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Abstract. We extend the convergence method introduced in our works [8]–[10] for almost sure
global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and non-
linear wave (NLW) equations on the unit ball in Rd to the case of the three-dimensional NLS. This
is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball
in R3.

The initial data is taken as a Gaussian random process lying in the support of the Gibbs mea-
sure associated to the equation, and results are obtained almost surely with respect to this probability
measure. The key tools used include a class of probabilistic a priori bounds for finite-dimensional
projections of the equation and a delicate trilinear estimate on the nonlinearity, which—when com-
bined with the invariance of the Gibbs measure—enables the a priori bounds to be enhanced to
obtain convergence of the sequence of approximate solutions.
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1. Introduction

We continue our study of Gibbs measure evolution for the nonlinear Schrödinger (NLS)
and nonlinear wave (NLW) equations on the unit ball in Euclidean space, initiated in
our earlier works [8]–[10]. In particular, the aim of the present article is to extend the
almost sure global well-posedness result of [10], which was set on the unit ball in R2, to
the setting of the unit ball in R3. The techniques involved are a further development of
the method introduced in our work [9] for the nonlinear wave equation, combined with
a delicate choice of function spaces adapted to the decay properties of the fundamental
solution of the Schrödinger equation.

More precisely, we shall consider the initial value problem for the cubic NLS on the
unit ball B in R3,

(NLS)
{
iut +1u− |u|

2u = 0,
u|t=0 = φ,

where u : I × B → C, subject to the Dirichlet boundary condition u|I×∂B = 0, with
randomly chosen radial initial data φ; the sense in which the randomization is taken will
be specified momentarily.
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A fundamental property of (NLS) is that the equation takes the form of an infinite-
dimensional Hamiltonian system,

iut =
∂H

∂u
,

with conserved Hamiltonian

H(φ) =
1
2

∫
B

|∇φ|2 +
1
4

∫
B

|φ|4.

In the case that the spatial domain B ⊂ R3 is replaced with the d-dimensional torus
Td = Rd/Zd , a robust theory of almost sure global well-posedness for the Cauchy prob-
lem was established in the seminal works [3]-[6] for a variety of general classes of nonlin-
earities including both the attractive and repulsive regimes; see also [7] for a brief survey
of these results. The approach pioneered in this line of study was to obtain global control
by exploiting the invariant properties of the Gibbs measure inherent in the Hamiltonian
structure of the equation.

In preparation for our discussion below, we now outline the main steps of the approach
pursued in those works:

(i) The first step is to consider a finite-dimensional projection of the Cauchy problem
for (NLS), allowing access to an invariant Gibbs measure which gives global in time
estimates for solutions.

(ii) A strong form of the local well-posedness theory driven by a contraction mapping
principle then allows one to show convergence of solutions for the finite-dimensional
problems to a solution of the original equation. The key point in this step is to obtain
estimates which are uniform in the projection parameter.

(iii) The two steps above are then combined to establish almost sure global well-posed-
ness for the original Cauchy problem, (NLS) with no finite-dimensional projection.

(iv) The final step in the analysis is to establish the invariance of the limiting Gibbs
measure with respect to the evolution given by the original, non-projected, (NLS)
equation.

We remark that the local theory in this approach is a consequence of fixed point arguments
in suitable classes of function spaces. Although such results are usually available only for
problems in which the initial data is subcritical or critical with respect to the scaling of the
equation, nevertheless, the randomization gives additional integrability almost surely in
the random variable, and can often enable the application to classes of supercritical data
(see for instance [5] as well as [11]).

On the other hand, in the setting of the present paper a more substantial obstruction
to implementing the approach described above is posed by the lack of robust Strichartz
estimates on domains with boundary, which renders the fixed point technique ineffec-
tive for our purposes. Indeed, in the current work our arguments pursue a different path
based on the treatment we introduced for the three-dimensional nonlinear wave equa-
tion [9] and adapted to the two-dimensional NLS equation [10]. This approach is again
based on a procedure of finite-dimensional projection, with the goal of showing global
well-posedness by establishing convergence for the sequence of solutions of the projected
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equations. However, with the fixed-point argument unavailable, the proof of convergence
follows from a more delicate analysis of the fine behavior of solutions and their frequency
interactions.

More precisely, the strategy in the present paper proceeds in the following steps:

(i′) Construction of a suitable collection of function spaces used to establish conver-
gence for the sequence of solutions to the finite-dimensional projections. Closely
related to this is the identification of the relevant embeddings and basic interpola-
tion properties of the spaces.

(ii′) Establishing a priori bounds for solutions of the projected equations which remain
uniform in the projection parameter.

(iii′) The formulation of an estimate of the contribution of the nonlinearity. This estimate
is the most delicate stage in the process, and serves to provide the decay necessary
to establish convergence.

(iv′) The above ingredients are then combined to establish convergence for the sequence
of solutions of the projected equations, almost surely in the randomization. The
limiting function is a solution of the original equation and is defined for arbitrarily
long time intervals.

It is important to note that in our current setting the invariance of the Gibbs measure is
an essential ingredient in obtaining the short-time local existence result, whereas in the
fixed-point based approach of [3]–[7] the local theory is developed independently of the
invariance of the Gibbs measure. This is a major distinction between the two approaches,
and our use of the Gibbs measure at this stage of the argument can be seen as the key piece
of probabilistic information which allows us to overcome the lack of Strichartz estimates;
for a complete discussion of this issue we refer the reader to [9], where the technique was
introduced.

We believe that our treatment of the Theorem stated below also applies with minor
changes to the cubic defocusing NLS on S3 as considered in [13], leading to a similar
result (in [13], the second Picard iteration with random data was analyzed).

Before giving the precise statement of our main results, we shall now describe the
finite-dimensional projections which form the basis of our approach.

1.1. Finite-dimensional model and the Gibbs measure

We shall consider solutions to the truncated equation{
iut +1u− PN (|u|

2u) = 0
u|t=0 = PNφ,

(1.1)

where the operator PN is the projection to low frequencies defined by

PN

(∑
n∈N

anen(x)
)
=

∑
n≤N

anen(x)

with (an) ∈ `2 and (en) as the sequence of radial eigenfunctions of −1 on B with van-
ishing Dirichlet boundary conditions.
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The initial value problem (1.1) is globally well-posed for every integerN ≥ 1: indeed,
for any initial data φ ∈ L2

x(B), there exists a unique global solution uN : R × B → C
satisfying the associated Duhamel formula,

uN (t) = e
it1PNφ + i

∫ t

0
ei(t−τ)1PN (|uN |

2uN )(τ ) dτ. (1.2)

The Gibbs measure µ(N)G associated to (1.1) is defined (up to normalization factors)
by

µ
(N)
G (A) =

∫
A

exp(−HN (φ))
N∏
i=1

d2φ =

∫
A

exp
(
−

1
4
‖PNφ‖

4
L4
x

)
dµ

(N)
F (φ), A ∈M,

where

HN (φ) =
1
2

∑
n≤N

n2
|φ̂(n)|2 +

1
4

∫
B

|PNφ(x)|
4 dx.

and µ(N)F is the free (Wiener) measure induced by the mapping

� 3 ω 7→ φω :=
∑
n≤N

gn(ω)

nπ
en,

where (gn) is a sequence of IID normalized complex Gaussian random variables.
As we will see below, basic facts concerning the sequence of eigenfunctions (en)

ensure that the norms

‖φ‖H s
x (B)

, s < 1/2, and ‖PNφ‖Lpx (B), p < 6,

are finite µ(N)F -almost surely for every N ≥ 1. These facts dictate the spaces in which
we look for solutions, and also serve to ensure that the measure µ(N)G is well-defined,
nontrivial and normalizable. Finally, we remark that µ(N)G is invariant under the evolution
of the truncated equation (1.1), that is,

µ
(N)
G ({φω : ω ∈ �}) = µ

(N)
G ({uN (t) : uN solves (1.1) with φ = φω, ω ∈ �})

for any t ∈ R.
We are now ready to state the main result of this paper, which establishes almost sure

convergence of the sequence of solutions to the truncated equation (1.1) as the truncation
parameter N tends to infinity.

Theorem. For each N ∈ N and ω ∈ � let uN denote the solution to (1.1) with initial
data PNφ = PNφ

(ω). Then, almost surely in ω, for every s < 1/2 and T < ∞, there
exists u∗ ∈ Ct ([0, T );H s

x (B)) such that uN converges to u∗ with respect to the norm
Ct ([0, T );H s

x (B)).

This function u∗ may be formally expressed by a multi-linear Gaussian expansion in the
initial data and it follows from our analysis that this expansion is weakly convergent.
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The proof of the theorem follows the approach described above, and can be roughly
outlined as consisting of the following steps: (1) identification of the Fourier restriction
spaces Xs,b together with a variant X|||·||| as suitable classes of function spaces, (2) the
derivation of a family of a priori bounds which are uniform in the finite-dimensional
projection PN , (3) a trilinear estimate on the nonlinearity which allows us to enhance the
a priori bounds into the decay necessary to establish convergence, and (4) a convergence
argument for N →∞ which assembles the above ingredients.

The first step in the analysis is the choice of function spaces. As is by now familiar
in the study of nonlinear dispersive equations, the spaces Xs,b of [1, ?] are the natural
spaces to carry out perturbation theory from the Duhamel formula (1.2). An additional
component in the analysis in the present work is the need to consider short time intervals.
To balance this requirement with the degenerating constant in theXs,b-localization bound

‖ψf ‖Xs,b .
1

δb−1/2 ‖f ‖Xs,b , b > 1/2,

with ψ(t) = η(t/δ), δ > 0, where η : R → [0, 1] is a smooth function such that η = 1
on [−1, 1] and supp η ⊂ [−2, 2] (see, for instance, [7, Lecture 2]), we also introduce the
slightly different space X|||·||| for which the degenerating constant does not appear.

With the scale of function spaces identified, we next devote our attention to a priori
bounds for solutions of the truncated equations (1.1), uniform in the truncation parame-
ter. We first obtain such bounds in LpxL

q
t norms, and subsequently extend the arguments

to Xs,b norms. To obtain the almost sure global well-posedness result of the theorem, it
suffices to establish these bounds up to the exclusion of sets of small measure in the sta-
tistical ensemble. In view of this, the key observation is that by exploiting the invariance
of the Gibbs measure, it is enough to establish analogous bounds for functions of the form∑

n∈N

gn(ω)

nπ
en(x).

This enables us to combine standard estimates for Gaussian processes and estimates on
the eigenfunctions en to obtain the desired bounds.

The next step is to obtain a trilinear estimate on the nonlinear term in the Duhamel
formula. The argument to establish this bound proceeds by decomposing each of the
three linear factors appearing in the nonlinearity F(u) = |u|2u into discrete frequencies
and estimating the resulting frequency interactions. These estimates are performed us-
ing space-time norms, Xs,b-spaces and further probabilistic considerations based on the
Gibbs measure invariance. In fact, we need to distinguish several frequency regions where
different arguments apply. Introducing these regions requires certain care.

