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Abstract. We prove that the number of homotopy types of limits of one-parameter semi-algebraic
families of closed bounded semi-algebraic sets is bounded singly exponentially in the additive
complexity of any quantifier-free first-order formula defining the family. As an important conse-
quence, we derive that the number of homotopy types of semi-algebraic subsets of Rk defined by a
quantifier-free first-order formula8, where the sum of the additive complexities of the polynomials
appearing in 8 is at most a, is bounded by 2(k+a)

O(1)
. This proves a conjecture made in [5].
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1. Introduction and statement of the main results

If S is a semi-algebraic subset of Rk defined by a quantifier-free first-order formula 8,
then various topological invariants of S (such as the Betti numbers) can be bounded in
terms of the “format” of the formula 8 (to be defined precisely below). The first results
in this direction were proved by Oleı̆nik and Petrovskiı̆ [19, 20] (also independently by
Thom [22] and Milnor [18]) who proved singly exponential bounds on the Betti numbers
of real algebraic varieties in Rk defined by polynomials of degree bounded by d. These
results were extended to more general semi-algebraic sets in [1, 12, 13, 14]. As a conse-
quence of more general finiteness results for Pfaffian functions, Khovanskiı̆ [17] proved
singly exponential bounds on the number of connected components of real algebraic va-
rieties defined by polynomials with a fixed number of monomials. We refer the reader to
[3] for a more detailed survey of results on bounding the Betti numbers of semi-algebraic
sets.

A second type of quantitative results on the topology of semi-algebraic sets, more di-
rectly relevant to the current paper, seeks to obtain tight bounds on the number of different
topological types of semi-algebraic sets definable by first-order formulas of bounded for-
mat. If the format of a first-order formula is specified by the number and degrees of the
polynomials appearing in it (this is often called the “dense format” in the literature), then
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it follows from Hardt’s well-known triviality theorem for semi-algebraic sets (see [16, 9])
that this number is finite. However, the quantitative bounds on the number of topologi-
cal types that follow from the proof of Hardt’s theorem are doubly exponential (unlike
the singly exponential bounds on the Betti numbers). For some other notions of format,
the finiteness of topological types while being true is not an immediate consequence of
Hardt’s theorem (see below), and tight quantitative bounds on the number of topological
types are lacking.

If instead of homeomorphism types, one considers the weaker notion of homotopy
types, then singly exponential bounds have been obtained on the number of homotopy
types of semi-algebraic sets defined by different classes of formulas of bounded format
[5, 2].

The main motivation behind this paper is to obtain a singly exponential bound on
the number of homotopy types of semi-algebraic sets defined by polynomials of bounded
“additive complexity” (defined below), answering a question posed in [5].

One notion of format that will play an important role in this paper is that of “additive
complexity”. Roughly speaking, the additive complexity of a polynomial (see Defini-
tion 1.8 below for a precise definition) is bounded from above by the number of additions
in any straight line program (allowing divisions) that computes the values of the polyno-
mial at generic points of Rn. This measure of complexity strictly generalizes the more
familiar measure of complexity of real polynomials based on counting the number of
monomials in the support (as in Khovanskiı̆’s theory of “fewnomials” [17]), and is thus
of considerable interest in quantitative real algebraic geometry. Additive complexity of
real univariate polynomials was first considered in the context of computational complex-
ity theory by Borodin and Cook [10], who proved an effective bound on the number of
real zeros of a univariate polynomial in terms of its additive complexity. This result was
further improved upon by Grigoriev [15] and Risler [21], who applied Khovanskiı̆’s re-
sults on fewnomials [17]. A surprising fact conjectured in [7], and proved by Coste [11]
and van den Dries [24], is that the number of topological types of real algebraic varieties
defined by polynomials of bounded additive complexity is finite.

1.1. Bounding the number of homotopy types of semi-algebraic sets

The problem of obtaining tight quantitative bounds on the number of topological types of
semi-algebraic sets defined by formulas of bounded format was considered in [5]. Several
results (with different notions of format of formulas) were proved in [5], each giving
an explicit singly exponential (in the number of variables and size of the format) bound
on the number of homotopy types of semi-algebraic subsets of Rk defined by formulas
having format of bounded size. However, the case of additive complexity was left open
in [5], and only a strictly weaker result was proved in the case of division-free additive
complexity.1 In order to state this result precisely, we need a few definitions.

1 Note that what we call “additive complexity” is called “rational additive complexity” in [5],
and what we call “division-free additive complexity” is called “additive complexity” there.
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Definition 1.1. The division-free additive complexity of a polynomial is a non-negative
integer, and we say that a polynomial P ∈ R[X1, . . . , Xk] has division-free additive
complexity at most a, a ≥ 0, if there are Q1, . . . ,Qa ∈ R[X1, . . . , Xk] such that

(i) Q1 = u1X
α11
1 · · ·X

α1k
k + v1X

β11
1 · · ·X

β1k
k ,

where u1, v1 ∈ R, and α11, . . . , α1k, β11, . . . , β1k ∈ N;

(ii) Qj = ujX
αj1
1 · · ·X

αjk
k

∏
1≤i≤j−1

Q
γji
i + vjX

βj1
1 · · ·X

βjk
k

∏
1≤i≤j−1

Q
δji
i

where 1 < j ≤ a, uj , vj ∈ R, and αj1, . . . , αjk, βj1, . . . , βjk, γji, δji ∈ N for 1 ≤ i < j ;
and

(iii) P = cX
ζ1
1 · · ·X

ζk
k

∏
1≤j≤a

Q
ηj
j

where c ∈ R, and ζ1, . . . , ζk, η1, . . . , ηa ∈ N.
In this case, we say that the above sequence of equations is a division-free additive

representation of P of length a.

In other words, P has division-free additive complexity at most a if there exists a
straight line program which, starting with variables X1, . . . , Xm and constants in R and
applying additions and multiplications, computes P and which uses at most a additions
(there is no bound on the number of multiplications). Note that the additive complexity
of a polynomial (cf. Definition 1.8 below) is clearly at most its division-free additive
complexity, but can be much smaller (see Example 1.9 below).

Example 1.2. The polynomial P := (X + 1)d ∈ R[X] with 0 < d ∈ Z has d + 1
monomials when expanded, but division-free additive complexity at most 1.

Notation 1.3. We denote by Adiv-free
k,a the family of ordered (finite) lists P = (P1, . . . , Ps)

of polynomials Pi ∈ R[X1, . . . , Xk] with the division-free additive complexity of
every Pi not exceeding ai , and with a =

∑
1≤i≤s ai . Note that Adiv-free

k,a is allowed to
contain lists of different sizes.

Suppose that φ is a Boolean formula with atoms {pi, qi, ri | 1 ≤ i ≤ s}. For an
ordered list P = (P1, . . . , Ps) of polynomials Pi ∈ R[X1, . . . , Xk], we denote by φP the
formula obtained from φ by replacing for each i, 1 ≤ i ≤ s, the atom pi (respectively, qi
and ri) by Pi = 0 (respectively, by Pi > 0 and by Pi < 0).

Definition 1.4. We say that two ordered lists P = (P1, . . . , Ps), Q = (Q1, . . . ,Qs) of
polynomials Pi,Qi ∈ R[X1, . . . , Xk] have the same homotopy type if for any Boolean
formula φ, the semi-algebraic sets defined by φP and φQ are homotopy equivalent.
Clearly, in order to be homotopy equivalent two lists should have equal size.
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Example 1.5. Consider the lists P = (X1, X
2
2, X

2
1 + X

2
2 + 1) and Q = (X3

1, X
4
2, 1). It

is easy to see that they have the same homotopy type, since in this case for each Boolean
formula φ with nine atoms, the semi-algebraic sets defined by φP and φQ are identical.
A slightly less trivial example is provided by P = (X2−X

2
1, X2) and Q = (X2, X2+X

2
1).

In this case, for each Boolean formula φ with six atoms, the semi-algebraic sets de-
fined by φP and φQ are not identical but homeomorphic. Finally, the singleton sequences
P = (X2X1(X1 − 1)) and Q = (X2(X

2
1 − X

4
2)) are homotopy equivalent. In this case

the semi-algebraic sets defined by φP and φQ are homotopy equivalent, but not neces-
sarily homeomorphic. For instance, the algebraic set defined by X2X1(X1 − 1) = 0 is
homotopy equivalent to the algebraic set defined by X2(X

2
1 − X

4
2) = 0, but they are not

homeomorphic to each other.

The following theorem is proved in [5].

Theorem 1.6 ([5]). The number of homotopy types of ordered lists in Adiv-free
k,a does not

exceed
2O(k+a)

8
. (1.1)

In particular, if φ is any Boolean formula with 3s atoms, then the number of homotopy
types of semi-algebraic sets defined by φP , where P = (P1, . . . , Ps) ∈ Adiv-free

k,a , does not
exceed (1.1).

