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Abstract. In this article, the structure of semiclassical measures for solutions to the linear Schrö-
dinger equation on the torus is analysed. We show that the disintegration of such a measure on
every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We
obtain an expression of the Radon–Nikodym derivative in terms of the sequence of initial data and
show that it satisfies an explicit propagation law. As a consequence, we also prove an observability
inequality, saying that the L2-norm of a solution on any open subset of the torus controls the full
L2-norm.

Keywords. Semiclassical (Wigner) measures, linear Schrödinger equation on the torus, semiclas-
sical limit, dispersive estimates, observability estimates

1. Introduction

Consider the torus Td := (R/2πZ)d equipped with the standard flat metric. We denote
by 1 the associated Laplacian. We are interested in understanding dynamical properties
related to propagation of singularities by the (time-dependent) linear Schrödinger equa-
tion

i
∂u

∂t
(t, x) =

(
−

1
2
1+ V (t, x)

)
u(t, x), uet=0 = u0 ∈ L

2(Td).

More precisely, given a sequence of initial conditions un ∈ L2(Td), we shall investigate
the regularity properties of the Wigner distributions and semiclassical measures associ-
ated with un(t, x). These describe how the L2-norm is distributed in the cotangent bundle
T ∗Td = Td×Rd (position× frequency). Our main results, Theorems 1 and 3 below, pro-
vide a description of the regularity properties and, more generally, the global structure of
semiclassical measures associated to sequences of solutions to the Schrödinger equation.

These results are aimed at a description of the high-frequency behavior of the linear
Schrödinger flow. This aspect of the dynamics is particularly relevant in the study of
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the quantum-classical correspondence principle, but is also related to other dynamical
properties such as dispersion and unique continuation (see the discussion below and the
articles [25, 27, 4] for a more precise account and detailed references on these issues). As
a corollary of Theorem 3, we prove an observability inequality on any open subset of the
torus, for the Schrödinger equation with a time-independent potential (Theorem 4).

We assume the following regularity condition on the potential V ∈ L∞(R× Td):

(R) The set of (t, x) at which V is not continuous is of zero Lebesgue measure in R×Td .

We believe that this assumption is not necessary. In any case, it already covers a broad
class of examples.

We shall focus on the propagator starting at time 0, denoted by UV (t), i.e. u(t) =
UV (t)u0.

Let us define the notion of Wigner distribution. We will use the semiclassical point
of view, and denote by (uh) our family of initial conditions, where h > 0 is a real pa-
rameter going to 0. The parameter h acts as a scaling factor on the frequencies, and the
limit h → 0+ corresponds to the high-frequency regime. We will always assume that
the functions uh are normalized in L2(Td). The Wigner distribution associated to uh (at
scale h) is a distribution on the cotangent bundle T ∗Td , defined by∫

T ∗Td
a(x, ξ)whuh(dx, dξ) = 〈uh,Oph(a)uh〉L2(Td ) for all a ∈ C∞c (T

∗Td),

where Oph(a) is the operator on L2(Td) associated to a by the Weyl quantization (Sec-
tion 7). We also have∫

T ∗Td
a(x, ξ)whuh(dx, dξ) =

1
(2π)d/2

∑
k,j∈Zd

ûh(k)ûh(j)âj−k

(
h

2
(k + j)

)
,

where ûh(k) :=
∫
Td uh(x)

e−ik.x

(2π)d/2 dx and âk(ξ) :=
∫
Td a(x, ξ)

e−ik.x

(2π)d/2 dx denote the re-

spective Fourier coefficients of uh and a, with respect to the variable x ∈ Td . We note
that, if a is a function on T ∗Td = Td ×Rd that depends only on the first coordinate, then∫

T ∗Td
a(x)whuh(dx, dξ) =

∫
Td
a(x)|uh(x)|

2 dx. (1)

The main object of our study will be the Wigner distributions whUV (t)uh . When no
confusion arises, we will more simply denote them by wh(t, ·). By standard estimates
on the norm of Oph(a) (the Calderón–Vaillancourt theorem, Section 7), t 7→ wh(t, ·)

belongs to L∞(R;D′(T ∗Td)), and is uniformly bounded in that space as h→ 0+. Thus,
one can extract subsequences that converge in the weak-∗ topology ofL∞(R;D′(T ∗Td)).
In other words, after possibly extracting a subsequence, we have∫

R
ϕ(t)a(x, ξ)wh(t, dx, dξ) dt −−−→

h→0

∫
R
ϕ(t)a(x, ξ) µ(t, dx, dξ) dt

for all ϕ ∈ L1(R) and a ∈ C∞c (T
∗Td). It also follows from standard properties of the

Weyl quantization that the limit µ has the following properties:
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• µ ∈ L∞(R;M+(T
∗Td)), meaning that for almost all t , µ(t, ·) is a positive measure

on T ∗Td . The positivity of these limits can be proved using different techniques (see
[20, 24]).
• Let µ̄ be the measure on Rd that is the image of µ(t, ·) under the projection map
(x, ξ) 7→ ξ . It will be proven that µ̄ does not depend on t . In particular, the total
mass

∫
T ∗Td µ(t, dx, dξ) does not depend on t ; from the normalization of uh, we have∫

T ∗Td µ(t, dx, dξ) ≤ 1, the inequality coming from the fact that T ∗Td is not compact,
so there may be an escape of mass to infinity.
• Define the geodesic flow φτ : T

∗Td → T ∗Td by φτ (x, ξ) := (x+τξ, ξ) (τ ∈ R). The
Weyl quantization enjoys the following property:[

−
1
2
1,Oph(a)

]
=

1
ih

Oph(ξ · ∂xa). (2)

This implies that µ(t, ·) is invariant under φτ , for almost all t and all τ ∈ R (the
argument is recalled in Lemma 11).

We refer to [25] for details. We can now state our first main result, which deals with the
regularity properties of the measures µ.

Theorem 1. (i) Let µ be a weak-∗ limit of the family wh. Then, for almost all t ,∫
Rd µ(t, ·, dξ) is an absolutely continuous measure on Td .

(ii) In fact, the following stronger statement holds. Let µ̄ be the measure on Rd that is
the image of µ(t, ·) under the projection map (x, ξ) 7→ ξ . Then µ̄ does not depend
on t . For every bounded measurable function f and every L1-function θ(t) write∫

R

∫
Td×Rd

f (x, ξ) µ(t, dx, dξ) θ(t) dt

=

∫
R

∫
Rd

(∫
Td
f (x, ξ) µξ (t, dx)

)
µ̄(dξ) θ(t) dt,

where µξ (t, ·) is the disintegration1 of µ(t, ·) with respect to the variable ξ . Then for
µ̄-almost every ξ , the measure µξ (t, ·) is absolutely continuous.

The first assertion in Theorem 1 may be restated in a simpler, concise way.

Corollary 2. Let (un) be a sequence in L2(Td) such that ‖un‖L2(Td ) = 1 for all n.
Consider the sequence of probability measures νn on Td , defined by

νn(dx) =

(∫ 1

0
|UV (t)un(x)|

2 dt

)
dx. (3)

Let ν be any weak-∗ limit of the sequence (νn). Then ν is absolutely continuous.

1 When µ(t, ·) is a probability measure, µξ (t, ·) is the conditional law of x knowing ξ , when the
pair (x, ξ) is distributed according to µ(t, ·).
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Our next result enlightens the structure of the set of semiclassical measures arising as
weak-∗ limits of sequences (wh). It gives a description of the Radon–Nikodym deriva-
tives of the measures

∫
Rd µ(t, ·, dξ) and clarifies the dependence of µ(t, ·) on the time

parameter t . It was already noted in [25] (in the case V = 0) that the dependence of
µ(t, ·) on the sequence of initial conditions is a subtle issue: although wh(0, ·) = whuh
completely determines wh(t, ·) = whUV (t)uh for all t , it is not true that the weak-∗ limits of
wh(0, ·) determine µ(t, ·) for all t . In [25], one can find examples of two sequences, (uh)
and (vh), of initial conditions such that whuh and whvh have the same limit in D′(T ∗Td),
but whUV (t)uh and whUV (t)vh have different limits in L∞(R;D′(T ∗Td)).

In order to state Theorem 3, we must introduce some notation. We call a submodule
3 ⊂ Zd primitive if 〈3〉 ∩ Zd = 3 (where 〈3〉 denotes the linear subspace of Rd
spanned by 3). If b is a function on Td , let b̂k , k ∈ Zd , denote the Fourier coefficients
of b. If b̂k = 0 for k 6∈ 3, we will say that b has all its Fourier modes in 3. This means
that b is constant in all directions orthogonal to 〈3〉. Let Lp3(T

d) denote the subspace
of Lp(Td) consisting of the functions with all Fourier modes in 3. If b ∈ L2(Td), we
denote by 〈b〉3 its orthogonal projection onto L2

3(T
d), in other words, the average of b

along 3⊥:

〈b〉3(x) :=
∑
k∈3

b̂k(t)
eik·x

(2π)d/2
.

Given b ∈ L∞3 (T
d), we will denote by mb the multiplication operator by b, acting on

L2
3(T

d).
Finally, we denote by U〈V 〉3(t) the unitary propagator of the equation

i
∂v

∂t
(t, x) =

(
−

1
2
1+ 〈V 〉3(t, x)

)
v(t, x), vet=0 ∈ L

2
3(T

d).

Theorem 3. From any sequence (uh), we can extract a subsequence such that:

• the subsequence wh(t, ·) converges weakly-∗ to a limit µ(t, ·);
• for each primitive submodule 3 ⊂ Zd , we can build from the sequence of initial con-

ditions (uh) a non-negative trace class operator σ3, acting on L2
3(T

d);2

• for almost all t , we have ∫
Rd
µ(t, ·, dξ) =

∑
3

ν3(t, ·),

where ν3(t, ·) is the measure on Td , whose non-vanishing Fourier modes correspond
to frequencies in 3, defined by∫

Td
b(x) ν3(t, dx) = Tr

(
m〈b〉3 U〈V 〉3(t) σ3 U〈V 〉3(t)

∗
)
,

for b ∈ L∞(Td).

2 This means that the integral kernel of σ3 is constant in all directions orthogonal to 3.
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Theorem 3 tells us more about the dependence of µ(t, ·) on t . If two sequences of initial
conditions (uh) and (vh) give rise to the same family of operators σ3, then they also give
rise to the same limit µ(t, ·). There are cases in which the measures ν3 can be determined
from the semiclassical measure µ0 of the sequence of initial data: in Corollary 30 in
Section 6 we show that if µ0(Td × 3⊥) = 0 then ν3 vanishes identically. This fact,
together with Theorem 3, is exploited in [2] in order to give more precise results on the
regularity of the projections with respect to x of the measures µ(t, ·) for the case V = 0.

Technically speaking, the operators σ3 are built in terms of 2-microlocal semiclassical
measures, which describe how the sequences (uh) concentrate along certain coisotropic
manifolds in phase space. The technical construction of σ3 will only be achieved at the
end of Section 5.

We shall prove, as a consequence of Theorem 3, the following result:

Theorem 4. Suppose V ∈ L∞(Td) does not depend on time and satisfies condition (R).
Then for every non-empty open set ω ⊂ Td and every T > 0 there exists a constant
C = C(T , ω) > 0 such that

‖u0‖
2
L2(Td ) ≤ C

∫ T

0
‖UV (t)u0‖

2
L2(ω)

dt (4)

for every initial datum u0 ∈ L
2(Td).