The final step in establishing the theorem is to assemble the above ingredients to
show that the sequence (uN ) of solutions to the truncated equations (1.1) is almost surely
a Cauchy sequence in the space Ct ([0, T );H s

x (B)). The core step in this argument takes
the form of an estimate for the X|||·||| norm of the difference uN1 − uN0 for any integers
N1 ≥ N0 ≥ 1. This bound is of the form

|||uN1 − uN0 ||| . N−c0 for some c > 0 (1.3)



1294 Jean Bourgain, Aynur Bulut

for all ω ∈ � outside a singular set having small measure. The measures of these ex-
ceptional sets need to be sufficiently small in order to deduce an almost everywhere con-
vergence result. Of course, large deviation estimates for Gaussian processes are essential
here. The final stage of the argument consists in revisiting the probabilistic claims in order
to justify the required quantitative form.

2. Notation and preliminaries

Throughout our arguments we will frequently make use of a dyadic decomposition in
frequency, writing

f (x) =
∑
n

f̂ (n)en(x) =
∑
N≥1

∑
n∼N

f̂ (n)en(x),

where for each n ∈ Z, the condition n ∼ N is characterized by N ≤ n ≤ 2N .
For every n ∈ N, define

en(x) =
sin(nπ |x|)
|x|

(2.1)

and recall that en is the nth radial eigenfunction of −1 on B, with associated eigen-
value n2. With this notation, we have the following estimates on the norms of the eigen-
functions:

‖en‖Lpx . 1, 1 ≤ p < 3, and ‖en‖Lpx . n1−3/p, p > 3, (2.2)

along with the endpoint-type bound ‖en‖L3
x
. (log n)1/3. Moreover, the sequence (en)

also enjoys the following correlation bound:

|c(n, n1, n2, n3)| . min{n, n1, n2, n3}, (2.3)

where we have set

c(n, n1, n2, n3) =

∫
B

en(x)en1(x)en2(x)en3(x) dx. (2.4)

We include a quick proof of (2.3). One needs to bound∫ 1

0
sin(nπr) sin(n1πr) sin(n2πr) sin(n3πr)r

−2 dr

where we assume n ≤ n1 ≤ n2 ≤ n3. The contribution of r > 1/(10n) is obviously
bounded by

∫
r>1/(10n) r

−2dr < O(n). For r ≤ 1
10n, write sin(nπr)

r
= nπ + O(n2r),

which leads to

nπ

∫ 1/(10n)

0
(sin(n1πr) sin(n2πr) sin(n3πr))r

−1dr +O(n).

The integrand in the first term is of the form sin(mπr)r−1 with m = n1 ± n2 ± n3 and
hence the integral is bounded.
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Another essential tool in our analysis is the following probabilistic estimate for sums
of Gaussian random variables:∥∥∥∑

n

αngn(ω)

∥∥∥
Lq (dω)

.
√
q
(∑
n

|αn|
2
)1/2

, (2.5)

where (αn) ∈ `2, 2 ≤ q < ∞, and (gn) is a sequence of IID normalized complex
Gaussians.

We also have the following multilinear version of the estimate (2.5):∥∥∥∑
n

αnhn(ω)

∥∥∥
Lq (dω)

. (
√
q)k
∥∥∥∑
n

αnhn(ω)

∥∥∥
L2(dω)

(2.6)

for every k ≥ 1 and 2 ≤ q < ∞, and each hn is a product of at most k Gaussians taken
from a sequence (gn) as above.

As a consequence, if (gn) is a sequence of normalized IID complex Gaussian random
variables, the bound∥∥∥∑

n

αn · (|gn(ω)|
2
− 1)

∥∥∥
Lq (dω)

. q
(∑
n

|αn|
2
)1/2

(2.7)

holds for every (αn) ∈ `2 and 1 ≤ q <∞.
In the form (2.6), we note that the inequality remains valid in the vector-valued case,

with (αn) as elements of an arbitrary normed space X. See [12].

2.1. Description of the function spaces

Fix a time interval I = [0, T ) with T > 0 sufficiently small, and let Xs,b(I ) denote the
class of functions f : I × B → C representable as

f (x, t) =
∑
n,m

fn,men(x)e(mt), (x, t) ∈ B × I, (2.8)

for which the norm

‖f ‖s,b := inf
(∑
n,m

〈n〉2s〈n2
−m〉2b|fn,m|

2
)1/2

is finite, where the infimum is taken over all representations (2.8). We also refer the reader
to the works [1]–[2], where these spaces were first introduced.

Moreover, when f : I × B → C has a representation (2.8), we shall define the
function Ts,bf via

(Ts,bf )(x, t) =
∑
n,m

〈n〉s〈n2
−m〉bfn,men(x)e(mt). (2.9)

Our analysis requires considering short time intervals [0, T ], where T will depend
on the truncation parameters. In order to establish contractive estimates for the nonlinear
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term, we need a variant of the ‖ · ‖0,1/2-norm adapted to the time interval. We denote this
norm by |||·|||0,1/2;T , and its unit ball is generated by functions of the form∑

n,m

an,m

(|n2 −m| + 1/T )1/2
en(x)e(mt)+

∑
n,m

|n2
−m|>1/T

an

|n2 −m|
en(x)e(mt) (2.10)

with ∑
n,m

|an,m|
2
≤ 1 and

∑
n

|an|
2
≤ 1.

Obviously, ‖·‖0,b . ||| · ||| for b < 1/2. One can similarly introduce norms ||| · |||s,1/2;T
for s > 0, but we will not need them.

The next few lemmas put into evidence some basic properties of the norm |||·|||.

Lemma 2.1. Let |||f |||≤ 1. Then

1
T

∫ T

0
‖f (t)‖2

L2
x
dt < O(1). (2.11)

Proof. We first write f as in (2.10). Then

‖f (t)‖2
L2
x
=

∑
n

∣∣∣∣∑
m

fn,m

(|n2 −m| + 1/T )1/2
e(mt)

∣∣∣∣2 +∑
n

∣∣∣∣ ∑
|n2−m|>1/T

e(mt)

n2 −m

∣∣∣∣2|fn|2
= (I )+ (II ).

Taking 0 ≤ ϕ ≤ 2 such that ϕ ≥ 1 on [0, 1] and supp ϕ̂ ⊂ [−1, 1], we have∫ T

0
(I ) dt ≤

∫
(I )ϕ

(
t

T

)
dt ≤ T

∑
n

∑
m,m′

|m−m′|≤1/T

|fn,m| |fn,m′ |

|n2 −m| + 1/T

≤ T 2
∑
|k|≤1/T

∑
n,m

|fn,m| |fn,m+k| . T ‖f ‖2
L2
t,x

. T

and similarly∫ T

0
(II ) dt . T

∑
n

∑
m,m′, |m−m′|.1/T

|n2
−m|>1/T , |n2

−m′|>1/T

|fn|
2

|n2 −m| |n2 −m′|

.
∑
n,m

|n2
−m|>1/T

|fn|
2

|n2 −m|2
. T .

The combination of these two bounds suffices to prove the claim. ut

The next statement expresses an important duality property with respect to the Duhamel
formula (1.2).
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Lemma 2.2. Assume f (x, t) =
∑
n∈Z+, m∈Z fn,men(x)e(mt). Then∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1f (τ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣ . max
|||g|||0,1/2;T≤1

∣∣∣∑
n,m

fn,mgn,m

∣∣∣, (2.12)

where g(x, t) =
∑
n∈Z+, m∈Z gn,men(x)e(mt).

Proof. Write ∫ t

0
ei(t−τ)1f (τ) dτ =

∑
n,m

fn,m en
e(mt)− e(n2t)

m− n2

and decompose this as ∑
|m−n2|>1/T

fn,m

m− n2 en e(mt) (2.13)

−

∑
|m−n2|>1/T

fn,m

m− n2 en e(n
2t) (2.14)

+

∑
|m−n2|≤1/T

fn,men
e(mt)− e(n2t)

m− n2 . (2.15)

Hence we may write (2.13) as∑
|m−n2|>1/T

bn,m

|m− n2|1/2
en e(mt) with bn,m =

±fn,m

|m− n2|1/2
,

which satisfies(∑
n,m

|bn,m|
2
)1/2
=

( ∑
|m−n2|>1/T

|fn,m|
2

|m− n2|

)1/2

= max
∣∣∣∣ ∑
|m−n2|>1/T

fn,m
an,m

|m− n2|1/2

∣∣∣∣
where the maximum is over sequences (an,m) with (

∑
n,m |an,m|

2)1/2 ≤ 1, which takes
care of the contribution of (2.13) to the left-hand side of (2.12).

Next, let ϕ(t) =
∑
k ϕ̂(k)e(kt) satisfy ϕ = 1 on [0, T ], ϕ ≥ 0 together with the

condition |ϕ̂(k)| . T/(1+ |k|T )2.
For 0 ≤ t ≤ T , write (2.14) as[∑

n

bnene(n
2t)
]
ϕ(t) =

∑
n,k

bnene((n
2
+ k)t)ϕ̂(k) (2.16)

with
bn =

∑
|m−n2|>1/T

fn,m

m− n2 .

Thus (2.16) becomes ∑ an,m

|n2 −m|1/2
ene(mt)
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with an,m = bn|n2
−m|1/2ϕ̂(n2

−m) and(∑
n,m

|an,m|
2
)1/2
=

(∑
n

|bn|
2
∑
k

|k| |ϕ̂(k)|2
)1/2

.
(∑
n

|bn|
2
)1/2

= max
∣∣∣∣∑
n,m

fn,m
an

|m− n2|
χ|m−n2|>1/T

∣∣∣∣
with maximum taken over (an) such that

∑
n |an|

2
≤ 1, which is the desired estimate for

the contribution of (2.14).
Finally, for 0 ≤ t ≤ T and ϕ as above, write (2.15) as∑

|m−n2|≤1/T

fn,m en e(n
2t)
e((m− n2)t)− 1

m− n2 ϕ(t)

and expand the exponential in a power series∑
s≥1

1
s!

[∑
n

b(s)n en e(n
2t)
]( t
T

)s
ϕ(t) (2.17)

with
b(s)n =

∑
|m−n2|≤1/T

fn,m(m− n
2)s−1T s

to obtain(∑
n

|b(s)n |
2
)1/2
≤ T

[∑
n

( ∑
|m−n2|≤1/T

|fn,m|
)2]1/2

≤
√
T
( ∑
|m−n2

|≤1/T

|fn,m|
2
)1/2

.

For each s, let ψs(t) =
∑
k ψ̂se(kt) be an extension of (t/T )s , 0 ≤ t ≤ T , such that

|ψs | ≤ 2 and |ψ ′s | ≤ 10sT −1.

Then
|ϕ̂ψs(k)| ≤ ‖ϕψs‖L1

t
≤ 2‖ϕ‖L1

t
. T

and

‖ϕψs‖H 1/2 . ‖ϕψs‖
1/2
L2
t

(‖ϕ′ψs‖L2
t
+ ‖ϕψ ′s‖L2

t
)1/2 . T 1/4(T −1/2

+ sT −1/2)1/2 . s1/2,

which in view of (2.17) gives the desired representation of (2.15). ut

The norm |||·||| does not quite control the L∞0≤t≤TL
2
x norm. However, the following holds,

which will suffice for our purpose.

