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Abstract. Building upon the techniques introduced in [15], for any θ < 1/10 we construct periodic
weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and
are Hölder-continuous with exponent θ . A famous conjecture of Onsager states the existence of
such dissipative solutions with any Hölder exponent θ < 1/3. Our theorem is the first result in this
direction.
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1. Introduction

The Euler equations for the motion of an inviscid perfect fluid are{
∂tv + v · ∇v +∇p = 0,
div v = 0,

(1.1)

where v(x, t) is the velocity vector and p(x, t) is the internal pressure. In this paper we
consider the equations in three dimensions and assume that the domain is periodic, i.e.
the 3-dimensional torus T3

= S1
× S1
× S1. Multiplying (1.1) by v itself and integrating,

we obtain the formal energy balance
1
2
d

dt

∫
T3
|v(x, t)|2 dx = −

∫
T3
[((v · ∇)v) · v](x, t) dx.

If v is continuously differentiable in x, we can integrate the right hand side by parts and
conclude that ∫

T3
|v(x, t)|2 dx =

∫
T3
|v(x, 0)|2 dx for all t > 0. (1.2)

On the other hand, in the context of 3-dimensional turbulence it is important to consider
weak solutions, where v and p are not necessarily differentiable. If (v, p) is merely con-
tinuous, one can define weak solutions (see e.g. [27, 24]) by integrating (1.1) over simply
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connected subdomains U ⊂ T3 with C1 boundary, to obtain the identities∫
U

v(x, 0) dx =
∫
U

v(x, t) dx +

∫ t

0

∫
∂U

[v(v · ν)+ pν](x, s) dA(x) ds,∫
∂U

[v · ν](x, t) dA(x) = 0,
(1.3)

for all t . In these identities, ν denotes the unit outward normal to U on ∂U and dA
denotes the usual area element. Indeed, the formulation (1.3) appears first in the deriva-
tion of the Euler equations from Newton’s laws in continuum mechanics, and (1.1) is
then deduced from (1.3) for sufficiently regular (v, p). It is also easy to see that pairs of
continuous functions (v, p) satisfy (1.3) for all fluid elements U and all times t if and
only if they solve (1.1) in the ”modern” distributional sense (rewriting the first line as
∂tv + div(v ⊗ v)+∇p = 0).

For weak solutions, the energy conservation (1.2) might be violated, and indeed, this
possibility has been considered for a rather long time in the context of 3-dimensional
turbulence. In his famous note [26] about statistical hydrodynamics, Onsager considered
weak solutions satisfying the Hölder condition

|v(x, t)− v(x′, t)| ≤ C|x − x′|θ , (1.4)

where the constant C is independent of x, x′ ∈ T3 and t . He conjectured that:

(a) any weak solution v satisfying (1.4) with θ > 1/3 conserves the energy;
(b) for any θ < 1/3 there exist weak solutions v satisfying (1.4) which do not conserve

the energy.

This conjecture is also very closely related to Kolmogorov’s famous K41 theory [23] for
homogeneous isotropic turbulence in three dimensions. We refer the interested reader to
[19, 28, 18] (see also Section 1.1 below).

Part (a) of the conjecture is by now fully resolved: it has first been considered by
Eyink [17] following Onsager’s original calculations and proved by Constantin, E and
Titi [10]. Slightly weaker assumptions on v (in Besov spaces) were subsequently shown
to be sufficient for energy conservation in [16, 6]. In contrast, until now part (b) of the
conjecture has remained widely open. In this paper we address specifically this question
by proving the following theorem:

Theorem 1.1. Let e : [0, 1] → R be a smooth positive function. For every θ < 1/10
there is a pair (v, p) ∈ C(T3

× [0, 1]) with the following properties:

• (v, p) solves the incompressible Euler equations in the sense (1.3);
• v satisfies (1.4);
• the energy satisfies

e(t) =

∫
T3
|v(x, t)|2 dx ∀t ∈ [0, 1]. (1.5)
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This is the first result in the direction of part (b) of Onsager’s conjecture, where Hölder-
continuous solutions are constructed. Prior to this result, there have been several construc-
tions of weak solutions violating (1.2) in [29, 30, 31, 12, 13], but the solutions constructed
in these papers are not continuous. The ones of [29, ?] are just square summable func-
tions of time and space, whereas the example of [31] was the first to be in the energy
space and the constructions of [12, 13] gave bounded solutions. Recently, in [15] we have
constructed continuous weak solutions, but no Hölder exponent was given.

Remark 1.2. Since completion of this work, our technique for getting Hölder continuity
has been refined in [21] to improve the regularity exponent in Theorem 1.1 to θ < 1/5
(see also [5], [4] and [3]).

Remark 1.3. In fact our proof of Theorem 1.1 yields some further regularity properties
of the pair (v, p). First of all, our solutions v are Hölder-continuous in space and time,
i.e. there is a constant C such that

|v(x, t)− v(x′, t ′)| ≤ C(|x − x′|θ + |t − t ′|θ )

for all pairs (x, t), (x′, t ′) ∈ T3
× [0, 1].

From the equation 1p = − div div(v ⊗ v) (after normalizing the pressure so that∫
p(x, t) dx = 0) and standard Schauder estimates one can easily derive Hölder regular-

ity in space for p as well, with Hölder exponent θ . A more careful estimate1 improves the
exponent to 2θ . It is interesting to observe that in fact our scheme produces pressures p
which have that very Hölder regularity in time and space, namely

|p(x, t)− p(x′, t ′)| ≤ C(|x − x′|2θ + |t − t ′|2θ ).

1.1. The energy spectrum

The energy spectrum E(λ) gives the decomposition of the total energy by wave number,
i.e. ∫

|v|2 dx =

∫
∞

0
E(λ) dλ.

One of the cornerstones of the K41 theory is the famous Kolmogorov spectrum

E(λ) ∼ ε2/3λ−5/3

for wave numbers λ in the inertial range for fully developed 3-dimensional turbulent
flows, where ε is the energy dissipation rate. For dissipative weak solutions of the Euler
equations as conjectured by Onsager, this would be the expected energy spectrum for all
λ ∈ (λ0,∞).

Our construction, based on the scheme and the techniques introduced in [15], allows
for a rather precise analysis of the energy spectrum. In a nutshell the scheme can be
described as follows. We construct a sequence of (smooth) approximate solutions to the

1 Personal communication with L. Silvestre.
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Euler equations vk , where the error is measured by the (traceless part of the) Reynolds
stress tensor R̊k (cf. (2.1) and (3.5)). The construction is explicitly given by a formula of
the form

vk+1(x, t) = vk(x, t)+W
(
vk(x, t), Rk(x, t); λkx, λkt

)
+ corrector. (1.6)

The corrector is to ensure that vk+1 remains divergence-free. The vector field W consists
of periodic Beltrami flows in the fast variables (at frequency λk), which are modulated in
amplitude and phase depending on vk and Rk . More specifically, the amplitude is deter-
mined by the error Rk from the previous step, so that

‖vk+1 − vk‖0 . δ
1/2
k , (1.7)

‖vk+1 − vk‖1 . δ
1/2
k λk, (1.8)

where δk = ‖R̊k‖C0 .
The frequencies λk are therefore the active modes in the Fourier spectrum of the

velocity field in the limit. Since the sequence λk diverges rather fast, it is natural to think
of (1.6) as iteratively defining the Littlewood–Paley pieces at frequency λk . Following [9]
we can then estimate the (Littlewood–Paley) energy spectrum in the limit as

E(λk) ∼ 〈|vk+1 − vk|
2
〉/λk

for the active modes λk , where 〈·〉 denotes the average over the space-time domain. Since
W is the superposition of finitely many Beltrami modes, we can estimate 〈|vk+1 − vk|

2
〉

∼ δk . Thus, both the regularity of the limit and its energy spectrum are determined by the
rates of convergence δk → 0 and λk →∞.

In [15] it was shown (cf. Proposition 2.2 and its proof) that W can be chosen so that

‖R̊k+1‖C0 ≤ C(vk, R̊k)λ
−γ

k (1.9)

for some fixed 0 < γ ≤ 1. By choosing the frequencies with λk → ∞ sufficiently
fast, C0 convergence of this scheme follows easily. However, in order to obtain a rate on
the divergence of λk we need to obtain an estimate on the error in (1.9) with an explicit
dependence on vk and R̊k . This is achieved in Proposition 8.1 and forms a key part of the
paper. Roughly speaking, our estimate has the form

‖R̊k+1‖C0 . δ
1/2
k ‖vk‖C1/λ

γ

k (1.10)

with γ ∼ 1/2. A first attempt (based on experience with the isometric embedding prob-
lem, see below) at obtaining a rate on λk would then go as follows: in order to decrease
the error in (1.10) by a fixed factor K > 1 (i.e. δk+1 ≤

1
K
δk), we choose λk accordingly,

so that
λ
γ

k ∼ K‖vk‖C1δ
−1/2
k . (1.11)

Using (1.8) we can then obtain an estimate on ‖vk+1‖C1 and iterate. However, it is easy
to see that this leads to super-exponential growth of λk whenever γ < 1. From this one
can only deduce the energy spectrum E(λ) ∼ λ−1 and no Hölder regularity.
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Our solution to this problem is to force a double-exponential convergence of the
scheme (see Section 2). In this way the finite Hölder regularity in Theorem 1.1 as well as
the energy spectrum

E(λk) . λ
−(6/5−ε)
k (1.12)

can be achieved (see Remark 2.3). It is quite remarkable, and much akin to the Nash–
Moser iteration, that the more rapid (super-exponential) convergence of the scheme leads
to a better regularity in the limit.

An underlying physical intuition in turbulence theory is that the flux in the energy cas-
cade should be controlled by local interactions (see [23, 26, 17, 6]). A consequence for
part (b) of Onsager’s conjecture is that in a dissipative solution the active modes, among
which the energy transfer takes place, should be (at most) exponentially distributed. In-
deed, Onsager explicitly states in [26] (cf. also [18]) that this should be the case.

For the scheme (1.6) in this paper the interpretation is that λk should increase at most
exponentially. As seen in the discussion above, this would only be possible with γ = 1
in the estimate (1.10). On the other hand, it is also easy to see that with γ = 1 the
estimate indeed leads to Onsager’s critical 1/3 Hölder exponent as well as to the Kol-
mogorov spectrum. Indeed, from (1.11) together with (1.10) and (1.8) we would obtain
δk ∼ K

−k and λk ∼ K3/(2k), leading to E(λk) ∼ λ
−5/3
k . Thus, our scheme provides yet

another route towards understanding the necessity of local interactions as well as towards
the Kolmogorov spectrum, albeit one that does not involve considerations on the energy
cascade but is rather based on the ansatz (1.6).

Onsager’s conjecture has also been considered on shell-models [22, 7, 8], whose
derivation is motivated by the intuition on locality of interactions. Roughly speaking,
the Euler equations is considered in the Littlewood–Paley decomposition, but only near-
est neighbor interactions in frequency space are retained in the nonlinear term, leading to
an infinite system of coupled ODEs. The analogue of both part (a) and (b) of Onsager’s
conjecture has been proven in [7, 8], in the sense that the ODE system admits a unique
fixed point which exhibits a decay of (Fourier) modes consistent with the Kolmogorov
spectrum.

Although our Theorem 1.1 and the corresponding spectrum (1.12) falls short of the
full conjecture, it highlights an important feature of the Euler equations that cannot be
seen on such shell models: the critical 1/3 exponent of Onsager is not just the borderline
between energy conservation and dissipation in the sense of parts (a) and (b) above. For
exponents θ < 1/3 one should expect an entirely different behavior of weak solutions,
namely the type of non-uniqueness and flexibility that usually comes with the h-principle
of Gromov [20].