Note that this result implies the unique continuation property for the Schrödinger prop-
agator UV from any open set (0, T ) × ω. In other words, if UV (t)u0 = 0 on ω for all
t ∈ [0, T ], then u0 = 0. Estimate (4) is usually known as an observability inequality; this
type of estimate is especially relevant in control theory (see [23]).

As a consequence of this result, with the notation of Theorem 1(ii), we deduce the
following:

Corollary 5. For µ̄-almost every ξ , we have∫ T

0
µξ (t, ω) dt ≥

T

C(T , ω)
.

This lower bound is uniform with respect to the initial data uh and to ξ .

We stress that Theorem 3 gives a unified framework from which to derive simultaneously
the absolute continuity of x-projections of semiclassical measures (a fact related to dis-
persive effects), on one hand, and, on the other hand, the observability estimate (4), which
is a unique continuation type property.

Relations to other work. In the case V = 0, Corollary 2 and the first assertion in The-
orem 1 have been obtained by Bourgain [6] in the case d = 1. In the final remark of [7],
Bourgain indicates a proof in arbitrary dimension, using fine properties of the distribu-
tion of lattice points on paraboloids. When the sequence (un) consists of eigenfunctions
of 1 (in that case νn(dx) = |un(x)|2dx), the conclusion of Corollary 2 was proved by
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Zygmund [34] (d = 2), Bourgain (no restriction on d) and made precise in respect of reg-
ularity by Jakobson [22], by studying the distribution of lattice points on ellipsoids. More
results on the regularity of µ can be found in [1, 11, 31, 30]. After this article was written,
Burq [8] gave an argument showing that the result for solutions to the inhomogeneous
Schrödinger equation follows from the result for the homogeneous one, by a perturbative
argument; this allows one to deal with general bounded perturbations of the Laplacian.

Our method is very different, and there does not seem to be an obvious adaptation of
the technique of [7, 22] to the case V 6= 0. Theorem 3 was proved in dimension d = 2 for
V = 0 in [26] using semiclassical methods, and we develop and refine the ideas therein.
We use in a decisive way the dynamics of the geodesic flow (since we are on a flat torus,
the geodesic flow is a completely explicit object), and we use the decomposition of the
momentum space into resonant vectors of various orders. The other main ingredient is the
two-microlocal calculus, in the spirit of the developments by Nier [32] and Fermanian-
Kammerer [13, 14], and also [29, 15]. The ideas in the proofs of Theorems 1 and 3 can
be adapted to other classes of non-degenerate completely integrable systems and their
quantizations [3].

Theorem 4 was first established by Jaffard [21] in the case V = 0 using techniques
based on the theory of lacunary Fourier series developed by Kahane. Since then, several
proofs of this result based on microlocal methods and semiclassical measures (still for
V = 0) are available [9, 28, 27]. Our proof of Theorem 4 will follow the lines of [27]
and is based on the structure and propagation result for semiclassical measures obtained
in Theorem 3. At the same time when this paper was being written, Burq and Zworski
[10] gave a proof of Theorem 4 in the case V ∈ C(T2), which is an adaptation of their
previous work [9]. Their proof is written in dimension d = 2 and it cannot be extended to
higher dimensions in an obvious manner. Here, we exploit our results about the structure
of semiclassical measures to avoid the semiclassical normal form argument (Burq and
Zworski’s Propositions 2.5 and 2.10) and to lower the regularity of the potential.

Corollary 5 implies, in the model case of the flat torus, Corollary 4 of the article
by Wunsch [33] (which is expressed in terms of wavefront sets) and holds in arbitrary
dimension, whereas Wunsch’s method is restricted to d = 2.

2. Decomposition of an invariant measure on the torus

Before we start our construction in §3, we recall a few basic facts on the geodesic flow
and its invariant measures.

Denote by L the family of all submodules 3 of Zd which are primitive, in the sense
that 〈3〉 ∩ Zd = 3 (where 〈3〉 denotes the linear subspace of Rd spanned by 3). For
each 3 ∈ L, we define

3⊥ := {ξ ∈ Rd : ξ · k = 0, ∀k ∈ 3}, T3 := 〈3〉/2π3.

Note that T3 is a submanifold of Td diffeomorphic to a torus of dimension rk3. Its
cotangent bundle T ∗T3 is T3 × 〈3〉. We shall use the notation T3⊥ for the torus
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3⊥/(2πZd ∩3⊥). Denote by �j ⊂ Rd , for j = 0, . . . , d , the set of resonant vectors of
order exactly j , that is,

�j := {ξ ∈ Rd : rk3ξ = d − j},

where 3ξ := {k ∈ Zd : k · ξ = 0}. Note that the sets �j form a partition of Rd , and that
�0 = {0}; more generally, ξ ∈ �j if and only if the geodesic issued from any x ∈ Td

in the direction ξ is dense in a subtorus of Td of dimension j . The set � :=
⋃d−1
j=0 �j is

usually called the set of resonant directions, whereas �d = Rd \ � is referred to as the
set of non-resonant vectors. Finally, write

R3 := 3
⊥
∩�d−rk3.

The set R3 is non-empty (actually, �d−rk3 has full Lebesgue measure in 3⊥).
The relevance of these definitions to the study of the geodesic flow is explained by

the following remark. Saying that ξ ∈ R3 is equivalent to saying that (for any x0 ∈ Td )
the time-average T −1 ∫ T

0 δx0+tξ (x) dt converges weakly to the Haar measure on the torus
x0 + T3⊥ as T →∞.

By construction, for ξ ∈ R3 we have 3ξ = 3; moreover, if rk3 = d − 1 then
R3 = 3

⊥
\ {0}. Finally,

Rd =
⊔
3∈L

R3, (5)

that is, the sets R3 form a partition of Rd . As a consequence, the following result holds.

Lemma 6. Let µ be a finite, positive Radon measure3 on T ∗Td . Then µ decomposes as
a sum of positive measures:

µ =
∑
3∈L

µeTd×R3 . (6)

Given any µ ∈M+(T
∗Td) we define the Fourier coefficients of µ as complex measures

on Rd :

µ̂(k, ·) :=

∫
Td

e−ik·x

(2π)d/2
µ(dx, ·), k ∈ Zd .

One has, in the sense of distributions,

µ(x, ξ) =
∑
k∈Zd

µ̂(k, ξ)
eik·x

(2π)d/2
.

Lemma 7. Let µ ∈M+(T
∗Td) and 3 ∈ L. The distribution

〈µ〉3(x, ξ) :=
∑
k∈3

µ̂(k, ξ)
eik·x

(2π)d/2

is a finite, positive Radon measure on T ∗Td .

3 We denote by M+(T ∗Td ) the set of all such measures.
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Proof. Let a ∈ C∞c (T
∗Td) and {v1, . . . , vn} be a basis of 3⊥. Using the Fourier decom-

position

a(x, ξ) =
∑
k∈Zd

â(k, ξ)
eik·x

(2π)d/2
,

it is not difficult to see that

〈a〉3(x, ξ) := lim
T1,...,Tn→∞

1
T1 . . . Tn

∫ T1

0
. . .

∫ Tn

0
a
(
x +

n∑
j=1

tjvj , ξ
)
dt1 . . . dtn

=

∑
k∈3

â(k, ξ)
eik·x

(2π)d/2
.

This implies that 〈a〉3 is non-negative as soon as a is, that ‖〈a〉3‖L∞(T ∗Td ) ≤
‖a‖L∞(T ∗Td ), and that 〈a〉3 ∈ C∞c (T

∗Td) as well. Therefore,

〈〈µ〉3, a〉 =

∫
T ∗Td
〈a〉3(x, ξ)µ(dx, dξ)

defines a positive distribution, which is a positive Radon measure by Schwartz’s theorem.
ut

Recall that a measure µ ∈M+(T
∗Td) is invariant under the action of the geodesic flow4

on T ∗Td whenever

(φτ )∗µ = µ with φτ (x, ξ) = (x + τξ, ξ), (7)

for all τ ∈ R. Let us also introduce, for v ∈ Rd , the translations τ v : T ∗Td → T ∗Td
defined by

τ v(x, ξ) = (x + v, ξ).

Lemma 8. Let µ be a positive invariant measure on T ∗Td . Then every term in the de-
composition (6) is a positive invariant measure, and

µeTd×R3 = 〈µ〉3eTd×R3 . (8)

Since for any positive measure 〈µ〉3eTd×R3 = 〈µeTd×R3〉3, equation (8) is equivalent
to the following invariance property:

τ v∗µeTd×R3 = µeTd×R3 for every v ∈ 3⊥.

Proof. The invariance of the measures µeTd×R3 is clearly a consequence of that of µ
and of the form of the geodesic flow on T ∗Td . To check (8) is suffices to show that
µ̂(k, ·)eR3 = 0 as soon as k /∈ 3. Start by noticing that (7) is equivalent to µ solving the
equation

ξ · ∇xµ(x, ξ) = 0.

4 In what follows, we shall refer to such a measure simply as a positive invariant measure.



Semiclassical measures on the torus 1261

This is in turn equivalent to

i(k · ξ)µ̂(k, ξ) = 0 for every k ∈ Zd ,

from which we infer
supp µ̂(k, ·) ⊂ {ξ ∈ Rd : k · ξ = 0}. (9)

Now we remark that R3 ∩ {ξ ∈ Rd : k · ξ = 0} 6= ∅ if and only if k ∈ 3. This proves the
lemma. ut

3. Second microlocalization on a resonant affine subspace

We now start our main construction. Theorem 1(i) and Corollary 2 will be proved at the
end of §4, and Theorem 3 in §5.

Given3∈L, we denote by S1
3 the class of smooth functions a(x, ξ, η) on T ∗Td×〈3〉

that are:

(i) compactly supported with respect to (x, ξ) ∈ T ∗Td ;
(ii) homogeneous of degree zero at infinity in η ∈ 〈3〉, that is, if we denote by S〈3〉 the

unit sphere in 〈3〉 (i.e. S〈3〉 := 〈3〉 ∩ Sd−1) then there exist R0 > 0 and ahom ∈

C∞c (T
∗Td × S〈3〉) with

a(x, ξ, η) = ahom(x, ξ, η/|η|) for |η| > R0 and (x, ξ) ∈ T ∗Td ;

we also write
a(x, ξ,∞η) = ahom(x, ξ, η/|η|) for η 6= 0;

(iii) such that their non-vanishing Fourier coefficients (in the x variable) correspond to
frequencies k ∈ 3:

a(x, ξ, η) =
∑
k∈3

â(k, ξ, η)
eik·x

(2π)d/2
.

We will also express this fact by saying that a has all its x-Fourier modes in 3.
Let (uh) be a bounded sequence in L2(Td) and suppose that its Wigner distributions

wh(t) := w
h
UV (t)uh

converge to a semiclassical measure µ ∈ L∞(R;M+(T
∗Td)) in the

weak-∗ topology of L∞(R;D′(T ∗Td)).
Our purpose in this section is to analyse the structure of the restriction µeTd×R3 . To

achieve this we shall introduce a two-microlocal distribution describing the concentration
of the sequence (UV (t)uh) on the resonant subspaces

3⊥ = {ξ ∈ Rd : P3(ξ) = 0},

where P3 denotes the orthogonal projection of Rd onto 〈3〉. Similar objects have been
introduced in the local, Euclidean, case by Nier [32] and Fermanian-Kammerer [13, 14]
under the name of two-microlocal semiclassical measures. A specific concentration scale
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may also be specified in the two-microlocal variable, giving rise to the two-scale semi-
classical measures studied by Miller [29] and Gérard and Fermanian-Kammerer [15]. We
shall follow the approach in [14], although it will be important to take into account the
global nature of the objects we shall be dealing with.