Remark 1.7. The bound in (1.1) is stated in a slightly different form than in the original
paper, to take into account the fact that by our definition the division-free additive com-
plexity of a polynomial (for example, that of a monomial) is allowed to be 0. This is not
an important issue (see Remark 1.14 below).

The additive complexity of a polynomial is defined as follows [10, 15, 21, 7].

Definition 1.8. A polynomial P ∈ R[X1, . . . , Xk] is said to have additive complexity at
most a if there are rational functions Q1, . . . ,Qa ∈ R(X1, . . . , Xk) satisfying equations
(i), (ii), and (iii) in Definition 1.1 with N replaced by Z. In this case we say that the
corresponding sequence of equations is an additive representation of P of length a.

Example 1.9. The polynomial Xd + · · · + X + 1 = (Xd+1
− 1)/(X − 1) ∈ R[X] with

0 < d ∈ Z has additive complexity (but not division-free additive complexity) at most 2
(independent of d).

Notation 1.10. We denote by Ak,a the family of ordered (finite) lists P = (P1, . . . , Ps)

of polynomials Pi ∈ R[X1, . . . , Xk] with the additive complexity of every Pi not exceed-
ing ai , and with a =

∑
1≤i≤s ai .

It was conjectured in [5] that Theorem 1.6 could be strengthened by replacing Adiv-free
k,a

by Ak,a . In this paper we prove this conjecture. More formally, we prove

Theorem 1.11. The number of homotopy types of ordered lists in Ak,a does not exceed
2(k+a)

O(1)
.
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1.2. Additive complexity and limits of semi-algebraic sets

The proof of Theorem 1.6 in [5] proceeds by reducing the problem to the case of bound-
ing the number of homotopy types of semi-algebraic sets defined by polynomials having
a bounded number of monomials. The reduction, which was already used by Grigoriev
[15] and Risler [21], is as follows. Let P ∈ Adiv-free

k,a be an ordered list. For each poly-
nomial Pi ∈ P , 1 ≤ i ≤ s, consider the sequence of polynomials Qi1, . . . ,Qiai as in
Definition 1.1, so that

Pi := ciX
ζi1
1 · · ·X

ζik
k

∏
1≤j≤ai

Q
ηij
ij .

Introduce ai new variables Yi1, . . . , Yiai . Fix a semi-algebraic set S ⊂ Rm defined by a
formula φP . Consider the semi-algebraic set Ŝ defined by the conjunction of a 3-nomial
equations obtained from the equalities in (i), (ii) of Definition 1.1 by replacing Qij by
Yij for all 1 ≤ i ≤ s, 1 ≤ j ≤ ak , and the formula φP in which every occurrence of an
atomic formula of the kind Pk ∗ 0, where ∗ ∈ {=, >,<}, is replaced by the formula

ciX
ζi1
1 · · ·X

ζik
k

∏
1≤j≤ai

Y
ηij
ij ∗ 0.

Note that Ŝ is a semi-algebraic subset of Rk+a .
Let ρ : Rk+a → Rk be the projection on the subspace spanned by X1, . . . , Xk . It is

clear that the restriction ρŜ : Ŝ → S is a homeomorphism, and moreover Ŝ is defined
by polynomials having at most k + a monomials. Thus, in order to bound the number of
homotopy types for S, it suffices to bound the same number for Ŝ, but since Ŝ is defined by
at most 2a polynomials in k+a variables having at most k+a monomials in total, we have
reduced the problem of bounding the number of homotopy types occurring in Adiv-free

k,a to
that of bounding the number of homotopy types of semi-algebraic sets defined by at most
2a polynomials in k+a variables, with the total number of monomials appearing bounded
by k + a. This allows us to apply a bound proved in the fewnomial case in [5] to obtain a
singly exponential bound on the number of homotopy types occurring in Adiv-free

k,a .
Notice that for the map ρŜ to be a homeomorphism it is crucial that the exponents

ηij , γij , δij be non-negative, and this restricts the proof to the case of division-free addi-
tive complexity. We overcome this difficulty as follows.

Given a polynomial F ∈ R[X1, . . . , Xk] with additive complexity bounded by a, we
prove that F can be expressed as a quotient P/Q, where P,Q ∈ R[X1, . . . , Xk] with the
sum of the division-free additive complexities of P and Q bounded by a (see Lemma 3.1
below). We then express the set of real zeros of F in Rk inside any fixed closed ball as the
Hausdorff limit of a one-parameter semi-algebraic family defined using the polynomials
P and Q (see Proposition 3.4 and the accompanying Example 3.5 below).

While limits of one-parameter semi-algebraic families defined by polynomials with
bounded division-free additive complexities can have complicated descriptions and can-
not be described by polynomials of bounded division-free additive complexity, the topo-
logical complexity (for example, measured by their Betti numbers) of such limit sets is
well controlled. Indeed, the problem of bounding the Betti numbers of Hausdorff limits of
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one-parameter families of semi-algebraic sets was considered by Zell [27], who proved
a singly exponential bound on the Betti numbers of such sets. We prove in this paper
(see Theorems 2.1 and 1.16 below) that the number of homotopy types of such limits can
indeed be bounded singly exponentially in terms of the format of the formulas defining
the one-parameter family. The techniques introduced by Zell [27] (as well certain semi-
algebraic constructions described in [6]) play a crucial role in the proof of our bound.
These intermediate results may be of independent interest.

Finally, applying Theorem 2.1 to the one-parameter family referred to in the previous
paragraph, we obtain a bound on the number of homotopy types of real algebraic varieties
defined by polynomials having bounded additive complexity. The semi-algebraic case
requires certain additional techniques and is dealt with in Section 3.3.

1.3. Homotopy types of limits of semi-algebraic sets

In order to state our results on bounding the number of homotopy types of limits of one-
parameter families of semi-algebraic sets we need to introduce some notation.

Notation 1.12. For any first-order formula8with k free variables, if P⊂R[X1, . . . , Xk]

consists of the polynomials appearing in 8, then we call 8 a P-formula.

Notation 1.13 (Format of first-order formulas). Suppose 8 is a P-formula defining a
semi-algebraic subset of Rk involving s polynomials of degree at most d . In this case we
say that8 has dense format (s, d, k). If P ∈ Ak,a then we say that8 has additive format
bounded by (a, k). If P ∈ Adiv-free

k,a then we say that 8 has division-free additive format
bounded by (a, k).

Remark 1.14. A monomial has additive complexity 0, and every P-formula with P ⊂
R[X1, . . . , Xk] containing only monomials is equivalent to a P ′-formula, where P ′ =
{X1, . . . , Xk}. In particular, if φ is a P-formula with (division-free) additive format
bounded by (a, k), then φ is equivalent to a P ′-formula having (division-free) additive
format bounded by (a, k) and such that the cardinality of P ′ is at most a + k.

Notation 1.15. For any k ≥ 1, and 1 ≤ p ≤ q ≤ k, we denote by π[p,q] : Rk = R[1,k]→
R[p,q] the projection

(x1, . . . , xk) 7→ (xp, . . . , xq)

(omitting the dependence on k which should be clear from context). In case p = q we
will denote by πp the projection π[p,p]. For any semi-algebraic subset X ⊂ Rk+1, and
λ ∈ R, we denote by Xλ the following semi-algebraic subset of Rk:

Xλ = π[1,k](X ∩ π
−1
k+1(λ)).

We denote by R+ the set of strictly positive elements of R. If additionally X ⊂ Rk ×R+,
then we denote by Xlimit the following semi-algebraic subset of Rk:

Xlimit := π[1,k](X ∩ π
−1
k+1(0)),

where X denotes the topological closure of X in Rk+1.
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We have the following theorem which establishes a singly exponential bound on the
number of homotopy types of the Hausdorff limit of a one-parameter family of compact
semi-algebraic sets defined by a first-order formula of bounded additive format. This re-
sult complements the result in [5] giving singly exponential bounds on the number of
homotopy types of semi-algebraic sets defined by first-order formulas having bounded
division-free additive format on one hand, and the result of Zell [27] bounding the Betti
numbers of the Hausdorff limits of one-parameter families of semi-algebraic sets on the
other, and could be of independent interest.

Theorem 1.16. For each a, k ∈ N, there exists a finite collection Sk,a of semi-algebraic
subsets of RN , N = (k + 2)(k + 1)+

(
k+2

2

)
, with card Sk,a = 2(k+a)

O(1)
, which satisfies

the following property. If T ⊂ Rk × R+ is a bounded semi-algebraic set described by
a formula having additive format bounded by (a, k + 1) such that Tt is closed for each
t > 0, then Tlimit is homotopy equivalent to some S ∈ Sk,a (cf. Notation 1.15).

The rest of the paper is devoted to the proofs of Theorems 1.16 and 1.11 and is organized
as follows. We first prove a weak version (Theorem 2.1) of Theorem 1.16 in Section 2,
in which the term “additive complexity” in the statement of Theorem 1.16 is replaced
by “division-free additive complexity”. Theorem 2.1 is then used in Section 3 to prove
Theorem 1.11 after introducing some additional techniques; the latter theorem is used in
turn to prove Theorem 1.16.

