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Abstract. In [Ch00], Chekanov showed that the Hofer norm on the Hamiltonian diffeomorphism
group of a geometrically bounded symplectic manifold induces a nondegenerate metric on the orbit
of any compact Lagrangian submanifold under the group. In this paper we consider the orbits of
more general submanifolds. We show that, for the Chekanov–Hofer pseudometric on the orbit of
a closed submanifold to be a genuine metric, it is necessary for the submanifold to be coisotropic,
and we show that this condition is sufficient under various additional geometric assumptions. At the
other extreme, we show that the image of a generic closed embedding with any codimension larger
than one is “weightless,” in the sense that the Chekanov–Hofer pseudometric on its orbit vanishes
identically. In particular this yields examples of submanifolds which have zero displacement energy
but are not infinitesimally displaceable.

Keywords. Hamiltonian diffeomorphism, Hofer metric, coisotropic submanifold, symplectic rigid-
ity, weightlessness

1. Introduction

Since its introduction in [Ho], the Hofer norm ‖ · ‖ on the group Ham(M,ω) of (com-
pactly supported) Hamiltonian diffeomorphisms of a symplectic manifold (M,ω) has
been an important tool in the study of that group. Of course, in attempting to understand
a group, it is often useful to study natural actions of that group on various sets. Because
the Hofer norm is invariant under inversion and conjugation, if Ham(M,ω) acts transi-
tively on a set S then we obtain a pseudometric δ on S which is invariant under the action
of Ham(M,ω), defined by

δ(s0, s1) = inf{‖g‖ | g ∈ Ham(M,ω), gs0 = s1}

The present paper studies this pseudometric in the case that S is equal to the orbit L(N)
of a closed subset N ⊂ M under the action of Ham(M,ω). The special case which has
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so far received the most attention is that in which N is a compact Lagrangian subman-
ifold:1 Oh showed in [Oh97a, p. 508] that δ defines a nondegenerate metric on L(N)
when N is the zero section of the cotangent bundle of a compact manifold, and shortly
thereafter Chekanov [Ch00] showed more generally that if N is any compact Lagrangian
submanifold of a geometrically bounded2 symplectic manifold then δ is nondegenerate
on L(N). (Accordingly we will generally call δ the “Chekanov–Hofer pseudometric,”
and say that N is CH-rigid when δ is nondegenerate.) See, e.g., [Os03], [Kh09], [U13]
for other results concerning the Chekanov–Hofer metric for Lagrangian submanifolds.

On the other hand, if one takes N to be a singleton then it is quite easy to see that the
Chekanov–Hofer pseudometric vanishes identically on L(N). We will see in this paper
that this continues to be the generic situation even when N has relatively high dimen-
sion, though not when N has codimension one. Namely, where by definition a “closed
embedding” is an embedding whose image is a closed subset, we have:

Theorem 1.1. Let (M,ω) be a symplectic manifold andX a connected smooth manifold.

(i) If dimX = dimM − 1, then for any closed embedding f : X→ M the image f (X)
is CH-rigid (i.e., δ is nondegenerate on L(f (X))).

(ii) If dimX < dimM − 1, then there is a residual subset U in the space of C∞ closed
embeddings f : X→ M (with the strongC∞ topology) such that for every f ∈ U the
Chekanov–Hofer pseudometric δ on L(f (X)) vanishes identically. If X is compact,
there is an integer a depending only on dimM and dimX such that U is open in the
Ca topology.

Proof. Part (i) is Theorem 3.4 and part (ii) is Corollary 6.16 (see Corollary 6.16 and what
precedes it for the required value of a; we just mention here that one can take a to be as
small as 2 provided that dimX <

(dimM−dimX+1
2

)
). ut

In what follows, a submanifold N ⊂ M such that δ vanishes identically on L(N) will
be called weightless; thus when N is weightless, given any position to which N can be
moved by a Hamiltonian diffeomorphism, such a movement can be carried out in a way
that requires arbitrarily little energy.

Thus closed hypersurfaces (by Theorem 1.1(i)) and compact Lagrangian submani-
folds (by [Ch00]) of geometrically bounded symplectic manifolds are CH-rigid, whereas
by Theorem 1.1(ii) there are many submanifolds having the opposite extreme property
of being weightless. Hypersurfaces and Lagrangian submanifolds of symplectic mani-
folds (M,ω) have a natural geometric property in common: they are coisotropic. (Recall

1 As indicated in Section 1.2, in this paper all manifolds will be assumed to have no boundary
unless the modifier “with boundary” is explicitly added. We will avoid using the conventional term
“closed (sub)manifold” to refer to a compact (sub)manifold without boundary, as we will sometimes
consider submanifolds which are closed as subsets but which may not be compact, and it would be
confusing to at the same time use the term “closed submanifold” to mean something other than this.

2 The definition of “geometrically bounded” will be recalled in Section 4.1. Geometrically
bounded symplectic manifolds include for instance those which are compact or convex (i.e., ob-
tained as the Liouville completion of a compact manifold with contact type boundary), as well as
products of these. See [CGK, Section 2] for a proof that convex manifolds have the property.
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that, where for a subspace W of a symplectic vector space (V , ω) we denote by Wω the
ω-orthogonal complement ofW in V , a submanifoldN ⊂ (M,ω) is coisotropic provided
that for all x ∈ N we have TxNω

⊂ TxN .) One of the main themes of this paper is that
the behavior of the Chekanov–Hofer pseudometric δ on L(N) is intimately related to how
close N is to being coisotropic. Indeed we gather evidence for the following:

Conjecture 1.2. LetN be a compact submanifold of a geometrically bounded symplectic
manifold (M,ω). Then N is CH-rigid if and only if N is coisotropic.

We have:

Proposition 1.3. The “only if” part of Conjecture 1.2 is true: indeed for any submani-
fold N of any symplectic manifold (M,ω) such that N is closed as a subset and N is not
coisotropic, N is not CH-rigid.

Proof. See Corollary 4.5. ut

The “if” part of Conjecture 1.2 is consistent with the expectation, articulated for in-
stance in [Gi], that coisotropic submanifolds should have similar rigidity properties to
Lagrangian submanifolds.3 As with other manifestations of this principle, its proof is ob-
structed by the lack of a suitable analogue of Lagrangian Floer theory for coisotropic
submanifolds, but its proof becomes feasible if one imposes some additional hypotheses
on the submanifold. The following theorem illustrates this; we refer to Section 5 both
for definitions and for other examples of hypotheses (in some cases rather more general,
albeit more complicated) that are sufficient to guarantee CH-rigidity:

Theorem 1.4. Let N be a compact coisotropic submanifold of the symplectic manifold
(M,ω), and assume that either

(i) M is geometrically bounded and N is regular; or
(ii) M is compact, N is stable, the group {

∫
S2 u
∗ω | u : S2

→ N} is discrete, and every
leaf of the characteristic foliation of N is dense in N .

Then N is CH-rigid.

Proof. The first case is covered by Theorem 5.1, and the second by Corollary 5.7. ut

Remark 1.5. For any n ∈ Z+ and any integer k with 1 ≤ k ≤ n, Example 4.15 provides
compact coisotropic submanifolds Nk,n of R2n with codimension k (namely, products of
boundaries of ellipsoids) such that Nk,n is CH-rigid. By working in Darboux charts (and
using the fact that Corollary 4.13 applies to arbitrary geometrically bounded ambient
manifolds), one can replace R2n by any 2n-dimensional geometrically bounded symplec-
tic manifold (M,ω). On the other hand Theorem 1.1(ii) shows that if k ≥ 2 there are ar-
bitrarily small smooth perturbations of Nk,n in M which are weightless. Thus weightless
and CH-rigid submanifolds coexist in all geometrically bounded symplectic manifolds
(M,ω) and in all codimensions k except those in which such coexistence is forbidden by

3 The hypothesis that (M,ω) is geometrically bounded is necessary even in the Lagrangian case,
as is shown by an example due to Sikorav described in [Ch00, Section 4].
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Theorem 1.1(i) (which implies that a weightless submanifold has codimension k ≥ 2) or
Proposition 1.3 (which implies that a CH-rigid submanifold has codimension k ≤ n). At
the same time, for 2 ≤ k ≤ n − 1 there are codimension k submanifolds N which are
neither CH-rigid nor weightless: by Proposition 1.3, Lemma 4.2(iii), and Corollary 4.11
we could take N to be any closed submanifold which contains a compact Lagrangian
submanifold but is not coisotropic.

We now consider the opposite behavior, where N is weightless, i.e., δ vanishes iden-
tically on the orbit L(N) of N under the Hamiltonian diffeomorphism group. Weightless-
ness is closely related to the lack of coisotropy of N . Indeed, where a submanifold N of
(M,ω) is called nowhere coisotropic if TxNω

6⊂ TxN for all x ∈ N , we have:

Theorem 1.6. All closed nowhere coisotropic submanifolds N of a symplectic manifold
(M,ω) are weightless.

Proof. See Corollary 4.7. ut

Of course any submanifold N of M such that dimN < 1
2 dimM is nowhere coisotropic,

as is any symplectic submanifold N of M of any positive codimension—thus such sub-
manifolds are always weightless (when they are closed as subsets). When dimX <(dimM−dimX

2

)
, the residual set U of Theorem 1.1(ii) (as constructed in Section 6) in

fact consists precisely of nowhere coisotropic embeddings. However once dimX ≥(dimM−dimX
2

)
, one can no longer expect that nowhere coisotropic embeddings are dense

in the space of closed embeddings, and U is taken to consist of embeddings f : X → M

which behave in a suitably generic way along their “coisotropic loci” {x ∈ X |

(f∗TxX)
ω
⊂ f∗TxX}; generally the relevant condition involves higher-order derivatives

of f .
Various other sorts of rigidity or nonrigidity of subsets are often studied in symplectic

topology; let us discuss the relation of CH-rigidity and weightlessness to some of these
other notions. First of all, recall that a closed subsetN ⊂ M is called displaceable if there
is φ ∈ Ham(M,ω) such that φ(N)∩N = ∅. While nondisplaceability is a sort of rigidity,
a CH-rigid subset can certainly be displaceable; for instance this holds ifM = R2n andN
is a compact hypersurface or a compact Lagrangian submanifold. On the other hand a
weightless submanifold N might be nondisplaceable for trivial topological reasons, e.g.
if [N ] ∩ [N ] is nonzero in HdimM−2 dimN (M). Thus the behavior of the Chekanov–Hofer
pseudometric δ is somewhat orthogonal to questions of displaceability.

The displacement energy of a closed subset N ⊂ M is by definition

e(N,M) = inf{‖φ‖ | φ ∈ Ham(M,ω), φ(N) ∩N = ∅};

N might also be considered to be rigid if one has e(N,M) > 0, and this notion of
rigidity is somewhat more closely connected to ours. Chekanov’s original proof in [Ch00]
that compact Lagrangian submanifolds of geometrically bounded symplectic manifolds
are CH-rigid used his famous theorem from [Ch98] that such submanifolds always have
positive displacement energy. Indeed, rephrasing his argument into our language, he first
showed that a Lagrangian submanifold would have to be either CH-rigid or weightless,
and then he appealed to the following obvious fact to derive a contradiction:
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Proposition 1.7. If N ⊂ M is a displaceable closed subset which is weightless then
e(N,M) = 0.

Proof. That N is displaceable means that there is N ′ ∈ L(N) such that N ∩ N ′ = ∅,
and that N is weightless implies that we have δ(N,N ′) = 0, i.e. for all n ∈ Z+ there is
φn ∈ Ham(M,ω) such that φn(N) = N ′ and ‖φn‖ < 1/n. Since the φn disjoin N from
itself the result follows. ut

It is not clear whether, conversely, if e(N,M) = 0 then N must be weightless. It is true,
though, that if there is a fixed N ′ ∈ L(N) such that δ(N,N ′) = 0 and N ∩ N ′ = ∅
then N is weightless, as may be deduced from Lemma 4.2. In other words, rewriting the
definition of e(N,M) as

e(N,M) = inf{δ(N,N ′) | N ′ ∈ L(N), N ∩N ′ = ∅},

we see that if the above infimum is both equal to zero and attained then N is weightless.
Still another notion of nonrigidity for a (say compact) submanifold N of a symplectic

manifold (M,ω) is infinitesimal displaceability: N is said to be infinitesimally displace-
able if there is a smooth function H : M → R whose Hamiltonian vector field XH has
the property that XH (x) /∈ TxN for all x ∈ N . Since we assume that N is compact,
where {φt }t∈R denotes the flow of XH , if N is infinitesimally displaceable then we will
have φt (N) ∩ N = ∅ for all sufficiently small nonzero t , in view of which N clearly
has e(N,M) = 0. We show in Proposition 4.8 that in fact infinitesimally displaceable
submanifolds are weightless. However the converse need not be true, even if we assume
that the weightless submanifold is displaceable and hence has zero displacement energy
by Proposition 1.7; indeed, there may be purely differential-topological obstructions to
the existence of the vector field XH . This leads to the following:

Theorem 1.8. Let (M,ω) be any 4k-dimensional symplectic manifold where k is a posi-
tive integer. Then there is a compact submanifold N ⊂ M of dimension 2k such that N is
not infinitesimally displaceable but e(N,M) = 0.

Proof. This will follow quickly from:

Lemma 1.9. For any k ∈ Z+ there is a compact submanifold N0 ⊂ R4k of dimension 2k
such that the normal bundle of N0 has no nonvanishing sections.

To deduce Theorem 1.8 from Lemma 1.9, note that after composing the embedding ofN0
first with a suitable rescaling of R4k and then with a Darboux chart for (M,ω), we can
arrange for (a copy of) N0 to be contained in the interior of a closed Darboux ball B
which is displaceable in M . By Theorem 1.1(ii), arbitrarily C∞-close to this copy of N0
there is a weightless submanifold N ; in particular we can arrange for N to still be con-
tained in B and to have normal bundle which is isomorphic to the normal bundle of N0.
Since N is weightless and, being contained in B, is displaceable, we have e(N,M) = 0
by Proposition 1.7. But N cannot be infinitesimally displaceable, since any vector field
which is nowhere tangent to N would give rise to a nonvanishing section of the normal
bundle to N .
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Lemma 1.9 was originally proven by Mahowald in 1964 [Mah], but here is a con-
struction that symplectic topologists may find more appealing. Let Q2k be the mapping
torus of a reflection of the sphere S2k−1. Then where T 2k is the 2k-dimensional torus,
using Lagrangian surgery as in [P91, Theorem 1a] one obtains a Lagrangian submanifold
N0 ⊂ R4k diffeomorphic to the connected sum T 2k # T 2k # Q2k . Now the Euler char-
acteristic of N0 is −4, and so the tangent bundle TN0 has no nonvanishing sections (the
nonorientability of N0 is no problem here, see e.g. [S, Corollary 39.8]). But since N0 is
Lagrangian, its normal bundle is isomorphic to its tangent bundle. ut

As far as I know, these are the first examples in the literature of submanifolds that are
not infinitesimally displaceable but have zero displacement energy. It was essential for
Lemma 1.9 that the submanifold N0 was nonorientable, since if N0 were orientable then
the Euler class of the normal bundle of N0 would be the restriction of a cohomology
class from R4k and so would be zero, and since dimN0 =

1
2 dimR4k the Euler class of

the normal bundle is the only obstruction to the existence of a nonvanishing section. (In
the nonorientable case the mod 2 Euler class necessarily vanishes for similar reasons, but
the integral twisted Euler class in the cohomology with local coefficients associated to the
first Stiefel–Whitney class of the normal bundle can be nonvanishing, and it is this twisted
Euler class which is the obstruction to finding a section.) If we instead consider subman-
ifolds N0 ⊂ R2n of codimension less than n, then there will be higher-order obstructions
to the existence of a nonvanishing normal vector field which can in principle be nontrivial
when N0 is orientable, though examples of this in the literature seem to be rather scarce.
Some examples of embeddings of orientable manifolds into Euclidean spaces for which
the secondary obstruction to the existence of a normal section is nontrivial are given in
[Mas], though in these cases the ambient Euclidean dimension is odd. It seems likely that
a product N0 of two of Massey’s examples would again admit no nonvanishing normal
fields, and then the same argument as is used in the proof of Theorem 1.8 would show
that a small perturbation ofN0 has zero displacement energy without being infinitesimally
displaceable.

1.1. Outline of the paper

The upcoming Section 2 introduces some terminology and makes some observations con-
cerning the pseudometrics that are induced on the orbits of the action of a group when
that group is endowed with an invariant norm; of course the case of interest to us is the
Hofer norm on the Hamiltonian diffeomorphism group of a symplectic manifold (M,ω),
acting on closed subsets of N . In particular we prove the simple but conceptually im-
portant Proposition 2.2, which connects the behavior of the pseudometric δ on the orbit
L(N) of N to the properties of the closure 6̄N of the stabilizer 6N of N with respect to
the norm.

Section 3 contains the proof of Theorem 1.1(i), asserting that closed hypersurfaces
are CH-rigid. Given existing results in the literature, this is the much easier half of that
theorem: when the hypersurface separates the ambient manifold the result follows from
the energy-capacity inequality proven in [LM, Theorem 1.1(ii)], and the general case can
be reduced to the (possibly disconnected) separating case by passing to finite covers.
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Section 4 introduces a fundamental tool for the other main results of the paper: the
rigid locus RN of a closed subset N of a symplectic manifold (M,ω). Where as before
6N is the stabilizer of N and 6̄N is its closure with respect to the Hofer norm, we have
by definition

RN =
⋂
φ∈6̄N

φ−1(N).