1.2. h-principle and convex integration

Our iterative scheme is ultimately based on the convex integration technique introduced
by Nash [25] to produce C1 isometric embeddings of Riemannian manifolds in low codi-
mension, and vastly generalized by Gromov [20], although several modifications of this
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technique are required (see the Introduction of [15]). Nevertheless, in line with other re-
sults proved using a convex integration technique, our construction again adheres to the
usual features of the h-principle. In particular, as in [15] we are concerned in this paper
with the local aspects of the h-principle. For the Euler equations this means that we only
treat the case of a periodic space-time domain instead of an initial/boundary value prob-
lem. Also, it should be emphasized that although in Theorem 1.1 the existence of one
solution is stated, the method of construction leads to an infinite number of solutions, as
indeed any instance of the h-principle does. We refer the reader to the survey [14] for
the type of (global) results that could be expected even in the current Hölder-continuous
setting.

It is of certain interest to notice that in the isometric embedding problem a phe-
nomenon entirely analogous to Onsager’s conjecture occurs. Namely, if we consider C1,α

isometric embeddings in codimension 1, then it is possible to prove the h-principle for
sufficiently small exponents α, whereas one can show the absence of the h-principle (and
in fact even some rigidity statements) if the Hölder exponent is sufficiently large. This
phenomenon was first observed by Borisov (see [1] and [2]) and proved in greater gener-
ality and with different techniques in [11]. In particular the proofs given in [11] of both the
h-principle and the rigidity statements share many similarities with the analogous results
for the Euler equations.

The connection between the existence of dissipative weak solutions of the Euler equa-
tions and the convex integration techniques used to prove the h-principle in geometric
problems (and unexpected solutions to differential inclusions) was first observed in [12].
Since then these techniques have been used successfully in other equations of fluid dy-
namics: we refer the interested reader to the survey article [14].

1.3. Loss of derivatives and regularization

Finally, let us make a technical remark. Since the negative power of λ in estimate (1.9)
comes from a stationary-phase type argument (Proposition 4.4), the constant C(vk, R̊k)
will depend on higher derivatives of vk (and of R̊k). In fact, with θ → 1/10 the number of
derivatives m required in the estimates converges to∞. To overcome this loss of deriva-
tive problem, we use the well-known device from the Nash–Moser iteration to mollify
vk and R̊k at some appropriate scale `k . Although we are chiefly interested in derivative
bounds in space, due to the nature of the equation such bounds are connected to derivative
bounds in time, necessitating a mollification in space and time. To simplify the presenta-
tion we will therefore treat time also as a periodic variable and we will therefore construct
solutions on T3

× S1 rather than on T3
× [0, 1].

2. Iteration with double exponential decay

2.1. Notation in Hölder norms

In the following, m = 0, 1, 2, . . . , α ∈ (0, 1), and β is a multiindex. We introduce the
usual (spatial) Hölder norms as follows. First of all, the supremum norm is denoted by
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‖f ‖0 := supT3 |f |. We define the Hölder seminorms as

[f ]m = max
|β|=m

‖Dβf ‖0, [f ]m+α = max
|β|=m

sup
x 6=y

|Dβf (x)−Dβf (y)|

|x − y|α
.

The Hölder norms are then given by

‖f ‖m =

m∑
j=0

[f ]j , ‖f ‖m+α = ‖f ‖m + [f ]m+α.

For functions depending on space and time, we define spatial Hölder norms as

‖v‖r = sup
t
‖v(·, t)‖r ,

whereas the Hölder norms in space and time will be denoted by ‖ · ‖Cr .
We also remark that we use the convention 0 ∈ N: therefore estimates stated for the

norms ‖ · ‖m with m ∈ N include the C0 norm as well.

2.2. The iterative scheme

We follow here [15] and introduce the Euler–Reynolds system (cf. Definition 2.1 therein).
We also establish the following common notation: if u is a 3×3 matrix with entries uij , we
let div u be the (column) vector field whose components are given by the divergences of
the rows of u, that is, (div u)i =

∑
j ∂juij . We will mostly deal with symmetric matrices,

however we will in some places take divergences of nonsymmetric ones and it is useful
to notice that, according to our convention, if a and b are smooth vector fields, then
div(a ⊗ b) = (b · ∇)a + (div b)a.

Definition 2.1. Assume v, p, R̊ are C1 functions on T3
× S1 taking values, respectively,

in R3,R,S3×3
0 . We say that they solve the Euler–Reynolds system if{

∂tv + div(v ⊗ v)+∇p = div R̊,
div v = 0.

(2.1)

The next proposition is the main building block of our construction: the proof of
Theorem 1.1 is achieved by applying it inductively to generate a suitable sequence of
solutions to (2.1) where the right hand side vanishes in the limit.

Proposition 2.2. Let e be a smooth positive function on S1. There exist positive constants
η,M depending on e with the following property.

Let δ ≤ 1 be any positive number and (v, p, R̊) a solution of the Euler–Reynolds
system (2.1) in T3

× S1 such that

3δ
4
e(t) ≤ e(t)−

∫
|v|2(x, t) dx ≤

5δ
4
e(t) ∀t ∈ S1, (2.2)

‖R̊‖0 ≤ ηδ, (2.3)

D := max{1, ‖R̊‖C1 , ‖v‖C1}. (2.4)
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For every δ̄ ≤ 1
2δ

3/2 and every ε > 0 there exists a second triple (v1, p1, R̊1) which
solves the Euler–Reynolds as well system and satisfies the following estimates:

3δ̄
4
e(t) ≤ e(t)−

∫
|v1|

2(x, t) dx ≤
5δ̄
4
e(t) ∀t ∈ S1, (2.5)

‖R̊1‖0 ≤ ηδ̄, (2.6)

‖v1 − v‖0 ≤ M
√
δ, (2.7)

‖p1 − p‖0 ≤ M
2δ, (2.8)

max{‖v1‖C1 , ‖R̊1‖C1} ≤ Aδ
3/2
(
D

δ̄2

)1+ε

(2.9)

where the constant A depends on e, ε > 0 and ‖v‖0.

We next show how to deduce Theorem 1.1 from Proposition 2.2; the rest of the paper is
then devoted to prove the proposition.
Proofs of Theorem 1.1. Let e be as in the statement, i.e. smooth and positive. Without
loss of generality we can assume that e is defined on R, with period 2π , and it is smooth
and positive on the entire real line.

Step 1. Fix any arbitrarily small number ε > 0 and let a, b ≥ 3/2 be numbers whose
choice will be specified later and will depend only on ε. We define (v0, p0, R̊0) to be
identically 0 and we apply Proposition 2.2 inductively with

δn = a
−bn

to produce a sequence (vn, pn, R̊n) of solutions of the Euler–Reynolds system and num-
bers Dn satisfying the following requirements:

3δn
4
e(t) ≤ e(t)−

∫
|v1|

2(x, t) dx ≤
5δn
4
e(t) ∀t ∈ S1, (2.10)

‖R̊n‖0 ≤ ηδn, (2.11)

‖vn − vn−1‖0 ≤ M
√
δn−1, (2.12)

‖pn − pn−1‖0 ≤ M
2δn−1. (2.13)

Dn = max{1, ‖vn‖C1 , ‖R̊n‖C1} and δn+1 ≤
1
2
δ

3/2
n . (2.14)

Observe that with this choice of δn and since a, b ≥ 3/2, (vn, pn) converges uniformly to
a continuous pair (v, p) and in particular

‖vn‖0 ≤ M

∞∑
j=0

a−
1
2 b
j

≤ M

∞∑
j=0

(
3
2

)− 1
2 (

3
2 )
j

.

Therefore, ‖vn‖0 is uniformly bounded, with a constant depending only on e. By Propo-
sition 2.2 we have

Dn+1 ≤ Aδ
3/2
n

(
Dn

δ2
n+1

)1+ε

.
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SinceA is depending only on e, ε and ‖vn‖0, which in turn can be estimated in terms of e,
we can assume that A depends only on ε and e.

We claim that, for a suitable choice of the constants a, b there is a third constant c > 1
for which we inductively have the inequality

Dn ≤ a
cbn .

Indeed, for n = 0 this is obvious. Assuming the bound for Dn, we obtain

Dn+1 ≤ A
a−

3
2 b
n
ac(1+ε)b

n

a−2(1+ε)bn+1 = Aa
(−3/2+(1+ε)(c+2b))bn .

We impose ε < 1/4 and set

b =
3
2

and c =
3(1+ 2ε)

1− 2ε
+ ε.

This choice leads to

cb − (−3/2+ (1+ ε)(c + 2b)) =
ε

2
(1− 2ε) >

ε

4
.

Since bn ≥ 1, we conclude
Dn+1 ≤ (Aa

−ε/4)acb
n+1

Choosing a = A4/ε we conclude Dn+1 ≤ a
cbn+1

.

Step 2. Consider now the sequence vn provided in the previous step. By (2.10)–(2.13)
we conclude that (vn, pn) converges uniformly to a solution (v, p) of the Euler equations
such that e(t) =

∫
|v|2(x, t) dx for every t ∈ S1. On the other hand, observe that

‖vn+1 − vn‖0 ≤ M
√
δn ≤ Ma

−
1
2 b
n

and
‖vn+1 − vn‖C1 ≤ Dn +Dn+1 ≤ 2acb

n+1
.

Therefore

‖vn+1 − vn‖Cθ ≤ ‖vn+1 − vn‖
1−θ
0 ‖vn+1 − vn‖

θ
C1 ≤ 2Ma(θcb−(1−θ)/2)b

n

.

If

θ <
1

1+ 2cb
=

1− 2ε
10+ 19ε − 6ε2 ,

then θcb− (1− θ)/2 < 0 and therefore {vn} is a Cauchy sequence on Cθ , which implies
that it converges in the Cθ norm.

We have shown that, for every ε < 1/4 and every θ < 1−2ε
10+19ε−6ε2 there is a pair

(v, p) ∈ Cθ (T3
× S1,R3)× C(T3

× S1) as in Theorem 1.1. Letting ε ↓ 0 we obtain the
conclusions of Theorem 1.1 (and indeed even the Hölder regularity in time). ut
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Remark 2.3. Using the bounds on δn and Dn in the proof above, we can obtain an esti-
mate on the energy spectrum of v. First of all we observe (cf. Section 3) that in Fourier
space vn+1−vn is essentially supported in a frequency band around the wave number λn.
For λn we then have the relation

‖vn+1 − vn‖C1 ∼ ‖vn+1 − vn‖C0λn.

Therefore, Step 2 of the proof above implies

λn ∼ a
(bc+1/2)bn ,

and consequently the energy spectrum satisfies

E(λn) ∼ δn/λn ∼ a
−(3/2+bc)bn

∼ λ
−

3+2bc
1+2bc

n .

Plugging in the choice of b, c from Step 1 of the proof yields in the limit ε→ 0

E(λn) ∼ λ
−6/5
n .

2.3. Plan of the remaining sections

Except for Section 10, in which we prove the side Remark 1.3, the remaining sections are
all devoted to the proof of Proposition 2.2.

Section 3 contains the precise definition of the maps (v1, p1, R̊1) of Proposition 2.2.
The maps will depend upon various parameters, which will be specified only at the end.

Section 4 contains some preliminaries on classical estimates for the Hölder norms of
products and compositions of functions, some classical Schauder estimates for the ellip-
tic operators involved in the construction and a “stationary phase lemma” (Proposition
4.4) for the Hölder norms of highly oscillatory functions. This last lemma is also a quite
classical fact, but it plays a key role in our estimates.

In Section 5 we prove the key estimates on the main building blocks of the construc-
tion in terms of the relevant parameters; all these estimates are collected in the technical
Proposition 5.1.

The various tools introduced in Sections 4 and 5 are then used in Sections 6–8 to
derive the fundamental estimates on the Hölder norms of v1 and R̊1 in terms of the relevant
parameters. In particular:

• Section 6 contains the estimates on v1;
• Section 7 the estimate on the kinetic energy

∫
|v1|

2;
• Section 8 the estimates on the Reynolds stress R̊1.

