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Abstract. Let (M, g) be a compact Riemannian manifold with boundary. We consider the problem
(first studied by Escobar in 1992) of finding a conformal metric with constant scalar curvature in
the interior and zero mean curvature on the boundary. Using a local test function construction, we
are able to settle most cases left open by Escobar’s work. Moreover, we reduce the remaining cases
to the positive mass theorem.

Keywords. Yamabe problem, manifolds with boundary

1. Introduction

The Yamabe problem, solved by Trudinger [14], Aubin [1], and Schoen [12], asserts that
any Riemannian metric on a closed manifold is conformal to a metric with constant scalar
curvature. Escobar [8], [9] has studied analogous questions on manifolds with boundary.
To fix notation, let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 with
boundary ∂M . We denote by Rg the scalar curvature of (M, g) and by κg the mean cur-
vature of the boundary ∂M . There are two natural ways to extend the Yamabe problem to
manifolds with boundary:

(a) Find a metric g̃ in the conformal class of g such that Rg̃ is constant and κg̃ = 0.
(b) Find a metric g̃ in the conformal class of g such that Rg̃ = 0 and κg̃ is constant.

The boundary value problem (a) was first proposed by Escobar [8]. The boundary value
problem (b) is studied in [9] and [11].

In this paper, we focus on the boundary value problem (a). The solvability of (a) is
equivalent to the existence of a critical point of the Yamabe functional, defined by

Eg(u) =

∫
M

( 4(n−1)
n−2 |du|

2
g + Rgu

2) dvolg +
∫
∂M

2κgu2 dσg(∫
M
u2n/(n−2) dvolg

)(n−2)/n ,
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where u is a smooth positive function onM . Moreover, the Yamabe constant is defined as

Y (M, ∂M, g) = inf
0<u∈C∞(M)

Eg(u).

It is well known that Y (M, ∂M, g) is invariant under a conformal change of the metric g.
Moreover, Y (M, ∂M, g) ≤ Y (Sn+, ∂S

n
+), where Y (Sn+, ∂S

n
+) denotes the Yamabe constant

of the hemisphere Sn+ equipped with the standard metric.
Proving the existence of a minimizer for the functional Eg is a difficult problem,

as Eg does not satisfy the Palais–Smale condition. The following existence result was
established by Escobar [8].

Theorem 1.1 (J. Escobar [8]). If Y (M, ∂M, g) < Y(Sn+, ∂S
n
+), then there exists a met-

ric g̃ in the conformal class of g such that Rg̃ is constant and κg̃ is equal to 0.

Theorem 1.1 should be compared with Aubin’s existence theorem for the Yamabe prob-
lem on manifolds without boundary (cf. [1]).

In dimension 3 ≤ n ≤ 5, Escobar showed that Y (M, ∂M, g) < Y(Sn+, ∂S
n
+) unless

M is conformally equivalent to the hemisphere Sn+. In dimension n ≥ 6, Escobar was
able to verify this inequality under the assumption that ∂M is not umbilic.

Therefore, it remains to consider the case that n ≥ 6 and ∂M is umbilic. For abbre-
viation, we put d = [(n− 2)/2]. As in [4], we denote by Z the set of all p ∈ M such
that

lim sup
x→p

d(p, x)2−d |Wg(x)| = 0,

whereWg denotes the Weyl tensor of (M, g). In other words, a point p ∈ M belongs to Z
if and only ifDmWg(p) = 0 for allm ∈ {0, 1, . . . , d−2}. Note that the set Z is invariant
under a conformal change of the metric.

The following is the main result of this paper:

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6 with
umbilic boundary ∂M . Moreover, let p ∈ ∂M be an arbitrary point on the boundary
of M . If p /∈ Z , then Y (M, ∂M, g) < Y(Sn+, ∂S

n
+). Consequently, there exists a metric g̃

in the conformal class of g such that Rg̃ is constant and κg̃ is equal to 0.

In case p ∈ Z , we are able to show that Y (M, ∂M, g) < Y(Sn+, ∂S
N
+ ), provided that a

certain asymptotically flat manifold has positive ADM mass (see Theorem 4.4 below for
a precise statement). Thus, the solvability of the Yamabe problem on (M, ∂M, g) can be
reduced to the positive mass theorem.

We now give an outline of the proof of Theorem 1.2. By a theorem of Marques [11],
we may work in conformal Fermi coordinates around p. We define

uε(x) =

(
ε

ε2 + |x|2

)(n−2)/2

. (1.1)

The function uε satisfies

1uε = −n(n− 2)u(n+2)/(n−2)
ε
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and

uε∂i∂kuε −
n

n− 2
∂iuε ∂kuε =

1
n

(
uε1uε −

n

n− 2
|duε|

2
)
δik.

These identities reflect the fact that the metric u4/(n−2)
ε δik is Einstein.

We then consider a sum of the form uε + w, where uε is given by (1.1) and w is a
correction term. This function is only defined in a small neighborhood of the point p. In
order to extend the test function to all of M , we glue the function uε + w to the Green’s
function of the conformal Laplacian with pole at p.

In order to show that the resulting test function has Yamabe energy less than
Y (Sn+, ∂S

n
+), we make extensive use of techniques developed in [4] (see also [5], [6], [7]).

In [4], these techniques were used to prove a convergence theorem for the parabolic
Yamabe flow in dimension n ≥ 6. The convergence of the Yamabe flow in dimension
3 ≤ n ≤ 5 was shown in [3].

2. Auxiliary results

In this section, we consider the halfspace Rn+ = {x ∈ Rn : xn ≥ 0}. Moreover, we assume
that Hik(x) is a trace-free symmetric two-tensor on Rn+ which satisfies the following
conditions:

• At each point x ∈ Rn+, we have Hin(x) = 0 for all i ∈ {1, . . . , n}.
• At each point x ∈ ∂Rn+, we have

∑n
k=1Hik(x)xk = 0 for all i ∈ {1, . . . , n}.

• At each point x ∈ ∂Rn+, we have ∂nHik(x) = 0 for all i, k ∈ {1, . . . , n}.

Finally, we assume that the components Hik(x) are polynomials of the form

Hik(x) =
∑

2≤|α|≤d

hik,αx
α,

where the sum is taken over all multi-indices α of length 2 ≤ |α| ≤ d .
As in [4], we define

Aik =

n∑
m=1

∂i∂mHmk +

n∑
m=1

∂m∂kHim −1Hik −
1

n− 1

n∑
m,p=1

∂m∂pHmp δik

and

Zijkl = ∂i∂kHj l − ∂i∂lHjk − ∂j∂kHil + ∂j∂lHik

+
1

n− 2
(Aj lδik − Ajkδil − Ailδjk + Aikδj l).

Note that
∂lZijkl =

n− 3
n− 2

(∂iAjk − ∂jAik).

Lemma 2.1. We have Ain(x) = 0 for all x ∈ ∂Rn+ and all i ∈ {1, . . . , n− 1}.
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Proof. Note that ∂nHim(x) = 0 for all x ∈ ∂Rn+ and all i, m ∈ {1, . . . , n − 1}. If we
differentiate this identity in tangential direction, we obtain

Ain(x) =

n−1∑
m=1

∂m∂nHim(x) = 0

for all x ∈ ∂Rn+ and all i ∈ {1, . . . , n− 1}.

