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Abstract. We study the Landau–Lifshitz model for the energy of multi-scale transition layers—
called “domain walls”—in soft ferromagnetic films. Domain walls separate domains of constant

magnetization vectors m±α ∈ S
2 that differ by an angle 2α. Assuming translation invariance tan-

gential to the wall, our main result is the rigorous derivation of a reduced model for the energy of
the optimal transition layer, which in a certain parameter regime confirms the experimental, numer-
ical and physical predictions: The minimal energy splits into a contribution from an asymmetric,

divergence-free core which performs a partial rotation in S
2 by an angle 2θ , and a contribution from

two symmetric, logarithmically decaying tails, each of which completes the rotation from the angle

θ to α in S
1. The angle θ is chosen such that the total energy is minimal. The contribution from the

symmetric tails is known explicitly, while the contribution from the asymmetric core is analyzed
in [7].

Our reduced model is the starting point for the analysis of a bifurcation phenomenon from sym-
metric to asymmetric domain walls. Moreover, it allows for capturing asymmetric domain walls
including their extended tails (which were previously inaccessible to brute-force numerical simula-
tion).

Keywords. Ŵ-convergence, concentration-compactness, transition layer, bifurcation, micromag-
netics

1. Introduction

1.1. Model

We consider the following model: The magnetization is described by a unit-length vector

field

m = (m1,m2,m3) : �→ S
2,

where the two-dimensional domain � = R × (−1, 1) corresponds to a cross-section of

the sample that is parallel to the x1x3-plane. The following “boundary conditions at x1 =
±∞” are imposed so that a transition from the angle−α to α ∈ (0, π/2] is generated and
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Fig. 1. The cross-section � in a ferromagnetic sample on a mesoscopic level.

a domain wall is formed parallel to the x2x3-plane (see Figure 1):

m(±∞, ·) = m±α := (cosα,± sinα, 0), (1)

with the convention

f (±∞, ·) = a± ⇔
ˆ

�+
|f − a+|2 dx +

ˆ

�−
|f − a−|2 dx <∞, (2)

where �+ = � ∩ {x1 ≥ 0} and �− = � ∩ {x1 ≤ 0}. Throughout the paper, we use the

variables x = (x1, x3) ∈ � together with the differential operator ∇ = (∂x1
, ∂x3

), and we

denote by m′ = (m1,m3) the projection of m on the x1x3-plane.

We focus on the following micromagnetic energy functional depending on a small

parameter η:1

Eη(m) =
ˆ

�

|∇m|2 dx + λ ln(1/η)

ˆ

R2
|h(m)|2 dx + η

ˆ

�

((m1 − cosα)2 +m2
3) dx,

η ∈ (0, 1), (3)

subject to the boundary conditions (1), where λ > 0 is a fixed constant and h =
h(m) : R2 → R

2 stands for the unique L2 stray field restricted to the x1x3-plane that

is generated by the static Maxwell equations:2

{

∇ · (h+m′1�) = 0 in D′(R2),

∇ × h = 0 in D′(R2).
(4)

The first term of (3) is called the exchange energy, favoring a constant magnetization.

The second term (called stray-field energy) can be written as the Ḣ−1(R2)-norm of the

1 We refer to Section 2 for more information on Eη and the parameters η and λ.
2 Existence and uniqueness of the stray field are a direct consequence of the Riesz representation

theorem in the Hilbert space V = {v ∈ L2
loc
(R2) | ∇v ∈ L2,

ffl

B(0,1) v dx = 0} endowed with the

norm ‖∇v‖L2 : Indeed, by (1), the functional v 7→
´

�(m
′− (cosα, 0)) · ∇v dx is linear continuous

on V so that there exists a unique solution h = −∇u with u ∈ V of (4) written in the weak form
´

R2 ∇u · ∇v dx =
´

�m
′ · ∇v dx for every v ∈ C∞c (R2).
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2D divergence of m′ (where m is always extended by 0 outside of �):

ˆ

R2
|h(m)|2 dx = ‖∇ · (m′1�)‖2Ḣ−1(R2)

:= sup

{
ˆ

�

m′ · ∇v dx
∣
∣
∣
∣
v ∈ C∞c (R2), ‖∇v‖L2(R2) ≤ 1

}

.

The last term in (3) (a combination of material anisotropy and external magnetic field)

forces the magnetization to favor the “easy axis” m±α and serves as confining mechanism

for the tails of the transition layer. We refer to Section 2 for more physical details about

this model.

We are interested in the asymptotic behavior of minimizers mη of Eη with the bound-

ary condition (1) as η ↓ 0. The main feature of this variational principle is the non-convex

constraint on the magnetization (|mη| = 1) and the non-local structure of the energy (due

to the stray field h(mη)). The competition between the three terms of the energy together

with the boundary constraint (1) induces an optimal transition layer that exhibits two

length scales (cf. Figure 3):

• an asymmetric core of size (|x1| . 1) (up to a logarithmic scale in η) where the magne-

tization mη is asymptotically divergence-free (so, generating no stray field) and hence

the leading order term in Eη is given by the exchange energy; in this region, mη de-

scribes a transition path on S
2 between the two directions m±θ determined by some

angle θ ;

• two symmetric tails of size (1 . |x1| . 1/η) (up to a logarithmic scale in η) where

mη asymptotically behaves as a symmetric Néel wall: a one-dimensional (i.e. mη =
mη(x1)) rotation on S

1 := S
1 × {0} ⊂ S

2 between the angles θ and α (on the left

and right sides of the core). Here, the formation of the wall profile is driven by the

stray-field energy that induces a logarithmic decay of m1,η on these two tails.

The constant λ > 0 and the wall angle α play a crucial role in the behavior of a mini-

mizer mη. In fact, for either α ≪ 1, or α ∈ (0, π/2] arbitrary but λ small, a minimizer

is expected to be asymptotically symmetric (i.e. mη = mη(x1)) as η ↓ 0. However, for

sufficiently large λ, there exists a critical wall angle α∗ where a bifurcation occurs: It

becomes favorable to nucleate an asymmetric domain wall in the core of the transition

layer.

In [10, Section 3.6.4 (E)], Hubert and Schäfer state:

The magnetization of an asymmetric Néel wall points in the same direction at both surfaces,
which is [. . . ] favourable for an applied field along this direction. This property is also the
reason why the wall can gain some energy by splitting off an extended tail, reducing the core
energy in the field generated by the tail. [. . . ] The tail part of the wall profile increases in
relative importance with an applied field, so that less of the vortex structure becomes visible
with decreasing wall angle. At a critical value of the applied field the asymmetry disappears
in favour of a symmetric Néel wall structure.

To justify this physical prediction, we will establish the asymptotic behavior of

{Eη}η↓0 through the method of Ŵ-convergence. The limiting reduced model does then
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show that the minimal energy splits into separate contributions from the symmetric and

asymmetric regions of the transition layer. This makes it possible to infer information

on the size of the regions and the conjectured bifurcation from symmetric to asymmetric

walls. For details, we refer to Section 1.3.

1.2. Results

Let α ∈ (0, π/2] and η ∈ (0, 1). Observe that for m : �→ S
2, finite energy Eη(m) <∞

is equivalent to m ∈ Ḣ 1(�,S2) and m′(±∞, ·) (2)= (cosα, 0) (which in particular implies

|m2|(±∞, ·)
(2)= sinα, see Lemma 3). In the following we focus on the set of magnetiza-

tions of wall angle α ∈ (0, π/2] with a transition imposed by (1):

Xα := {m ∈ Ḣ 1(�,S2) | m(±∞, ·) = m±α }. (5)

Our main result consists in proving Ŵ-convergence of {Eη}η↓0, defined on Xα ⊂
Ḣ 1(�,S2), in the weak Ḣ 1-topology to the Ŵ-limit functional

E0(m) =
ˆ

�

|∇m|2 dx + 2πλ(cos θm − cosα)2, (6)

which is defined on a space X0 ⊂ Ḣ 1(�,S2).

In order to give the definitions of X0 (see (8)) and the angle θm associated to m ∈ X0

(see (7)), we need some preliminary remarks. First, due to the logarithmic penalization of

the stray field in (3) as η ↓ 0, limiting configurations of a family {mη}η↓0 of uniformly

bounded energy Eη(mη) ≤ C (e.g., minimizers of Eη) are stray-field free. Second, note

that for any m ∈ Ḣ 1(�,S2) with ∇ · (m′1�) = 0 in D′(R2) (i.e. ∇ · m′ = 0 in � and

m3 = 0 on ∂�) there is a unique constant angle θm ∈ [0, π ] such that

m̄1(x1) :=
 1

−1

m1(x1, x3) dx3 = cos θm for all x1 ∈ R. (7)

Observe that such vector fields have the property m′(±∞, ·) = (cos θm, 0) in the sense

of (2) (see (30) and (31) below) and moreover, |m2|(±∞, ·) = sin θm (see Lemma 3

if θm ∈ (0, π), and Remark 1 below if θm ∈ {0, π}). We define X0 as the non-empty

(see Appendix) set of such configurations m that additionally change sign as |x1| → ∞,

namely m2(±∞, ·) = ± sin θm in the sense of (2):

X0 := {m ∈ Ḣ 1(�,S2) | ∇ ·m′ = 0 in �, m3 = 0 on ∂�, m(±∞, ·) = m±θm}. (8)

Note, however, that due to vanishing control of the anisotropy energy as η ↓ 0, a limiting

configuration m in general satisfies (1) for an angle θm that differs from α.

Remark 1. Observe that if θm ∈ {0, π} for m ∈ Ḣ 1(�,S2) with ∇ · (m′1�) = 0 in

D′(R2)—in particular if m ∈ X0—we have m ∈ {±e1}: Indeed, since |m̄1| ≡ 1 in R and

|m| = 1 in �, we deduce |m1| ≡ 1 and m2 ≡ m3 ≡ 0 in �.
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We further remark that the first term in the Ŵ-limit energy (6) accounts for the ex-

change energy of the asymmetric core of a transition layer mη as η ↓ 0, while the sec-

ond term in E0 accounts for the contribution coming from stray field/anisotropy energy

through extended (symmetric) tails of the wall configurations at positive η.

Our Ŵ-convergence result is established in three steps. We start with compactness

results. The main difficulty comes from the boundary conditions (1), which do not in

general carry over to weak limits of magnetization configurations with uniformly bounded

exchange energy. However, since the energy Eη is invariant under translations in x1-

direction, and due to the constraint (1) in Xα , a change of sign in m2 can be preserved as

η ↓ 0 by a suitable translation in x1.

Proposition 1 (Compactness). Let α ∈ (0, π/2]. The following convergence results hold

up to a subsequence and translations in the x1-variable:

(i) Let {mη}η↓0 ⊂ Xα with uniformly bounded energy, i.e. supη↓0 Eη(mη) < ∞. Then

mη ⇀ m weakly in Ḣ 1(�) for some m ∈ X0.

(ii) Let {mk}k↑∞ ⊂ Xα with uniformly bounded energy Eη for η ∈ (0, 1) fixed, i.e.

supk Eη(mk) < ∞. Then mk ⇀ m weakly in Ḣ 1(�) for some m ∈ Xα . Moreover,

the corresponding stray fields {h(mk)}k↑∞ converge weakly inL2(R2), i.e. h(mk) ⇀

h(m) in L2(R2).

(iii) Let {mk}k↑∞ ⊂ X0 with uniformly bounded exchange energy, i.e. supk
´

�
|∇mk|2 dx

<∞, such that the angles θk := θmk associated tomk in (7) satisfy θk ∈ [0, π ]. Then

θk → θ for some angle θ ∈ [0, π ] and mk ⇀ m weakly in Ḣ 1(�) for some m ∈ X0

with θm = θ (i.e. m ∈ X0 ∩Xθ ).
The main ingredient in Proposition 1 is the following concentration-compactness type

lemma related to the change of sign at ±∞:

Lemma 1. Let uk : R→ R, k ∈ N, be continuous and satisfy the following conditions:

lim sup
k↑∞

ˆ

R

∣
∣
∣
∣

d

ds
uk(s)

∣
∣
∣
∣

2

ds <∞, (9)

lim sup
s↓−∞

uk(s) < 0 and lim inf
s↑∞

uk(s) > 0 for every k ∈ N, (10)

where we denote by d
ds
uk the distributional derivative of the function uk . Then for each

k ∈ N, there exists a zero zk of uk and a limit u ∈ Ḣ 1(R) such that u(0) = 0,

uk(· + zk)→ u locally uniformly in R and weakly in Ḣ 1(R) for a subsequence

and

lim sup
s↓−∞

u(s) ≤ 0 as well as lim inf
s↑∞

u(s) ≥ 0. (11)

The second step consists in proving the following lower bound:

Theorem 1 (Lower bound). Let α ∈ (0, π/2]. For m ∈ X0 and a family {mη}η↓0 ⊂ Xα
with mη ⇀ m in Ḣ 1(�) as η ↓ 0, the following lower bound holds:

lim inf
η↓0

Eη(mη) ≥ E0(m). (12)



1382 Lukas Döring et al.

The last step consists in constructing recovery sequences for limiting configurations:

Theorem 2 (Upper bound). For α ∈ (0, π/2] and every m ∈ X0 there exists a family

{mη}η↓0 ⊂ Xα with mη → m strongly in Ḣ 1(�) and

lim sup
η↓0

Eη(mη) ≤ E0(m). (13)

As a consequence, one deduces the asymptotic behavior of the minimal energy Eη over

the space Xα as η ↓ 0.

Corollary 1. For α ∈ (0, π/2] and θ ∈ [0, π ] we define

Easym(θ) = min
m∈X0
θm=θ

ˆ

�

|∇m|2 dx

and

Esym(α − θ) = 2π(cos θ − cosα)2.

Then

lim
η↓0

min
mη∈Xα

Eη(mη) = min
m∈X0

E0(m) = min
θ∈[0,π ]

(

Easym(θ)+ λEsym(α − θ)
)

. (14)

In fact, the optimal angle θ is attained in [0, π/2]. Moreover, every minimizing sequence

{mη}η↓0 ⊂ Xα of {Eη}η↓0 in the sense of Eη(mη) → minX0
E0 is relatively compact in

the strong Ḣ 1(�)-topology, up to translations in x1, having as accumulation points inX0

minimizers of E0.

One benefit of (14) is splitting the problem of determining the optimal transition layer into

two more feasible ones: First, the energy of asymmetric walls (i.e. walls of small width)

has to be determined (at the expense of an additional constraint on ∇ · m′). Afterwards,

a one-dimensional minimization procedure is sufficient to determine the structure of the

wall profile. Direct numerical simulation of (3) has been a difficult endeavor (see [17] and

also [10, Section 3.6.4 (E)]).

1.3. Outlook

In the following we briefly discuss an application of our reduced model to the cross-over

from symmetric to asymmetric Néel wall and point out further interesting (topological)

questions and open problems associated with the energy of asymmetric domain walls.