By Lemma 8, it suffices to characterize the action ofµeTd×R3 on test functions having
all x-Fourier modes in 3. With this in mind, we introduce two auxiliary distributions
which describe more precisely how wh(t) concentrates along Td × 3⊥ and that act on
symbols of the class S1

3.
Let χ ∈ C∞c (R) be a non-negative cut-off function that is identically 1 near the origin.

Let R > 0. For a ∈ S1
3, we define

〈w3h,R(t), a〉 :=

∫
T ∗Td

(
1− χ

(
|P3(ξ)|

Rh

))
a

(
x, ξ,

P3(ξ)

h

)
wh(t)(dx, dξ),

and

〈w3,h,R(t), a〉 :=

∫
T ∗Td

χ

(
|P3(ξ)|

Rh

)
a

(
x, ξ,

P3(ξ)

h

)
wh(t)(dx, dξ). (10)

Remark 9. If 3 = {0} then w3h,R = 0 and w3,h,R(t) = wh(t)⊗ δ0.

Remark 10. For every R > 0 and a ∈ S1
3,∫

T ∗Td
a

(
x, ξ,

P3(ξ)

h

)
wh(t)(dx, dξ) = 〈w

3
h,R(t), a〉 + 〈w3,h,R(t), a〉.

The Calderón–Vaillancourt theorem (see Appendix I for a precise statement) ensures
that both w3h,R and w3,h,R are bounded in L∞(R; (S1

3)
′). After possibly extracting sub-

sequences, we have the existence of a limit: for every ϕ ∈ L1(R) and a ∈ S1
3,∫

R
ϕ(t)〈µ̃3(t, ·), a〉 dt := lim

R→∞
lim
h→0+

∫
R
ϕ(t)〈w3h,R(t), a〉 dt,

and ∫
R
ϕ(t)〈µ̃3(t, ·), a〉 dt := lim

R→∞
lim
h→0+

∫
R
ϕ(t)〈w3,h,R(t), a〉 dt. (11)

Define, for (x, ξ, η) ∈ T ∗Td × 〈3〉 and τ ∈ R,

φ0
τ (x, ξ, η) := (x + τξ, ξ, η),

and, when η 6= 0,
φ1
τ (x, ξ, η) := (x + τη/|η|, ξ, η).

Since the distributions5 w3h,R and w3,h,R satisfy a transport equation with respect to the
ξ -variable, the following result holds.

5 It is convenient to use the word “distribution”, but we actually mean elements ofL∞(R; (S1
3)
′).
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Lemma 11. The distributions µ̃3(t, ·) and µ̃3(t, ·) are φ0
τ -invariant for almost every t:

(φ0
τ )∗µ̃3(t, ·) = µ̃3(t, ·), (φ0

τ )∗µ̃
3(t, ·) = µ̃3(t, ·), for every τ ∈ R.

Proof. Let a ∈ C∞c (T
∗Td). Then

d

dt
〈wh(t), a〉 = i

〈
uh(t, ·),

[
−

1
2
1+ V (t, ·),Oph(a)

]
uh(t, ·)

〉
. (12)

Now, using identity (2) for the Weyl quantization we deduce

d

dt
〈wh(t), a〉 =

1
h
〈wh(t), ξ · ∂xa〉 + 〈LhV (t), a〉, (13)

where
〈LhV (t), a〉 := i〈uh(t, ·), [V (t, ·),Oph(a)]uh(t, ·)〉. (14)

Note that this quantity is bounded in h for t varying over a compact set. Integration in t
against a function ϕ ∈ C1

c (R) gives∫
R
ϕ(t)〈wh(t), ξ · ∂xa〉 dt = −h

∫
R
ϕ′(t)〈wh(t), a〉 dt − h

∫
R
ϕ(t)〈LhV (t), a〉 dt.

Replacing a in the above identity by

χ

(
|P3(ξ)|

Rh

)
a

(
x, ξ,

P3(ξ)

h

)
or

(
1− χ

(
|P3(ξ)|

Rh

))
a

(
x, ξ,

P3(ξ)

h

)
and letting h→ 0+ and R→∞ we obtain

〈µ̃3(t, ·), ξ · ∂xa〉 = 0 and 〈µ̃3(t, ·), ξ · ∂xa〉 = 0,

which is the desired invariance property. ut

Positivity and invariance properties of the accumulation points µ̃3(t, ·) and µ̃3(t, ·) are
described in the next two results.

Theorem 12. (i) For a.e. t ∈ R, µ̃3(t, ·) is positive, 0-homogeneous and supported at
infinity in the variable η (i.e., it vanishes when paired with a compactly supported
function). As a consequence, µ̃3(t, ·) may be identified6 with a positive measure
on T ∗Td × S〈3〉. For a.e. t ∈ R, the projection of µ̃3(t, ·) on T ∗Td is a positive
measure.

(ii) Both µ̃3(t, ·) and µ̃3(t, ·) are φ0
τ -invariant.

6 More precisely, there exists a positive measure M3(t, ·) on T ∗Td × S〈3〉 such that∫
T ∗Td×〈3〉 a(x, ξ, η) µ̃

3(t, dx, dξ, dη) =
∫
T ∗Td×S〈3〉 a(x, ξ,∞η)M

3(t, dx, dξ, dη). For sim-

plicity we will identifyM3(t, ·) and µ̃3(t, ·), and we will write the integrals in the most convenient
way according to the context.
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(iii) Let

µ3(t, ·) :=

∫
〈3〉

µ̃3(t, ·, dη)e(x,ξ)∈Td×R3 ,

µ3(t, ·) :=

∫
〈3〉

µ̃3(t, ·, dη)e(x,ξ)∈Td×R3 .

Then both µ3(t, ·) and µ3(t, ·) are positive measures on T ∗Td , invariant under the
geodesic flow, and satisfy

µ(t, ·)eTd×R3 = µ
3(t, ·)+ µ3(t, ·). (15)

Note that identity (15) is a consequence of the decomposition property expressed in Re-
mark 10.

The following result is the key step of our proof; it states that both µ3 and µ3 have
some extra regularity in the variable x, for two different reasons:

Theorem 13. (i) For a.e. t ∈ R, µ̃3(t, ·) is concentrated on Td × 3⊥ × 〈3〉 and its
projection on Td is absolutely continuous with respect to the Lebesgue measure.

(ii) For a.e. t ∈ R, the measure µ̃3(t, ·) has the invariance property

(φ1
τ )∗µ̃

3(t, ·) = µ̃3(t, ·), τ ∈ R. (16)

Remark 14. As we shall prove in Section 5, the distributions µ̃3(t, ·) obey a propagation
law that is related to the unitary propagator generated by the self-adjoint operator− 1

21+

〈V 〉3(t, ·), where 〈V 〉3 denotes the average of V along 3⊥.

Remark 15. The invariance property (16) provides µ̃3 with additional regularity. This
is clearly seen when rk3 = 1. In that case, (16) implies that, for a.e. t ∈ R, the measure
µ̃3(t, ·) satisfies, for every v ∈ S〈3〉:

(τ vs )∗µ̃
3(t, ·)eTd×R3×〈3〉 = µ̃

3(t, ·)eTd×R3×〈3〉, s ∈ R. (17)

On the other hand, Lemma 8 implies that (17) also holds for every v ∈ 3⊥. Therefore,
we conclude that µ̃3(t, ·)eTd×R3×〈3〉 is constant in x ∈ Td in this case.

Remark 16. Theorems 12(iii) and 13(i), together with Lemma 6, imply that, for a.e.
t ∈ R, we have a decomposition

µ(t, ·) =
∑
3∈L

µ3(t, ·)+
∑
3∈L

µ3(t, ·),

where the second term defines a positive measure whose projection on Td is absolutely
continuous with respect to the Lebesgue measure.

The rest of this section is devoted to the proofs of Theorems 12 and 13. Our results are
written on the “square” torus. More precisely, the property of the lattice 0 = Zd ⊂ Rd
and of the scalar product 〈·, ·〉 (principal symbol of the Laplacian) that we use is that
[〈x, y〉 ∈ Q ∀y ∈ Q0 ⇔ x ∈ Q0]. This assumption can be removed and the results can
be adapted to other lattices, but this requires a slightly different, perhaps less transparent,
presentation, which will appear in [3].
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3.1. Computation and structure of µ̃3

We use the linear isomorphism

χ3 : 3
⊥
× 〈3〉 → Rd : (s, y) 7→ s + y

and denote by χ̃3 : T ∗3⊥ × T ∗〈3〉 → T ∗Rd the induced canonical transformation.
Explicitly, χ̃3 acts as follows: Let (s, σ ) ∈ T ∗3⊥ = 3⊥× (3⊥)∗ and (y, η) ∈ T ∗〈3〉 =
〈3〉 × 〈3〉∗. Extend σ to a linear form on Rd vanishing on 〈3〉, and η to a linear form on
Rd vanishing on 3⊥. Then χ̃3(s, σ, y, η) = (s + y, σ + η) ∈ T ∗Rd = Rd × (Rd)∗.

The map χ3 passes to the quotient and gives a smooth Riemannian covering

π3 : T3⊥ × T3→ Td : (s, y) 7→ s + y;

π̃3 will denote its extension to the cotangent bundles, T ∗T3⊥ × T ∗T3→ T ∗Td . Let p3
denote the degree of π3.

There is a linear isomorphism T3 : L
2
loc(R

d)→ L2
loc(3

⊥
× 〈3〉) given by

T3u :=
1
√
p3
(u ◦ χ3).

Note that because of the factor p−1/2
3 , T3 maps L2(Td) isometrically into a subspace

of L2(T3⊥ × T3) = L2(T3⊥;L2(T3)). Moreover, T3 maps L2
3(T

d) into L2(T3) ⊂
L2(T3⊥ × T3), since if the non-vanishing Fourier modes of u correspond to frequencies
k ∈ 3 only, then

T3u(s, y) =
1
√
p3
u(y) for every s ∈ T3⊥ . (18)

Since χ̃3 is linear, the following holds for any a ∈ C∞(T ∗Rd):

T3 Oph(a) = Oph(a ◦ χ̃3)T3.

Denote a1by Op3
⊥

h and Op3h the Weyl quantization operators defined on smooth test func-
tions on T ∗3⊥ × T ∗〈3〉 which act on the variables in T ∗3⊥ and in T ∗〈3〉 respectively,
leaving the others frozen. The composition Op3

⊥

h Op3h gives the whole Weyl quantization
Oph on T ∗3⊥ × T ∗〈3〉. Now, if a ∈ S1

3 we deduce, in view of (18), that a ◦ π̃3 does
not depend on s ∈ T3⊥ and therefore we write a ◦ π̃3(σ, y, η) for a ◦ π̃3(s, σ, y, η). We
have

T3 Oph(a) = Op3h (a ◦ π̃3(hDs, ·))T3. (19)

Note that for every σ ∈ 3⊥, the operator Op3h (a ◦ π̃3(σ, ·)) maps L2(T3) into itself. To
be even more precise, it maps the subspace T3(L2

3(T
d)) into itself.
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Remark 17. Let a ∈ S1
3, set aR(x, ξ, η) := χ(η/R)a(x, ξ, η) and define ahR,3 ∈

C∞c (3
⊥
× T ∗T3) by

ahR,3(σ, y, η) := aR(π̃3(σ, y, hη), η) = aR(y, σ + hη, η), (y, η) ∈ T ∗T3, σ ∈ 3⊥.