Lemma 2.2. Assume that Zijkl(x) = 0 for all x ∈ ∂Rn+ and all i, j, k, l ∈ {1, . . . , n}.
Then Hik(x) = Aik(x) = 0 for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n− 1}.

Proof. We define

Âik(x) =

n−1∑
m=1

∂i∂mHmk(x)+

n−1∑
m=1

∂m∂kHim(x)

−

n−1∑
m=1

∂m∂mHik(x)−
1

n− 2

n∑
m,p=1

∂m∂pHmp(x)δik

for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n− 1}. By assumption, we have

∂n∂nHik(x)+
1

n− 2
(Aik(x)+ Ann(x)δik) = Zinkn(x) = 0

for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n− 1}. This implies

Âik(x) = Aik(x)+ ∂n∂nHik(x)−
1

(n− 1)(n− 2)

n−1∑
m,p=1

∂m∂pHmp(x) δik

= Aik(x)+ ∂n∂nHik(x)+
1

n− 2
Ann(x)δik =

n− 3
n− 2

Aik(x)

for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n− 1}. Hence, we obtain

∂i∂kHj l(x)− ∂i∂lHjk(x)− ∂j∂kHil(x)+ ∂j∂lHik(x)

= −
1

n− 2
(Aj l(x)δik − Ajk(x)δil − Ail(x)δjk + Aik(x)δj l)

= −
1

n− 3
(Âj l(x)δik − Âjk(x)δil − Âil(x)δjk + Âik(x)δj l)

for all x ∈ ∂Rn+ and all i, j, k, l ∈ {1, . . . , n−1}. Using Proposition 7 in [4], we conclude
that Hik(x) = 0 for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n − 1}. This implies Aik(x) =
n−2
n−3 Âik(x) = 0 for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n− 1}.

Proposition 2.3. Assume that Zijkl(x) = 0 for all x ∈ Rn+ and all i, j, k, l ∈ {1, . . . , n}.
Then Hik(x) = 0 for all x ∈ Rn+ and all i, k ∈ {1, . . . , n− 1}.
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Proof. Without loss of generality, we may assume that Hik(x) is homogeneous of degree
d ′ ≥ 2. By assumption, Zijkl(x) = 0 for all x ∈ Rn+ and all i, j, k, l ∈ {1, . . . , n}. This
implies

∂iAjk(x)− ∂jAik(x) =
n− 2
n− 3

n∑
l=1

∂lZijkl(x) = 0

for all x ∈ Rn+ and all i, j, k ∈ {1, . . . , n}. We next define

ϕ(x) =
1

d ′(d ′ − 1)

n∑
i,k=1

Aik(x)xixk

for all x ∈ Rn+. Clearly, ϕ(x) is a homogeneous polynomial of degree d ′. Moreover,

∂kϕ(x) =
1

d ′ − 1

n∑
i=1

Aik(x)xi

for all x ∈ Rn+ and all k ∈ {1, . . . , n}. This implies

∂i∂kϕ(x) = Aik(x)

for all x ∈ Rn+ and all i, k ∈ {1, . . . , n}. Using the identity
∑n−1
i=1 Hii(x) = 0, we obtain

∂n∂nϕ(x) = Ann(x) = −
1

n− 1

n−1∑
i=1

Aii(x) = −
1

n− 1

n−1∑
i=1

∂i∂iϕ(x)

for all x ∈ Rn+. By Lemma 2.1, ∂nϕ(x) = 1
d ′−1

∑n−1
i=1 Ain(x)xi = 0 for all x ∈ ∂Rn+.

Moreover, it follows from Lemma 2.2 that ϕ(x) = 1
d ′(d ′−1)

∑n−1
i,k=1Aik(x)xixk = 0 for

all x ∈ ∂Rn+. Putting these facts together, we conclude that ϕ(x) = 0 for all x ∈ Rn+.
Therefore, Aik(x) = ∂i∂kϕ(x) = 0 for all x ∈ Rn+ and all i, k ∈ {1, . . . , n}. This

implies

∂n∂nHik(x) = Zinkn(x)−
1

n− 2
(Aik(x)+ Ann(x)δik) = 0

for all x ∈ Rn+ and all i, k ∈ {1, . . . , n− 1}. On the other hand, Hik(x) = ∂nHik(x) = 0
for all x ∈ ∂Rn+ and all i, k ∈ {1, . . . , n − 1}. It follows that Hik(x) = 0 for all x ∈ Rn+
and all i, k ∈ {1, . . . , n− 1}. This completes the proof of Proposition 2.3.

For each r > 0, we denote by Ur ⊂ Rn+ the open ball of radius r/4 centered at the
point (0, . . . , 0, 3r/2). Moreover, let uε : Rn+→ R be defined by (1.1).

Proposition 2.4. There exists a constant K1, depending only on n, such that∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2r2|α|−4+n

≤ K1

∫
Ur

n∑
i,j,k,l=1

|Zijkl(x)|
2 dx

for all r > 0.

Proof. It follows from Proposition 2.3 that the assertion holds for r = 1. The general
case follows by scaling.
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Proposition 2.5. Let V be a smooth vector field on Rn+. Moreover, let

Tik = Hik − ∂iVk − ∂kVi +
2
n

divV δik

and

Qik,l = uε∂lTik −
2

n− 2
∂iuε Tkl −

2
n− 2

∂kuε Til

+
2

n− 2

n∑
p=1

∂puε Tipδkl +
2

n− 2

n∑
p=1

∂puε Tkpδil .

Then there exists a constant K2, depending only on n, such that∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2r2|α|+2−n

≤ K2

∫
(B2r (0)\Br (0))∩Rn+

n∑
i,k,l=1

|Qik,l(x)|
2 dx

for all r ≥ ε.

Proof. In [4], the first author showed that

1
4

n∑
i,j,k,l=1

|Zijkl |
2
=

n∑
i,j,k,l=1

∂j (u
−1
ε Qik,l)Zijkl

+
2

n− 2

n∑
i,j,k,l=1

u−2
ε ∂kuεQil,jZijkl

(cf. [4, p. 555]). Let us fix a smooth cut-off function η : Rn → [0, 1] such that η(x) = 1
for x ∈ U1 and η(x) = 0 for x /∈ (B2(0) \ B1(0)) ∩ Rn+. In particular, we have η(x) = 0
for all x ∈ ∂Rn+. Integration by parts gives∫

Rn+

1
4

n∑
i,j,k,l=1

|Zijkl(x)|
2η(x/r) dx

= −

∫
Rn+

n∑
i,j,k,l=1

uε(x)
−1Qik,l(x)∂j [Zijkl(x)η(x/r)] dx

+

∫
Rn+

2
n− 2

n∑
i,j,k,l=1

uε(x)
−2∂kuε(x)Qil,j (x)Zijkl(x)η(x/r) dx.

Using Hölder’s inequality, we obtain∫
Ur

n∑
i,j,k,l=1

|Zijkl(x)|
2 dx ≤ K3ε

−(n−2)/2rn−3
( ∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2r2|α|−4+n

)1/2

·

(∫
(B2r\Br (0))∩Rn+

n∑
i,k,l=1

|Qik,l(x)|
2 dx

)1/2
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for all r ≥ ε. Here, K3 is a positive constant that depends only on n. On the other hand, it
follows from Proposition 2.4 that∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2r2|α|−4+n

≤ K1

∫
Ur

n∑
i,j,k,l=1

|Zijkl(x)|
2 dx.