Thus RN is a closed subset of N , invariant under the action of 6N on N . Among the
key properties of RN are that RN = N if and only if N is CH-rigid, while (modulo a
trivial exception) RN = ∅ if and only if N is weightless. The first of these statements is
an obvious consequence of Proposition 2.2, but the second is deeper: its proof depends
on Banyaga’s fragmentation lemma. Lemma 4.3 then provides our main tool for proving
either the failure of CH-rigidity or the weightlessness of a submanifold: by means of an
explicit construction of certain kinds of elements of 6̄N , we show that points at which a
submanifold N is not coisotropic cannot belong to RN , from which Proposition 1.3 and
Theorem 1.6 immediately follow; moreover Lemma 4.3 is structured so as to facilitate
an inductive argument which is later used in Section 6 to prove Theorem 1.1(ii) (assert-
ing that generic closed embeddings of codimension at least two are weightless). In the
opposite direction we prove in Corollary 4.11 that (assuming (M,ω) to be geometrically
bounded) if N ⊂ M is a closed subset which contains a compact Lagrangian submani-
fold L, then L ⊂ RN ; this gives a new proof of Chekanov’s theorem from [Ch00] that
compact Lagrangian submanifolds are CH-rigid (by setting L = N ), and it is later used to
prove that some other classes of coisotropic submanifolds are CH-rigid as well. Finally we
prove Theorem 4.16, which asserts that if a compact subsetN ⊂ M has a rigid locus with
zero displacement energy, then the rigid locus of its “stabilization” N̂ = N×S1

⊂ M×R2

is empty; this is used for some of the results of Section 5.
Section 5 contains our results on the CH-rigidity of certain classes of coisotropic

submanifolds, together with some illustrative examples. These results fit roughly speaking
into two rather distinct classes: those where the submanifold is CH-rigid because most of
its points lie on compact Lagrangian submanifolds so that we can apply Corollary 4.11
(as we explain, this commonly occurs in the theory of symplectic reduction), and those
where the submanifold is CH-rigid because it is stable in the sense of [Gi] and because
most of its points lie on dense leaves of the characteristic foliation, allowing us to make
use of results from [Gi] and [U11].

Finally, Section 6 proves Theorem 1.1(ii). The argument is rather involved, but here is
a brief description of the idea. Following the strategy introduced in Section 4, the goal is
to show that a generic submanifold N ⊂ M of codimension larger than 1 has empty rigid
locus RN . Now a simple case of Lemma 4.3 shows that RN ⊂ {x ∈ N | TxNω

⊂ TxN}.
Denoting the set on the right by N1, one can use Thom’s jet transversality theorem to
show that, for generic N , N1 is a submanifold of N , with positive codimension since we
assume that the codimension of N is at least 2. Once we know that RN ⊂ N1 and that N1
is a submanifold, another application of Lemma 4.3 shows that in fact

RN ⊂ {x ∈ N | TxN
ω
⊂ TxN1},
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and one can reasonably expect that the set on the right hand side above would generi-
cally be smaller than N1. This suggests an inductive scheme in which we produce, for
any positive integer r and generic N (with the precise genericity condition depending
on r), a sequence of submanifolds N = N0 ⊃ N1 ⊃ · · · ⊃ Nr , where each inclusion
has positive codimension and repeated applications of Lemma 4.3 show that if RN ⊂ Ni
then RN ⊂ Ni+1. Since the dimensions of the Ni are strictly decreasing, the Ni would
eventually terminate in the empty set, implying that RN = ∅ and hence that N is weight-
less. This is essentially what we do, modulo a technical issue that forces us to work
separately in each member of a countable (finite if N is compact) open cover of N . The
statement that Ni is a manifold of the expected dimension is obtained by appealing to the
jet transversality theorem for the i-jet of the embedding of N .

1.2. Notation and conventions

• All manifolds and submanifolds are assumed to be without boundary unless the modi-
fier “with boundary” is explicitly added.
• Submanifolds are always assumed to be embedded. A “closed submanifold” N of a

manifold M is a submanifold of M which is closed as a subset (it need not be compact
if M is not compact).
• If (M,ω) is a symplectic manifold, a compactly supported smooth function
H : [0, 1]×M → R determines a time-dependent Hamiltonian vector field {XHt }0≤t≤1
by the prescription that ω(·, XHt ) = d (H(t, ·)).
• Ham(M,ω) is the group of time-one maps of the time-dependent Hamiltonian vector

fields generated by compactly-supported smooth functions H : [0, 1] ×M → R.
• If V ⊂ M is an open subset, then Hamc(V ) denotes the subgroup of Ham(M,ω) con-

sisting of those time-one maps of time-dependent Hamiltonian vector fields generated
by Hamiltonian functions H : [0, 1] ×M → R having compact support contained in
[0, 1] × V .
• For a closed subset N ⊂ M , we denote by 6N the subgroup of Ham(M,ω) consisting

of the Hamiltonian diffeomorphisms φ such that φ(N) = N .

2. Norms on groups

We collect in this section some conventions and observations regarding norms on groups
and their associated homogeneous spaces; this will serve as part of the framework for the
rest of the paper.

Definition 2.1. If G is a group, an invariant norm on G is a map ‖ · ‖ : G → [0,∞),
with the following properties:

• ‖g‖ ≥ 0 for all g ∈ G, with equality if and only if g is the identity.
• For all g, h ∈ G we have

‖g−1
‖ = ‖g‖, ‖gh‖ ≤ ‖g‖ + ‖h‖, ‖h−1gh‖ = ‖g‖.
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Invariant norms on a group G are in one-to-one correspondence with bi-invariant
metrics: given an invariant norm ‖ · ‖ one obtains a bi-invariant metric d by setting
d(g, h) = ‖gh−1

‖, and conversely one can recover ‖ · ‖ from d by setting ‖g‖ = d(g, e)
where e is the identity. In particular an invariant norm on G induces naturally a (metric)
topology on G, with respect to which G is readily seen to be a topological group.

Now suppose that G acts transitively on the left on some set S. Associated to the
invariant norm ‖ · ‖ is a function δ : S × S → [0,∞) defined by

δ(s1, s2) = inf{‖g‖ | gs1 = s2}.

It is straightforward to verify from the axioms for ‖ · ‖ that δ defines a G-invariant
pseudometric on S: in other words we have, for s1, s2, s3 ∈ S and g ∈ G, the following
identities:

δ(s1, s1) = 0, δ(s1, s2) = δ(s2, s1), δ(s1, s3) ≤ δ(s1, s2)+ δ(s2, s3),

δ(gs1, gs2) = δ(s1, s2).

Whether the pseudometric δ on the G-set S is in fact a metric (i.e., whether δ(s1, s2)
> 0 whenever s1 6= s2) is a more subtle issue, which is partly addressed by the following:

Proposition 2.2. Let ‖·‖ be an invariant norm on the groupG, which acts transitively on
the left on the set S, inducing the invariant pseudometric δ as above. Choose a basepoint
s0 ∈ S, and define

H = {g ∈ G | gs0 = s0}.

Then the closure of H with respect to the topology on G induced by ‖ · ‖ is a subgroup,
and is given by

H̄ = {g ∈ G | δ(s0, gs0) = 0}. (2.1)

In particular, δ is a metric on S if and only if H is closed.

Proof. The fact that H̄ is a subgroup just follows from the general elementary fact that,
in any topological group, the closure of a subgroup is still a subgroup.

If g ∈ H̄ , then for all ε > 0 there is h ∈ H such that ‖gh−1
‖ < ε. Since h ∈ H we

have h−1s0 = s0. Thus δ(s0, gs0) = δ(s0, gh−1s0) < ε. Since ε > 0 was arbitrary this
shows that δ(s0, gs0) = 0.

Conversely, if δ(s0, gs0) = 0, by the definition of δ for any ε > 0 we can find h ∈ G
such that hs0 = gs0 and ‖h‖ < ε. Then h−1gs0 = s0, i.e. h−1g ∈ H , and we have
d(h−1g, g) = ‖h−1gg−1

‖ = ‖h‖ < ε. Since ε was arbitrary this shows that g ∈ H̄ .
This proves the characterization (2.1) of H̄ . The last sentence follows immediately:

if H = H̄ then the required nondegeneracy holds using the G-invariance of δ and the
transitivity of the action, while if H̄ \ H contains some element g then we will have
δ(s0, gs0) = 0 even though s0 6= gs0. ut

The rest of the paper specializes to the following situation. Let (M,ω) be a symplec-
tic manifold and let N ⊂ M be a closed subset. For the group G we use the group
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Ham(M,ω) of compactly-supported Hamiltonian diffeomorphisms of M , and for the
set S we use

S = L(N) := {φ(N) | φ ∈ Ham(M,ω)}.

On Ham(M,ω) we have the Hofer norm of [Ho] (which was proven to be nondegen-
erate on all symplectic manifolds on [LM]): where for a smooth compactly supported
function H : [0, 1] × M → R we denote by φ1

H the time-one map of H , one sets, for
φ ∈ Ham(M,ω),

‖φ‖ = inf
{∫ 1

0

(
max
M
H(t, ·)−min

M
H(t, ·)

)
dt

∣∣∣∣ φ1
H = φ

}
.

Using the obvious left action of Ham(M,ω) on L(N), the Hofer norm ‖ · ‖ induces a
“Chekanov–Hofer” pseudometric δ on L(N). As in the introduction, we use the following
shorthand:

Definition 2.3. (i) A closed subset N ⊂ M is called weightless if the Chekanov–Hofer
pseudometric δ on L(N) vanishes identically.

(ii) A closed subset N ⊂ N is called CH-rigid if the Chekanov–Hofer pseudometric δ
on L(N) is a nondegenerate metric.

In other words, N is weightless if, whenever N ′ ⊂ M has the property that N ′ =
φ(N) for some φ ∈ Ham(M,ω), the diffeomorphism φ can in fact be chosen to have
arbitrarily low energy, while N is CH-rigid if this holds only when N = N ′.

Where, as in Section 1.2, 6N denotes the stabilizer of N under the action of
Ham(M,ω) (i.e., 6N = {φ ∈ Ham(M,ω) | φ(N) = N}), Proposition 2.2 provides
another characterization of these properties: N is CH-rigid if and only if 6̄N = 6N ,
while N is weightless if and only if 6̄N = Ham(M,ω), where of course 6̄N denotes the
closure of 6N in Ham(M,ω) with respect to the Hofer norm.

3. Hypersurfaces

The goal of this section is to prove Theorem 1.1(i), asserting that closed connected hyper-
surfaces in symplectic manifolds are CH-rigid. As we will see, this follows fairly quickly
from the energy-capacity inequality together with covering tricks.

Lemma 3.1. Where (M,ω) is a connected symplectic manifold, let N ⊂ M be a (not
necessarily connected) closed subset with the property that M \ N = M0 ∪ M1 where
M0 and M1 are disjoint nonempty connected open subsets of M and M̄i = Mi ∪ N for
i = 0, 1. Then N is CH-rigid.

Proof. Let N ′ ∈ L(N) \ {N}; we are to show that there is δ > 0 such that any ψ ∈
Ham(M,ω) with ψ(N) = N ′ has ‖ψ‖ ≥ δ. Of course the assumption that N ′ ∈ L(N)
means that there is some ψ0 ∈ Ham(M,ω) with N ′ = ψ0(N). If we set M ′i = ψ0(Mi)

for i = 0, 1, then M \ N ′ = M ′0 ∪M
′

1 where the M ′i are disjoint nonempty connected
open sets with M̄ ′i = M

′

i ∪N
′.
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Since N 6= N ′, one (more likely both) of N \ N ′ and N ′ \ N is nonempty. Suppose
the former set is nonempty, and choose x0 ∈ N \N

′. Since x0 lies in the closures of both
M0 andM1, any open set containing x0 will intersect bothM0 andM1. On the other hand
since x0 /∈ N

′, for some j ∈ {0, 1}we have x0 ∈ M
′

j . Thus in particularM ′j intersects both
M0 and M1. We claim that δ(N,N ′) is at least equal to the minimum of the displacement
energies of M0 ∩M

′

j and M1 ∩M
′

j , which of course is positive by [LM, Theorem 1.1(ii)]
since M0 ∩M

′

j and M1 ∩M
′

j are nonempty open sets. Indeed, if ψ ∈ Ham(M,ω) has
ψ(N) = N ′, then also ψ(M \ N) = M \ N ′, so since the connected components of
M \ N are M0 and M1 while those of M \ N ′ are M ′0 and M ′1, it follows that either
ψ(M0) ∩M

′

j = ∅ or ψ(M1) ∩M
′

j = ∅. In the first case ψ displaces M0 ∩M
′

j , and in the
second case it displacesM1∩M

′

j , proving that in either case ‖ψ‖ is at least the minimum
of the two aforementioned displacement energies.

This proves the result if N \ N ′ 6= ∅. The case N ′ \ N 6= ∅ is essentially identical:
some Mj intersects both M ′0 and M ′1, and then (using that ‖ψ‖ = ‖ψ−1

‖) one proves in
the same way as in the previous paragraph that δ(N,N ′) is at least the minimum of the
displacement energies of M ′0 ∩Mj and M ′1 ∩Mj . ut

The proof that all closed codimension-one submanifolds, and not just separating ones,
are CH-rigid proceeds by passing to finite covers in order to appeal to Lemma 3.1. The
following simple lemma is the basis for this:

Lemma 3.2. Let π : X → M be a (surjective) finite covering map where (M,ω) is a
symplectic manifold. Suppose that N ⊂ M is a closed subset such that π−1(N) is CH-
rigid as a subset of (X, π∗ω). Then N is CH-rigid as a subset of (M,ω).

Proof. If H : [0, 1] × M → R is any compactly supported smooth function, then the
function H̃ (t, x) = H(t, π(x)) on [0, 1] × X will still be compactly supported since
π is a finite covering map, and the Hamiltonian flow generated by H̃ will lift the flow
generated by H . This gives rise to a map

H̃am(M,ω)→ H̃am(X, ωX), φ 7→ φ̃,

between the universal covers of the respective Hamiltonian diffeomorphism groups. Con-
tinue to denote by ‖ · ‖ the Hofer (pseudo-)norm on H̃am obtained by taking infima of
lengths of paths in a given homotopy class, and note that the Chekanov–Hofer pseudo-
metric is given by the formula

δ(N,N ′) = inf{‖φ‖ | φ ∈ H̃am(M,ω), φ(N) = N ′}

where we take the infimum over pseudonorms of elements of H̃am rather than over norms
of elements of Ham and where for φ ∈ H̃am(M,ω) we denote by φ(N) the image of N
under the terminal point of a path in Ham(M,ω) representing the homotopy class φ.
Moreover ‖φ̃‖ ≤ ‖φ‖ for all φ ∈ H̃am(M,ω), since max H̃ (t, ·) − min H̃ (t, ·) =
maxH(t, ·)−minH(t, ·). From this it follows that, for any N ′ ∈ L(N), we have

δ(N,N ′) ≥ δ
(
π−1(N), π−1(N ′)

)
.



1582 Michael Usher

If N ′ 6= N , then since π is surjective, π−1(N ′) 6= π−1(N), so by the hypothesis of the
lemma δ(π−1(N), π−1(N ′)) > 0, whence δ(N,N ′) > 0, proving thatN is CH-rigid. ut

Lemma 3.3. Let (M,ω) be a connected symplectic manifold and N ⊂ M a connected
orientable codimension-one submanifold which is closed as a subset. ThenN is CH-rigid.

Proof. Since N and M are orientable, the normal bundle to N in M is orientable and
hence trivial since it has rank one. Thus by the tubular neighborhood theorem there is a
neighborhood U of N in M and a diffeomorphism 8 : U → R× N which restricts to N
as the map n 7→ (0, n). Let

U+ = 8
−1((0,∞)×N) and U− = 8

−1((−∞, 0)×N).

Since M and N are assumed to be connected it is easy to see that M \ N has either one
or two path components; the case of two path components is covered by Lemma 3.1, so
let us assume that M \ N is connected. Let U1 and U2 be two identical copies of U ,
containing open subsets U1

±, U2
± as above. Let X0 denote the manifold obtained from

(M \N)q U1
q U2 by identifying points of U− ⊂ M \N with those of U1

−, and points
of U+ ⊂ M \ N with those of U2

+. (So X0 is diffeomorphic to M \ N , but with the ends
U± “elongated” to disjoint copies U1 and U2 of U .) Now let X1 and X2 be two identical
copies of X0, so that we have copies of U as above embedded as U1

1 and U2
1 in X1, and

as U1
2 and U2

2 in X2, and let X be the manifold obtained from X1qX2 by identifying U1
1

with U2
2 , and U2

1 with U1
2 . (See Figure 1.)

M

N

U
+
U

U

X
0

Fig. 1. The manifolds M , X0, and X = X1 ∪ X2 in the proof of Lemma 3.3. We have an obvious
double cover π : X → M , and π−1(N) ⊂ X (which appears in the figure as a union of two solid
vertical line segments) separates X.
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Every point of X is a member of either a copy ofM \N or a copy of U (or both), and
so we get a map π : X → M obtained from the inclusions of M \ N and U into M . It is
easy to see that π is a two-to-one covering map such that X \ π−1(N) is a disjoint union
of two copies of M \ N , each having boundary given by π−1(N). Let ωX = π∗ω. By
Lemma 3.1, π−1(N) ⊂ X is then CH-rigid, so by Lemma 3.2, N ⊂ M is also CH-rigid.

ut

So for the following theorem, which restates Theorem 1.1(i), it remains only to address
the nonorientable case, which can likewise be handled by a covering argument:

Theorem 3.4. For any symplectic manifold (M,ω), any connected submanifold N ⊂ M
of codimension one which is closed as a subset is CH-rigid.