Lemma 2.3. Let f and g have expansions as in Lemma 2.2. Then∣∣∣∑
n,m

fn,mgn,m

∣∣∣ . T |||f ||| · |||g|||.
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Proof. From the representation (2.10), we obtain∑
n,m

|fn,m| |gn,m| .
∑
n,m

|an,mbn,m|

|n2 −m| + 1/T
+

∑
|n2−m|>1/T

|anbn,m|

|n2 −m|3/2

+

∑
|n2−m|>1/T

|an,mbn|

|n2 −m|3/2
+

∑
|n2
−m|>1/T

|anbn|

|n2 −m|2

with ∑
n,m

|an,m|
2
≤ 1,

∑
n,m

|bn,m|
2
≤ 1,

∑
n

|an|
2
≤ 1,

∑
n

|bn|
2
≤ 1.

By the Cauchy–Schwarz inequality, the first term on the right is bounded by T , while the
second term is bounded by{∑

n

( ∑
{m: |n2−m|>1/T }

|bn,m|

|n2 −m|3/2

)2}1/2

. T .

The estimate for the third term is similar. Estimating the last term, we obtain the bound
T
∑
n anbn . T , which allows us to complete the proof. ut

Next, we establish several inequalities bounding suitable LpxL
q
t norms in terms of Xs,b

norms. These will be essential to our analysis.

Lemma 2.4. The spaces Xs,b obey the following embedding relations:

(i) For 2 < p < 3 and b1 > 1/4,

‖f ‖LpxL2
t
. ‖f ‖0,b1 .

(ii) For 3 < p < 6, s > 1− 3/p and b2 > 1/2,

‖f ‖LpxL4
t
. ‖f ‖s,b2 .

(iii) For 1/4 < b3 < 1/2 and ε > 0,

‖f ‖
L3
xL

4
3−4b3
t

. ‖f ‖ε,b3 .

(iv) For b4 > 1/2 and s > 1/2,

‖f ‖L3
xL
∞
t
. ‖f ‖s,b4 .

(v) For 3 ≤ p ≤ 6, 4 ≤ q ≤ ∞, s > 3/2− 3/p − 2/q and b5 > 1/2,

‖f ‖LpxL
q
t
. ‖f ‖s,b5 .
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(vi) For 1/4 < b6 < 1/2, 3 < p < 6/(3− 4b6), 4/(3− 4b6) < q < ∞, and s >
5/2− 3/p − 2/q − 2b6,

‖f ‖LpxL
q
t
. ‖f ‖s,b6 .

(vii) For 2 ≤ p < 8/3 and b7 > 1/2,

‖f ‖LpxL
p
t
. ‖f ‖0,b7 .

(viii) For 1/4 < b8 < 1/2, p < 24/(4b8 + 7), and q < 8/(5− 4b8),

‖f ‖LpxL
q
t
. ‖f ‖0,b8 .

Proof. We begin with (i). Let 2 < p < 3 be given. Then for every f as in (2.8), applying
the Plancherel identity in time followed by the Minkowski inequality, the eigenfunction
estimate (2.4) and the Cauchy–Schwarz inequality, we have

‖f ‖LpxL2
t
.
(∑
m

∥∥∥∑
n

fm,nen(x)

∥∥∥2

L
p
x

)1/2
.
(∑
m

(∑
n

|fm,n|
)2)1/2

.

(∑
m

(∑
n

〈m− n2
〉
2b
|fm,n|

2
)(∑

n

1
〈m− n2〉2b

))1/2

.

Observing that b > 1/4 implies

sup
m

∑
n

1
〈m− n2〉2b

<∞

then establishes (i) as desired.
We now turn to (ii), for which we argue as in the proof of [10, Lemma 2.3]. Let

3 < p < 6 be given. Then, writing (2.8) in the form

f (t, x) =
∑
m

(∑
n

fm+n2,nen(x)e(n
2t)
)
e(mt),

we perform a dyadic decomposition into intervals m ∼ M , n ∼ N , expand the square
inside the norm ‖ | · |2 ‖1/2

L
p/2
x L2

t

, and use the Plancherel identity in the t variable to obtain

‖f ‖LpxL4
t
.
∑
M,N

∑
m∼M

∥∥∥∑
n∼N

fm+n2,nen(x)e(n
2t)

∥∥∥
L
p
xL

4
t

.
∑
M,N

∑
m∼M

∥∥∥(∑
`

∣∣∣∣ ∑
n,n′∼N

n2
+(n′)2=`

fm+n2,nfm+(n′)2,n′en(x)en′(x)

∣∣∣∣2)1/2∥∥∥1/2

L
p/2
x

.
∑
M,N

∑
m∼M

(
sup
`

∑
n,n′∼N

n2
+(n′)2=`

1
)1/4∥∥∥(∑

n∼N

|fm+n2,n|
2en(x)

2
)∥∥∥1/2

L
p/2
x

, (2.18)

where we have used the Cauchy–Schwarz inequality to obtain the last bound.
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Note that arithmetic considerations associated with lattice points on circles (see, for
instance [10, Lemma 2.1] and the comments in the proof of [10, Lemma 2.3]) entail the
bound

sup
`≥0
|{(n, n′) ∈ [0, N]2 : n2

+ (n′)2 = `}| . N ε (2.19)

for any ε > 0 (where the implicit constant may depend on ε).
Set ε = s − (1 − 3/p). Then, using (2.19) followed by the Minkowski inequality,

the eigenfunction estimates (2.19), and the Cauchy–Schwarz inequality in the summation
over m ∼ M , we obtain

(2.18) .
∑
M,N

∑
m∼M

N ε/4
(∑
n∼N

|fm+n2,n|
2
‖en(x)‖

2
L
p
x

)1/2

.
∑
M,N

∑
m∼M

N ε/4
(∑
n∼N

n2−6/p
|fm+n2,n|

2
)1/2

.
∑
M,N

N ε/4M1/2
(∑
m∼M

∑
n∼N

n2−6/p
|fm+n2,n|

2
)1/2

.
∑
M,N

N−3ε/4M1/2−b
( ∑

n∼N
m−n2

∼M

〈n〉2s〈m− n2
〉
2b
|fm,n|

2
)1/2

. ‖f ‖s,b

since
∑
M,N N

−3ε/2M1−2b <∞. This completes the proof of part (ii) of the lemma.
The inequality stated in part (iii) now follows from (i) and (ii) by standard interpola-

tion arguments.
Next, we prove (iv). Since b4 > 1/2, it suffices to consider f of the form

f (x, t) =
∑
n

anen(x)e(n
2t) with

∑
n

n2s
|an|

2
≤ 1.

It follows from the Cauchy–Schwarz inequality that for any ε > 0,

|f (x, t)| .
[∑
n

|an|
2n1+ε

|en(x)|
2
]1/2

and hence

‖f ‖L3
xL
∞
t
.
[∑
n

|an|
2n1+ε

‖en‖
2
L3
x

]1/2
< O(1).

Inequality (v) then follows by interpolation between (ii) and (iv), while (vi) is obtained
by interpolating between (i) and (v).

We prove (vii), taking f of the form

f (x, t) =
∑
n

anen(x)e(n
2t) =

∑
n

an
sin(πnr)

r
e(n2t)

with r = |x| and
∑
n |an|

2
≤ 1.
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Fix 0 < ρ ≤ 1 and consider values of x in the annulus ρ/2 ≤ r ≤ ρ. We make two
estimates. We first note that

‖f ‖L4
|x|∼ρL

4
t
≤

1
√
ρ

∥∥∥∑
n

an sin(πnr)e(n2t)

∥∥∥
L4
r≤1L

4
|t |≤1

≤
1
√
ρ

[
max
k,`

∣∣{(n, n′) ∈ Z2
: n± n′ = k, n2

+ (n′)2 = `
}∣∣]1/4

.
1
√
ρ
. (2.20)

On the other hand, one has

‖f ‖L2
|x|∼ρL

2
t
≤

∥∥∥∑
n

an sin(πnr)e(n2t)

∥∥∥
L2
r∼ρL

2
|t |<1

.
√
ρ. (2.21)

Hence (vii) follows by interpolation between (2.20), (2.21) and summation over dyadic
ρ = 2−j .

Finally, (viii) is obtained by interpolation between (i) and (vii). This completes the
proof of Lemma 2.4. ut

3. A priori uniform bounds

In this section, we establish Xs,b bounds on solutions of the truncated equation (1.1)
which are uniform in the truncation parameter N . For this purpose, we will first obtain
a preliminary uniform estimate on the norms LpxL

q
t for suitable values of p and q. In

particular, we have the following:

Lemma 3.1. For every 0 ≤ s < 1/2, 1 ≤ p < 6/(1+ 2s), 1 ≤ q < ∞, there exists a
constant C > 0 such that for every N > 0 one has the bound

µ
(N)
F ({φ : ‖(

√
−1)su‖LpxL

q
t
> λ}) . exp(−cλc), (3.1)

where u = uN is a solution to the truncated equation (1.1) associated to initial data φ
(truncated as PNφ).

Proof. Without loss of generality we may assume p > 3. It suffices to show that (3.1)
holds with µ(N)F replaced by the Gibbs measure µG. Indeed, suppose that

µG(Aλ) ≤ C exp(−cλc) (3.2)

with

Aλ := {φ : ‖(
√
−1)su‖LpxL

q
t
> λ}, λ > 0.
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Then, fixing λ1 > 0, we have

µ
(N)
F (Aλ) = µ

(N)
F (Aλ ∩ {φ : ‖φ‖L4

x
> λ1})+ µ

(N)
F (Aλ ∩ {φ : ‖φ‖L4

x
≤ λ1})

. µ
(N)
F ({φ : ‖φ‖L4

x
> λ1})+ exp

(
1
4
λ4

1

)
µG(Aλ)

. µ
(N)
F ({φ : ‖φ‖L4

x
> λ1})+ exp

(
1
4
λ4

1

)
exp(−cλc). (3.3)

To estimate the first term in (3.3), we fix q1 ≥ 4 and appeal to the Chebyshev and
Minkowski inequalities followed by the estimate (2.5) on sums of Gaussian random vari-
ables. This gives

µ
(N)
F ({φ : ‖φ‖L4

x
> λ1}) .

1
λ
q1
1

[
E
µ
(N)
F

‖φ‖
q1
L4
x

]
≤

1
λ
q1
1

∥∥∥∥(Eµ(N)F

[(∑
n

gn(ω)

n
en(x)

)q1
])1/q1

∥∥∥∥q1

L4
x

.

(√
q1

λ1

)q1
∥∥∥∥(∑

n

|en(x)|
2

n2

)1/2∥∥∥∥q1

L4
x

.

(√
q1

λ1

)q1
(∑

n

‖en‖
2
L4
x

n2

)q1/2

. (3.4)

where in obtaining the last inequality we have used the Minkowski inequality.
Invoking now the eigenfunction estimate (2.2) yields

(3.4) .
(√

q1

λ1

)q1(∑
n

n−3/2
)q1/2

.

(√
q1

λ1

)q1

.

We therefore obtain

µ
(N)
F (Aλ) .