Finally, in Section 9 the estimates of Sections 6–8 are used to tune the parameters and
prove Proposition 2.2.
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3. Definition of the maps v1, p1 and R̊1

From now on we fix a triple (v, p, R̊) and numbers δ, δ̄, ε > 0 as in Proposition 2.2. As
in [15] the new velocity v1 is obtained by adding two perturbations, wo and wc:

v1 = v + wo + wc = v1 + w, (3.1)

where wc is a corrector to ensure that v1 is divergence-free. Thus, wc is defined as

wc := −Qwo (3.2)

where Q = Id− P and P is the Leray projection operator (see [15, Definition 4.1]).

3.1. Conditions on the parameters

The main perturbation wo is a highly oscillatory function which depends on three param-
eters: a (small) length scale ` > 0 and (large) frequencies µ, λ such that

λ,µ, λ/µ ∈ N.

In the subsequent sections we will assume the following inequalities:

µ ≥ δ−1
≥ 1, `−1

≥
D

ηδ
≥ 1, λ ≥ max{(µD)1+ω, `−(1+ω)}. (3.3)

Here ω := ε
2+ε > 0 so that

1+ ε =
1+ ω
1− ω

.

Of course, at the very end, the proof of Proposition 2.2 will use a specific choice of the
parameters, which will be shown to respect the above conditions. However, at this stage
the choices in (3.3) seem rather arbitrary. We could leave the parameters completely free
and carry all the relevant estimates in general, but this would give much more complicated
and lengthy formulas in all of them. It turns out that the conditions (3.3) above greatly
simplify many computations.

3.2. Definition of wo

In order to define wo we draw heavily upon the techniques introduced in [15].

• First of all we let r0 > 0, N, λ0 ∈ N, 3j ⊂ {k ∈ Z3
: |k| = λ0} and γ (j)k ∈

C∞(Br0(Id)) be as in [15, Lemma 3.2].
• Next we let Cj ⊂ Z3, j ∈ {1, . . . , 8}, and the functions αk be as in [15, Section 4.1]; as

in that section, we define the functions

φ
(j)
k,µ(v, τ ) :=

∑
l∈Cj

αl(µv)e
−i k·l

µ
τ
.

Next, we let χ ∈ C∞c (R3
×R) be a smooth standard nonnegative radial kernel supported

in [−1, 1]4 and we denote by

χ`(x, t) :=
1
`4χ

(
x

`
,
t

`

)
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the corresponding family of mollifiers. We define

v`(x, t) =

∫
T3×S1

v(x − y, t − s)χ`(y, s) dy ds,

R̊`(x, t) =

∫
T3×S1

R̊(x − y, t − s)χ`(y, s) dy ds.

Similarly to [15, Section 4.1], we define the function

ρ`(t) :=
1

3(2π)3

(
e(t)(1− δ̄)−

∫
T3
|v`|

2(x, t) dx

)
(3.4)

and the symmetric 3× 3 matrix field

R`(x, t) = ρ`(t) Id− R̊`(x, t). (3.5)

Finally, wo is defined by

wo(x, t) :=
√
ρ`(t)

8∑
j=1

∑
k∈3j

γ
(j)
k

(
R`(x, t)

ρ`(t)

)
φ
(j)
k,µ(v`(x, t), λt)Bke

iλk·x, (3.6)

where Bk ∈ C3 are vectors of unit length satisfying the assumptions of [15, Proposition
3.1]. Recall that the maps γ (j)k are defined only in Br0(Id). The functionwo is nonetheless
well defined: the fact that the arguments of γ (j)k are contained in Br0(Id) will be ensured
by the choice of η in Section 3.3 below.

3.3. The constants η and M

We start by observing that, by standard estimates on convolutions,

‖v`‖r + ‖R̊`‖r ≤ C(r)D`
−r for any r ≥ 1, (3.7)

‖v` − v‖0 + ‖R̊` − R̊‖0 ≤ CD` , (3.8)

where the first constant depends only on r and the second is universal. By writing∣∣|v`|2 − |v|2∣∣ ≤ |v − v`|2 + 2|v| |v − v`| we deduce∫
T3

∣∣|v`|2 − |v|2∣∣ dx ≤ C(D`)2 + Ce(t)1/2D` (3.9)

≤ Cηδ
(

max
t
e(t)1/2 + 1

)
, (3.10)

where the last inequality follows from (3.3). This leads to the following lower bound
on ρ`:

ρ`(t) ≥
1

3(2π)3

(
e(t)

(
1−

δ

2

)
−

∫
T3
|v|2 dx −

∫
T3

∣∣|v`|2 − |v|2∣∣ dx)
(3.10)
≥

1
3(2π)3

(
δ

4
min
t
e(t)− Cηδ

(
max
t
e(t)1/2 + 1

))
(3.11)
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We then choose 0 < η < 1 so that the quantity on the right hand side is greater than
2ηδ/r0. This is clearly possible with a choice of η only depending on e. In turn, this leads
to ∥∥∥∥R`ρ` − Id

∥∥∥∥
0
≤
‖R̊`‖0

mint ρ`(t)
≤
r0

2
. (3.12)

Therefore wo in (3.6) is well defined.
In an analogous way we estimate ρ` from above as

ρ`(t) ≤
1

3(2π)3

(
e(t)−

∫
T3
|v|2 dx +

∫
T3

∣∣|v`|2 − |v|2∣∣ dx)
≤

1
3(2π)3

(
5δ
4

max
t
e(t)+ Cδ

(
max
t
e(t)1/2 + 1

))
≤ Cδ

(
1+max

t
e(t)

)
. (3.13)

Since |wo| can be estimated as

|wo(x, t)| ≤ C
√
ρ`(t),

we can choose the constant M , depending only on e, in such a way that

‖wo‖0 ≤
1
2M
√
δ. (3.14)

This is essentially the major point in the definition of M: the remaining terms leading
to (2.7) and (2.8) will be shown to be negligible thanks to an appropriate choice of the
parameters λ,µ and `. We will therefore require that, in addition to (3.14), M ≥ 1.

3.4. The pressure p1

The pressure p1 differs slightly from the corresponding one chosen in [15]. It is given by

p1 = p −
1
2 |wo|

2
−

2
3 〈v − v`, w〉. (3.15)

Observe that, by (3.14), we have

‖p1 − p‖0 ≤
1
4M

2δ + ‖v − v`‖0‖w‖0. (3.16)

3.5. The Reynolds stress R̊1

The Reynolds stress R̊1 is defined by a slightly more complicated formula than the corre-
sponding one in [15, Section 4.5]. Recalling the operator R from [15, Definition 4.2] we
define R̊1 as

R̊1 = R[∂tw + div(w ⊗ v` + v` ⊗ w)]

+R
[
div
(
w ⊗ w + R̊` −

1
2 |wo|

2 Id
)]

+
[
w ⊗ (v − v`)+ (v − v`)⊗ w −

2
3 〈(v − v`), w〉 Id

]
+ [R̊` − R̊]. (3.17)
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The summands in the third and fourth lines are obviously trace-free and symmetric. The
summands in the first and second lines are symmetric and trace-free because of the prop-
erties of the operator R (cf. [15, Lemma 4.3]). Moreover, the expressions to which the
operator R is applied have average 0. For the second line this is obvious because the
expression is the divergence of a matrix field. As for the first line, since w = Pwo, its
average is zero by the definition of the operator P . Therefore the average of ∂tw is also
zero. The remaining term is a divergence and hence its average equals 0.

We now check that the triple (v1, p1, R̊1) satisfies the Euler–Reynolds system. First
of all, recall that ∇g = div(g Id) for any smooth function g and that divRF = F for any
smooth F with average 0. Since we already observed that the expressions to which R is
applied average to 0, we can compute

div R̊1 −∇p1 = ∂tw + div(w ⊗ w)+ div(w ⊗ v + v ⊗ w)−∇p + div R̊.

But recalling that div R̊ = ∂tv + div(v ⊗ v)+∇p we also get

div R̊1 −∇p1 = ∂t (v + w)+ div[w ⊗ w + v ⊗ v + w ⊗ v + v ⊗ w].

Since v1 = v + w we then deduce the desired identity.
In order to complete the proof of Proposition 2.2 we need to show that the (minor)

estimates (2.7), (2.8) and the (major) estimates (2.5), (2.6), (2.9) hold: essentially all the
rest of the paper is devoted to prove them.

3.6. Constants in the estimates

The rest of the paper is devoted to estimating several Hölder norms of the various func-
tions defined so far. The constants appearing in the estimates will always be denoted by
the letter C, possibly with an appropriate subscript. First of all, by this notation we will
throughout understand that the value may change from line to line. In order to keep track
of the quantities on which these constants depend, we will use subscripts to make the
following distinctions:

• C without a subscript will denote universal constants.
• Ch will denote constants in estimates concerning standard functional inequalities in

Hölder spaces Cr (such as (4.1), (4.2)). These constants depend only on the specific
norm used and therefore only on the parameter r ≥ 0; however we keep track of
this dependence because the number r will be chosen only at the end of the proof of
Proposition 2.2 and its value may be very large,
• Ce: throughout the rest of the paper the prescribed energy density e = e(t) of Theorem

1.1 and Proposition 2.2 will be assumed to be a fixed smooth function bounded below
and above by positive constants; several estimates depend on these bounds and the
related constants will be denoted by Ce.
• Cv: in addition to the dependence on e, there will be estimates which also depend on

the supremum norm of the velocity field, ‖v‖0: such constants increase with ‖v‖0 (this
explains the origin of the constant A in (2.9)).
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• Cs , Ce,s , Cv,s will denote constants which are typically involved in Schauder estimates
for Cm+α norms of elliptic operators, when m ∈ N and α ∈]0, 1[; these constants not
only depend on the specific norm used, but they also degenerate as α ↓ 0 and α ↑ 1; the
ones denoted by Ce,s and Cv,s depend also, respectively, upon e and upon e and ‖v‖0.

Observe in any case that, no matter which subscript is used, such constants never depend
on the parameters µ, `, δ, λ or D; they are, however, allowed to depend on ω and ε.

4. Preliminary Hölder estimates

In this section we collect several estimates which will be used throughout the rest of the
paper.

We start with the following elementary inequalities:

[f ]s ≤ Ch(ε
r−s
[f ]r + ε

−s
‖f ‖0) (4.1)

for r ≥ s ≥ 0 and ε > 0, and

[fg]r ≤ Ch([f ]r‖g‖0 + ‖f ‖0[g]r) (4.2)

for any 1 ≥ r ≥ 0, where the constants depend only on r and s. From (4.1) with ε =
‖f ‖

1/r
0 [f ]

−1/r
r we obtain the standard interpolation inequalities

[f ]s ≤ Ch‖f ‖
1−s/r
0 [f ]

s/r
r . (4.3)

Next we collect two classical estimates on the Hölder norms of compositions. These are
also standard, for instance in applications of the Nash–Moser iteration technique. For the
convenience of the reader we recall the short proof.

Proposition 4.1. Let 9 : �→ R and u : Rn → � be smooth functions, with � ⊂ RN .
Then for every m ∈ N \ {0} there is a constant Ch (depending only on m, N and n) such
that

[9 ◦ u]m ≤ Ch

m∑
i=1

[9]i‖u‖
i−1
0 [u]m, (4.4)

[9 ◦ u]m ≤ Ch

m∑
i=1

[9]i[u]
(i−1) m

m−1
1 [u]

m−i
m−1
m . (4.5)

Proof. Denoting by Dj any partial derivative of order j , the chain rule can be written
symbolically as

Dm(9 ◦ u) =

m∑
l=1

(Dl9) ◦ u
∑
σ

Cl,σ (Du)
σ1(D2u)σ2 . . . (Dmu)σm (4.6)

for some constants Cl,σ , where the inner sum is over σ = (σ1, . . . , σm) ∈ Nm such that
m∑
j=1

σj = l,

m∑
j=1

jσj = m.
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From (4.3) we have

(a) [u]j ≤ Ch‖u‖
1−j/m
0 [u]

j/m
m for j ≥ 0;

(b) [u]j ≤ Ch[u]
1− j−1

m−1
1 [u]

j−1
m−1
m for j ≥ 1.