Proof. Let ν → N denote the normal bundle toN inM . SinceN is assumed to be closed
as a subset, the inclusion of N into M is a proper map, so N has a mod 2 Poincaré dual
PD(N) ∈ H 1(M;Z/2), and PD(N)|N coincides with the mod 2 Euler class (i.e., the first
Stiefel–Whitney class) w1(ν) ∈ H

1(N;Z/2). Let π : X→ M be the cover associated to
the kernel of the evaluation map PD(N) : π1(M) → Z/2, so π is a two-to-one cover if
ν is nonorientable and the identity otherwise, and in any case we have π∗ PD(N) = 0.
Then where Ñ = π−1(N), the normal bundle ν̃ of Ñ in X is given by ν̃ = π∗ν, and so
we have

w1(ν̃) = π
∗ (PD(N)|N ) =

(
π∗ PD(N)

)∣∣
Ñ
= 0.

Thus the normal bundle to Ñ inX is orientable, and so sinceX is also orientable it follows
that Ñ is orientable. Of course if N is orientable then Ñ = N and X = M , but if N is
not orientable then π |

Ñ
: Ñ → N is the orientable double cover of N and in particular is

connected. Now Lemma 3.3 applies to show that Ñ is CH-rigid, and so by Lemma 3.2,
N is also CH-rigid. ut

4. The rigid locus

This section proves basic properties concerning our most important tool in this paper, the
rigid locus of a closed subset of a symplectic manifold. Using Lemmas 4.2 and 4.3, we
will quickly prove Proposition 1.3 and Theorem 1.6, and lay part of the foundation for the
proof of Theorem 1.1(ii), which will be proven later in Section 6. Also, Sections 4.1 and
4.2 will prove properties of the rigid locus that will be important in the proof of Theorem
1.4 in Section 5.

We consider general closed subsets N of the symplectic manifold (M,ω). As before,
L(N) denotes the orbit of N under Ham(M,ω), δ denotes the pseudometric on L(N)
induced by the Hofer norm, 6N denotes the stabilizer {φ ∈ Ham(M,ω) | φ(N) = N},
and 6̄N is the closure of 6N with respect to the Hofer norm.

Definition 4.1. If N is a closed subset of M , the rigid locus of N is the subset

RN = {x ∈ N | (∀φ ∈ 6̄N )(φ(x) ∈ N)}.
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Lemma 4.2. If N is a proper closed subset of the symplectic manifold (M,ω), the rigid
locus RN ⊂ N obeys the following properties:

(i) RN is a closed subset of N .
(ii) RN = N if and only if N is CH-rigid.

(iii) If RN = ∅ then N is weightless. Conversely, assuming that no connected component
of M is contained in N , if N is weightless then RN = ∅.

(iv) For all ψ ∈ 6̄N we have ψ(RN ) = RN .
(v) Suppose that N ′ ∈ L(N) has the property that δ(N,N ′) = 0. Then RN ⊂ N ∩N ′.

Proof. For (i), simply note that RN =
⋂
φ∈6̄N

φ−1(N) and N is assumed to be a closed
subset of M . So RN is closed as a subset of M , hence also as a subset of N .

For (ii), if 6N = 6̄N then clearly RN = N . Conversely, if there exists some φ ∈
6̄N \6N , then either φ(N) \N or N \φ(N) is nonempty. In the first case we find x ∈ N
with φ(x) /∈ N , so x /∈ RN , while in the second case we find x ∈ N with φ−1(x) /∈ N ,
and so since φ−1

∈ 6̄N again x /∈ RN . So in any event if 6̄N 6= 6N then N 6= RN . By
Proposition 2.2 this proves that the nondegeneracy of the pseudometric is equivalent to
the condition that RN = N .

For the second half of (iii), suppose that N is weightless and that no connected com-
ponent of M is contained in N . We then have 6̄N = Ham(M,ω), and since Ham(M,ω)
acts transitively on each of its connected components this implies that RN = ∅, as any
point inN can be moved by an element of 6̄N to a point in the same connected component
of M which is not in N .

Now let us prove the first half of (iii) (which is perhaps the only nontrivial part of
this lemma). Suppose that RN = ∅, so that for each x ∈ N we can find φx ∈ 6̄N so that
φx(x) /∈ N . We can then find an open-in-M neighborhood of x, sayUx , so that φx(Ux)∩N
= ∅. We claim that this implies that Hamc(Ux) ≤ 6̄N (where Hamc(Ux) is the group of
diffeomorphisms generated by Hamiltonians compactly-supported in [0, 1]×Ux). Indeed,
if ψ ∈ Hamc(Ux) and y ∈ N , then φ−1

x (y) /∈ Ux , and so (φx ◦ ψ ◦ φ−1
x )(y) = y. Thus

whenever ψ ∈ Hamc(Ux) we have φx ◦ ψ ◦ φ−1
x ∈ 6N . So since 6̄N is a subgroup of

Ham(M,ω) which contains both φx and 6N it follows that Hamc(Ux) ≤ 6̄N . Thus, if
RN = ∅, we have an open cover

M = (M \N) ∪
⋃
x∈N

Ux,

where Hamc(Ux) ≤ 6̄N by what we have just shown, and where Hamc(M \ N) ≤ 6̄N
since all elements of Hamc(M\N) act trivially onN . But Banyaga’s fragmentation lemma
[Ba, III.3.2] asserts that all of Ham(M,ω) is generated by Hamiltonian diffeomorphisms
supported within the members of any given open cover. So since 6̄N is a subgroup of
Ham(M,ω) it must in fact be equal to all of Ham(M,ω), which by Proposition 2.2 im-
plies that δ vanishes identically, i.e. N is weightless.

(iv) is essentially immediate from the definition and the fact that 6̄N is a group: if
x ∈ RN and ψ ∈ 6̄N then for all φ ∈ 6̄N we will have φ ◦ψ ∈ 6̄N and so φ(ψ(x)) ∈ N ,
proving that ψ(RN ) ⊂ RN . The reverse inclusion follows by the same argument applied
to ψ−1 rather than ψ .
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For (v), by Proposition 2.2 if δ(N,N ′) = 0 we can write N ′ = φ(N) where φ ∈ 6̄N .
If x ∈ RN , then since x ∈ N we obviously have φ(x) ∈ N ′, while also φ(x) ∈ N by the
definition of RN . So φ(RN ) ⊂ N ∩N ′. But by (iv) we have φ(RN ) = RN . ut

Lemma 4.3. Assume that the closed subset N ⊂ M is a submanifold, let O ⊂ N be an
open subset, and suppose that for some relatively closed subset P ⊂ O which is also a
submanifold we have O ∩ RN ⊂ P . Then O ∩ RN ⊂ {x ∈ P | TxNω

⊂ TxP }.

Remark 4.4. This lemma may be slightly easier to decipher if one puts both O = N and
P = N (so that the condition O∩RN ⊂ P is vacuous)—in this case the conclusion is that
RN is necessarily contained in the set of points x at which TxN is a coisotropic subspace
of TxM . Once one knows this, if this “coisotropic locus” is a smooth manifold, then one
can apply the lemma again with P equal to the coisotropic locus, and so conclude that
RN is contained in a (possibly) still smaller set. Indeed this procedure can be iterated
indefinitely; this is roughly speaking what we do in Section 6.

Proof of Lemma 4.3. Suppose that x ∈ P does not have the property that TxNω
⊂ TxP ;

we will show that x /∈ RN .
Taking ω-orthogonal complements, our assumption on x is equivalent to the statement

that there exists some element v ∈ TxP ω\TxN . We may then choose a smooth compactly-
supported function H : M → R such that H |N = 0 but dH(v) > 0.

For each positive integer n let gn : R→ R be a smooth function such that gn(s) = 0
for |s| < 1/n, gn(s) = s for |s| > 2/n, and g′n(s) ≥ 0 for all s. Now define functions
Hn : M → R by Hn = gn ◦H . Let (φtn) and (φt ) denote the time-t Hamiltonian flows of
the functions Hn and H respectively.

Now Hn vanishes identically on a neighborhood of N (namely {y | |H(y)| < 1/n}),
so φtn acts as the identity on N and so certainly φtn ∈ 6N for all n and t . Meanwhile since
gn converges uniformly to the identity we have Hn → H uniformly, and so φtn → φn
with respect to the Hofer metric for all t . Thus each φt is in 6̄N .

The functionH which generates the flow (φt ) has dH(v)>0, where v∈TxP ω \TxN .
Where XH is the Hamiltonian vector field of H , we thus have ωx(v,XH ) 6= 0, and so
since v ∈ TxP ω we have XH (x) /∈ TxP . So for sufficiently small nonzero t we will have
φt (x) /∈ P but φt (x) ∈ O. But by Lemma 4.2(iv), φt (RN ) = RN for all t . So since
O ∩ RN ⊂ P by assumption, it must be that x /∈ RN , as desired. ut

Corollary 4.5. Let N ⊂ M be any submanifold which is not coisotropic. Then the
Chekanov–Hofer pseudometric δ on L(N) is degenerate (i.e., N is not CH-rigid).

Proof. Applying Lemma 4.3 with O = P = N , we see that if RN = N then we must
have TxNω

⊂ TxN for all x ∈ N , i.e. N is coisotropic. So if N is not coisotropic then
RN 6= N , so by Lemma 4.2(ii), δ must be degenerate. ut

Definition 4.6. A submanifold N of a symplectic manifold (M,ω) is called nowhere
coisotropic if for all x ∈ N we have TxNω

\ TxN 6= ∅.

The following restates Theorem 1.6.
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Corollary 4.7. Let N be a submanifold of the symplectic manifold (M,ω) which is
closed as a subset and is nowhere coisotropic. Then N is weightless.

Proof. Again applying Lemma 4.3 with P = N , we see that if N is nowhere coisotropic
then we must have RN = ∅, which implies that N is weightless by Lemma 4.2(iii). ut

Recall that a compact submanifold N of a symplectic manifold (M,ω) is called infinites-
imally displaceable if there is a smooth function H : M → R such that the Hamiltonian
vector field XH of H has the property that XH (x) /∈ TxN for all x ∈ N . Of course for N
to be infinitesimally displaceable it is necessary for the normal bundle of N in M to have
a nowhere-vanishing section. Conversely, results of [LS], [P95], and [Gu] show that if N
is nowhere coisotropic, or if dimN = 1

2 dimM but N is not Lagrangian, then N will
be infinitesimally displaceable provided that its normal bundle has a nowhere-vanishing
section. We have, somewhat consistently with Corollary 4.7:

Proposition 4.8. If N ⊂ M is a compact submanifold which is infinitesimally displace-
able then N is weightless.

Proof. Choose a compactly-supported Hamiltonian H : M → R so that XH is nowhere-
tangent to N ; by rescaling we may as well assume that maxH − minH = 1. For any
t ∈ R let φt denote the time-t flow of XH , so we have ‖φt‖ ≤ |t | for all t . Since XH is
nowhere-tangent to N and N is compact, we may choose ε0 > 0 so that

φt (N) ∩N = ∅ whenever 0 < |t | ≤ ε0.

Let η be any number with 0 < η < ε0, and let β : M → [0, 1] be a smooth function such
that β = 1 on a neighborhood of

⋃
t∈[η,ε0]

φt (N) and β = 0 on a neighborhood of N .
Let K = βH , and let {ψt } be the Hamiltonian flow of K . Then since K vanishes on a
neighborhood of N we have ψt (N) = N for all t . Meanwhile since K coincides with H
on a neighborhood of

⋃
t∈[η,ε0]

φt (N), and since φt (φη(N)) remains in this neighborhood
for all t ∈ [0, ε0 − η], we have

ψε0−η(φη(N)) = φε0−η(φη(N)) = φε0(N).

So by the invariance of δ we have

δ(N, φε0(N)) = δ
(
ψε0−η(N), ψε0−η(φη(N))

)
= δ(N, φη(N)).

But δ(N, φη(N)) ≤ η and η ∈ (0, ε0] was arbitrary, so we have δ(N, φε0(N)) = 0. But
N ∩ φε0(N) = ∅, so by Lemma 4.2(v) we see that RN = ∅. Thus by Lemma 4.2(iii), N
is weightless. ut

4.1. Lagrangian submanifolds

Having established results which allow us to show that the rigid locusRN is small in some
cases, we now set about proving a result (Corollary 4.11 below) which can sometimes be
used to show that RN is large.

Recall from [AL, Chapter X] that a symplectic manifold (M,ω) is called geometri-
cally bounded if there exists an almost complex structure Ĵ and a complete Riemannian
metric 〈·, ·〉 on M such that:
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• There are constants c1, c2 > 0 such that for all m ∈ M and v,w ∈ TmM we have
ω(v, Ĵ v) ≥ c1〈v, v〉 and |ω(v,w)|2 ≤ c2〈v, v〉〈w,w〉.
• The Riemannian manifold (M, 〈·, ·〉) has sectional curvature bounded above and injec-

tivity radius bounded away from zero.

In particular such manifolds are tame in the sense of [AL, Chapter V] and so satisfy the
compactness theorems therein for ω-tame almost complex structures which agree with Ĵ
outside of a compact set.

The following result can be deduced from [FOOO, Theorem J] under suitable unob-
structedness assumptions on L and L′ and from results of [BC, Section 3.2.3.B] when L
and L′ are Hamiltonian isotopic; however the general case does not seem to be in the
literature.

Theorem 4.9. Let L and L′ be two compact Lagrangian submanifolds of a geometri-
cally bounded symplectic manifold (M,ω). Assume that the intersection of L and L′ is
nonempty and transverse. Then there is δ > 0 such that for any φ ∈ Ham(M,ω) with
φ(L) ∩ L′ = ∅ we have ‖φ‖ ≥ δ.

Proof. Our argument is similar to that in [Oh97b] (in which L and L′, instead of being
transverse, are equal). Suppose that H : [0, 1] × M → R is any compactly supported
smooth function, whose Hamiltonian vector field at time t ∈ [0, 1] is given by XH (t, ·).
Choose any smooth family J = {Jt }t∈[0,1] of almost complex structures with J0 = J1, all
of which coincide outside a fixed compact set with some fixed almost complex structure Ĵ
as in the definition of the geometrical boundedness of (M,ω). Choose δ > 0 such that
δ < δJ where δJ is the minimum of:

• the smallest energy of a nonconstant Jt -holomorphic sphere as t varies through [0, 1],
• the smallest energy of a nonconstant J0-holomorphic disc with boundary on either L

or L′,
• the smallest energy of a nonconstant finite-energy map u : R × [0, 1] → M such that

∂u
∂s
+ Jt

∂u
∂t
= 0 and u(s, 0) ∈ L and u(s, 1) ∈ L′ for all s ∈ R.

Of course, Gromov–Floer compactness ([AL, Chapters V, X], [Fl, Proposition 2.2]) im-
plies that δJ > 0, and that for any family of almost complex structures J ′ sufficiently
C1-close to J such that each J ′t coincides with Ĵ outside a compact set we will have
δ < δJ ′ .

For any R > 0 let βR : R → [0, 1] be a smooth function such that βR(s) = 1 for
|s| ≤ R, βR(s) = 0 for |s| ≥ R + 1, and sβ ′R(s) ≤ 0 for all s.

For any λ ∈ [0, 1] and R > 0, consider solutions u : R×[0, 1] → M to the boundary
value problem

∂u

∂s
+ Jt

(
∂u

∂t
− λβR(s)XH (t, u(s, t))

)
= 0, u(s, 0), u(s, 1) ∈ L′. (4.1)

Since βR(s) = 0 for |s| > R + 1 and since L is transverse to L′, it follows as in
the sentence after [Fl, Proposition 2.2] that for any finite-energy solution u there will be
points p± ∈ L ∩ L′ so that u(s, t)→ p± uniformly in t as s → ±∞, where the energy
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of u is defined by E(u) =
∫
R×[0,1]

∣∣ ∂u
∂s

∣∣2
J
ds dt . So a finite-energy solution u to (4.1)

extends continuously to a map u : [−∞,∞] × [0, 1] → M with u([∞,∞] × {0}) ⊂ L
and u([∞,∞]×{1}) ⊂ L′. Choose one point p ∈ L∩L′. From now on we only consider
finite-energy solutions u to (4.1) such that u(s, t)→ p uniformly in t both as s → −∞
and as s →+∞, so that s 7→ u(s, ·) gives a loop in the space of paths from L0 to L1, and
we moreover restrict attention to those u such that this associated loop is homotopic to a
constant. Since L0 and L1 are Lagrangian, it is easy to see from Stokes’ theorem that this
homotopical assumption on u implies that

∫
R×[0,1] u

∗ω = 0. Now for any such u which
obeys (4.1) for given values of λ and R we have the familiar energy estimate

E(u) =

∫
R×[0,1]

∣∣∣∣∂u∂s
∣∣∣∣2
J

ds dt =

∫ 1

0

∫
∞

−∞

ω

(
∂u

∂s
,
∂u

∂t
− λβR(s)XH (t, u(s, t))

)
ds dt

=

∫
R×[0,1]

u∗ω −

∫ 1

0

∫
∞

−∞

λβR(s)d(H(t, ·))

(
∂u

∂s

)
ds dt

= −

∫ 1

0

∫
∞

−∞

(
d

ds
(λβR(s)H(t, u(s, t)))− λβ

′

R(s)H(t, u(s, t))

)
ds dt

≤ λ

∫ 1

0

(
max
M
H(t, ·)−min

M
H(t, ·)

)
dt = λ‖H‖.

Here we use the fact that, for all t ,
∫
∞

−∞

d
ds
(λβR(s)H(t, u(s, t))) ds = 0 by the Funda-

mental Theorem of Calculus, while the assumed properties of βR ensure that∫ 0

−∞

β ′R(s)H(t, u(s, t)) ds ≤ max
M
H(t, ·),

∫
∞

0
β ′R(s)H(t, u(s, t)) ds ≤ −min

M
H(t, ·).