Bifurcation. The previous result represents the starting point in the analysis of the bifur-

cation phenomenon (from symmetric to asymmetric walls) in terms of the wall angle α

(see also [7]). We will prove that there is a supercritical (pitchfork) bifurcation (cf. Fig-

ure 2): This means that for small angles α ≪ 1, the optimal transition layer mη of Eη is

asymptotically symmetric (the symmetric Néel wall); beyond a critical angle α∗, the sym-

metric wall is no longer stable, whereas the asymmetric wall is. To understand the type of
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Fig. 2. Bifurcation diagram for the angle θ of the asymmetric core, depending on the global wall
angle α.

the bifurcation, by (14), we need to compute the asymptotic expansion of the asymmetric

energy up to order θ4 as θ → 0 (since the symmetric part of the energy is quartic for

small angles θ, α ≪ 1, i.e. Esym(α − θ) . α4).3 In fact, we show (see [7])

Easym(θ) = 4πθ2 + 304
105
πθ4 + o(θ4) as θ ↓ 0. (15)

This allows us to heuristically determine a critical angle α∗ at which the symmetric Néel

wall loses stability and an asymmetric core is generated. Moreover, a new path of stable

critical points with increasing inner wall angle θ branches off of θ = 0 (see Figure 2).

Indeed, for small α, combining with (15), the RHS of (14) as a function of θ ∈ [0, α] has

the unique critical point θ = 0 if α ≤ α∗ where the bifurcation angle α∗ is given by

α∗ = arccos(1− 2/λ)+ o(1) as α→ 0.

(Observe that α∗ ∈ [0, π/2] provided λ ≥ 2; therefore, the bifurcation appears only if

λ is large enough.) For α > α∗, the symmetric wall becomes unstable under symmetry-

breaking perturbations and the optimal splitting angle θ becomes positive; hence, the

asymmetric wall becomes favored by the system. Moreover, the second variation of the

RHS of (14) along the branch of positive splitting angles is positive so that the bifurcation

from symmetric to asymmetric wall is supercritical.

Topological degree and vortex singularity. We now discuss topological properties of

stray-field free magnetization configurations: In fact, if m ∈ X0 satisfies (1) for some

angle θ ∈ (0, π/2], then denoting the “extended” boundary of � by

Bdry := ∂� ∪ ({±∞} × [−1, 1]) ∼= S
1, (16)

3 Observe that for given α ∈ (0, π/2] the optimal wall angle θα = argmin(Easym(θ) +
λEsym(α − θ)) ∈ [0, π/2] satisfies the estimate θα . α2. Indeed, by comparison with θ = 0

we have Easym(θα) + 2πλ(cos θα − cosα)2 ≤ 2πλ(1 − cosα)2. Omitting Easym(θα) we first

obtain θα → 0 as α ↓ 0, so that by (15) one deduces that 2θ2
α / λ(1 − cosα)2 for small α > 0.

From this, the desired estimate follows.
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one can define the following winding number ofm on Bdry: due tom3 = 0 on ∂� as well

asm3(±∞, ·) = 0 (so (m1,m2) : Bdry→ S
1), one obtains (by the homeomorphism (16))

a map m̃ ∈ H 1/2(S1,S1) to which a topological degree can be associated (see, e.g., [4]).

In particular, in the case of smooth m̃ : S1 → S
1, the topological degree (also called

winding number) of m̃ is defined as follows:

deg(m̃) := 1

2π

ˆ

S1
det(m̃, ∂θ m̃) dH

1

where ∂θ m̃ is the angular derivative of m̃.

We will show the following relation between the winding number of m ∈ X0 on

Bdry and topological singularities of (m1,m3) inside �: the non-vanishing topological

degree of (m1,m2) : Bdry→ S
1 generates vortex singularities of (m1,m3) as illustrated

in Figure 3. By vortex singularity of v := (m1,m3), we understand a zero of v carrying a

non-zero topological degree. In general, this is implied by the existence of a smooth cycle

(i.e. closed curve) γ ⊂ � such that |v| > 0 on γ and deg(v/|v|, γ ) 6= 0; the vector field

v then vanishes at some point in the domain bounded by γ .

Lemma 2. Let m ∈ X0 (i.e. m ∈ Ḣ 1(�,S2) with ∇ · (m′1�) = 0 in D′(R2)) such that

(1) holds for some angle θ ∈ (0, π/2]. Suppose that (m1,m2) : Bdry → S
1 has a non-

zero winding number on Bdry. Then there exists a vortex singularity of (m1,m3) in �

carrying a non-zero topological degree.

Motivated by Lemma 2, let us introduce the set

L
θ = {m ∈ X0 ∩Xθ | degm = 1}

for a fixed angle θ ∈ (0, π/2]. First of all, we have Lθ 6= ∅ (see Appendix).4 Since X0 =
⋃

θ∈[0,π ](X0 ∩ Xθ ), the relation Lθ 6= ∅ obviously implies that X0 ∩ Xθ 6= ∅ for every

θ ∈ (0, π), which is essential in our reduced model given by the Ŵ-convergence program.

A natural question concerns the closure (in the weak Ḣ 1(�)-topology) of the set Lθ .

This is important in order to define the (limit) asymmetric Bloch wall by minimizing the

exchange energy on Lθ .5

Open Problem 1. Is the infimum

inf
m∈Lθ

ˆ

�

|∇m|2 dx

attained for every angle θ ∈ (0, π/2]?

4 Naturally, one can address a similar question by imposing an arbitrary winding number n.
For the case n = 0, we analyze this problem in [7] which is typical for asymmetric Néel walls;

in particular, for small angles θ , we construct an element m ∈ X0 ∩ Xθ with degm = 0 and

asymptotically minimal energy. Moreover, given any m ∈ X0 ∩Xθ with finite energy, one can use
a reflection and rescaling argument to define a finite-energy magnetization on � with degree 0 (see
Remark 5(iii)).

5 This question is related to the theory of Ginzburg–Landau minimizers with prescribed degree
(see e.g. Berlyand and Mironescu [2]).
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1.4. Structure of the paper

This paper is organized as follows: In Section 2, we explain the relation of (3) to the full

Landau–Lifshitz energy, as well as the physical background of our analysis.

In Section 3, we prove the compactness results in Lemma 1 and Proposition 1, which

in particular yield existence of minimizers of Eη, Easym(θ) and E0.

Section 4 contains the proofs of the lower and upper bounds (Theorems 1 and 2) of

our Ŵ-convergence result, and also the proof of Corollary 1.

In the Appendix, finally, we show that the set X0 ∩ Xθ is non-empty for any given

angle θ ∈ (0, π/2]. To this end, we construct an admissible configuration in Easym(θ)

with non-zero topological degree on the boundary of � (i.e. of asymmetric Bloch-wall

type). Moreover, we prove Lemma 2.

2. Physical background

In this section, we denote by ∇ = (∂x1
, ∂x2

, ∂x3
) the full gradient of functions depending

on x = (x1, x2, x3). Recall that the prime ′ denotes projection on the x1x3-plane, i.e.

∇ ′ = (∂x1
, ∂x3

), x′ = (x1, x3).

Micromagnetics. Let ω ⊂ R
3 represent a ferromagnetic sample whose magnetization is

described by the unit-length vector field m : ω → S
2. Assume that the sample exhibits

a uniaxial anisotropy with e2 = (0, 1, 0) as “easy axis”, i.e. favored direction of m. The

well-established micromagnetic model (see e.g. [5, 10]) states that in its ground state the

magnetization minimizes the Landau–Lifshitz energy

E3D(m) = d2

ˆ

ω

|∇m|2 dx +
ˆ

R3
|h(m)|2 dx +Q

ˆ

ω

(m2
1 +m2

3) dx − 2

ˆ

ω

hext ·mdx.

(17)

Here, the exchange length d is a material parameter that determines the strength of the

exchange interaction of quantum mechanical origin, relative to the strength of the stray

field h = h(m). The stray field is the gradient field h = −∇u that is (uniquely) generated

by the distributional divergence ∇ · (m1ω) via Maxwell’s equation

∇ · (h+m1ω) = 0 in D
′(R3). (18)

The non-dimensional quality factor Q > 0 is a material constant that measures the rel-

ative strength of the energy contribution coming from misalignment of m with e2.6 The

last term, called Zeeman energy, favors alignment of m with an external magnetic field

hext : ω→ R
3.

Derivation of our model. We assume the magnetic sample to be a thin film, infinitely

extended in the x1x2-plane, i.e. ω = R
2 × (−t, t), where two magnetic domains of al-

most constant magnetization m ≈ m±α have formed for ±x1 ≫ t . Physically, such a

6 A typical, experimentally accessible, soft ferromagnetic material is Permalloy, for which d ≈
5 nm and Q = 2.5 · 10−4.
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configuration is stabilized by the combination of uniaxial anisotropy and suitably cho-

sen external field hext = Q cosα e1. Moreover, we assume that m and hence the stray

field h = (h1, 0, h3) are independent of the x2-variable so that (17) formally reduces to

integrating the energy density (per unit length in x2-direction)

E2D(m) = d2

ˆ

ω′
|∇ ′m|2 dx′ +

ˆ

R2
|h′|2 dx′ +Q

ˆ

ω′
((m1 − cosα)2 +m2

3) dx
′

where ω′ = R×(−t, t) and h′ = h′(m) = −∇ ′u satisfies (4) driven by the 2D divergence

of m′1ω′ . Recall that the prime ′ here denotes projection onto the coordinate directions

(x1, x3) transversal to the wall plane. After non-dimensionalization of length with the

film thickness t , i.e. setting x̃′ = x′/t , ω̃′ = ω′/t , m̃(x̃′) = m(x′), ũ(x̃′) = u(x′)/t , the

above specific energy (per unit length in x2) is given by

Ẽ2D(m̃) = d2

ˆ

ω̃′
|∇̃ ′m̃|2 dx̃′ + t2

ˆ

R2
|∇̃ ′ũ|2 dx̃′ +Qt2

ˆ

ω̃′
((m̃1 − cosα)2 + m̃2

3) dx̃
′,

(19)

where the differential operator ∇̃ ′ refers to the variables x̃′ = (x̃1, x̃3) and ũ : R2 → R is

the 2D stray-field potential given by

1̃′ũ = ∇̃ ′ · (m̃′1ω̃′) in D
′(R2).

Throughout the section, we omit ˜ and ′ .

Symmetric walls. In the regime of very thin films (i.e. for a sufficiently small ratio of

film thickness t to exchange length d, see below for the precise regime), the symmetric

Néel wall m is the favorable transition layer: It is characterized by a reflection symmetry

with respect to the midplane x3 = 0, see III below. In fact, to leading order in t/d, it is

independent of the thickness variable x3, i.e. m = m(x1), and in-plane, i.e. m3 = 0. The

symmetric Néel wall is a two-length-scale object with a core of sizewcore = O(d2/t) and

two logarithmically decaying tails wcore . |x1| . wtail = O(t/Q) (see e.g. Melcher [15,

16]). It is invariant with respect to all the symmetries of the variational problem (besides

translation invariance):

I. x1 →−x1, x3 →−x3, m2 →−m2;

II. x1 →−x1, m3 →−m3, m2 →−m2;

III. x3 →−x3, m3 →−m3;

IV. Id.

The specific energy of a Néel wall of angle α = π/2 is given by

E2D(symmetric Néel wall) = O

(

t2/ln
wtail

wcore

)

= O

(

t2/ln
t2

d2Q

)

(see e.g. [19, 5]). For a symmetric Néel wall of angle α < π/2, the energy is asymptoti-

cally quartic in α as it is proportional to (1− cosα)2 (see e.g. [11]).

Asymmetric walls. For thicker films, the optimal transition layer has an asymmetric

core, where the symmetry III is broken (see e.g. [8, 9]). The main feature of this asymmet-

ric core is that it is approximately stray-field free. Hence to leading order, the asymmetric



Domain walls in soft ferromagnetic films 1387

core is given by a smooth transition layer m that satisfies (1) and

m : ω→ S
2, ∇ ·m′ = 0 in ω and m3 = 0 on ∂ω. (20)

Observe that (m1,m2) : ∂ω→ S
1 sincem3 vanishes on ∂ω, so that one can define a topo-

logical degree of (m1,m2) on ∂ω (where ∂ω is the closed “infinite” curve (R × {±1}) ∪
({±∞} × [−1, 1])). The physical experiments, numerics and constructions predict two

types of asymmetric walls, differing in their symmetries and the degree of (m1,m2)

on ∂ω:

(i) For small wall angles α, the system prefers the so-called asymmetric Néel wall. Its

main features are the conservation of symmetries I and IV and a vanishing degree of

(m1,m2) on ∂ω (see Figure 3). Due to symmetry I, the m2 component of an asym-

metric Néel wall vanishes on a curve that is symmetric with respect to the center

of the wall (by x → −x). Moreover, the phase of (m1,m2) is not monotone at the

surface |x3| = 1.

Fig. 3. Asymmetric Néel wall (top) and asymmetric Bloch wall (bottom). Numerics.7

(ii) For large wall angles α, the system prefers the so-called asymmetric Bloch wall.

These walls only have the trivial symmetry IV. Another difference is the non-van-

ishing topological degree on ∂ω (i.e. deg((m1,m2), ∂ω) = ±1). Therefore, a vortex

is nucleated in the wall core, and the curve of zeros of m2 is no longer symmetric

with respect to the center of the wall (see Figure 3). Moreover, the phase of (m1,m2)

is expected to be monotone at the surface |x3| = 1.

7 The magnetization was obtained by numerically solving the Euler–Lagrange equation corre-
sponding to Easym(θ). To this end, a Newton method with suitable initial data was employed.
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The asymmetric wall has a single length scale wcore ∼ t and the specific energy comes

from the exchange energy (see e.g. [19, 5]). It is of order

E2D(asymmetric wall) = O(d2).

For small wall angles, the energy of the optimal asymmetric wall is asymptotically

quadratic in α (see [5]).

Regime. We focus on the challenging regime of soft materials of thickness 2t close to

the exchange length d (up to a logarithm), where we expect the cross-over in the energy

scaling of symmetric walls and asymmetric walls (see [19]):

Q≪ 1 and ln(1/Q) ∼ (t/d)2.

If we rescale the energy (19) by d2 and set

η := Q t2

d2
≪ 1 and λ := t2

d2 ln(1/η)
> 0,

then λ = O(1) is a tuning parameter in the system, and the rescaled energy, which is to

be minimized, takes the form of the energy Eη given in (3) under the constraint

m : � = R × (−1, 1)→ S
2, m(±∞, ·) = m±α ,

h = −∇u : R2 → R
2, ∇ · (h+m′1�) = 0 inD′(R2).

