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Counterexample to the convexity of level sets
of solutions to the mean curvature equation

Received July 6, 2012 and in revised form May 30, 2013

Abstract. The convexity of level sets of solutions to the mean curvature equation is a long standing
open problem. In this paper we give a counterexample to it.
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1. Introduction

The convexity of level sets of solutions to elliptic equations is clearly an interesting ge-
ometric property, and has been studied by many authors in the last few decades. The
convexity of level sets has been proved for a number of elliptic equations, including the
Laplacian, the p-Laplacian, and some more general semilinear, quasilinear, and fully non-
linear elliptic equations. We refer the reader to [1, 2, 3, 5, 8, 11, 13, 14] and the references
therein.

A long standing open problem is the convexity of level sets of solutions to the constant
mean curvature equation, and an explicit conjecture on the problem was stated in [15].
Let � be a bounded convex domain in the Euclidean space Rn, n ≥ 2. Suppose u is a
solution to the mean curvature equation

H [u] = 1 in �,
u = 0 on ∂�,

(1.1)

where

H [u] = div
(

Du√
1+ |Du|2

)
is the mean curvature of the graph of u. The conjecture in [15] asserts that for all constants
h in the range of the solution u, the level sets

Lh = {x ∈ � | u(x) = h}

are convex.
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The convexity of solutions to the mean curvature equation has been studied in a num-
ber of papers [4, 6, 7, 8, 9, 10, 12]. In particular, Sakaguchi [17] proved that for a bounded,
convex domain, if the mean curvature is sufficiently small, then the level sets of solutions
to (1.1) are convex. See [15, 16] for more discussions.

All the results on the convexity of level sets mentioned above, as well as those in [18,
10, 12] mentioned below, suggest that the level sets of solutions to (1.1) should be convex,
so McCuan’s conjecture should be true. Surprisingly enough, we found a counterexample
to the above conjecture.

Theorem 1.1. There exists a bounded, smooth, uniformly convex domain � ⊂ Rn such
that the solution to the Dirichlet problem (1.1) has nonconvex level sets.

A related question is the convexity of level sets of solutions to

H [u] = 1 in �1 −�2,

u = 0 on ∂�1,

u = −1 on ∂�2,

(1.2)

where �1 and �2 are bounded convex domains in Rn and �2 ⊂⊂ �1, that is, �2 is
strictly contained in �1.

In [18], Shiffman considered a minimal surface S in R3 with annular topology,
bounded by two plane curves 01 and 02 lying in planes parallel to {x3 = 0}. He proved
that if 01 and 02 are convex curves, then every level line of S is convex. This result was
extended to higher dimensions by Korevaar when the minimal surface is a graph [10], and
some curvature estimates were given in [12]. In this paper we also give a counterexample
to the convexity of level sets of solutions to (1.2).

Theorem 1.2. There exist bounded, smooth, uniformly convex domains�2 ⊂⊂ �1 ⊂ Rn
such that the solution to the Dirichlet problem (1.2) has nonconvex level sets.

The proof of Theorem 1.1 is based on an auxiliary function and a rescaling argument,
using the comparison principle. Details are given in Sections 2 and 3 respectively. The
proof of Theorem 1.1 does not apply to Theorem 1.2 directly, but we show in Section 4
that Theorem 1.2 is a consequence of Theorem 1.1. In Section 5 a brief discussion of the
convexity of level sets of solutions to constant Weingarten curvature is given.

2. An auxiliary function

We will prove Theorem 1.1 in dimension two. In higher dimensions, the proof is similar
with t = x1 and r = [x2

2 + · · · + x
2
n]

1/2.
We first introduce an auxiliary function. Let

φ(t, r) =
√

1− (1+ t)2 −
√

1− r2, (t, r) ∈ 1, (2.1)

where
1 = {(t, r) ∈ R2

| −1 < t < 0, 0 < r < t + 1}.

Then φ = 0 on the line {t + 1 = r} and φ < 0 in the triangle 1.
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Let h ∈ (0, 1) be a constant. Consider the level set Lh = {φ = −h}, which is given
by √

1− r2 = h+
√

1− s2,

where s = t + 1. We have

r = [s2
− 2h(1− s2)1/2 − h2

]
1/2, (2.2)

where
√

2h− h2 < s < 1.
We calculate the first and the second derivatives of the function r:

r ′ = s

(
1+

h
√

1− s2

)
[s2
− 2h(1− s2)1/2 − h2

]
−1/2
= s

(
1+

h
√

1− s2

)
r−1

and

r ′′ =

[
1+

h
√

1− s2
+

hs2

(
√

1− s2)3

]
r−1
−

[
s

(
1+

h
√

1− s2

)]2

r−3

=

[
1+

h

(
√

1− s2)3

]
r−1
−

[
s

(
1+

h
√

1− s2

)]2

r−3.