In particular the energy estimate above implies that the unique solution to (4.1) with
the prescribed asymptotic and topological behavior for λ = 0 is the constant solution
u(s, t) = p.

Now suppose that our Hamiltonian H : [0, 1] ×M → R obeys ‖H‖ ≤ δ.
For any R > 0, and for any family of ω-compatible almost complex structures J ′ =

{J ′t }t∈[0,1] with J ′1 = J ′0, let M0,R
J ′,H

(p) denote the set of pairs (λ, u) where λ ∈ [0, 1]
and u is a finite-energy solution to (4.1) for the given values of λ and R, with J ′ playing
the role of the family of almost complex structures, such that u is asymptotic at both ends
to p and such that the associated loop of paths from L to L′ is null-homotopic. Standard
arguments (essentially the same as those in [Oh93, Proposition 3.2], [Oh97b, p. 902])
show that, for families of almost complex structures J ′ which are generic among those
coinciding with Ĵ outside of a fixed precompact open set containingL∪L′, M0,R

J ′,H
(p) can

be given the structure of a 1-manifold with boundary where the boundary consists of the
subsets corresponding to λ = 0 and λ = 1. Moreover, provided that J ′ is sufficiently close
to J this manifold with boundary is compact: indeed, the only possible degenerations
involve either bubbling of a holomorphic sphere or of a holomorphic disc with boundary
on L or L′, or else “trajectory breaking” involving a holomorphic strip v : R× S1

→ M

with v(R × {0}) ⊂ L and v(R × {1}) ⊂ L′. But if J ′ is sufficiently close to J (so that
what we previously denoted δJ ′ is larger than δ), then our energy estimate together with
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the fact that ‖H‖ ≤ δ implies that the elements of M0,R
J ′,H

(p) have energy bounded above
by a number smaller than δJ ′ , so that no bubbling or trajectory breaking can occur.

As noted earlier, the part of the boundary of M0,R
J ′,H

(p) corresponding to λ = 0
consists only of the constant map to p. So since a compact 1-manifold with boundary
necessarily has an even number of boundary points, the part of the boundary of M0,R

J ′,H
(p)

corresponding to λ = 1 must be nonempty whenever J ′ is sufficiently C1-close to J .
Another application of Gromov compactness (taking the limit as J ′ approaches J and
again using the energy bound to preclude bubbling and trajectory breaking) shows that
the part of M0,R

J,H (p) corresponding to λ = 1 is also nonempty (even if M0,R
J,H (p) is not

itself a manifold).
Thus we have shown that, for any R > 0, there is a solution u : R × [0, 1] → M

to the λ = 1 version of (4.1) asymptotic at both ends to p whose associated loop of
paths from L to L′ is null-homotopic. Consequently, the energies of all of these solutions
are necessarily bounded above by ‖H‖ ≤ δ. But then for any R > 0 there must be
sR ∈ [−R,R] such that the path γR(t) = u(sR, t) obeys∫ 1

0
|γ̇R(t)−XH (t, γR(t))|

2
J dt <

δ

2R
. (4.2)

Morrey’s inequality then bounds the C1/2-norm of the γR , and hence the Arzelà–Ascoli
theorem yields a sequence Rj → ∞ and a continuous path γ : [0, 1] → M such that
γRj → γ uniformly as j → ∞ (so in particular γ (0) ∈ L and γ (1) ∈ L′). But then
XH (t, γRj (t))→ XH (t, γ (t)) uniformly in t , so by again applying (4.2) we see that the
sequence {γ̇Rj }

∞

j=1 is Cauchy in L2. Consequently, γ is the limit of γRj in the Sobolev
space W 1,2, and in particular γ has at least a weak derivative γ̇ in L2, which is equal to
t 7→ XH (t, γ (t)). But then since γ is now known to be of class W 1,2, this latter function
is also of class W 1,2, i.e., γ̇ is of class W 1,2, and so γ is of class W 2,2. So by another
application of Morrey’s inequality γ is C1, and so is a genuine solution of the differential
equation γ̇ (t) = XH (t, γ (t)), satisfying γ (0) ∈ L, γ (1) ∈ L′. So where φ is the time-one
map of H the point γ (1) lies in both L′ and φ(L).

This proves that any Hamiltonian diffeomorphism φ of Hofer norm at most δ neces-
sarily satisfies φ(L) ∩ L′ 6= ∅, as desired. ut

Corollary 4.10. Let (M,ω) be a geometrically bounded symplectic manifold, L ⊂ M a
compact Lagrangian submanifold, and U ⊂ M an open subset such that L ∩ U 6= ∅.
Then there is δ > 0 such that if φ ∈ Ham(M,ω) and ‖φ‖ < δ then φ(L) ∩ U 6= ∅.

Proof. Let B2n(r) denote the standard symplectic ball of radius r around the origin in Cn,
where 2n = dimRM , and let S1(r/2) ⊂ C denote the circle of radius r/2 around the
origin. In view of the Weinstein Neighborhood Theorem, there is r > 0 and a Darboux
chart ψ : V → B2n(r) around some point in L such that L ∩ V = ψ−1(Rn), where
V ⊂ U is an open subset. Let L′ = ψ−1 ((S1(r/2))n

)
. Then L and L′ are Lagrangian

submanifolds which meet each other transversely in 2n points, with L′ ⊂ U . If φ ∈
Ham(M,ω) has φ(L)∩U = ∅, then φ(L)∩L′ = ∅, and so where δ is as in Theorem 4.9
we have ‖φ‖ ≥ δ. ut
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Corollary 4.11. Let (M,ω) be a geometrically bounded symplectic manifold, N ⊂ M a
closed subset, and L a compact Lagrangian submanifold of M , which is contained in N .
Then L ⊂ RN .
Proof. We must show that for any x ∈ L and ψ ∈ Ham(M,ω) such that ψ(x) /∈ N , we
have ψ /∈ 6̄N .

If x ∈ L, ψ ∈ Ham(M,ω), and ψ(x) /∈ N , then ψ(L) intersects the open subset
M \ N , and so by Corollary 4.10 there is δ > 0 such that whenever ‖φ‖ < δ we have
φ(ψ(L)) ∩ (M \ N) 6= ∅. In particular since L ⊂ N we have φ ◦ ψ /∈ 6N whenever
‖φ‖ < δ. So the δ-ball around ψ is disjoint from 6N , proving that ψ /∈ 6̄N . ut

Remark 4.12. Note that ifN = L, this gives a new proof of Chekanov’s theorem [Ch00]
that compact Lagrangian submanifolds of geometrically bounded symplectic manifolds
are CH-rigid; this proof seems to be somewhat simpler than Chekanov’s original one. Ac-
tually this proof, unlike Chekanov’s, can be extended to certain noncompact Lagrangian
submanifolds L of completions of Liouville domains such as the conormal bundles con-
sidered in [Oh97a] and, more generally, the Lagrangian submanifolds considered in [AS,
(3.3)]; one just needs to have a maximum principle (such as the one proven in [AS, Sec-
tion 7c]) in order to obtain compactness results for solutions of (4.1) when L′ (but perhaps
not L) is compact andH is compactly supported, and then the proofs of Theorem 4.9 and
Corollary 4.11 go through unchanged.

Corollary 4.13. Where (M,ω) is a geometrically bounded symplectic manifold, let N ⊂
M be a closed subset such that there exists a dense subset N0 ⊂ N so that for every
x ∈ N0 there is a compact Lagrangian submanifold Lx ⊂ M so that x ∈ Lx ⊂ N .
Then N is CH-rigid.
Proof. By Corollary 4.11 each of the Lagrangian submanifolds Lx are contained in RN ,
and so N0 is contained in RN , which is closed by Lemma 4.2(i). Thus RN = N since N0
is dense in N , and so it follows from Lemma 4.2(ii) that N is CH-rigid. ut

Remark 4.14. Note that if N ⊂ M is a submanifold satisfying the hypothesis of Corol-
lary 4.13 it is clear (independently of our other results) that N is coisotropic: indeed, for
any x ∈ N0 we have TxLx ≤ TxN and so using that Lx is Lagrangian we get a chain of
inclusions TxNω

≤ TxL
ω
x = TxLx ≤ TxN . So TxNω

≤ TxN throughout a dense subset
of N , and so indeed throughout all of N . Of course this is consistent with the conclu-
sion of Corollary 4.13 together with Corollary 4.5. This argument also shows that for any
x ∈ N0 the Lagrangian submanifold Lx must contain the entire leaf of the characteristic
foliation through x.

Example 4.15. For a tuple Ea = (a1, . . . , an) ∈ (0,∞)n let

EEa =

{
(x1, . . . , x2n) ∈ R2n

∣∣∣∣ n∑
i=1

(
x2
i + x

2
n+i

ai

)
= 1

}
(thus EEa is the boundary of the standard symplectic ellipsoid having cross-sections of
capacity πai). Of course EEa is CH-rigid by Theorem 3.4 simply by virtue of being
a codimension-one submanifold. Considering instead products EEa(1) × · · · × EEa(k) ⊂
R2n1+···+2nk for Ea(j) ∈ (0,∞)nj , we claim that EEa(1) × · · · × EEa(k) is always CH-rigid.
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Indeed, for any given Ea ∈ (0,∞)n, a dense subset of EEa is foliated by compact
Lagrangian submanifolds: for any positive numbers b1, . . . , bn such that

∑n
i=1 bi/ai = 1,

the submanifold

LEb = {(x1, . . . , x2n) ∈ R2n
| (∀i)(x2

i + x
2
n+i = bi)}

is a Lagrangian torus in R2n which is contained in EEa , and any point in the dense subset
of EEa consisting of (x1, . . . , x2n) such that every x2

i + x
2
n+i is nonzero will belong to

one of the LEb. Taking products LEb(1) × · · · × LEb(k) gives a foliation of a dense subset of
EEa(1)×· · ·×EEa(k) by Lagrangian tori, and so Corollary 4.13 shows that EEa(1)×· · ·×EEa(k)
is CH-rigid.

4.2. The instability of small rigid loci

It follows from Lemma 4.3 that ifN is a submanifold of (M,ω) (which we will implicitly
assume to have dimension greater than 1

2 dimM) then the rigid locus RN cannot be con-
tained in a submanifold of N of dimension less than dimM − dimN , unless of course N
is weightless so that RN is empty. On the other hand (assuming that (M,ω) is geomet-
rically bounded) if there is a compact Lagrangian submanifold L of M contained in N
such that at every point x ∈ N \ L we have TxNω

6⊂ TxN , then we will have RN = L. It
is not clear at this point whether a nonempty RN can ever be contained in a submanifold
of dimension less than 1

2 dimM; however what we will do presently shows that, if this
ever happens for a compact N , then it is an “unstable” phenomenon, in that it disappears
under taking a product with S1

⊂ R2.
We adopt some notation relating to such stabilizations. If (M,ω) is a symplec-

tic manifold and N ⊂ M is any subset, consider the symplectic manifold (R2
× M,

� = (dx∧ = dy)⊕ ω), and define

N̂ = S1
×N ⊂ R2

×M.

Recall that if N ⊂ M is any closed subset, the displacement energy of N in M is

e(N,M) = inf{φ ∈ Ham(M,ω) | φ(N) ∩N = ∅}.

Theorem 4.16. Suppose that N ⊂ M is a compact subset with e(RN ,M) = 0. Then the
subset N̂ = S1

×N ⊂ R2
×M is weightless.

Proof. We begin with a lemma:

Lemma 4.17. For any ε > 0 and R > 0 there is φ ∈ Ham(R2
×M,�) such that:

• ‖φ‖ < ε.
• For any (x, y,m) ∈ R2

× M with |x| + |y| ≤ R the first coordinate of φ(x, y,m),
denoted x′, has x − 3 ≤ x′ ≤ x + 3, and the second coordinate of φ(x, y,m) is equal
to y.
• There is a neighborhood W of RN in M such that if m ∈ W and |x| + |y| ≤ R then
φ(x, y,m) has its first coordinate x′ equal to x + 3. Moreover W̄ is compact.
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Proof of Lemma 4.17. First select η ∈ Ham(M,ω) such that ‖η‖ < ε/2 and η(RN )∩RN
= ∅, as we can do by the assumption in the theorem that e(RN ,M) = 0. Now let γ : M →
[0, 1] be a compactly supported smooth function such that for some neighborhood W of
RN with compact closure we have γ |W = 0 and γ−1({1}) = η(W). LetH : R2

×M → R
be a smooth function such thatH(x, y,m) = −3yγ (m)whenever |x|+|y| ≤ R+3 and let
ψ : R2

×M → R2
×M be the time-one map ofH . Finally, choose η̃ ∈ Ham(R2

×M,�)

such that ‖η̃‖ ≤ ‖η‖ and for all (x, y,m) ∈ R2
×M with |x| + |y| < R + 3 we have

η̃(x, y,m) = (x, y, η(m)). Such an η̃ can easily be constructed as the time-one map
of a Hamiltonian obtained from the Hamiltonian generating η by pulling back via the
projection and then multiplying by a suitable cutoff function.

Our map φ ∈ Ham(R2
×M,�) will be given by the formula

φ = ψ−1
◦ η̃−1

◦ ψ ◦ η̃.

By the triangle inequality and the invariance of the Hofer norm under conjugation and
inversion we see that ‖φ‖ ≤ 2‖η̃‖, and by assumption ‖η̃‖ ≤ ‖η‖ < ε/2; thus ‖φ‖ < ε.

Now the Hamiltonian vector field of H is given within {|x| + |y| ≤ R + 3} ×M by
3γ (m) ∂

∂x
− 3yZγ , where Zγ is the Hamiltonian vector field of γ on M , trivially pushed

forward to R2
×M . So (at least for |x| + |y| ≤ R) ψ does not change the y coordinate

and (since 0 ≤ γ ≤ 1) changes the x coordinate by an amount between 0 and 3. Since η̃
does not affect the R2 factor within {|x| + |y| ≤ R+ 3}×M , the second statement of the
lemma follows directly.

For the third statement, let (x, y,m) ∈ R2
×W with |x| + |y| ≤ R, where W is as

in the first paragraph of the proof. Then γ (η(m)) = 1, and so (using that dγ (Zγ ) = 0)
where (x1, y1, m1) = ψ ◦ η̃(x, y,m) = ψ(x, y, η(m)) we will have x1 = x + 3, y1 = y,
and γ (m1) = γ (η(m)) = 1. So since η̃(x, y,m) = (x, y, η(m)) for |x|+ |y| < R+ 3 we
have η̃−1(x1, y1, m1) = (x + 3, y, η−1(m1)). Now by our construction of γ and W the
fact that γ (m1) = 1 implies that γ−1(m1) ∈ W̄ and hence γ (η−1(m1)) = 0, and so the
first coordinate of ψ−1(x + 3, y, η−1(m1)) will be x + 3. ut

Lemma 4.17 has the following consequence.

Lemma 4.18. Again assuming that N ⊂ M is compact and e(RN ,M) = 0, for any
positive integer n there is an element ζn ∈ Ham(R2

×M,�) such that ‖ζn‖ < 1/n and
ζn(N̂) ⊂ {(x, y,m) ∈ R2

×M | x ≥ 2}.

Proof of Lemma 4.18. Fix n and some number R > 15 and apply Lemma 4.17 with
ε = 1/(2n) to obtain an element φ ∈ Ham(R2

× M,�) and an open set W with the
indicated properties. Choose a neighborhood V of W̄ and a smooth compactly supported
function α : M → [0, 1] such that α−1(0) has interior which contains RN , and W =
V ∩α−1 ([0, 1)). Note that this implies, via an easy connectedness argument, that any path
in α−1 ([0, 1)) which begins in W also ends in W . Let H : R2

×M → R be a compactly
supported smooth function with H(x, y,m) = −6yα(m) wherever |x| + |y| < R + 6.
Let ψ be the time-one map of H . Then ψ obeys the following properties:

(i) ψ ∈ Hamc
(
(R2
×M) \ (S1

× RN )
)

(i.e., ψ is generated by a Hamiltonian with
compact support in (R2

×M) \ (S1
× RN )).
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(ii) For any (x, y,m) ∈ S1
×N the first coordinate of φ ◦ ψ(x, y,m) is at least equal to

x + 3.

Indeed, (i) is obvious, while for (ii), the first coordinate of φ(ψ(x, y,m)) will be no
smaller than 3 less than that of ψ(x, y,m). (Here we use the second item in Lemma 4.17,
which is easily seen to apply to the point ψ(x, y,m) by the definition of ψ and the facts
that (x, y) ∈ S1 and R > 15.) The first coordinate of ψ(x, y,m) will be equal to x + 6
unless α(m) < 1, and will be at least equal to x in any event. Now if α(m) < 1, then
m ∈ W (as we are assuming (x, y,m) ∈ S1

×N ). Moreover since α is constant along the
Hamiltonian flow of H , writing ψ(x, y,m) = (x′, y′, m′) we will have m′ ∈ W (using
our earlier remark that a path in α−1 ([0, 1)) which begins in W also ends in W ), and so
the first coordinate of φ(x′, y′, m′) = φ ◦ ψ(x, y,m) will be equal to x′ + 3 ≥ x + 3 by
the last property in Lemma 4.17. So in any case (ii) will hold.

We claim that (by virtue of (i) above) ψ ∈ 6̄
N̂

. First of all note that R
N̂
⊂ S1

× RN .
Indeed, if (x, y,m) ∈ N̂ = S1

× N with m ∈ N \ RN , so that there is g ∈ 6̄N with
g(m) /∈ N , then it is easy to find an element of 6̄

N̂
which restricts to a neighborhood of

S1
× N as (idR2 × g) and hence moves (x, y,m) off of N̂ , proving that (x, y,m) /∈ R

N̂
.