2. Proof of a weak version of Theorem 1.16

In this section we prove the following weak version of Theorem 1.16 (using division-free
additive format rather than additive format) which is needed in the proof of Theorem 1.11.

Theorem 2.1. For each a, k ∈ N, there exists a finite collection Sk,a of semi-algebraic
subsets of RN , N = (k + 2)(k + 1)+

(
k+2

2

)
, with card Sk,a = 2O(k(k

2
+a))8

= 2(k+a)
O(1)

,
which satisfies the following property. If T ⊂ Rk × R+ is a bounded semi-algebraic set
described by a formula having division-free additive format bounded by (a, k + 1) such
that Tt is closed for each t > 0, then Tlimit is homotopy equivalent to some S ∈ Sk,a (cf.
Notation 1.15).

2.1. Outline of the proof

The main steps in the proof of Theorem 2.1 are as follows. Let T ⊂ Rk × R+ be a
bounded semi-algebraic set such that Tt is closed for each t ∈ R, and let Tlimit be as in
Notation 1.15.

We first prove that for all small enough λ > 0, there exists a semi-algebraic surjection
fλ : Tλ → Tlimit which is metrically close to the identity map 1Tλ (see Proposition
2.27 below). Using a semi-algebraic realization of the fibered join described in [6] (see
also [13]), we then consider, for any fixed p ≥ 0, a semi-algebraic set J p

fλ
(Tλ) which
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is p-equivalent to Tlimit (see Proposition 2.18). The definition of J p
fλ
(Tλ) still involves

the map fλ, whose definition is not simple, and hence we cannot control the topological
type of J p

fλ
(Tλ) directly. However, the fact that fλ is metrically close to the identity

map enables us to adapt the main technique in [27] due to Zell. We replace J p
fλ
(Tλ) by

another semi-algebraic set, which we denote by Dp
ε (T) (for ε > 0 small enough), which

is homotopy equivalent to J p
fλ
(Tλ), but whose definition no longer involves the map fλ

(Definition 2.25). We can now bound the format of Dp
ε (T) in terms of the format of the

formula defining T. This key result is summarized in Proposition 2.3.
We first recall the definition of p-equivalence (see, for example, [23, p. 144]).

Definition 2.2 (p-equivalence). A map f : A → B between two topological spaces is
called a p-equivalence if the induced map

f∗ : π i(A, a)→ π i(B, f (a))

is, for each a ∈ A, bijective for 0 ≤ i < p, and surjective for i = p; we then say that A
is p-equivalent to B.

Proposition 2.3. Let T ⊂ Rk×R+ be a bounded semi-algebraic set such that Tt is closed
for each t > 0, and let p ≥ 0. Suppose also that T is described by a formula having
(division-free) additive format bounded by (a, k + 1) and dense format (s, d, k + 1).
Then there exists a semi-algebraic set Dp

⊂ RN , N = (p + 1)(k + 1) +
(
p+1

2

)
, such

that Dp is p-equivalent to Tlimit (cf. Notation 1.15) and described by a formula having
(division-free) additive format bounded by (M,N) and dense format (M ′, d + 1, N),
where M = (p + 1)(k + a + 2)+ 2k

(
p+1

2

)
and M ′ = (p + 1)(s + 2)+ 3

(
p+1

2

)
+ 3.

Finally, Theorem 2.1 is an easy consequence of Proposition 2.3.

2.2. Preliminaries

We need a few facts from the homotopy theory of finite CW-complexes.
We first prove a basic result about p-equivalences (Definition 2.2). It is clear that

p-equivalence is not an equivalence relation (e.g., for any p ≥ 0, the map taking Sp to a
point is a p-equivalence, but no map from a point into Sp is one). However, we have the
following.

Proposition 2.4. Let A,B,C be finite CW-complexes with dim(A), dim(B) ≤ k and
suppose that C is p-equivalent to A and B for some p > k. Then A and B are homotopy
equivalent.

The proof of Proposition 2.4 will rely on the following well-known lemmas.

Lemma 2.5 ([26, p. 182, Theorem 7.16]). Let X, Y be CW-complexes and f : X → Y

a p-equivalence. Then, for each CW-complex M with dim(M) ≤ p, the induced map

f∗ : [M,X] → [M,Y ]

is surjective.
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Lemma 2.6 ([25, p. 69]). IfA andB are finite CW-complexes with dim(A), dim(B)≤p,
then every p-equivalence from A to B is a homotopy equivalence.

Proof of Proposition 2.4. Suppose f : C → A and g : C → B are two p-equivalences.
Applying Lemma 2.5 with X = C, M = Y = A, we see that the homotopy class of the
identity map 1A has a preimage, [h], under f∗, for some h ∈ [A,C]. Then, for each a ∈ A
and i ≥ 0,

f∗ ◦ h∗ : π i(A, a)→ π i(A, f ◦ h(a))

is bijective. In particular, since f is a p-equivalence, this implies that h∗ : π i(A, a) →
π i(C, h(a)) is bijective for 0 ≤ i < p. Composing h with g, and noting that g is also
a p-equivalence, we find that (g ◦ h)∗ : π i(A, a) → π i(B, g ◦ h(a)) is bijective for
0 ≤ i < p. Now, Lemma 2.6 shows that g ◦ h is a homotopy equivalence. ut

We introduce some more notation.

Notation 2.7. For any R ∈ R+, we denote by Bk(0, R) ⊂ Rk the open ball of radius R
centered at the origin.

Notation 2.8. For P ∈ R[X1, . . . , Xk], we denote by Zer(P,Rk) the real algebraic set
defined by P = 0.

Notation 2.9. For any first-order formula8with k free variables, we denote by Reali(8)
the semi-algebraic subset of Rk defined by 8.

An important construction that we use later is an efficient semi-algebraic realization
(up to homotopy) of the iterated fibered join of a semi-algebraic set over a semi-algebraic
map. This construction was introduced in [6].

2.3. Topological definitions

We first recall the basic definition of the iterated join of a topological space.

Notation 2.10. For each p ≥ 0, we denote by

1[0,p] =
{

t = (t0, . . . , tp)
∣∣∣ ti ≥ 0, 0 ≤ i ≤ p,

p∑
i=0

ti = 1
}

the standard p-simplex. For each I = {i0, . . . , im}, 0 ≤ i0 < · · · < im ≤ p, the set

1I = {t = (t0, . . . , tp) ∈ 1[0,p] | ti = 0 for all i 6∈ I }

is a face of 1[0,p].

Definition 2.11. For p ≥ 0, the (p + 1)-fold join Jp(X) of a topological space X is

Jp(X) := X × · · · ×X︸ ︷︷ ︸
p+1 times

×1[0,p]/∼, (2.1)

where
(x0, . . . , xp, t0, . . . , tp) ∼ (x

′

0, . . . , x
′
p, t0, . . . , tp)

if xi = x′i for each i with ti 6= 0.
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In the special situation whenX is a semi-algebraic set, the space Jp(X) defined above
is not immediately a semi-algebraic set, because of taking quotients. We now define a
semi-algebraic set, J p(X), that is homotopy equivalent to Jp(X).

Let
1′
[0,p] =

{
t = (t0, . . . , tp) ∈ Rp+1

∣∣∣ ∑
0≤i≤p

ti = 1, |t|2 ≤ 1
}
.

For each I = {i0, . . . , im}, 0 ≤ i0 < · · · < im ≤ p, let

1′I = {t = (t0, . . . , tp) ∈ 1
′

[0,p] | ti = 0 for all i 6∈ I }.

It is clear that the standard simplex 1[0,p] is a deformation retract of 1′
[0,p] via a de-

formation retraction ρp : 1′[0,p] → 1[0,p] that restricts to a deformation retraction
ρp|1′I

: 1′I → 1I for each I ⊂ [0, p].
We use the lower case bold-face notation x to denote a point x = (x1, . . . , xk) of Rk

and upper-case X = (X1, . . . , Xk) to denote a block of variables. In the following defini-
tion the role of the

(
p+1

2

)
variables (Aij )0≤i<j≤p can be safely ignored, since they are all

set to 0. Their significance will be clear later.

Definition 2.12 (The semi-algebraic join [6]). For a semi-algebraic subset X ⊂ Rk con-
tained in Bk(0, R), defined by a P-formula 8, we define

J p(X) = {(x0, . . . , xp, t, a) ∈ R(p+1)(k+1)+(p+1
2 ) |

�R(x0, . . . , xp, t) ∧21(t, a) ∧282 (x
0, . . . , xp, t)},

where

�R :=

p∧
i=0

(|Xi |2 ≤ R2) ∧ |T|2 ≤ 1,

21 :=

p∑
i=0

Ti = 1 ∧
∑

0≤i<j≤p

A2
ij = 0,

282 :=

p∧
i=0

(Ti = 0 ∨8(Xi)),

(2.2)

We denote the formula �R ∧21 ∧2
8
2 by J p(8).