Putting these facts together, the assertion follows.

Corollary 2.6. Let V be a smooth vector field on Rn+. Moreover, let

Tik = Hik − ∂iVk − ∂kVi +
2
n

divV δik

and

Qik,l = uε∂lTik −
2

n− 2
∂iuε Tkl −

2
n− 2

∂kuε Til

+
2

n− 2

n∑
p=1

∂puε Tipδkl +
2

n− 2

n∑
p=1

∂puε Tkpδil .

Then there exists a constant K4, depending only on n, such that

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

≤ K4

∫
Bδ(0)∩Rn+

n∑
i,k,l=1

|Qik,l(x)|
2 dx

for all δ ≥ 2ε.

3. The main estimate

We now describe the construction of the test function. Let (M, g) be a compact Rieman-
nian manifold of dimension n ≥ 6 with umbilic boundary ∂M . After changing the metric
conformally, we may assume that ∂M is totally geodesic.

Let us fix a point p ∈ ∂M , and let (x1, . . . , xn) denote the Fermi coordinates around p.
In these coordinates, the metric has the following properties:

• At each x ∈ Rn+, we have gin(x) = δin for all i ∈ {1, . . . , n}.
• At each x ∈ ∂Rn+, we have

∑n
k=1 gik(x)xk = xi for all i ∈ {1, . . . , n}.

• At each x ∈ ∂Rn+, we have ∂ngik(x) = 0 for all i, k ∈ {1, . . . , n}.

By a theorem of Marques, there exists a system of conformal Fermi coordinates around p
(see [11, Proposition 3.1]). Hence, after performing a conformal change of the metric, we
may assume that det g(x) = 1+O(|x|2d+2), where d = [(n− 2)/2].

In the next step, we write g(x) = exp(h(x)), where h(x) is a smooth function tak-
ing values in the space of symmetric n × n matrices. This function has the following
properties:
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• At each x ∈ Rn+, we have hin(x) = 0 for all i ∈ {1, . . . , n}.
• At each x ∈ ∂Rn+, we have

∑n
k=1 hik(x)xk = 0 for all i ∈ {1, . . . , n}.

• At each x ∈ ∂Rn+, we have ∂nhik(x) = 0 for all i, k ∈ {1, . . . , n}.

Moreover, we have trh(x) = O(|x|2d+2). For abbreviation, we denote by

Hik(x) =
∑

2≤|α|≤d

hik,αx
α

the Taylor polynomial of order d associated with the function hik(x). Clearly, Hik(x) is a
trace-free symmetric two-tensor on Rn+. Moreover, hik(x) = Hik(x)+O(|x|d+1).

Let us fix a non-negative smooth function such that χ(t) = 1 for t ≤ 4/3 and χ(t) = 0
for t ≥ 5/3. Given any δ > 0, we define a cut-off function χδ : Rn → R by χδ(x) =
χ(|x|/δ). By Theorem A.4, there exists a smooth vector field V on Rn+ with the following
properties:

• At each x ∈ Rn+, we have

n∑
k=1

∂k

[
u2n/(n−2)
ε

(
χδHik − ∂iVk − ∂kVi +

2
n

divV δik

)]
= 0

for all i ∈ {1, . . . , n}.
• At each x ∈ ∂Rn+, we have Vn(x) = ∂nVi(x) = 0 for all i ∈ {1, . . . , n− 1}.

By Corollary A.6, the vector field V satisfies the estimate

|∂βV (ε,δ)(x)| ≤ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|(ε + |x|)
|α|+1−|β| (3.1)

for every multi-index β and all x ∈ Rn+. Here, C is a positive constant that depends only
on n and |β|.

For abbreviation, we define

Sik = ∂iVk + ∂kVi −
2
n

divV δik,

Tik = Hik − Sik,

Qik,l = uε∂lTik −
2

n− 2
∂iuε Tkl −

2
n− 2

∂kuε Til

+
2

n− 2

n∑
p=1

∂puε Tipδkl +
2

n− 2

n∑
p=1

∂puε Tkpδil,

w =
∑
l=1

∂luε Vl +
n− 2

2n
uε divV.

By definition of V , we have
n∑
k=1

∂k(u
2n/(n−2)
ε Tik) = 0 (3.2)
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for all x ∈ Bδ(0) ∩ Rn+ and all i ∈ {1, . . . , n}. This implies

n∑
k=1

(
uε∂kTik +

2n
n− 2

∂kuε Tik

)
= 0 (3.3)

for all x ∈ Bδ(0)∩Rn+ and all i ∈ {1, . . . , n}. The following result was established in [4]:

Proposition 3.1 (S. Brendle [4]). There exists a smooth vector field ξ on Rn+ such that

1
4
u2
ε

n∑
i,k,l=1

∂lHik ∂lHik −
1
2
u2
ε

n∑
i,k,l=1

∂kHik ∂lHil

− 2uε
n∑

i,k,l=1

∂kuε Hik∂lHil −
2(n− 1)
n− 2

n∑
i,k,l=1

∂kuε ∂luε HikHil

− 2uεw
n∑

i,k=1

∂i∂kHik +
8(n− 1)
n− 2

n∑
i,k=1

∂iuε ∂kwHik

−
4(n− 1)
n− 2

|dw|2 +
4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

=
1
4

n∑
i,k,l=1

Qik,lQik,l + 2u2n/(n−2)
ε

n∑
i,k=1

TikTik + div ξ

for all x ∈ Bδ(0) ∩ Rn+.

The vector field ξ can be expressed in terms of the tensor Hik and the vector field V (cf.
[4, Section 2]). In the next step, we show that ξ is tangential along ∂Rn+. To that end, we
need the following lemma:

Lemma 3.2. At each x ∈ Bδ(0) ∩ ∂Rn+, we have

Sin(x) = Tin(x) = 0 and ∂nSik(x) = ∂nTik(x) = 0

for all i, k ∈ {1, . . . , n− 1}. Moreover, ∂nSnn(x) = ∂nTnn(x) = 0 and ∂nw(x) = 0.

Proof. By assumption, we have Vn(x) = ∂nVi(x) = 0 for all x ∈ ∂Rn+. This implies
Sin(x) = Tin(x) = 0 for all i ∈ {1, . . . , n− 1}. It follows that

n−1∑
k=1

(
uε(x)∂kTkn(x)+

2n
n− 2

∂kuε(x) Tkn(x)

)
= 0.

Using (3.3), we obtain

uε(x)∂nTnn(x)+
2n
n− 2

∂nuε(x) Tnn(x) = 0.

This implies ∂nTnn(x) = 0, hence ∂nSnn(x) = 0. Consequently, we have ∂n∂nV (x) = 0.
From this, the assertion follows easily.

Lemma 3.3. We have ξn(x) = 0 for all x ∈ Bδ(0) ∩ ∂Rn+.
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Proof. The vector field ξ satisfies

ξn = −2
n∑
k=1

uεw∂kHnk + 2
n∑
i=1

∂i(uεw)Hin

+
1
2
u2
ε

n∑
i,k=1

∂nSik Hik − u
2
ε

n∑
i,l=1

∂lSil Hin − 2uε
n∑

i,l=1

∂luε SilHin

+ uεw

n∑
k=1

∂kSnk −

n∑
i=1

∂i(uεw) Sin

−
1
4
u2
ε

n∑
i,k=1

∂nSik Sik +
1
2
u2
ε

n∑
i,l=1

∂lSil Sin + uε

n∑
i,l=1

∂luε SilSin

+
4(n− 1)
n− 2

n∑
i=1

∂iuε wSin −
4(n− 1)
n− 2

w∂nw +
2

n− 2
uε

n∑
i,k=1

∂kuεTikTin

(see [4, Section 2]). Using Lemma 3.2, we conclude that ξn(x)=0 for all x∈Bδ(0)∩∂Rn+.

