL 1 —2 Bs()RL 1 —2

2
/ 4n(n — Dud/ =2 (ug e + w2>
Bs(0)NR™ n—2

5\ =Dy (1=2)/n
<y(s", asi)(/ <u§ T w2> > .
B5 (0)NR". n—2

Hence, the assertion follows from Proposition 3.7.

n(n + 2)ug/(”72) w?

4. Proof of the main result

In this section, we construct a smooth function v 5y : M — R with Yamabe energy less
than Y (S}, 35"} ). The existence of such a function is trivial when Y (M, oM, g) < 0.
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Hence, it suffices to consider the case Y (M, dM, g) > 0. As in the previous section, we
fix a boundary point p € dM. Moreover, we denote by G : M \ {p} — R the Green’s
function for the conformal Laplacian with Neumann boundary condition with pole at p.
In other words, G satisfies

4n—1)

n—2

A¢G — RyG =0

in M\ {p} and 3,G = 0 along M \ {p}. We assume that G, (x) is normalized so that
limy_ 0 |x|"2G(x) = 1. With this normalization, we have

n
G = 1xP" <€ D0 D lhikal x| x4 @
2<|a|<d i,k=1

Moreover, we consider the flux integral

7 _ 4(n -1 x 2n e
(p,d) = E —(x|I77"%:G — Go;|x["™")
IBs(ONRL N — n-2 = Ix|
n

— / "2 G (x P hix — 2nxihik),
Bs(0)NR" ik=1

where § > 0 is sufficiently small.
We next define a function v 5y : M — R by

Ve.s) = Xs(ue +w) 4 (1 — x5)e" 272G, 4.2)

where y; is the cut-off function defined above. Our main result is an upper bound for the
Yamabe energy of v, s):

Proposition 4.1. If g is sufficiently small, then

4n—1)
—|dv(85)| + R v(gs) dvolg
M n—

2 (n=2)/n
<Y(S",asi)(/ v i )dvol> —&"22(p, 5)

-3 Z Z ikl 6" 2/ (e + Jx 2221 gy
2<|a|<d i,k=1 Bs(0)NR’},

n
+ C Z Z |hik,a|6|a|+2_n8n_2 + C82d+4—n£n—2 4 Ca—ngn
2<|a|<d i,k=1

forall0 <2e < § <.
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Proof. For abbreviation, we denote by 25 the set of all points in M such that x12 4+ 4+
x,% < 82, where (x1, ..., x,) denote the Fermi coordinates around p. (In other words, 2
is a coordinate ball, not a geodesic ball.) Using the divergence theorem, we obtain

f mmv(g 512 + Rev2 4 | dvolg
M\Q n—2 0)lg (&,8)

4(n—1) _
= —/ <—Agv<s,a) - Rg”(s,«S))(U(s,a) —e""22G) dvol,
M\Qs n—2

dn—1)
- —29 d
/asza P vU(g,8) V(e,8) G0g

n—2
where v denotes the outward-pointing unit normal to d€2s. Note that

Ve, — "G = xo(ue +w — " V26)

4(n — 1
- / MS(”—Z)/Z(U(&S)E)VG — Goyv(e,s)) dog,
925

in M \ Q5. In particular, v sy — c=D2G =0in M \ Q225. Using (4.1), we obtain

4(n — 1)
n—Agv(e,rS) — Rgves)

sup |vee.s) — " 22G| 4 8% sup —
5

M\Q M\Qs

n
<C Z Z |hl_k’a|8|a\+2—n8(n—2)/2+C8d+3—n8(n—2)/2+Ca—ng(n+2)/2’

2<ja|<d i,k=1
hence
4n—1) _
— / (—Agv(&g) — Rgv(g’5)>(v(g’8) — g 2)/ZG) dvolg
M\Qs n—2

n
S C Z Z |hik,a|282‘a|+2_n5n_2 + C82d+4—l‘l8}’l—2 + CS_n_28n+2.
2<|al<d i k=1

‘We next observe that

n n
Xi Xi
_/ Oylte ug dog < —/ Z —0jUg Ug +/ Z — UgOglg hig
3% 3B (0)NR” | x| 39 Bs (0)NR" x|