Observe that the parameter λ measures the film thickness 2t relative to the film thick-

ness d ln1/2(1/Q) characteristic to the cross-over. The limit η ↓ 0 corresponds to a limit

of vanishing strength of anisotropy, while at the same time the relative film thickness t/d

increases in order to remain in the critical regime of the cross-over.

Other microstructures in micromagnetics. In other asymptotic regimes, a different

pattern formation is observed. Let us briefly mention three other microstructures that

were recently studied: the concertina pattern, the cross-tie wall and a zigzag pattern.

Concertina pattern. In a series of papers ([20, 23] among others) the formation and hys-

teresis of the concertina pattern in thin, sufficiently elongated ferromagnetic samples were

studied. While in this case the transition layers between domains of constant magnetiza-

tion are symmetric Néel walls, the program carried out for the concertina (a mixture of

theoretical and numerical analysis, and comparison to experiments) serves as motivation

for our work on the energy of domain walls in moderately thin films. Moreover, we hope

that our analysis of the wall energy is helpful for studying a different route to the for-

mation of the concertina pattern in not too elongated samples as proposed in [24] (see

also [6]).

Cross-tie wall. An interesting transition layer observed in physical experiments is the

cross-tie wall (see [10, Section 3.6.4]). It was rigorously studied in a reduced 2D model

(by assuming vertical invariance of the magnetization) where a forcing term amounts to

strong planar anisotropy that dominates the stray-field energy (see [1, 21, 22]). For small
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wall angles θ ∈ (0, π/4], the optimal transition layer is given by the symmetric Néel wall;

for larger angles θ > π/4, the domain wall has a two-dimensional profile consisting in a

mixture of vortices and Néel walls. The energetic cost of a transition in this 2D model is

proportional to sin θ − θ cos θ , so it is cubic in θ as θ → 0. This is due to the scaling of

the stray-field energy (because of the thickness invariance assumption), which makes this

reduced 2D model seem artificial. In the physics literature, it is known that for the full 3D

model and large wall angles the cross-tie wall may also be favored over the asymmetric

Bloch wall. We hope that our more realistic wall-energy density confirms and helps to

quantify this issue.

A zigzag pattern. In thick films, zigzag walls also occur. This pattern has been studied

by Moser [18] in a 3D model with a uniaxial anisotropy in an external magnetic field

perpendicular to the “easy axis” (rather similar to our model). In fact, zigzag walls are to

be expected there; however, this question is still open since the upper bound given for the

limiting wall energy through a zigzag construction does not match the lower bound. Re-

cently, in a reduced 2D model, Ignat and Moser [13] succeeded in rigorously proving the

optimality of the zigzag pattern (for small wall angles). This was due to the improvement

of the lower bound based on an entropy method (coming from scalar conservation laws).

Remarkably, the function sin θ − θ cos θ plays an important role for the limiting energy

density in that context as well as for the cross-tie wall.

3. Compactness and existence of minimizers

In this section we prove compactness results for sequences {mk}k↑∞ of magnetizations

of bounded exchange energy. As an application we will derive existence of minimizers of

Eη (for some fixed η ∈ (0, 1)) and Easym(θ) subject to a prescribed wall angle θ ∈ (0, π),
and show that the optimal angle in E0 is attained (cf. (14)).

All these statements are rather straightforward up to one point: In general, the sign-

change condition

±m2(±∞, ·) ≥ 0

cannot be recovered in the limit as shown in Figure 4.

m̄2,η

x1

Fig. 4. The x3-average m̄2,η of the m2-component. The arrow←→ denotes that the length of the
corresponding interval grows to∞ as η ↓ 0. Then the limit m̄2 (as η ↓ 0) has the same sign at +∞
and −∞.
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However, we will show that one can always choose zeros x1,η of m̄2,η in such a way

that mη(· + x1,η, ·) has the correct change of sign in the limit η ↓ 0.

In the following we denote by C > 0 a universal, generic constant, whose value may

change from line to line, unless otherwise stated.

3.1. Compactness

We start by proving the 1D concentration-compactness result stated in Lemma 1.

Proof of Lemma 1. Due to (10), the set Zk := {z ∈ R | uk(z) = 0} of zeros of uk
is non-empty, and up to a translation in x1-direction we may assume uk(0) = 0 for all

k ∈ N.

Step 1: For every sequence {zk ∈ Zk}k↑∞ there exist a subsequence 3 ⊂ N and a limit

u : R→ R such that uk(· + zk)→ u locally uniformly for k ↑ ∞, k ∈ 3. Moreover,

ˆ

R

∣
∣
∣
∣

d

ds
u

∣
∣
∣
∣

2

ds ≤ lim inf
k↑∞
k∈3

ˆ

R

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds <∞.

Indeed, by Cauchy–Schwarz’s inequality, for t 6= t̃ we have

|uk(t)− uk(t̃)|2
|t − t̃ | =

(´ t

t̃
d
ds
uk ds

)2

|t − t̃ | ≤
ˆ

R

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds;

thus, by (9), we deduce that {uk(·+zk)}k↑∞ is uniformly Hölder continuous with exponent

1/2. In particular, since uk(zk) = 0, we also see that {uk(·+zk)}k↑∞ are locally uniformly

bounded. Hence, the Arzelà–Ascoli compactness theorem yields uniform convergence on

each compact interval [−n, n], n ∈ N, up to a subsequence. By a diagonal argument, one

finds a subsequence 3 ⊂ N and a continuous limit u : R→ R such that

uk(· + zk)→ u locally uniformly as k ↑ ∞, k ∈ 3.

Moreover, the L2(R)-estimate on d
ds
u follows from weak convergence in L2 of d

ds
uk and

weak lower semicontinuity of the L2-norm.

Step 2: Inductive construction of zeros. Assume for contradiction that for every sequence

{zk ∈ Zk}k↑∞, no accumulation point u (with respect to locally uniform convergence) of

the sequence {uk(· + zk)}k↑∞ satisfies (11). We will show by an iterative construction

that one can select a subsequence of {uk}k↑∞ such that each term uk has asymptotically

infinitely many zeros (i.e. #Zk →∞ as k ↑ ∞) with large distances in-between.

More precisely, we prove that for every l ∈ N there exist a limit ul ∈ Ḣ 1(R) and

subsequences 3l ⊂ 3l−1 ⊂ · · · ⊂ 31 ⊂ N such that for all k ∈ 3l there exists an

additional zero zlk ∈ Zk of uk with the properties

min
1≤i 6=j≤l

|zik − z
j

k | → ∞ and uk(· + zlk)→ ul locally uniformly as k ↑ ∞, k ∈ 3l .
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In Step 3, we finally show that this construction implies that u ≡ 0 is one of the

accumulation points of {uk(· + zk)}k↑∞ for zk ∈ Zk a diagonal sequence of these zlk , i.e.

(11) is satisfied, in contradiction to our assumption.

At level l = 1, we choose the zero z1
k = 0 of uk for every k ∈ N. Then by Step 1,

there exists a subsequence 31 ⊂ N and a limit u1 ∈ Ḣ 1(R) such that

uk(· + z1
k)→ u1 locally uniformly as k ↑ ∞, k ∈ 31.

By assumption, u1 does not satisfy (11). Hence, there exists ε1 > 0 such that for every

s > 0 we can find s1 > s such that

u1(s1) ≤ −ε1 < 0 or u1(−s1) ≥ ε1 > 0.

By uniform convergence, we also deduce that for every s > 0 there exists an index

ks ∈ 31 such that

sup
[−s1,s1]

|uk(· + z1
k)− u1| ≤ ε1/2 for k ≥ ks, k ∈ 31,

which in particular implies that

uk(s1 + z1
k) < 0 or uk(−s1 + z1

k) > 0, for k ≥ ks, k ∈ 31. (21)

At level l = 2, we proceed as follows: By the construction at level l = 1, for every

s := n ∈ N we choose as above s1 ≥ n and k := kn ∈ 31 (here, {kn}n↑∞ is to be chosen

increasing). We also know that uk satisfies (11), which implies by (21) that uk changes

sign to the left of −s1 + z1
k or to the right of s1 + z1

k . Choose z2
k ∈ Zk as this new zero

of uk . Since z1
kn
= 0, we have

|z1
kn
− z2

kn
| → ∞ as n ↑ ∞.

Let 3̃2 = {kn | n ∈ N} ⊂ 31 be the sequence of these indices. By Step 1, there exist a

subsequence 32 ⊂ 3̃2 and a limit u2 ∈ Ḣ 1(R) such that

uk(· + z2
k)→ u2 locally uniformly as k ↑ ∞, k ∈ 32.

We now show the general construction, i.e. how one obtains the (l + 1)th set of ze-

ros from the construction after the lth step. Indeed, suppose the functions u1, . . . , ul , the

sequences 3l ⊂ · · · ⊂ 31 ⊂ N and the zeros z1
k, . . . , z

l
k of uk for every k ∈ 3l have

already been constructed. We now construct ul+1, 3l+1 and zl+1
k for k ∈ 3l+1: By as-

sumption, none of the limits uj , 1 ≤ j ≤ l, satisfies (11). Hence, there exists εl > 0 such

that for every s > 0 we can find s1, . . . , sl ≥ s with
(

uj (sj ) ≤ −εl < 0 or uj (−sj ) ≥ εl > 0
)

for every 1 ≤ j ≤ l.

By uniform convergence, we also deduce that for every s > 0 there exists ks ∈ 3l such

that for every 1 ≤ j ≤ l and every k ≥ ks with k ∈ 3l ,

sup
[−sj ,sj ]

|uk(· + zjk )− u
j | ≤ εl/2 and min

1≤i 6=j≤l
|zik − z

j

k | ≥ 4 max
1≤j≤l

sj .
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In particular, for every s := n ∈ N we choose as above s1, . . . , sl ≥ n and k := kn ∈ 3l
(again, {kn}n↑∞ is to be chosen increasing). Then we deduce that for all 1 ≤ j ≤ l and

k ∈ 3l ,
uk(sj + zjk ) < 0 or uk(−sj + zjk ) > 0,

and the l intervals {Ij := [zjk − sj , z
j

k + sj ]}1≤j≤l are pairwise disjoint.

Since uk satisfies (11), there exists a new zero zl+1
k ∈ Zk \

⋃l
j=1 Ij of uk . Indeed,

assume (after a rearrangement) that these intervals are ordered, I1 < · · · < Il . If there is

no zero to the left of I1 (i.e., in (−∞, z1
k − s1]) and in-between these l intervals (i.e. on

⋃l−1
j=1[z

j

k + sj , z
j+1
k − sj+1]), then uk must have a negative sign at the right endpoint of

each interval Ij (i.e. uk(z
j

k + sj ) < 0) with 1 ≤ j ≤ l. In particular, there must be a zero

of uk to the right of Il , which we call zl+1
k .

Set 3̃l+1 = {kn | n ∈ N} ⊂ 3l . Then

min
1≤j≤l
|zjk − z

l+1
k | → ∞ as k ↑ ∞, k ∈ 3̃l+1.

Finally, by Step 1, there exist 3l+1 ⊂ 3̃l+1 and ul+1 such that

uk(· + zl+1
k )→ ul+1 locally uniformly in R as k ↑ ∞, k ∈ 3l+1,

which finishes the construction at level l + 1.

Step 3: Construction of a vanishing diagonal sequence. We prove that the assumption in

Step 2 (that no accumulation point of a sequence of translates of {uk}k↑∞ satisfies (11))

leads to a contradiction:

Consider the construction done in Step 2. The sequence {ul}l↑∞ is uniformly bounded

in Ḣ 1(R). Hence, as in Step 1, there is a subsequence 3 ⊂ N and a function u such that

ul → u locally uniformly for l ↑ ∞, l ∈ 3. In the following, we prove that u ≡ 0 on R

(in particular (11) is satisfied). Indeed, we first observe that 0 = ul(0)→ u(0) as l ↑ ∞,

l ∈ 3; thus, u(0) = 0. Let now a > 0; we want to prove that u(a) = 0. For that, let l ∈ 3
and k ∈ 3l . Then for 1 ≤ j ≤ l,

|uk(a + zjk )|2
a

=
|uk(a + zjk )− uk(z

j

k )|2
a

≤
ˆ a+zjk

z
j
k

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds.

For k = k(a) ∈ 3l sufficiently large, the intervals {[zjk , a+z
j

k ]}1≤j≤l are pairwise disjoint

and we have

∑

1≤j≤l

|uk(a + zjk )|2
a

≤
∑

1≤j≤l

ˆ a+zjk

z
j
k

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds ≤
ˆ

R

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds.

Letting k ↑ ∞, k ∈ 3l , we obtain

∑

1≤j≤l

|uj (a)|2
a

≤ lim sup
k↑∞

ˆ

R

∣
∣
∣
∣

d

ds
uk

∣
∣
∣
∣

2

ds <∞.
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We may now let l ↑ ∞, l ∈ 3, and deduce that ul(a)→ 0. In particular, this shows

u(a) = 0. The same argument adapts to the case a < 0, so that one concludes u ≡ 0 in R.

Therefore, taking a diagonal sequence of the functions constructed in Step 2, one can

then find a family {ukl (· + zlkl )}l∈3 converging (locally uniformly) to the limit function

u ≡ 0 that satisfies (11), in contradiction to our assumption. ⊓⊔
The following lemma reduces the problem of finding admissible limits (i.e. satisfying the

limit condition (1)) for a sequence {mk : � → S
2}k↑∞ of vector fields to shifting the

x3-average m̄2,k of the second component m2,k:

Lemma 3. Let m ∈ Ḣ 1(�,S2) satisfy the limit condition m′(±∞, ·) = (cos θ, 0) in the

m1m3-components in the sense of (2) for some angle θ ∈ (0, π). Then
ˆ

�

∣
∣|m2| − sin θ

∣
∣
2
dx <∞.

If additionally the x3-average m̄2 of m2 satisfies (11) (i.e. m̄2 changes sign), then

m(±∞, ·) = m±θ .

Remark 2. (i) Note that the assumption θ 6∈ {0, π} is crucial: If we considerm : �→ S
2

given by m3 ≡ 0,

m1(x) =







cos
(
π
3
x1

)

if |x1| ≤ 1,

1− |x1|
1+x2

1

if |x1| > 1,
m2(x) =







sin
(
π
3
x1

)

if |x1| ≤ 1,

sgn(x1)

√

1−m2
1(x) if |x1| > 1,

then m′(±∞, ·) = (1, 0) (in the sense of (2)), and m ∈ Ḣ 1(�,S2) since

ˆ

�

|∇m|2 dx = 2

ˆ

R

∣
∣ d
ds
m1

∣
∣
2

1−m2
1

ds ≤ C + 4

ˆ ∞

1

∣
∣ d
ds
m1

∣
∣
2

1−m1
ds <∞,

but
´

�
m2

2 dx = ∞, so that (2) fails for m2.