Proposition 3.4. We have∫
Bδ(0)∩Rn+

[
1
4
u2
ε

n∑
i,k,l=1

∂lHik ∂lHik −
1
2
u2
ε

n∑
i,k,l=1

∂kHik ∂lHil

]

−

∫
Bδ(0)∩Rn+

[
2uε

n∑
i,k,l=1

∂kuε Hik∂lHil +
2(n− 1)
n− 2

n∑
i,k,l=1

∂kuε ∂luε HikHil

]

−

∫
Bδ(0)∩Rn+

[
2uεw

n∑
i,k=1

∂i∂kHik −
8(n− 1)
n− 2

n∑
i,k=1

∂iuε ∂kwHik

]
−

∫
Bδ(0)∩Rn+

[
4(n− 1)
n− 2

|dw|2 −
4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

]
≥ 2λ

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

− C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2δ2|α|+2−nεn−2.

for δ ≥ 2ε. Here, λ and C are positive constants that depend only on n.
Proof. We consider the identity in Proposition 3.1 and integrate over Bδ(0) ∩ Rn+. By
Corollary 2.6, we have∫

Bδ(0)∩Rn+

n∑
i,k,l=1

Qik,lQik,l

≥ 8λ
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+3−2n dx,

where λ = 1/(8K4) is a positive constant that depends only on n. Moreover, it follows
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from 3.1 that

|ξ(x)| ≤ Cεn−2
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|(ε + |x|)
2|α|+3−2n

for all x ∈ Rn+. Using Lemma 3.3 and the divergence theorem, we obtain∫
Bδ(0)∩Rn+

div ξ =
∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
ξi −

∫
Bδ(0)∩∂Rn+

ξn

≤ Cεn−2
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
2|α|+2−n.

Putting these facts together yields the assertion.

Finally, we need the following estimate for the scalar curvature Rg .

Proposition 3.5. The scalar curvature Rg satisfies the estimates∣∣∣Rg − n∑
i,k=1

∂i∂kHik

∣∣∣ ≤ C ∑
2≤|α|≤d

n∑
i,k=1

|hik,α| |x|
|α|
+ C|x|d−1 (3.4)

and∣∣∣∣Rg − n∑
i,k=1

∂i∂khik +

n∑
i,k,l=1

∂k(Hik∂lHil)−
1
2

n∑
i,k,l=1

∂kHik ∂lHil +
1
4

n∑
i,k,l=1

∂lHik ∂lHik

∣∣∣∣
≤ C

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2
|x|2|α| + C

∑
2≤|α|≤d

n∑
i,k=1

|hik,α| |x|
|α|+d−1

+ C|x|2d (3.5)

if |x| is sufficiently small.
Proof. This follows easily from [5, Proposition 25] (see also [4, Corollary 12], where
geodesic normal coordinates are considered).

Our goal is to estimate the Yamabe energy of uε + w. To that end, we proceed in
several steps:

Proposition 3.6. There exist positive constants λ, C, δ0 such that∫
Bδ(0)∩Rn+

(
4(n− 1)
n− 2

|d(uε + w)|
2
g + Rg(uε + w)

2
)

≤

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

|duε|
2
+

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

+

∫
∂Bδ(0)∩Rn+

n∑
i,k=1

xi

|x|
(u2
ε∂khik − 2uε∂kuε hik)

− λ
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2
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if 0 < 2ε ≤ δ ≤ δ0. The constant λ depends only on n. The constants C, δ0 depend on
the underlying manifold (M, g).

Proof. Let us write

4(n− 1)
n− 2

|d(uε + w)|
2
g + Rg(uε + w)

2

=
4(n− 1)
n− 2

|duε|
2
+

4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

+
8(n− 1)
n− 2

J (1) + J (2) + J (3) + J (4) + J (5) + J (6) + J (7),

where

J (1) =

n∑
i=1

∂iuε∂iw,

J (2) = −
4(n− 1)
n− 2

n∑
i,k=1

∂iuε ∂kuε hik + u
2
ε

n∑
i,k=1

∂i∂khik,

J (3) = −u2
ε

n∑
i,k,l=1

∂k(Hik∂lHil)− 2uε
n∑

i,k,l=1

∂kuεHik ∂lHil,

J (4) = −
1
4

n∑
i,k,l=1

u2
ε∂lHik ∂lHik +

1
2

n∑
i,k,l=1

u2
ε∂kHik ∂lHil

+ 2uε
n∑

i,k,l=1

∂kuε Hik∂lHil +
2(n− 1)
n− 2

n∑
i,k,l=1

∂kuε ∂luε HikHil

+ 2uεw
n∑

i,k=1

∂i∂kHik −
8(n− 1)
n− 2

n∑
i,k=1

∂iuε ∂kwHik

+
4(n− 1)
n− 2

|dw|2 −
4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2,

J (5) =
4(n− 1)
n− 2

n∑
i,k=1

[
gik − δik + hik −

1
2

n∑
l=1

HilHkl

]
∂iuε ∂kuε

+

[
Rg −

n∑
i,k=1

∂i∂khik +

n∑
i,k,l=1

∂k(Hik ∂lHil)

−
1
2

n∑
i,k,l=1

∂kHik ∂lHil +
1
4

n∑
i,k,l=1

∂lHik ∂lHik

]
u2
ε,

J (6) =
8(n− 1)
n− 2

n∑
i,k=1

(gik − δik +Hik)∂iuε ∂kw + 2
[
Rg −

n∑
i,k=1

∂i∂kHik

]
uεw,

J (7) = Rgw
2
+

4(n− 1)
n− 2

n∑
i,k=1

(gik − δik)∂iw ∂kw.
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It follows from the divergence theorem that∫
Bδ(0)∩Rn+

J (1) =

∫
Bδ(0)∩Rn+

n∑
i=1

∂i

[
∂iuεw +

(n− 2)2

2
u2n/(n−2)
ε Vi

]

=

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|

[
∂iuεw +

(n− 2)2

2
u2n/(n−2)
ε Vi

]

≤ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2.

We next observe that

J (2) −

n∑
i,k=1

∂i(u
2
ε∂khik − 2uε∂kuε hik) = 2

n∑
i,k=1

(
uε∂i∂kuε −

n

n− 2
∂iuε ∂kuε

)
hik

=
2
n

(
uε1uε −

n

n− 2
|duε|

2
)

trh

≤ Cεn−2(ε + |x|)2d+4−2n.

Using the divergence theorem, we obtain∫
Bδ(0)∩Rn+

J (2) ≤

n∑
i,k=1

∂i(u
2
ε∂khik − 2uε∂kuε hik)+ Cδ2d+4−nεn−2

≤

∫
∂Bδ(0)∩Rn+

n∑
i,k=1

xi

|x|
(u2
ε∂khik − 2uε∂kuε hik)+ Cδ2d+4−nεn−2.