(√
q1

λ1

)q1

+ exp
(

1
4
λ4

1

)
µG(A),

so that optimizing in the choice of q1 gives µ(N)F (Aλ) . exp(−cλc1) as desired.
It therefore suffices to show (3.2), which we recall was the desired inequality with the

measure µ(N)F replaced by the (invariant) Gibbs measure µG = µ
(N)
G . We argue as above:

fixing q2 ≥ max{p, q} and invoking the Chebyshev and Minkowski inequalities, one has

µG(Aλ) ≤ λ
−q2EµG

[
‖(
√
−1)su‖

q2
L
p
xL

q
t

]
. λ−q2‖(EµG [((

√
−1)su)q2 ])1/q2‖

q2
L
p
xL

q
t

. (3.5)
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Now, using the invariance of the Gibbs measure µG = µ
(N)
G with respect to the trun-

cated evolution (with u = uN being a solution of the truncated equation) followed by the
estimate for sums of Gaussian random variables given by (2.5), we obtain

(3.5) . λ−q2

∥∥∥∥(EµG[(∑
n

gn(ω)

n1−s en

)q2
])1/q2

∥∥∥∥q2

L
p
xL

q
t

.

(√
q2

λ

)q2
∥∥∥∥∑

n

|en(x)|
2

n2(1−s)

∥∥∥∥q2/2

L
p/2
x

.

To conclude, we use the eigenfunction estimate (2.2) together with the condition p <

6/(1+ 2s) to get the bound∥∥∥∥∑
n

|en(x)|
2

n2(1−s)

∥∥∥∥q2/2

L
p/2
x

.

(∑
n

1
n2(1−s) ‖en‖

2
L
p
x

)q2/2

.
(∑
n

n2(s−3/p)
)q2/2

. 1.

Hence
µG(Aλ) . (

√
q2/λ)

q2 . (3.6)

Optimizing the choice of q2 in (3.6) as for q1 above gives

µ
(N)
F ({φ : ‖(

√
−1)su‖LpxL

q
t
> λ}) . exp(−cλ2)

as desired. ut

We are now ready to establish uniform Xs,b bounds.

Proposition 3.2. Fix 0 ≤ s < 1/2 and 1/2 < b < 3/4. Then there exists C > 0 such
that for all N > 0, if u = uN is a solution to the truncated equation (1.1), then

µ
(N)
F ({φ : ‖u‖s,b > λ}) . exp(−c1λ

c2).

Proof. Let s ∈ [0, 1/2) and b ∈ (1/2, 3/4) be given. Fix N ≥ 1 and write the Duhamel
formula

u(t) = eit1φ +

∫ t

0
ei(t−τ)1|u(τ)|2u(τ) dτ. (3.7)

We estimate both the linear and nonlinear terms in (3.7) individually. We begin with
the linear term. Let Ts,b be the operator defined in (2.9). Then, fixing q ≥ 2 and invoking
the Chebyshev and Minkowski inequalities, one has

µ
(N)
F ({φ : ‖eit1φ‖s,b>λ}) ≤ λ

−qEω
[
‖Ts,be

it1φ‖
q

L2
t,x

]
. λ−q‖Eω[(Ts,beit1φ)q ]1/q‖

q

L2
t,x

. λ−qqq/2
∥∥∥∥∑

n

|en(x)|
2

n2(1−s)

∥∥∥∥q/2
L1
t,x

. λ−qqq/2.

An appropriate choice of q gives

µ
(N)
F ({φ : ‖eit1φ‖s,b > λ}) . exp(−cλ2). (3.8)
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Turning to the integral term, we set f = |u(τ)|2u(τ) and observe that the expansion
f (x, τ ) =

∑
m,n fn,men(x)e(mτ) leads to∫ t

0
ei(t−τ)1f (τ) dτ =

∫ t

0

(∑
m,n

fn,men(x)e((t − τ)n
2
+mτ)

)
dτ

=

∑
m,n

ifn,m

(n2 −m)
en(x)(e(tn

2)− e(tm)).

Applying Hölder’s inequality and recalling b > 1/2, we obtain∥∥∥∥∫ t

0
ei(t−τ)1f (τ) dτ

∥∥∥∥
s,b

.

(∑
n,m

〈n〉2s |fn,m|
2

〈n2 −m〉2(1−b)

)1/2

= sup
v∈X0,1−b

‖v‖0,1−b≤1

∣∣∣∣ ∫ 1

0

∫
B

v(t, x)(
√
−1)sf (t, x) dx dt

∣∣∣∣
. sup

v∈X0,1−b

‖v‖0,1−b≤1

‖v‖
L3−ε
x L2

t
‖(
√
−1)su‖

L

3−ε
1−ε
x L6

t

‖u‖2
L6−2ε
x L6

t

.

Now, invoking Lemma 2.4(i) in the form

‖v‖
L3−ε
x L2

t
. ‖v‖0,1−b

and using Lemma 3.1 to estimate the norms of u yields∥∥∥∥ ∫ t

0
ei(t−τ)1f (τ) dτ

∥∥∥∥
s,b

. λ3

for each λ > 0 and all ω ∈ � outside a set of measure O(exp(−cλc)).
We therefore have (adjusting the value of the constant c as well as the implicit con-

stant)

µ
(N)
F

({
φ :

∥∥∥∥ ∫ t

0
ei(t−τ)1f (τ) dτ

∥∥∥∥
s,b

> λ

})
. exp(−cλc). (3.9)

To conclude, collecting (3.8) and (3.9), we have

µ
(N)
F ({φ : ‖u‖s,b > λ}) . exp(−cλc), (3.10)

which gives the desired inequality. ut

4. The nonlinear term

The main issue is an estimate on the ||| · ||| norm of trilinear expressions of the form∫ t

0
ei(t−τ)1PN [PN1U

1 PN2u
(2) PN3u

(3)
](τ ) dτ (4.1)

with t < T , where U1 belongs to X||| · ||| and u(2), u(3) : R × B → C are solutions to
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truncated equations (1.1) for possibly different truncations N (2)
≥ N2, N (3)

≥ N3 and
initial data

u(i)
∣∣
t=0 = PN (i)(φ), i = 2, 3.

In order to establish a contractive estimate on (4.1), T will have to be chosen suffi-
ciently small; more specifically, we shall require

T ∼ 1/logN∗ with N∗ = max(N1, N2, N3). (4.2)

As will be clear later on, this choice of T is essential in our argument due to the
presence of a certain logarithmic divergence.

Our analysis is based on LpxL
q
t norms as well as the norms ‖ · ‖s,b and ||| · |||. Various

contributions are considered, requiring different arguments. While the norms ‖ · ‖s,b and
||| · ||| allow in particular for Fourier restrictions of the form χn2−m.K , these operations
are in general not allowed for LpxL

q
t norms. For this reason, certain care is required in

organizing the argument.
We denote by N,Ni , i = 1, 2, 3, integers of the form 2j , and n ∼ Ni means Ni ≤

n < 2Ni . Denote u2 = PN2u
(2) and u3 = PN3u

(3).
We start by applying Lemma 2.2, and estimate |||(4.1)||| by∫ 1

0

∫
B

v̄(PN1U
1)ū2u3 dx dt (4.3)

with |||v||| ≤ 1. By Cauchy–Schwarz,

(4.3) ≤
[∫∫

|v|2|u2|
2 dx dt

]1/2[∫∫
|PN1U

1
|
2
|u3|

2 dx dt

]1/2

. (4.4)

In each factor on the right-hand side of (4.4), u(2) and u(3) are obtained from the same
truncated equation. This is essential for our analysis.

We have therefore reduced the estimate of (4.3) to estimating∫∫
PNv PN1v1 PN2uPN3u (4.5)

with u obtained from some truncated equation (1.1) and |||v|||, |||v1||| ≤ 1.
Write (4.5) as ∑

n≤N,ni≤Ni
m−m1+m2−m3=0

v̂(n,m) v1(n1, m1) û(n2, m2) û(n3, m3) c(n, n̄) (4.6)

with c(n, n̄) = c(n, n1, n2, n3). Subdividing [0, Ni] into dyadic intervals [N ′i , 2N ′i ], we
estimate

(4.6) ≤
∑
N ′2,N

′

3

∣∣∣ ∑
n≤N, n1≤N1, n2∼N

′

2, n3∼N
′

3
m−m1+m2−m3=0

c(n, n̄)An,m,n̄,m̄

∣∣∣ (4.7)
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with

An,m,n̄,m̄ = v̂(n,m) v̂1(n1, m1) û(n2, m2) û(n3, m3).

Fix N ′2, N
′

3 and assume N ′2 ≥ N
′

3. Set

K = (N ′2)
10−3

and define

cK(n, n̄) =

{
c(n, n̄) if |n2

− n2
1 + n

2
2 − n

2
3| < 10K,

0 otherwise.
(4.8)

We now estimate∣∣∣ ∑
n≤N, n1≤N1, n2∼N

′

2, n3∼N
′

3
m−m1+m2−m3=0

c(n, n̄)An,m,n̄,m̄

∣∣∣
≤

∑
N ′,N ′1

∣∣∣ ∑
n∼N ′, n1∼N

′

1, n2∼N
′

2, n3∼N
′

3
m−m1+m2−m3=0,|m−n2

|≥K

c(n, n̄)An,m,n̄,m̄

∣∣∣ (4.9)

+

∑
N ′,N ′1

∣∣∣ ∑
n∼N ′, n1∼N

′

1, n2∼N
′

2, n3∼N
′

3
m−m1+m2−m3=0,|m−n2

|<K

|m1−n
2
1|≥K

c(n, n̄)An,m,n̄,m̄

∣∣∣ (4.10)

+

∣∣∣ ∑
n≤N, n1≤N1, n2∼N

′

2, n3∼N
′

3
m−m1+m2−m3=0, |m−n2

|<K, |m1−n
2
1|<K

c(n, n̄)An,m,n̄,m̄

∣∣∣. (4.11)

Making a further decomposition according to whether |n2
− n2

1 + n
2
2 − n

2
3| > 10K

or |n2
− n2

1 + n
2
2 − n

2
3| . 10K in (4.11), the contribution of (4.11) may be evaluated by

bounding

∑
N ′,N ′1

∣∣∣ ∑
n∼N ′, ni∼N

′
i , |n

2
−n2

1+n
2
2−n

2
3|>10K

m−m1+m2−m3=0, |m−n2
|<K, |m1−n

2
1|<K

c(n, n̄)An,m,n̄,m̄

∣∣∣ (4.12)

+

∣∣∣ ∑
n≤N, n1≤N1, n2∼N

′

2, n3∼N
′

3
m−m1+m2−m3=0

cK(n, n̄)An,m,n̄,m̄

∣∣∣, (4.13)

where in (4.13) we replaced v̂ by v̂χ|m−n2|≤K and v̂1 by v̂1χ|m1−n
2
1|<K

(noting that the
norm ||| · ||| is unconditional).
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Note that if n2 = n3 and |n2
−n2

1+n
2
2−n

2
3| ≤ 10K , then either n = n1 orN ′+N ′1 .