+ i=1 + i=1

n
+ C Z Z |hik,a|252|a|+2_n€n_2 + C82d+4_n8n_2,
2<|a|<d i,k=1

hence

n n
Xi Xi
—/ Oy V(e,8) V(e,5) dog < —/ Z Qe +/ Z g e hix
99 Bs ()R 7 IxI aBs )R = |x|

n
+ C Z Z |h[k,0[|8|a|+2_n8n_2 + C82d+4_n8n_2.
2<|a|<d i,k=1
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Moreover, we have

n

- / (U(g’a)avG — Gauv(s’g))dag < —/ —(uga G — Ga I/tg)
30 aBs(ONRY = |x|

+C Y i g[282eH e =D/2  gdddmn g n=D/2,

2<|a|=d

Putting these facts together, we obtain

4(n—1)
f (—|dv(g 512 + Rgvl, 5)> dvol,
M\Qs \ N —

4n — 1) &K x; / 4n—1)
= - - —jUgUs + —_— UgOrUghik
/395 n—2 lel e aBs(ONRY 1 — 2 lel e

i=1 i=1

A0 =1 w22
— (u 0;G — Go;jug)
/«‘;BS(O)OR" n—2 Z x| :

+ C Z Z |hik’a|8\(x|+2—n8n—2 + C82d+4_n8n_2 + Ca—n—28n+2.
2<|a|<d i k=1

On the other hand, it follows from Propositions 3.6 and 3.8 that

4(n —1)
S ldves [} + Revl ) ) dvoly
Qs n—

(n=2)/n 4(n—1)
< Y(S", 8" 211072 yol, / TN D,
<Y( +) (A (8 3) 0 + DBy ONRL 1 — ) ZZ; x| Ug Ug

n
+f 3 2 w2akhix — 2us e i)
IBs(ONRY ) x|

Z Z |hik,a|28n_2/ (e + [x])2 221 g
By (0)NR.

2<la|<d i,k=1

n
+ C Z Z |hik’a|8\c{|+2—n8n—2 + C82d+4_n8n_2.
2<|a|<d i,k=1

If we add the last two inequalities, we obtain

4(n —1)
/ <—|dv(8 5)| + R U(S 6)) dVOl
M n

2n/(n—2) (n=2)/n
n n
<Y(S ,asg(/Q vl dol)

n

2n
+/ <u chik -I- —— U e h k)
9B (0)NR". 1;1 |x] l —2 e
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4(n —1 X
~ f An =D o 3 2 et G — Gojue)
3B5(0)0Rﬁr n—2 i—1 |X|

)\' n
“5 2 D el / (e + [x?IT2720 dx
Bs(0)NRY.

2<|a|<d i,k=1

n
+ C Z Z |hik,a|8\ol|+2—n8n—2 + C82d+4_n8n_2 + Ca—n—28n+2.
2<|a|<d i,k=1

From this, the assertion follows easily.
Theorem 4.2. Assume that p ¢ Z. Then Y(M,0M, g) < Y (S, dS").

Proof. Since p ¢ Z, we have Y 5y 1<g Dt k=1 |hix.«|? > 0. Using Proposition 4.1, we
obtain o

4n—1) 5 2
/‘M<ﬁ|dv(g’8)|g + Rgv(é‘,ﬁ) dVOlg
(n=2)/n
< Y(st, asb( / ve 2 dvolg>
u &

if ¢ > 0 is sufficiently small. From this, the assertion follows.

In the remainder of this section, we study the case p € Z. In this case, we consider
the manifold (M \ {p}, G* "2 g). This manifold is scalar flat and its boundary is totally
geodesic. After doubling this manifold, we obtain an asymptotically flat manifold with
zero scalar curvature.

Proposition 4.3. Assume that p € Z. Then the following statements hold:

(i) The limit lims_.o Z(p, 8) exists.
(ii) The doubling of (M \ {p}, G¥"Dg) has a well-defined mass which equals
lims— o Z(p, §) up to a positive factor.