(ii) Under the hypothesis of Lemma 3, in the case θ ∈ {0, π}, by Remark 1 one may

still conclude that m ∈ {±e1} provided that ∇ · (m′1�) = 0 in D′(R2) (i.e. m ∈ X0).

Proof of Lemma 3. Fromm2
1+m2

2+m2
3 = 1 = sin2 θ+cos2 θ and the triangle inequality,

ˆ

�

|m2
2−sin2 θ |2 dx ≤ 2

ˆ

�

(|m2
1−cos2 θ |2+m4

3) dx ≤ 8

ˆ

�

(|m1−cos θ |2+m2
3) dx <∞,

where we have used

|m2
1 − cos2 θ | = |m1 + cos θ | |m1 − cos θ | ≤ 2|m1 − cos θ |,

m′(±∞, ·) = (cos θ, 0) and |m3| ≤ 1. Since |m2
2−sin2 θ | =

∣
∣|m2|−sin θ

∣
∣
∣
∣|m2|+sin θ

∣
∣ ≥

sin θ
∣
∣|m2| − sin θ

∣
∣ and θ ∈ (0, π), it follows that

ˆ

�

∣
∣|m2| − sin θ

∣
∣
2
dx ≤ 1

sin2 θ

ˆ

�

|m2
2 − sin2 θ |2 dx <∞.

This proves the first part of the lemma.
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To establish the second part, we note that due to
∣
∣|m2| − |m̄2|

∣
∣ ≤ |m2 − m̄2| we have

ˆ

R

∣
∣|m̄2| − sin θ

∣
∣
2
dx1 =

1

2

ˆ

�

∣
∣|m̄2| − sin θ

∣
∣
2
dx

≤
ˆ

�

(

|m2 − m̄2|2 +
∣
∣|m2| − sin θ

∣
∣
2)
dx <∞, (22)

where we have used the Poincaré–Wirtinger inequality

ˆ

R

ˆ 1

−1

|m2 − m̄2|2 dx3 dx1 ≤ C
ˆ

�

|∂x3
m2|2 dx. (23)

Since
∥
∥|m̄2|

∥
∥
Ḣ 1(R)

= ‖m̄2‖Ḣ 1(R) ≤ 1√
2
‖m2‖Ḣ 1(�) < ∞, we deduce with the help

of (22) that |m̄2| − sin θ ∈ H 1(R); in particular, |m̄2(s)| → sin θ > 0 as |s| → ∞.

Under the additional assumption lim infs↑∞ m̄2(s) ≥ 0 and lim sups↓−∞ m̄2(s) ≤ 0,

we deduce from |m̄2(s)| → sin θ > 0 as |s| → ∞ that |m̄2(s)| = m̄2(s) and |m̄2(−s)| =
−m̄2(−s) if s is sufficiently large, so that (22) translates into

ˆ

R−

|m̄2 + sin θ |2 dx1 +
ˆ

R+

|m̄2 − sin θ |2 dx1 <∞.

Together with (23), this finally yields

ˆ

�−
|m2 + sin θ |2 dx +

ˆ

�+
|m2 − sin θ |2 dx

≤ 2

ˆ

�

|m2 − m̄2|2 dx + 4

ˆ

R−

|m̄2 + sin θ |2 dx1 + 4

ˆ

R+

|m̄2 − sin θ |2 dx1 <∞. ⊓⊔

We now prove Proposition 1. In fact, we shall prove it in the form of the following propo-

sition that treats all the cases at once: (i) corresponds to ηk ↓ 0, (ii) corresponds to

ηk ≡ η ∈ (0, 1), and (iii) corresponds to ηk ≡ 0.

Proposition 2. Suppose that the sequences {θk}k↑∞ ⊂ (0, π) and {ηk}k↑∞ ⊂ [0, 1)

satisfy θk → θ and ηk → η as k→∞ with

θ ∈ (0, π) whenever η ∈ (0, 1). (24)

Suppose further that the sequence {mk}k↑∞ ⊂ Ḣ 1(�,S2) satisfies

mk ∈
{

Xθk for ηk ∈ (0, 1),

X0 ∩Xθk for ηk = 0,
(25)

and
{

Eηk (mk) for ηk > 0

E0(mk) for ηk = 0

}

is bounded as k→∞. (26)
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Then there exist zeros x1,k of m̄2,k such that after passage to a subsequence, there exists

m ∈ Ḣ 1(�,S2) such that

mk(· + x1,k, ·) ⇀ m weakly in Ḣ 1(�) and weak-∗ in L∞(�), (27)

h(mk)

{

⇀ h(m) for η ∈ (0, 1)

→ 0 for η = 0

}

in L2(�),

and

m ∈
{

Xθ for η ∈ (0, 1),

X0 ∩Xθ̃ for η = 0,

with θ̃ ∈ [0, π ].8

Proof. We divide the proof into several steps:

Step 1: Compactness of translates of averages {m̄2,k}. According to (26),

ˆ

R

∣
∣
∣
∣

d

dx1
m̄2,k

∣
∣
∣
∣

2

dx1 is bounded as k ↑ ∞,

i.e. (9) holds for m̄2,k . From (25) we obtain
ˆ

R−

|m̄2,k + sin θk|2 dx1 +
ˆ

R+

|m̄2,k − sin θk|2 dx1 <∞ for each k ∈ N.

Since θk ∈ (0, π), this implies in particular (10) for m̄2,k . Hence by Lemma 1, there exist

zeros x1,k of m̄2,k and u ∈ Ḣ 1(R) ∩ C(R) such that for a subsequence,

m̄2,k(· + x1,k, ·) ⇀ u weakly in Ḣ 1(R) and locally uniformly,

with u satisfying (11).

Step 2: Convergence of {mk(·+x1,k, ·)}. Because of (26), by standard weak-compactness

results, there exists m ∈ Ḣ 1(�) ∩ L∞(�) such that for a subsequence,

mk(· + x1,k, ·) ⇀ m weakly in Ḣ 1(�) and weak-∗ in L∞(�).

By Rellich’s compactness result,

mk(· + x1,k, ·)→ m in L2
loc(�) and a.e.,

so that in particular mk ∈ Ḣ 1(�,S2) yields m ∈ Ḣ 1(�,S2). We may thus identify u

as m̄2, i.e.

m̄2 ≡ u in R,

so that m̄2 satisfies (11).

To simplify notation, we identify mk with its translate mk(· + x1,k, ·) in the rest of the

proof.

8 One might have θ̃ 6= θ (see Remark 3(ii)).
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Step 3: If η ∈ (0, 1), then m ∈ Xθ and {h(mk)} is compact. Indeed, in this case, (26)

implies in particular that
{
ˆ

�

(|m1,k − cos θk|2 +m2
3,k) dx

}

k

is bounded as k ↑ ∞,

so that Fatou’s lemma and Step 2 lead to
ˆ

�

(|m1 − cos θ |2 +m2
3) dx <∞,

that is, m′(±∞, ·) = (cos θ, 0). Since by assumption (24), θ ∈ (0, π), and since m̄2

satisfies (11), Lemma 3 yields m(±∞, ·) = (cos θ,± sin θ, 0). Hence, we indeed have

m ∈ Xθ . To prove compactness of stray fields, we note that (26) implies in particular

that9

{
ˆ

R2
|h(mk)|2

}

k

is bounded as k ↑ ∞.

Hence there exists h ∈ L2(�) such that for a subsequence,

h(mk) ⇀ h weakly in L2(R2).

Passing to the limit in the distributional formulation ∇ · (h(mk)+m′k1�) = 0, ∇×h(mk)
= 0 to obtain ∇ · (h + m′1�) = 0, ∇ × h = 0 in D′(R2), and using uniqueness of the

stray field of m with (1), we learn that h = h(m).

Step 4: If η = 0, then h(mk) → 0 in L2(R2) and m ∈ X0 ∩ Xθ̃ for some θ̃ ∈ [0, π ].
Indeed, in this case, (26) yields in particular (recall that mk ∈ X0 yields h(mk) ≡ 0)

ˆ

R2
|h(mk)|2 dx → 0,

so that passing to the limit in the distributional formulation ∇ · (h(mk)+m′k1�) = 0 we

find that ∇ · (m′1�) = 0 in D′(R2). Since m ∈ Ḣ 1(�) ∩ L∞(�), this yields

∇ ·m′ = 0 in �, m3 = 0 on ∂�. (28)

On the other hand, ∇ · (m′1�) = 0 in D′(R2) implies d
dx1
m̄1 = 0 on R, so that there

exists θ̃ ∈ [0, π ] with

m̄1 = cos θ̃ on R. (29)

We note that in general, θ̃ 6= θ = limk↑∞ θk . By the Poincaré–Wirtinger inequality in x3

we deduce from (29) that
ˆ

�

|m1 − cos θ̃ |2 dx ≤ C
ˆ

�

|∂x3
m1|2 dx <∞. (30)

9 Note that h(m(· + z1, ·)) ≡ h(m)(· + z1, ·) by uniqueness of L2 stray fields in (4) associated
to configurations satisfying (1).
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By the Poincaré inequality in x3, from (28) we obtain
ˆ

�

m2
3 dx ≤ C

ˆ

�

|∂x3
m3|2 dx <∞. (31)

Hence we have m′(±∞, ·) = (cos θ̃ , 0). To conclude, we distinguish two cases:

Case 1: θ̃ ∈ (0, π). In this case, we may conclude by Lemma 3 that m(±∞, ·) =
(cos θ̃ ,± sin θ̃ , 0) as in the case of η ∈ (0, 1). We thus obtain m ∈ X0 ∩Xθ̃ .

Case 2: θ̃ ∈ {0, π}. In this case, we apply Remark 1 to conclude from (29) that m is one

of the constant functions ±e1 and thus trivially lies in X0 ∩Xθ̃ . ⊓⊔

Remark 3. (i) The assumption θ ∈ (0, π) whenever η ∈ (0, 1) in (24) is due to Re-

mark 2, since in general the condition m2(±∞, ·) = ± sin θ fails if θ ∈ {0, π}. However,

if θ ∈ {0, π}, one gets a weaker statement concerning the behavior of m̄2 at ±∞:

Claim. Suppose that the sequences {θk}k↑∞ ⊂ (0, π), {ηk}k↑∞ ⊂ (0, 1) satisfy

θk → θ and ηk → η with θ ∈ {0, π} and η ∈ (0, 1).

Consider a sequence {mk}k↑∞ ⊂ Ḣ 1(�,S2) for which mk ∈ Xθk and {Eηk (mk)} is

bounded. Then there exists m ∈ Ḣ 1(�,S2) such that after passage to a subsequence:10

mk ⇀ m weakly in Ḣ 1(�) and weak-∗ in L∞(�),

h(mk) ⇀ h(m) weakly in L2(R2),

Eη(m) <∞,
m̄2(x1)→ 0 as |x1| → ∞.

Indeed, we can essentially proceed as in the proof of Steps 1–3 in Proposition 2. However,

note that there is no need to apply Lemma 1; moreover, the application of Lemma 3

(at Step 3) is no longer possible. Instead, note that m̄1 − cos θ, m̄3 ∈ H 1(R) yields

lim|x1|↑∞ m̄1(x1) = cos θ ∈ {±1} and lim|x1|↑∞ m̄3(x1) = 0. Therefore,

1 = lim sup
|x1|↑∞

 1

−1

|m(x)| dx3 ≥ lim sup
|x1|↑∞

|(m̄1, m̄2, m̄3)(x1)| =
∣
∣
∣

(

1, lim sup
|x1|↑∞

|m̄2(x1)|, 0
)∣
∣
∣,

i.e. lim|x1|↑∞ m̄2(x1) = 0. ⊓⊔

(ii) Note that in the case η = 0, the angle θ̃ = θm associated to the limiting configura-

tion m via (7) in general does not coincide with the limit θ of the sequence θk . In particu-

lar, in the situation of Proposition 1(i) for θk ≡ α = θ , the limit angle θ̃ = θm describes

the amount of asymmetric rotation in the wall core. Hence, the possibility of having θ̃ 6= θ
is directly related to observing a non-trivial behavior of the reduced model (14).

However, there are also cases when θ = limk θk coincides with the limit angle θ̃ , as

can be seen in the statement of Proposition 1(iii).

10 No translation in x1-direction is required here.
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Proof of Proposition 1. Statements (i) and (ii) are immediate consequences of Proposi-

tion 2 by letting θk ≡ α.

Statement (iii) follows from Remark 1 if there exists a constant subsequence θk ∈
{0, π}. Otherwise, we find a convergent subsequence {θk}k↑∞ ⊂ (0, π) to which we

apply Proposition 2 with ηk ≡ 0. In this latter case, not relabeling the subsequence, it

remains to prove that the limit θ := limk↑∞ θk satisfies θ = θm, i.e. m ∈ Xθ . Indeed,

exploiting (7) and (27), one obtains

cos θ ← cos θk ≡ m̄1,k(· + x1,k)→ m̄1 ≡ cos θm as k ↑ ∞.

Since θ, θm ∈ [0, π ], this yields θ = θm. ⊓⊔

3.2. Existence of minimizers

Due to the compactness statements in Proposition 1, one obtains existence of minimizers

for Eη, Easym(θ) and E0.

Theorem 3. • For fixed parameters η ∈ (0, 1) and α ∈ (0, π/2], there exists a mini-

mizer of Eη over the set Xα .

• For θ ∈ [0, π ] fixed, there exists a minimizer of Easym(θ) over the (non-empty, cf.

Appendix) set of m ∈ X0 with θm = θ .

• The Ŵ-limit energy E0 admits a minimizer over X0. The optimal angle θ in the mini-

mization problem (14) is attained.

Proof. Observe that the functionals Eη and {m 7→
´

�
|∇m|2 dx} are lower semicontinu-

ous with respect to the weak convergence obtained in Proposition 1. Hence, the first two

statements in Theorem 3 follow immediately by the direct method of the calculus of vari-

ations, i.e. by applying the compactness results in Proposition 1 to minimizing sequences.

For the third statement, we need an auxiliary lemma that we prove using the existence

of minimizers of Easym(θ) we have just shown:

Lemma 4. The map [0, π ] ∋ θ 7→ Easym(θ) ∈ R+ is lower semicontinuous.

Proof of Lemma 4. This immediately follows from Proposition 1(iii) by considering, for

each sequence {θk ∈ [0, π ]}k↑∞, a sequence {mk ∈ X0}k↑∞ of minimizers of Easym(θk)

for each k. ⊓⊔
Now, the third statement in Theorem 3 again follows by the direct method of the calculus

of variations, since E0 is just a continuous perturbation of Easym. ⊓⊔

4. Proof of Ŵ-convergence

4.1. Lower bound. Proof of Theorem 1

To establish the lower bound (12), one has to estimate the exchange term in Eη(mη)

as well as the stray-field and anisotropy energy from below as η ↓ 0. If m is the

limit of mη (in the weak Ḣ 1-topology), then the exchange term will be estimated as
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η ↓ 0 by
´

�
|∇m|2 dx, while the stray-field and anisotropy energy will be estimated by

λEsym(α − θm), where θm is associated to m ∈ X0 via (7).