(N ′2)
10−3

. Hence, (4.13) is bounded by∑
N ′,N ′1

∣∣∣ ∑
n∼N ′, ni∼N

′
i , n2 6=n3

m−m1+m2−m3=0

cK(n, n̄)An,m,n̄,m̄

∣∣∣ (4.14)

+

∑
N ′, N ′1.(N

′

2)
10−3

∣∣∣ ∑
n∼N ′, n1∼N

′

1, n2∼N
′

2
m−m1+m2−m3=0

cK(n, n1, n2, n2)An,m,(n1,n2,n2),m̄

∣∣∣ (4.15)

+

∣∣∣ ∑
n≤N, n2∼N

′

2
m−m1+m2−m3=0

c(n, n, n2, n2)An,m,(n,n2,n2),m̄

∣∣∣. (4.16)

Let
σn,N ′2

=

∑
n2∼N

′

2

1
n2

2
c(n, n, n2, n2) = O(1)

and estimate (4.16) by∑
N ′

∣∣∣∣∑
n∼N ′

∫ 1

0
v̂(n)(τ ) v̂1(n)(τ )

[ ∑
n2∼N

′

2

c(n, n, n2, n2)|û(n)(τ )|
2
− σn,N ′2

]
dτ

∣∣∣∣ (4.17)

+

∣∣∣∣∑
n≤N

(∫ 1

0
v̂(n)(τ ) v̂1(n)(τ ) dτ

)
σn,N ′2

∣∣∣∣. (4.18)

In view of the above observations, our estimate of |||(4.1)||| reduces to establishing
bounds on (4.9), (4.10), (4.12), (4.14), (4.15), (4.17) and (4.18); this will be the topic of
the following two sections.

The choice of T is dictated by (4.18), and we treat this term first. Indeed, taking T
sufficiently small, Lemma 2.3 gives∣∣∣∣ ∑

n≤N,m

v̂(n,m) v̂1(n,m)σn,N ′2

∣∣∣∣ . ∑
n≤N,m

|v̂(n,m)| |v̂1(n,m)| . T

= o

(
1

logN∗

)
. (4.19)

Evaluating the summation over dyadic N ′2 ≤ N∗ then allows us to conclude that the
contribution of (4.18) can be estimated by o(1).

5. Multilinear estimates (I)

In this section, we obtain bounds on the terms (4.9), (4.10) and (4.12). The remaining
terms will be treated in the next section.
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We begin with the contribution of (4.9). Fix the values N ′, N ′1 and rewrite the inner
sum in (4.9) as ∫

B

∫ 1

0
Pn∼N ′v Pn1∼N

′

1
v1 Pn2∼N

′

2
uPn3∼N

′

3
u dt dx, (5.1)

where v̂(n,m) = 0 for |m− n2
| < K .

It follows from the definition of the ||| · ||| norm that

‖Pn∼N ′v‖0,1/3 < K−1/7
|||Pn∼N ′v|||.

Moreover, by Lemma 2.4(viii), applied with b = 1/4+ 3ε/2, ε = 10−6, we obtain

‖Pn∼N ′v‖
L

3
1+ε
x L

2
1−ε
t

< K−1/7
|||Pn∼N ′v|||. (5.2)

Also by Lemma 2.4(viii),

‖Pn1∼N
′

1
v1‖

L

3
1+ε
x L

2
1−ε
t

. |||Pn∼N ′1v1|||. (5.3)

To estimate the contributions of u2 and u3 to (5.1), we use the a priori bound given by
Lemma 3.1 with q = 2/ε, where ε = 10−6 as before. In particular, we may ensure that

max{‖Pn2∼N
′

2
u‖
L6−ε
x L

q
t
, ‖Pn3∼N

′

3
u‖
L6−ε
x L

q
t
} < (N ′2)

10−6
(5.4)

outside an exceptional set of measure at most exp(−c(N ′2)
c10−6

) in the initial datum φ.
Taking p = 6/(1− 2ε), we then obtain

‖Pn2∼N
′

2
u‖LpxL

q
t
. (N ′2)

10−6
+

3
6−ε−1/2+ε . (5.5)

From (5.2)–(5.5) and recalling that K = (N ′2)
10−3

and ε = 10−6, it follows that

(5.1) < K−1/7(N ′2)
10−6
+

3
6−ε−1/2+ε

|||Pn∼N ′v||| |||Pn∼N ′1
v1|||

< (N ′2)
−1/210−4

|||Pn∼N ′v||| |||Pn∼N ′1
v1|||. (5.6)

To complete the estimate of the contribution of (4.9), it remains to perform dyadic
summation over N ′, N ′1, N

′

2 and N ′3, with N ′2 ≥ N
′

3. Note that from the definition of the
||| · ||| norm, one has

|||v|||2 ∼
∑
N ′

|||Pn∼N ′v|||
2. (5.7)

In view of (5.6), there is of course no problem with the summation over values of N ′2
and N ′3, and we may also assume max{N ′, N ′1} > exp((N ′2)

10−5
). Consider the case

N ′ ≥ N ′1. If N ′ ∼ N ′1, the estimate follows by using Cauchy–Schwarz and (5.7) for v
and v1. Assume now thatN ′ > 4N ′1. We estimate the contribution of such terms to (4.9) by

γ

∫ [∑
n∼N ′

|v̂(n)(t)|
][ ∑
n1∼N

′

1

|v̂1(n1)(t)|
][ ∑
n2∼N

′

2

|û(n2)(t)|
][ ∑
n3∼N

′

3

|û(n3)(t)|
]
dt (5.8)
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with
γ = max

n∼N ′, ni∼N
′
i

|c(n, n1, n2, n3)|.

We then have the bound

(5.8) ≤ γ · (N ′N ′1N
′

2N
′

3)
1/2
‖v‖L2

t L
2
x
‖v1‖L2

t L
2
x
‖u‖2

L∞t L
2
x

≤ γ · (N ′N ′1N
′

2N
′

3)
1/2
|||v||| |||v1||| ‖u‖

2
L∞t L

2
x
. (5.9)

To evaluate γ , we write∫
B

enen1en2en3 dx =

∫ 1

0
sin(nπr) sin(n1πr)ϕ(r) dr (5.10)

with ϕ(r) = sin(πn2r)
r
·

sin(πn3r)
r

, and note that integration by parts gives∫ 1

0
cos((n± n1)πr) ϕ(r) dr = −

1
π(n± n1)

∫ 1

0
ϕ′(r) sin((n± n1)πr) dr

< O

(
‖ϕ′‖L∞

(n± n1)2

)
< O

(
(N ′2)

2N ′3
(N ′)2

)
,

where the last inequality follows from N ′ > 4N ′1. Hence

(5.9) .
(N ′2)

4

N ′
.

Summing (5.9) over dyadic N ′, N ′1, N
′

2 and N ′3 with N ′ > max{exp((N ′2)
10−5

), 4N ′1}
and N ′3 ≤ N

′

2 shows that the contribution of (5.8) is bounded by

∑
N ′,N ′2

(N ′2)
4(logN ′2)(logN ′)

N ′
<

1
N ′2
,

which completes the estimate of the contribution of (4.9).
Since v and v1 play the same role, the same argument also takes care of the contribu-

tion of (4.10).
We now address the contribution of (4.12). Since the estimate relies only on Xs,b

norms, Fourier restrictions are not an issue. Note that since |m−n2
| < K , |m1−n

2
1| < K

and |n2
− n2

1 + n
2
2 − n

2
3| > 10K , at least one of the conditions

|m2 − n
2
2| > K or |m3 − n

2
3| > K

holds.
Assume

|m2 − n
2
2| & |m3 − n

2
3| > K. (5.11)

We distinguish several cases.
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Case 1: N ′ +N ′1 < (N ′2)
3. Consider the expression∑

n∼N ′, ni∼N
′
i , |n

2
−n2

1+n
2
2−n

2
3|&K

m−m1+m2−m3=0
|m2−n

2
2|&|m3−n

2
3|>K

c(n, n̄)An,m,n̄,m̄ (5.12)

where we assume |||v|||, |||v1||| ≤ 1 and, according to Proposition 3.2, that ‖u‖ 1
2−,

3
4−

<

O(1).
The restriction |n2

−n2
1+n

2
2−n

2
3| & K in (5.12) may be removed arguing as follows:

Let 0 ≤ ψ ≤ 1 be a parameter, and replace v̂(n,m) by

e(n2ψ)v̂(n,m),

and v̂1(n1, m1), û(n2, m2) and û(n3, m3) by

e(n2
1ψ)v̂1(n1, m1), e(n2

2ψ)û(n2, m2) and e(n2
3ψ)û(n3, m3),

respectively. The restriction |n2
− n2

1 + n
2
2 − n

2
3| . K may then be achieved by taking a

suitable average over ψ .
It thus suffices to bound the expression∑

n∼N ′, ni∼N
′
i

m−m1+m2−m3=0
|m2−n

2
2|&|m3−n

2
3|>K

c(n, n̄) v̂(n,m) v̂1(n1, m1) û2(n2, m2) û3(n3, m3) (5.13)

with |||v|||, |||v1||| ≤ 1, ‖u2‖ 1
2−,

3
4−
< O(1) and ‖u3‖ 1

2−,
3
4−
< O(1).

To bound this quantity, we re-express (5.13) as∫
B

∫ 1

0
K−ε(Pn∼N ′v)K

−ε(Pn1∼N
′

1
v1)K2ε(Pn2∼N

′

2
u2) Pn3∼N

′

3
u3 dt dx (5.14)

with ε = 10−6, where to simplify notation we have suppressed an additional Fourier
restriction on the u2 and u3 factors.

Since the norm ||| · ||| indeed controls the norm ‖ · ‖0, 1
2−

, and the condition Kε >

(N ′)
1
3 10−9

holds by assumption, we may apply Lemma 2.4(iii) to obtain

‖K−εPn∼N ′v‖L3
xL

4−
t
< O(1) (5.15)

and, similarly,
‖K−εPn1∼N

′

1
v1‖L3

xL
4−
t
< O(1). (5.16)

On the other hand, using the Fourier restriction due to (5.11), we have

‖Pn2∼N
′

2
u2‖ 1

2−,
5
8
< K−1/16

‖u2‖ 1
2−,

3
4−
,

‖Pn2∼N
′

2
u2‖ 1

2+ε,
5
8
< K−1/16(N ′2)

ε
‖u2‖ 1

2−,
3
4−
.

Applying Lemma 2.4(v), it follows that

‖Pn2∼N
′

2
u2‖LpxL

q
t
. K−1/16(N ′2)

ε
‖u2‖ 1

2−,
3
4−

(5.17)
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with
p =

6
1− ε/2

, q =
4

1− ε/2
. (5.18)

In addition, Lemma 2.4(v) gives

‖Pn3∼N
′

3
u3‖L6−

x L4−
t
< O(1). (5.19)

Combining (5.15)–(5.19), we obtain

|(5.14)| . (N ′2)
−10−3/16+10−6

+2·10−9
. (N ′2)

−10−5
.

Summing in N ′ and N ′1 now gives the bound

(N ′2)
−10−5

[log(N ′2)]
2 . (N ′2)

−10−5/2

for the contribution of these terms to (4.12).