Then (4.4) and (4.5) follow from applying (a) and (b) to (4.6), respectively. ut

4.1. Estimates on φ(j)k,µ

Recall that φ(j)k,µ = φ
(j)
k,µ(v, τ ) are defined on R3

× S1 and they are smooth (here v is
treated as an independent variable). Because the τ -derivatives are not bounded in v, we
introduce the seminorms

[f ]m,R = max
|β|=m

‖Dβv f ‖C0(BR(0)×S1),

[f ]m+α,R = max
|β|=m

sup
v 6=w∈BR(0), τ∈S1

|D
β
v f (v, τ )−D

β
v f (w, τ)|

|v − w|α
,

where Dβv denotes partial derivatives in the v variable with multiindex β = (β1, β2, β3).

Proposition 4.2. There are constants Ch, depending only on m ∈ N, such that

[φ
(j)
k,µ]m,R + R

−1
[∂τφ

(j)
k,µ]m,R + R

−2
[∂ττφ

(j)
k,µ]m,R ≤ Chµ

m, (4.7)

[∂τφ
(j)
k,µ + i(k · v)φ

(j)
k,µ]m ≤ Chµ

m−1, (4.8)

R−1
[∂τ (∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ)]m,R ≤ Chµ

m−1. (4.9)

Proof. We recall briefly the definition of the maps φ(j)k,µ from [15, Section 4.1]. First of all
we fix two constants c1 and c2 such that

√
3/2 < c1 < c2 < 1 and then ϕ ∈ C∞c (Bc2(0))

which is nonnegative and identically 1 on the ball Bc1(0). We then set

ψ(v) :=
∑
k∈Z3

(ϕ(v − k))2 and αk(v) :=
ϕ(v − k)
√
ψ(v)

.

By the choice of c1 we easily conclude that ψ−1/2
∈ C∞. On the other hand, it is also

obvious that ψ(v − k) = ψ(v). Thus there is a function α ∈ C∞c (B1(0)) such that
αk(v) = α(v − k).

We next consider the lattice Z3
⊂ R3 and its quotient by (2Z)3 and we denote by Cj ,

j = 1, . . . , 8, the eight equivalence classes of Z3/(2Z)3. Finally, as in [15, Section 4.1]
we set

φ
(j)
k (v, τ ) :=

∑
l∈Cj

αl(µv)e
−i(k· l

µ
)τ
. (4.10)

Observe that, for each fixed j , the functions {αl : l ∈ Cj } have pairwise disjoint supports.
Therefore the estimate

[φ
(j)
k,µ]m ≤ C[α]mµ

m
≤ Chµ

m
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follows trivially. Next,

∂τφ
(j)
k (v, τ ) :=

∑
l∈Cj
−i

(
k ·

l

µ

)
αl(µv)e

−i(k· l
µ
)τ
.

On the other hand, if |v| ≤ R, then αl(µv) = 0 for any l with |l| ≥ µR + 2; hence

[∂τφ
(j)
k ]m,R ≤ |k|(R + 2µ−1)[ϕ]mµ

m
≤ ChRµ

m

(in principle the constant Ch depends on k, but on the other hand k ranges over
⋃
j 3j ,

which is a finite set). A similar argument applies to ∂ττφ
(j)
k,µ and hence concludes the proof

of (4.7).
We finally compute

Dmv (∂τφ
(j)
k,µ + i(k · v)φ

(j)
k,µ) =

∑
l∈Cj

ik ·

(
v −

l

µ

)
µm[Dmα](µ(v − l))e

−i(k· l
µ
)τ

+ µm−1
∑
l∈Cj

ik ⊗ [Dm−1α](µ(v − l))e
−i(k· l

µ
)τ
.

Recall however that α ∈ C∞c (B1(0)); thus |v − l/µ| ≤ µ−1 if [Dmα](µ(v − l)) 6= 0. It
follows easily that

[∂τφ
(j)
k,µ + i(k · v)φ

(j)
k,µ]m ≤ Cµ

m−1([α]m + |k|[α]m−1) ≤ Chµ
m−1,

which proves (4.8). On the other hand, differentiating once more the identities in τ ,
(4.9) follows from the same arguments used above for [∂τφ]m,R . ut

4.2. Schauder estimates for elliptic operators

We now recall some classical Schauder estimates for the various operators involved in the
construction. These estimates were already collected in [15, Proposition 5.1] and will be
used several times in what follows. We state them again for the reader’s convenience and
because of the convention on constants as set in Section 3.3, and refer to [15, Definitions
4.1, 4.2] for the precise definitions of the operators P , Q and R.

Proposition 4.3. For any α ∈ (0, 1) and any m ∈ N there exists a constant Cs(m, α)
such that

‖Qv‖m+α ≤ Cs(m, α)‖v‖m+α, (4.11)
‖Pv‖m+α ≤ Cs(m, α)‖v‖m+α, (4.12)
‖Rv‖m+1+α ≤ Cs(m, α)‖v‖m+α, (4.13)
‖R(divA)‖m+α ≤ Cs(m, α)‖A‖m+α, (4.14)
‖RQ(divA)‖m+α ≤ Cs(m, α)‖A‖m+α. (4.15)
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4.3. Stationary phase lemma

Finally, we state a key ingredient of our construction, which yields estimates for highly
oscillatory functions. Though this proposition is also essentially contained in [15], it is
nowhere explicitly stated in this form. Since it will be used several times and in a more
subtle way than in [15], it is useful to isolate it.

Proposition 4.4. Let k ∈ Z3
\ {0} and λ ≥ 1.

(i) For any a ∈ C∞(T3) and m ∈ N we have∣∣∣∣∫
T3
a(x)eiλk·x dx

∣∣∣∣ ≤ [a]mλm . (4.16)

(ii) Let k ∈ Z3
\{0}. For a smooth vector field F ∈ C∞(T3

;R3) let Fλ(x) := F(x)eiλk·x .
Then

‖R(Fλ)‖α ≤
Cs

λ1−α ‖F‖0 +
Cs

λm−α
[F ]m +

Cs

λm
[F ]m+α,

‖RQ(Fλ)‖α ≤
Cs

λ1−α ‖F‖0 +
Cs

λm−α
[F ]m +

Cs

λm
[F ]m+α,

where Cs = Cs(m, α) (i.e. the constant depends neither on λ nor on k).

Proof. For j = 0, 1, . . . define

Aj (y, ξ) := −i

[
k

|k|2

(
i
k

|k|2
· ∇

)j
a(y)

]
eik·ξ ,

Bj (y, ξ) :=

[(
i
k

|k|2
· ∇

)j
a(y)

]
eik·ξ .

Direct calculation shows that

Bj (x, λx) =
1
λ

div[Aj (x, λx)] +
1
λ
Bj+1(x, λx).

In particular, for any m ∈ N,

a(x)eiλk·x = B0(x, λx) =
1
λ

m−1∑
j=0

1
λj

div[Aj (x, λx)] +
1
λm
Bm(x, λx).

Integrating this over T3 and using the fact that |k| ≥ 1 we obtain (4.16).
Next, using (4.1) and (4.2) we conclude that

‖Aj (·, λ·)‖α ≤ C(λ
α
[a]j + [a]j+α)

≤ Cλj+α(λ−m[a]m + ‖a‖0) for any j ≤ m− 1

and similarly
‖Bm(·, λ ·)‖α ≤ C(λ

α
[a]m + [a]m+α).



Onsager’s conjecture 1485

Applying the previous computations to each component of the vector field F we then get
the identity

F(x)eiλk·x = G0(x, λx) =
1
λ

m−1∑
j=0

1
λj

div[Hj (x, λx)] +
1
λm
Gm(x, λx),

where the Hj are matrix-valued functions (not necessarily symmetric) andGm is a vector
field.Hj andGm enjoy the same estimates of Aj and Bm respectively. Thus, using (4.13),
(4.14) and (4.16) we conclude that

‖R(Fλ)‖α ≤ Cs
(

1
λ

m−1∑
j=0

1
λj
‖Hj (·, λ·)‖α +

1
λm
‖Gm(·, λ·)‖α

)

≤ Cs

(
1

λ1−α ‖F‖0 +
1

λm−α
[F ]m +

1
λm
[F ]m+α

)
.

Finally, using (4.11), (4.13) and (4.15) we get

‖RQ(Fλ)‖α ≤ Cs
(

1
λ1−α ‖F‖0 +

1
λm−α

[F ]m +
1
λm
[F ]m+α

)
as well. ut

5. Doubling the variables and corresponding estimates

It will be convenient to write wo as

wo(x, t) = W(x, t, λt, λx),

where

W(y, s, τ, ξ) :=
∑
|k|=λ0

ak(y, s, τ )Bke
ik·ξ (5.1)

=

√
ρ`(s)

8∑
j=1

∑
k∈3j

γ
(j)
k

(
R`(y, s)

ρ`(s)

)
φ
(j)
k,µ(v`(y, s), τ )Bke

ik·ξ (5.2)

(cf. [15, Section 6]). The following proposition corresponds to [15, Proposition 6.1], with
an important difference: the estimates stated here keep track of not only the dependence
of the constants on the parameter µ, but also on the parameter ` and the functions v and
R̊ (as can be easily observed, these estimates do not depend on p); more precisely, we
will make explicit their dependence on δ and D (recall the convention for the constants,
stated in Section 3.3). Observe that all the estimates claimed below are in space only!
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Proposition 5.1. (i) Let ak ∈ C∞(T3
× S1

× R) be given by (5.1). Then for any r ≥ 1
and α ∈ [0, 1],

‖ak(·, s, τ )‖r ≤ Ce
√
δ(µrDr + µD`1−r), (5.3)

‖∂τak(·, s, τ )‖r + ‖∂ττak(·, s, τ )‖r ≤ Cv
√
δ(µrDr + µD`1−r), (5.4)

‖(∂τak + i(k · v`)ak)(·, s, τ )‖r ≤ Ce
√
δ(µr−1Dr +D`1−r), (5.5)

‖∂τ (∂τak + i(k · v`)ak)(·, s, τ )‖r ≤ Cv
√
δ(µr−1Dr +D`1−r), (5.6)

‖ak(·, s, τ )‖α ≤ Ce
√
δ µαDα, (5.7)

‖∂τak(·, s, τ )‖α + ‖∂ττak(·, s, τ )‖α ≤ Cv
√
δ µαDα, (5.8)

‖(∂τak + i(k · v`)ak)(·, s, τ )‖α ≤ Ce
√
δ µα−1Dα, (5.9)

‖∂τ (∂τak + i(k · v`)ak)(·, s, τ )‖α ≤ Cv
√
δ µα−1Dα. (5.10)

Moreover, for any r ≥ 0,

‖∂sak(·, s, τ )‖r ≤ Ce
√
δ(µr+1Dr+1

+ µD`−r), (5.11)
‖∂sτak(·, s, τ )‖r ≤ Cv

√
δ(µr+1Dr+1

+ µD`−r), (5.12)
‖∂ssak(·, s, τ )‖r ≤ Ce

√
δ(µr+2Dr+2

+ µD`−1−r), (5.13)
‖∂s(∂τak + i(k · v`)ak)(·, s, τ )‖r ≤ Cv

√
δ(µrDr+1

+ µD`−r). (5.14)