It is checked easily from Definition 2.12 that

J p(X) ⊂
(
Bk(0, R)

)p+1
×1′

[0,p] × {0},

and that the deformation retraction ρp : 1′[0,p]→ 1[0,p] extends to a deformation retrac-

tion ρ̃p : J p(X)→ J̃ p(X), where

J̃ p(X) =
{
(x0, . . . , xp, t, a) ∈

(
Bk(0, R)

)p+1
×1[0,p] × {0}

∣∣ 282 (x0, . . . , xp, t)
}
.

Finally, it is a consequence of the Vietoris–Begle theorem (see [8, Theorem 2]) that
J̃ p(X) and Jp(X) are homotopy equivalent. We thus have, using the notation introduced
above:
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Proposition 2.13. J p(X) is homotopy equivalent to Jp(X).

Remark 2.14. The necessity of defining J p(X) instead of just J̃ p(X) has to do with re-
moving the inequalities defining the standard simplex from the defining formula J p(8);
this will simplify certain arguments later.

We now generalize the above constructions and define joins over maps (the topolog-
ical and semi-algebraic joins defined above are special cases when the map is a constant
map to a point).

Notation and Definition 2.15. Let f : A → B be a map between topological spaces.
For each p ≥ 0, we denote by Wp

f (A) the (p + 1)-fold fiber product of A over f , that is,

W
p
f (A) = {(x0, . . . , xp) ∈ A

p+1
| f (x0) = · · · = f (xp)}.

Definition 2.16 (Topological join over a map). Let f : X → Y be a map between
topological spaces. For p ≥ 0, the (p + 1)-fold join Jpf (X) of X over f is

J
p
f (X) := W

p
f (X)×1

p/∼, (2.3)

where
(x0, . . . , xp, t0, . . . , tp) ∼ (x

′

0, . . . , x
′
p, t0, . . . , tp)

if xi = x′i for each i with ti 6= 0.

In the special situation when f is a semi-algebraic continuous map, the space Jpf (X)
defined above is not (as before) immediately a semi-algebraic set, because of taking quo-
tients. Our next goal is to obtain a semi-algebraic set J p

f (X) which is homotopy equiva-
lent to Jpf (X), similar to the case of the ordinary join.

Definition 2.17 (The semi-algebraic fibered join [6]). For a semi-algebraic subset
X ⊂ Rk contained in Bk(0, R), defined by a P-formula 8, and f : X → Y a semi-
algebraic map, we define

J p
f (X) = {(x

0, . . . , xp, t, a) ∈ R(p+1)(k+1)+(p+1
2 ) |

�R(x0, . . . , xp, t) ∧21(t, a) ∧282 (x
0, . . . , xp, t) ∧2f3 (x

0, . . . , xp, t, a)},

where �R,21,2
8
2 have been defined previously, and

2
f

3 :=
∧

0≤i<j≤p

(Ti = 0 ∨ Tj = 0 ∨ |f (Xi)− f (Xj )|2 = Aij ). (2.4)

We denote the formula �R ∧21 ∧2
8
2 ∧2

f

3 by J p
f (8).



1538 Sal Barone, Saugata Basu

Observe that there exists a natural map Jp(f ) : J p
f (X) → Y which maps a point

(x0, . . . , xp, t, 0) ∈ J p
f (X) to f (xi) (where i is such that ti 6= 0). It is easy to see that for

each y ∈ Y , Jp(f )−1(y) = J p(f−1(y)).
The following proposition follows from the above observation and the generalized

Vietoris–Begle theorem (see [8, Theorem 2]) and is important in the proof of Proposition
2.3; it relates up to p-equivalence the semi-algebraic set J p

f (X) to the image of a closed
continuous semi-algebraic surjection f : X → Y . Its proof is similar to the proof of
Theorem 2.12 proved in [6] and is omitted.

Proposition 2.18 ([6]). Let f : X → Y a closed continuous semi-algebraic surjection
with X ⊂ Bk(0, R) a closed semi-algebraic set. Then, for every p ≥ 0, the map Jp(f ) :
J p
f (X)→ Y is a p-equivalence.

We now define a thickened version of the semi-algebraic set J p
f (X) defined above and

prove that it is homotopy equivalent to J p
f (X). The variables Aij , 0 ≤ i < j ≤ p, play

an important role in the thickening process.

Definition 2.19 (The thickened semi-algebraic fibered join). For X ⊂ Rk a semi-alge-
braic set contained in Bk(0, R), defined by a P-formula 8, p ≥ 1, and ε > 0, define

J p
f,ε(X) = {(x

0, . . . , xp, t, a) ∈ R(p+1)(k+1)+(p+1
2 ) |

�R(x0, . . . , xp, t) ∧2ε1(t, a) ∧282 (x
0, . . . , xp, t) ∧23(x0, . . . , xp, t, a)},

where

�R :=

p∧
i=0

(|Xi |2 ≤ R2) ∧ |T|2 ≤ 1,

2ε1 :=

p∑
i=0

Ti = 1 ∧
∑

1≤i<j≤p

A2
ij ≤ ε,

282 :=

p∧
i=0

(Ti = 0 ∨8(Xi)),

2
f

3 :=
∧

0≤i<j≤p

(Ti = 0 ∨ Tj = 0 ∨ |f (Xi)− f (Xj )|2 = Aij ).

(2.5)

Note that if X is closed (and bounded), then J p
f,ε(X) is again closed (and bounded).

The relation between J p
f (X) and J p

f,ε(X) is described in the following proposition.

Proposition 2.20. For p ∈ N and f : X → Y semi-algebraic there exists ε0 > 0 such
that J p

f (X) is homotopy equivalent to J p
f,ε(X) for all 0 < ε ≤ ε0.

Proposition 2.20 follows from the next two lemmas.
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Lemma 2.21. For p ∈ N and f : X→ Y semi-algebraic we have

J p
f (X) =

⋂
t>0

J p
f,t (X).

Proof. Obvious from Definitions 2.17 and 2.19. ut

Lemma 2.22. Let T ⊂ Rk×R+ be such that each Tt is closed and contained inBk(0, R).
Suppose further that Tt ⊆ Tt ′ for all 0 < t ≤ t ′. Then⋂

t>0

Tt = π[1,k](T ∩ π−1
k+1(0)).

Furthermore, there exists ε0 > 0 such that for all ε with 0 < ε ≤ ε0 the set Tε is
semi-algebraically homotopy equivalent to Tlimit (cf. Notation 1.15).

Proof. The first part of the proposition is straightforward. The second part follows easily
from [4, Lemma 16.16]. ut

Proof of Proposition 2.20. The set T = {(x, t) ∈ Rk+1
| t > 0∧x ∈ J p

f,t (X)} satisfies the
conditions of Lemma 2.22. The proposition now follows from Lemmas 2.22 and 2.21.

ut

Proposition 2.23. For p ∈ N, f : X→ Y semi-algebraic, and 0 < t ≤ t ′,

J p
f,t (X) ⊆ J p

f,t ′
(X).

Moreover, there exists ε0 > 0 such that for 0 < ε ≤ ε′ < ε0 the above inclusion with
t = ε, t ′ = ε′ is a semi-algebraic homotopy equivalence.

The first part of Proposition 2.23 is obvious from the definition of J p
f,ε(X). The second

part follows from Lemma 2.24 below.
The following lemma is probably well known and easy. However, since we were un-

able to locate an exact statement to this effect in the literature, we include a proof.

Lemma 2.24. Let T ⊂ Rk × R+ be a semi-algebraic set, and suppose that Tt ⊂ Tt ′ for
all 0 < t < t ′. Then there exists ε0 such that for each 0 < ε < ε′ ≤ ε0 the inclusion map

Tε
iε′
↪→ Tε′ is a semi-algebraic homotopy equivalence.

Proof. We prove that there exists φε′ : Tε′ → Tε such that

φε′ ◦ iε′ : Tε → Tε, φε′ ◦ iε′ ' IdTε ,
iε′ ◦ φε′ : Tε′ → Tε′ , iε′ ◦ φε′ ' IdTε′ .

We first define it : Tε ↪→ Tt and ît : Tt ↪→ Tε′ , and note that trivially iε = IdTε ,
îε′ = IdTε′ , and iε′ = îε. Now, by Hardt triviality there exists ε0 > 0 such that there is
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a definably trivial homeomorphism h which commutes with the projection πk+1, i.e., the
following diagram commutes:

Tε0 × (0, ε0]
h //

πk+1

��

T ∩ {(x, t) | 0 < t ≤ ε0}

πk+1

uu
(0, ε0]

Define F(x, t, s)=h(π[1,k]◦h−1(x, t), s). Note that F(x, t, t)=h(π[1,k]◦h−1(x, t), t)
= h(h−1(x, t)) = (x, t). We set

φt : Tt → Tε, φt (x) = π[1,k] ◦ F(x, t, ε),

φ̂t : Tε′ → Tt , φ̂t (x) = π[1,k] ◦ F(x, ε′, t),

and note that φε′ = φ̂ε.
Finally, define

H1(·, t) = φt ◦ it : Tε → Tε,
H1(·, ε) = φε ◦ iε = IdTε ,
H1(·, ε

′) = φε′ ◦ iε′ ,

H2(·, t) = ît ◦ φ̂t : Tε′ → Tε′ ,
H2(·, ε) = îε ◦ φ̂ε = iε′ ◦ φε′ ,

H2(·, ε
′) = îε′ ◦ φ̂ε′ = IdTε′ .