Proof. For abbreviation, let g = G* =2 g. We consider the inverted coordinates y =
x/|x|?, where (x1, ..., x,) are conformal Fermi coordinates around p. In these coordi-

nates, the metric g is given by
9 9 y 4/(n—2)
(L) =[ree(2)]
(8yj 3yz> [ Iy[?
n
_ y
AT Uy Psi; — 2y Iy ok — 2ykyz)gik<w),

i,k=1

where ®(x) = |x|""2G(x) — 1. Using the relations gix (x) = 8;x + hix(x) + O(|x|*41?)
and ®(x) = O(|x|¢t1), we obtain
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(5 a) = [+l
glo o) = =5 ) |9
dy; " Iy n—2 \Iy2/]”

y _0d—
+ 1y~ Z(|y| 8ij — 2yiy) (Y18 — 2ykyz)h,k<| |2)+0(|y| 242,
i,k=1

In particular, g(9/9y;, 9/9y;) = 81 + O(|y|~~1). Hence, the doubling of (M \ {p}, 3)
is asymptotically flat in the sense of Bartnik [2], and has a well-defined ADM mass.
Since trh = O(|x|??*2), it follows that

& 0 0 0 4 1
2. _(_’_) 23 Z|y|2(8’q’)<| |2)+0('y'_2d_2)'

dy; "\ oy dy

Moreover, we have

N9 (90D 4 K i ( y ) i ( y )
2 —g—, — ) =- 2 = (8; —§ Ohi
= g( ‘ ) n=2 T pE

3yj ayl i=1 |)’|2 i,k=1

S Hg <| I2)+0<|y| 1),

i,k=1

where 9; ®(x) = %@(x). Putting these facts together, we obtain

>3y ) ~ 35725 o o)
= ]3}'1 dy; " = jay/ dy Ay

Jl=
4(n—1) y
n—2 Z| |2(‘ )(|y|2
k _
S oy lk)( 2)+2n %m( >+0<|y| 22y
= ] = |y[?
This implies

n n
yi 0 _( 0 0 yi 0 _( 0 0
o S0 Lo BB
8By O)NRY = [V19y\3y; dy 8By O)NRY = 1¥13y; " \dy v
4n —1) 1) 3-2
= XY x0;P(x)
/335 O)NRL 1 — n-2 Z l

n n
- f P2 xi(Bkhin) () + / 2nlx |2 " xixihik (x)
dB5(0) ﬂRi aB5(0) ﬂRi

ik=1 ik=1
+ 0(52(1’4‘4—}’1)
=TI(p.8) + 084,
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As § — 0, the left hand side converges to a positive multiple of the ADM mass. From
this, the assertion follows.

Theorem 4.4. Assume that p € Z. If lims_,0 Z(p, §) is positive, then Y (M, M, g) <
Y (S, a87%).

Proof. Since p € Z, we have Y 5, 1<q D oiket |hix.«|* = 0. By Proposition 4.1, we can
find positive real numbers ép and C such that

4(n — 1)
—ldv(55)| + Ryv? 5, ) dvol,
M n —

(n=2)/n
< Y(s",asi)(/ v 5" dvol ) — " 2T(p, §) + CoXtAngn=2 4 cgngn

whenever 0 < 2e < § < §p. Since lims_,o Z(p, §) is positive, we can find § € (0, dp]
such that Z(p, 8) > C824+4=" 1n the next step, we choose ¢ € (0, §/2] small enough so
that Z(p, 8) > C§2d+a-n 4 cs=n¢2 For this choice of ¢ and §, we have

4=, R dvol, < Y(S",9S" 20D gyl I
y n—l v(€8)| + U(ea) volg < Y(S,85%) M V(e.5) Vo :

This completes the proof.

Appendix. An elliptic system on R’}

In this section, we describe the construction of the vector field V. In the following, we
consider the hemisphere S}, equipped with the round metric of constant sectional cur-
vature 4. We denote by X’ the space of all vector fields V on S} such that V is of class
H' and (V,v) = 0 along 08" . Moreover, we denote by ) the space of all trace-free
symmetric two-tensors on S of class L?. We next define a linear operator D : X — )
by

DV = i’”};g =Yyg — %(divg V)g.
In other words, D is the conformal Killing operator.
Lemma A.1. We have
IVVIZ2isr, < 1DV 720y + 400 = DIV,

forallV e X.

Proof. Without loss of generality, we may assume that V' is smooth. By definition of D,
we have

. )
IDVI3, s = / [v,- VEViV + Vi VEV v — ;(divg V)Z} dvoly.
+
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Integration by parts yields
/ v, VAV Vidvol, = — f VAV Vi Vi dvol,
T st
= / VEVVi Vi dvol, — / Ric; V' V¥ dvol,
s st

= / (divg V)?dvolg —4(n — 1) | |V|*dvol,.
s st

Putting these facts together, we obtain

n—2
IDV 7251y + 401 = DIV 25y = IV V I2gny + —— 1 divg Vi)

From this, the assertion follows.