Let C > 0 always denote a universal generic constant.

Without loss of generality we may assume Eη(mη) ≤ C0 <∞ for some C0 > 0 and

mη → m in L2
loc(�) and a.e. in � as η ↓ 0.

Step 1: Exchange energy. We first address estimating the exchange energy from below.

Since mη ⇀ m in Ḣ 1(�) as η ↓ 0, we obviously have
ˆ

�

|∇m|2 dx ≤ lim inf
η↓0

ˆ

�

|∇mη|2 dx, (32)

by weak lower semicontinuity of the L2-norm of {∇mη}η↓0.

Step 2: Choice of test function. Now it remains to estimate both the stray-field and

anisotropy energy in Eη(mη) from below by 2πλ(cos θm − cosα)2.

Here the idea is to approximate the limit

cos θm − cosα =
 1

−1

 1

−1

(m1 − cosα) dx3 dx1

by
ffl 1
−1

ffl 1
−1(m1,η − cosα) dx3 dx1 and to define a suitable test function ζ : R2 → R that

captures the profile of the tails of a Néel wall (i.e. when |x1| ≥ 1) and has the property

that
 1

−1

 1

−1

(m1,η − cosα) dx3 dx1 =
 1

−1

 1

−1

(m′η − (cosα, 0)) · ∇ζ dx3 dx1.

In this way, the stray-field energy will control 2πλ(cos θm − cosα)2. Note that the argu-

ment here is similar to the one used in [19].

Lemma 5. Let a > 1 and ζ0 : R→ R be the odd piecewise affine function defined by

ζ0(x1) :=













x1, 0 < x1 < 1,

1, 1 ≤ x1 < a,

− 1
a
(x1 − 2a), a ≤ x1 < 2a,

0, 2a ≤ x1

(33)

(see Figure 5). Let ζ : R2 → R be given by ζ(x1, x3) = ζ0(x1) on � and harmonically

extended to R
2 away from �, i.e. ζ satisfies

{

1ζ = 0 on R
2 \ �̄,

ζ(·,±1) = ζ0 on R.
(34)

Then
ˆ

R2
|∇ζ |2 dx ≤ 8

π
ln a + C (35)

for some constant C = O(1) as a ↑ ∞.



1400 Lukas Döring et al.

−2a −a −1

−1

1

1 a 2a

ζ0

x1

Fig. 5. Test function ζ0.

Remark 4. Problem (34) can be solved explicitly via Fourier transform in the x1-vari-

able:

(Fx1
f )(k1) :=

1√
2π

ˆ

R

f (x1)e
−ik1x1 dx1, k1 ∈ R, (36)

where f : R → R. In fact, (34) becomes a second-order ODE for Fx1
(ζ ) in the x3-

variable. Imposing that ζ ∈ Ḣ 1(R2 \�), we deduce that

Fx1
(ζ )(k1, x3) = Fx1

(ζ0)(x1)e
−|k1|(|x3|−1), k1 ∈ R, |x3| > 1. (37)

Proof of Lemma 5. First we show

ˆ

R2

|∇ζ |2 dx = 2

(
ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

ζ0

∣
∣
∣
∣

2

dx1 +
ˆ

R

∣
∣
∣
∣

d

dx1
ζ0

∣
∣
∣
∣

2

dx1

)

, (38)

where we define

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

f

∣
∣
∣
∣

2

dx1 :=
ˆ

R

|k1| |Fx1
f |2 dk1 ∈ [0,∞], f ∈ L2(R).

Indeed, for the contribution from � we simply have

ˆ

�

|∇ζ |2 dx
ζ=ζ0 in�
=

ˆ

�

|∇ζ0|2 dx
ζ0=ζ0(x1)= 2

ˆ

R

∣
∣
∣
∣

d

dx1
ζ0

∣
∣
∣
∣

2

dx1.

Moreover, the contribution from R
2 \� can be computed using (37):

ˆ

R2\�
|∇ζ |2 dx = 2

ˆ

R×(1,∞)
|∇ζ |2 dx = 2

ˆ ∞

1

ˆ

R

|Fx1
(∇ζ )(k1, x3)|2 dk1 dx3

= 2

ˆ ∞

1

ˆ

R

(

|k1Fx1
(ζ )(k1, x3)|2 + |∂x3

Fx1
(ζ )(k1, x3)|2

)

dk1 dx3

= 2

ˆ ∞

1

ˆ

R

(∣
∣|k1|Fx1

(ζ )(k1, x3)
∣
∣
2 +

∣
∣|k1|Fx1

(ζ )(k1, x3)
∣
∣
2)
dk1 dx3

(37)= 2

ˆ

R

|k1| |Fx1
(ζ0)|2

(
ˆ ∞

1

2|k1|e−2 |k1| (x3−1) dx3

︸ ︷︷ ︸

=1

)

dk1 = 2

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

ζ0

∣
∣
∣
∣

2

dx1.

Therefore (38) is established.
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To prove (35), one first observes that
´

R

∣
∣ d
dx1
ζ0

∣
∣
2
dx1 remains bounded as a ↑ ∞, so

that the leading-order contribution to (38) is given by the homogeneous Ḣ 1/2-norm of ζ0.

Recall that the Ḣ 1/2-norm can be expressed as

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

ζ0

∣
∣
∣
∣

2

dx1 = min

{
ˆ

R×R+
|∇ ζ̄ |2 dx

∣
∣
∣
∣
ζ̄ ∈ Ḣ 1(R×R+), ζ̄ (·, 0) = ζ0

}

. (39)

Therefore, to estimate (39), we choose an admissible function ζ̄ :

ζ̄ (x) = ζ̄ (r, θ) := ζ0(r) ϕ(θ), x ∈ R × R+,

where (r, θ) denote the polar coordinates of x ∈ R × R+ and ϕ : [0, π ] → [−1, 1] is

given by
ϕ(θ) = 1− 2

π
θ, 0 ≤ θ ≤ π.

Observe that indeed ζ̄ (·, 0) = ζ0 in R (since ζ0 is odd and ϕ(0) = −ϕ(π) = 1). There-

fore, we may estimate

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

ζ0

∣
∣
∣
∣

2

dx1

(39)
≤

ˆ

R×R+
|∇ ζ̄ |2 dx =

ˆ π

0

ˆ ∞

0

(∣
∣
∣
∣

∂

∂r
ζ̄

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1

r

∂

∂θ
ζ̄

∣
∣
∣
∣

2)

r dr dθ

=
ˆ π

0

ϕ2 dθ

ˆ ∞

0

∣
∣
∣
∣

d

dr
ζ0

∣
∣
∣
∣

2

r dr

︸ ︷︷ ︸

=O(1)

+
ˆ π

0

∣
∣
∣
∣

d

dθ
ϕ

∣
∣
∣
∣

2

dθ

︸ ︷︷ ︸

=4/π

ˆ ∞

0

ζ 2
0

dr

r
︸ ︷︷ ︸

=ln a+O(1)

= 4

π
ln a +O(1),

which yields the asserted scaling. ⊓⊔

Step 3: Stray-field and anisotropy energy. With the test function constructed in Step 2 we

can establish the relation between λEsym(α − θm) and the stray-field/anisotropy energy.

First we use the definition of ζ to rewrite

 1

−1

 1

−1

(

m1,η − cosα
)

dx1 dx3 =
1

4

ˆ 1

−1

ˆ 1

−1

(m1,η − cosα) ∂x1
ζ

︸︷︷︸

=1

dx1 dx3

= 1

4

ˆ

�

(m1,η−cosα) ∂x1
ζ dx+ 1

4a

ˆ

((−2a,−a)∪(a,2a))×(−1,1)

(m1,η−cosα) dx

ζ = ζ(x1)= 1

4

ˆ

�

m′η ·∇ζ dx+
1

4a

ˆ

((−2a,−a)∪(a,2a))×(−1,1)

(m1,η−cosα) dx

(4)= −1

4

ˆ

R2

h(mη) ·∇ζ dx+
1

4a

ˆ

((−2a,−a)∪(a,2a))×(−1,1)

(m1,η−cosα) dx

≤ 1

4

(
ˆ

R2
|h(mη)|2 dx

)1/2(ˆ

R2
|∇ζ |2 dx

)1/2

+ 1

4a
(4a)1/2

(
ˆ

�

(m1,η−cosα)2 dx

)1/2

Lemma 5
≤

((
1

2π
ln a+O(1)

)
ˆ

R2
|h(mη)|2 dx

)1/2

+
(

1

4a

ˆ

�

(m1,η−cosα)2 dx

)1/2

,
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as a ↑ ∞. If we now apply

√
α +

√

β ≤
√

α(1+ δ)+ δ−2β,

which holds11 for 0 < δ ≤ 1/2, α, β ≥ 0, to

α =
(

1

2π
ln a +O(1)

)
ˆ

R2
|h(mη)|2 dx, β = 1

4a

ˆ

�

(m1,η − cosα)2 dx,

we find
(
 1

−1

 1

−1

(m1,η − cosα) dx

)2

≤
(

1

2π
ln a +O(1)

)

(1+ δ)
ˆ

R2

|h(mη)|2 dx

+ 1

4δ2

1

a

ˆ

�

(m1,η − cosα)2 dx.

Now, for δ ∈ (0, 1/2] fixed, choose a = a(η) such that

1

4δ2a
= λ−1 1+ δ

2π
η.

This implies a ↑ ∞ as η ↓ 0 and ln a = ln(1/η)+O(1) as η ↓ 0.

Note that λ ln(1/η)
´

R2 |h(mη)|2 dx ≤ Eη(mη) is uniformly bounded and thus
´

R2 |h(mη)|2 dx → 0 as η ↓ 0. As cos θm =
ffl 1
−1m̄1 dx1 ←

ffl 1
−1m̄1,η dx1, we obtain

(cos θm − cosα)2 =
(

lim inf
η↓0

 1

−1

 1

−1

(m1,η − cosα) dx1 dx3

)2

≤ lim inf
η↓0

(
1

2π
(1+ δ) ln a

ˆ

R2
|h(mη)|2 dx +

1

4δ2a

ˆ

�

(m1,η − cosα)2 dx

)

= (1+ δ) lim inf
η↓0

(
1

2π
ln(1/η)

ˆ

R2
|h(mη)|2 dx + λ−1 1

2π
η

ˆ

�

(m1,η − cosα)2 dx

)

.

Letting now δ ↓ 0 yields

2πλ(cos θm − cosα)2

≤ lim inf
η↓0

(

λ ln(1/η)

ˆ

R2
|h(mη)|2 dx + η

ˆ

�

(m1,η − cosα)2 dx

)

. (40)

Step 4: Conclusion. By combining (32) and (40) one sees that

E0(m) ≤ lim inf
η↓0

ˆ

�

|∇mη|2 dx

+ lim inf
η↓0

(

λ ln(1/η)

ˆ

R2
|h(mη)|2 dx + η

ˆ

�

(m1,η − cosα)2 dx

)

≤ lim inf
η↓0

Eη(mη),

i.e. the lower bound (12) is proven. ⊓⊔

11 Use
√
αβ ≤ δ

2
α + 1

2δ
β and 1

δ
≤ 1
δ2 − 1.
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4.2. Upper bound

For each m ∈ X0 we construct a recovery sequence {mη}η↓0 ⊂ Xα such that mη → m

in Ḣ 1(�) and (13) holds. For that, in the general case θm 6∈ {0, α, π}, the basic guideline

will be a decomposition of � into several parts (as shown in Figure 6): We consider the

regions

�A := [−a, a] × (−1, 1),

�I :=
(

[−(a + 1),−a] ∪ [a, a + 1]
)

× (−1, 1),

�T :=
(

[−(a + 1)/η,−(a + 1)] ∪ [a + 1, (a + 1)/η]
)

× (−1, 1),

where a is a parameter of order ln3/2(1/η)≫ 1 (to be chosen explicitly at Step 1 below).

− a+1
η −(a + 1) −a a a + 1

a+1
η

−1

1

�T �I �A �I �T

Néel tails Interp. Asym. wall Interp. Néel tails

m
η
≈
( co

s θ
m

si
n
θm

0

)

m
η
=
( co

s θ
m

si
n
θm

0

)

Fig. 6. Construction of recovery sequence.

• The (core) region �A stands for the asymmetric part of the transition layer mη: Here,

m′η is of vanishing divergence (so, a stray-field free configuration) with an asymptotic

angle transition from −θm to θm (as η ↓ 0) so that the leading-order term is driven by

the exchange energy.

• The (tail) region �T corresponds to the symmetric part of the transition layer mη that

mimics the tails of a symmetric Néel wall. Here, the leading-order term of the energy

is driven by the stray field, the transition angle covering the range [−α,−θm] (on the

left) and [θm, α] (on the right), respectively.

• The (intermediate) region�I is necessary for the transition between the core ofmη and

the tails of a Néel wall. This is because the asymmetric core of mη and the symmetric

tails will not fit together perfectly (on �A, the angle transition is 2θm + o(1) and not

exactly 2θm); however, this region only adds energy of order o(1).

So, let m ∈ X0. Since θm ∈ [0, π ], we need to treat three different cases:

Case 1: θm 6∈ {0, α, π}. We proceed in several steps:

Step 1: Choice of a. We consider the positive L1(R) function E : R→ R+ defined by

E(x1) :=
ˆ 1

−1

|∇m(x1, x3)|2 dx3 for a.e. x1 ∈ R.
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For η ≪ 1, let b = b(η) := ln3/2(1/η) (in fact, any choice lnγ (1/η) with γ ∈ (1, 2)

would work). We choose a = a(η) ∈ [b/2, b] such that a and −a are Lebesgue points

of E and

E(a)+ E(−a) ≤
 b

b/2

E(x1)+ E(−x1) dx1 ≤
2

b

ˆ

�

|∇m|2 dx = C0

b
, (41)

with C0 = 2
´

�
|∇m|2 dx < ∞. In particular, the Ḣ 1/2-trace of m on the vertical

lines {±a} × (−1, 1) actually belongs to H 1. Since m̄2 ∓ sin θm ∈ H 1(R±) (due to

m2(±∞, ·) = ± sin θm), we also have

m̄2(±a) = ± sin θm + o(1) as η ↓ 0.

Recall that Sobolev’s embedding theorem yields existence of C > 0 such that

‖u‖L∞ ≤ C
∥
∥
∥
∥

d

ds
u

∥
∥
∥
∥
L2

for every u ∈ H 1
0 ((−1, 1)),

together with

‖u− ū‖L∞ ≤ C
∥
∥
∥
∥

d

ds
u

∥
∥
∥
∥
L2

for every u ∈ H 1((−1, 1)).