The semi-algebraic continuous mapsH1 andH2 defined above give semi-algebraic homo-
topies φε′ ◦ iε′ ' IdTε and iε′ ◦φε′ ' IdTε′ proving the required semi-algebraic homotopy
equivalence. ut

As mentioned before, we would like to replace J p
f,ε(X) by another semi-algebraic set,

which we denote by Dp
ε (X), which is homotopy equivalent to J p

f,ε(X), under certain
assumptions on f and ε, and whose definition no longer involves the map f . This is what
we do next.

Definition 2.25 (The thickened diagonal). For a semi-algebraic set X ⊂ Rk contained
in Bk(0, R) defined by a P-formula 8, p ≥ 1, and ε > 0, define

Dp
ε (X) = {(x

0, . . . , xp, t, a) ∈ R(p+1)(k+1)+(p+1
2 ) |

�R(x0, . . . , xp, t) ∧21(t, a) ∧282 (x
0, . . . , xp, t) ∧ ϒ(x0, . . . , xp, t, a)},

where �R,2ε1,2
8
2 are defined as in (2.5), and

ϒ :=
∧

0≤i<j≤p

(Ti = 0 ∨ Tj = 0 ∨ |Xi − Xj |2 = Aij ).

Notice that the formula defining the thickened diagonal Dp
ε (X) in Definition 2.25 is

identical to that defining the thickened semi-algebraic fibered join J p
f,ε(X) in Definition

2.19, except that 2f3 is replaced by ϒ , and ϒ does not depend on the map f or on the
set X.
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Proposition 2.26. Let X ⊂ Rk be a semi-algebraic set defined by a quantifier-free
formula 8 having (division-free) additive format bounded by (a, k) and dense format
bounded by (s, d, k). Then Dp

ε (X) is a semi-algebraic subset of RN , defined by a formula
with (division-free) additive format bounded by (M,N) and dense format bounded by
(M ′, d+1, N), whereM = (p+1)(k+a+2)+2k

(
p+1

2

)
,M ′ = (p+1)(s+2)+3

(
p+1

2

)
+3,

and N = (p + 1)(k + 1)+
(
p+1

2

)
.

Proof. It is a straightforward computation to bound the division-free additive format and
give the dense format of the formulas �R,2ε1, ϒ as well as the (division-free) additive
format and dense format of the formula 282 . More precisely, let

M�R = (p + 1)k + (p + 1), M ′
�R
= (p + 1)+ 1,

M2ε1
= (p + 1)+

(
p+1

2

)
, M ′2ε1

= 2,

M282
= (p + 1)a, M ′

282
= (p + 1)(s + 1),

Mϒ = 2k
(
p+1

2

)
, M ′ϒ = 3

(
p+1

2

)
.

It is clear from Definition 2.25 that the division-free additive format (resp. dense format)
of �R is bounded by (M�R , N), N = (p + 1)(k + 1) +

(
p+1

2

)
(resp. (M ′

�R
, 2, N)).

Similarly, the division-free additive format (resp. dense format) of 2ε1, ϒ is bounded by
(M2ε1

, N), (Mϒ , N) (resp. (M ′
2ε1
, 2, N), (M ′ϒ , 2, N)). Finally, the (division-free) additive

format of 282 is bounded by (M282
, N) and its dense format is (M ′

282
, d + 1, N). The

(division-free) additive format (resp. dense format) of the formula defining Dp
ε (X) is thus

bounded by

(M�R +M2ε1
+M282

+Mϒ , N) (resp. (M ′
�R
+M ′2ε1

+M ′
282
+M ′ϒ , d + 1, N)).

ut

We now relate the thickened semi-algebraic fibered-join and the thickened diagonal using
a sandwiching argument similar in spirit to that used in [27].

2.3.1. Limits of one-parameter families. In this section, we fix a bounded semi-algebraic
set T ⊂ Rk × R+ such that Tt is closed and Tt ⊆ Bk(0, R) for some R ∈ R+ and all
t > 0. Let Tlimit be as in Notation 1.15.

We need the following proposition proved in [27].

Proposition 2.27 ([27, Proposition 8]). There exists λ0 > 0 and a family {fλ}0<λ≤λ0 of
continuous semi-algebraic surjections fλ : Tλ→ Tlimit such that

(A) limλ→0 maxx∈Tλ |x− fλ(x)| = 0,
(B) for each λ, λ′ ∈ (0, λ0), fλ = fλ′ ◦ g for some semi-algebraic homeomorphism

g : Tλ→ Tλ′ .

Proposition 2.28. There exist λ1 satisfying 0 < λ1 ≤ λ0 and semi-algebraic functions
δ0, δ1 : (0, λ1)→ R such that
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(A) 0 < δ0(λ) < δ1(λ) for λ ∈ (0, λ1),
(B) limλ→0 δ0(λ) = 0 and limλ→0 δ1(λ) 6= 0,
(C) for each λ ∈ (0, λ1) and δ, δ′ satisfying 0 < δ0(λ) < δ < δ′ < δ1(λ), the inclusion

Dp

δ′
(Tλ) ↪→ Dp

δ (Tλ) is a semi-algebraic homotopy equivalence.

Proposition 2.28 is adapted from [27, Proposition 20] and the proof is identical after re-
placing Dpλ (δ) (defined in [27]) with the semi-algebraic set Dp

δ (Tλ) defined above (Defi-
nition 2.25).

Let fλ, λ ∈ (0, λ0], satisfy the conclusion of Proposition 2.27. As in [27], define, for
p ∈ N,

ηp(λ) = p(p + 1)
(

4Rmax
x∈Tλ
|x− fλ(x)| + 2

(
max
x∈Tλ
|x− fλ(x)|

)2)
. (2.6)

Note that, for every λ ∈ (0, λ0] and every q ≤ p, we have ηq(λ) ≤ ηp(λ). Additionally,
for each p ∈ N, limλ→0 ηp(λ) = 0 by Proposition 2.27(A).

For x = (x0, . . . , xp) ∈ R(p+1)k define

ρp(x0, . . . , xp) =
∑

1≤i<j≤p

|xi − xj |2.

A special case of this sum corresponding to all ti 6= 0 appears in the formula ϒε1 of
Definition 2.25 after making the replacement aij = |xi − xj |. The next lemma is taken
from [27], to which we refer the reader for the proof.

Lemma 2.29 ([27, Lemma 21]). Given ηp(λ) and fλ : Tλ→ Tlimit as above, we have∣∣∣∑
i<j

|fλ(xi)− fλ(xj )|2 −
∑
i<j

|xi − xj |2
∣∣∣ ≤ ηp(λ),

and in particular

ρp(x0, . . . , xp) ≤ ρp(fλ(x0), . . . , fλ(xp))+ ηp(λ) ≤ ρp(x0, . . . , xp)+ 2ηp(λ).

The next proposition follows immediately from Lemma 2.29, Definition 2.19, and Defi-
nition 2.25.

Proposition 2.30. For every λ ∈ (0, λ0) and ε > 0, we have

J p
fλ,ε

(Tλ) ⊆ Dp

ε+ηp(λ)
(Tλ) ⊆ J p

fλ,ε+2ηp(λ)(Tλ).

Let ε1, ε2 ∈ R+ satisfy the conclusions of Propositions 2.20 and 2.23, respectively. Set
ε0 = min{ε1, ε2}.

Proposition 2.31. For any p ∈ N, there exist λ, ε, δ ∈ R+ such that ε ∈ (0, ε0), λ ∈
(0, λ0), and

Dp
δ (Tλ) ' J p

fλ,ε
(Tλ).
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Proof. We first describe how to choose ε, ε′ ∈ (0, ε0), λ ∈ (0, λ0) and δ, δ′ ∈

(δ0(λ), δ1(λ)) (cf. Proposition 2.28) so that

Dp

δ′
(Tλ) ⊆ J p

fλ,ε
(Tλ)

∗

⊆ Dp
δ (Tλ) ⊆ J p

fλ,ε′
(Tλ),

and secondly we show that, with these choices, the inclusion (∗) is a homotopy equiva-
lence.

Since the limit of δ1(λ) − δ0(λ) is not zero for 0 < λ < λ1 ≤ λ0 and λ tending to
zero, while the limits of ηp(λ) and δ0(λ) are zero (by Propositions 2.28 and 2.27(A)), we
can choose 0 < λ < λ0 which simultaneously satisfies

2ηp(λ) <
δ1(λ)− δ0(λ)

2
and δ0(λ)+ 4ηp(λ) < ε0.