It follows from Lemma A.1 and Rellich’s theorem that ker D is finite-dimensional.
We now consider the subspace

Xo={VeX: (V, W>L2(Si) = 0 for all W € ker D}.
Lemma A.2. We have

IV 12050 + 1YV 32052, < KIDV 250,

) f—
forall V e Xy. Here, K is a positive constant that depends only on n.
Proof. Suppose that the assertion is false. Then we can find a sequence of vector fields

V) e X, such that
IV 25y, HIVV O gy = 1 (A1)

for all v and ||DV(“)||L2(S® — 0 as v — oo. After passing to a subsequence, we may

assume that the sequence V) converges weakly to a vector field W € Xj. Then DW = 0.
Since W € X), we conclude that W = 0. This implies ||V(U)||L2(Si) — Qasv — oo.

Using Lemma A.1, we obtain | VV ) “LZ(Si) — 0 as v — oo. This contradicts (A.1).

Proposition A.3. Given any h € ), there exists a unique vector field V € Xy such that
(h —DV, DW)U(S{;) =0 forall W € X. The vector field V satisfies the estimate

”V”LZ(Sn + ”VVHLZ(SVI) — K||h||L2(S" (Az)

Proof. 1t follows from Lemma A.2 that the operator D : Xy — ) has closed range.
Hence, we can find a vector field V € Xj such that ||h — DV”LZ(S" is minimal. Then

(h =DV, DW) 2 1y = 0 for all W € A). This proves the existence statement.
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We next assume that V € A satisfies (h — DYV, DW)LZ(Sf;) = (0 forall W € A}. This

implies (h — DV, DV) = 0, hence ||’DV||22 iy < ||h||22 .. Thus, we conclude that
L2(sn) L2(s%)

IVIZ2n) + IV V25 < KIDV 200y < KllRIZ:

(C¥9) ()
by Lemma A.2. In particular, if # = 0, then V = 0. From this, the uniqueness statement
follows.

In the next step, we consider the stereographic projection from S to R U {oo}. The
metric g can be written in the form g;; = utn=2g., where

| \@-22
e = (1 = |x|2) '

Theorem Ad. Let h be a trace-free symmetric two-tensor on R. Assume that h is
smooth and has compact support. Then there exists a smooth vector field V on R, with
the following properties:

o Ateachx € R, we have

n

2
Z O |:u2"/("_2) <hik —0;iVk — Vi + —div V‘Sik)] =0
n
k=1

foralli € {1,...,n}
o Ateachx € dR'|, we have V,,(x) = 9, Vi (x) — hjn(x) =0foralli € {1,...,n —1}.

Moreover, the vector field V satisfies

/Ri

Proof. By Proposition A.3, there exists a smooth vector field V € A} such that

u(x) GO/ =21y ()12 dx < K/ u()? 2D hx0))? dx. (A.3)
R!

W "=Dp — DV, DW), dvol, =0
R}

for all W € X. This implies

n 2
/ u/n=2) Z (h,-k — Vi — Vi + =divV 3ik)akw,- dx =0 (A.4)
RY k=1 n

forall W € X. Since V e &p, we have V,,(x) = 0 for x € 9R’.
By assumption, / is smooth. Using general regularity results for elliptic systems (cf.
[10], [13]), we conclude that V is smooth. Using (A.4), we obtain

i 2
> o [uz"/("—” <hik — 0 Vk — % V; + = div vs,-k>] =0
n

k=1
forallx € R and alli € {1, ..., n}. Moreover, at each x € R, we have 9, V;(x) —
hin(x) =0fori € {1,...,n — 1}. Finally, the estimate (A.3) follows immediately from

(A.2).
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Proposition A.5. Fix a real number o such that 1 < o < n — 2. Let h be a trace-free
symmetric two-tensor on R, which is smooth and has compact support. Moreover, let V
be the vector field constructed in Theorem A.4. Finally, assume that

supr |V(x)|2dx < 00.