Case 2: N ′ +N ′1 > (N ′2)
3 and n 6= n1. In this case, we have

N ′ +N ′1 − (N
′

2)
2 < |n2

− n2
1 + n

2
2 − n

2
3| < |n

2
2 −m2| + |n

2
3 −m3| + 2K

and hence |n2
2−m2| >

1
3 (N

′
+N ′1). This clearly allows us to repeat the analysis of Case 1

with 1
3 (N

′
+N ′1) in place of K , giving again the bound (N ′2)

−10−5
.

Case 3: N ′ = N ′1 > (N ′2)
3, n = n1. Proceeding as in Case 1 above, we obtain∑

n∼N ′, ni∼N
′
i , m−m1+m2−m3=0

c(n, n, n2, n3)An,m,(n,n2,n3),m̄ (5.20)

with |m2 − n
2
2| > K . Rewrite (5.20) as∫

B

∫ 1

0

[∑
n∼N ′

v̂(n) v̂1(n)e
2
n

]
Pn2∼N

′

2
u2 Pn3∼N

′

3
u3 dt dx. (5.21)

Now, observe that it follows from (5.17) and (5.18) that

‖Pn2∼N
′

2
u2‖LpxL

q
t
< (N ′2)

−10−5
, (5.22)

while (5.19) gives
‖Pn3∼N

′

3
u3‖L6−

x L4−
t
< O(1). (5.23)

On the other hand, since e2
n(x) ≤ 1/|x|2, the first factor in the integrand of (5.21) is

bounded by
1
|x|2

(∑
n∼N ′

|v̂(n)|2
)1/2(∑

n∼N ′

|v̂1(n)|
2
)1/2

(5.24)

where for any q1 <∞ one has∥∥∥(∑
n

|v̂(n)|2
)1/2∥∥∥

L
q1
t

= ‖v‖
L
q1
t L

2
x
. ‖v‖0,1/2− . |||v|||,

with the analogous bound for v1.
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It then follows that
‖(5.24)‖

L
3
2−
x L

q1
t

< O(1). (5.25)

Combining (5.25) with (5.22) along with (5.23) and summing in N ′ now shows that
the contribution of (5.20) is bounded by (N ′2)

−10−5
, completing the bound in this case.

6. Multilinear estimates (II)

In this section, we estimate the remaining contributions, those of (4.14), (4.15) and (4.17).
This will involve a different type of analysis than that used in the previous section; in
particular we will make essential use of several further probabilistic considerations related
to the solution map.

We begin with (4.14). Rewrite this quantity as a sum over N ′, N ′1 of∣∣∣∣∫ 1

0

[ ∑
n∼N ′, ni∼N

′
i , n2 6=n3

cK(n, n̄) v̂(n) v̂1(n1) û(n2) û(n3)
]
dt

∣∣∣∣. (6.1)

Note that in the sum we necessarily have n 6= n1, since otherwise

N ′2 +N
′

3 ≤ |n
2
2 − n

2
3| ≤ 10K = 10(N ′2)

10−3
,

giving a contradiction.
Hence, it follows that

N ′ +N ′1 ≤ |n
2
− n2

1| ≤ K + 8(N ′2)
2 < 9(N ′2)

2.

We first examine the contribution from n 6= n3. Denote N ′, N ′i by N,Ni for simplic-
ity. Since ‖v‖L2

t,x
. 1, it follows from Cauchy–Schwarz that (6.1) is bounded by the L2

t

norm of[∑
n

∣∣∣ ∑
n1, n2, n3

v̂1(n1) û(n2) û(n3)cK(n, n1, n2, n3)

∣∣∣2]1/2

≤

[∑
n1,n

′

1

|v̂1(n1)| |v̂1(n
′

1)|

∣∣∣ ∑
n,n2,n

′

2
n3,n

′

3

Bn,n̄,n̄′
∣∣∣]1/2

where

Bn,n̄,n̄′ = û(n2) û(n3)û(n
′

2) û(n
′

3) cK(n, n1, n2, n3)cK(n, n
′

1, n
′

2, n
′

3),

and again by Cauchy–Schwarz,[∑
n1

|v̂1(n1)|
2
]1/2[ ∑

n1 6=n
′

1

|Bn,n̄,n̄′ |
2
]1/4
+

[∑
n1

|v̂1(n1)|
2
]1/2[

max
n1=n

′

1

|Bn,n̄,n̄′ |
]1/2

≤ ‖v1(t)‖L2
x

{[ ∑
n1 6=n

′

1

|Bn,n̄,n̄′ |
2
]1/4
+ max
n1=n

′

1

|Bn,n̄,n̄′ |
1/2
}
. (6.2)
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Since ‖v1‖Lqt L2
x
. |||v1||| < O(1) for all q <∞, it suffices to bound

‖{· · · }‖L4
t
, (6.3)

where {· · · } is the quantity appearing in (6.2).
Note that (6.3) involves only the truncated solution u with initial data φ = φω, and

we view u as a random variable of ω. For fixed t , the distribution of uω(t) is given by the
Gibbs measure. Since the Gibbs measure is absolutely continuous with respect to the free
measure with bounded density, we may replace uω(t) by a Gaussian Fourier series∑

n

gn(ω)

n
en

with {gn} as a sequence of IID normalized complex Gaussians. This fact is essential to
our analysis in this section.

For sufficiently large q, we may estimate(
Eω
[
‖{· · · }‖

q

L4
t

])1/q
≤
∥∥ ‖{· · · }‖Lqω∥∥L4

t
≤ max

0≤t≤1
‖{· · · }‖L

q
ω

and, fixing t , we accordingly write

‖{· · · }‖L
q
ω

≤

{ ∑
n1 6=n

′

1

∥∥∥∥ ∑
n,n2,n3,n

′

2,n
′

3

gn2

n2

gn3

n3

gn′2

n′2

gn′3

n′3
cK(n, n̄)cK(n, n̄

′)

∥∥∥∥2

L
q/2
ω

}1/4

(6.4)

+

∥∥∥∥max
n1

∣∣∣∣ ∑
n,n2,n3,n

′

2,n
′

3

gn2

n2

gn3

n3

gn′2

n′2

gn′3

n′3
cK(n, n̄)cK(n, n1, n

′

2, n
′

3)

∣∣∣∣∥∥∥∥1/2

L
q/2
ω

. (6.5)

We first analyze (6.4) by considering several cases, recalling that n2 6=n3 and n′2 6=n
′

3.

Case 1: n2 6= n
′

2, n3 6= n
′

3. In this case, we note that the bound

cK(n, n1, n2, n3) . N3χ|n2−n2
1+n

2
2−n

2
3|<K

gives the estimate

Eω
[∣∣∣∣ ∑
n,n2,n3,n

′

2,n
′

3

gn2

n2

gn3

n3

gn′2

n′2

gn′3

n′3
cK(n, n̄)cK(n, n̄

′)

∣∣∣∣2]

.
1
N4

2

∑
n2,n

′

2,n3,n
′

3

(∑
n

χ
|n2−n2

1+n
2
2−n

2
3|<K
· χ|n2−(n′1)

2+(n′2)
2−(n′3)

2|<K

)2

.

√
K

N4
2

∑
n,n2,n

′

2,n3,n
′

3

χ
|n2−n2

1+n
2
2−n

2
3|<K
· χ|n2−(n′1)

2+(n′2)
2−(n′3)

2|<K .
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For the summation over n1 and n′1 in (6.4), this gives the bound

√
K

N4
2

∣∣{(n, n1, n
′

1, n2, n
′

2, n3, n
′

3) : ni, n
′

i ∼ Ni, n 6= n1, n
′

1, and

|n2
− n2

1 + n
2
2 − n

2
3| < K, |n2

− (n′1)
2
+ (n′2)

2
− (n′3)

2
| < K

}∣∣. (6.6)

Fix values of k, k′ with |k|, |k′| < K , and evaluate the number of solutions of the
equations {

n2
− n2

1 + n
2
2 − n

2
3 = k,

n2
− (n′1)

2
+ (n′2)

2
− (n′3)

2
= k′,

(6.7)

in the variables n, n1, n
′

1, n2, n
′

2, n3 and n′3.
For this purpose, further fix n2, n

′

2, n3. Since n± n1 are divisors of k − n2
2 + n

2
3 6= 0,

this specifies n, n1 up to N0+
2 possibilities. Next, if we write

(n′1)
2
+ (n′3)

2
= n2

+ (n′2)
2
− k′, (6.8)

the usual bounds for the number of Z2-points on circles (and circle arcs) imply that (6.8)
has at most N0+

3 solutions in (n′1, n
′

3).
Summarizing, this proves that

(6.6) <
√
K N−4

2 K2N2+
2 N3 < N

−1/2
2 . (6.9)

Case 2: n2 = n
′

2, n3 6= n
′

3. We obtain

Eω
[∣∣∣∣ ∑
n,n2,n3,n

′

3

|gn2 |
2

(n2)2
gn3

n3

gn′3

n′3
cK(n, n̄)cK(n, n

′

1, n2, n
′

3)

∣∣∣∣2]

.
1
N4

2

∑
n3,n

′

3

(∑
n,n2

χ
|n2−n2

1+n
2
2−n

2
3|<K
· χ
|n2−(n′1)

2+n2
2−(n

′

3)
2|<K

)2
, (6.10)

and since the number of (n, n2)-terms in the inner sum is at most KN0+
2 (for given

n1, n
′

1, n3, n
′

3), we obtain

(6.10)� N−4+
2 K

∑
n,n2,n3,n

′

3

χ
|n2−n2

1+n
2
2−n

2
3|<K
· χ
|n2−(n′1)

2+n2
2−(n

′

3)
2|<K . (6.11)

Summing (6.11) over n1 and n′1 then gives the bound

N−4+
2 K3N2N3 < N−1

2

for the contribution to the sum in (6.4).

Case 3: n2 6= n
′

2, n3 = n
′

3. In place of (6.10), we get

1
N4

2

∑
n2,n

′

2

(∑
n,n3

χ
|n2−n2

1+n
2
2−n

2
3|<K
· χ
|n2−(n′1)

2+(n′2)
2−n2

3|<K

)2
. (6.12)
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Writing n2
− n2

1 + n
2
2 − n

2
3 = k, |k| < K , in the inner sum, it follows that n± n3 divides

k+n2
1−n

2
2 6= 0, since n 6= n3. Thus, there are at mostKN0+

2 terms in the inner sum and
we obtain the bound

N−4+
2 K3N2

2N3 < N
−1/2
2

for the contribution of (6.12) to the sum in (6.4).

Case 4: n2 = n
′

2, n3 = n
′

3. In this case, the inner sum in (6.4) becomes

N2
2N
−2
3

∑
n,n2,n3

cK(n, n1, n2, n3)cK(n, n
′

1, n2, n3). (6.13)

It follows from the definition of cK that the quantity (6.13) vanishes unless

|n2
1 − (n

′

1)
2
| < 2K;

note that this implies N1 = O(K), since n1 6= n
′

1. Thus

(6.13) < N−2
2

∣∣{(n, n2, n3) : n2 ∼ N2, n3 ∼ N3 and |n2
+ n2

2 − n
2
3| . K2}∣∣

. N−2
2 K2N3N

0+
2 < N

−3/4
2 ,

and the corresponding contribution to (6.4) is bounded by N−1/4
2 .