It is easy to check that (19) gives

T3 Oph(aR)T
∗
3 = Op31 (a

h
R,3(hDs, ·)),

and

〈w3,h,R(t), a〉 = 〈T3uh(t, ·),Op31 (a
h
R,3(hDs, ·))T3uh(t, ·)〉L2(T

3⊥
;L2(T3)).

Note that for every R > 0, t ∈ R and (s, σ ) ∈ T ∗T3⊥ , the operator

Op31 (a
h
R,3(σ, ·))

is compact on L2(T3), since ahR,3 is compactly supported in the variable η.

Given a Hilbert space H , denote respectively by K(H) and L1(H) the spaces of
compact and trace class operators on H . A measure on a Polish space T taking values in
L1(H) is defined as a bounded linear functional ρ from Cc(T ) to L1(H); ρ is said to be
positive if, for every non-negative b ∈ Cc(T ), ρ(b) is a positive hermitian operator. The
set of such measures is denoted by M+(T ;L1(H)); they can be identified in a natural
way with positive linear functionals on Cc(T ;K(H)). Background and further details on
operator-valued measures may be found for instance in [18].

In view of Remark 17, it turns out that the limiting object relevant in the computation
of µ̃3 is the one presented in the next result. For K ∈ C∞c (T

∗T3⊥;K(L2(T3))) denote

〈n3h (t),K〉 := 〈T3UV (t)uh,K(s, hDs)T3UV (t)uh〉L2(T
3⊥
;L2(T3)). (20)

Proposition 18. Suppose (uh) is bounded in L2(Td). Then, modulo a subsequence,

lim
h→0+

∫
R
ϕ(t)〈n3h (t),K〉 dt =

∫
R
ϕ(t)Tr

∫
T ∗T

3⊥

K(s, σ ) ρ̃3(t, ds, dσ ) dt (21)

for everyK ∈ C∞c (T
∗T3⊥;K(L2(T3))) and every ϕ ∈ L1(R); in other words, ρ̃3 is the

limit of n3h (t) in the weak-∗ topology of L∞(R,D′(T ∗T3⊥;L1(L2(T3)))).
Then ρ̃3 is an L∞-function in t taking values in the set of positive, L1(L2(T3))-

valued measures on T ∗T3⊥ . We have
∫
T ∗T

3⊥
Tr ρ̃3(t, ds, dσ ) ≤ 1 for a.e. t .

Moreover, for almost every t the measure ρ̃3(t, ·) is invariant under the geodesic flow
φτ |T ∗T

3⊥
: (s, σ ) 7→ (s + τσ, σ ) (τ ∈ R).
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This result is the analogue of Theorems 1 and 2 of [25] in the context of operator-valued
measures. Its proof follows the lines of those results, after the adaptation of the symbolic
calculus to operator-valued symbols as developed for instance in [18].

When taking the limits h → 0 and R → ∞ one should have in mind the following
facts. For any a ∈ S1

3 we have, for fixed R,

Op31 (a
h
R,3(σ, ·)) = Op31 (a

0
R,3(σ, ·))+O(h),

where the remainder O(h) can be estimated in the operator norm (using the Calderón–
Vaillancourt theorem). In addition, in the strong topology of C∞c (T

∗T3⊥;L(L2(T3))),

lim
R→∞

Op31 (a
0
R,3(σ, ·)) = Op31 (a

0
3(σ, ·)),

where a0
3 is defined by setting h = 0 and R = ∞ in the definition of ahR,3. In other

words, a0
3(σ, y, η) = a(π̃3(σ, y, 0), η) = a(y, σ, η).

Combining what we have done so far, we find

Corollary 19. Let ρ̃3 ∈ L∞(R;M+(T
∗T3⊥;L1(L2(T3)))) be a weak-∗ limit of (n3h ).

Let µ̃3 be defined by (10) and (11). Then, for every a ∈ S1
3 and a.e. t ∈ R, we have∫

T ∗Td×〈3〉
a(x, ξ, η) µ̃3(t, dx, dξ, dη) = Tr

∫
T ∗T

3⊥

Op31 (a
0
3(σ, ·)) ρ̃3(t, ds, dσ ).

Remark 20. If a ∈ S1
3 does not depend on η ∈ Rd then the above identity can be

rewritten as:∫
T ∗Td×〈3〉

a(x, ξ) µ̃3(t, dx, dξ, dη) = TrL2(T3)

∫
T ∗T

3⊥

ma◦π3(σ ) ρ̃3(t, ds, dσ ),

(22)
where for σ ∈ 3⊥, ma(σ ) denotes the operator of multiplication by a(·, σ ) in L2(T3).

Since all the arguments above actually hold with L2(T3) replaced by the smaller
space T3(L2

3(T
d)), and since ma◦π3(σ ) = T3ma(σ )T

∗
3 on this space (where ma(σ ) is

again multiplication by a(·, σ )), we can write the above identity as∫
T ∗Td×〈3〉

a(x, ξ) µ̃3(t, dx, dξ, dη) = TrL2
3(Td )

∫
T ∗T

3⊥

ma(σ ) T
∗
3 ρ̃3(t, ds, dσ )T3.

(23)
And when a = a(x) does not depend on ξ , this reduces to∫

T ∗Td×〈3〉
a(x) µ̃3(t, dx, dξ, dη) = TrL2

3(Td )

∫
T ∗T

3⊥

ma T
∗
3ρ̃3(t, ds, dσ )T3. (24)

If we denote by ωj ≥ 0 the eigenvalues of the positive trace class operator∫
T ∗T

3⊥
ma T

∗
3ρ̃3(t, ds, dσ )T3, and by (ψj ) an orthonormal basis of L2

3(T
d) formed by

its eigenfunctions, we have∫
T ∗Td×〈3〉

a(x) µ̃3(t, dx, dξ, dη) =
∑
j

ωj

∫
Td
a(x)|ψj (x)|

2 dx.

This proves the absolute continuity of the projection of µ̃3 to Td .
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3.2. Computation and structure of µ̃3

The positivity of µ̃3(t, ·) can be deduced following the lines of [15, §2.1], or of [18, proof
of Theorem 1]; the idea is recalled in Corollary 35 of Appendix I. Given a ∈ S1

3 there
exist R0 > 0 and ahom ∈ C

∞
c (T

∗Td × S〈3〉) such that

a(x, ξ, η) = ahom(x, ξ, η/|η|) for |η| ≥ R0.

Clearly, for R large enough, the value 〈w3h,R(t), a〉 only depends on ahom. Therefore,
the limiting distribution µ̃3(t, ·) can be viewed as an element of the dual space of
C∞c (T

∗Td × S〈3〉).
Let us now check the invariance property (16). Set

aR(x, ξ, η) := (1− χ(η/R))a(x, ξ, η).

Notice that since a has all its Fourier modes in 3,

ξ

h
· ∂xa

R

(
x, ξ,

P3ξ

h

)
=
P3ξ

h
· ∂xa

R

(
x, ξ,

P3ξ

h

)
.

Therefore, by (13) and (14), and taking into account that aR vanishes near η = 0, we
have, for every ϕ ∈ C1

c (R),∫
R
ϕ(t)

〈
w3h,R(t),

η

|η|
· ∂xa

〉
dt = −

∫
R
ϕ′(t)

〈
wh(t),

h

|P3ξ |
aR
(
x, ξ,

P3ξ

h

)〉
dt

+

∫
R
ϕ(t)

〈
LhV (t),

h

|P3ξ |
aR
(
x, ξ,

P3ξ

h

)〉
dt. (25)

Writing η = rω with r > 0 and ω ∈ S〈3〉 we find, for R large enough,

bR(x, ξ, η) :=
1
|η|
aR(x, ξ, η) =

1
r

(
1− χ

(
r

R

))
ahom(x, ξ, ω);

moreover, since bR is homogeneous of degree −1 in η, the Calderón–Vaillancourt theo-
rem implies that the operator

B3h,R := Oph

(
bR
(
x, ξ,

P3ξ

h

))
satisfies

lim sup
h→0+

‖B3h,R‖L(L2(Td )) ≤ C/R.

Therefore,

lim
R→∞

lim
h→0+

∫
R
ϕ′(t)

〈
wh(t), b

R

(
x, ξ,

P3ξ

h

)〉
dt = 0,

and

lim sup
h→0+

〈
LhV (t), b

R

(
x, ξ,

P3ξ

h

)〉
≤ C lim sup

h→0+
‖[V,B3h,R]‖L(L2(Td )) ≤

C′

R
‖V ‖L∞(Td ).
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After letting h→ 0+ and R→∞ in (25), we conclude that for almost every t ∈ R,

ω · ∇xµ̃
3(t, x, ξ, ω) = 0.

This is equivalent to (16).

4. Successive microlocalizations corresponding to a sequence of lattices

Let us summarize what we have done in the previous section. The semiclassical measure
µ(t, ·) has been decomposed as a sum

µ(t, ·) =
∑
3

µ3(t, ·)+
∑
3

µ3(t, ·),

where 3 runs over the set of primitive submodules of Zd , and where

µ3(t, ·) =

∫
〈3〉

µ̃3(t, ·, dη)eTd×R3 , µ3(t, ·) =

∫
〈3〉

µ̃3(t, ·, dη)eTd×R3 .

The “distributions” µ̃3 have the following properties:

• µ̃3(t, dx, dξ, dη) is in L∞(R; (S1
3)
′).

•
∫
〈3〉
µ̃3(t, ·, dη) is in L∞(R,M+(T

∗Td)).
• For a ∈ S1

3, we have∫
T ∗Td×〈3〉

a(x, ξ, η) µ̃3(t, dx, dξ, dη) = Tr
∫
T ∗T

3⊥

Op31 (a(·, σ, ·)) ρ̃3(t, ds, dσ ),

where ρ̃3(t) is a positive measure on T ∗T3⊥ , taking values in L1(T3(L
2
3(T

d))), in-
variant under the geodesic flow (s, σ ) 7→ (s + τσ, σ ) (τ ∈ R).