—20—n-2 /
r=1 (Bar (0)\ B (0)NRY
Then there exists a constant C, depending only on n and o, such that

supr |V(x)|2dx

—20—n—2 /
r>1 (B2, (0)\ B, (0))NR"}

< cf (1+ x|H ™" 72|V (x) > dx
R

+Csupr™ lh(x)|>dx. (A.5)

20—n /
r>1 (Bar (0)\ B (0)NR

Proof. We extend V and h to R" by reflection. More precisely, we define a vector field
V on R” by

‘/l'('x’.l?""xl’l*]yxn) = ‘/l'(x]5"'7xnfla_xn) = ‘/l'(xl""7xn717xn)a
Va(xr, oo, Xp—1, X)) = =V (X1, .o X1, =) = VX1, -0y Xp—1, X)),
forall x € R’i and alli € {1,...,n — 1}. Similarly, we define a trace-free symmetric

two-tensor /2 on R” by

iR (X1, Xno1 X)) = i (X1, < Xas1, —X0) = Rk (X1, - X1, X),
ﬁin(xly e Xp—1s Xn) = _ilin(xls s Xn—1s —Xp) = hin(X1, ..., Xn—1, Xn),
]’Nlnk(xlv e Xp—1s Xp) = _ljlnk(xlv cos X1y —Xp) = hpp (X1, .0y Xn—1, Xn),
ﬁnn(xh ey Xp—1, Xn) = ﬁnn(xh s Xn—1s —Xp) = hpp (X1, o0y Xn—1, Xn),

forallx e R andalli,k € {l,...,n—1}.
Since V € X, we have V,(x) = O forall x € BR’i. Consequently, V is a vector field
on S” of class H!. We claim that

/ u2n/(n72) Z

~ -~ ~ 2 ~ -
(hik —0iVik —oVi+ —divV Sik)f?kWi dx =0 (A.6)
n
i,k=1

for all vector fields W on S” of class H!. In order to prove (A.6), we fix a vector field w
of class H'. We then define a vector field W on § " by

Wi(x1, ..o, X1, X0) = Wix1, ..o, Xn—1, X)) + Wi(x1, ..o, Xn—1, —X),

Wn(-xla -~-»xn71axn) = Wn(-x17 ~--’xn71sxn) - Wn('x15 cees Xn—1, _-xl’l)’
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forall x e R andalli € {1,...,n — 1}. Clearly, W € X. Therefore, we have
n 2
f w2/ N <hik = Vi = Vi + — div vsik>akwi dx =0
R% ik=1

by definition of V. From this, the identity (A.6) follows easily.
‘We now complete the proof of Proposition A.5. Using [4, Proposition 23], we obtain

supr_2“_"_2/ [V (x)|*dx
r>1 By, (0)\Br 0)

< c/ A+ |xH)™" 2 |V(x)|>dx + cSupr*Z"*"/ |h(x)|?dx.
R" By (0)\ B, (0)

o r>1

Here, C is a positive constant tklat depends only on ¢ and n. (In [4], this resul~t was stated
in the special case that V and h are smooth, but the proof only requires that # belongs to
L?and V is of class H' .) From this the assertion follows.

Corollary A.6. Consider a trace-free symmetric two-tensor of the form

hik(¥) = x(x1/p) Y hikax®,

2<|al=d

where d = [(n—2)/2), p = 1, and x : R — R is a fixed cut-off function satisfying
x (@) =0fort > 2. Let V be the vector field constructed in Theorem A.4. Then, for every
multi-index 8, we have

PV <C Y hical* (1 + [x Pl 1A] (A7)

2<|a|=d

for all x € R!}.. Here, C is positive constant which depends on n and |B|, but not on p.

Proof. Without loss of generality, we may assume that

hik(¥) = x(x1/p) D hikax®,

|a|=d’

where 2 < d’ < d. Since d’ < n/2, we have

/Rn I+ PP dx < C Y lhikal?
d

||=d’

for some uniform constant C. Using (A.3), we obtain

/Rn I+ P2V LPdr <€ ) lhial™
d

lo|=d’
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We now apply Proposition A.5 with o = d’. This yields

Supr—zd’—n—Z/ V@ Pdx<C Y lhical™
{r=lx|<2r}

r>1 loe|=d’
Using elliptic estimates, we conclude that

PPV < C D Ihikal?(1+ |x )T
la|=d’

for every multi-index .
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