Set δ′ = δ0 + ηp(λ), ε = δ0 + 2ηp(λ), δ = δ0 + 3ηp(λ), and ε′ = δ0 + 4ηp(λ). From
Proposition 2.30 we have the inclusions

Dp

δ′
(Tλ)

i
↪→ J p

fλ,ε
(Tλ)

j
↪→ Dp

δ (Tλ)
k
↪→ J p

fλ,ε′
(Tλ).

Furthermore, it is easy to see that δ, δ′ ∈ (δ0(λ), δ1(λ)) and ε, ε′ ∈ (0, ε0), and so
both j ◦ i and k ◦ j are semi-algebraic homotopy equivalences (Propositions 2.28 and
2.23 resp.).

For each z ∈ Dp

δ′
(Tλ) we have the following diagram of homotopy groups:

π∗(Dp

δ′
(Tλ), z)

(j◦i)∗

∼=

//

i∗

((

π∗(Dp
δ (Tλ), z)

k∗

((

π∗(J p
fλ,ε

(Tλ), z)
(k◦j)∗

∼=

//

j∗

66

π∗(J p

fλ,ε′
(Tλ), z)

where we have identified z with its images under various inclusion maps.
Since (j ◦ i)∗ = j∗ ◦ i∗, the surjectivity of (j ◦ i)∗ implies that j∗ is surjective, and

similarly (k ◦ j)∗ injective ensures that j∗ is injective. Hence, j∗ is an isomorphism as
required.

This implies that the inclusion map J p
fλ,ε

(Tλ)
j
↪→ Dp

δ (Tλ) is a weak homotopy equiv-
alence (see [26, p. 181]). Since both spaces have the structure of a finite CW-complex,
every weak equivalence is in fact a homotopy equivalence ([26, Theorem 3.5, p. 220]).

ut

We now prove Proposition 2.3.

Proof of Proposition 2.3. Let T ⊂ Rk × R+ be such that Tλ is closed and Tλ ⊂
Bk(0, R) for some R ∈ R and all λ ∈ R+. Proposition 2.31 shows that there ex-
ist λ ∈ (0, λ0) and ε ∈ (0, ε0) such that the sets Dp

δ (Tλ) and J p
fλ,ε

(Tλ) are semi-
algebraically homotopy equivalent. Also, by Proposition 2.20 the sets J p

fλ,ε
(Tλ) and
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J p
fλ
(Tλ) are semi-algebraically homotopy equivalent. By Propositions 2.18 and 2.27 the

map J (fλ) : J p
fλ
(Tλ)� T0 is a p-equivalence.

Thus we have the following sequence of homotopy equivalences and p-equivalence:

Dp
δ (Tλ) ' J p

fλ,ε
(Tλ) ' J p

fλ
(Tλ)

∼
−→p Tlimit. (2.7)

The first homotopy equivalence follows from Proposition 2.31, the second from
Proposition 2.20, and the last p-equivalence is a consequence of Propositions 2.18 and
2.27. The bound on the format of the formula defining Dp

:= Dp
δ (Tλ) follows from

Proposition 2.26. This finishes the proof. ut

Proof of Theorem 2.1. The theorem follows directly from Proposition 2.3, Theorem 1.6
and Proposition 2.4 after choosing p = k + 1. ut

3. Proofs of Theorems 1.11 and 1.16

3.1. Algebraic preliminaries

We start with a lemma that provides a slightly different characterization of additive com-
plexity from that given in Definition 1.8. Roughly speaking, the lemma states that any
given additive representation of a given polynomial P can be modified without changing
its length to another additive representation of P in which any negative exponents occur
only in the very last step. This simplification will be very useful in what follows.

Lemma 3.1 ([24, p. 152]). For any P ∈ R[X1, . . . , Xk] and a ∈ N, the polynomial P
has additive complexity at most a if and only if there exists a sequence of equations

(i) Q1 = u1X
α11
1 · · ·X

α1k
k + v1X

β11
1 · · ·X

β1k
k ,

where u1, v1 ∈ R, and α11, . . . , α1k, β11, . . . , β1k ∈ N;

(ii) Qj = ujX
αj1
1 · · ·X

αjk
k

∏
1≤i≤j−1

Q
γji
i + vjX

βj1
1 · · ·X

βjk
k

∏
1≤i≤j−1

Q
δji
i ,

where 1 < j ≤ a, uj , vj ∈ R, and αj1, . . . , αjk, βj1, . . . , βjk, γji, δji ∈ N for 1 ≤ i < j ;
and

(iii) P = cX
ζ1
1 · · ·X

ζk
k

∏
1≤j≤a

Q
ηj
j ,

where c ∈ R, and ζ1, . . . , ζk, η1, . . . , ηa ∈ Z.

Remark 3.2. Observe that in Lemma 3.1 all exponents other than those in (iii) are in N
rather than in Z (cf. Definition 1.8). Observe also that if a polynomial P satisfies the
conditions of the lemma, then it has additive complexity at most a.
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3.2. The algebraic case

Before proving Theorem 1.11 it is useful to first consider the algebraic case separately,
since the main technical ingredients used in the proof of Theorem 1.11 are more clearly
visible in this case. With this in mind, in this section we consider the algebraic case and
prove the following theorem, deferring the proof in the general semi-algebraic case until
the next section.

Theorem 3.3. The number of homotopy types of Zer(F,Rk) amongst all polynomials
F ∈ R[X1, . . . , Xk] having additive complexity at most a does not exceed

2O(k(k
2
+a))8

= 2(k+a)
O(1)
.

Before proving Theorem 3.3 we need a few preliminary results.

Proposition 3.4. Let F, P,Q ∈ R[X] be such that FQ = P , R ∈ R+, and define

T := {(x, t) ∈ Rk × R+| P 2(x) ≤ t (Q2(x)− tN ) ∧ |x|2 ≤ R2
}, (3.1)

where N = 2 deg(Q)+ 1. Then, using Notation 1.15,

Tlimit = Zer(F,Rk) ∩ Bk(0, R).

Before proving Proposition 3.4 we first discuss an illustrative example.

Example 3.5. Let

F1 = X(X
2
+ Y 2

− 1), F2 = X
2
+ Y 2

− 1.

P1 = X
2(X2

+ Y 2
− 1), P2 = X(X

2
+ Y 2

− 1),
Q1 = Q2 = X.

For i = 1, 2 and R > 0, let

Ti = {(x, t) ∈ Rk × R+ | P 2
i (x) ≤ t (Q

2
i (x)− t

N ) ∧ |x|2 ≤ R2
}

as in Proposition 3.4.

(a) (b) (c) (d)

Fig. 1: Two examples.
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In Figure 1, we display, from left to right, Zer(F1,R2), T1
ε , Zer(F2,R2) and T2

ε (where
ε = .005 and N = 3). Notice that, for i = 1, 2 and any fixed R > 0, the semi-algebraic
set Tiε approaches (in the sense of Hausdorff distance) the set Z(Fi,R2) ∩ B2(0, R) as
ε→ 0.

We now prove Proposition 3.4.

Proof of Proposition 3.4. We show both inclusions. First let x ∈ Tlimit; we will show that
F(x) = 0. In particular, we will prove that 0 ≤ F 2(x) < ε for every ε > 0.

Let ε > 0. Since F 2 is continuous, there exists δ > 0 such that

|x− y|2 < δ ⇒ |F 2(x)− F 2(y)| < ε/2. (3.2)

After possibly making δ smaller we can suppose that δ < ε2/4.
From the definition of Tlimit (cf. Notation 1.15), we have

Tlimit = {x | (∀δ)(δ > 0⇒ (∃t)(∃y)(y ∈ Tt ∧ |x− y|2 + t2 < δ))}. (3.3)

Since x ∈ Tlimit, there exist t ∈ R+ and y ∈ Tt such that |x − y|2 + t2 < δ, and
in particular both |x − y|2 < δ and t2 < δ < ε2/4. The former inequality implies that
|F 2(x) − F 2(y)| < ε/2. The latter inequality implies t < ε/2, and this together with
y ∈ Tt implies

P 2(y) ≤ t (Q2(y)− tN ),

so F 2(y)Q2(y) ≤ t (Q2(y)− tN ),

so 0 ≤ F 2(y) ≤ t −
tN+1

Q2(y)
< t,

so 0 ≤ F 2(y) < ε/2.

Finally, note that |F 2(x)| ≤ |F 2(x)− F 2(y)| + |F 2(y)| < ε/2+ ε/2 = ε.
We next prove the other inclusion, namely Zer(F,Rk) ∩ Bk(0, R) ⊆ Tlimit. Let

x ∈ Zer(F,Rk) ∩ Bk(0, R). We fix δ > 0 and show that there exist t ∈ R+ and y ∈ Tt
such that |x− y|2 + t2 < δ (cf. (3.3)).