Therefore,

√

C0

b
≥

(
ˆ 1

−1

∑

σ∈{±1}
|∇m(σa, x3)|2 dx3

)1/2

≥
(

∑

σ∈{±1}

ˆ 1

−1

(

|∂x3
m1(σa, x3)|2+|∂x3

m2(σa, x3)|2+|∂x3
m3(σa, x3)|2

)

dx3

)1/2

≥ C
∑

σ∈{±1}

(

‖m1(σa, ·)−m̄1(σa)
︸ ︷︷ ︸

=cos θm

‖L∞+‖m2(σa, ·)−m̄2(σa)‖L∞+‖m3(σa, ·)‖L∞
)

.

(42)

It follows that m1(±a, x3) = cos θm + o(1), m3(±a, x3) = o(1) and m2(±a, x3) =
m̄2(±a)+ o(1) = ± sin θm + o(1) uniformly in x3 ∈ (−1, 1) as η ↓ 0 (since b→∞).

Step 2: Definition of mη. On �A, we choose mη(x) = m(x) for every x ∈ �A.

On the tail region {|x1| ≥ a+ 1}, we choose mη to be the S1-valued approximation of

a Néel wall with a transition angle that goes from −α to −θm (on the left) and from θm to

α (on the right). More precisely, as in [11], let mη : � \ (�A ∪�I )→ S
1 depend only on

the x1-direction and be given by

m1,η(x1, x3) :=
{

cosα + cos θm−cosα
ln(1/η)

ln
(
a+1
η|x1|

)

, a + 1 ≤ |x1| ≤ a+1
η
, x3 ∈ (−1, 1),

cosα, a+1
η
≤ |x1|, x3 ∈ (−1, 1),

m2,η(x1, x3) := sgn(x1)

√

1−m2
1,η(x1, x3),

m3,η(x1, x3) := 0,






on {a + 1 ≤ |x1|} × (−1, 1).
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On the intermediate region �I , i.e. for a < |x1| < a + 1, we define mη by linear

interpolation in m3,η and the phase φη of (m1,η,m2,η) (interpreted as complex number)

between �T and �A. For this, we choose η sufficiently small, such that

±m2(±a, ·) >
sin θm

2
> 0 in (−1, 1). (43)

Therefore, there exists a unique phase φη(±a, x3) ∈ (0, π) of (m1,m2)(±a, x3) ∈
R

2 ≃ C such that

(m1 + im2)(±a, x3) =
√

1−m2
3(±a, x3) e

±iφη(±a,x3) for every x3 ∈ (−1, 1).

Observe that the function φη(±a, ·) depends on η only through a. Recall that

m3,η(±(a + 1), ·) = 0 and (m1,η + im2,η)(±(a + 1), ·) = e±iθm so that we fix

φη(±(a + 1), ·) := θm on (−1, 1). By linear interpolation, we then define mη : �I → S
2

and φη : �I → (0, π) by

m3,η(x) := (1+ a − |x1|)m3(±a, x3), (44)

φη(x) := (1+ a − |x1|)φη(±a, x3)+ (|x1| − a)θm,

(m1,η + im2,η)(x) :=
√

1−m2
3,η(x) e

±iφη(x), (45)

whenever a < ±x1 < a + 1, x3 ∈ (−1, 1).

Note thatmη(±∞, ·) = m±α (in the sense of (2)) sincemη 6= m±α only on the bounded set

�A ∪�I ∪�T . We will show that mη has H 1 regularity on �A, �I and �T . Moreover,

the H 1/2-traces of mη on the vertical lines {±a} × (−1, 1) and {±(a + 1)} × (−1, 1) do

agree, so that finally mη ∈ Ḣ 1(�), i.e. mη ∈ Xα .

Step 3: Exchange energy estimate. We prove
ˆ

�

|∇mη|2 dx ≤
ˆ

�

|∇m|2 dx + o(1). (46)

We estimate the integral separately on �A, �T and �I .

On �A, we have mη ≡ m so that
ˆ

�A

|∇mη|2 dx ≤
ˆ

�

|∇m|2 dx. (47)

On �T , since |m1,η| ≤ max(|cos θm|, cosα) =: µ < 1, we deduce

ˆ 1

−1

ˆ (a+1)/η

a+1

|∇mη|2 dx = 2

ˆ (a+1)/η

a+1

∣
∣ d
dx1
m1,η(x1)

∣
∣
2

1−m2
1,η(x1)

dx1

≤ 2

(
cos θm − cosα

ln(1/η)

)2 ˆ (a+1)/η

a+1

x−2
1

1− µ2
dx1

≤ C(θm)

b ln2(1/η)
= o(1) as η ↓ 0, (48)

where we have used a + 1 ≥ b/2 in the last inequality.
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On the intermediate region �I , we use the following lemma:

Lemma 6. For a ≤ ±x1 ≤ a + 1 and x3 ∈ (−1, 1), we have

(i) |∂x1
m3,η(x)|2 ≤ m2

3(±a, x3),

(ii) |∂x3
m3,η(x)|2 ≤ |∂x3

m3(±a, x3)|2,
(iii)

∣
∣∂x1

(m1,η
m2,η

)

(x)
∣
∣
2 ≤ m2

3(±a, x3)+ |φη(±a, x3)− θm|2,

(iv)
∣
∣∂x3

(m1,η
m2,η

)

(x)
∣
∣
2 ≤ 2

∣
∣∂x3

(
m1
m2

)

(±a, x3)
∣
∣
2
.

(49)

Proof. Inequalities (i) and (ii) immediately follow from the definition (44) ofm3,η on�I .

To prove the remaining inequalities we use the identity |∂xi (ρ(x)eiϕ(x))|2 =
|∂xiρ(x)|2 + |ρ(x)∂xiϕ(x)|2 for real-valued functions ρ and ϕ. Therefore, for (iii), us-

ing the inequality |m3,η(x)| ≤ |m3(±a, x3)| ≤ 1/2 for η sufficiently small (see (42)), we

deduce that, for x ∈ �I ,

|∂x1
(m1,η + im2,η)(x)|2 =

m2
3,η(x)

1−m2
3,η(x)

︸ ︷︷ ︸

≤1

|∂x1
m3,η(x)

2 + (1−m2
3,η(x))

︸ ︷︷ ︸

≤1

|∂x1
φη(x)|2

(i)
≤ m2

3(±a, x3)+ |φη(±a, x3)− θm|2.

Similarly, for (iv), using the fact that t 7→ t
1−t is increasing on (0, 1), we obtain, for the

x3-derivative of m1,η and m2,η and x ∈ �I ,

|∂x3
(m1,η + im2,η)(x)|2 ≤

m2
3,η(x)

1−m2
3,η(x)

|∂x3
m3,η(x)|2 + (1−m2

3,η(x))
︸ ︷︷ ︸

≤1

|∂x3
φη(x)|2

(44)
≤

m2
3(±a, x3)

1−m2
3(±a, x3)

|∂x3
m3(±a, x3)|2 + 2(1−m2

3(±a, x3))
︸ ︷︷ ︸

≥1

|∂x3
φη(±a, x3)|2

≤ 2

(
m2

3(±a, x3)

1−m2
3(±a, x3)

|∂x3
m3(±a, x3)|2 + (1−m2

3(±a, x3))|∂x3
φη(±a, x3)|2

)

= 2|∂x3
(m1 + im2)(±a, x3)|2. ⊓⊔

Note that for sufficiently small η the function φη(±a, ·) ∈ (0, π) is bounded away from 0

and π , so that by Lipschitz continuity of arccos and (42) we have

|φη(±a, ·)− θm|2 ≤
C(θm)

b
on (−1, 1). (50)

Therefore, after integrating (49) over �I , (50), (41) and (42) show that

ˆ

�I

|∇mη|2 dx =
ˆ

{a≤|x1|≤a+1}

ˆ 1

−1

|∇mη|2 dx3 dx1 ≤
C(θm)

b
= o(1) as η ↓ 0, (51)

which together with (47) and (48) implies (46).
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Step 4: Stray-field energy estimate. We will prove that

λ ln(1/η)

ˆ

R2
|h(mη)|2 dx ≤ 2πλ(cos θm − cosα)2 + o(1). (52)

Indeed, we follow the arguments in [11, proof of Thm. 2(ii)] (see also [12, 14]). First

of all, recall that m3,η = 0 on ∂� and that ∇ · m′η is supported in the compact set

�A ∪�I ∪�T . Therefore, the stray field hη = −∇uη with uη ∈ Ḣ 1(R2) satisfies

ˆ

R2
∇uη · ∇v dx = −

ˆ

�

∇ ·m′η v dx ∀v ∈ Ḣ 1(R2),

so that by choosing v := uη, we have

ˆ

R2
|∇uη|2 dx = −

ˆ

�

∇ ·m′η uη dx

= −
ˆ

�A

∇ ·m′
︸ ︷︷ ︸

=0

uη dx −
ˆ

�I

∇ ·m′η uη dx −
ˆ

�T

∇ ·m′η uη dx. (53)

On�I , sincem3,η = 0 on ∂� and m̄1,η(±a) = cos θm as well asm1,η(±(a+1), ·) =
cos θm, we have

ˆ

(�I )+
∇ ·m′η dx =

ˆ

(∂�I )+
m′η · ν dH1(x) = m̄1,η(a + 1)− m̄1,η(a) = 0,

and similarly
´

(�I )−
∇ ·m′η dx = 0, where ν denotes the outer unit normal to �I and we

use the notation (�I )+ = �I ∩ {x1 ≥ 0}, (�I )− = �I ∩ {x1 ≤ 0}. Therefore we may

subtract the averages

ū+η =
 

(�I )+
uη dx and ū−η =

 

(�I )−
uη dx

of uη over the left and right parts of �I , so that by (51), Cauchy–Schwarz and Poincaré–

Wirtinger’s inequality, we deduce that

ˆ

�I

∇ ·m′η uη dx =
ˆ

(�I )−
∇ ·m′η(uη − ū−η ) dx +

ˆ

(�I )+
∇ ·m′η(uη − ū+η ) dx

≤
(
ˆ

�I

|∇ ·m′η|2 dx
)1/2(ˆ

(�I )−
|uη − ū−η |2 dx

)1/2

+
(
ˆ

�I

|∇ ·m′η|2 dx
)1/2(ˆ

(�I )+
|uη − ū+η |2 dx

)1/2

(51)
≤

(
C

b

)1/2(ˆ

R2
|∇uη|2 dx

)1/2

=
(

C ln−3/2 1

η

)1/2(ˆ

R2
|∇uη|2 dx

)1/2

. (54)
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On �T , the stray-field energy can be estimated using the trace characterization (39)

and the Cauchy–Schwarz inequality in Fourier space. Indeed, defining mtails
1,η : �→ R by

setting mtails
1,η = m1,η on � \ (�A ∪�I ) and mtails

1,η = cos θm on �A ∪�I , we have

∣
∣
∣
∣

ˆ

�T

∇ ·m′η uη dx
∣
∣
∣
∣
=

∣
∣
∣
∣

ˆ

�T

d

dx1
m1,η uη dx

∣
∣
∣
∣
=
ˆ 1

−1

ˆ

R

d

dx1
mtails

1,η uη dx1 dx3

≤
ˆ 1

−1

ˆ

R

|k1| |Fx1
mtails

1,η (k1)| |Fx1
uη(k1, x3)| dk1 dx3

≤
ˆ 1

−1

(
ˆ

R

|k1| |Fx1
mtails

1,η (k1)|2 dk1

ˆ

R

|k1| |Fx1
uη(k1, x3)|2 dk1

)1/2

dx3

(39)

≤
(
ˆ

R2
|∇uη|2 dx

)1/2(

2

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

mtails
1,η

∣
∣
∣
∣

2

dx1

)1/2

. (55)

By considering the radial extension M1,η(x) = mtails
1,η (|x|) of mtails

1,η on R × R+, which is

possible since mtails
1,η is even, and using polar coordinates we can then estimate

ˆ

R

∣
∣
∣
∣

∣
∣
∣
∣

d

dx1

∣
∣
∣
∣

1/2

mtails
1,η

∣
∣
∣
∣

2

dx1

(39)
≤

ˆ

R×R+
|∇M1,η|2 dx ≤ π

ˆ (a+1)/η

a+1

∣
∣
∣
∣

d

dx1
mtails

1,η

∣
∣
∣
∣

2

x1 dx1

= π (cos θm − cosα)2

ln2(1/η)

ˆ (a+1)/η

a+1

1

x1
dx1

︸ ︷︷ ︸

=ln(1/η)

= π (cos θm − cosα)2

ln(1/η)
.

Collecting (53)–(55), it follows that

λ ln(1/η)

ˆ

�

|∇uη|2 dx ≤ λ ln(1/η)

(

C ln−3/4(1/η)+
(

2π
(cos θm − cosα)2

ln(1/η)

)1/2)2

≤ 2πλ(cos θm − cosα)2 + C ln−1/4(1/η),

i.e. (52).12

Step 5: Anisotropy energy estimate. Finally, we prove

η

ˆ

�

((m1,η − cosα)2 +m2
3,η) dx = o(1). (56)

Indeed, since a ∼ b = ln3/2(1/η), on �A ∪�I we have

η

ˆ a+1

−(a+1)

ˆ 1

−1

((m1,η − cosα)2 +m2
3,η) dx3 dx1 ≤ Cη ln3/2(1/η) = o(1),

12 In fact, this motivates the choice b = lnγ (1/η) with γ > 1.
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and on �T , m3,η = 0 so that13

η

ˆ

�T

((m1,η − cosα)2 +m2
3,η) dx = 4η

(cos θm − cosα)2

ln2(1/η)

ˆ (a+1)/η

a+1

ln2

(
a + 1

ηx1

)

dx1

y= ηx1
a+1≤ Cb

(cos θm − cosα)2

ln2(1/η)

ˆ 1

η

ln2 y dy

︸ ︷︷ ︸

=O(1)

≤ C ln−1/2(1/η) = o(1).

Moreover, on � \ (�A ∪ �I ∪ �T ) we have (m1,η − cosα)2 + m2
3,η = 0 so that (56)

holds.

Step 6: Conclusion. Combining (46), (52) and (56) yields

Eη(mη) =
ˆ

�

|∇mη|2 dx+λ ln(1/η)

ˆ

R2
|h(mη)|2 dx+η

ˆ

�

((m1,η−cosα)2+m2
3,η) dx

≤
ˆ

�

|∇m|2 dx+2πλ(cos θm−cosα)2+o(1) = E0(m)+o(1),

which is (13). Finally, let us prove that mη → m in Ḣ 1(�). First, observe that by con-

struction, mη ≡ m on �A. Therefore, since
⋃

η↓0�A = �, we have mη → m in

L2
loc(�). Moreover, (46) implies that {mη}η↓0 is uniformly bounded in Ḣ 1(�), so that

mη ⇀ m in Ḣ 1(�). By weak lower semicontinuity of ‖·‖L2(�) and (46), one obtains

‖∇mη‖L2(�)→ ‖∇m‖L2(�) and concludes that mη → m in Ḣ 1(�).