(ii) The matrix-function W ⊗W can be written as

(W ⊗W)(y, s, τ, ξ) = R`(y, s)+
∑

1≤|k|≤2λ0

Uk(y, s, τ )e
ik·ξ , (5.15)

where the coefficients Uk ∈ C∞(T3
× S1

× R;S3×3) satisfy

Ukk =
1
2 (trUk)k. (5.16)

Moreover, for any r ≥ 1 and any α ∈ [0, 1],

‖Uk(·, s, τ )‖r ≤ Ceδ(µ
rDr + µD`1−r), (5.17)

‖∂τUk(·, s, τ )‖r ≤ Cvδ(µ
rDr + µD`1−r), (5.18)

‖Uk(·, s, τ )‖α ≤ Ceδµ
αDα, (5.19)

‖∂τUk(·, s, τ )‖α ≤ Cvδµ
αDα, (5.20)

and for any r ≥ 0,

‖∂sUk(·, s, τ )‖r ≤ Ceδ(µ
r+1Dr+1

+ µD`−r). (5.21)

Proof. The arguments for (5.15) and (5.16) are analogous to those in [15, proof of Propo-
sition 6.1]. Moreover, precisely as argued there, the estimates for the Uk terms follow
easily from the estimates for the ak coefficients, since each Uk is the sum of finitely many
terms of the form ak′ak′′ . Here we focus, therefore, on the estimates (5.3)–(5.14).
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First of all observe that it suffices to prove the cases r ∈ N, since the remaining ones
can be obtained by interpolation. Recall now the formula for ak: if k ∈

⋃
j 3j , then

ak =
√
ρ`(s) γ

(j)
k

(
R`(y, s)

ρ`(s)

)
φ
(j)
k,µ(v`(y, s), τ ), (5.22)

otherwise ak vanishes identically.
Observe that the functions ak depend on the variables y, s and τ . We introduce the

notation J·Km for the Hölder seminorms in y and s:

Jak(·, ·, τ )Km =
∑

j+|β|=m

‖∂
j
s D

β
y ak‖0,

and the notation |||ak(·, ·, τ )|||m for the Hölder norm in y and s:

|||ak(·, ·, τ )|||m =

m∑
i=0

Jak(·, ·, τ )Ki .

We next introduce the functions

0(y, s) = γ
(j)
k

(
R`(y, s)

ρ`(s)

)
and 8(y, s, τ ) = φ

(j)
k,µ(v`(y, s), τ )

and observe that
ak =

√
ρ` 08.

Recall that ‖ρl‖0 ≤ Ceδ by (3.13). Therefore the claimed estimate for r = α = 0 follows
trivially. Thus, we assume r ∈ N \ {0} and we focus on the estimates (5.3)–(5.6) and
(5.11)–(5.14).

Proof of (5.3), (5.11) and (5.13). Recalling (4.2), we estimate

|||ak|||r ≤ Ch‖
√
ρ`‖0‖0‖0J8Kr + Ch‖

√
ρ`‖0‖8‖0J0Kr + Ch‖8‖0‖0‖0J

√
ρ`Kr

≤ Ce(
√
δ(J8Kr + J0Kr)+ J

√
ρ`Kr). (5.23)

Next, by (3.7), for any j ≥ 1 we have [v`]j ≤ ChD`1−j for every j ≥ 1. Applying (4.5)
and Proposition 4.2 we conclude that

J8Kr ≤ Ch
r∑
i=1

[φ
(j)
k,µ]i[v`]

(i−1) r
r−1

1 [v`]
r−i
r−1
r ≤ Ch

r∑
i=1

[φ
(j)
k,µ]iD

i`i−r

(4.7)
≤ Ch

r∑
i=1

Chµ
iDi`−r+i ≤ Ch(µ

rDr + µD`1−r). (5.24)

Applying (4.4) we also conclude that

J0Kr ≤ Ch
r∑
i=1

[γ
(j)
k ]i

∥∥∥∥R`ρ`
∥∥∥∥i−1

0
J
R`

ρ`
Kr (5.25)
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Now, by (3.12) we have ∥∥∥∥R`ρ`
∥∥∥∥

0
≤
r0

2
+ 1.

Moreover [γ (j)k ]r ≤ Ch: indeed, recall that, because of our choice of η in Section 3.3, the
range of R`/ρ` is contained in Br0/2(Id), whereas the γ (j)k are defined on the open ball
Br0(Id); since the γ (j)k are smooth and finitely many, obviously we can bound their norms
uniformly on the range of the function R`/ρ`.

Using these estimates in (5.25) we thus get

J0Kr ≤ Ch
s
R`

ρ`

{

r

(4.2)
≤ ‖ρ−1

` ‖0JR`Kr + ‖R`‖0Jρ
−1
` Kr . (5.26)

Recall next that, by (3.11), ρ`(s) ≥ Ceδ for every s. Moreover, by (3.4), for r ≥ 1 we
have

∂rs ρ`(s) =
1

3(2π)3

(
(1− δ̄)∂rs e(s)−

r∑
j=0

(
r

j

)∫
T3
(∂
j
s v` · ∂

r−j
s v`)(x, s) dx

)
.

Thus, we conclude that

[ρ`]r ≤ Ce + C‖v`‖C0
t L

2
x
[v`]r + Ch

r−1∑
j=1

[v`]j [v`]r−j

≤ Ce + Ce[v`]r + Ch

r−1∑
j=1

[v`]j [v`]r−j

(3.7)
≤ CeD`

1−r
+ ChD

2`r−2 (3.3)
≤ CeD`

1−r . (5.27)

Set 9(ζ) = ζ−1. On the domain [δ,∞[, we have the estimate [9]i ≤ Chδ
−i−1.

Therefore, applying (4.4) again we deduce that

Jρ−1
` Kr ≤ Ch

r∑
i=1

δ−i−1
‖ρ`‖

i−1
0 [ρ`]r ≤ Chδ

−2
[ρ`]r ≤ Ceδ

−2D`r−1. (5.28)

It follows from (5.26), (5.28) and (3.7) that

J0Kr ≤ Ceδ−1D`r−1. (5.29)

Next, set 9(ζ) = ζ 1/2. In this case, on the domain [δ, Ceδ[ we have the estimates
[9]i ≤ Ceδ

1/2−i . Thus, by (4.4) and (5.27),

J
√
ρ`Kr ≤ Ch

r∑
i=1

Ceδ
1/2−i
‖ρ`‖

i−1
0 [ρ`]r ≤ Ceδ

−1/2D`1−r . (5.30)

Inserting (5.24), (5.29) and (5.30) into (5.23) we find that

|||ak|||r ≤ Ceδ
−1/2D`1−r

+ Ceδ
1/2µrDr + Ceδ

1/2µD`1−r .
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Recall, however, that µ ≥ δ−1 and hence

|||ak|||r ≤ Ce
√
δ(µrDr + µD`1−r).

From this we derive the claimed estimates for ‖ak‖r for any r ≥ 1 and for ‖∂sak‖r and
‖∂ssak‖r for any r ≥ 0.

Proof of (5.4) and (5.12). Differentiating in τ we obtain the identities

∂τak(·, ·, τ ) =
√
ρ` 0∂τφ

(j)
k,µ(v`, τ ) ∂ττak(·, ·, τ ) =

√
ρ` 0∂ττφ

(j)
k,µ(v`, τ ).

Thus, arguing precisely as above, we achieve the desired estimates for the quantities
‖∂τak‖r , ‖∂τsak‖r and ‖∂ττak‖r . However, note that we use the estimate (4.7) with
R := ‖v‖0 and for [∂tφ

(j)
k,µ]m,R and [∂ττφ

(j)
k,µ]m,R . It turns out, therefore, that the con-

stants in the estimates (5.4) and (5.12) depend also on ‖v‖0.

Proof of (5.5), (5.6) and (5.14). Finally, we introduce the function

χ
(j)
k,µ(v, τ ) := ∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

and χ(y, s, τ ) = χ (j)k,µ(v`(y, s), τ ). Then

∂τak + i(k · v`)ak =
√
ρ` χ0.

Applying the same computations as above and using the estimates in Proposition 4.2 we
achieve the desired estimates for ‖∂τak + i(k · v`)ak‖r and ‖∂s(∂τak + i(k · v`)ak)‖r .
Finally,

∂τ (∂τak + i(k · v`)ak) =
√
ρ` 0[∂τχ

(j)
k,µ](v`, τ ),

and hence the arguments above carry over to also yield an estimate of ‖∂τ (∂τak +
i(k · v`)ak)‖r . ut

6. Estimates on wo, wc and v1

Proposition 6.1. Under assumption (3.3), for any r ≥ 0,

‖wo‖r ≤ Ce
√
δ λr , (6.1)

‖∂two‖r ≤ Cv
√
δ λr+1, (6.2)

and any r > 0,

‖wc‖r ≤ Ce
√
δ Dµλr−1, (6.3)

‖∂twc‖r ≤ Cv
√
δ Dµλr . (6.4)

In particular,

‖w‖0 ≤ Ce
√
δ, (6.5)

‖w‖C1 ≤ Cv
√
δ λ. (6.6)



1490 Camillo De Lellis, László Székelyhidi Jr.

Proof. First of all observe that it suffices to prove (6.1) when r = m ∈ N, since the
remaining inequalities can be obtained by interpolation. By writing

wo(x, t) =
∑
|k|=λ0

ak(x, t, λt)Bke
iλk·x
=:

∑
|k|=λ0

ak(x, t, λt)�k(λx),

∂two(x, t) = λ
∑
|k|=λ0

∂τak(x, t, λt)�k(λx)+
∑
|k|=λ0

∂sak(x, t, λt)�k(λx),

from (4.2) we obtain

‖wo‖m ≤ Ch
∑
|k|=λ0

(‖�k‖0[ak]m + λ
m
‖ak‖0[�k]m),

‖∂two‖m ≤ Chλ
∑
|k|=λ0

(‖�k‖0[∂τak]m + λ
m
‖∂τak‖0[�k]m)

+ Ch
∑
|k|=λ0

(‖�k‖0[∂sak]m + λ
m
‖∂sak‖0[�k]m).

When m = 0, we then use (5.7) to deduce (6.1), and (5.8) and (5.11) to deduce (6.2). For
m ≥ 1 we use, respectively, (5.3) and the estimates (5.4) and (5.11) to get

‖wo‖m ≤ Ce
√
δ(µmDm + µD`1−m

+ λm),

‖∂two‖m ≤ Cv
√
δ(λµmDm + λµD`1−m

+ λm+1
+ µm+1Dm+1

+ µD`−m + λmµD).

However, recall from (3.3) that λ ≥ (Dµ)1+ω ≥ Dµ and λ ≥ `−1. Thus (6.1) and (6.2)
follow easily.

As for the estimates on wc we argue as in [15, Lemma 6.2] and start with the obser-
vation that, since k · Bk = 0,

wo(x, t) =
1
λ
∇ ×

( ∑
|k|=λ0

−iak(x, t, λt)
k × Bk

|k|2
eiλx·k

)
+

1
λ

∑
|k|=λ0

i∇ak(x, t, λt)×
k × Bk

|k|2
eiλx·k.

Hence
wc(x, t) =

1
λ
Quc(x, t), (6.7)

where
uc(x, t) =

∑
|k|=λ0

i∇ak(x, t, λt)×
k × Bk

|k|2
eiλx·k. (6.8)

The Schauder estimate (4.11) then gives

‖wc‖m+α ≤
Cs

λ
‖uc‖m+α (6.9)

for any m ∈ N and α ∈ (0, 1).
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We next wish to estimate ‖uc‖r . For integer m we can argue as for the estimate of
‖wo‖ to get

‖uc‖m ≤ Ce([ak]1λ
m
+ [ak]m+1) ≤ Ce

√
δ(µDλm + µD`−m) ≤ Ce

√
δ µDλm.

Hence, by interpolation, we reach the estimate ‖uc‖m+α ≤ Ce
√
δ µDλm+α for any m,α.