Now just as in the proof of Lemma 4.2(iii), if p ∈ (R2
× M) \ (S1

× RN ), so that in
particular p /∈ R

N̂
, then we can find a neighborhood Vp of p in (R2

×M) \ (S1
× RN )

and an element gp ∈ 6̄N̂ with gp(Vp) ∩ N̂ = ∅. So if η ∈ Hamc(Vp) then gp ◦ η ◦ g−1
p

is in 6
N̂

, implying that η ∈ 6̄
N̂

since 6̄
N̂

is a group containing both 6
N̂

and gp. Thus
(R2
× M) \ (S1

× RN ) is covered by open sets Vp with Hamc(Vp) ≤ 6̄
N̂

, which by
Banyaga’s fragmentation lemma implies that Hamc((R2

×M) \ (S1
× RN )) ≤ 6̄N̂ . So

by (i) we indeed have ψ ∈ 6̄
N̂

.
Accordingly we can choose ξ ∈ 6

N̂
so that ‖ψ◦ξ−1

‖ < 1/(2n). Set ζn = φ◦ψ◦ξ−1.
Since ξ belongs to the stabilizer 6

N̂
we have ζn(N̂) = φ ◦ ψ(N̂), which is contained in

{x ≥ 2} by (ii). Moreover ‖ζn‖ ≤ ‖φ‖ + ‖ψ ◦ ξ−1
‖ < 1/(2n)+ 1/(2n), as desired. ut

We now complete the proof of Theorem 4.16.

Claim 4.19. δ(N̂, ζn(N̂)) is independent of n.

Proof of Claim 4.19. For any T > 0 let ρT denote the translation (x, y,m) 7→

(x + T , y,m). Given positive integers n1, n2, we know that for i = 1, 2, ζni (N̂) is a
compact submanifold of R2

×M contained in [2,∞)×R×N , so choose a compact sub-
setK ⊂ M and a numberA� 1 so that ζni (N̂) ⊂ [2, A]×[−A,A]×int(K) for i = 1, 2.
Let H : R2

×M → R be a smooth function whose support is compact and contained in
[1.5,∞)×R×M , such that the restriction of H to [2, A] × [−A,A+ T ] ×K coincides
with the function (x, y,m) 7→ −Ty. Then the time-one map φ1

H will obey φ1
H (N̂) = N̂

while, for i = 1, 2, φ1
H (ζni (N̂)) = ρT (ζni (N̂)). Consequently, we have, for i = 1, 2 and

any T > 0,

δ(N̂, ζni (N̂)) = δ
(
φ1
H (N̂), φ

1
H (ζni (N̂))

)
= δ

(
N̂, ρT (ζni (N̂))

)
. (4.3)
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Now we have(
ρT ◦ (ζn2 ◦ ζ

−1
n1
) ◦ ρ−1

T

)
(ρT (ζn1(N̂))) = ρT (ζn2(N̂)).

The Hamiltonian diffeomorphism ζn2 ◦ ζ
−1
n1

is compactly supported; denoting the support
of ζn2 ◦ ζ

−1
n1

by L, the support of ρT ◦ (ζn2 ◦ ζ
−1
n1
) ◦ ρ−1

T will be ρT (L), which is disjoint
from N̂ if T is sufficiently large. Hence the invariance of δ(·, ·) under simultaneous action
on both entries by the symplectomorphism ρT ◦ (ζn2 ◦ ζ

−1
n1
) ◦ ρ−1

T gives, for T � 1,

δ(N̂, ρT (ζn1(N̂))) = δ(N̂, ρT (ζn2(N̂))).

Combining this with (4.3) evidently gives

δ(N̂, ζn1(N̂)) = δ(N̂, ζn2(N̂)),

confirming Claim 4.19. ut

Now recalling from Lemma 4.18 that ‖ζn‖ < 1/n, we evidently have δ(N̂, ζn(N̂)) <
1/n, so the fact that δ(N̂, ζn(N̂)) is independent of n forces us to have δ(N̂, ζn(N̂)) = 0
for all n. So by Lemma 4.2(v), R

N̂
⊂ N̂ ∩ ζn(N̂). But of course N̂ ∩ ζn(N̂) = ∅, so

R
N̂
= ∅; by Lemma 4.2(iii) this completes the proof of Theorem 4.16. ut

5. Coisotropic submanifolds

We now use the foregoing results to prove CH-rigidity for various classes of coisotropic
submanifolds in geometrically bounded symplectic manifolds; in particular this will yield
Theorem 1.4. Of course, hypersurfaces are coisotropic, as are Lagrangian submanifolds,
so Theorem 3.4 and [Ch00] already address two significant classes. If N is coisotropic,
we have a distribution TNω on N of rank dimM − dimN ; recall that the fact that ω is
closed implies that this distribution is integrable and so generates a foliation of N (the
“characteristic foliation”).

The coisotropic submanifold N of (M,ω) is called regular if the characteristic fo-
liation of N is given by the fibers of a submersion. As noted in [Zi, Lemma 24], the
regularity of N is equivalent to the statement that the leaf relation

R = {(x, y) ∈ N ×N | x and y are on the same leaf of the characteristic foliation}

is a submanifold which is closed as a subset of N ×N .
Corollary 4.13 leads to the conclusion that a variety of coisotropic submanifolds, in-

cluding regular ones, are CH-rigid:

Theorem 5.1. Suppose that a coisotropic submanifold N of the geometrically bounded
symplectic manifold (M,ω) is regular (with the characteristic foliation having compact
leaves), or else is given by N = J−1(η) for an equivariant moment map J : M → g∗

associated to a Hamiltonian action of a compact Lie groupG onM , where η ∈ g∗ is fixed
by the coadjoint action of G on g∗ and is a regular value for J . Then N is CH-rigid.

Proof. The basic observation is the following:
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Lemma 5.2. Let (M0, ω) be a symplectic manifold and let N0 ⊂ M0 be a coisotropic
submanifold such that for some symplectic manifold (Z, σ ) there is a proper surjective
submersion π : N0 → Z such that where i : N0 → M0 is the inclusion we have i∗ω =
π∗σ . Then for every x ∈ N0 there is a compact Lagrangian submanifold Lx of M0 such
that x ∈ Lx ⊂ N0.

Proof of Lemma 5.2. To construct Lx , let3x ⊂ Z be a Lagrangian torus containing π(x)
and contained in a Darboux chart around π(x). Set Lx = π−1(3x). Then Lx is a compact
submanifold of N0 (since π is a proper submersion), and clearly x ∈ Lx , so we need only
check that Lx is Lagrangian. If y ∈ Lx and v,w ∈ TyLx then since i∗ω = π∗σ we
have ω(v,w) = σ(π∗v, π∗w) = 0 since π∗v and π∗w are both tangent to the Lagrangian
submanifold 3x of Z. So it only remains to show that dimLx =

1
2 dimM0.

To see this, note that the fact that N0 is coisotropic together with the fact that i∗ω =
π∗σ where σ is nondegenerate implies that for all x ∈ N0 we have TxNω

0 = ker (π∗)x .
Equating the dimensions of these two vector spaces shows that dimM0 − dimN0 =

dimN0 − dimZ, i.e., dimZ = 2 dimN0 − dimM0. So since 3x ⊂ Z is Lagrangian,

dimLx = dim3x + (dimN0 − dimZ) = 1
2 dimZ + (dimM0 − dimN0)

=
(
dimN0 −

1
2 dimM0

)
+ (dimM0 − dimN0) =

1
2 dimM0. ut

Resuming the proof of Theorem 5.1, if N is regular then a standard argument (see, e.g.,
[MS, Lemma 5.35]) shows that, where π : N → Z is the submersion whose fibers are
the leaves of the characteristic foliation, a symplectic form σ may be constructed on Z
which obeys π∗σ = ω|N , and so we can apply Lemma 5.2 and Corollary 4.13 to prove
Theorem 5.1 in this case.

We now turn to the other case in Theorem 5.1, in which N = J−1(η) where
J : M → g∗ is an equivariant moment map for a Hamiltonian action of a compact Lie
group G, and η ∈ g∗ is a regular value of J which is fixed by the coadjoint action of G
on g∗.

The assumption that η is a regular value of J implies that J−1(η) is a submanifold
upon which G acts locally freely (see [MMOPR, Proposition 1.1.2]), while the assump-
tion that η is fixed by the coadjoint action implies that J−1(η) is coisotropic. Although the
action of G on J−1(η) might not be free, one still has a stratification of J−1(η) by orbit
type (i.e., by conjugacy classes of stabilizers); this stratification has a unique top stratum
N0 ⊂ J−1(η) (the “principal orbit stratum”) which is open and dense in J−1(η) (see,
e.g., [SL, Theorem 5.9]). Although G might still not act freely on N0, [MMOPR, The-
orem 1.4.2] and [SL, Theorem 2.1] show that under our assumptions both Z0 = N0/G

has a unique smooth structure such that π : N0 → Z0 is a submersion, and Z0 admits
a symplectic structure such that the projection π obeys the requirements of Lemma 5.2.
Since N0 ⊂ J

−1(η) is dense, it therefore follows from Corollary 4.13 that J−1(0) is CH-
rigid. ut

Remark 5.3. Let us consider again the products of ellipsoids EEa(1) × · · · × EEa(k) which
were shown to be CH-rigid in Example 4.15 using Corollary 4.13. Depending on the
numbers a(j)i ∈ (0,∞), the coisotropic submanifold EEa(1) × · · · × EEa(k) may or may
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not satisfy the hypotheses of Theorem 5.1. If for each j we have a(j)1 = · · · = a
(j)
nj , so

that each EEa(j) is a sphere of radius
√
a
(j)

1 , then the characteristic foliation of EEa(1) ×
· · · × EEa(k) will just be the vertical foliation given by the product of the Hopf fibrations
EEa(j) → CP nj−1; thus in this case EEa(1) × · · · ×EEa(k) is regular. If instead only the ratios
a
(j)
i1
/a
(j)
i2

are rational for each j , so that there are some λj ∈ (0,∞) and mij ∈ Z+ such

that a(j)i = mijλj , then it is not difficult to see that EEa(1) × · · · × EEa(k) is the preimage
of a regular value of the moment map for a Hamiltonian T k-action on R2

∑
ni , so that

Theorem 5.1 again applies. However when the a(j)i are rationally independent Theorem
5.1 does not seem to apply, demonstrating the greater generality of the situations covered
by Corollary 4.13.

In a different direction, some coisotropic submanifolds N can be shown to be CH-
rigid along the following lines: one shows that if N were not CH-rigid, then its rigid
locus would have to be suitably “small,” and then deduces from Theorem 4.16 (or from
a simpler argument) that this would contradict known rigidity properties for N or for the
stabilization N̂ .

The basic observation is that RN ⊂ N is a closed subset which is invariant under the
action of the stabilizer 6N on N , and this imposes significant restrictions on RN . As a
simple special case, for any closed subset N , coisotropic or not, on which 6N acts transi-
tively, N must be either weightless or CH-rigid, and in some cases when N is coisotropic
results such as those in [Gi] or [U11] can be used to rule out the former alternative.

So we now consider the action of 6N on a coisotropic submanifold N . Note that any
φ ∈ 6N obeys, for each x ∈ N , φ∗TxNω

= Tφ(x)N
ω, in view of which φ permutes

the leaves of the characteristic foliation. In particular if not all leaves of the characteristic
foliation are diffeomorphic then 6N will not act transitively on N . (If N happens to be
regular, on the other hand, then one can show that6N acts transitively onN , but of course
this case is already covered by Theorem 5.1.) We do in any case have the following:

Proposition 5.4. Let N be a coisotropic submanifold of (M,ω). Then the subgroupG of
6N consisting of all Hamiltonian diffeomorphisms of M which preserve each leaf of the
characteristic foliation acts transitively on every leaf of the characteristic foliation.

Proof. Write E = TNω (so E ⊂ TN since N is coisotropic), choose a Riemannian
metric h on N , and let 5h : TN → E be the orthogonal projection induced by h. On the
total space of the vector bundle π : E∗→ N define a 1-form θh ∈ �

1(E∗) by (for x ∈ N ,
p ∈ E∗x , and v ∈ T(x,p)E∗)

(θh)x,p(v) = p(5h(π∗v))

and define a 2-form � on E∗ by

� = π∗(ω|N )+ dθh.

As seen in [Mar, Proposition 3.2], � restricts symplectically to a neighborhood U
of the zero section N ⊂ E∗ and �|N = ω|N ; moreover there is a symplectomorphism
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from this neighborhood U of N ⊂ E∗ to a neighborhood of N in the original symplectic
manifold M , restricting as the identity on N . Consequently, it suffices to prove that there
is a compactly-supported Hamiltonian diffeomorphism of (U,�) which preserves each
leaf of the characteristic foliation of the zero section N and maps x to y, where x and y
are any given points of N lying on the same leaf 3 ⊂ N .

To do so, choose a smooth path γ : [0, 1] → 3, so in particular γ ′(t) ∈ Eγ (t) for
all t . Let Vt be a smooth one-parameter family of vector fields on N such that Vt (γ (t)) =
γ ′(t) for all t , and Vt (x) ∈ Ex for all t, x. Define a function H : [0, 1] × E∗ → R by
H(t, x, p) = p(Vt (x)) for t ∈ [0, 1], x ∈ N , and p ∈ E∗x .

Along the zero section N , we have a canonical splitting T E∗|N ∼= TN ⊕ E∗. In
terms of this splitting, and writingHt (x, p) = H(t, x, p), we see that (dHt )(x,0)(v, α) =
α(Vt (x)) at any point (x, 0) on the zero-section, for all v ∈ TxN and α ∈ E∗. Meanwhile
the vector field given in terms of the splitting T E∗|N ∼= TN ⊕ E∗ by (Vt , 0) obeys, for
v ∈ TxN and α ∈ E∗,

�(x,0)((v, α), (Vt , 0)) = (dθh)(x,0)((0, α), (Vt , 0)) = α(Vt (x)) = (dHt )(x,0)(v, α)

(where we have used that ιVt (ω|N ) = 0). This shows that the restriction of the Hamilto-
nian vector field ofHt to the zero section N coincides with the vector field Vt , which was
chosen to be tangent to the characteristic foliation and to the given curve γ contained in
one of the leaves. Consequently, after cutting off Ht to be compactly supported in U , we
obtain as its time-one flow a Hamiltonian diffeomorphism φ of U which preserves the
leaves of the characteristic foliation on the zero section N and such that φ(γ (0)) = γ (1).
Since γ (0) and γ (1)may be chosen arbitrarily within the same leaf, this proves the result.

ut

Corollary 5.5. Let N be a coisotropic submanifold of the symplectic manifold (M,ω)
which is closed as a subset, and let 3 be a leaf of the characteristic foliation of N which
is dense in N . If N is not CH-rigid then 3 ∩ RN = ∅.

Proof. If on the contrary we had some x ∈ 3∩RN then since we have φ(RN ) = RN for
all φ ∈ 6N it follows from Proposition 5.4 that3 ⊂ RN . So since RN ⊂ N is closed and
3 is assumed dense in N we obtain RN = N . Now use Lemma 4.2(ii). ut

Corollary 5.6. Let N be a compact coisotropic submanifold of the symplectic manifold
(M,ω), and suppose that there is a closed subset S ⊂ N such that e(S,M) = 0 and for
every x ∈ N \ S the leaf of the characteristic foliation containing x is dense in N . If N is
not CH-rigid then the stabilization N̂ ⊂ M × R2 must be weightless.

Proof. IfN is not CH-rigid, then Corollary 5.5 shows that (N \S)∩RN = ∅, i.e.RN ⊂ S.
So e(RN ,M) ≤ e(S,M) = 0, and so Theorem 4.16 shows that N̂ is weightless. ut

Recall that a codimension-k coisotropic submanifold N ⊂ (M2n, ω) is called stable if
there are 1-forms α1, . . . , αk ∈ �

1(N) such that for each i we have ker (ω|N ) ⊂ ker dαi
and α1 ∧ · · · ∧ αk ∧ (ω|N )

n−k is a volume form on N . See [Gi, Section 2.1] for intro-
ductory remarks about stable coisotropic submanifolds. Note in particular that if N1 is a
coisotropic submanifold of M1, and N2 is a stable coisotropic submanifold of M2, then
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N1 × N2 is a stable coisotropic submanifold of M1 ×M2. Since S1
⊂ R2 is stable, this

in particular implies that if N ⊂ M is stable then so is N̂ ⊂ M × R2. The following
corollary now implies Theorem 1.4(ii).

Corollary 5.7. Let N ⊂ M be a compact stable coisotropic submanifold, and assume
either that (M,ω) is compact and the group {

∫
S2 u
∗ω | u : S2

→ N} is discrete, or
else that (M,ω) is symplectically aspherical, geometrically bounded, and wide.4 Suppose
moreover that there is a closed subset S ⊂ N with e(S,M) = 0 such that every leaf of
the characteristic foliation passing through N \ S is dense. Then N is CH-rigid.

Proof. If N were not CH-rigid, then by the previous corollary N̂ would be weightless.
Now N̂ is obviously displaceable (by translations in the R2 factor), so if N̂ were weight-
less then N̂ would have zero displacement energy by Proposition 1.7. But as noted earlier
N̂ is stable, and using [U11, Theorem 8.4] in the compact case,5 or [Gi, Theorem 2.7(i)]
in the aspherical case one can show that e(N̂,R2

×M) > 0, a contradiction. ut

Example 5.8. Let M denote the 6-dimensional torus {(x1, y1, x2, y2, x3, y3) | xi, yi ∈

R/Z}, and where ε, δ ∈ R have the property that 1, ε, δ are linearly independent over Q,
endow M with the irrational symplectic form

ω = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 + dy1 ∧ (εdx2 + δdy2).