Case 2: θm ∈ {0, π}. By Remark 1, m is constant, so that its exchange energy does

not contribute to E0(m). Thus, we have to construct a sequence mη of asymptoti-

cally vanishing exchange energy, whose stray-field and anisotropy energy converge to

2πλ(cos θm − cosα)2. The function mη from Case 1 is a good candidate for the second

property. However, if θm ∈ {0, π}, it does not belong to H 1(�), since then 1 − m2
1,η be-

haves linearly with respect to the distance to the set {m2
1,η = 1} and (48) fails. Therefore,

we are obliged to construct a transition region between the two tails where this behavior

is corrected.

With these considerations, we define mη : �→ S
1 by

m1,η(x1, x3) :=











cos θm − 1
4
(cos θm − cosα) ln 2

ln(1/η)
x2

1 , |x1| ≤ 2,

cosα + (cos θm − cosα)
ln(1/(ηx1))

ln(1/η)
, 2 ≤ |x1| ≤ 1/η,

cosα, 1/η ≤ |x1|,

and again

m2,η(x1, x3) := sgn(x1)

√

1−m2
1,η(x1, x3), m3,η(x1, x3) := 0.

13 Note that here it is important to have b = lnγ (1/η) with γ < 2.
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Admissibility in Xα is obvious and one can then show, using the methods given above,

that
ˆ

�

|∇mη|2 dx ≤ C ln−1(1/η),

λ ln(1/η)

ˆ

R2
|∇uη|2 dx ≤ 2πλ(cos θm − cosα)2 + C ln−1/2(1/η),

η

ˆ

�

((m1,η − cosα)2 +m2
3,η) dx ≤ C ln−2(1/η).

The strong convergence mη → m in Ḣ 1(�) also follows as in Step 6 of Case 1 by noting

that the constructed transition layermη has the propertymη → m = (cos θm,± sin θm, 0)

a.e. in �.

Case 3: θm = α. Sincem already has the correct boundary values, we can simply choose

mη := m. Admissibility of mη in Xα is clear and we have

ˆ

�

|∇mη|2 dx =
ˆ

�

|∇m|2 dx,

λ ln(1/η)

ˆ

R2
|h(mη)|2 dx = 0 = 2πλ(cosα − cosα)2,

η

ˆ

�

((m1,η − cosα)2 +m2
3,η) dx = o(1),

since m(±∞, ·) = (cosα,± sinα, 0). ⊓⊔
Proof of Corollary 1. The first equality in (14) is a direct consequence of the concept of

Ŵ-convergence. Indeed, we know by Theorem 3 that there exists a minimizer mη ∈ Xα
of Eη for every 0 < η < 1. By Proposition 1, up to a subsequence and translation in

x1-direction, we have mη ⇀ m in Ḣ 1(�) for some m ∈ X0, so that Theorem 1 implies

lim inf
η↓0

min
Xα

Eη = lim inf
η↓0

Eη(mη) ≥ E0(m) ≥ min
X0

E0.

On the other hand, Theorem 3 also implies existence of a minimizer m ∈ X0 of E0. By

Theorem 2, there exists a family {m̃η}η↓0 ⊂ Xα such that

min
X0

E0 = E0(m) ≥ lim sup
η↓0

Eη(m̃η) ≥ lim sup
η↓0

min
Xα

Eη.

Therefore, minXα Eη → minX0
E0 as η ↓ 0. For the second equality in (14), note that by

Theorem 3 one has

min
X0

E0 = min
θ∈[0,π ]

(

Easym(θ)+ λEsym(α − θ)
)

.

By Lemma 4, the minimum of the RHS is indeed attained. It remains to show that it is

achieved for angles θ ∈ [0, π/2]. Indeed, let θ ∈ [0, π ] be the minimizer of the above

RHS and let m ∈ X0 with θm = θ be the minimizer of Easym(θ). If θ ∈ (π/2, π ], then
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one considers m̃ ∈ X0 given by m̃′ ≡ −m′ and m̃2 ≡ m2, so that θm̃ = π − θm ∈
[0, π/2). Then m̃ and m have the same exchange energy (i.e. Easym(θm̃) = Easym(θm))

and Esym(α − θm̃) ≤ Esym(α − θm), which proves (14). Observe that the last inequality

is strict whenever α ∈ (0, π/2), so that for such angles α the minimal value of E0 is

achieved only for angles θ ∈ [0, π/2].
Let us now prove the relative compactness in the strong Ḣ 1-topology of minimizing

families {mη}η↓0 ⊂ Xα of Eη, i.e. satisfying Eη(mη) → minX0
E0. By Proposition 1,

up to a subsequence and translations in x1-direction, we may assume that mη ⇀ m in

Ḣ 1(�) for some m ∈ X0, so that Theorem 1 implies14

min
X0

E0 = lim
η↓0

Eη(mη)

≥ lim sup
η↓0

ˆ

�

|∇mη|2 dx+lim inf
η↓0

(

λ ln(1/η)

ˆ

R2
|h(mη)|2 dx+η

ˆ

�

(m1,η−cosα)2 dx

)

(32),(40)
≥ Easym(θm)+λEsym(α−θm) ≥ min

X0

E0.

Therefore, all the above inequalities become equalities, in particular, limη↓0

´

�
|∇mη|2 dx

=
´

�
|∇m|2 dx. Hence, mη → m in Ḣ 1(�), i.e. up to the subsequence taken in Proposi-

tion 1 and translations the entire family mη converges strongly to m in Ḣ 1(�) where m

is a minimizer of E0. ⊓⊔

Appendix

A. Construction of an asymmetric-Bloch type wall of arbitrary wall angle

θ ∈ (0, π/2]

In this section we construct a stray-field free domain wall for any given angle θ ∈
(0, π/2]. In particular, this shows that the set X0 ∩ Xθ is non-empty, and we may ap-

ply the direct method of the calculus of variations to deduce existence of minimizers of

Easym (cf. Theorem 3).

The construction we present here is of asymmetric Bloch-wall type in the following

sense: The trace of m ∈ Ḣ 1(�,S2) on the boundary Bdry := ∂�∪ ({±∞}× [−1, 1]) ∼=
S

1 (see (16)) has a non-zero topological degree. In fact, due to m3 = 0 on ∂� as well as

m3(±∞, ·) = 0 (so (m1,m2) : Bdry→ S
1), one obtains (by the homeomorphism (16))

a map m̃ ∈ H 1/2(S1,S1) to which a topological degree can be associated (see, e.g., [4]).

Remark 5. (i) Asymmetric Bloch walls as well as the configuration we are about to

construct do have a non-zero topological degree (e.g. ±1) on Bdry, whereas asymmetric

Néel walls have degree 0 on ∂�. We make the following observation (see Lemma 2): the

14 We use the fact that lim supn(an+ bn) ≥ lim supn an+ lim infn bn for two bounded sequences
(an) and (bn).
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non-vanishing topological degree of (m1,m2) : Bdry→ S
1 nucleates at least one vortex

singularity of (m1,m3) (carrying a non-zero topological degree) as illustrated in Figure 3.

(ii) Note that for the angle θ = 0, by Remark 1, one finds that m ∈ X0 if and only if

m ∈ {±e1}, so that m has degree zero on ∂�; thus, no asymmetric-Bloch type wall exists

in this case.

(iii) An asymmetric-Néel type configuration m̃ ∈ X0 ∩ Xθ , i.e. with deg m̃ = 0, can

be obtained from any m ∈ X0 ∩ Xθ using even reflection in (m1,m2) and odd reflection

in m3 across one of the components of ∂� together with a rescaling in x so that m̃ is

defined on �. However, starting with m ∈ Lθ (introduced in Section 1.3), the reflected

configuration has at least two vortices in (m1,m3), so that it cannot have minimal energy.

In [7], we construct an asymptotically energy minimizing configuration of asymmetric-

Néel type for small angles.

The degree argument shows that we cannot expect a homotopy between asymmetric

Néel and Bloch wall in the class of stray-field free walls. Hence, it is unclear how the

nevertheless expected transition from asymmetric Néel to Bloch wall actually takes place.

Proposition 3. Given θ ∈ (0, π/2], there exists a map m : � → S
2 with the following

properties:

• m ∈ Ḣ 1(�),

• m(x1, ·) = m±θ for all |x1| sufficiently large,

• ∇ ·m′ = 0 in � and m3 = 0 on ∂�,

• deg(m|∂�) = −1.

Proof. To construct m, we will search for a stream function ψ : R2 → R with the fol-

lowing properties:

(i) ψ ∈ C3(R2) with |∇ψ | ≤ 1 in R
2,15

(ii) ψ(x) = −(x3 + 1) cos θ for all |x| sufficiently large,

(iii) ψ(·,−1) = 0 and ψ(·, 1) = −2 cos θ in R,

(iv) there exists a continuous curve γ , connecting the upper and lower components

R × {+1} and R × {−1} of ∂�, on which |∇ψ | = 1.

We then define m according to

m′ := ∇⊥ψ, m2(x) :=
{

−
√

1− |∇ψ(x)|2 if x is to the left of γ,
√

1− |∇ψ(x)|2 if x is to the right of γ.
(57)

Note that by Lemma 7 below, m2 is Lipschitz continuous. Indeed, we remark that

D2(|∇ψ |2) is globally bounded since |∇ψ | = cos θ outside of a compact set, and ap-

ply Lemma 7 to f = 1− |∇ψ |2 ≥ 0.

Figure 7 shows the level lines of ψ ; in Figure 8 the region around the vortex is en-

larged.

15 In fact, we will construct a smooth function ψ .
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γ−2(1−cos θ) 2(1−cos θ) Lθ ≫ 1−Lθ

−1

1

Fig. 7. Sketch of the level lines of a stream function of an asymmetric domain wall of Bloch type.

γ−2(1− cos θ) 2(1− cos θ)
1−cos θ

2

− 1−cos θ
2

Fig. 8. Enlargement of the area around the vortex, cf. Figure 7.

−1 1

− 1
2

− 1
4

1
4

1
2

γ̂

Fig. 9. Sketch of the vortex function s with ellipsoid level sets in the inner part.

Step 1: Construction in the inner part around the vortex. As a first step in the construc-

tion of ψ we implicitly define a function s ∈ C∞(Q), where

Q = ([−1, 1] × R) \ {(0, 0)},

by specifying its level sets (cf. Figure 9). Later, we will define ψ by rescaling, shifting

and smoothing the function 1− s. Consider

f : Q×(0,∞)→ R, f (x̂, s) :=
{(

x̂3

s

)2−1 if s ≥ 1/2, x̂ ∈ Q,
(
s
t (s)

)2( x̂1
s

)2+
(
x̂3

s

)2−1 if 0 < s < 1/2, x̂ ∈ Q,
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s

t

1
2

1
4

1
4

Fig. 10. The semi-major axis t : (0, 1/2)→ R of the ellipses in Figure 9.

where t : (0, 1/2)→ R is a smooth function that satisfies the structural condition

t (s) = s if s ∈ [0, 1/4], d2

ds2
t ≥ 0 on (0, 1/2), (58)

and such that 1/t (s) vanishes to infinite order at s = 1/2, e.g.

t (s) = e
1

1/2−s if s ∈ [3/8, 1/2].

We note that the latter implies that f is smooth across s = 1/2 and thus in the whole

domain Q× (0,∞).
Claim. For every x̂ ∈ Q there exists a unique solution s = s(x̂) of f (x̂, s) = 0.

We first argue that the solution is unique: Indeed, because of (58) we have in particular
d
ds
t (s) ≥ 1 so that ∂sf (x̂, s) < 0 for all (x̂, s) ∈ Q× (0,∞), provided we are not in the

case of s ≥ 1/2 and x̂3 = 0. This case however is not relevant for uniqueness since then

f (x̂, s) ≡ −1.

It follows from the explicit form of f that

s(x̂) =
{

|x̂| for |x̂| ≤ 1/4,

|x̂3| for |x̂3| ≥ 1/2,

is a solution.

Hence, it remains to show existence of a solution for |x̂3| < 1/2 but |x̂| > 1/4:

Indeed, |x̂3| < 1/2 implies f (x̂, 1/2) < 0, and |x̂| > 1/4 yields f (x̂, 1/4) > 0. Thus,

the existence of a solution s = s(x̂) ∈ (1/4, 1/2) of f (x̂, s) = 0 follows from the

intermediate value theorem.

The implicit function theorem yields smoothness of s : Q→ (0,∞), with

∇̂s(x̂) = −∇x̂f (x̂, s(x̂))
∂sf (x̂, s(x̂))

= (x̂1/t
2(s), x̂3/s

2)

x̂2
1

t2(s)

dt
ds

t (s)
+ x̂2

3

s2
1
s

if |x̂3| ≤ 1/2, (59)
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and ∇̂s(x̂) = ±e3 if ±x̂3 ≥ 1/2. Note that

|∇̂s(x̂)|2 =
(
x̂1
t (s)

)2 1
t2(s)
+

(
x̂3

s

)2 1
s2

( x̂2
1

t2(s)

dt
ds
(s)

t (s)
+ x̂2

3

s2
1
s

)2
≤

1
s2

((
x̂1
t (s)

)2+
(
x̂3

s

)2)

1
s2

( x̂2
1

t2(s)
+ x̂2

3

s2

)2
= 1 if |x̂3| ≤ 1/2,

since (58) yields

1

t (s)
≤ 1

s
and

dt
ds
(s)

t (s)
≥ 1

s
whenever s ∈ (0, 1/2).

Let us finally remark that the curve

γ̂ ⊂ {0} × {|x3| ≥ 1/4} ∪ (B(0, 1/4) \ B(0, 1/16)), (60)

which is indicated in Figure 9, has the property

|∇̂s| = 1 on γ̂ .

Step 2: Regularization of the vortex at x̂ = 0. In this step, we define a function ψ̂1 on

[−1, 1] × R that—up to rescaling and recentering—already coincides with the final ψ

close to {x1 = 0}. The subsequent Steps 3–6 modify ψ̂1 for large x̂ ∈ R
2 to achieve the

boundary conditions for |x1| → ∞ and to make Lemma 7 applicable.

In principle, we would like to set ψ̂1 = 1 − s, but since s is not smooth in x̂ = 0,

this would generate a vortex-type point-singularity at x̂ = 0 for ∇̂⊥ψ̂1. Instead, let

ρ : [0,∞)→ R be a smooth function that satisfies

ρ(s) = 1− s if s ≥ 1/16, −1 ≤ dρ
ds
(s) ≤ 0 if s ≥ 0,

dnρ

dsn
(0) = 0 for all integers n > 0.