There are two cases to consider.

Case 1: Q(x) 6= 0. Then there exists t > 0 such that Q2(x) ≥ tN and t2 < δ. Now,
x ∈ Tt and

|x− x|2 + t2 = t2 < δ,

so setting y = x we see that y ∈ Tt and |x− y| + t2 < δ. Thus, x ∈ Tlimit as desired.

Case 2: Q(x) = 0. Let v ∈ Rk be generic, and denote P̂ (U) = P(x + Uv), Q̂(U) =
Q(x+ Uv), and F̂ (U) = F(x+ Uv). Note that

P̂ = F̂ Q̂, P̂ (0) = Q̂(0) = F̂ (0) = 0. (3.4)

If F is not the zero polynomial, then neither is P̂ . Indeed, assume F is not identically
zero, and hence P is not identically zero. In order to prove that P̂ is not identically zero
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for a generic choice of v, write P =
∑

0≤i≤d Pi where Pi is the homogeneous part
of P of degree i, and Pd is not identically zero. Then it is easy to see that P̂ (U) =
Pd(v)Ud + (lower degree terms). Since R is an infinite field, a generic choice of v will
avoid the set of zeros of Pd , and thus P̂ is not identically zero.

We further require that x+ tv ∈ Bk(0, R) for t > 0 sufficiently small. For generic v,
this is true for either v or −v, and so after possibly replacing v by −v (and noticing that
since Pd is homogeneous we have Pd(v) = (−1)dPd(−v)) we may assume x + tv ∈
Bk(0, R) for t > 0 sufficiently small, say for 0 < t < t0.

Denoting ν = mult0(P̂ ) and µ = mult0(Q̂), we see from (3.4) that ν > µ. Let

P̂ (U) =

degU P̂∑
i=ν

ciU
i
= U ν ·

degU P̂−ν∑
i=0

cν+iU
i
= cνU

ν
+ (higher order terms),

Q̂(U) =

degU Q̂∑
i=µ

diU
i
= Uµ ·

degU Q̂−µ∑
i=0

dµ+iU
i
= dµU

µ
+ (higher order terms),

where cν, dµ 6= 0. Then

P̂ 2(U) = c2
νU

2ν
+ (higher order terms),

Q̂2(U) = d2
µU

2µ
+ (higher order terms),

D(U) := U(Q̂2(U)− UN ) = U(d2
µU

2µ
+ (higher order terms)− UN ),

D(U)− P̂ 2(U) = d2
µU

2µ+1
+ (higher order terms)− UN+1.

Since µ ≤ deg(Q) and N = 2 deg(Q) + 1, we have 2µ + 1 < N + 1. Hence, there
exists t1 ∈ R+ such that for each t with 0 < t < t1, we have D(t) − P̂ 2(t) ≥ 0. Thus,
x + tv ∈ Tt for each t with 0 < t < min{t0, t1}. Let t2 =

(
δ

|v|2+1

)1/2 and note that for

all t with 0 < t < t2, we have (|v|2 + 1)t2 < δ. Finally, if 0 < t < min{t0, t1, t2} then
x+ tv ∈ Tt , and

|x− (x+ tv)|2 + t2 = (|v|2 + 1)t2 < δ.

Hence, setting y = x+ tv (cf. (3.3)) we have shown that x ∈ Tlimit as desired.
The case where F is the zero polynomial is straightforward. ut

Proof of Theorem 3.3. For each F ∈ R[X1, . . . , Xk], by the conical structure at infinity
of semi-algebraic sets (see for instance [4, p. 188]), there exists RF ∈ R+ such that,
for every R > RF , the semi-algebraic sets Zer(F,Rk) ∩ Bk(0, R) and Zer(F,Rk) are
semi-algebraically homeomorphic.

Let ` ∈ N and let F1, . . . , F` ∈ R[X1, . . . , Xk] be such that each Fi has additive
complexity at most a and, for every F having additive complexity at most a, the algebraic
sets Zer(F,Rk),Zer(Fi,Rk) are semi-algebraically homeomorphic for some i, 1 ≤ i ≤ `
(see, for example [24, Theorem 3.5]). Let R = max1≤i≤`{RFi }.
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Let F ∈ {Fi}1≤i≤`. By Lemma 3.1 there exist P,Q ∈ R[X1, . . . , Xk] such that
FQ = P and P 2

− T (Q2
− T N ) ∈ R[X1, . . . , Xk, T ] has division-free additive com-

plexity bounded by a + 2. Let

T = {(x, t) ∈ Rk × R+| P 2(x) ≤ t (Q2(x)− tN ) ∧ |x|2 ≤ R2
}.

By Proposition 3.4 we have Tlimit = Zer(F,Rk) ∩ Bk(0, R). Note that the one-
parameter semi-algebraic family T (where the last coordinate is the parameter) is de-
scribed by a formula having division-free additive format (a + k + 2, k + 1).

By Theorem 2.1 we obtain a collection of semi-algebraic sets Sk,a+k+2 such that
Tlimit, and hence Zer(F,Rk), is homotopy equivalent to some S ∈ Sk,a+k+2 and
#Sk,a+k+2 = 2O(k(k

2
+a))8 , which proves the theorem. ut

3.3. The semi-algebraic case

We first prove a generalization of Proposition 3.4.

Notation 3.6. Let X = (X1, . . . , Xk) be a block of variables and k = (k1, . . . , kn) ∈ Nn
with

∑n
j=1 kj = k. Let r = (r1, . . . , rn) ∈ Rn with rj > 0, j = 1, . . . , n. Let Bk(0, r)

denote the product

Bk(0, r) := Bk1(0, r1)× · · · × Bkn(0, rn).

Proposition 3.7. Let F1, . . . , Fs, P1, . . . , Ps,Q1, . . . ,Qs ∈ R[X1, . . . ,Xn], P =

{F1, . . . , Fs} such that FiQi = Pi for all i = 1, . . . , s. Suppose Xj = (X
j

1 , . . . , X
j
ki
)

and let k = (k1, . . . , kn). Suppose φ is a P-formula containing no negations and no
inequalities. Let

P̄i := Pi
∏
i′ 6=i

Qi′ , Q̄ :=
∏
i

Qi,

and let φ̄ denote the formula obtained from φ by replacing each Fi = 0 with

P̄ 2
i − U(Q̄

2
− UN ) ≤ 0,

where U is the last variable of φ̄, N = 2 deg(Q̄) + 1. Then, for every r = (r1, . . . , rn)
∈ Rn+, we have (cf. Notation 2.9 and Notation 1.15)

Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄ ∧ U > 0

)
limit
= Reali(φ) ∩ Bk(0, r). (3.5)

Proof. We follow the proof of Proposition 3.4. The only case which is not immediate is
when x ∈ Reali(φ) ∩ Bk(0, r) and Q̄(x) = 0, so suppose this holds. Since φ is a formula
containing no negations and no inequalities, it consists of conjunctions and disjunctions
of equalities. Without loss of generality we can assume that φ is written as a disjunction
of conjunctions, and still without negations. Let

φ =
∨
α

φα
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where φα is a conjunction of equations. As above let φ̄α be the formula obtained from φα
after replacing each Fi = 0 in φα with

P̄ 2
i ≤ U(Q̄

2
− UN ), N = 2 deg(Q̄)+ 1.

We have

Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄ ∧ U > 0

)
limit

= Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧

(∨
α

φ̄α

)
∧ U > 0

)
limit

= Reali
(∨
α

n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄α ∧ U > 0

)
limit

=

⋃
α

Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄α ∧ U > 0

)
limit

.

In order to show that x ∈ Reali(
∧n
j=1(|X

j
|
2
≤ r2

j ) ∧ φ̄ ∧ U > 0)limit it now
suffices to show that if x ∈ Reali(φα) ∩ Bk(0, r) and Q̄(x) = 0, then x belongs to
Reali(

∧n
j=1(|X

j
|
2
≤ r2

j ) ∧ φ̄α ∧ U > 0)limit.
Let x ∈ Reali(φα) ∩ Bk(0, r) and suppose Q̄(x) = 0. Let Q ⊆ P consist of the

polynomials of P appearing in φα . Let v ∈ Rk be generic, and set P̂i(U) = P̄i(x+ Uv),
Q̂(U) = Q̄(x+ Uv), and F̂i(U) = F̄ (x+ Uv). Note that

P̂i = F̂iQ̂, P̂i(0) = Q̂(0) = F̂i(0) = 0. (3.6)

As in the proof of Proposition 3.4, if Fi ∈ Q is not the zero polynomial then P̂i is not
identically zero. Since φα consists of a conjunction of equalities and∧

F∈Q
F 6≡0

F = 0 ⇒
∧
F∈Q

F = 0,

we may assume that Q does not contain the zero polynomial. Under this assumption,
for every Fi ∈ Q the univariate polynomial P̂i is not identically zero. As in the proof
of Proposition 3.4, there exists t0 ∈ R+ such that for all t with 0 < t < t0, we have
x+ tv ∈ Bk(0, r). Denoting νi = mult0(P̂i) and µ = mult0(Q̂), we infer from (3.6) that
νi > µ for all i = 1, . . . , s.