From the above formula we see that r ′′ < 0 when r > 0 is small, and r ′′ > 0 when s is
close to 1. To find the point where r ′′ vanishes, we write r ′′ = 0 in the form

[s2
− 2h(1− s2)1/2 − h2

]

[
1+

h

(
√

1− s2)3

]
= s2

(
1+

h
√

1− s2

)2

.

Denote θ =
√

1− s2. Then s2
= 1− θ2 and we obtain

[1− (h+ θ)2]
(

1+
h

θ3

)
= (1− θ2)

(
1+

h

θ

)2

.

Therefore,

1+
h

θ3 =
h

θ3 (h+ θ)
2
+

1
θ2 (h+ θ)

2.

Hence θ3
+ h = (θ + h)3, i.e.,

θ2
+ θh+

1
3
(h2
− 1) = 0.

From this we obtain the unique positive solution

θ =
1
2

[
−h+

(
4
3
−
h2

3

)1/2]
=: θ(h).

Computing the derivative we see that θ(h) is decreasing in h. Hence

s =
√

1− θ2 =

[
1
2

√
4
3
−
h2

3

(√
4
3
−
h2

3
+ h

)]1/2

=: s(h)
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is increasing in h, and

r ′′ < 0 if s < s(h),

r ′′ > 0 if s > s(h).

In the following we will consider the level set at height h = 1/4. We have s(1/4) ≈ 0.9.
We extend the function φ to the square

S = {(t, r) ∈ R2
| |r| + |t | < 1} (2.3)

so that

φ(t, r) =

√
1− (1− |t |)2 −

√
1− r2, (t, r) ∈ S. (2.4)

Then φ is symmetric in both axes. But φ is not C1,1 smooth at t = 0. To apply the
comparison principle in the next section, it is convenient to smoothen it near t = 0. Let
a0 = 10−3 be a small constant, such that the level set {(t, r) ∈ 1 | φ(t, r) = −1/4,
t < −a0} is not convex. Let

γ (t) =


1

8a3
0
t4 −

3
4a0

t2 + 1−
3
8
a0 if |t | < a0,

t + 1 if −1 < t < −a0,

1− t if a0 < t < 1,

(2.5)

which is C2,1 and piecewise C∞ smooth. Let

� = {(t, r) ∈ R2
| −1 < t < 1, −γ (t) < r < γ (t)}, (2.6)

and

w(t, r) =

√
1− γ 2(t)−

√
1− r2. (2.7)

Then

w = 0 on ∂�,
w < 0 in �,

and w = φ when |t | ≥ a0. Noting that |γ (t)| ≤ 1 − 3a0/8, we see that the gradient and
the second derivatives of w are uniformly bounded. Denote

L = {(t, r) ∈ � | w(t, r) = −1/4}.

As w = φ in |t | > a0, the level set L is not convex. Let C be the convex envelope of L,
that is, the boundary of the smallest convex domain containing L. Denote

d(L, C) = sup{r2 − r1 | (t, r1) ∈ L, (t, r2) ∈ C, t ∈ (−1, 1), r2 ≥ r1 > 0}, (2.8)

which is the (vertical) distance from the level set L to its convex envelope.
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Next we introduce a family of domains and functions. For ε > 0 small, let

�ε = {(t, r) ∈ R2
| (εt, r) ∈ �}, (2.9)

wε(t, r) = w(εt, r), (t, r) ∈ �ε . (2.10)

The domain �ε and the function wε are obtained from � and w by the linear coordinate
transformation

Tε : (t, r) 7→ (tε, rε) with

{
tε = t/ε,

rε = r.
(2.11)

Therefore the level set Lε = {wε = −1/4} is not convex. As above we denote by Cε
the convex envelope of Lε and by d(Lε, Cε) the vertical distance between Lε and Cε .
Apparently we have Lε = Tε(L), Cε = Tε(C), and

d(Lε, Cε) = d(L, C) > 0, (2.12)

which is independent of ε > 0.