Moreover, we have∫
Bδ(0)∩Rn+

J (3) = −

∫
Bδ(0)∩Rn+

n∑
i,k,l=1

∂k(u
2
εHik∂lHil)

= −

∫
∂Bδ(0)∩Rn+

n∑
i,k,l=1

xk

|x|
u2
εHik∂lHil

≤ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2δ2|α|+2−nεn−2.

Using Proposition 3.4, we obtain∫
Bδ(0)∩Rn+

J (4) ≤ −2λ
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2δ2|α|+2−nεn−2.
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It remains to estimate the terms J (5), J (6), and J (7). Using Proposition 3.5, we obtain the
pointwise estimate

J (5) + J (6) + J (7) ≤ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2(ε + |x|)2|α|+4−2n

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|ε
n−2(ε + |x|)|α|+d+3−2n

+ Cεn−2(ε + |x|)2d+4−2n

for x ∈ Bδ(0) ∩ Rn+. Using Young’s inequality, we deduce that

J (5) + J (6) + J (7) ≤ λ
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2(ε + |x|)2|α|+2−2n

+ Cεn−2(ε + |x|)2d+4−2n

for x ∈ Bδ(0) ∩ Rn+. Integration over Bδ(0) ∩ Rn+ yields

∫
Bδ(0)∩Rn+

(J (5) + J (6) + J (7))

≤ λ
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx + Cδ2d+4−nεn−2.

Putting these facts together gives the assertion.

Proposition 3.7. If δ0 is sufficiently small, then

∫
Bδ(0)∩Rn+

(
u2
ε +

n+ 2
n− 2

w2
)n/(n−2)

≤

∫
Bδ(0)∩Rn+

(uε + w)
2n/(n−2)

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|−nεn

for all 0 < 2ε ≤ δ ≤ δ0.

Proof. The proof is analogous to the proof of [4, Proposition 14]. We omit the details.
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Proposition 3.8. If δ0 is sufficiently small, then∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

|duε|
2
+

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

≤ Y (Sn+, ∂S
n
+)

(∫
Bδ(0)∩Rn+

(uε + w)
2n/(n−2)

)n−2/(n)

+

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

n∑
i=1

xi

|x|
∂iuε uε

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|−nεn

for all 0 < 2ε ≤ δ ≤ δ0.

Proof. The proof is similar to the proof of [4, Proposition 15]. We first observe that

4n(n− 1)
(∫

Rn+
u2n/(n−2)
ε

)2/n

= Y (Sn+, ∂S
n
+).

Using Hölder’s inequality, we obtain∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

|duε|
2
−

∫
∂Bδ(0)

4(n− 1)
n− 2

n∑
i=1

xi

|x|
∂iuε uε

+

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

= −

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

1uε uε +

∫
Bδ(0)∩Rn+

4(n− 1)
n− 2

n(n+ 2)u4/(n−2)
ε w2

=

∫
Bδ(0)∩Rn+

4n(n− 1)u4/(n−2)
ε

(
u2
ε +

n+ 2
n− 2

w2
)

≤ Y (Sn+, ∂S
n
+)

(∫
Bδ(0)∩Rn+

(
u2
ε +

n+ 2
n− 2

w2
)n/(n−2))(n−2)/n

.

Hence, the assertion follows from Proposition 3.7.

4. Proof of the main result

In this section, we construct a smooth function v(ε,δ) : M → R with Yamabe energy less
than Y (Sn+, ∂S

n
+). The existence of such a function is trivial when Y (M, ∂M, g) ≤ 0.
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Hence, it suffices to consider the case Y (M, ∂M, g) > 0. As in the previous section, we
fix a boundary point p ∈ ∂M . Moreover, we denote by G : M \ {p} → R the Green’s
function for the conformal Laplacian with Neumann boundary condition with pole at p.
In other words, G satisfies

4(n− 1)
n− 2

1gG− RgG = 0

in M \ {p} and ∂νG = 0 along ∂M \ {p}. We assume that Gp(x) is normalized so that
limx→0 |x|

n−2G(x) = 1. With this normalization, we have

∣∣G(x)− |x|2−n∣∣ ≤ C ∑
2≤|α|≤d

n∑
i,k=1

|hik,α| |x|
|α|+2−n

+ C|x|d+3−n. (4.1)

Moreover, we consider the flux integral

I(p, δ) =
∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

n∑
i=1

xi

|x|
(|x|2−n∂iG−G∂i |x|

2−n)

−

∫
∂Bδ(0)∩Rn+

|x|1−2n
n∑

i,k=1

xi(|x|
2∂khik − 2nxkhik),

where δ > 0 is sufficiently small.
We next define a function v(ε,δ) : M → R by

v(ε,δ) = χδ(uε + w)+ (1− χδ)ε(n−2)/2G, (4.2)

where χδ is the cut-off function defined above. Our main result is an upper bound for the
Yamabe energy of v(ε,δ):

Proposition 4.1. If δ0 is sufficiently small, then∫
M

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

≤ Y (Sn+, ∂S
n
+)

(∫
M

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

− εn−2I(p, δ)

−
λ

2

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2
+ Cδ−nεn

for all 0 < 2ε ≤ δ ≤ δ0.
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Proof. For abbreviation, we denote by �δ the set of all points in M such that x2
1 + · · · +

x2
n < δ2, where (x1, . . . , xn) denote the Fermi coordinates around p. (In other words, �δ

is a coordinate ball, not a geodesic ball.) Using the divergence theorem, we obtain∫
M\�δ

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

= −

∫
M\�δ

(
4(n− 1)
n− 2

1gv(ε,δ) − Rgv(ε,δ)

)
(v(ε,δ) − ε

(n−2)/2G) dvolg

−

∫
∂�δ

4(n− 1)
n− 2

∂νv(ε,δ) v(ε,δ) dσg

−

∫
∂�δ

4(n− 1)
n− 2

ε(n−2)/2(v(ε,δ)∂νG−G∂νv(ε,δ)) dσg,

where ν denotes the outward-pointing unit normal to ∂�δ . Note that

v(ε,δ) − ε
(n−2)/2G = χδ(uε + w − ε

(n−2)/2G)

in M \�δ . In particular, v(ε,δ) − ε(n−2)/2G = 0 in M \�2δ . Using (4.1), we obtain

sup
M\�δ

|v(ε,δ) − ε
(n−2)/2G| + δ2 sup

M\�δ

∣∣∣∣4(n− 1)
n− 2

1gv(ε,δ) − Rgv(ε,δ)

∣∣∣∣
≤ C

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nε(n−2)/2

+ Cδd+3−nε(n−2)/2
+ Cδ−nε(n+2)/2,

hence

−

∫
M\�δ

(
4(n− 1)
n− 2

1gv(ε,δ) − Rgv(ε,δ)

)
(v(ε,δ) − ε

(n−2)/2G) dvolg

≤ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2δ2|α|+2−nεn−2

+ Cδ2d+4−nεn−2
+ Cδ−n−2εn+2.