The considerations in Cases 1–4 take care of the estimate of (6.4).
We next consider the estimate of (6.5). Note that the analogues of Cases 1, 2 and 3

in this setting are captured by the previous analysis, since we did not use the condition
n1 6= n

′

1.
To treat the estimate in the analogue of Case 4, we bound the contribution to (6.5) by

(logN1)
[

max
n1∼N1

N−2
2 N−2

3

∑
n,n2,n3

cK(n, n1, n2, n3)
2
]1/2

. (logN1)N
−1
2

[
max
n1∼N1

∑
n,n2,n3

χ
|n2−n2

1+n
2
2−n

2
3|<K

]1/2

. (logN1)N
−1
2 (KN3N

0+
2 )1/2 . N

−1/3
2 .

This completes the treatment of Case 4 for the estimate of (6.5). Combining the esti-
mates of (6.4) and (6.5) then completes the analysis of the contribution of the terms with
n 6= n3.

We now consider the terms for which n3 = n. Note that since under this condition we
have

|n2
1 − n

2
2| . K = (N2)

10−3
,

it also follows that n1 = n2 in this setting. We then estimate the contribution to (6.1) by

min(N,N1)

∫ [ ∑
n∼N, n1∼N1

|v̂(n)| |v̂1(n1)| |û(n)| |û(n1)|
]
dt,
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which, after using Cauchy–Schwarz, is in turn estimated by

min(N,N1)

∫
‖Pn∼Nv‖L2

x
‖Pn∼Nu‖L2

x
‖Pn1∼N1v1‖L2

x
‖Pn1∼N1u‖L2

x
dt.

Using Hölder and summing over N and N1, we obtain the bound∑
N,N1

min{N,N1}‖Pn∼Nv‖L2
t,x
‖Pn∼Nu‖L6

t L
2
x
‖Pn1∼N1v1‖L6

t L
2
x
‖Pn1∼N1u‖L6

t L
2
x
. (6.14)

Moreover, since ‖ · ‖Lqt L2
x
. ||| · ||| for all q, and, by Lemma 2.3,

(∑
N

‖Pn∼Nv‖
2
L2
x,t

)1/2
= ‖v‖L2

x,t
.
√
T |||v|||,

it follows from Cauchy–Schwarz that

(6.14) .
√
T
{∑
N

‖Pn∼Nu‖
2
L6
t L

2
x

(∑
N1

min{N,N1}|||Pn1∼N1v1||| ‖Pn1∼N1u‖L6
t L

2
x

)2}1/2
.

(6.15)

To control the norms of projections of u appearing in (6.15) we require the following
probabilistic estimate.

Lemma 6.1. Let 1 ≤ q <∞ be given. Then there exists c > 0 such that for every λ ≥ 1,

µ
(N)
F

({
φ : max

N
N1/2
‖Pn∼Nuφ‖Lqt L2

x
> λ

})
≤ exp(−cλc), (6.16)

where the maximum is taken over dyadic integers N .

Assuming that Lemma 6.1 holds, we use it to estimate (6.15) by

√
T

{∑
N

(∑
N1

min{N,N1}
√
NN1

|||Pn1∼N1v1|||

)2}1/2

.
√
T |||v1|||.

This leads to the bound O(
√
T ) on (6.14).

This completes the analysis of the contribution of (4.14) except for the proof of
Lemma 6.1, which we address presently.

Proof of Lemma 6.1. We begin by noting that it suffices to establish

µG(Aλ) ≤ exp(−cλc) (6.17)

for Aλ := {φ : maxN N1/2
‖Pn∼Nuφ‖Lqt ([0,T∗);L2

x (B))
> λ}. Indeed, if we argue as in the

proof of Lemma 3.1, then (6.17) implies an inequality of the type (6.16).
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It therefore remains to establish (6.17). Toward this end, fixing q1 > q and applying
the Chebyshev inequality and the Plancherel identity followed by the Minkowski inequal-
ity, one obtains

µG(Aλ) ≤ λ
−q1
∥∥∥max

N
N1/2
‖Pn∼Nuφ‖Lqt L2

x

∥∥∥q1

Lq1 (dµG)

. λ−q1
∥∥∥∥∥∥max

N
N1/2

(∑
n∼N

|̂uφ(n)|
2
)1/2∥∥∥

Lq1 ( dµG)

∥∥∥q1

L
q
t

. λ−q1
∥∥∥max

N
N1/2

(∑
n∼N

|φ̂(n)|2
)1/2∥∥∥q1

Lq1 ( dµG)

. λ−q1

∥∥∥∥max
N
N1/2

(∑
n∼N

|gn(ω)|
2

n2

)1/2∥∥∥∥q1

L
q1
ω

, (6.18)

where we have used the invariance of the Gibbs measure to obtain the third inequality.
We therefore have

(6.18) . λ−q1

{
1+

(∑
N

∥∥∥∥∑
n∼N

N

n2 (|gn(ω)|
2
− 1)

∥∥∥∥
L
q1
ω

)1/2}q1

. λ−q1

{
1+

(∑
N

q1
√
N

)1/2}q1

.

(√
q1

λ

)q1

,

where we have used the estimate∥∥∥∥∑
n∼N

N

n2 (|gn(ω)|
2
− 1)

∥∥∥∥
L
q1
ω

. Nq1

(∑
n∼N

1
n4

)1/2

.
q1
√
N
,

which follows from (2.7). Optimizing the choice of q1 (by essentially taking q1 = λ
2/2;

see, for instance, the proof of Lemma 3.1) now yields the desired claim.
This completes the proof of Lemma 6.1. ut

It remains to bound the contributions of (4.15) and (4.17). We begin with (4.15), for which
we argue by rewriting the inner sum in this expression as∑

n∼N,n1∼N1,n2∼N2

cK(n, n1, n2, n2)

∫ 1

0
v̂(n) v̂1(n1)|û(n2)|

2 dt.

In view of Lemma 6.1, this is in turn bounded by

N

∫ 1

0

(∑
n∼N

|v̂(n)|
)( ∑

n1∼N1

|v̂1(n1)|
)( ∑

n2∼N2

|û(n2)|
2
)
dt

≤ N3/2N
1/2
1

∫ 1

0
‖Pn∼Nv‖L2

x
‖Pn1∼N1v1‖L2

x
‖Pn2∼N2u‖

2
L2
x
dt

. (N2)
2·10−3

‖Pn∼Nv‖L4
t L

2
x
‖Pn1∼N1v1‖L4

t L
2
x
‖Pn2∼N2u‖

2
L4
t L

2
x
. (N2)

2·10−3
−1.
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We next consider (4.17). We use the Cauchy–Schwarz inequality to bound this ex-
pression by∑

N

‖Pn∼Nv‖L2
t,x
‖Pn∼Nv1‖L4

t L
2
x

∥∥∥max
n∼N

∣∣∣ ∑
n2∼N2

c(n, n, n2, n2)|û(n2)|
2
− σn,N2

∣∣∣ ∥∥∥
L4
t

. T 1/2 sup
N

∥∥∥max
n∼N

∣∣∣ ∑
n2∼N2

c(n, n, n2, n2)|û(n2)|
2
− σn,N2

∣∣∣ ∥∥∥
L4
t

. (6.19)

Recall that
σn = σn,N2 = Eφ

[ ∑
n2∼N2

c(n, n, n2, n2)|φ̂(n2)|
2
]
.

The bound on the second factor in (6.19) again follows from probabilistic considera-
tions. We have the following:

Lemma 6.2. For λ� 1, we have, for some constant c > 0,

µF

[
φ :

∥∥∥max
n

∣∣∣ ∑
n2∼N2

|ûφ(t)(n2)|
2c(n, n, n2, n2)− σn

∣∣∣∥∥∥
L4
t

> λ
]
. e−cλ

cNc2 . (6.20)

Proof. It suffices again to prove (6.20) with µF replaced by the Gibbs measure µG. Pro-
ceeding as in Lemma 6.1, take q1 = q1(λ) and write∥∥∥ ∥∥∥max

n

∣∣∣ ∑
n2∼N2

|ûφ(t)(n2)|
2c(n, n, n2, n2)− σn

∣∣∣∥∥∥
L4
t

∥∥∥
Lq1 (µG(dφ))

≤

∥∥∥ ∥∥∥max
n

∣∣∣ ∑
n2∼N2

|ûφ(t)(n2)|
2c(n, n, n2, n2)− σn

∣∣∣∥∥∥
Lq1 (µG(dφ))

∥∥∥
L4
t

.

In view of the Gibbs measure invariance under the flow, the above is bounded by∥∥∥max
n

∣∣∣ ∑
n2∼N2

|φ̂(n2)|
2c(n, n, n2, n2)− σn

∣∣∣∥∥∥
Lq1 (µG(dφ))

≤

∥∥∥∥max
n

∣∣∣∣ ∑
n2∼N2

c(n, n, n2, n2)

n2
2

(|gn2(ω)|
2
− 1)

∣∣∣∣ ∥∥∥∥
Lq1 (dω)

. (6.21)

Note that

c(n, n, n2, n2) =

∫ 1

0
sin2(πnr)

sin2(πn2r)

r2 dr

=
1
2

∫ 1

0

sin2(πn2r)

r2 dr −
1
2

∫ 1

0
cos(2πnr)

sin2(πn2r)

r2 dr. (6.22)

The second term in (6.22) is bounded by O(N4
2 /N

2) for n > N , and therefore its contri-
bution to (6.21) is at most

O(N2
2 /N

2)

∥∥∥ ∑
n2∼N2

(|gn2(ω)|
2
+ 1)

∥∥∥
Lq1 (dω)

< O(q1N
3
2 /N

2) < O(q1N
−1
2 )

for N > N2
2 .
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Hence, we may restrict n in (6.21) to the range n ≤ N2
2 and get the bound

O(logN2) max
n<N2

2

∥∥∥∥ ∑
n2∼N2

c(n, n, n2, n2)

n2
2

(|gn2(ω)|
2
− 1)

∥∥∥∥
Lq1 (dω)

< O(logN2)q1N
−1/2
2 .

Taking q1 ∼ λN
1/3
2 and applying Chebyshev’s inequality yields (6.20). ut

Having estimated the contributions of (4.14), (4.15) and (4.17), we complete our analysis
of the nonlinear term (4.5).

7. Further probabilistic considerations

Returning to the nonlinear term (4.1), an inspection of the estimates in Sections 5 and 6—
including Lemmas 6.1 and 6.2—as well as the non-probabilistic inequality (4.19) which
determines the size of T , gives the following statement.

Proposition 7.1. Let T be as in (4.2) and take Mi ≤ Ni for i = 2, 3, M = M2 +M3.
Moreover, let u = uφ denote the solution of some truncated equation (1.1). Then∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1PN [PN1U

1 PM2≤n≤N2uPM3≤n≤N3u](τ ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 10−3
|||U1
||| (7.1)

for allU1 for which the right side is finite, assuming that φ is restricted to the complement
of an exceptional set of measure at most exp(−Mc) (with c > 0 some constant).