Let

P̂i(U) =

degU P̂i∑
j=νi

cjU
j
= U νi ·

degU P̂i−νi∑
j=0

cνi+jU
j
= cνiU

νi + (higher order terms),

Q̂(U) =

degU Q̂∑
j=µ

d
j
j = U

µ
·

degU Q̂−µ∑
j=0

dµ+jU
j
= dµU

µ
+ (higher order terms),
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where dµ 6= 0 and cνi 6= 0. Then

P̂ 2
i (U) = c

2
νi
U2νi + (higher order terms),

Q̂2(U) = d2
µU

2µ
+ (higher order terms),

D(t) := U(Q̂2(U)− UN ) = U(d2
µU

2µ
+ (higher order terms)− UN ),

D(U)− P̂ 2
i (U) = d

2
µU

2µ+1
+ (higher order terms)− UN+1.

Since µ ≤ deg(Q̄) and N = 2 deg(Q̄) + 1, we have 2µ + 1 < N + 1. Hence, there
exists t1,i ∈ R+ such that for all t with 0 < t < t1,i , we have D(t)− P̂ 2

i (t) ≥ 0, and thus
x+ tv satisfies

P̄ 2
i (x+ tv) ≤ t (Q̄

2(x+ tv)− tN ).

Let t1 = min{t1,1, . . . , t1,s}. Let t2 =
(

δ

|v|2+1

)1/2 and note that for all t ∈ R with 0 < t <

t2, we have (|v|2 + 1)t2 < δ. Finally, if 0 < t < min{t0, t1, t2} then

(x+ tv, t) ∈ Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄α ∧ U > 0

)
and

|x− (x+ tv)|2 + t2 = (|v|2)t2 < δ,

and so we have shown that

x ∈ Reali
( n∧
j=1

(|Xj |2 ≤ r2
j ) ∧ φ̄α ∧ U > 0

)
limit

. ut

Using the same notation as in Proposition 3.7 above, we have

Corollary 3.8. Let φ be a P-formula containing no negations and no inequalities,
with P ⊂ R[X1, . . . , Xk] with P ∈ Ak,a . Then there exists a family of polynomi-
als P ′ ⊂ R[X1, . . . , Xk, U ] and a P ′-formula φ̄ satisfying (3.5) and such that P ′ ∈
Adiv-free
k+1,(k+a)(a+2).

Proof. The proof is immediate from Lemma 3.1, Remark 1.14, and the definition of φ̄.
ut

Definition 3.9. Let 8 be a P-formula with P ⊆ R[X1, . . . ,Xk]. We say that 8 is a
P-closed formula if it contains no negations and all the inequalities in atoms of 8 are
weak inequalities.

Let P = {F1, . . . , Fs} ⊂ R[X1, . . . , Xk], and let 8 be a P-closed formula.
For R ∈ R+, let 8R denote the formula 8 ∧ (|X|2 − R2

≤ 0).
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Let 8† be the formula obtained from 8 by replacing each occurrence of the atom
Fi ∗ 0, ∗ ∈ {=,≤,≥}, i = 1, . . . , s, with

Fi − V
2
i = 0 if ∗ ∈ {≤},

−Fi − V
2
i = 0 if ∗ ∈ {≥},
Fi = 0 if ∗ ∈ {=},

and for R,R′ ∈ R+, let 8†
R,R′

denote the formula

8†
∧ (U2

1 + |X|
2
− R2

= 0) ∧ (U2
2 + |V|

2
− R′2 = 0).

We have

Proposition 3.10.
Reali(8) = π[1,k](Reali(8†)),

and for all 0 < R � R′,

Reali(8R) = π[1,k](Reali(8†
R,R′

)).

Proof. Obvious. ut

Note that, for 0 < R � R′, π[1,k]|Reali(8†
R,R′

)
is a continuous semi-algebraic surjection

onto Reali(8R). Let πR,R′ denote the map π[1,k]|Reali(8†
R,R′

)
.

Proposition 3.11. J p
πR,R′

(Reali(8†
R,R′

)) is p-equivalent to π[1,k](Reali(8†
R,R′

)). More-
over, for any two formulas 8,9, the realizations Reali(8) and Reali(9) are homotopy
equivalent if, for all 1� R � R′,

Reali(J p
πR,R′

(8
†
R,R′

)) ' Reali(J p
πR,R′

(9
†
R,R′

))

are homotopy equivalent for some p > k.

Proof. Immediate from Propositions 2.18, 2.4 and 3.10. ut

Suppose that 8 has additive format bounded by (a, k), and suppose that the number of
polynomials appearing8 is s; without loss of generality we can assume that s ≤ k+a (see
Remark 1.14). Then the sum of the additive complexities of the polynomials appearing in
8

†
R,R′

is bounded by 3a+3s+2 ≤ 3a+3(a+k)+2 ≤ 6(k+a), and8†
R,R′

has additive
format bounded by (6(k + a), 2k + a + 2).

Consequently, the additive format of the formula

21 ∧2
8

†
R,R′

2 ∧2
πR,R′

3

is bounded by (M,N), where

M = (p + 1)(6k + 6a + 1)+
(
p+1

2

)
(4k + 2a + 3),

N = (p + 1)(2k + a + 3)+
(
p+1

2

)
.
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In the above, the estimates of Proposition 2.26 suffice, with (a, k) replaced by
(6(k + a), 2k + a + 2). Now, Corollary 3.8 shows that there exists a P ′-formula

(21 ∧2
8

†
R,R′

2 ∧2
πR,R′

3 )

which satisfies (3.5) and whose division-free additive format is bounded by
((N + M)(M + 2), N + 1). Finally, let J p

πR,R′
(8

†
R,R′

)? denote the formula, with last
variable U ,

�R ∧ (21 ∧2
8

†
R,R′

2 ∧2
πR,R′

3 ) ∧ U > 0; (3.7)

then the division-free additive format of J p
πR,R′

(8
†
R,R′

)? is bounded by (M ′, N+1), where

M ′ = (p + 1)(2k + a + 3)+ (N +M)(M + 2).

Note that M ′ ≤ 5M2.
We have shown the following:

Proposition 3.12. Suppose that the sum of the additive complexities of Fi, 1 ≤ i ≤ s,
is bounded by a. Then the semi-algebraic sets Reali(J p

πR,R′
(8

†
R,R′

)?) can be defined by a
P ′-formula with P ′ ∈ Adiv-free

5M2,N+1, where

M = (p + 1)(6k + 6a + 1)+ 2
(
p+1

2

)
(4k + 2a + 3),

N = (p + 1)(2k + a + 3)+
(
p+1

2

)
.

Finally, we obtain

Proposition 3.13. The number of homotopy types of semi-algebraic subsets of Rk de-
fined by P-closed formulas with P ∈ Aa,k is bounded by 2(k(k+a))

O(1)
.

Proof. Let P ∈ Aa,k . By the conical structure at infinity of semi-algebraic sets (see,
for instance [4, p. 188]) there exists RP > 0 such that, for all R > RP and every
P-closed formula 8, the semi-algebraic sets Reali(8R),Reali(8) are semi-algebraically
homeomorphic.

For each a, k ∈ N, there are only finitely many semi-algebraic homeomorphism types
of semi-algebraic sets described by a P-formula having additive complexity at most (a, k)
[24, Theorem 3.5]. Let ` ∈ N, Pi ∈ Aa,k , and8i a Pi-formula, 1 ≤ i ≤ `, such that every
semi-algebraic set described by a formula of additive complexity at most (a, k) is semi-
algebraically homeomorphic to Reali(8i) for some i, 1 ≤ i ≤ `. LetR = max1≤i≤`{RPi }
and R′ � R.

Let8 ∈ {8i}1≤i≤`. By Proposition 3.11 it suffices to bound the number of homotopy
types of the semi-algebraic sets Reali(J k+1

πR,R′
(8

†
R,R′

)). By Proposition 3.7,

Reali(J k+1
πR,R′

(8
†
R,R′

)?)limit = Reali(J k+1
πR,R′

(8
†
R,R′

)).
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By Proposition 3.12, the division-free additive format of the formula J k+1
πR,R′

(8
†
R,R′

)? is
bounded by (2M,N), where p = k + 1. The proposition now follows immediately from
Theorem 2.1. ut

Proof of Theorem 1.11. Using the construction of Gabrielov and Vorobjov [14] one can
reduce the case of arbitrary semi-algebraic sets to that of a closed bounded one, defined
by a P-closed formula, without changing asymptotically the complexity estimates (see
for example [5]). The theorem then follows directly from Proposition 3.13 above. ut

Proof of Theorem 1.16. The proof is identical to that of Theorem 2.1, except that we use
Theorem 1.11 instead of Theorem 1.6. ut
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