We next observe that

−

∫
∂�δ

∂νuε uε dσg ≤ −

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
∂iuε uε +

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
uε∂kuε hik

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|
2δ2|α|+2−nεn−2

+ Cδ2d+4−nεn−2,

hence

−

∫
∂�δ

∂νv(ε,δ) v(ε,δ) dσg ≤ −

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
∂iuεuε +

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
uε∂kuε hik

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2.
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Moreover, we have

−

∫
∂�δ

(v(ε,δ)∂νG−G∂νv(ε,δ)) dσg ≤ −

∫
∂Bδ(0)∩Rn+

n∑
i=1

xi

|x|
(uε∂iG−G∂iuε)

+ C
∑

2≤|α|≤d

|hik,α|
2δ2|α|+2−nε(n−2)/2

+ Cδ2d+4−nε(n−2)/2.

Putting these facts together, we obtain∫
M\�δ

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

≤ −

∫
∂�δ

4(n− 1)
n− 2

n∑
i=1

xi

|x|
∂iuεuε +

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

n∑
i=1

xi

|x|
uε∂kuεhik

−

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

ε(n−2)/2
n∑
i=1

xi

|x|
(uε∂iG−G∂iuε)

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2
+ Cδ−n−2εn+2.

On the other hand, it follows from Propositions 3.6 and 3.8 that∫
�δ

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

≤ Y (Sn+, ∂S
n
+)

(∫
�δ

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

+

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

n∑
i=1

xi

|x|
∂iuε uε

+

∫
∂Bδ(0)∩Rn+

n∑
i,k=1

xi

|x|
(u2
ε∂khik − 2uε∂kuε hik)

−
λ

2

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2.

If we add the last two inequalities, we obtain∫
M

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

≤ Y (Sn+, ∂S
n
+)

(∫
�δ

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

+

∫
∂Bδ(0)∩Rn+

n∑
i,k=1

xi

|x|

(
u2
ε∂khik +

2n
n− 2

uε∂kuε hik

)
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−

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

ε(n−2)/2
n∑
i=1

xi

|x|
(uε∂iG−G∂iuε)

−
λ

2

∑
2≤|α|≤d

n∑
i,k=1

|hik,α|
2εn−2

∫
Bδ(0)∩Rn+

(ε + |x|)2|α|+2−2n dx

+ C
∑

2≤|α|≤d

n∑
i,k=1

|hik,α|δ
|α|+2−nεn−2

+ Cδ2d+4−nεn−2
+ Cδ−n−2εn+2.

From this, the assertion follows easily.

Theorem 4.2. Assume that p /∈ Z . Then Y (M, ∂M, g) < Y(Sn+, ∂S
n
+).

Proof. Since p /∈ Z , we have
∑

2≤|α|≤d
∑n
i,k=1 |hik,α|

2 > 0. Using Proposition 4.1, we
obtain∫

M

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

< Y(Sn+, ∂S
n
+)

(∫
M

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

if ε > 0 is sufficiently small. From this, the assertion follows.

In the remainder of this section, we study the case p ∈ Z . In this case, we consider
the manifold (M \ {p},G4/(n−2)g). This manifold is scalar flat and its boundary is totally
geodesic. After doubling this manifold, we obtain an asymptotically flat manifold with
zero scalar curvature.

Proposition 4.3. Assume that p ∈ Z . Then the following statements hold:

(i) The limit limδ→0 I(p, δ) exists.
(ii) The doubling of (M \ {p},G4/(n−2)g) has a well-defined mass which equals

limδ→0 I(p, δ) up to a positive factor.

Proof. For abbreviation, let g = G4/(n−2)g. We consider the inverted coordinates y =
x/|x|2, where (x1, . . . , xn) are conformal Fermi coordinates around p. In these coordi-
nates, the metric g is given by

g

(
∂

∂yj
,
∂

∂yl

)
=

[
1+8

(
y

|y|2

)]4/(n−2)

· |y|−4
n∑

i,k=1

(|y|2δij − 2yiyj )(|y|2δkl − 2ykyl)gik

(
y

|y|2

)
,

where 8(x) = |x|n−2G(x)− 1. Using the relations gik(x) = δik + hik(x)+O(|x|2d+2)

and 8(x) = O(|x|d+1), we obtain



1010 Simon Brendle, Szu-Yu Sophie Chen

g

(
∂

∂yj
,
∂

∂yl

)
=

[
1+

4
n− 2

8

(
y

|y|2

)]
δj l

+ |y|−4
n∑

i,k=1

(|y|2δij − 2yiyj )(|y|2δkl − 2ykyl)hik

(
y

|y|2

)
+O(|y|−2d−2).

In particular, g(∂/∂yj , ∂/∂yl) = δj l +O(|y|−d−1). Hence, the doubling of (M \ {p}, g)
is asymptotically flat in the sense of Bartnik [2], and has a well-defined ADM mass.

Since trh = O(|x|2d+2), it follows that

n∑
j,l=1

yj
∂

∂yj
g

(
∂

∂yl
,
∂

∂yl

)
= −

4n
n− 2

n∑
j=1

yj

|y|2
(∂j8)

(
y

|y|2

)
+O(|y|−2d−2).

Moreover, we have

n∑
j,l=1

yj
∂

∂yl
g

(
∂

∂yj
,
∂

∂yl

)
= −

4
n− 2

n∑
i=1

yi

|y|2
(∂i8)

(
y

|y|2

)
−

n∑
i,k=1

yi

|y|2
(∂khik)

(
y

|y|2

)

+ 2n
n∑

i,k=1

yiyk

|y|2
hik

(
y

|y|2

)
+O(|y|−2d−2),

where ∂i8(x) = ∂
∂xi
8(x). Putting these facts together, we obtain

n∑
j,l=1

yj
∂

∂yl
g

(
∂

∂yj
,
∂

∂yl

)
−

n∑
j,l=1

yj
∂

∂yj
g

(
∂

∂yl
,
∂

∂yl

)

=
4(n− 1)
n− 2

n∑
i=1

yi

|y|2
(∂i8)

(
y

|y|2

)

−

n∑
i,k=1

yi

|y|2
(∂khik)

(
y

|y|2

)
+ 2n

n∑
i,k=1

yiyk

|y|2
hik

(
y

|y|2

)
+O(|y|−2d−2).

This implies∫
∂B1/δ(0)∩Rn+

n∑
j,l=1

yj

|y|

∂

∂yl
g

(
∂

∂yj
,
∂

∂yl

)
−

∫
∂B1/δ(0)∩Rn+

n∑
j,l=1

yj

|y|

∂

∂yj
g

(
∂

∂yl
,
∂

∂yl

)

=

∫
∂Bδ(0)∩Rn+

4(n− 1)
n− 2

|x|3−2n
n∑
i=1

xi∂i8(x)

−

∫
∂Bδ(0)∩Rn+

|x|3−2n
n∑

i,k=1

xi(∂khik)(x)+

∫
∂Bδ(0)∩Rn+

2n|x|1−2n
n∑

i,k=1

xixkhik(x)

+O(δ2d+4−n)

= I(p, δ)+O(δ2d+n−4).
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As δ → 0, the left hand side converges to a positive multiple of the ADM mass. From
this, the assertion follows.

Theorem 4.4. Assume that p ∈ Z . If limδ→0 I(p, δ) is positive, then Y (M, ∂M, g) <
Y(Sn+, ∂S

n
+).