Note that for M small, we have the bound (cf. (5.1))

sup
|||v|||≤1

(∫
B

∫ 1

0
|PNv| |PN1U

1
| |PM2u| |PM3u| dx dt

)
≤ sup
|||v|||≤1

‖v‖L2
t,x
‖U1
‖L2

t,x
‖PMu‖

2
L∞t L

∞
x

. T |||U1
|||M3
‖u‖2

L∞t L
2
x
≤ TM3

‖φ‖2
L2
x
|||U1
|||, (7.2)

where the second inequality follows from Lemma 2.3 and the third is a consequence of
the conservation of the L2

x norm under the flow.
Recalling also the discussion in Section 4 on how to treat (4.1) with solutions u(2) and

u(3) obtained from different truncations, we obtain

Proposition 7.2. Let T be given by (4.2). Then∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1PN [PN1U

1 PN2u
(2) PN3u

(3)
](τ ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 10−3
|||U1
||| (7.3)

for all U1 for which the right side is finite. Here u(i)|t=0 = PN (i)φ satisfies the N (i)-
truncated equation (i = 2, 3) and we assume φ is outside an exceptional set of measure
at most O(exp(−T −c)) (independent of U1).



Almost sure global well-posedness for radial NLS on the 3d ball 1321

As we will see in the next section, Proposition 7.2 suffices to establish almost sure con-
vergence of the sequence {uN } of truncated solutions of (1.1), with N running over the
integers 2j (or any sufficiently rapidly increasing sequence). However, the measure esti-
mates do not quite suffice to deduce immediately the a.s. convergence of the full sequence,
and an additional consideration is needed. The idea is basically the following: in view of
Proposition 7.1, we obtain the desired measure estimates for the factors Pn≥M2u

(2) and
Pn≥M3u

(3) provided that for instance M satisfies

M = M2 +M3 > (log(N (2)
+N (3)))C

with C an appropriate constant.
It then remains to consider∫ t

0
ei(t−T )1PN [PN1U

1 PMu(2) PMu
(3)
](τ ) dτ. (7.4)

Fix some truncation M < N (0) < N (2), N (3) and let u(0) = PN (0)u
(0) be the correspond-

ing solution of (1.1) with initial data u(0)|t=0 = PN (0)φ.
We compare (7.4) with∫ t

0
ei(t−τ)1PN [PN1U

1 PMu(0) PMu
(0)
](τ ) dτ. (7.5)

The difference between (7.4) and (7.5) may then be bounded by

‖PN1U
1
‖L4

t L
2
x

[
‖PMu

(0)
− PMu

(2)
‖L4

t L
∞
x
+ ‖PMu

(0)
− PMu

(3)
‖L4

t L
∞
x

]
‖PMu

(0)
‖L4

t L
∞
x

+ ‖PN1U
1
‖L4

t L
2
x
‖PMu

(0)
− PMu

(2)
‖L4

t L
∞
x
‖PMu

(0)
− PMu

(3)
‖L4

t L
∞
x

. |||PN1U
1
|||M3
‖PMφ‖L2

x

[
|||PMu

(0)
− PMu

(2)
||| + |||PMu

(0)
− PMu

(3)
|||
]

+ |||PN1U
1
|||M3
|||PMu

(0)
− PMu

(2)
||| |||PMu

(0)
− PMu

(3)
|||. (7.6)

The interest of this construction is that in order to bound (7.5), only exceptional sets
related to u(0)φ have to be removed, while the prefactor M3 in (7.6) is harmless in view of
the smallness of |||PMu(0) − PMu(i)|||, i = 2, 3. This will be made more precise in the
next section.

8. Proof of the theorem

In this section, we complete the proof of our main theorem. Toward this end, let 1 �
N0 < N be given. Our goal is to compare the solutions uN0 and uN of{

iu
N0
t +1u

N0 − PN0(u
N0 |uN0 |

2) = 0,
uN0(0) = PN0φ,

(8.1)
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and {
iuNt +1u

N
− PN (u

N
|uN |2) = 0,

uN (0) = PNφ,
(8.2)

on a time interval I = [0, η] with η > 0 a sufficiently small constant.
Let 1� M ≤ N0 and set

T = c/logM (8.3)

with c > 0 taken as in Proposition 7.2 with Ni ≤ M for i = 2, 3.
The argument consists in dividing [0, η] into time intervals of size T and applying

Duhamel’s formula on each of these subintervals in order to obtain recursive inequalities.
Taking 0 ≤ t ≤ T , we have

uN (t) = eit1(PNφ)+ i

∫ t

0
ei(t−τ)1PN (u

N
|uN |2)(τ ) dτ

and

PM(u
N
− uN0)(t) = i

∫ t

0
ei(t−τ)1[PM(u

N
|uN |2)− PM(u

N0 |uN0 |
2)|(τ ) dτ. (8.4)

We will estimate the ||| · ||| norm of this quantity.
We first replace uN and uN0 in (8.4) by PMuN and PMuN0 , respectively. The |||·|||

norm of the difference may then be estimated by[
‖uN0 − PMu

N0‖
L3+
x L6

t
+ ‖uN − PMu

N
‖
L3+
x L6

t

]
·
[
‖uN0‖

2
L6−
x L6

t

+ ‖uN‖2
L6−
x L6

t

]
< M−1/4, (8.5)

where we have used the a priori bound given by Lemma 3.1; again, (8.5) holds outside an
exceptional set of measure at most O(e−M

c
).

We then obtain

|||PM(u
N
− uN0)||| < M−1/4

+

∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1[PM(u

N
− uN0)|PMu

N
|
2
](τ ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣ (8.6)

+

∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1[PMu

N0 PM(uN − uN0) PMu
N
](τ ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣ (8.7)

+

∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
ei(t−τ)1[|PMu

N0 |
2PM(u

N
− uN0)](τ ) dτ

∣∣∣∣∣∣∣∣∣∣∣∣. (8.8)

In view of Proposition 7.2, each of the terms (8.6)–(8.8) may be bounded by
10−3
|||PM(u

N
− uN0)|||, provided that φ is taken outside an exceptional set of measure at

most exp(−T −c). Note that this set depends on N0 and N . The preceding discussion then
implies that

|||PM(u
N
− uN0)|||0,1/2;T < 2M−1/4 (8.9)
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and an application of Lemma 2.1 gives the existence of some t1 ∈ [T/2, T ] such that

‖PM(u
N
− uN0)(t1)‖L2

x
< 2C1M

−1/4. (8.10)

Consider now the next time interval [t1, t1 + T ] and write, for each t ∈ [0, T ],

uN (t1 + t) = e
it1(uN (t1))+ i

∫ t

0
ei(t−τ)1PN (u

N
|uN |2)(t1 + τ) dτ. (8.11)

Repeating the above argument, we obtain

|||PM(u
N
− uN0)(t1 + ·)||| ≤ C0‖PM(u

N
− uN0)(t1)‖L2

x
+M−1/4

+
3

103 |||PM(u
N
− uN0)(t1 + ·)|||

and thus

|||PM(u
N
− uN0)(t1 + ·)||| < 2(2C0C1 + 1)M−1/4 (8.12)

for φ outside a set of measure at most exp(−T −c).
Note that the value of t1 in (8.10) depends on φ, but this does not create problems

with the estimates of the nonlinear terms.
Again by Lemma 2.1, (8.12) gives a t2 ∈ [t1 + T/2, t1 + T ] with

‖PM(u
N
− uN0)(t2)‖L2

x
< 2C1(C0C1 + 1)M−1/4. (8.13)

Repeating this argument recursively, we obtain times tj+1 ∈ [tj + T/2, tj + T ] for
each j ≥ 1 with

‖PM(u
N
− uN0)(tj+1)‖L2

x
≤ 2C1[C0‖PM(u

N
− uN0)(tj )‖2 +M

−1/4
]. (8.14)

Iterating the resulting bounds gives

‖PM(u
N
− uN0)(tj )‖L2

x
< (4C1C0)

jM−1/4 < M−1/8, (8.15)

since j ≤ T −1η = c−1η logM by (8.3), and provided that η is chosen sufficiently small.
Since |||PM(uN − uN0)(tj + ·)||| < M−1/8 for each j , it follows from Lemma 2.1 that

1
T

∫
I

‖PM(u
N
− uN0)‖2

L2
x
dt . M−1/4

for each subinterval I ⊂ [0, η] of size T . We therefore obtain

‖PM(u
N
− uN0)‖L2

t<ηL
2
x
. M−1/8 (8.16)

for φ outside an exceptional set of measure at most T −1 exp(−T −c) < exp(−T −c
′

)

(depending on N0 and N ).
In view of the a priori bounds of Proposition 3.2 on the quantities ‖uN0‖Xs,b and

‖uN‖Xs,b for s < 1/2 and b < 3/4) and interpolation arguments, the bound (8.16) also
implies

‖uN − uN0‖Xs,b[0,η] < M−c(s,b) (8.17)

for s < 1/2 and b < 3/4.
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To consider the interval [η, 2η], we repeat the previous reasoning withM replaced by
M1 = M

c and T by T1 = c/logM1. This gives

‖uN − uN0‖Xs,b[η,2η] < M
−c(s,b)
1 (8.18)

and so on.
Starting from M = N0, the above argument shows that for any given time interval

[0, T ] = I with T <∞, the estimate

‖uN − uN0‖Xs,b(I ) < N
−c(s,b,T )
0 (8.19)

holds for s < 1/2, b < 3/4 and all φ outside a set of measure at most e−(logN0)
c
,

depending on N and N0. This statement clearly implies convergence of the sequence
{uN }, N = 2j , in ⋂

s<1/2, b<3/4

Xs,b(I )

almost surely in φ.
Since the series

∑
N∈Z+ e

−(logN)c diverges, this does not immediately imply the con-
vergence of the full sequence. In order to achieve this improvement of the convergence
properties, we use the procedure discussed at the end of Section 7.

Toward this end, fix N0 � 1 and let N range between N0 and 2N0. In (7.5), let
u(0) = uN0 , and take M as the truncation

K = (logN0)
C

with C a sufficiently large constant.
On the other hand, in (8.6)–(8.8) above, logM ∼ logN0. Recalling (7.6), the estima-

tion of (8.6)–(8.8) gives some additional terms:

|||PM(u
N
− uN0)||| < M−1/4

+ 10−3
|||PM(u

N
− uN0)|||

+K3
‖PKφ‖L2

x
|||PK(u

N
− uN0)||| |||PM(u

N
− uN0)|||

+K3
|||PK(u

N
− uN0)|||2|||PM(u

N
− uN0)|||

< M−1/4
+
[
10−3

+K3
‖φ‖L2

x
|||PM(u

N
− uN0)|||

+K3
|||PM(u

N
− uN0)|||2

]
· |||PM(u

N
− uN0)|||. (8.20)

The inequality (8.20) holds for φ outside an exceptional set which is the union of a
set of measure at most e−(logN0)

c
depending on N0 and an exceptional set of measure at

most e−K
c
< N−2

0 depending on N .
Taking ‖φ‖L2

x
< K in (8.20) and recalling that logM ∼ logN0, we may again deduce

(8.9), which is now valid for all N0 ≤ N ≤ 2N0 and φ outside an exceptional set of
measure at most e−(logN0)

c
.

This completes the proof of the main theorem.
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