On the other hand, the “distributions” µ̃3 have the following properties:

• For a ∈ S1
3, 〈µ̃3(t, dx, dξ, dη), a(x, ξ, η)〉 is obtained as the limit of

〈w3h,R(t), a〉 :=

∫
T ∗Td

(
1− χ

(
|P3(ξ)|

Rh

))
a

(
x, ξ,

P3(ξ)

h

)
wh(t)(dx, dξ),

where the weak-∗ limit holds in L∞(R,S1′
3 ), as h→ 0 then R →∞ (possibly along

subsequences).
• µ̃3(t, dx, dξ, dη) is in L∞(R,M+(T

∗Td × 〈3〉)) and all its x-Fourier modes are
in 3. With respect to the variable η, the measure µ̃3(t, dx, dξ, dη) is 0-homogeneous
and supported at infinity: we see it as a measure on the sphere at infinity S〈3〉. With
respect to ξ it is supported on {ξ ∈ I3}.
• µ̃3 is invariant under the two flows, φ0

τ : (x, ξ, η) 7→ (x + τξ, ξ, η) and φ1
τ : (x, ξ, η)

7→ (x + τη/|η|, ξ, η) (τ ∈ R).
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This can be considered as the first step of an induction procedure, the k-th step of
which will read as follows:

Step k of induction. At step k, we have µ(t, ·) decomposed as

µ(t, ·) =
∑

1≤l≤k

∑
31⊃···⊃3l

µ
31...3l−1
3l

(t, ·)+
∑

31⊃···⊃3k

µ31...3k (t, ·),

where the sums run over all strictly decreasing sequences of primitive submodules of Zd
(of lengths l ≤ k in the first term, of length k in the second term). These measures
themselves are obtained as

µ
31...3l−1
3l

(t, ·) =

∫
R32 (31)×···×R3l (3l−1)×〈3l〉

µ̃
31...3l−1
3l

(t, ·, dη1, . . . , dηl)eTd×R31
,

µ31...3k (t, ·) =

∫
R32 (31)×···×R3k (3k−1)×〈3k〉

µ̃31...3k (t, ·, dη1, . . . , dηk)eTd×R31
,

where we denoted R3(3′) := 3⊥ ∩ 〈3′〉 ∩�rk3′−rk3 for 3 ⊂ 3′.
Let us denote by Sk31,...,3k

the class of smooth functions a(x, ξ, η1, . . . , ηk) on
T ∗Td×〈31〉×· · ·×〈3k〉 that are (i) smooth and compactly supported in (x, ξ) ∈ T ∗Td ;
(ii) homogeneous of degree 0 at infinity in each variable η1, . . . , ηk; (iii) such that their
non-vanishing x-Fourier coefficients correspond to frequencies in 3k .

The “distributions” µ̃31...3l−1
3l

have the following properties:

• µ̃
31...3l−1
3l

is in L∞(R, (S l31,...,3l
)′). With respect to the variables ηj ∈ 〈3j 〉, j =

1, . . . , l − 1, it is 0-homogeneous and supported at infinity. Thus (as in footnote 6), we
may identify it with a distribution on the unit sphere S〈31〉 × · · · × S〈3l−1〉.
•
∫
〈3l〉

µ̃
31...3l−1
3l

(t, ·, dηl) is in L∞(R,M+(T
∗Td × S〈31〉 × · · · × S〈3l−1〉)).

• For a ∈ S l31,...,3l
, we have∫

T ∗Td×〈31〉×···×〈3l−1〉
a(x, ξ, η1, . . . , ηl) µ̃

31...3l−1
3l

(t, dx, dξ, dη1, . . . , dηl)

= Tr
∫
T ∗T

3⊥
l
×S〈31〉×···×S〈3l−1〉

Op3l1 (a(·, σ,∞η1, . . . ,∞ηl−1, ·))

· ρ̃
31...3l−1
3l

(t, ds, dσ, dη1, . . . , dηl−1), (26)

where ρ̃31...3l−1
3l

(t) is a positive measure on T ∗T3⊥l × S〈31〉 × · · · × S〈3l−1〉, taking

values in L1(T3l (L
2
3l
(Td))). It is invariant under the flows (s, σ, η1, . . . , ηl−1) 7→

(s + τσ, σ, η1, . . . , ηl−1) and (s, σ, η1, . . . , ηl−1) 7→ (s + τηj/|ηj |, σ, η1, . . . , ηl−1)

(τ ∈ R, j = 1, . . . , l−1). Equation (26) implies that the projection of µ̃31...3l−1
3l

on Td
is absolutely continuous.

On the other hand, the “distributions” µ̃31...3k have the following properties:
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• For a ∈ Sk31,...,3k
, 〈µ̃31...3k (t, dx, dξ, dη1, . . . , dηk), a(x, ξ, η1, . . . , ηk)〉 is the limit

of〈
wh(t, dx, dξ), a

(
x, ξ,

P31ξ

h
, . . . ,

P3kξ

h

)(
1−χ

(
|P31ξ |

R1h

))
. . .

(
1−χ

(
|P3kξ |

Rkh

))〉
.

The weak limit holds in L∞(R, (Sk31,...,3k
)′) as h → 0 then R1 → ∞,. . . , Rk → ∞

(along subsequences).
• µ̃31...3k is in L∞(R,M+(T

∗Td × S〈31〉 × · · ·S〈3k〉)).
• µ̃31...3k is invariant under the k+1 flows φ0

τ : (x, ξ, η) 7→ (x+ τξ, ξ, η1, . . . , ηk) and
φ
j
τ : (x, ξ, η1, . . . , ηk) 7→ (x + τηj/|ηj |, ξ, η1, . . . , ηk) (where j = 1, . . . , k, τ ∈ R).

How to go from step k to step k + 1. The term
∑

1≤l≤k
∑
31⊃···⊃3l

µ
31...3l−1
3l

remains
untouched after step k.

To decompose further the term
∑
31⊃···⊃3k

µ31...3k , we proceed as follows. Using
the positivity of µ̃31...3k , we use the procedure described in Section 2 to write

µ̃31...3k =

∑
3k+1⊂3k

µ̃31...3keηk∈R3k+1 (3k)
,

where the sum runs over all primitive submodules 3k+1 of 3k . Moreover, by the proof
of Lemma 8, all the x-Fourier modes of µ̃31...3keηk∈R3k+1 (3k)

are in3k+1. To generalize

the analysis of Section 3, we consider test functions a ∈ Sk+1
31,...3k+1

. For such a, we let

〈w
31...3k+1
h,R1,...,Rk

(t), a〉

:=

∫
T ∗Td

(
1− χ

(
|P31(ξ)|

R1h

))
. . .

(
1− χ

(
|P3k (ξ)|

Rkh

))(
1− χ

(
|P3k+1(ξ)|

Rk+1h

))
· a

(
x, ξ,

P31(ξ)

h
, . . . ,

P3k+1(ξ)

h

)
wh(t)(dx, dξ),

and

〈w
31...3k
3k+1,h,R1,...,Rk

(t), a〉

:=

∫
T ∗Td

(
1− χ

(
|P31(ξ)|

R1h

))
. . .

(
1− χ

(
|P3k (ξ)|

Rkh

))
χ

(
|P3k+1(ξ)|

Rk+1h

)
· a

(
x, ξ,

P31(ξ)

h
, . . . ,

P3k+1(ξ)

h

)
wh(t)(dx, dξ).

By the Calderón–Vaillancourt theorem, bothw31...3k
3k+1,h,R1,...,Rk

andw31...3k+1
h,R1,...,Rk

are bounded

in L∞(R, (Sk+1
31,...,3k+1

)′). After extracting subsequences, we can consider the limits

lim
Rk+1→∞

· · · lim
R1→∞

lim
h→0
〈w

31...3k+1
h,R1,...,Rk

(t), a〉 =: 〈µ̃31...3k+1 , a〉
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and
lim

Rk+1→∞
· · · lim

R1→∞
lim
h→0
〈w

31...3k
3k+1,h,R1,...,Rk

(t), a〉 =: 〈µ̃
31...3k
3k+1

, a〉.

By the arguments of §3, one then shows that µ̃31...3k+1 and µ̃31...3k
3k+1

satisfy all of the
induction hypotheses at step k + 1. In particular, we obtain the following analogues of
Theorems 12 and 13.

Theorem 21. (i) µ̃31...3k+1(t, ·) is positive, zero-homogeneous in the variables η1 ∈

〈31〉, . . . , ηk+1 ∈ 〈3k+1〉, and supported at infinity. It can thus be identified with a
positive measure on T ∗Td × S〈31〉 × · · · × S〈3k+1〉.
µ̃
31...3k
3k+1

(t, ·) is zero-homogeneous in the variables η1 ∈ 〈31〉, . . . , ηk ∈ 〈3k〉, and
supported at infinity. It can thus be identified with a distribution on T ∗Td × S〈31〉 ×

· · · × S〈3k〉 × 〈3k+1〉.
The projection of µ̃31...3k

3k+1
(t, ·) on T ∗Td × S〈31〉 × · · · × S〈3k〉 is positive.

(ii) For a.e. t ∈ R, µ̃3132...3k+1(t, ·) and µ̃31...3k
3k+1

(t, ·) have the invariance properties

(φjτ )∗µ̃
31...3k
3k+1

(t, ·) = µ̃
31...3k
3k+1

(t, ·),

(φjτ )∗µ̃
31...3k+1(t, ·) = µ̃31...3k+1(t, ·),

for j = 0, . . . , k, τ ∈ R.
(iii) Let

µ
31...3k
3k+1

(t, ·)

=

∫
R32 (31)×···×R3k+1 (3k)×〈3k+1〉

µ̃
31...3k
3k+1

(t, ., dη1, . . . , dηk+1)e(x,ξ)∈Td×R31
,

µ31...3k+1(t, ·)

=

∫
R32 (31)×···×R3k+1 (3k)×〈3k+1〉

µ̃31...3k+1(t, ., dη1, . . . , dηk+1)e(x,ξ)∈Td×R31
.

Then both µ31...3k
3k+1

(t, ·) and µ31...3k+1(t, ·) are positive measures on T ∗Td , invari-
ant under the geodesic flow, and satisfy

µ31...3keηk∈R3k+1 (3k)
(t, ·) = µ

31...3k
3k+1

(t, ·)+ µ31...3k+1(t, ·). (27)

Theorem 22. (i) For a.e. t ∈ R, µ̃31...3k
3k+1

(t, ·) is supported on Td × 3⊥k+1 × S〈31〉 ×

· · · × S〈3k〉 × 〈3k+1〉 and its projection on Td is absolutely continuous with respect
to the Lebesgue measure.

(ii) The measure µ̃3132...3k+1(t, ·) has the additional invariance property

(φk+1
τ )∗µ̃

3132...3k+1(t, ·) = µ̃31...3k+1(t, ·) for τ ∈ R.

The ideas are identical to those of Sections 2 and 3, and detailed proofs will be omitted.
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Remark 23. By construction, if 3k+1 = {0}, we have µ̃31...3k+1 = 0, and the induction
stops. The measure µ31...3k

3k+1
is then constant in x.

Similarly to Remark 15, one can also see that if rk3k+1 = 1, the invariance properties
of µ̃31...3k+1 imply that it is constant in x.

Proof of Theorem 1(i) and of Corollary 2. We write

µ(t, ·) =
∑

1≤l≤d+1

∑
31⊃···⊃3l

µ
31...3l−1
3l

(t, ·),

and we know that each term is a positive measure on T ∗Td whose projection on Td is
absolutely continuous. This proves Theorem 1(i).

Corollary 2 is a direct consequence of Theorem 1(i) and of the identity (1), with
one little subtlety. Because T ∗Td is not compact, if wh converges weakly-∗ to µ and
(
∫ 1

0 |UV (t)uh(x)|
2 dt) dx converges weakly-∗ to a probability measure ν on Td , it does

not follow automatically that

ν =

∫ 1

0

∫
Rd
µ(t, ·, dξ) dt.