3. Proof of Theorem 1.1

First we compute

H [wε] = div
(

Dwε√
1+ |Dwε |2

)
=

1√
1+ |Dwε |2

[
1+ (wε)2r

1+ |Dwε |2
(wε)t t +

1+ (wε)2t
1+ |Dwε |2

(wε)rr

]
=

1√
1+ w2

r + ε
2w2

t

[
(1+ w2

r )ε
2wt t

1+ w2
r + ε

2w2
t

+
(1+ ε2w2

t )wrr

1+ w2
r + ε

2w2
t

]

=
wrr

(1+ w2
r )

3/2 +O(ε
2) = 1+O(ε2). (3.1)

Heuristically the above formula can be explained as follows. Note that even after
the modication of φ involving γ , the “sectional graphs” parameterized by r 7→ w(t, r)

are still portions of circles of radius 1. As a consequence, the scaling which is used to
construct wε leads to uniform convergence of the first and second derivatives to those of
the lower half z = −

√
1− r2 of a cylinder of radius 1.

It can also be shown, incidentally, that the convergence is uniform in C2 as ε ↘ 0
on each fixed compactly contained subsets in �ε to the specific cylindrical graph z =
−
√

1− r2. This makes sense because the domains�ε are nested. This second observation
is neither necessary nor sufficient for the calculation above, but is only intended to give a
heuristic explanation of the fact that the graphs are getting close to the bottom half of a
cylinder of radius 1.
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From (3.1), one sees that wε is a subsolution to

H [u] = 1− ε in �ε,
u = 0 on ∂�ε .

(3.2)

By the Perron method, there is a solution uε to the above Dirichlet problem.
Next we construct a supersolution for uε . Let

v(t, r) =

√
1+ δ − γ 2(t)−

√
1+ δ − r2,

where δ = ε1/2. Apparently v > w in � and v = w = 0 on ∂�. Let

vε(t, r) = v(εt, r), (t, r) ∈ �ε . (3.3)

By the same computation as above, we have

H [vε] = div
(

Dvε√
1+ |Dvε |2

)
=

1√
1+ |Dvε |2

[
1+ (vε)2r

1+ |Dvε |2
(vε)t t +

1+ (vε)2t
1+ |Dvε |2

(vε)rr

]
=

1√
1+ v2

r + ε
2v2
t

[
(1+ v2

r )ε
2vt t

1+ v2
r + ε

2v2
t

+
(1+ ε2v2

t )vrr

1+ v2
r + ε

2v2
t

]

=
vrr

(1+ v2
r )

3/2 +O(ε
2) = (1+ δ)−1/2

+O(ε2).

Hence
H [vε] < 1− ε = H [uε] (3.4)

if δ = ε1/2 and ε is sufficiently small. Note that vε = uε = 0 on ∂�ε . By the comparison
principle, we obtain

vε ≥ uε ≥ wε . (3.5)

Denote

Lε = {(t, r) ∈ �ε | wε(t, r) = −1/4},
L′ε = {(t, r) ∈ �ε | uε(t, r) = −1/4},
L′′ε = {(t, r) ∈ �ε | vε(t, r) = −1/4}.

Then by (3.5), L′′ε stays inside of L′ε , and L′ε stays inside of Lε . By our construction, we
have

d(L′′ε ,Lε)→ 0 as ε → 0.

Hence
d(L′ε,Lε)→ 0 as ε → 0.

Here d(Lε,L′ε) denotes the vertical distance between Lε and L′ε , as defined in (2.8). But
since Lε is not convex, L′ε is not convex either, and we have

d(L′ε, C′ε) ≥ 1
2d(L, C) > 0
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when ε > 0 is sufficiently small, where C′ε is the convex envelope of L′ε and d(L, C) is
the constant in (2.12). Therefore the level set L′ε is not convex.

We have proved that for any given ε > 0, the solution to the Dirichlet problem (3.2)
in the domain �ε has nonconvex level sets provided ε is sufficiently small. Note that the
solution of (3.2) is a surface of mean curvature 1− ε. But by a dilation of the coordinates,
we can make the mean curvature 1.

To finish the proof of Theorem 1.1, we first fix a small ε > 0 such that the solution to
the Dirichlet problem (3.2) in the domain �ε has nonconvex level sets. By a dilation, we
see that the solution to the Dirichlet problem (1.1) in the domain� := �ε has nonconvex
level sets. We then choose a sequence of bounded, uniformly convex domain�k such that
the boundary ∂�k converges to ∂� smoothly, namely ∂�k is in the δk-neighborhood of
∂� with δk → 0 as k→∞. Recall that the a priori estimates and existence for solutions
to the Dirichlet problem (1.1) depend continuously on the domain and the inhomogeneous
term, so one sees that for any domain �′ sufficiently close to � in the C2+α norm, there
is also a solution to (1.1) in the domain �′. (Alternatively, let T be a diffeomorphism
from � to �′ such that ‖T − Id‖C2+α is sufficiently small. Then u(T (x)) is a subsolution
to (1.1) in �′ with the right hand side 1 − δ for small δ > 0.) In particular there is a
solution uk to (1.1) in the domain �k , provided k is sufficiently large. As � is fixed, we
have uk → u uniformly as k → ∞. Hence when k is sufficiently large, the level sets of
uk cannot all be convex. This finishes the proof of Theorem 1.1.