Combining this with (6.9), for r > 0 which is not an integer we conclude that ‖wc‖r ≤
Ce,s
√
δ µDλr−1. On the other hand, the corresponding estimates for any integer r > 0

can then be obtained by interpolation.
Similarly, for ∂twc we have

∂twc =
1
λ
Q∂tuc.

Differentiating (6.8) we achieve

∂tuc(x, t) = λ
∑
|k|=λ0

i∇∂τak(x, t, λt)×
k × Bk

|k|2
eiλx·k

+

∑
|k|=λ0

i∇∂sak(x, t, λt)×
k × Bk

|k|2
eiλx·k.

Using Proposition 5.1 and (3.3) we deduce, analogously to above,

‖∂tuc‖r ≤ Cv
√
δ µDλr+1.

Using (6.9) once more we arrive at (6.3).
To obtain (6.5) and (6.6), recall that w = wo +wc. For any α > 0 we therefore have

‖w‖0 ≤ ‖wo‖0 + ‖wc‖α ≤ Ce
√
δ + Ce,s

√
δ Dµλα−1. (6.10)

We now use (6.10) with α = ω
1+ω ; since by (3.3) we have λ1−α

= λ
1

1+ω ≥ Dµ,
(6.5) follows. In the same way

‖w‖C1 ≤ ‖wo‖1 + ‖∂two‖0 + ‖wc‖1+α + ‖∂twc‖α

≤ Cv
√
δ λ+ Cv,s

√
δ Dµλα.

Again choosing α = ω
1+ω and arguing as above we deduce (6.6). ut

7. Estimate on the energy

Proposition 7.1. For any α ∈
(
0, ω

1+ω

)
there is a constant Cv,s , depending only on α, e

and ‖v‖0, such that, if the parameters satisfy (3.3), then∣∣∣∣e(t)(1− δ̄)− ∫ |v1|
2(x, t) dx

∣∣∣∣ ≤ CeD`+ Cv,s√δ µDλα−1
∀t. (7.1)
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Proof. We write

|v1|
2
= |v|2 + |wo|

2
+ |wc|

2
+ 2wo · v + 2wo · wc + 2wc · v. (7.2)

Since ∣∣∣∣∫ wc · v

∣∣∣∣ ≤ ‖wc‖0‖v(·, t)‖L2 ≤

√
e(t) ‖wc‖0,

integrating the identity (7.2) we obtain the inequality∣∣∣∣∫ (|v1|
2
− |wo|

2
− |v|2) dx

∣∣∣∣ ≤ Ce‖wc‖0(1+ ‖wc‖0 + ‖wo‖0)+ 2
∣∣∣∣∫ wo · v

∣∣∣∣.
By Proposition 6.1 we then have∣∣∣∣∫ (|v1|

2
− |wo|

2
− |v|2) dx

∣∣∣∣ ≤ Ce,s√δ Dµλα−1(1+ Ce√δ Dµλα−1
+ Ce
√
δ
)

+ 2
∣∣∣∣∫ wo · v

∣∣∣∣,
and hence, recalling that λ ≥ (Dµ)1+ω, we infer that∣∣∣∣∫ (|v1|

2
− |wo|

2
− |v|2) dx

∣∣∣∣ ≤ Ce,s√δ Dµλα−1
+ 2

∣∣∣∣∫ wo · v

∣∣∣∣.
Applying Propositions 4.4(i) and 5.1 we obtain∣∣∣∣∫ wo · v

∣∣∣∣ ≤ Ce ∑
k=|λ0|

[vak]1

λ
≤ Ce‖v‖0

√
δ Dµλ−1

+ CeD
√
δλ−1,

and hence ∣∣∣∣∫ (|v1|
2
− |wo|

2
− |v|2)

∣∣∣∣ ≤ Cv,s√δ Dµλα−1. (7.3)

Next, taking the trace of identity (5.15) we have

|W(y, s, τ, ξ)|2 = trR`(y, s)+
∑

1≤|k|≤2λ0

ck(y, s, τ )e
ik·ξ

for the coefficients ck = trUk . Recall that∫
T3

trR`(x, t) dx = 3(2π)3ρ`(t) = e(t)(1− δ̄)−
∫
T3
|v`|

2 dx.

Moreover, by Proposition 4.4(i) with m = 1 we have∣∣∣∣∫ (|wo|2(x, t)− trR`(x, t)) dx
∣∣∣∣ ≤ ∑

1≤|k|≤2λ0

∣∣∣∣∫ ck(x, t, λt)e
ik·λx dx

∣∣∣∣
≤ Cλ−1

∑
1≤|k|≤2λ0

[ck]1
(5.17)
≤ CeδDµλ

−1. (7.4)
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Thus we conclude that∣∣∣∣∫ (|wo|2 + |v`|2) dx − e(t)(1− δ̄)∣∣∣∣ ≤ CeδDµλ−1. (7.5)

Finally, recall from (3.9) that ∣∣∣∣∫ (|v|2 − |v`|2)∣∣∣∣ ≤ CeD`. (7.6)

Putting (7.3), (7.5) and (7.6) together, we achieve (7.1). ut

8. Estimates on the Reynolds stress

Proposition 8.1. For every α ∈
(
0, ω

1+ω

)
, there is a constant Cv,s , depending only on α,

ω, e and ‖v‖0, such that, if the conditions (3.3) are satisfied, then

‖R̊1‖0 ≤ Cv,s
(
D`+

√
δ Dµλ2α−1

+
√
δ µ−1λα

)
, (8.1)

‖R̊1‖C1 ≤ Cv,sλ
(√
δ D`+

√
δ Dµλ2α−1

+
√
δ µ−1λα

)
. (8.2)

Proof. We split the Reynolds stress into seven parts:

R̊1 = R̊
1
1 + R̊

2
1 + R̊

3
1 + R̊

4
1 + R̊

5
1 + R̊

6
1 + R̊

7
1,

where

R̊1
1 = R̊` − R̊,

R̊2
1 =

[
w ⊗ (v − v`)+ (v − v`)⊗ w −

2
3 〈(v − v`), w〉 Id

]
,

R̊3
1 = R

[
div(wo ⊗ wo + R̊` − 1

2 |wo|
2 Id)

]
,

R̊4
1 = R∂twc,
R̊5

1 = R div
(
(v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc

)
,

R̊6
1 = R div(v` ⊗ wo),

R̊7
1 = R[∂two + div(wo ⊗ v`)] = R[∂two + v` · ∇wo].

In what follows we will estimate each term separately in the order given above.

Step 1. Recalling (3.8) we have

‖R̊1
1‖0 ≤ CD`, (8.3)

‖R̊1
1‖C1 ≤ 2D ≤ 2D

√
δ µλ2α, (8.4)

where in the last inequality we have used (3.3).

Step 2. Again by (3.8) and (3.7),

‖v − v`‖0 ≤ CD`, ‖v − v`‖C1 ≤ 2D.
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Moreover, Proposition 6.1 gives

‖w‖0 ≤ Ce
√
δ, ‖w‖C1 ≤ Cv

√
δ λ.

Using this and (4.2) we conclude that

‖R̊2
1‖0 ≤ Ce

√
δ D` ≤ CeD`, (8.5)

‖R̊2
1‖C1 ≤ Ce

√
δ D + Cv

√
δ λD` ≤ Cv

√
δ λD`, (8.6)

where in the last inequality we have used (3.3).

Step 3. We next argue as in the proof of [15, Lemma 7.2]. Recall the formula (5.15) from
Proposition 5.1. Since ρ` is a function of t only, we can write R̊3

1 as

div
(
wo ⊗ wo−

1
2 (|wo|

2
− ρ`) Id+R̊`

)
= div

(
wo ⊗ wo − R` −

1
2 (|wo|

2
− trR`) Id

)
= div

[ ∑
1≤|k|≤2λ0

(
Uk −

1
2 (trUk) Id

)
(x, t, λt)eiλk·x

]
(5.16)
=

∑
1≤|k|≤2λ0

divy
[
Uk −

1
2 (trUk) Id

]
(x, t, λt)eiλk·x . (8.7)

We can therefore apply Proposition 4.4 with

m =

⌊
1+ ω
ω

⌋
+ 1 (8.8)

and α ∈
(
0, ω

1+ω

)
. Combining the corresponding estimates with Proposition 5.1 we get

‖R̊3
1‖0 ≤ Cs(m, α)

∑
1≤|k|≤2λ0

(
λα−1
[Uk]1 + λ

α−m
[Uk]m+1 + λ

−m
[Uk]m+1+α

)
≤ Cs(m, α)Ce

(
λα−1δµD + λα−mδ(µm+1Dm+1

+ µD`−m)

+ λ−mδ(µm+1+αDm+1+α
+ µD`−m−α)

)
(3.3)
≤ Ce,sδµDλ

α−1. (8.9)

Observe that in the last inequality we have used (3.3): indeed, since m ≥ 1+ω
ω

by
(8.8), we get

λ ≥ max{`−(1+ω), (µD)1+ω} ≥ max
{
`−

m
m−1 , (µD)

m
m−1

}
. (8.10)

Next, differentiating (8.7) in space and using the same argument yields

‖R̊3
1‖1 ≤ Ceλ‖R̊

3
1‖0 + Cs

∑
1≤|k|≤2λ0

(
λα−1
[Uk]2 + λ

α−m
[Uk]m+2 + λ

−m
[Uk]m+2+α

)
≤ Ce,sδµDλ

α.
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Finally, differentiating (8.7) in time gives

∂t div
(
wo ⊗ wo−

1
2 (|wo|

2
− ρ`) Id+R̊`

)
=

∑
1≤|k|≤2λ0

divy
[
∂sUk −

1
2 (tr ∂sUk) Id

]
(x, t, λt)eiλk·x

+ λ
∑

1≤|k|≤2λ0

divy
[
∂τUk −

1
2 (tr ∂τUk) Id

]
(x, t, λt)eiλk·x .

Thus, applying the same argument as above, we obtain

‖∂t R̊
3
1‖0 ≤ Cs

∑
1≤|k|≤2λ0

(
λα−1
[∂sUk]1 + λ

α−m
[∂sUk]m+1 + λ

−m
[∂sUk]m+1+α

)
+ Csλ

∑
1≤|k|≤2λ0

(
λα−1
[∂τUk]1 + λ

α−m
[∂τUk]m+1 + λ

−m
[∂τUk]m+1+α

)
≤ Cv,s(µD + `

−1
+ λ)δµDλα−1

≤ Cv,sδµDλ
α.

Finally, putting these last two estimates together yields

‖R̊3
1‖C1 ≤ ‖R̊

3
1‖1 + ‖∂t R̊

3
1‖0 ≤ Cv,sδµDλ

α. (8.11)

Step 4. In this case we argue as in [15, Lemma 7.3]. Differentiate in t the identity (6.7)
to get

∂twc =
1
λ
Q∂tuc,

where

∂tuc(x, t) = λ
∑
|k|=λ0

i(∇∂τak)(x, t, λt)×
k × Bk

|k|2
eiλx·k

+

∑
|k|=λ0

i(∇∂sak)(x, t, λt)×
k × Bk

|k|2
eiλx·k.