Then the function

ψ̂1(x̂) := ρ
(

s(x̂)
)

, x̂ ∈ Q,

is smooth, satisfies |∇̂ψ̂1| =
∣
∣ d
ds
ρ
∣
∣ |∇̂s| ≤ 1 and can be extended to a smooth function

ψ̂1 on [−1, 1]×R by setting ψ̂1(x̂ = 0) := ρ(s = 0). The regularity of ψ̂1 around x̂ = 0

is due to s(x̂) = |x̂| for |x̂| ≤ 1/4 and
dnρ
dsn
(0) = 0 for all n > 0.

Note that by definition of ρ and s we still have

|∇̂ψ̂1| = 1 on γ̂ ,

for γ̂ as in (60).

Step 3: Extending ψ̂1 to R
2. Here, we use ψ̂1 (defined on [−1, 1]×R) to define a smooth

function ψ̂2 on R
2 with the properties

∂x̂1
ψ̂2 = 0 if |x̂1| ≥ 2, |∇̂ψ̂2| ≤ 1 on R

2, |∇̂ψ̂2| = 1 on γ̂ . (61)
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ϕ

s

− 1
4

1
4

2

−2

1

−1

Fig. 11. The non-linear change of variables ϕ.

Let ϕ : R → [−1, 1] be a smooth odd non-linear change of variables (cf. Figure 11)

with

ϕ(s) = s on (0, 1/4), ϕ(s) = 1 if s ≥ 2, 0 <
d

ds
ϕ(s) ≤ 1 on (0, 2).

Then we let

ψ̂2(x̂) := ψ̂1(ϕ(x̂1), x̂3) for x̂1 ∈ R
2,

so that the properties (61) are easily verified.

Step 4: Matching the boundary conditions on ∂�. In this step, we rescale and recenter

ψ̂2 according to Figure 7 to achieve the boundary conditions 0 and −2 cos θ on the lower

and upper components of ∂�, i.e. (iii).

More precisely, we want to obtain (63) below. Since ψ̂2(x̂) = 1− |x̂3| for |x̂3| ≥ 1/2,

we place the center of the “regularized vortex” x̂ = 0 of ψ̂2 at xθ = (0,− cos θ), and

thereby define the smooth function

ψ2(x) := (1− cos θ)ψ̂2(x̂) for x ∈ R
2,

where x̂ is related to x via

x = xθ + (1− cos θ)x̂. (62)

Then

ψ2(x) = 1− cos θ − |x3 + cos θ | on {|x3 + cos θ | ≥ (1− cos θ)/2} ⊃ ∂�, (63)

so that the boundary conditions hold. Moreover, we have |∇ψ2| ≤ 1 in R
2 as well as

|∇ψ2| = 1 on the curve γ that γ̂ induces via the change of variables (62) (cf. Figure 7).

Note that ψ2 only depends on x3 for |x1| ≥ 2(1 − cos θ). However, (ii) does not yet

hold.

Step 5: Controlling the behavior for |x3| ≫ 1. To allow for an application of Lemma 7

we want to obtain (ii), in particular bounded second derivatives of f = 1 − |∇ψ |2. To

this end, we will first interpolate ψ2 in x3 with the boundary data

ψout := −(x3 + 1) cos θ

for |x3| ≫ 1. In Step 6, we will then interpolate with ψout in x1.

We proceed in two steps: First, we employ a regularized max(t̃ , t)-function to modify

ψ2 outside of � to make sure that the slope of ψ2 agrees with that of ψout for large |x3|.
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x3

ψ

−1 1

−2 cos θ

ψout

ψ2 ψin

asymptote of ψ3

Fig. 12. Sketch of the functions ψ2(x1, ·) (for |x1| large, fixed) and ψout, as well as their inter-
polant ψin.

Then, since |∂x3
ψout| = cos θ < 1, we can use interpolation with a slowly varying cut-

off function to define a new function ψin that coincides with ψout for |x3| ≫ 1 and still

satisfies |∇ψin| ≤ 1 (cf. Figure 12).

Let η : R → [0, 1] be a smooth increasing cut-off function with η ≡ 0 on R−, η ≡ 1

on [1,∞), and
∥
∥ d
ds
η
∥
∥
∞ <∞. To regularize

max(t̃ , t) = t̃ +max(0, t − t̃ ) = t̃ +
ˆ t−t̃

0

1[0,∞)(s) ds

we replace 1[0,∞) by η, i.e. we define a smooth h : R × R→ R via

h(t̃, t) := t̃ +
ˆ t−t̃

0

η(s) ds. (64)

Observe that

h(t̃, t) = t̃ if t̃ ≥ t and h(t̃, t) =
ˆ 1

0

η(s) ds − 1+ t if t ≥ t̃ + 1. (65)

Moreover, we have ∂t̃h(t̃, t) = 1− η(t − t̃ ) and ∂th(t̃, t) = η(t − t̃ ). Hence, the function

ψ3 : R2 → R given by

ψ3(x) :=
{

ψ2(x) for x ∈ �,
h(ψ2(x), ψout(x)− 1) otherwise,

is smooth and satisfies

ψ3
(65)≡ ψ2 on �, ψ3 − ψout

(65)=
ˆ 1

0

η ds − 2 if |x3|
(63)
≥ 1+ 2

1− cos θ
=: Mθ , (66)

|∇ψ3| ≤ 1 on �, ∂x3
ψ3 = 0 for |x3| ≥ 2,

|∇ψ3| ≤ (1− η(ψout − 1− ψ2))|∇ψ2| + η(ψout − 1− ψ2)|∇ψout| ≤ 1 on R
2 \�.
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It remains to interpolate between ψ3 and ψout: For L ≥ Mθ + 1, consider the slowly

varying cut-off function ηL : R+→ [0, 1] given by

ηL(t) := η2

(
t −Mθ

L−Mθ

)

.

Then

ηL(t) = 0 if t ≤ 2, ηL(t) = 1 if t ≥ L,
(
d

dt
ηL

)2

≤ C(θ)
L2

ηL ≤
C(θ)

L2
on R+,

(67)

and we define the smooth function ψin : R2 → R by

ψin(x) := ηL(|x3|)ψout(x)+ (1− ηL(|x3|))ψ3(x),

There exists L(θ) such that for any L ≥ L(θ) we have |∇ψin| ≤ 1 on R
2: Note that

|∇ψin| = |∇ψ3| ≤ 1 on {|x3| ≤ Mθ }, while on {|x3| ≥ Mθ } we have ψin
(66)= ψout − (2−

´ 1
0 η ds)(1− ηL(|x3|)), so that due to ∇ψout = (0,− cos θ),

|∇ψin| ≤ cos θ + C d
dt
ηL

(67)
≤ cos θ + C

L
≤ 1 for L sufficiently large.

Moreover, ∂x1
ψin = 0 for |x1| ≥ 2(1− cos θ).

Step 6: Interpolation with the boundary conditions at x1 = ±∞. In order to obtain (ii)

it now remains to interpolate ψin with the boundary data ψout for |x1| ≫ 1.

For this, we again consider the cut-off function ηL : R+→ [0, 1] with properties (67)

and define the desired smooth ψ : R2 → R by

ψ(x) := ηL(|x1|)ψout(x)+ (1− ηL(|x1|))ψin(x).

Clearly, ψ satisfies the boundary conditions on ∂� as well as ψ = ψout for |x| ≫ 1. In

the core region {|x1| ≤ Mθ } ∩ � we have ψ = ψin = ψ3 = ψ2 and therefore |∇ψ | = 1

on the curve γ defined in Step 4. Moreover, |∇ψ | ≤ 1 on {|x1| ≤ Mθ } ∪ {|x1| ≥ L}.
For sufficiently large L ≥ L(θ) we can also assert |∇ψ | ≤ 1 on {Mθ ≤ |x1| ≤ L}: In

fact, we have

∇ψ =
(

sgn(x1)(ψout − ψin)
d

dt
ηL,−ηL cos θ + (1− ηL)∂x3

ψin

)

,

where we have used the fact that ∂x1
ψin(x) = 0 on {|x1| ≥ Mθ }. Hence, by convexity of

z 7→ z2, ηL ∈ [0, 1], and |∂x3
ψin| ≤ 1,

|∇ψ |2 ≤
(
d

dt
ηL

)2

sup|ψout − ψin|2
︸ ︷︷ ︸

≤4 by def. of ψin and (64)

+
(

(1− ηL)∂x3
ψin + ηL(− cos θ)

)2

≤ C
(
d

dt
ηL

)2

+ (1− ηL)+ ηL(cos θ)2

(67)
≤ 1−

(

sin2 θ − CC(θ)
L2

)

ηL ≤ 1 if L ≥ L(θ) is sufficiently large.
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Step 7: The degree of (m1,m2). Using the equalities ηL(|x3|) = 0 and ψ3 = ψ2
(63)=

(1− cos θ)− |x3 + cos θ | in a neighborhood of ∂�, we compute

∇ψin(x) = ∂x3
ψ3(x)e3 = − sgn(x3)e3 on ∂�,

and therefore, due to ψout = ψin on ∂�,

∇ψ(x) = ηL(|x1|)∇ψout(x)+ (1− ηL(|x1|))∇ψin(x)

= −
(

ηL(|x1|) cos θ + (1− ηL(|x1|)) sgn(x3)
)

e3 on ∂�,

or in view of the definition of m in (57)

m(x) =
(

ηL(|x1|) cos θ + (1− ηL(|x1|)) sgn(x3), sgn(x1)

√

1−m2
1(x), 0

)

on ∂�.

Hence, (m1,m2), as a map S
1 → S

1, has degree −1 on ∂� (cf. Figure 13). ⊓⊔

� = R × [−1, 1]

(m1, m2) ∈ S
1

m2

m1

Fig. 13. (m1,m2) on ∂�.

In order to prove that the magnetization m defined at (57) belongs to Ḣ 1(�) it is

enough to check that f = 1 − |∇ψ |2 has the property that
√
f is Lipschitz in R

2 where

ψ is the stream function constructed above:

Lemma 7. Let f ∈ C2(RN ,R+) be a non-negative function with D2f ∈ L∞(RN ).
Then ∇

√
f ∈ L∞(RN ) and

‖∇
√

f ‖2∞ ≤
1

2
‖D2f ‖∞. (68)

Proof. We distinguish two cases:

Case 1:D2f ≡ 0 on R
N , i.e. f is an affine function. Since by assumption f ≥ 0 in R

N ,

one has f ≡ const. Thus, the assertion of Lemma 7 becomes trivial.



1420 Lukas Döring et al.

Case 2: ‖D2f ‖∞ > 0. Let x, x0 ∈ R
N . Taylor’s expansion yields, for some intermediate

x̃ ∈ R
N ,

0 ≤ f (x) = f (x0)+∇f (x0) · (x − x0)+ 1
2
(x − x0) ·D2f (x̃)(x − x0)

≤ |f (x0)| + ∇f (x0) · (x − x0)+ 1
2
‖D2f ‖∞|x − x0|2. (69)

Hence, choosing x ∈ R
N such that x − x0 = − ∇f (x0)

‖D2f ‖∞
, we obtain

|∇f (x0)|2
‖D2f ‖∞

≤ 2|f (x0)|,

i.e.

|∇
√

f (x0)| ≤
1√
2
‖D2f ‖1/2∞ if f (x0) 6= 0. (70)

If there exist points at which f vanishes, we apply (70) to f +ε instead of f (with ε > 0),

and deduce that, for x, y ∈ R
N ,

|
√

f (x)+ ε −
√

f (y)+ ε| ≤
ˆ 1

0

|(∇
√

f + ε)(tx + (1− t)y)| |x − y| dt

(70)

≤ 1√
2
‖D2f ‖1/2∞ |x − y|.

Letting ε ↓ 0 we obtain |
√
f (x)−

√
f (y)| ≤ 1√

2
‖D2f ‖1/2∞ |x − y| for all x, y ∈ R

N , so

that (68) follows. ⊓⊔

B. Proof of Lemma 2

The relation between the topological degree of (m1,m2) on ∂� and the vortex singularity

of (m1,m3) observed in the previous construction is studied in Lemma 2 that we prove

now.

Proof of Lemma 2. Due to ∇ · m′ = 0 in D′(R2) we may represent m′ = ∇⊥ψ for a

stream function ψ : R2 → R with ψ(x1,−1) = 0, ψ(x1, 1) = −2 cos θ for all x1 ∈ R.

Under the hypothesis m ∈ Ḣ 1(�,S2), one gets ∇ψ ∈ Ḣ 1 ∩ L∞(�). Since m has non-

zero topological degree on Bdry, the set {x ∈ ∂� | m1(x) < 0} is non-empty (recall that

m ∈ Ḣ 1/2(∂�,S2)). We assume that it has non-empty intersection with R × {−1}. (The

other case is similar.) Since m1 = −∂x3
ψ < 0 and ψ = 0 on that subset of R × {−1},

one sees that the set {x ∈ � | ψ > 0} is non-empty. In particular, there exists a connected

component C of {x ∈ � | ψ > 0}whose boundary intersects R×{−1} in a set containing

an interval (see Figure 14).

Since ∇ψ ∈ Ḣ 1(�), and taking into account the boundary conditions at x1 = ±∞,

the Sobolev embedding theorem on the sets {a ≤ |x1| ≤ a + 1} yields ψ(x1, x3) →
−(x3 + 1) cos θ uniformly in x3 as |x1| ↑ ∞. Hence, any level set {ψ = ε} for ε > 0 is

bounded, and ψ attains a maximum x0 in the interior of C ⊂ �. Let β0 = ψ(x0) > 0.
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ψ = 0

|∇ψ |2 = 1

Fig. 14. The zero level set of ψ for an asymmetric Bloch wall of angle θ = 0.7 (cf. footnote in
Fig. 3).

In the case of a vector field m ∈ C1(�), so ψ ∈ C2(� ⊂ R
2,R), by Sard’s theo-

rem, there exists a regular value β ∈ (0, β0) of ψ . In particular, there exists a smooth

cycle γ ⊂ C such that ψ ≡ β and |∇ψ | > 0 on γ . Therefore, ν := ∇ψ/|∇ψ | :
γ → S

1 is a normal vector field on γ so that it carries a topological degree equal to 1.

Hence, (m1,m3) = ∇⊥ψ presents a vortex singularity inside � carrying a non-zero

winding number. This argument is still valid for the general case m ∈ Ḣ 1(�) (where

∇ψ ∈ Ḣ 1(�)); in fact, Sard’s theorem is also valid for ψ ∈ W 2,1
loc (C) (see e.g. Bourgain–

Korobkov–Kristensen [3]) where we recall that ψ > 0 on C and ψ = 0 on ∂C so that

almost every β ∈ (0, β0) is a regular value, i.e. the pre-image ψ−1(β) is a finite disjoint

family of C1-cycles and the normal vector field ν on each cycle is absolutely continuous,

in particular, it carries a winding number 1. ⊓⊔
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