This is only true if we know a priori that
∫
Td×Rd µ(t, dx, dξ) = 1 for almost all t ,

which means that there is no escape of mass to infinity. To check that Theorem 1 implies
Corollary 2, we must explain why, for any normalized sequence (un) ∈ L2(Td), we can
find a sequence of parameters hn → 0 such that whnun does not escape to infinity. Let us
choose hn such that ∑

k∈Zd , ‖k‖≤h−1
n

|ûn(k)|
2
−−−→
n→∞

1, (28)

which is always possible. If we let ũn(x) =
∑
k∈Zd , ‖k‖≤h−1

n
ûn(k)e

ik.x/(2π)d/2, equation

(28) implies that whn
ũn

has the same limit as whnun . On the other hand whn
ũn

is supported in

the compact set Td×B(0, 1) ⊂ Td×Rd . Thuswhn
ũn

cannot escape to infinity. Let us point
out that with this choice of scale (hn), the sequence (un) becomes hn-oscillating, in the
terminology introduced in [17, 19].

5. Propagation law for ρ̃3

We now study how ρ̃3(t, ·) (defined in (21) of Proposition 18) depends on t . This will
allow us to complete the proof of Theorem 3 and will be crucial in the proof of the
observability inequality, Theorem 4. We use the notation of §3.1. In particular, s will
always be a variable in T3⊥ , and y a variable in T3.

In order to state our main result, let us introduce some notation. Let V̂k(t), k ∈ Z, de-
note the Fourier coefficients of the potential V (t, ·). We denote by 〈V 〉3(t, ·) the average
of V (t, ·) along 3⊥, in other words,

〈V 〉3(t, ·) :=
∑
k∈3

V̂k(t)
eik·x

(2π)d/2
.
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We put H3
〈V 〉3

(t) := − 1
213 + 〈V 〉3(t, ·) where 13 is the Laplacian on 〈3〉, and denote

by U3
〈V 〉3

(t) the unitary evolution in L2(T3), starting at t = 0, generated by H3
〈V 〉3

(t).

Proposition 24. Let ρ̃3 ∈ L∞(R;M+(T
∗T3⊥;L1(L2(T3)))) be a limit of (n3h ) as

in Proposition 18. Let (s, σ ) 7→ K(σ) be a function in C∞c (T
∗T3⊥;K(L2(T3))) that

does not depend on s. Assume moreover that both functions (s, σ ) 7→ 13K(σ) and
(s, σ ) 7→ K(σ)13 are well defined7 and are in C∞c (T

∗T3⊥;K(L2(T3))). Then

d

dt
Tr
∫
T
3⊥
×R3

K(σ) ρ̃3(t, ds, dσ ) = i Tr
∫
T
3⊥
×R3

[H3
〈V 〉3

(t, ·),K(σ)] ρ̃3(t, ds, dσ ).

This proposition implies that ρ̃3(t, ds, dσ ) = U3
〈V 〉3

(t)ρ̃3(0, ds, dσ )U3〈V 〉3(t)
∗. Com-

paring with (22), we get:

Corollary 25. Let µ3(t, ·) be the measure defined in Theorem 12. For any a ∈

C∞c (T
∗Td) with all Fourier coefficients in 3,∫
T ∗Td

a(x, ξ) µ3(t, dx, dξ)

= Tr
∫
T
3⊥
×R3

U3
〈V 〉3

(t)∗ma◦π3(σ )U
3
〈V 〉3

(t) ρ̃3(0, ds, dσ ).

Proposition 24 will be a consequence of a more general propagation law. For fixed s ∈
T3⊥ , denote by U3V (t, s) (t ∈ R) the propagator corresponding to the unitary evolution
on L2(T3), starting at t = 0, generated by

H3
V (t, s) := −

1
2
13 + V (t, π3(s, y)).

Our main goal in this section will be to establish the following result.

Lemma 26. For all K as in Proposition 24,

d

dt
Tr
∫
T
3⊥
×R3

K(σ) ρ̃3(t, ds, dσ ) = i Tr
∫
T
3⊥
×R3

[H3
V (t, s),K(σ)] ρ̃3(t, ds, dσ )

(where d/dt is interpreted in the distribution sense).

That Proposition 24 follows from Lemma 26 is a consequence of the invariance of ρ̃3(t, ·)
with respect to the geodesic flow.

7 This condition is for instance satisfied if we consider the functions K(σ) = 5Q(σ)5′, where
Q ∈ C∞c (T

∗T3⊥ ;K(L
2(T3))) and 5,5′ are projectors onto finite-dimensional subspaces con-

tained in H 2(Td ).
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Proof that Lemma 26 implies Proposition 24. Assume that Lemma 26 holds. Since
ρ̃3(t, ·) is invariant under s 7→ s + τσ (τ ∈ R), it follows from Lemma 8 that
ρ̃3(t, ·)eT

3⊥
×R3 is invariant under all translations s 7→ s + v with v ∈ 3⊥. Therefore,

ρ̃3(t, ·)eT
3⊥
×R3 = ds ⊗

∫
T
3⊥

ρ̃3(t, ds, ·)eR3 .

As ∫
T
3⊥

H3
V (t, s) ds = −

1
2
13 +

∫
T
3⊥

V (t, π3(s, y)) ds = H
3
〈V 〉3

(t),

the result follows. ut

Next we shall prove Lemma 26, first in the smooth case, then for continuous potentials,
and finally for potentials that satisfy assumption (R).

5.1. The case of a C∞ potential

Here we shall assume that V ∈ C∞(R× Td). The restriction of n3h (t) to the class of test
functions that do not depend on s ∈ T3⊥ satisfies a certain propagation law, that we now
describe. This generalizes statement (ii) in Theorem 2 of [25].

Lemma 27. Let (s, σ ) 7→ K(σ) be a function in C∞c (T
∗T3⊥;K(L2(T3))) that does

not depend on s. Assume moreover that both functions (s, σ ) 7→ 13K(σ) and (s, σ ) 7→
K(σ)13 are well defined and are in C∞c (T

∗T3⊥;K(L2(T3))). Then

d

dt
〈n3h (t),K〉 = i〈T3uh, [H

3
V (t, ·),K(hDs)]T3uh〉L2(T

3⊥
;L2(T3)). (29)

Proof. It is easy to check that (19) gives

T31T
∗
3 = 13 +13⊥ .

Moreover, it is clear that
[13⊥ ,K(hDs)] = 0.

Therefore, equation (20), in the case when K does not depend on s, gives (29). ut

Taking limits in (29) and taking into account that we can restrict ρ̃3 to (s, σ ) ∈ T3⊥×R3
(since it is a positive measure) concludes the proof of Lemma 26 in this case.

5.2. The case of a continuous potential

In this section, we assume that V ∈ C(R × Td). In this case, Lemma 27 still holds, but
we cannot obtain Lemma 26 by simply taking limits. Instead, we shall use an elementary
approximation argument.



1276 Nalini Anantharaman, Fabricio Macià

We introduce a sequence Vn of C∞ potentials such that

‖V − Vn‖L∞(Td ) ≤ 1/n.

We rewrite (29) as

d

dt
〈n3h (t),K〉 = i〈T3uh(t), [H

3
Vn
(t, ·),K(hDs)]T3uh(t)〉

+ i〈T3uh(t), [V − Vn,K(hDs)]T3uh(t)〉.

We use the inequality

|〈T3uh, [V − Vn,K(hDs)]T3uh〉| ≤ 2‖V − Vn‖L∞(Td ) sup
σ∈3⊥
‖K(σ)‖L(L2(Td ))

to estimate the error when replacing V by Vn.
As h→ 0,

〈T3uh, [H
3
Vn
(t, ·),K(hDs)]T3uh〉 → Tr

∫
T ∗T

3⊥

[H3
Vn
(t, ·),K(σ)] ρ̃3(t, ds, dσ )

since Vn is smooth. We use again the inequality∣∣∣∣Tr
∫
T ∗T

3⊥

[V − Vn,K(σ)] ρ̃3(t, ds, dσ )

∣∣∣∣ ≤ 2‖V − Vn‖L∞(Td ) sup
σ∈3⊥
‖K(σ)‖L(L2(Td ))

to estimate the error when replacing Vn by V .
Letting h→ 0 and then n→∞, we find that

d

dt
Tr
∫
T ∗T

3⊥

K(σ) ρ̃3(t, ds, dσ ) = i Tr
∫
T ∗T

3⊥

[H3
V (t, s),K(σ)] ρ̃3(t, ds, dσ )

where d/dt is meant in the distribution sense.
Again, we can restrict ρ̃3 to (s, σ ) ∈ T3⊥ × R3 since it is a positive measure. This

concludes the proof of Lemma 26 in the continuous case.

5.3. Case of an L∞ potential

Let us turn to the case of a potential V that satisfies condition (R) of the introduction. We
use again an approximation argument, but we have to use the fact that we already know
that the limit measures are absolutely continuous.
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It is enough to consider the restriction of n3h (t) to t ∈ [0, T ], for any arbitrary T . In
Appendix II it is shown that Assumption (R) ensures that for any ε > 0, there exist a com-
pact setKε ⊂ [0, T ] ×Td of Lebesgue measure < ε and a function Vε ∈ C([0, T ] ×Td)
with |V − Vε | ≤ ε on ([0, T ]×Td)\Kε . Consider an open setW2ε of Lebesgue measure
< 2ε such that Kε ⊂ W2ε . Let us introduce a continuous function χε taking values in
[0, 1], and which takes the value 1 on the complement of W2ε and 0 on Kε (this is where
we use the fact that Kε is closed).

Lemma 27 still holds. We use it to write

d

dt
〈n3h (t),K〉 = i〈T3uh(t), [H

3
χεVε

(t, ·),K(hDs)]T3uh(t)〉

+ i〈T3uh(t), [χε(t)(V (t)− Vε(t)),K(hDs)]T3uh(t)〉

+ i〈T3uh(t), [V (1− χε)(t),K(hDs)]T3uh(t)〉. (30)

Arguing as in §5.2, we see that 〈T3uh, [H3
χεVε

(t, ·),K(hDs)]T3uh〉 converges to

Tr
∫
T ∗T

3⊥

[H3
χεVε

(t, ·),K(σ)] ρ̃3(t, ds, dσ ) (31)

as h → 0, since χεVε is continuous. Note that we can replace Vε by V in this limiting
term (31), up to an error of 2ε supσ∈3⊥‖K(σ)‖. Analogously, we are going to show that
in the limit h→ 0 the remaining error terms give a contribution that vanishes as ε tends
to zero. In other words, we are going to show that

d

dt
Tr
∫
T ∗T

3⊥

K(σ)ρ̃3(t, ds, dσ )

= i Tr
∫
T ∗T

3⊥

[H3
χεV

(t, s),K(σ)] ρ̃3(t, ds, dσ )+ sup
σ∈3⊥
‖K(σ)‖Rε, (32)

where Rε does not depend on K , and goes to 0 as ε → 0. To do so, we estimate the error
terms involved.

The term |〈T3uh(t), [χε(V − Vε),K(hDs)]T3uh(t)〉| is easily seen to be bounded
from above by 2ε supσ∈3⊥‖K(σ)‖.