Let
N = {x1 + x2 = x3 = 0}

(where of course the equalities are mod Z), so that N is a coisotropic 4-torus in N . (M
splits as a product of an irrational 4-torus M0 spanned by x1, y1, x2, y2 and a standard
2-torus T , and N is the product of a hypersurface N0 ⊂ M0 and a standard meridian
µ ⊂ T .) Using the 1-forms α1 = dy1 and α2 = dy3, one sees that N is stable. The
distribution TNω may be computed to be spanned by the vectors

δ(∂x1 − ∂x2)+ ∂y1 + (1+ ε)∂y2 and ∂y3 ,

and so by the assumption on ε and δ all of the characteristic leaves of N are dense: they
are products of dense lines in the 3-torus N0 with the meridian µ. Thus Corollary 5.7
applies to show that N is CH-rigid.

6. Generic weightlessness

We now begin the proof of Theorem 1.1(ii). This will involve an iterative use of Lemma
4.3: at the rth step we will show that, for a generic closed submanifold N of codimension
at least two, at all points of the rigid locus RN certain identities must be satisfied by the

4 “Wide” means that there is an exhausting Hamiltonian H : M → R having a positive lower
bound on the periods of its nontrivial contractible periodic orbits; see [Gu].

5 The fact that R2
× M is not compact does not pose a problem here, since the support of a

Hamiltonian displacing N̂ can be embedded in a compact symplectic manifold, as in the proof of
[U11, Corollary 8.6].
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derivatives up to order r of the embedding of N . Since we obtain new identities for every
value of r , if the identities are cut out transversely (as one expects to occur generically
by the jet transversality theorem) then for a sufficiently large value of r this will prove
that RN is empty and hence that N is weightless. Before setting up the argument, we
will develop some of the algebra underlying these identities, and show that their solution
spaces are submanifolds.

6.1. Some multilinear algebra

Fix throughout this subsection two finite-dimensional real vector spaces V and W and an
antisymmetric nondegenerate bilinear form ω : W ×W → R. For k ≥ 1 let Symk(V ,W)

denote the vector space of symmetric, k-linear maps A : V k → W , and Multk(V ,W) the
vector space of k-linear (not necessarily symmetric) maps A : V k → W . Define, for any
integer s ≥ 2, a map

s∏
k=1

Symk(V ,W)→ Mults+1(V ,W), (A1, . . . , As) 7→ τA1,...,As ,

where τA1,...,As is given by the formula

τA1,...,As (v0, v1, . . . , vs−1, vs) =∑
σ∈Ss−1

s−1∑
k=0

1
k!(s−k−1)!

ω
(
Ak+1(v0, vσ(1), . . . , vσ(k)), As−k(vσ(k+1), . . . , vσ(s−1), vs)

)
.

(6.1)

Here Ss−1 denotes as usual the group of permutations of the set {1, . . . , s − 1}. Equiva-
lently, in light of the symmetry of the Aj ,

τA1,...,As (v0, . . . , vs)

=

s−1∑
k=0

∑
{1,...,s−1}=

{i1,...,ik }q{j1,...,js−k−1}

ω
(
Ak+1(v0, vi1 , . . . , vik ), As−k(vj1 , . . . , vjs−k−1 , vs)

)
. (6.2)

Here and below we take it as understood that the partitions {1, . . . , s−1} = {i1, . . . , ik}q
{j1, . . . , js−k−1} appearing in the sum have i1 < · · · < ik and j1 < · · · < js−k−1.

Here are some salient properties of the τA1,...,As :

Lemma 6.1. We have, for any Ak ∈ Symk(V ,W) and vk ∈ V :

(i)
τA1,...,As (v0, v1, . . . , vs−1, vs) = −τA1,...,As (vs, v1, . . . , vs−1, v0).

(ii) For any σ ∈ Ss−1,

τA1,...,As (v0, v1, . . . , vs−1, vs) = τA1,...,As (v0, vσ(1), . . . , vσ(s−1), vs).
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(iii)

τA1,...,As (v0, v1, v2, . . . , vs−1, vs)+ τA1,...,As (vs, v0, v2, . . . , vs−1, v1)

+ τA1,...,As (v1, vs, v2, . . . , vs−1, v0) = 0.

(iv) For fixed A1, . . . , As−1 such that A1 : V → W is injective, the map As 7→ τA1,...,As

is an affine surjection from Syms(V ,W) to the space

Ts(V ,W) = {τ ∈ Mults+1(V ,W) | τ obeys (i)–(iii) above}.

(v) Where for j = 2, . . . , s we denote by Aj (vs, ·) the element of Symj−1(V ,W) given
by including vs into Aj as the first argument, we have

d

dt

∣∣∣∣
t=0

(
τA1+tA2(vs ,·),A2+tA3(vs ,·),...,As−1+tAs (vs ,·)(v0, . . . , vs−2, vs−1)

)
= τA1,...,As (v0, . . . , vs−2, vs, vs−1).

Proof. For k = 0, . . . , s − 1 write

τ (k)(v0, . . . , vs)

=
1

k!(s − 1− k)!

∑
σ∈Ss−1

ω
(
Ak+1(v0, vσ(1), . . . , vσ(k)), As−k(vσ(k+1), . . . , vσ(s−1), vs)

)
,

so that

τA1,...,As =

s−1∑
k=0

τ (k).

First we show that for each k, τ (k) + τ (s−1−k) obeys conditions (i)–(iii), which will obvi-
ously show the same for τA1,...,As .

That condition (ii) (symmetry in the arguments v1, . . . , vs−1) holds for each individ-
ual τ (k) is immediate from the definition. That condition (i) (antisymmetry in the argu-
ments v0 and vs) holds for τ (k) + τ (s−1−k) follows quickly from the antisymmetry of ω
and the symmetry of the Aj : each term

ω
(
Ak+1(v0, vi1 , . . . , vik ), As−k(vj1 , . . . , vjs−k−1 , vs)

)
that appears in the sum defining τ (k)(v0, v1, . . . , vs−1, vs) has a corresponding term

ω
(
As−k(vs, vj1 , . . . , vjs−k−1), Ak+1(vi1 , . . . , vik , v0)

)
that appears in the sum defining τ (s−1−k)(vs, v1, . . . , vs−1, v0) (and vice versa), and these
terms are opposite to each other since ω is antisymmetric while Ak+1, As−k are symmet-
ric.
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We now show that τ (k)+ τ (s−k−1) obeys property (iii) (concerning the effect of cycli-
cally permuting the arguments v0, v1, vs while leaving the others fixed). We see that

(τ (k) + τ (s−k−1))(v0, v1, v2, . . . , vs−1, vs)

=

∑
{1,...,s−1}=

{i1,...,ik }q{j1,...,js−k−1}

(
ω(Ak+1(v0, vi1 , . . . , vik ), As−k(vj1 , . . . , vjs−k−1 , vs))

+ ω(As−k(v0, vj1 , . . . , vjs−k−1), Ak+1(vi1 , . . . , vik , vs))
)

=

∑
{2,...,s−1}=

{i1,...,ik }q{m1,...,ms−k−2}

(
ω(Ak+1(v0, vi1 , . . . , vik ), As−k(v1, vm1 , . . . , vms−k−2 , vs))

+ ω(As−k(v0, v1, vm1 , . . . , vms−k−2), Ak+1(vi1 , . . . , vik , vs))
)

+

∑
{2,...,s−1}=

{n1,...,nk−1}q{j1,...,js−k−1}

(
ω(Ak+1(v0, v1, vn1 , . . . , vnk−1), As−k(vj1 , . . . , vjs−k−1 , vs))

+ ω(As−k(v0, vj1 , . . . , vjs−k−2), Ak+1(v1, vn1 , . . . , vnk−1 , vs))
)

(6.3)

where we have separated the partitions {1, . . . , s − 1} = {i1, . . . , ik} q {j1, . . . , js−k−1}

according to whether 1 belongs to the first or the second of the two subsets. Fix a partition
{2, . . . , s − 1} = {i1, . . . , ik} q {m1, . . . , ms−k−2} and consider the effect of cyclically
permuting v0, v1, vs in the term corresponding to this partition in the first line of the right
hand side of (6.3). Summing over these cyclic permutations yields (where . . . represents
i1, . . . , ik or m1, . . . , ms−k−2, as appropriate, and where we freely use the symmetry of
the Aj )

ω(Ak+1(v0, . . .), As−k(v1, vs, . . .))+ ω(As−k(v0, v1, . . .), Ak+1(vs, . . .))

+ω(Ak+1(vs, . . .), As−k(v0, v1, . . .))+ ω(As−k(vs, v0, . . .), Ak+1(v1, . . .))

+ω (Ak+1(v1, . . .), As−k(vs, v0, . . .))+ ω (As−k(v1, vs, . . .), Ak+1(v0, . . .)) ,

which vanishes, as the first and sixth; second and third; and fourth and fifth terms cancel.
This shows that the terms coming from the first sum of the right hand side of (6.3) in

(τ (k) + τ (s−k−1))(v0, v1, . . . , vs)+ (τ
(k)
+ τ (s−k−1))(v1, vs, . . . , v0)

+ (τ (k) + τ (s−k−1))(vs, v0, . . . , v1)

sum to zero, and an identical argument applies to the second sum of (6.3). This proves
property (iii), both for τ (k) + τ (s−k−1) and for the original τA1,...,Ak .

We now prove (iv). Since the only terms in τA1,...,As =
∑s−1
k=0 τ

(k) which depend
on As are those corresponding to k = 0, s − 1, and since the terms corresponding to
k = 0, s − 1 depend linearly on As (with A1 fixed), it suffices to show that, for fixed
injective A1, the map As 7→ τ (0) + τ (s−1) is a surjection to Ts(V ,W). (That this map
takes values in Ts(V ,W) follows from what we have already done in this proof.) Note
that

(τ (0) + τ (s−1))(v0, v1, . . . , vs) = ω (A1v0, As(v1, . . . , vs))

+ ω (As(v0, . . . , vs−1), A1vs) . (6.4)
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Let {e1, . . . , en} be a basis for V , and consider an arbitrary τ ∈ Ts(V ,W). Of course
τ is determined by its values on tuples eiσ(1) , . . . , eiσ(s+1) , where (i1, . . . , is+1) varies over
tuples with i1 ≤ · · · ≤ is+1, and where σ varies over Ss+1. In fact, though, for a fixed
such tuple (i1, . . . , is+1), all of the τ(eiσ(1) , . . . , eiσ(s+1)) are determined by the values

τ(ei1 , ei2 , . . . , êij , . . . , eis+1 , eij ) (6.5)

where 2 ≤ j ≤ s + 1 varies through indices such that i1 6= ij and thêdenotes omission.
Indeed if i1 = ij then (6.5) vanishes by condition (i), while more generally repeated
application of properties (i)–(iii) will express τ(eiσ(1) , . . . , eiσ(s+1)) in terms of expressions
of the form (6.5) for appropriate j ; for instance one has

τ(eij , ei1 , . . . , êij , . . . , êik , . . . , eik ) = τ(ei1 , . . . , eij , . . . , êik , . . . , eis+1 , eik )

− τ(ei1 , . . . , êij , . . . , eik , . . . , eis+1 , eij ).

So it suffices to show that for a fixed injective A1 and for a fixed (i1, . . . , is+1) with
i1 ≤ · · · ≤ is+1 and for any j with ij 6= i1, the s-linear map As may be chosen
so that (τ (0) + τ (s−1))(ei1 , . . . , êik , . . . , eis+1 , eik ) is nonzero iff ij = ik , and so that
(τ (0) + τ (s−1))(em1 , . . . , ems+1) = 0 whenever the indices mk cannot be reordered to
coincide with the indices ik (since Ts(V ,W) is spanned by maps having these proper-
ties as (i1, . . . , is+1) and j vary). But this is easily accomplished. Choose the symmetric
s-linear map As : V s → W so that As(em1 , . . . , ems ) = 0 if and only if (em1 , . . . , ems )

is not a reordering of (ei1 , . . . , êij , . . . , eis+1), and so that As(ei1 , . . . , êij , . . . , eis+1) is
ω-orthogonal to A1em for all m 6= ij but is not ω-orthogonal to A1eij (here of course we
use the nondegeneracy of ω and the injectivity of A1). As the reader may easily verify
using (6.4), this choice of As results in τ (0) + τ (s−1) satisfying the desired properties,
completing the proof of (iv).

Finally, consider (v). The left hand side is equal to

s−1∑
m=1

d

dt

∣∣∣∣
t=0
τA1,...,Am−1,Am+tAm+1(vs ,·),Am+1,...,As−1(v0, . . . , vs−1)

=

s−1∑
m=1

∑
{1,...,s−2}=
{i1,...,im−1}

q{j1,...,js−m−1}

(
ω
(
Am+1(vs, v0, vi1 , . . . , vim−1), As−m(vj1 , . . . , vjs−m−1 , vs−1)

)

+ ω
(
As−m(v0, vj1 , . . . , vjs−m−1), Am+1(vs, vi1 , . . . , vim−1 , vs−1)

))
.

But, in view of the symmetry of the Aj , this is just τA1,...,As (v0, . . . , vs−2, vs, vs−1), as
can be seen by sorting the terms that appear in (6.2) according to whether the second-to-
last argument of τA1,...,As is among the vik or among the vjk . ut

Lemma 6.2. Where Ts(V ,W) is as defined in Lemma 6.1(iv), there exists a surjective
linear projection 5 : Mults+1(V ,W)→ Ts(V ,W) having the following property. If η ∈
Ts(V ,W) and S ≤ V are such that η(v0, . . . , vs) = 0 for all v0, . . . , vs ∈ S, then also
(5η)(v0, . . . , vs) = 0 for all v0, . . . , vs ∈ S.
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Proof. Let Ss+1 denote the symmetric group on the (s + 1)-element set {0, . . . , s}. For
0 ≤ i ≤ s− 1 let ti ∈ Ss+1 denote the transposition which interchanges i and i+ 1. Also
let ts denote the transposition which interchanges 0 and s, and let u denote the permu-
tation which cyclically permutes 0, 1, and s and leaves the other elements of {0, . . . , s}
unchanged.

We have a left action of Ss+1 on Mults+1(V ,W) by

σ · τ(v0, . . . , vs) = τ(vσ−1(0), . . . , vσ−1(s)).

Where RSs+1 denotes the group R-algebra of Ss+1, the action of Ss+1 on
Mults+1(V ,W) extends in the obvious way to a left action of the algebra RSs+1 on
Mults+1(V ,W). In these terms we have by definition

Ts(V ,W) =
{
τ ∈ Mults+1(V ,W)

∣∣∣∣ (1− ti) · τ = 0 for 1 ≤ i ≤ s − 2,
(1+ ts) · τ = (1+ u+ u2) · τ = 0

}
.

Let I denote the left ideal in RSs+1 generated by the elements 1−ti for 1 ≤ i ≤ s−2,
1+ ts , and 1+u+u2. (In other words, I consists of elements of the form

∑s−2
i=1 xi(1− ti)

+ y(1+ ts)+ z(1+ u+ u2).) Then we evidently have

Ts(V ,W) = {τ ∈ Mults+1(V ,W) | (∀x ∈ I )(x · τ = 0)}. (6.6)

Now RSs+1 carries a Ss+1-invariant inner product 〈·, ·〉 defined by〈 ∑
σ∈Ss+1

aσσ,
∑

σ∈Ss+1

bσσ
〉
=

∑
σ∈Ss+1

aσbσ .

Let I⊥ denote the orthogonal complement of I with respect to this inner product. The
facts that 〈·, ·〉 is Ss+1-invariant and that I is a left ideal readily imply that I⊥ is a left
ideal. Of course there is a direct sum splitting of vector spaces RSs+1 = I ⊕ I⊥, so
where 1 is the multiplicative identity in RSs+1 we may write 1 = e + e⊥ where e ∈ I
and e⊥ ∈ I⊥. Now for any x ∈ RSs+1 we have

x = x(e + e⊥) = xe + xe⊥

where xe ∈ I and xe⊥ ∈ I⊥. So if x ∈ I then xe = x and xe⊥ = 0, while if x ∈ I⊥

then xe = 0 and xe⊥ = x. In particular applying this with x equal to e or e⊥ shows that
e2
= e, (e⊥)2 = e⊥, and ee⊥ = e⊥e = 0.
If τ ∈ Ts(V ,W) we have e · τ = 0 and hence e⊥ · τ = (e + e⊥) · τ = τ .
If τ ∈ Mults+1(V ,W), and x ∈ I , since x = xe and ee⊥ = 0 we have

x(e⊥ · τ) = (xee⊥) · τ = 0.

Thus by (6.6) we have e⊥ · τ ∈ Ts(V ,W) for all τ ∈ Mults+1(V ,W).
Accordingly we may define5 : Mults+1(V ,W)→ Ts(V ,W) by5(τ) = e⊥ · τ . The

last two paragraphs together with the fact that (e⊥)2 = e⊥ imply that 5 is a surjective
projection. The fact that 5 is given by the action of an element of RSs+1 immediately
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implies that 5 has the property stated in the lemma: if η ∈ Mults+1(V ,W) vanishes
on all tuples consisting of elements of the subspace S ≤ V , then for v0, . . . , vs ∈ S,
(5η)(v0, . . . , vs) is a linear combination of various terms obtained by first permuting the
vi and then applying η, and all of these terms are 0 by the assumption on η. ut

If A : V → W is a linear map, we obtain a skew-symmetric bilinear form A∗ω on V .
Associated to the form ω on W is a linear map J : W → W ∗ defined by the property that
(Jw1)(w2) = ω(w1, w2). The linear map V → V ∗ which is similarly associated to the
bilinear form A∗ω on V is then A∗JA, where A∗ : W ∗→ V ∗ is the transpose of A. Since
we assume that ω is nondegenerate, J is invertible. On the other hand A∗ω is typically
degenerate; its kernel (i.e. the space of those v such that (A∗ω)(v, ·) ∈ V ∗ is zero) is the
same as the kernel of the linear map A∗JA. If we assume that A is injective, so that A∗

is surjective, then it is easy to see that the kernel of A∗ω has dimension no larger than
dimW − dimV .