Choose again m as in (8.8) and apply Propositions 4.4 and 5.1 to get

‖R̊4
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1
[∂τak]1 + λ

α−m
[∂τak]m+1 + λ

−m
[∂τak]m+1+α

)
+
Cs

λ

∑
|k|=λ0

(
λα−1
[∂sak]1 + λ

α−m
[∂sak]m+1 + λ

−m
[∂sak]m+1+α

)
≤ Cv(λ

−1µD + λ−1`−1
+ 1)
√
δ µDλα−1, (8.12)

where in the last inequality we have again used (8.10) for the two rightmost summands
in the corresponding parentheses (cf. the argument given for (8.9) in the paragraph right
after). Using then (3.3) we conclude that ‖R̊4

1‖ ≤ Cv
√
δ µDλα−1.
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Following the same strategy as in Step 3 we obtain

‖R̊4
1‖1 ≤ Ceλ‖R̊

4
1‖0

+ Cs
∑
|k|=λ0

(
λα−1
[∂τak]2 + λ

α−m
[∂τak]m+2 + λ

−m
[∂τak]m+2+α

)
+
Cs

λ

∑
|k|=λ0

(
λα−1
[∂sak]2 + λ

α−m
[∂sak]m+2 + λ

−m
[∂sak]m+2+α

)
≤ Cv,s

√
δ µDλα. (8.13)

Differentiating in time yields

‖∂t R̊
4
1‖0 ≤ Csλ

∑
|k|=λ0

(
λα−1
[∂ττak]1 + λ

α−m
[∂ττak]m+1 + λ

−m
[∂ττak]m+1+α

)
+ Cs

∑
|k|=λ0

(
λα−1
[∂τsak]1 + λ

α−m
[∂τsak]m+1 + λ

−m
[∂τsak]m+1+α

)
+
Cs

λ

∑
|k|=λ0

(
λα−1
[∂ssak]1 + λ

α−m
[∂ssak]m+1 + λ

−m
[∂ssak]m+1+α

)
≤ Cv,s

√
δ µDλα. (8.14)

Putting (8.13) and (8.14) together we obtain

‖R̊4
1‖C1 ≤ Cv,s

√
δ µDλα. (8.15)

Step 5. In this step we argue as in [15, Lemma 7.4]. We first estimate

‖(v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc‖α

≤ C
(
‖v` + w‖0‖wc‖α + ‖v` + w‖α‖wc‖0 + ‖wc‖0‖wc‖α

)
≤ C‖wc‖α(‖v‖0 + ‖wo‖α + ‖wc‖α).

From Proposition 6.1 we then conclude that

‖(v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc‖α ≤ Cv,s
√
δ Dµλ2α−1.

By the Schauder estimate (4.14), we get

‖R̊5
1‖0 ≤ Cv,s

√
δ Dµλ2α−1. (8.16)

As for ‖R̊5
1‖1, the same argument yields

‖R̊5
1‖1 ≤ Cv,s

√
δ Dµλ2α.

Next we estimate

‖∂t ((v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc)‖α

≤ ‖wc‖α(‖∂tv`‖α + ‖∂two‖α + ‖∂twc‖α)+ ‖∂twc‖α(‖v`‖α + ‖wo‖α).
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Observe that ‖∂tv`‖α ≤ Ch‖∂tv‖0`
−α
≤ ChD`

−α and ‖v`‖α ≤ Ch‖v‖0`
−α
≤

Ch
√
δ `−α . Thus, recalling Proposition 6.1 we conclude that

‖∂t ((v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc)‖α

≤ Ce,s
√
δ Dµλα−1(ChD`−α + Cv√δ λ1+α

+ Cv,s
√
δ Dµλα

)
+ Cv,sDµλ

α(Ch
√
δ`−α + Ce

√
δ λα) ≤ Cv,s

√
δ Dµλ2α, (8.17)

where in the last inequality we have used (3.3). Applying (4.14) we then achieve

‖R̊5
1‖C1 ≤ Cv,s

√
δ Dµλ2α. (8.18)

Step 6. In this step we argue as in [15, Lemma 7.5]. Since Bk · k = 0, we can write

div(v` ⊗ wo) = (wo · ∇)v` + (divwo)v`

=

∑
|k|=λ0

[ak(Bk · ∇)v` + v`(Bk · ∇)ak]e
iλk·x .

Choose m as in (8.8), apply Propositions 4.4 and 5.1 and use (8.10) to get

‖R̊6
1‖0 ≤ Cs

∑
|k|=λ0

λα−1(‖ak‖0[v`]1 + ‖v`‖0[ak]1)

+ Cs
∑
|k|=λ0

λ−m+α(‖ak‖0[v`]m+1 + ‖v`‖0[ak]m+1)

+ Cs
∑
|k|=λ0

λ−m(‖ak‖0[v`]m+1+α + ‖v`‖0[ak]m+1+α)

≤ Cv,sλ
α−1
√
δ(D +Dµ)+ Cv,sλ

−m+α
√
δ(D`−m +Dm+1µm+1)

+ Cv,sλ
−m
√
δ(D`−m−α +Dm+1+αµm+1+α)

≤ Cv,s
√
δ Dµλα−1. (8.19)

As in Steps 3 and 4,

‖R̊6
1‖1 ≤ Ceλ‖R̊

6
1‖0 + Cs

∑
|k|=λ0

λα−1(‖ak‖0[v`]2 + ‖v`‖0[ak]2)

+ Cs
∑
|k|=λ0

λα−m(‖ak‖0[v`]m+2 + ‖v`‖0[ak]m+2)

+ Cs
∑
|k|=λ0

λ−m(‖ak‖0[v`]m+2+α + ‖v`‖0[ak]m+2+α)

≤ Cv,s
√
δ Dµλα. (8.20)

As for the time derivative, we can estimate

‖∂t R̊
6
1‖0 ≤ (I)+ (II)+ (III),
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where

(I) = Cs
∑
|k|=λ0

λα(‖∂τak‖0[v`]1 + ‖v`‖0[∂τak]1)

+ Cs
∑
|k|=λ0

λα−1(‖∂sak‖0[v`]1 + ‖v`‖0[∂sak]1)

+ Cs
∑
|k|=λ0

λα−1(‖ak‖0[∂tv`]1 + ‖∂tv`‖0[ak]1), (8.21)

(II) = Cs
∑
|k|=λ0

λα+1−m(‖∂τak‖0[v`]m+1 + ‖v`‖0[∂τak]m+1)

+ Cs
∑
|k|=λ0

λα−m(‖∂sak‖0[v`]m+1 + ‖v`‖0[∂sak]m+1)

+ Cs
∑
|k|=λ0

λα−m(‖ak‖0[∂tv`]m+1 + ‖∂tv`‖0[ak]m+1) (8.22)

and

(III) = Cs
∑
|k|=λ0

λ1−m(‖∂τak‖0[v`]m+1+α + ‖v`‖0[∂τak]m+1+α)

+ Cs
∑
|k|=λ0

λ−m(‖∂sak‖0[v`]m+1+α + ‖v`‖0[∂sak]m+1+α)

+ Cs
∑
|k|=λ0

λ−m(‖ak‖0[∂tv`]m+1+α + ‖∂tv`‖0[ak]m+1+α). (8.23)

Again using Proposition 5.1 and the conditions (3.3) we can see that

‖∂t R̊
6
1‖0 ≤ Cv,s

√
δ Dµλα. (8.24)

Thus,
‖R̊6

1‖C1 ≤ ‖R̊
6
1‖1 + ‖∂t R̊

6
1‖0 ≤ Cv,s

√
δ Dµλα. (8.25)

Step 7. Finally, to bound the last term we argue as in [15, Lemma 7.1]. We write

R̊7
1 = R(∂two + v` · ∇wo) = R̊8

1 + R̊
9
1 + R̊

10
1 ,

where

R̊8
1 := λR

( ∑
|k|=λ0

(∂τak + i(k · v`)ak)(x, t, λt)Bke
iλk·x

)
,

R̊9
1 := R

( ∑
|k|=λ0

(∂sak)(x, t, λt)Bke
iλk·x

)
,

R̊10
1 := R

( ∑
|k|=λ0

(v` · ∇yak)(x, t, λt)Bke
iλk·x

)
.
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The arguments of Step 6 have already shown

‖R̊10
1 ‖0 ≤ Cv,s

√
δ Dµλα−1, (8.26)

‖R̊10
1 ‖C1 ≤ Cv,s

√
δ Dµλα. (8.27)

As for R̊9
1 , we apply Proposition 4.4 with m as in (8.8) to get

‖R̊9
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1
‖∂sak‖0 + λ

−m+α
[∂sak]m + λ

−m
[∂sak]m+α

)
≤ Ce,s

√
δ Dµλα−1. (8.28)

Analogously,

‖R̊9
1‖1 ≤ Ceλ‖R̊

9
1‖0 + Cs

∑
|k|=λ0

(
λα−1
[∂sak]1 + λ

−m+α
[∂sak]m+1 + λ

−m
[∂sak]m+1+α

)
≤ Ce,s

√
δ Dµλα (8.29)

and

‖∂t R̊
9
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1
‖∂ssak‖0 + λ

−m+α
[∂ssak]m + λ

−m
[∂ssak]m+α

)
+ Cs

∑
|k|=λ0

(
λα‖∂sτak‖0 + λ

1−m+α
[∂sτak]m + λ

1−m
[∂sτak]m+α

)
≤ Cv,s

√
δ Dµλα, (8.30)

which in turn imply
‖R̊9

1‖C1 ≤ Cv,s
√
δ Dµλα. (8.31)

For the term R̊8
1 define the functions

bk(y, s, τ ) := (∂τak + i(k · v`)ak)(y, s, τ ).

Applying Proposition 4.4 with m as in (8.8) then yields

‖R̊8
1‖0 ≤ Cs

∑
|k|=λ0

(
λα‖bk‖0 + λ

α+1−m
[bk]m + λ

1−m
[bk]m+α

)
≤ Ce,s

√
δ µ−1λα + Ce,s

√
δ(µm−1Dm +D`1−m)λα+1−m

+ Ce,s
√
δ(µm−1+αDm+α +D`1−m−α)λ1−m

≤ Ce,s
√
δ µ−1λα, (8.32)

where we have used (5.5) and (5.9) to bound ‖bk‖0, [bk]m and [bk]m+α . Similarly,

‖R̊8
1‖1 ≤ Ceλ‖R̊

8
1‖0 + Cs

∑
|k|=λ0

(
λα[bk]1 + λ

α+1−m
[bk]m+1 + λ

1−m
[bk]m+1+α

)
≤ Ce,s

√
δ µ−1λ1+α. (8.33)
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Finally, differentiating R̊8
1 in time and using the same arguments yields

‖∂t R̊
8
1‖0 ≤ Csλ

∑
|k|=λ0

(
λα‖∂τbk‖0 + λ

α+1−m
[∂τbk]m + λ

1−m
[∂τbk]m+α

)
+ Cs

∑
|k|=λ0

(
λα‖∂sbk‖0 + λ

α+1−m
[∂sbk]m + λ

1−m
[∂sbk]m+α

)
≤ Cv,s

√
δ µ−1λ1+α. (8.34)

Therefore
‖R̊8

1‖C1 ≤ Cv,s
√
δ µ−1λ1+α. (8.35)

Summarizing,

‖R̊7
1‖0 ≤ Cv,s

√
δ(Dµλα−1

+ µ−1λα), (8.36)

‖R̊7
1‖C1 ≤ Cv,s

√
δ(Dµλα + µ−1λα+1). (8.37)

Conclusion. From (8.3), (8.5), (8.9), (8.12), (8.16), (8.19) and (8.36), we conclude that

‖R̊1‖0 ≤ Cv,s
(
D`+

√
δ D`+ δDµλα−1

+
√
δ Dµλα−1

+
√
δ Dµλ2α−1

+
√
δµ−1λα

)
≤ Cv,s

(
D`+

√
δ Dµλ2α−1

+
√
δµ−1λα

)
. (8.38)

From (8.4), (8.6), (8.11), (8.15), (8.18), (8.25) and (8.37), we deduce that

‖R̊1‖C1 ≤ Cv,s
(
D +
√
δ λD`+ δDµλα +

√
δ Dµλα +

√
δ Dµλ2α

+
√
δµ−1λ1+α)

≤ Cv,s
(√
δ D`λ+

√
δ Dµλ2α

+
√
δ Dµ−1λα+1). (8.39)

In the last inequality we have used (3.3) once more:
√
δ µD ≥ Dδ−1/2

≥ D. ut

9. Proof of Proposition 2.2

Step 1. We now specify the choice of the parameters, in the order in which they are
chosen. Recall that ε is a fixed positive number, given by the proposition. The exponent
ω has already been chosen according to

1+ ε =
1+ ω
1− ω

. (9.1)

Next we choose a suitable exponent α for which we can apply Propositions 7.1 and 8.1.
To be precise we set

α =
ω

2(1+ ω)
. (9.2)

The reason for these choices will become clear in the following. For the moment we just
observe that both α and ω depend only on ε and that α ∈

(
0, ω

1+ω

)
, i.e. both Propositions

7.1 and 8.1 are applicable.
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We next choose

` =
1
Lv

δ̄

D
(9.3)

with Lv being a sufficiently large constant, which depends only on ‖v‖0 and e.
Next, we impose

µ2D = λ (9.4)

and

λ = 3v

(
Dδ

δ̄2

) 1
1−4α
= 3v

(
Dδ

δ̄2

) 1+ω
1−ω
= 3v

(
Dδ

δ̄2

)1+ε

, (9.5)

where 3v is a sufficiently large constant, which depends only on ‖v‖0. Concerning the
constantsLv and3v we will see that they will be chosen in this order in Step 3 below. Ob-
serve also that µ, λ and λ/µ must be integers. However, this can be reached by imposing
the less stringent constraints

λ/2 ≤ µ2D ≤ λ

and
3v(Dδ/δ̄

2)1+ε ≤ λ ≤ 23v(Dδ/δ̄2)1+ε,

provided3v is larger than some universal constant. This would require just minor adjust-
ments in the rest of the argument.