We now turn to the error term involving V (1 − χε) in (30). We use the fact that this
function is supported on a set of small measure, and that we know that the limit measures
are absolutely continuous. We deal with the first term in the commutator; the second one
may be treated analogously. Clearly

|〈T3uh(t), V (1− χε)K(hDs)T3uh(t)〉|
≤ ‖V ‖L∞(Td ) sup

σ∈3⊥
‖K(σ)‖ ‖uh(t)‖ ‖(1− χε)uh(t)‖.
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Integrating against an L1 function θ(t) yields

∣∣∣∣∫ T

0
θ(t)〈T3uh(t), V (1− χε)K(hDs)T3uh(t)〉 dt

∣∣∣∣
≤ ‖V ‖L∞(Td ) sup

σ∈3⊥
‖K(σ)‖

∫ T

0
|θ(t)| ‖uh(t)‖ ‖(1− χε)uh(t)‖ dt

≤ ‖V ‖L∞(Td )

× sup
σ∈3⊥
‖K(σ)‖

(∫ T

0
|θ(t)| ‖uh(t)‖

2dt

)1/2(∫ T

0
|θ(t)| ‖(1− χε)uh(t)‖2 dt

)1/2

= ‖V ‖L∞(Td ) sup
σ∈3⊥
‖K(σ)‖

(∫ T

0
|θ(t)| dt

)1/2(∫ T

0
|θ(t)| ‖(1− χε)uh(t)‖2 dt

)1/2

.

By Corollary 2 we know that
∫ T

0 |θ(t)|‖(1− χε)uh(t)‖
2 dt converges as h→ 0 (along a

subsequence) to ∫ T

0

∫
Td
|θ(t)| |1− χε(t, x)|2 νt (dx) dt

where νt is an absolutely continuous probability measure on Td . The function |1 −
χε(t, x)| takes values in [0, 1] and is supported in W2ε , of measure < 2ε. Thus,

∫ T

0

∫
Td
|θ(t)| |1− χε(t, x)|2 νt (dx) dt → 0

as ε → 0.
Equation (32) is now proved. Restricting ρ̃3 to (s, σ ) ∈ T3⊥ × R3, it follows that

d

dt
Tr
∫
T
3⊥
×R3

K(σ) ρ̃3(t, ds, dσ )

= i Tr
∫
T
3⊥
×R3

[H3
χεV

(t, s),K(σ)] ρ̃3(t, ds, dσ )+ sup
σ∈3⊥
‖K(σ)‖Rε . (33)

It remains to deduce Lemma 26 from (33). To do so, we prove that

Tr
∫
T
3⊥
×R3

[H3
χεV

(t, ·),K(σ)] ρ̃3(t, ds, dσ ) (34)

is the same as

Tr
∫
T
3⊥
×R3

[H3
V (t, ·),K(σ)] ρ̃3(t, ds, dσ ) (35)
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up to an error which goes to 0 with ε. The difference between the two is

Tr
∫
T
3⊥
×R3

[V (1− χε)(t),K(σ)]ρ̃3(t, ds, dσ )

= Tr
∫
T
3⊥
×R3

V (1− χε)(t)K(σ) ρ̃3(t, ds, dσ )

− Tr
∫
T
3⊥
×R3

K(σ)V (1− χε)(t) ρ̃3(t, ds, dσ ).

Let us consider for instance

Tr
∫
T
3⊥
×R3

V (1− χε)(t)K(σ) ρ̃3(t, ds, dσ ). (36)

For any θ ∈ L1(R), the measure

a ∈ C([0, T ] × Td) 7→
∫ T

0
θ(t)Tr

∫
T
3⊥
×R3

maK(σ) ρ̃3(t, ds, dσ ) dt

is absolutely continuous, therefore∫ T

0
θ(t)Tr

∫
T
3⊥
×R3

V (1− χε)(t)K(σ) ρ̃3(t, ds, dσ ) dt

goes to 0 when ε → 0.
This finishes the proof of Lemma 26.

Remark 28. The same argument applies to show that the operator-valued measure

ρ̃
31...3l−1
3l

(t, ds, dσ, dη1, . . . , dηl)

appearing in (26) satisfies the propagation law analogous to Proposition 24:

d

dt
Tr
∫
T ∗T

3⊥
l
×R32 (31)×···×R3l (3l−1)

K(σ) ρ̃
31...3l−1
3l

(t, ds, dσ, dη1, . . . , dηl−1)

= i Tr
∫
T ∗T

3⊥
l
×R32 (31)×···×R3l (3l−1)

[H
3l
〈V 〉3l

(t, ·),K(σ)]

· ρ̃
31...3l−1
3l

(t, ds, dσ, dη1, . . . , dηl−1).

5.4. End of proof of Theorem 3

To end the proof of Theorem 3, we let

ν3(t, ·) =
∑

0≤k≤d−1

∑
31⊃···⊃3k⊃3

∫
Rd
µ
31...3k
3 (t, ·, dξ),
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where the inner sum is over the set of strictly decreasing sequences of submodules such
that 3k ⊃ 3. We also let

σ3 =
∑

0≤k≤d−1

∑
31⊃32⊃···⊃3k⊃3

∫
Td×R31×R32 (31)×···×R3(3k)×〈3〉

ρ̃
31...3k
3 (0, ds, dσ, dη1, . . . , dηk, dη),

where the ρ̃31...3k
3 are the operator-valued measures appearing in (26).

6. Propagation of µ̄ and end of proof of Theorem 1

We have already proved statement (i) of Theorem 1; we shall now concentrate on (ii).
We shall need a preliminary result, of independent interest, that describes the propagation
of µ̄, the projection of µ onto the variable ξ ∈ Rd .

Proposition 29. Suppose that µ0 ∈ M+(T
∗Td) is a semiclassical measure of (uh).

Then µ̄ is constant for a.e. t , and

µ̄ =

∫
Td
µ0(dy, ·). (37)

Proof. We write, for a ∈ C∞c (Rd) and T ∈ R,

〈UV (T )uh, a(hDx)UV (T )uh〉 − 〈uh, a(hDx)uh〉

= −i

∫ T

0

〈
UV (t)uh,

[
a(hDx),−

1

2
+ V

]
UV (t)uh

〉
dt

= −i

∫ T

0
〈UV (t)uh, [a(hDx), V ]UV (t)uh〉 dt.

If V ∈ C∞(R× Td), we have the estimate coming from pseudodifferential calculus,

‖[a(hDx), V ]‖L(L2(Td )) = O(h).

This implies that, for every T ∈ R,

lim
h→0+
〈UV (T )uh, a(hDx)UV (T )uh〉 =

∫
T ∗Td

a(ξ) µ0(dx, dξ), (38)

which in turn shows (37).
When V ∈ C(R× Td), we establish (38) by showing that

‖[a(hDx), V ]‖L(L2(Td )) −−−→
h→0

0.

This can be proved by an approximation argument as in §5.2:

[a(hDx), V ] = [a(hDx), Vn] + [a(hDx), V − Vn],

with [a(hDx), Vn] → 0 as h→ 0 if Vn ∈ C∞(R× Td), and

‖[a(hDx), V − Vn]‖L(L2(Td )) ≤ 2‖a(hDx)‖L(L2(Td ))‖V − Vn‖L∞(Td ).
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If V satisfies Assumption (R), we write, with the same notation as in §5.3,∫ T

0
〈UV (t)uh, [a(hDx), V ]UV (t)uh〉 dt

=

∫ T

0
〈UV (t)uh, [a(hDx), Vεχε]UV (t)uh〉 dt

+

∫ T

0
〈UV (t)uh, [a(hDx), (V − Vε)χε]UV (t)uh〉 dt

+

∫ T

0
〈UV (t)uh, [a(hDx), V (1− χε)]UV (t)uh〉 dt.

For fixed ε, the term
∫ T

0 〈UV (t)uh, [a(hDx), Vεχε]UV (t)uh〉 dt goes to 0 as h→ 0. The
term |

∫ T
0 〈UV (t)uh, [a(hDx), (V −Vε)χε]UV (t)uh〉 dt | is less than 2ε‖a(hDx)‖. Finally,∣∣∣∣∫ T

0
〈UV (t)uh, [a(hDx), V (1− χε)]UV (t)uh〉 dt

∣∣∣∣
≤ 2‖V ‖L∞(Td )

∫ T

0
‖a(hDx)UV (t)uh‖L2(Td )‖(1− χε)UV (t)uh‖L2(Td ) dt

≤ 2‖V ‖L∞(Td )

(∫ T

0
‖a(hDx)UV (t)uh‖

2
L2(Td ) dt

)1/2

·

(∫ T

0
‖(1− χε)UV (t)uh‖2L2(Td ) dt

)1/2

,

and this goes to 0 as h→ 0 and ε → 0, by the same argument as in §5.3. Again, we find
that (38) holds in this case. This concludes the proof of the proposition. ut

Corollary 30. Let3 be a primitive submodule of Zd . If µ0(Td ×3⊥) = 0 then σ3 = 0,
where σ3 is the operator appearing in Theorem 3.

6.1. End of proof of Theorem 1

Let us turn to the proof of the last assertion of Theorem 1. Let us consider the disinte-
gration of the limit measure µ with respect to ξ . Here, to simplify the discussion, after
normalizing µ we may assume that it is a probability measure (this is no loss of general-
ity, since the result is trivially true when µ = 0). We denote by µ̄ the probability measure
on Rd that is the image of µ(t, ·) under the projection map (x, ξ) 7→ ξ . We know that it
does not depend on t . We denote by µξ (t, ·) the conditional law of x knowing ξ , when the
pair (x, ξ) is distributed according to µ(t, ·). Starting from Theorem 1(i), we now show
that, for µ̄-almost every ξ , the probability measure µξ (t, ·) is absolutely continuous.

We consider a filtration, that is, a sequence Fn ⊂ Fn+1 of Borel σ -fields of Rd
such that

⋃
n Fn generates the whole σ -field of Borel sets. We will choose Fn generated

by a finite partition made of hypercubes (that is, a family of disjoint sets of the form
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[a1, b1)× · · · × [ad , bd), where ad < bd can be finite or infinite). For every ξ , there is a
unique such hypercube containing ξ , and we denote it by Fn(ξ). Finally, we choose Fn
such that µ̄ does not put any weight on the boundary of each hypercube.

We know (by the martingale convergence theorem) that, for µ̄-almost every ξ , for
every continuous compactly supported function f and every non-negative integrable θ ,∫

R

∫
Td
f (x, ξ) µξ (t, dx) θ(t) dt = lim

n→∞

∫
R
∫
Td×Fn(ξ) f (x, η) µ(t, dx, dη) θ(t) dt∫
R
∫
Td×Rd µ(t,Td × Fn(ξ))θ(t) dt

.

(39)
Fix ξ such that (39) holds. Since µ(t, ·) is itself the limit of the Wigner distributions
wh(t, ·) and since it does not put any weight on the boundary of Fn(ξ), we can choose
– a sequence of smooth compactly supported functions χn (obtained by convolution of

the characteristic function of Fn(ξ) with a smooth kernel), and
– a sequence hn, going to zero as fast as we wish,
such that∫

R

∫
Td
f (x, ξ) µξ (t, dx) θ(t) dt

= lim
n→∞

∫
R
∫
Td×Rd χ

2
n (η)f (x, η)whn(t, dx, dη) θ(t) dt∫

R
∫
Td×Rd χ

2
n (η)whn(t, dx, dη)θ(t) dt

(40)

for all smooth compactly supported f and every θ .
The absolute continuity ofµξ now follows from Theorem 1(i), applied to the sequence

of functions

vhn =
Ophn(χn)uhn
‖Ophn(χn)uhn‖

.