Proof. Since p ∈ Z , we have
∑

2≤|α|≤d
∑n
i,k=1 |hik,α|

2
= 0. By Proposition 4.1, we can

find positive real numbers δ0 and C such that∫
M

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg

≤ Y (Sn+, ∂S
n
+)

(∫
M

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

− εn−2I(p, δ)+Cδ2d+4−nεn−2
+Cδ−nεn

whenever 0 < 2ε ≤ δ ≤ δ0. Since limδ→0 I(p, δ) is positive, we can find δ ∈ (0, δ0]

such that I(p, δ) > Cδ2d+4−n. In the next step, we choose ε ∈ (0, δ/2] small enough so
that I(p, δ) > Cδ2d+4−n

+ Cδ−nε2. For this choice of ε and δ, we have∫
M

(
4(n− 1)
n− 2

|dv(ε,δ)|
2
g + Rgv

2
(ε,δ)

)
dvolg < Y(Sn+, ∂S

n
+)

(∫
M

v
2n/(n−2)
(ε,δ) dvolg

)(n−2)/n

.

This completes the proof.

Appendix. An elliptic system on Rn+

In this section, we describe the construction of the vector field V . In the following, we
consider the hemisphere Sn+, equipped with the round metric of constant sectional cur-
vature 4. We denote by X the space of all vector fields V on Sn+ such that V is of class
H 1 and 〈V, ν〉 = 0 along ∂Sn+. Moreover, we denote by Y the space of all trace-free
symmetric two-tensors on Sn+ of class L2. We next define a linear operator D : X → Y
by

DV = L̂V g = LV g −
2
n
(divg V )g.

In other words, D is the conformal Killing operator.

Lemma A.1. We have

‖∇V ‖2
L2(Sn+)

≤ ‖DV ‖2
L2(Sn+)

+ 4(n− 1)‖V ‖2
L2(Sn+)

for all V ∈ X .

Proof. Without loss of generality, we may assume that V is smooth. By definition of D,
we have

‖DV ‖2
L2(Sn+)

=

∫
Sn+

[
∇iV

k
∇
iVk +∇iV

k
∇kV

i
−

2
n
(divg V )2

]
dvolg.
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Integration by parts yields∫
Sn+

∇iV
k
∇kV

i dvolg = −
∫
Sn+

V k∇i∇kV
i dvolg

= −

∫
Sn+

V k∇k∇iV
i dvolg −

∫
Sn+

RicikV iV k dvolg

=

∫
Sn+

(divg V )2 dvolg − 4(n− 1)
∫
Sn+

|V |2 dvolg.

Putting these facts together, we obtain

‖DV ‖2
L2(Sn+)

+ 4(n− 1)‖V ‖2
L2(Sn+)

= ‖∇V ‖2
L2(Sn+)

+
n− 2
n
‖ divg V ‖2L2(Sn+)

.

From this, the assertion follows.

It follows from Lemma A.1 and Rellich’s theorem that kerD is finite-dimensional.
We now consider the subspace

X0 = {V ∈ X : 〈V,W 〉L2(Sn+)
= 0 for all W ∈ kerD}.

Lemma A.2. We have

‖V ‖2
L2(Sn+)

+ ‖∇V ‖2
L2(Sn+)

≤ K‖DV ‖2
L2(Sn+)

for all V ∈ X0. Here, K is a positive constant that depends only on n.

Proof. Suppose that the assertion is false. Then we can find a sequence of vector fields
V (ν) ∈ X0 such that

‖V (ν)‖2
L2(Sn+)

+ ‖∇V (ν)‖2
L2(Sn+)

= 1 (A.1)

for all ν and ‖DV (ν)‖L2(Sn+)
→ 0 as ν → ∞. After passing to a subsequence, we may

assume that the sequence V (ν) converges weakly to a vector fieldW ∈ X0. Then DW = 0.
Since W ∈ X0, we conclude that W = 0. This implies ‖V (ν)‖L2(Sn+)

→ 0 as ν → ∞.
Using Lemma A.1, we obtain ‖∇V (ν)‖L2(Sn+)

→ 0 as ν →∞. This contradicts (A.1).

Proposition A.3. Given any h ∈ Y , there exists a unique vector field V ∈ X0 such that
〈h−DV,DW 〉L2(Sn+)

= 0 for all W ∈ X . The vector field V satisfies the estimate

‖V ‖2
L2(Sn+)

+ ‖∇V ‖2
L2(Sn+)

≤ K‖h‖2
L2(Sn+)

. (A.2)

Proof. It follows from Lemma A.2 that the operator D : X0 → Y has closed range.
Hence, we can find a vector field V ∈ X0 such that ‖h − DV ‖2

L2(Sn+)
is minimal. Then

〈h−DV,DW 〉L2(Sn+)
= 0 for all W ∈ X0. This proves the existence statement.
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We next assume that V ∈ X0 satisfies 〈h−DV,DW 〉L2(Sn+)
= 0 for allW ∈ X0. This

implies 〈h−DV,DV 〉 = 0, hence ‖DV ‖2
L2(Sn+)

≤ ‖h‖2
L2(Sn+)

. Thus, we conclude that

‖V ‖2
L2(Sn+)

+ ‖∇V ‖2
L2(Sn+)

≤ K‖DV ‖2
L2(Sn+)

≤ K‖h‖2
L2(Sn+)

by Lemma A.2. In particular, if h = 0, then V = 0. From this, the uniqueness statement
follows.

In the next step, we consider the stereographic projection from Sn+ to Rn+ ∪ {∞}. The
metric g can be written in the form gik = u

4/(n−2)δik , where

u(x) =

(
1

1+ |x|2

)(n−2)/2

.

Theorem A.4. Let h be a trace-free symmetric two-tensor on Rn+. Assume that h is
smooth and has compact support. Then there exists a smooth vector field V on Rn+ with
the following properties:

• At each x ∈ Rn+, we have
n∑
k=1

∂k

[
u2n/(n−2)

(
hik − ∂iVk − ∂kVi +

2
n

divV δik

)]
= 0

for all i ∈ {1, . . . , n}.
• At each x ∈ ∂Rn+, we have Vn(x) = ∂nVi(x)− hin(x) = 0 for all i ∈ {1, . . . , n− 1}.

Moreover, the vector field V satisfies∫
Rn+
u(x)(2(n+2))/(n−2)

|V (x)|2 dx ≤ K

∫
Rn+
u(x)2n/(n−2)

|h(x)|2 dx. (A.3)

Proof. By Proposition A.3, there exists a smooth vector field V ∈ X0 such that∫
Rn+
〈u4/(n−2)h−DV,DW 〉g dvolg = 0

for all W ∈ X . This implies∫
Rn+
u2n/(n−2)

n∑
i,k=1

(
hik − ∂iVk − ∂kVi +

2
n

divV δik

)
∂kWi dx = 0 (A.4)

for all W ∈ X . Since V ∈ X0, we have Vn(x) = 0 for x ∈ ∂Rn+.
By assumption, h is smooth. Using general regularity results for elliptic systems (cf.

[10], [13]), we conclude that V is smooth. Using (A.4), we obtain
n∑
k=1

∂k

[
u2n/(n−2)

(
hik − ∂iVk − ∂kVi +

2
n

divV δik

)]
= 0

for all x ∈ Rn+ and all i ∈ {1, . . . , n}. Moreover, at each x ∈ ∂Rn+, we have ∂nVi(x) −
hin(x) = 0 for i ∈ {1, . . . , n − 1}. Finally, the estimate (A.3) follows immediately from
(A.2).