Remark 3.1. By approximation and the uniqueness of solutions to the Dirichlet problem,
Theorem 1.1 also applies to the case when the mean curvature is sufficiently close to a
constant, as is the case for solutions to the problem

H [u] = κu+ 1 in �,
u = 0 on ∂�,

(3.6)

where κ is a small constant.

4. Proof of Theorem 1.2

The proof of Theorem 1.1 does not work directly for Theorem 1.2, as the prescribed
mean curvature equation is very special. For example, the existence of a subsolution to
the Dirichlet problem does not mean the existence of a solution. However, we will show
that Theorem 1.2 follows readily from Theorem 1.1.

By Theorem 1.1, there exists a smooth, bounded, uniformly convex domain � ⊂ Rn
such that the Dirichlet problem (1.1) has a solution u ∈ C4(�) which has nonconvex
level sets. By the maximum principle, u < 0 in� and u attains its minimum at an interior
point of �.

Since � is uniformly convex, there exists δ0 > 0 such that for any hyperplane L :
xn+1 = `(x1, . . . , xn) with the properties

|D`| ≤ δ0 and sup
�

`(x) = 0, (4.1)

the intersection L∩Gu is a closed convex hypersurface, whereGu denotes the graph of u.
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Let
f (x) = δ|x|2 + c

be a uniformly convex function. When c < 0 is sufficiently large in absolute value, we
have f < u in�. We increase the constant c until c = c0 such that the graph of f touches
that of u, that is, we choose c0 such that

f (x) ≤ u(x) in �, (4.2)
f (x0) = u(x0) (4.3)

for some x0 ∈ �. The point x0 is an interior point of � if we choose δ > 0 sufficiently
small.

Let
La : p(x) = a +

∑
aixi (4.4)

be the tangent plane of u at x0. By (4.2) and (4.3), u is uniformly convex at x0. Hence
the set {x ∈ � | u(x) < ε + p(x)} is uniformly convex if ε is sufficiently small. Thus
the intersection Gu ∩ La+ε is uniformly convex, where La+ε denotes the plane xn+1 =

a + ε +
∑
aixi .

On the other hand, choose a constant h > 0 such that p(x)+ h ≤ u(x) ≤ 0 in � and
sup�(p(x) + h) = 0. When δ � δ0, from (4.1) we see that the intersection of the plane
p(x) + h with Gu is uniformly convex. Thus the intersection Gu ∩ La+h is uniformly
convex.

We restrict the graph Gu to the part between the parallel planes La+ε and La+h, that
is,

M = Gu ∩ {ε + p(x) < xn+1 < h+ p(x)}.

Choose new coordinates (y1, . . . , yn, yn+1) so that the yn+1-axis is perpendicular to the
plane La . Then when δ is sufficiently small, the hypersurface M is a graph in the new
coordinates, with constant boundary values on two parallel planes. Theorem 1.2 is proved.

We remark that when n = 2, we may simply choose the point x0 in (4.3) as the
minimum point of u, as u is convex near x0 (see [16, Theorem 9(ii)]).

5. Remark on the Weingarten curvature

Our proof of Theorem 1.1 also applies to some other constant Weingarten curvature equa-
tions. Indeed, the proof of Theorem 1.1 relies on two observations. The first is that the
level set of the function φ in (2.1) is not convex. The second is that if we write wε(t, r) =
wε(a, r)+ [wε(t, r)− wε(a, r)], then wε(a, r), as a function of r = [x2

2 + · · · + x
2
n]

1/2,
has positive constant (Weingarten) curvature, and the function wε(t, r) − wε(a, r) only
gives a small perturbation of the curvature.

In particular Theorem 1.1 also holds for the k-curvature equation

σk(κ) = 1 in �,
u = 0 on ∂�,
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where � is a bounded, uniformly convex domain in Rn, n ≥ 2, 1 ≤ k ≤ n− 1, and σk(κ)
is the kth elementary symmetric polynomial of the principal curvatures κ = (κ1, . . . , κn).
One can also extend Theorem 1.2 to the k-curvature equation similarly.
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