7. Observability estimates

We now turn to the proof of Theorem 4. Using the uniqueness-compactness argument
of Bardos, Lebeau and Rauch [5] and a Littlewood–Payley decomposition, one can re-
duce the proof of Theorem 4 to Proposition 31 below. This is clearly detailed in [10],
from which we borrow the notation. This reduction requires the potential to be time-
independent, and this is why we make this assumption in Theorem 4.

Let χ ∈ C∞c ((−1/2, 2)) be a cut-off function, assumed to be equal to 1 on a neigh-
borhood (1− δ, 1+ δ) of 1 (with 0 < δ < 1) and to satisfy 0 ≤ χ < 1 elsewhere. Define,
for h > 0,

5hu0 := χ

(
h2
(
−

1
2
1+ V

))
.

Proposition 31. Given any T > 0 and any open set ω ⊂ Td , there exist C, h0 > 0 such
that

‖5hu0‖
2
L2(Td ) ≤ C

∫ T

0
‖UV (t)5hu0‖

2
L2(ω)

dt (41)

for every 0 < h < h0 and every u0 ∈ L
2(Td).
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Proof. Towards a contradiction, if (41) were false, then there would exist a sequence (hn)
tending to zero and (u0,n) in L2(Td) such that 5hnu0,n = u0,n,

‖u0,n‖L2(Td ) = 1, lim
n→∞

∫ T

0
‖UV (t)u0,n‖

2
L2(ω)

dt = 0.

After possibly extracting a subsequence, we can assume that (u0,n) has a semiclassi-
cal measure µ0 and that the Wigner distributions of (UV (t)u0,n) converge weakly-∗ to
some µ ∈ L∞(R;M+(T

∗Td)). Having 5hnu0,n = u0,n implies that µ0 is supported in
{ξ : |ξ |2 ∈ (1− δ, 1+ δ)}. As a consequence,

µ0(T
∗Td) = 1, µ0(Td × {0}) = 0;

and therefore, by Proposition 29, the same holds for µ(t, ·) for a.e. t ∈ R. Moreover,∫ T

0
µ(t, ω × Rd) dt = 0. (42)

Now, we shall use Theorem 3 to obtain a contradiction. We first establish the inequal-
ity for d = 1 and then use induction on dimension.

Case d = 1. Since µ(t,T × {0}) = 0 and µ(t, ·) is invariant under the geodesic flow,
it turns out that µ(t, ·) is constant. Since (42) holds, necessarily µ(t, ·) = 0, which con-
tradicts the fact that µ(t, T ∗T) = 1. This establishes Proposition 31, and therefore Theo-
rem 4 for d = 1.

Case d ≥ 2. We make the induction hypothesis that Proposition 31 holds for all tori
Rn/2π0 with n ≤ d − 1, and 0 a lattice in Rn such that [〈x, y〉 ∈ Q ∀y ∈ Q0 ⇔
x ∈ Q0].

Now, as shown in Theorem 3, for b ∈ L∞(Td) we have∫
T ∗Td

b(x) µ(t, dx, dξ) =
∑
3

∫
Td
b(x) ν3(t, dx)

=

∑
3

Tr
(
m〈b〉3 U〈V 〉3(t) σ3 U〈V 〉3(t)

∗
)
,

where m〈b〉3 denotes multiplication by 〈b〉3 and σ3 is a trace-class positive operator on
L2(T3), where T3 = 〈3〉/2π3.

For 3 = 0, the measure ν3(t) is constant in x, and since ν3(t, ω) = 0 we have
ν3(t) = 0.

The fact that µ(t,Td × {0}) = 0 implies that σ3 = 0 for 3 = Zd . Therefore, it
suffices to show that σ3 = 0 for every primitive non-zero submodule 3 ⊂ Zd of rank
≤ d − 1.

The torus T3 has dimension ≤ d − 1 and falls within the range of our induction
hypothesis. Since (42) holds, we conclude that∫ T

0
Tr
(
m〈1ω〉3U〈V 〉3(t)σ3U〈V 〉3(t)

∗
)
dt = 0,
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and hence ∫ T

0
Tr
(
m1〈ω〉3U〈V 〉3(t)σ3U〈V 〉3(t)

∗
)
dt = 0,

where 〈ω〉3 is the open set where 〈1ω〉3 > 0. By our induction hypothesis we have8

Tr σ3 ≤ C(T , 〈ω〉3)
∫ T

0
Tr(m1〈ω〉3U〈V 〉3(t)σ3U〈V 〉3(t)

∗
)
dt,

and thus σ3 = 0 (for all 3) and µ(t, T ∗Td) = 0. This contradicts µ(t, T ∗Td) = 1. ut

Coming back to the semiclassical measures of Theorem 1, it is now obvious that∫ T

0
µ(t, ω × Rd) dt ≥

T

C(T , ω)
µ0(T

∗Td).

Corollary 5 can then be derived by the same argument as in §6.1.

Appendix I: Pseudodifferential calculus

In this paper, we use the Weyl quantization with parameter h, that associates to a function
a on T ∗Rd = Rd × Rd an operator Oph(a) with kernel

Kh
a (x, y) =

1
(2πh)d

∫
Rd
a

(
x + y

2
, ξ

)
e
i
h
ξ.(x−y) dξ.

If a is smooth and has uniformly bounded derivatives, then this defines a continuous
operator S(Rd) → S(Rd), and also S ′(Rd) → S ′(Rd). If a is (2πZ)d -periodic with
respect to the first variable (which is always the case in this paper), the operator preserves
the space of (2πZ)d -periodic distributions on Rd . We note the relation Oph(a(x, ξ)) =
Op1(a(x, hξ)).

We use two standard results of pseudodifferential calculus.

Theorem 32 (The Calderón–Vaillancourt theorem). There exists an integer Kd and a
constant Cd > 0 (depending on the dimension d) such that, if a is a smooth function on
T ∗Td with uniformly bounded derivatives, then

‖Op1(a)‖L(L2(Td )) ≤ Cd
∑

α∈N2d , |α|≤Kd

sup
T ∗Td
|∂αa|.

8 To deduce this from Theorem 4, it suffices to write σ3 as a linear combination of orthogonal
projectors on an orthonormal basis of eigenfunctions of σ3:

σ3 =
∑
n∈N

λn|φn〉〈φn|;

since λn ≥ 0 and
∑
n∈N λn < ∞, the observability inequality for σ3 follows from the fact that it

holds for every φn.



Semiclassical measures on the torus 1285

A proof in the case of L2(Rd) can be found in [12]. It can be adapted to the case of a
compact manifold by working locally, in coordinate charts.

We also recall the following formula for the product of two pseudodifferential opera-
tors (see for instance [12, p. 79]): Op1(a) ◦ Op1(b) = Op1(a ] b), where

a ] b(x, ξ) =
1

(2π)4d

∫
R4d

e
i
2σ(u1,u2)(Faz)(u1)(Fbz)(u2) du1 du2,

where we let z = (x, ξ) ∈ R2d , az is the function ω 7→ a(z + ω), and F is the Fourier
transform. We can deduce from this formula and from the Calderón–Vaillancourt theorem
the following estimate:

Proposition 33. Let a and b be two smooth functions on T ∗Td , with uniformly bounded
derivatives.

‖Op1(a) ◦ Op1(b)− Op1(ab)‖L(L2(Td )) ≤ Cd
∑

α∈N2d , |α|≤Kd

sup
T ∗Td
|∂αD(a, b)|,

where D(a, b)(x, ξ) = (∂x∂η − ∂y∂ξ )(a(x, ξ)b(y, η))ex=y, η=ξ .

We finally deduce the following corollary. We use the notations of Section 3.

Corollary 34. Let a ∈ C∞(Td × Rd) have uniformly bounded derivatives, and let χ ∈
C∞c (Rd) be a non-negative cut-off function such that

√
χ is smooth. Let 0 < h < 1 and

R > 1. Denote

aR(x, ξ) = a(x, ξ)χ

(
P3ξ

hR

)
.

Assume that a > 0, and denote bR =
√
aR . Then

‖Oph(aR)− Oph(bR)
2
‖L(L2(Td )) = O(h)+O(R−1)

in the limit h→ 0 followed by R→∞.

Corollary 35. Let a ∈ C∞(Td × Rd × Rd) be 0-homogeneous in the third variable
outside a compact set, with uniformly bounded derivatives, and let χ ∈ C∞c (Rd) be a
non-negative cut-off function such that

√
χ is smooth. Let 0 < h < 1 and R > 1. Denote

aR(x, ξ) = a

(
x, ξ,

P3ξ

h

)(
1− χ

(
P3ξ

hR

))
.

Assume that a > 0, and denote bR =
√
aR. Then

‖Oph(a
R)− Oph(b

R)2‖L(L2(Td )) = O(R−1)

in the limit h→ 0 followed by R→∞.
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Appendix II: A measure-theoretic lemma

Lebesgue’s theorem states that the bounded measurable functions f : Q→ R (Q being
a closed rectangle in Rd ) that are Riemann integrable are precisely those functions that
are continuous on Q except for a set of points of measure zero. Write f ∈ J whenever
f : Q → R is bounded, measurable, and continuous in the complement of a set of zero
measure.

Here we shall present another characterisation of the class J , which is needed in
Section 5.

Lemma 36. Let f : Q → R be bounded. Then f ∈ J if and only if for every ε > 0
there exist a compact set Kε ⊂ Q and a function fε ∈ C(Q) such that |Kε| < ε and
|f (x)− fε(x)| < ε for every x ∈ Q \Kε.

Proof. The “if” part is simple to prove. Given n ∈ N denote by Kn and fn a compact set
and a function that satisfy the condition in the statement for ε = 1/n. Let

K :=
⋃
k∈N

⋂
n≥k

Kn.

Then K is a set of measure zero. We claim that K is precisely the set of points at which
f is discontinuous. Let x ∈ Q\K . Then there exists an increasing sequence nk ∈ N such
that x ∈ Q \Knk . Since Q \Knk is open,

|f (y)− fnk (y)| < 1/nk for y in a neighborhood of x;

therefore, f must be continuous at x.
Let us now prove the converse. Suppose A ⊂ Q is measurable and such that 1A ∈ J .

This means that ∂A is a set of zero measure (such sets are called Peano–Jordan measur-
able). We shall first prove the result for f = 1A. We proceed as follows: Let ε > 0 and
take sets F,U ⊂ Q such that U is open, F closed, U ⊂ A ⊂ F and |F \U | < ε/3. This
can be done because A is Peano–Jordan measurable. Note that ∂A ⊂ F \U . Finally, take
C ⊂ U closed and F ⊂ O open such that |U \ C| < ε/3 and |O \ F | < ε/3; clearly
|O \C| < ε. Define fε ∈ C(Q) to be a function taking values in [0, 1] such that fε|C ≡ 1
and fε|Q\O ≡ 0. Let Kε := F ′ \ U ′, where U ′ := f−1

ε ((1 − ε, 1]) ∩ U is open and
F ′ := f−1([ε, 1]) ∩ F is closed; notice that Kε is compact. Since Kε ⊂ O \ C one has
|Kε| < ε and, by construction, |1A(x)− fε(x)| < ε on Q \Kε = (Q \ F ′) ∪ U ′.

Clearly, the result also holds if f is a finite linear combination of characteristic func-
tions of sets A ⊂ Q with |∂A| = 0. To deal with a general f ∈ J it suffices to notice that
each such function can be approximated in L∞(Q) by a sequence of finite linear combi-
nations of characteristic functions of Jordan measurable sets (see, for instance, [16]). ut
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