1014 Simon Brendle, Szu-Yu Sophie Chen

Proposition A.5. Fix a real number σ such that 1 < σ < n − 2. Let h be a trace-free
symmetric two-tensor on Rn+ which is smooth and has compact support. Moreover, let V
be the vector field constructed in Theorem A.4. Finally, assume that

sup
r≥1

r−2σ−n−2
∫
(B2r (0)\Br (0))∩Rn+

|V (x)|2 dx <∞.

Then there exists a constant C, depending only on n and σ , such that

sup
r≥1

r−2σ−n−2
∫
(B2r (0)\Br (0))∩Rn+

|V (x)|2 dx

≤ C

∫
Rn+
(1+ |x|2)−n−2

|V (x)|2 dx

+ C sup
r≥1

r−2σ−n
∫
(B2r (0)\Br (0))∩Rn+

|h(x)|2 dx. (A.5)

Proof. We extend V and h to Rn by reflection. More precisely, we define a vector field
Ṽ on Rn by

Ṽi(x1, . . . , xn−1, xn) = Ṽi(x1, . . . , xn−1,−xn) = Vi(x1, . . . , xn−1, xn),

Ṽn(x1, . . . , xn−1, xn) = −Ṽn(x1, . . . , xn−1,−xn) = Vn(x1, . . . , xn−1, xn),

for all x ∈ Rn+ and all i ∈ {1, . . . , n − 1}. Similarly, we define a trace-free symmetric
two-tensor h̃ on Rn by

h̃ik(x1, . . . , xn−1, xn) = h̃ik(x1, . . . , xn−1,−xn) = hik(x1, . . . , xn−1, xn),

h̃in(x1, . . . , xn−1, xn) = −h̃in(x1, . . . , xn−1,−xn) = hin(x1, . . . , xn−1, xn),

h̃nk(x1, . . . , xn−1, xn) = −h̃nk(x1, . . . , xn−1,−xn) = hnk(x1, . . . , xn−1, xn),

h̃nn(x1, . . . , xn−1, xn) = h̃nn(x1, . . . , xn−1,−xn) = hnn(x1, . . . , xn−1, xn),

for all x ∈ Rn+ and all i, k ∈ {1, . . . , n− 1}.
Since V ∈ X , we have Vn(x) = 0 for all x ∈ ∂Rn+. Consequently, Ṽ is a vector field

on Sn of class H 1. We claim that∫
Rn
u2n/(n−2)

∑
i,k=1

(
h̃ik − ∂i Ṽk − ∂kṼi +

2
n

div Ṽ δik

)
∂kW̃i dx = 0 (A.6)

for all vector fields W̃ on Sn of class H 1. In order to prove (A.6), we fix a vector field W̃
of class H 1. We then define a vector field W on Sn+ by

Wi(x1, . . . , xn−1, xn) = W̃i(x1, . . . , xn−1, xn)+ W̃i(x1, . . . , xn−1,−xn),

Wn(x1, . . . , xn−1, xn) = W̃n(x1, . . . , xn−1, xn)− W̃n(x1, . . . , xn−1,−xn),
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for all x ∈ Rn+ and all i ∈ {1, . . . , n− 1}. Clearly, W ∈ X . Therefore, we have∫
Rn+
u2n/(n−2)

n∑
i,k=1

(
hik − ∂iVk − ∂kVi +

2
n

divV δik

)
∂kWi dx = 0

by definition of V . From this, the identity (A.6) follows easily.
We now complete the proof of Proposition A.5. Using [4, Proposition 23], we obtain

sup
r≥1

r−2σ−n−2
∫
B2r (0)\Br (0)

|Ṽ (x)|2 dx

≤ C

∫
Rn+
(1+ |x|2)−n−2

|Ṽ (x)|2 dx + C sup
r≥1

r−2σ−n
∫
B2r (0)\Br (0)

|h̃(x)|2 dx.

Here, C is a positive constant that depends only on σ and n. (In [4], this result was stated
in the special case that Ṽ and h̃ are smooth, but the proof only requires that h̃ belongs to
L2 and Ṽ is of class H 1.) From this the assertion follows.

Corollary A.6. Consider a trace-free symmetric two-tensor of the form

hik(x) = χ(|x|/ρ)
∑

2≤|α|≤d

hik,αx
α,

where d = [(n− 2)/2], ρ ≥ 1, and χ : R → R is a fixed cut-off function satisfying
χ(t) = 0 for t ≥ 2. Let V be the vector field constructed in Theorem A.4. Then, for every
multi-index β, we have

|∂βV (x)|2 ≤ C
∑

2≤|α|≤d

|hik,α|
2(1+ |x|2)|α|+1−|β| (A.7)

for all x ∈ Rn+. Here, C is positive constant which depends on n and |β|, but not on ρ.

Proof. Without loss of generality, we may assume that

hik(x) = χ(|x|/ρ)
∑
|α|=d ′

hik,αx
α,

where 2 ≤ d ′ ≤ d . Since d ′ < n/2, we have∫
Rn+
(1+ |x|2)−n|h(x)|2 dx ≤ C

∑
|α|=d ′

|hik,α|
2

for some uniform constant C. Using (A.3), we obtain∫
Rn+
(1+ |x|2)−n−2

|V (x)|2 dx ≤ C
∑
|α|=d ′

|hik,α|
2.
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We now apply Proposition A.5 with σ = d ′. This yields

sup
r≥1

r−2d ′−n−2
∫
{r≤|x|≤2r}

|V (x)|2 dx ≤ C
∑
|α|=d ′

|hik,α|
2.

Using elliptic estimates, we conclude that

|∂βV (x)|2 ≤ C
∑
|α|=d ′

|hik,α|
2(1+ |x|2)d

′
+1−|β|

for every multi-index β.
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[10] Hörmander, L.: Linear Partial Differential Operators. Springer, New York (1963)
Zbl 0108.09301 MR 0161012

[11] Marques, F.: Existence results for the Yamabe problem on manifolds with boundary. Indiana
Univ. Math. J. 54, 1599–1620 (2005) Zbl 1090.53043 MR 2189679

[12] Schoen, R. M.: Conformal deformation of a Riemannian metric to constant scalar curvature.
J. Differential Geom. 20, 479–495 (1984) Zbl 0576.53028 MR 0788292

[13] Taylor, M.: Partial Differential Equations III. Springer, New York (1997) MR 1477408
[14] Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on

compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968) Zbl 0159.23801
MR 0240748

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0336.53033&format=complete
http://www.ams.org/mathscinet-getitem?mr=0431287
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0598.53045&format=complete
http://www.ams.org/mathscinet-getitem?mr=0849427
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1085.53028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2168505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.53044&format=complete
http://www.ams.org/mathscinet-getitem?mr=2357502
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1206.53041&format=complete
http://www.ams.org/mathscinet-getitem?mr=2425176
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1166.53025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2472174
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1169.53028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2488950
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0771.53017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1152225
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:00090882&format=complete
http://www.ams.org/mathscinet-getitem?mr=1283876
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0108.09301&format=complete
http://www.ams.org/mathscinet-getitem?mr=0161012
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1090.53043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2189679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0576.53028&format=complete
http://www.ams.org/mathscinet-getitem?mr=0788292
http://www.ams.org/mathscinet-getitem?mr=1477408
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0159.23801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0240748

	Introduction
	Auxiliary results
	The main estimate
	Proof of the main result
	References