Proposition 6.3. Let Hom(V ,W) be the space of linear maps and Mon(V ,W) the space
of injective linear maps from V to W , and let c be a positive integer. Then

Kc = {A ∈ Mon(V ,W) | dim ker(A∗ω) = c}

is a submanifold of Mon(V ,W) with codimension c(c − 1)/2. Moreover for A ∈ Kc the
tangent space to Kc at A is given by

TAKc = {B ∈Hom(V ,W) |ω(Av1, Bv2)+ ω(Bv1, Av2)= 0 for all v1, v2 ∈ ker(A∗ω)},

where we use the fact that Mon(V ,W) is an open subset of the vector space Hom(V ,W)
to identify TA Mon(V ,W) canonically with Hom(V ,W).

Proof. If U is a finite-dimensional vector space let Sk(U) denote the vector space of
skew-symmetric linear maps L : U → U∗ (in other words, maps that, under the canonical
identification of U∗∗ with U , obey L∗ = −L; of course these are the maps that, when
represented by matrices in terms of a basis for U and the corresponding dual basis for U∗,
are given by skew-symmetric matrices).

Let
Qc = {B ∈ Sk(V ) | dim kerB = c}

and for any subspace Y ≤ V , let

SkY (V ) = {B ∈ Sk(V ) | (By1)(y2) = 0 for all y1, y2 ∈ Y }.

Lemma 6.4. Qc is a submanifold of Sk(V ), with codimension c(c − 1)/2. Moreover the
tangent space at B ∈ Qc is given by

TBQc = SkkerB(V )

(where we use the vector space structure on Sk(V ) to identify TB Sk(V ) with Sk(V )).
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Proof. LetB ∈ Qc and write Y 0
= kerB, so dimY 0

= c. Choose a complement Y 1 to Y 0

in V . The splitting V = Y 0
⊕ Y 1 determines a splitting V ∗ = (Y 0)∗ ⊕ (Y 1)∗ (where,

e.g., elements of (Y 0)∗ are extended by zero on the Y 1 summand to obtain elements
of V ∗), and any C ∈ Sk(V ) can then be written in “block form” as C =

(
C00 C01
C10 C11

)
where Cij : Y j → (Y i)∗ and where C∗ij = −Cji . The fact that B vanishes on Y 0 shows
that B00 = 0 and B10 = 0, and hence also by skew-symmetry, B01 = 0. So since B
is injective on Y 1 the lower right block B11 must be invertible. Let U denote the open
subset of Sk(V ) consisting of skew-symmetric maps B ′ whose lower right blocks B ′11 are
invertible, so U is an open neighborhood of B and it suffices to show that Qc ∩ U is a
submanifold of U with codimension and tangent space at B as asserted in the statement
of the lemma.

Let π0 be the projection V → Y 0 given by the direct sum splitting V = Y 0
⊕Y 1. Now

any B ′ ∈ U restricts injectively to Y 1 and so the restriction of π0 to kerB ′ is injective.
Assuming that B ′ ∈ U , we have B ′ ∈ Qc ∩ U if and only if π0|kerB ′ is an isomorphism
to Y 0, which in turn holds if and only if there is a linear map D : Y 0

→ Y 1 such that B ′

vanishes identically on the subspace {v +Dv | v ∈ Y 0
}. Writing

B ′ =

(
C00 C01
C10 B11 + C11

)
,

the precise conditions on the Cij and on D for this to occur are given by

C00 + C01D = 0, C10 + (B11 + C11)D = 0.

Since B ′ is chosen from the open set U , the map B11 +C11 is invertible, and so D would
have to be given by D = −(B11 + C11)

−1C10. So since C01 = −C
∗

10 we see that

Qc ∩ U ={
B ′ =

(
C00 −C∗10
C10 B11 + C11

) ∣∣∣∣ C00 ∈ Sk(Y 0), C11 ∈ Sk(Y 1), C10 ∈ Hom(Y 0, (Y 1)∗),

C00 + C
∗

10(B11 + C11)
−1C10 = 0

}
.

The map
(C00, C10, C11) 7→ C00 + C

∗

10(B11 + C11)
−1C10 (6.7)

is obviously a submersion to Sk(Y 0), and Sk(Y 0) has dimension c(c − 1)/2, so by the
implicit function theorem this proves thatQc is a submanifold of Sk(V )with codimension
c(c − 1)/2. Moreover, the linearization of (6.7) aroundCij = 0 has kernel given precisely
by those Ĉ with Ĉ00 = 0, and the condition that Ĉ00 = 0 amounts to the statement that
Ĉ ∈ SkY0(V ), proving that TBQc = SkY

0
(V ). ut

Resuming the proof of Proposition 6.3, first note that the map � : Mon(V ,W)→ Sk(V )
defined by �(A) = A∗JA is a submersion. Indeed the linearization of this map at A
is given by B 7→ B∗JA + A∗JB = B∗(JA) − (JA)∗B where JA : V → W ∗ is
a monomorphism (here we use that J ∗ = −J since ω is skew-symmetric). Choosing
C ∈ Hom(W ∗, V ) so that C(JA) is the identity on V , given any D ∈ Hom(V , V ∗) the
element C∗D ∈ Hom(V ,W) will be sent by the linearization of � at A to D∗ − D. So
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since any element of Sk(V ) can be written as D∗ −D for some D ∈ Hom(V , V ∗), � is
indeed a submersion.

We now need simply note that

Kc = �−1(Qc),

so since Qc is a submanifold of codimension c(c − 1)/2 and � is a submersion, Kc is a
submanifold of codimension c(c − 1)/2. Moreover for A ∈ Kc the tangent space to Kc
atA consists of those B such that B∗JA+A∗JB belongs to TA∗JAQc = Skker(A∗JA)(V ).
Recalling that ker(A∗JA) = ker(A∗ω), this amounts to the condition that, for all v1, v2 ∈

ker(A∗ω),

0 = ((B∗JA+ A∗JB)(v1))(v2) = (JAv1)(Bv2)+ (JBv1)(Av2)

= ω(Av1, Bv2)+ ω(Bv1, Av2),

as desired. ut

Addendum 6.5. Fix a c-dimensional subspace V 0
≤ V . For any A ∈ Kc there is a

neighborhood U of A in Mon(V ,W) and a smooth map

9 : U × V → V, (Z, v) 7→ 9Z(v),

such that for all Z ∈ U the map 9Z : V → V is a linear isomorphism and 9Z(V 0) =

ker(Z∗ω) for all Z ∈ U ∩Kc.

Proof. This basically follows from the proof of Lemma 6.4. Let Y 0
= ker(A∗JA), and

choose a complement Y 1 to Y 0 in V . As in the proof of Lemma 6.4 we can write A∗JA
in block form with respect to the splitting V = Y 0

⊕ Y 1 as A∗JA =
( 0 0

0 B11

)
where

B11 : Y
1
→ (Y 1)∗ is invertible. Let U denote the set of Z ∈ Mon(V ,W) such that the

lower right block of Z∗JZ with respect to the splitting V = Y 0
⊕ Y 1 is invertible. For

any Z ∈ U define maps Cij (Z) : Y j → (Y i)∗ by the property that

Z∗JZ =

(
C00(Z) C01(Z)

C10(Z) B11 + C11(Z)

)
.

Then the Cij (Z) vary smoothly with Z and we have Cij (Z)∗ = −Cji(Z), Cij (A) = 0,
and B11 + C11(Z) is invertible. As noted in the proof of Lemma 6.4, given that Z∗JZ
takes the above form, if ker(Z∗JZ) is to have dimension c, then necessarily ker(Z∗JZ) =
{v +D(Z)v | v ∈ Y 0

}, where D(Z) : Y 0
→ Y 1 is given by

D(Z) = −(B11 + C11(Z))
−1C10(Z). (6.8)

To construct the desired map 9, where V 0
≤ V is our given c-dimensional sub-

space, choose a complement V 1 to V 0 in V , and for i = 0, 1 fix linear isomorphisms
ψi : V

i
→ Y i . Then define 9 : U × V → V by

9(Z, v0 + v1) = ψ0v0 +D(Z)ψ0v0 + ψ1v1,
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where D(Z) : Y 0
→ Y 1 is given by (6.8) (of course, this formula makes sense as long as

Z ∈ U , whether or not Z ∈ Kc). This map is easily seen to have the desired properties.
ut

For the rest of this subsection we will fix a smooth map9 : U9×V → V as in Addendum
6.5; thus U9 is an open set in Mon(V ,W), V 0 is a fixed c-dimensional subspace of V ,
and the maps 9Z = 9(Z, ·) : V → V are, for each Z ∈ U9 , linear isomorphisms such
that whenever Z ∈ U9 ∩Kc we have 9Z(V 0) = ker(Z∗JZ).

In general, for η ∈ Mults+1(V ,W) and f : S → V a linear map from some vector
space S, f ∗η denotes the obvious pullback of η, i.e., f ∗η ∈ Mults+1(V ,W) is given by
f ∗η(x0, . . . , xs) = η(f x0, . . . , f xs).

We will consider smooth maps

η : U9 ×

s∏
k=2

Symk(V ,W)→ Mults+1(V ,W), (A1, . . . , As) 7→ ηA1,...,As .

The domain of such a map should be thought of as consisting of possible values of
the derivatives at a point of order 1 through s of a function f : V → W (with the first
derivative constrained to lie in the open set U9 but the higher order derivatives allowed
to vary freely).

We associate to such a 9 and to any integer s ≥ 2 a map

F9 : C∞
(
U9 ×

s∏
k=2

Symk(V ,W),Mults+1(V ,W)
)

→ C∞
(
U9 ×

s+1∏
k=2

Symk(V ,W),Mults+2(V ,W)
)

defined by

(F9η)A1,...,As+1(v0, v1, . . . , vs−1, v, vs) =

d

dt

∣∣∣∣
t=0

(
(9A1+tA2(v,·)◦9

−1
A1
)∗ηA1+tA2(v,·),A2+tA3(v,·),...,As+tAs+1(v,·)(v0, v1, . . . , vs−1, vs)

)
.

To give some sort of motivation for this, note that if theAi are the ith order derivatives
at a point of a function f : V → W , then d

dt

∣∣
t=0(A1+ tA2(v, ·), A2+ tA3(v, ·), . . . , As+

tAs+1(v, ·)) measures the rate of change of the first s derivatives of f as one moves
in the direction v. Thus (F9η)A1,...,As+1(·, v, ·) is a measurement of the change in η
for a function f with derivatives Ai as one moves in the direction v. The pullback by
9A1+tA2(v,·) ◦ 9

−1
A1

is designed to compensate for the fact that the subspace ker (f ∗ω)x
will vary as x ∈ V varies.

By the chain rule we have

(F9η)A1,...,As+1(·, v, ·)

=
d

dt

∣∣∣∣
t=0

(
ηA1+tA2(v,·),A2+tA3(v,·),...,As+tAs+1(v,·) + (9

−1
A1
)∗9∗A1+tA2(v,·)

ηA1,...,As

)
. (6.9)

Note the similarity of the first term in (6.9) to what appears in Lemma 6.1(v), and also
note that the second term is independent of As+1.
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Now choose, for all s ≥ 2, a projection 5 : Mults+1(V ,W) → Ts(V ,W) as in
Lemma 6.2. Define elements τ̃9,s ∈ C∞(U9 ×

∏s
k=2 Symk(V ,W), Ts(V ,W)) induc-

tively by setting, where τA1,A2 is as defined before Lemma 6.1,

τ̃
9,2
A1,A2

= τA1,A2 , τ̃
9,s+1
A1,...,As+1

= 5(F9 τ̃9,s)A1,...,As+1 for s ≥ 2.

Remark 6.6. Our purpose in including the projection 5 in the definition of τ̃9,s is to
ensure that the map (A1, . . . , As) 7→ τ̃

9,s
A1,...,As

has constant rank.

Lemma 6.7. For each s ≥ 2 there is a C∞ map gs : U9 ×
∏s−1
k=2 Symk(V ,W) →

Ts(V ,W) such that, for all (A1, A2, . . . , As) ∈ U9 ×
∏s
k=2 Symk(V ,W),

τ̃
9,s
A1,...,As

= τA1,...,As + gs(A1, . . . , As−1).

Consequently, for any fixed (A1, A2, . . . , As−1) ∈ U9 ×
∏s−1
k=2 Symk(V ,W) the map

As 7→ τ̃
9,s
A1,...,As

is an affine surjection from Syms(V ,W) to Ts(V ,W).
Proof. Given Lemma 6.1, this follows easily by induction on s. Of course it is trivially
true for s = 2. Assuming the first statement of the lemma for some s ≥ 2, note that the
maps τ̄(s) : U9 ×

∏s
k=1 Symk(V ,W)→ Mults+1(V ,W) defined by τ̄(s)(A1, . . . , As) =

τA1,...,As take values in Ts(V ,W) by Lemma 6.1(i)–(iii) (so 5τA1,...,As+1 = τA1,...,As+1),
and by Lemma 6.1(v) and (6.9) we have (F9 τ̄(s))A1,...,As+1=τA1,...,As+1+hs(A1, . . . , As)

for some smooth hs : U9 ×
∏s
k=2 Symk(V ,W)→ Mults+2(V ,W). Consequently,

τ̃
9,s+1
A1,...,As+1

= τA1,...,As+1 +5hs(A1, . . . , As)+5(F9gs)A1,...,As+1 .

(Here we are strictly speaking extending the domain of gs to U9 ×
∏s
k=2 Symk(V ,W)

by having it be independent of its last argument As .) But from the formula for F9 it
is clear that the fact that gs depends only on A1, . . . , As−1 implies that F9gs depends
only on A1, . . . , As . So the first statement of the lemma holds for the value s + 1, with
gs+1(A1, . . . , As) = 5hs(A1, . . . , As)+5(F9gs)A1,...,As ,0.

This proves the first statement of the lemma by induction, and then the second state-
ment follows from Lemma 6.1(iv) since all elements of U9 are monomorphisms. ut

Proposition 6.8. For any integer r ≥ 1 and any 9 : U9 × V → V as in Addendum 6.5,
let

Kr,9c (V ,W) =

{
(A1, . . . , Ar) ∈

r∏
k=1

Symk(V ,W)

∣∣∣∣
A1 ∈ U9 ∩Kc and for all 2 ≤ s ≤ r,
τ̃
9,s
A1,...,As

(v0, v1, . . . , vs) = 0 for all v0, . . . , vs ∈ ker (A∗1ω)

}
.

Then Kr,9c (V ,W) is a submanifold of U9 ×
∏r
k=2 Symk(V ,W), with codimension

c(c − 1)/2+
r∑
s=2

dim Ts(Rc,W).



Submanifolds and the Hofer norm 1609

Proof. Where ι : V 0
→ V is the inclusion, we have

Kr,9c (V ,W)

=

{
(A1, . . . , Ar) ∈

r∏
k=1

Symk(V ,W)

∣∣∣∣ A1 ∈ U9 ∩Kc and for all 2 ≤ s ≤ r,
ι∗9∗A1

τ̃
9,s
A1,...,As

= 0 ∈ Ts(V 0,W)

}
.

For each s ∈ {2, . . . , r}, the fact that, by Lemma 6.7, for any fixed A1, . . . , As−1 the
mapAs 7→ τ̃

9,s
A1,...,As

is an affine surjection to Ts(V ,W) implies (since9A1 ◦ ι is injective)

that, again for fixed A1, . . . , As−1, As 7→ ι∗9∗A1
τ̃
9,s
A1,...,As

is an affine surjection (and
hence a submersion) to Ts(V 0,W). This readily implies that, for any fixed A1 ∈ U ∩Kc,
the map

r∏
s=2

Syms(V ,W)→

r∏
s=2

Ts(V 0,W),

(A2, . . . , Ar) 7→
(
ι∗9∗A1

τ̃
9,2
A1,A2

, ι∗9∗A1
τ̃
9,3
A1,A2,A3

, . . . , ι∗9∗A1
τ̃
9,r
A1,...,Ar

)
,

is a submersion.
Now by Proposition 6.3, (U9 ∩Kc)×

∏r
s=2 Syms(V ,W) is a submanifold of U9 ×∏r

s=2 Syms(V ,W) with codimension c(c − 1)/2. It follows from the previous paragraph
that Kr,9c (V ,W) is the zero locus of a submersion from (U9∩Kc)×

∏r
s=2 Syms(V ,W) to

the vector space
∏r
s=2 Ts(V 0,W). Thus Kr,9c (V ,W) is a submanifold with codimension∑r

s=2 dim Ts(V 0,W) in (U9 ∩ Kc) ×
∏r
s=2 Syms(V ,W), and therefore codimension

c(c − 1)/2 +
∑r
s=2 dim Ts(V 0,W) in U9 ×

∏r
s=2 Syms(V ,W). Recalling that V 0 has

dimension c, this proves the proposition. ut

6.2. Jets and the rigid locus

We will now incorporate the foundations built in Section 6.1 into the theory of jet spaces;
this will culminate in the proof of Theorem 1.1(ii). In outline, we will soon define what
it means, for any positive integer r , for a map to be “transversely r-noncoisotropic,” first
in the context of maps from open sets in Rd to symplectic Euclidean space (see Defi-
nition 6.9), and then more generally for maps from any d-dimensional manifold into a
2n-dimensional symplectic manifold (see Definition 6.12). Using Thom’s jet transversal-
ity theorem together with Proposition 6.8, we will show that if d ≤ 2n − 2 then the set
of transversely r-noncoisotropic maps is residual in appropriate topologies (see Lemmas
6.10 and 6.13), and open in the case of spaces of maps from a compact manifold into
a symplectic manifold. Meanwhile, Proposition 6.14 will show that, for r greater than
a dimensional constant, the image of every transversely r-noncoisotropic embedding is
weightless. The key ingredient in the proof of Proposition 6.14 is Lemma 6.11, which im-
plies that for a transversely r-noncoisotropic embedding one can set up the sort of iterative
scheme based on Lemma 4.3 that was alluded to in the first paragraph of Section 6. With
Proposition 6.14 in hand, one quickly obtains Corollary 6.16 and hence Theorem 1.1(ii).