Step 2. Compatibility conditions. We next check that all the conditions in (3.3) are
satisfied by our choice of the parameters.

First of all, since δ̄ ≤ δ, the inequality `−1
≥

D
ηδ

is for sure achieved if we impose

Lv ≥ η
−1. (9.6)

Next, (9.5) and 3v ≥ 1 implies

µ =
√
λ/D ≥

√
δ/δ̄ ≥ δ−1

because by assumption δ̄ ≤ δ3/2.
Also,

λ

(µD)1+ω
(9.4)
=

λ(1−ω)/2

D(1+ω)/2
(9.5)
= 3(1−ω)/2v

(
δ

δ̄2

)(1+ω)/2
.

Since ω < 1, 3v ≥ 1 and δ̄ ≤ δ, we conclude λ ≥ (µD)1+ω. Finally

λ`1+ω (9.3)&(9.5)
= 3v

(
Dδ

δ̄2

) 1+ω
1−ω
(L−1
v δ̄D−1)1+ω =

3v

L1+ω
v

(
Dω

δ

δ̄1+ω

) 1+ω
1−ω
.

Thus, by requiring
3v ≥ L

1+ω
v (9.7)

we satisfy λ ≥ `−(1+ω). Hence, all the requirements in (3.3) are satisfied provided that
the constants Lv and 3v are chosen to satisfy (9.6) and (9.7).
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Step 3. C0 estimates. Having verified that α ∈ (0, ω
1+ω ) and that (3.3) holds, we can

apply Propositions 6.1, 7.1 and 8.1. Proposition 8.1 implies

‖R̊1‖0 ≤ Cv
(
D`+

√
δ D1/2λ2α−1/2

+
√
δ D1/2λα−1/2)

≤
Cv

Lv
δ̄ +

Cv

3
(1+ε)/2
v

δ̄ (9.8)

(since now the exponent α has been fixed, we can forget about the α-dependence of the
constants in the estimates of Propositions 7.1 and 8.1). Choosing first Lv , and then 3v
sufficiently large, we can achieve the desired inequalities (9.6)–(9.7) together with

‖R̊1‖0 ≤ ηδ̄.

Next, using Proposition 7.1, it is also easy to check that, by this choice, (2.5) is satisfied
as well. Furthermore, recall that, by Proposition 6.1,

‖v1 − v‖0 = ‖w‖0 ≤ Ce
√
δ.

If we impose M to be larger than this particular constant Ce (which depends only on e),
we achieve (2.7).

Finally, as already observed in (3.16),

‖p1 − p‖0 =
1
4M

2δ + ‖v − v`‖0‖w‖0.

Since ‖v− v`‖0 ≤ CD` ≤ Cδ̄ and ‖w‖0 ≤ Ce
√
δ, we easily deduce the inequality (2.8).

This completes the proof of all the conclusions of Proposition 2.2 except for the estimate
of max{‖v1‖C1 , ‖R̊1‖C1}.

Step 4. C1 estimates. By Proposition 8.1 and the choices specified above we also have

‖R̊1‖C1 ≤ δ̄λ,

whereas Proposition 6.1 shows

‖v1‖C1 ≤ D + ‖w‖C1 ≤ D + Ce
√
δ λ.

Thus, we conclude that

max{‖v1‖C1 , ‖R̊1‖C1} ≤ D + Ce
√
δ λ ≤ D + Ce

√
δ λv(Dδ/δ̄

2)1+ε

≤ D + Ce3vδ
3/2(D/δ̄2)1+ε.

Since δ3/2
≥ δ̄2, we obtain

max{‖v1‖C1 , ‖R̊1‖C1} ≤ 2Ce3vδ3/2(D/δ̄2)1+ε.

Setting A = 2Ce3v , we obtain estimate (2.9).
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10. Proof of Remark 1.3

Step 1. Estimate on the C1 norm. We claim that the proof of Proposition 2.2 also yields
the estimate

‖p1‖C1 ≤ ‖p‖C1 + Aδ
2+ε(D/δ̄2)1+ε, (10.1)

where, as in Proposition 2.2, A is a constant which depends only on e, ε > 0 and ‖v‖0.
Indeed, recall the formula for the pressure:

p1 = p −
1
2 |wo|

2
− 〈v − v`, w〉.

Therefore we estimate, using Proposition 6.1,

‖p1‖C1 − ‖p‖C1 ≤ ‖wo‖0‖wo‖C1 + ‖w‖0‖v − v`‖C1 + ‖w‖C1‖v − v`‖0

≤ Ceδλ+ CeD
√
δ + CeD`

√
δλ.

As before, (3.3) implies λ ≥ µD ≥ Dδ−1 and D` ≤ δ. Therefore, we conclude

‖p1‖C1 ≤ ‖p‖C1 + Ceδλ ≤ ‖p‖C1 + Ce3vδ(Dδ/δ̄
2)1+ε

≤ ‖p‖C1 + Aδ
2+ε(D/δ̄2)1+ε.

Step 2. Iteration. We now proceed as in the proof of Theorem 1.1. We construct the
sequence (pn, vn, R̊n) of solutions to the Euler–Reynolds system, starting from

(p0, v0, R̊0) = (0, 0, 0)

and applying Proposition 2.2 with δn = a−b
n
. As in the proof of Theorem 1.1, we set

b =
3
2
, c =

3(1+ 2ε)
1− 2ε

+ ε

and choose a sufficiently large to guarantee the inequality

Dn = max{‖vn‖C1 , ‖R̊n‖C1} ≤ a
cbn .

We then use (10.1) to conclude that

‖pn+1‖C1 ≤ ‖pn‖C1 + Aa
(1+2ε)(c+1)bn .

SinceA depends only on ‖vn‖0, which turns out to be uniformly bounded, we can assume
that A does not depend on n. Therefore, if we choose a sufficiently large, we can write

‖pn+1‖C1 ≤ ‖pn‖C1 + a
(1+3ε)(c+1)bn .

Since p0 = 0, we inductively get the estimate

‖pn+1‖C1 ≤ (n+ 1)a(1+3ε)(c+1)bn
≤ a[(1+4ε)(c+1)]bn
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(again the last inequality is achieved by choosing a sufficiently large). Summarizing, if
we set ϑ = (1+ 4ε)(c + 1), we have

‖pn+1 − pn‖0 ≤ Ceδn ≤ Cea
−bn , ‖pn+1 − pn‖C1 ≤ a

ϑbn .

Interpolating we get ‖pn+1 − pn‖C% ≤ Cea
(%(1+ϑ)−1)bn for every % ∈ (0, 1). Thus the

limiting pressure p belongs to C% for every

% <
1

1+ ϑ
=

1
1+ (1+ 4ε)(c + 1)

.

As ε ↓ 0, we have c ↓ 3 and hence

1
1+ ϑ

↑
1
5
.

Therefore, for every θ < 1/10, if the ε in Proposition 2.2 is chosen sufficiently small,
we construct a pair (p, v) which satisfies the conclusion of Theorem 1.1 and belongs to
Cθ (T3

× S1,R3)× C2θ (T3
× S1).
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[22] Katz, N. H., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations.
Trans. Amer. Math. Soc. 357, 695–708 (2005) Zbl 1059.35096 MR 2095627

[23] Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. In: Turbulence and Stochastic Processes: Kolmogorov’s
Ideas 50 Years On, Proc. Roy. Soc. London Ser. A 434, 9–13 (1991) Zbl 1142.76389
MR 1124922

[24] Lichtenstein, L.: Grundlagen der Hydromechanik. Grundlehren Math. Wiss. 30, Springer,
Berlin (1968) Zbl 0157.56701 MR 0228225

[25] Nash, J.: C1 isometric imbeddings. Ann. of Math. (2) 60, 383–396 (1954) Zbl 0058.37703
MR 0065993

[26] Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6, Suppl. 2 (Convegno Inter-
nazionale di Meccanica Statistica), 279–287 (1949) MR 0036116

[27] Oseen, C. W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Ver-
lagsgesellschaft, Leipzig (1927) JFM 53.0773.02

[28] Robert, R.: Statistical hydrodynamics (Onsager revisited). In: Handbook of Mathemat-
ical Fluid Dynamics, Vol. II, North-Holland, Amsterdam, 1–54 (2003) Zbl 1141.76330
MR 1983588

[29] Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3, 343–401
(1993) Zbl 0836.76017 MR 1231007

[30] Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Comm. Pure
Appl. Math. 50, 1261–1286 (1997) Zbl 0909.35109 MR 1476315

[31] Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations.
Comm. Math. Phys. 210, 541–603 (2000) Zbl 1011.35107 MR 1777341

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1255.53038&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05710190&format=complete
http://www.ams.org/mathscinet-getitem?mr=2600877
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1192.35138&format=complete
http://www.ams.org/mathscinet-getitem?mr=2564474
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.35180&format=complete
http://www.ams.org/mathscinet-getitem?mr=2917063
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1280.35103&format=complete
http://www.ams.org/mathscinet-getitem?mr=3090182
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1009.35062&format=complete
http://www.ams.org/mathscinet-getitem?mr=1734632
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0817.76011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1302409
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1205.01032&format=complete
http://www.ams.org/mathscinet-getitem?mr=2214822
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0832.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1428905
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0651.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0864505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1059.35096&format=complete
http://www.ams.org/mathscinet-getitem?mr=2095627
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.76389&format=complete
http://www.ams.org/mathscinet-getitem?mr=1124922
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0157.56701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0228225
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0058.37703&format=complete
http://www.ams.org/mathscinet-getitem?mr=0065993
http://www.ams.org/mathscinet-getitem?mr=0036116
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=53.0773.02&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1141.76330&format=complete
http://www.ams.org/mathscinet-getitem?mr=1983588
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0836.76017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1231007
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0909.35109&format=complete
http://www.ams.org/mathscinet-getitem?mr=1476315
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1011.35107&format=complete
http://www.ams.org/mathscinet-getitem?mr=1777341

	Introduction
	Iteration with double exponential decay
	Definition of the maps v_1, p_1 and _1
	Preliminary Hölder estimates
	Doubling the variables and corresponding estimates
	Estimates on w_o, w_c and v_1
	Estimate on the energy
	Estimates on the Reynolds stress
	Proof of Proposition 2.2
	Proof of Remark 1.3
	References