Let O ⊂ Rd be an open subset, and for 1 ≤ r ≤ ∞ let Cr(O,R2n) denote the space
of Cr maps from O to R2n, endowed with the strong Cr topology (see [Hi, Section 2.1]).
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For 1 ≤ r < ∞ let J r(O,R2n) denote the manifold of r-jets of maps from O to R2n;
since O is assumed to be an open subset of Rd (so that TxO has a fixed identification with
Rd for all x ∈ O) we may identify

J r(O,R2n) = {(x, y,A1, . . . , Ar) | x ∈ O, y ∈ R2n, Ai ∈ Symi(Rd ,R2n)}.

For positive integers c and r , and for a map 9 : U9 ×Rd → Rd as in Addendum 6.5
(where U9 ⊂ Mon(Rd ,R2n) is an open subset) define

8r,9c = {(x, y,A1, . . . , Ar) ∈ J
r(O,R2n) | (A1, . . . , Ar) ∈ Kr,9c (Rd ,R2n)}, (6.10)

where Kr,9c (Rd ,R2n) has been defined in Proposition 6.8 (and we use the standard sym-
plectic form

∑n
i=1 dyi ∧ dyn+i on R2n). One sees immediately from Proposition 6.8 that

8
r,9
c is a submanifold of J r(O,R2n) of codimension c(c−1)/2+

∑r
s=2 dim Ts(Rc,R2n).

Recall that to any Cr+1 map f : O→ R2n one may associate the r-jet of f , which is
a C1 map j rf : O → J r(O,R2n) defined by j rf (x) = (x, f (x), (df )x, . . . , (drf )x),
where (d if )x denotes the ith derivative of f at x, viewed as a symmetric i-linear form
from TxU ∼= Rd to R2n.

Definition 6.9. An Cr+1 map f : O→ R2n will be called transversely r-noncoisotropic
if for all x ∈ O such that (df )x ∈ K2n−d there is a map 9 : U9 × Rd → Rd as in
Addendum 6.5 such that (df )x ∈ U9 and, the s-jet j sf : O→ J s(O,R2n) is transverse
to 8s,92n−d for all s ∈ {1, . . . , r}.

Lemma 6.10. For any a > r (where a ∈ N∪ {∞}), the set of f ∈ Ca(O,R2n) such that
f is transversely r-noncoisotropic is residual in the strong Ca topology on Ca(O,R2n).

Proof. Choose a countable collection of maps 9i : U9i × Rd → Rd as in Addendum
6.5 such that the open sets {U9i | i ∈ N} cover K2n−d . If f : O → Rd has the prop-
erty that j sf t 8

s,9i
2n−d for all i ∈ N and all s ∈ {1, . . . , r}, then f will be transversely

r-noncoisotropic. By Thom’s jet transversality theorem (see, e.g., [Hi, Theorem 3.2.8]),
for any given i and s with s < a the set of f such that j sf t 8

s,9i
2n−d is residual in the

strong Ca topology on Ca(O,R2n). Consequently, the set described in the lemma con-
tains a countable intersection of residual subsets and therefore is residual (in the strongCa

topology for a > r). ut

Lemma 6.11. Let f ∈ Cr+1(O,R2n) and suppose that 9 : U9 × Rd → Rd as in Ad-
dendum 6.5 has the property that j sf t 8

s,9
2n−d for each s ∈ {1, . . . , r}. Define, for

1 ≤ s ≤ r ,
O9
s,f = (j

sf )−1(8
s,9
2n−d).

Then each O9
s,f is a submanifold of O, and

O9
1,f = {x ∈ O | (df )x ∈ U9 and dim ker (f ∗ω)x = 2n− d}

and, for 1 ≤ s ≤ r − 1,

O9
s+1,f ⊃ {x ∈ O9

s,f | ker (f ∗ω)x ⊂ TxO9
s,f }. (6.11)
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Proof. The implicit function theorem and the transversality assumption of course imply
that the O9

s,f are submanifolds of O. Since j1f (x) = (x, f (x), (df )x), the statement

about O9
1,f follows immediately from the definition of81,9

2n−d = O×R2n
×(U9∩K2n−d).

Now let 1 ≤ s ≤ r − 1 and consider O9
s+1,f . First note that under the obvious

projection π : J s+1(O,R2n)→ J s(O,R2n) we have

8
s+1,9
2n−d ⊂ π

−1(8
s,9
2n−d) and π ◦ j s+1f = j sf,

so O9
s+1,f ⊂ O9

s,f . Now the linearization of j sf is given by, for x ∈ O and v ∈ TxO,

(j sf )∗xv =
(
v, f∗v, (d

2f )x(v, ·), . . . , (d
s+1f )x(v, ·)

)
∈ Rd × R2n

×

s∏
i=1

Symi(Rd ,R2n) ∼= Tj sf (x)J
s(O,R2n).

Let x ∈ O9
s,f . Then an element v ∈ TxO belongs to TxO9

s,f if and only if (j sf )∗v ∈

Tj sf (x)8
s,9
2n−d . By the characterization of Kr,9c (Rd ,R2n) at the start of the proof of Propo-

sition 6.8 and the definition (6.10) of 8r,92n−d this holds if and only if v ∈ TxO9
1,f and, for

each 2 ≤ m ≤ s,

d

dt

∣∣∣∣
t=0
ι∗9∗

(df )x+t (d2f )x (v,·)
τ̃
9,m

(df )x+t (d2f )x (v,·),...,(dmf )x+t (dm+1f )x (v,·)
= 0.

Now by definition the left hand side above is precisely the (m+ 1)-linear form on V 0

given by

(z0, . . . , zm)

7→ (F9 τ̃9,m)(df )x ,(d2f )x ,...,(dm+1f )x
(9(df )x z0, . . . , 9(df )x zm−1, v,9(df )x zm)

(note that here 3 ≤ m + 1 ≤ s + 1, and recall that 9(df )x maps the model
(2n − d)-dimensional subspace V 0

≤ Rd isomorphically to ker((df )∗xω)). Meanwhile
in view of Proposition 6.3, v ∈ TxO9

1,f if and only if ω((df )xv1, (d
2f )x(v, v2)) +

ω((d2f )x(v, v1), v2) = 0, i.e., τ̃9,2
(df )x ,(d2f )x

(v1, v, v2) = 0, for all v1, v2 ∈ V .
In view of this, we have

{x ∈ O9
s,f | ker (f ∗ω)x ⊂ TxO9

s,f } =

{
x ∈ O9

s,f

∣∣∣∣
For all v0, . . . , vs+1 ∈ ker (f ∗ω)x, τ̃

9,2
(df )x ,(d2f )x

(v0, v1, v2) = 0 and
(F9 τ̃9,m)(df )x ,(d2f )x ,...,(dm+1f )x

(v0, v1, . . . , vm+1) = 0 for 3 ≤ m+ 1 ≤ s + 1

}
.

(6.12)

Recalling that, for 3 ≤ m+ 1 ≤ s + 1, we have by definition

τ̃
9,m+1
(df )x ,(d2f )x ,...,(dm+1f )x

= 5(F9 τ̃9,m)(df )x ,(d2f )x ,...,(dm+1f )x
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where5 : Multm+2(Rd ,R2n)→ Tm+1(Rd ,R2n) is a projection as in Lemma 6.2, the in-
clusion (6.11) immediately follows from (6.12) and the definition of K92n−d,s+1(R

d ,R2n).
ut

We now set about globalizing these results.

Definition 6.12. Let X be a smooth d-dimensional manifold and let (M,ω) be a 2n-
dimensional symplectic manifold. A Cr+1 map f : X → M will be called transversely
r-noncoisotropic provided that there is an atlas {φα : Uα → Rd | α ∈ A} for X and a col-
lection of Darboux charts ψα : Vα → R2n forM such that f (Uα)⊂Vα and ψα ◦f ◦φ−1

α :

φα(Uα)→ R2n is transversely r-noncoisotropic in the sense of Definition 6.9.

For a ∈ N let Imma(X,M) denote the space of Ca immersions from X to M .

Lemma 6.13. For any a > r with a ∈ N ∪ {∞} the set

{f ∈ Ca(X,M) | f is transversely r-noncoisotropic}

is residual in the strong Ca topology on Ca(X,M). If additionally X is compact then

{f ∈ Imma(X,M) | f is transversely r-noncoisotropic}

is open in the Cr+1 topology on Imma(X,M).

Proof. Choose a countable atlas {φi : Oi → Rd} for X such that the Oi form a basis for
the topology on X. Likewise choose a countable Darboux atlas {ψj : Vj → R2n

} such
that the Vj form a basis for the topology on M . These atlases induce atlases on the jet
manifolds J s(X,M), giving diffeomorphisms αsij : J

s(Oi, Vj )→ J s(φi(Oi), ψj (Vj )) of
the open sets J s(Oi, Vj ) ⊂ J

s(X,M) and J s(φi(Oi), ψj (Vj )) ⊂ J
s(Rd ,R2n). As in the

proof of Lemma 6.10, let {9k | k ∈ N} be a family of maps 9k : U9k × Rd → Rd as in
Addendum 6.5 such that the U9k cover K2n−d . Now for 1 ≤ s ≤ r and i, j, k ∈ N let

Zsijk = (α
s
ij )
−1(8

s,9k
2n−d) ⊂ J

s(Oi, Vj ) ⊂ J
s(X,M).

It follows from the definitions that a Ca map f : X → M will be transversely r-non-
coisotropic if j sf is transverse to Zsijk for each s = 1, . . . , r and all i, j, k ∈ N. But
by the jet transversality theorem the set of f having this latter property (for any given
i, j, k, s) is residual in the strong Ca topology, and so since a countable intersection of
residual sets is residual we have proven the first sentence of the lemma.

We now assume that X is compact and that f : X → M is a transversely r-non-
coisotropic immersion. Using the compactness of X we can find a finite atlas {φi | Oi →

Rd : i = 1, . . . , p} for M and a finite collection of Darboux charts ψi : Vi → R2n

such that each f (Oi) ⊂ Vi and each ψi ◦ f ◦ φ−1
i is transversely r-noncoisotropic in

the sense of Definition 6.12. Moreover we can arrange for there to be compact subsets
Li ⊂ Oi so that the Li still coverM . For each i the image of φ(Li) under d(ψi ◦f ◦φ−1

i )

will then be covered by finitely many open sets U9ik ⊂ Mon(Rd ,R2n) with associated
maps 9ik : U9ik × Rd → Rd such that j s(ψi ◦ f ◦ φ−1

i ) t 8
s,9ik
2n−d for each i, k and
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each s ∈ {1, . . . , r}. But a sufficiently Cr+1-small perturbation f̃ of f will continue to
have the properties that f̃ (Li) ⊂ Vi and that j s(ψi ◦ f̃ ◦ φ−1

i ) is transverse to 8s,9ik2n−d
throughout Li (and therefore also throughout small neighborhoods O′i of Li , which will
still be domains of the charts of an atlas for X). Consequently, f̃ will still be transversely
r-noncoisotropic provided that f̃ is sufficiently Cr+1-close to f . ut

Proposition 6.14. Assuming that the dimensions d and 2n of, respectively, X and M
obey d ≤ 2n− 2, there is a number r , depending only on d and 2n, such that for any C∞

embedding f : X→ M which is transversely r-noncoisotropic and has closed image, the
image N = f (X) is weightless.

Specifically, r may be taken to be any positive integer such that

r∑
s=2

dim Ts(R2n−d ,R2n) > d − (2n− d + 1)(2n− d)/2. (6.13)

Remark 6.15. Recall that Ts(R2n−d ,R2n) is the space of (s+1)-linear maps from R2n−d

to R2n obeying properties (i)–(iii) from Lemma 6.1. Of course dim Ts(R2n−d ,R2n) can
be computed, but the formula that results is not particularly illuminating; suffice it to note
that, provided 2n− d ≥ 2, we have dim Ts(R2n−d ,Rd) ≥ s, since if v0, v1 ∈ R2n−d are
linearly independent of each other then the values τ(v0, . . . , v0, v1, . . . , v1), where v0 is
repeated some number i of times where 1 ≤ i ≤ s, are independent of each other as i
varies. So it is sufficient to take r so that r(r + 1)/2− 1 > d − (2n− d + 1)(2n− d)/2.

Proof of Proposition 6.14. Let f : X → M be a transversely r-noncoisotropic embed-
ding and N = f (X). For any x ∈ X the subspace Tf (x)Nω

≤ Tf (x)M has dimen-
sion 2n − d, and ker (f ∗ω)x = f−1

∗ (Tf (x)N
ω
∩ Tf (x)N) has the same dimension as

Tf (x)N
ω
∩ Tf (x)N . Thus Tf (x)Nω

≤ Tf (x)N if and only if dim ker (f ∗ω)x = 2n − d.
Thus, where

X1 = {x ∈ X | dim ker (f ∗ω)x = 2n− d},

Lemma 4.3 (with O = P = N ) shows that f−1(RN ) ⊂ X1.
By definition, the fact that f is transversely r-noncoisotropic means that for each

x0 ∈ X1 there is a chart φ : O → Rd for X around x0, a Darboux chart ψ : V → R2n

for M with f (O) ⊂ V , and a map 9 : U9 × Rd → Rd as in Addendum 6.5 such that
d(ψ ◦ f ◦ φ−1)φ(x) ∈ U9 for each x ∈ O, with the property that j s(ψ ◦ f ◦ φ−1) t

8
s,9
2n−d for each s = 1, . . . , r . By Lemma 4.2(iii), to prove the proposition it suffices to

show that (provided r obeys (6.13)) RN = ∅. Since we have already established that
f−1(RN ) ⊂ X1, it thus suffices to show that, for all data φ,ψ,9 as just described, the
intersection RN ∩ f (O) is empty.

To do this, define, for s = 1, . . . , r ,

X9s = φ
−1(j s(ψ ◦ f ◦ φ−1)−1(8

s,9
2n−d)

)
.

Then evidently X91 = X1 ∩O, so f−1(RN ) ∩O ⊂ X91 . Of course just as in the proof of
Lemma 6.11 we have X9s+1 ⊂ X

9
s for 1 ≤ s ≤ r − 1. Since φ : O→ Rd is a coordinate
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chart (and so a diffeomorphism to its image), it follows directly from Lemma 6.11 that,
for 1 ≤ s ≤ r − 1,

{x ∈ X9s | ker (f ∗ω)x ⊂ TxX9s } ⊂ X
9
s+1.

Now as follows from the discussion in the first paragraph of the proof, for x ∈ X91 we
have f∗(ker (f ∗ω)x) = Tf (x)Nω; thus

{y ∈ f (X9s ) | TyN
ω
⊂ Tyf (X

9
s )} ⊂ f (X

9
s+1).

So (again using that f is an embedding) Lemma 4.3 shows that if RN ∩ f (O) ⊂ f (X9s ),
then RN ∩ f (O) ⊂ f (X9s+1). Since we have already shown that RN ∩ f (O) ⊂ f (X91 ),
it follows by induction that RN ∩ f (O) ⊂ f (X9r ).

Now the codimension of X9r in X is the same as the codimension of 8r,92n−d
in J r(φ(O),R2n), which by Proposition 6.8 is equal to (2n− d)(2n− d − 1)/2 +∑r
s=2 dim Ts(R2n−d ,R2n).
If r has been chosen so that

r∑
s=2

dim Ts(R2n−d ,R2n) > d − (2n− d + 1)(2n− d)/2,

then

dimX9r = d −
(2n− d)(2n− d − 1)

2
−

r∑
s=2

dim Ts(R2n−d ,R2n)

<
(2n− d + 1)(2n− d)

2
−
(2n− d)(2n− d − 1)

2
= 2n− d,

and so for any y ∈ f (X9r ) we have dim TyN
ω > dim Tyf (X

9
r ). Thus

{y ∈ f (X9r ) | TyN
ω
≤ Tyf (X

9
r )} = ∅,

and so a final application of Lemma 4.3 (now with P = f (X9r )) shows RN ∩ f (O) = ∅,
which as noted earlier suffices to prove the result. ut

We conclude with the following immediate consequence of Lemma 6.13 and Proposition
6.14, which finally proves Theorem 1.1(ii):

Corollary 6.16. If (M,ω) is a 2n-dimensional symplectic manifold and if X is a mani-
fold of dimension d ≤ 2n − 2 then where EmbC(X,M) denotes the space of closed C∞

embeddings of X into M ,

{f ∈ EmbC(X,M) | f (X) is weightless}

contains a subset which is residual and hence dense in the strong C∞ topology on
EmbC(X,M) and which, if X is compact, is open in the strong Cr+1 topology provided
that r ≥ 1 obeys (6.13).
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Proof. Indeed, the subset may be taken to be the collection of transversely r-noncoiso-
tropic embeddings by Proposition 6.14. The second part of Lemma 6.13 directly implies
that this subset is open in the Cr+1 (and hence also the C∞) topology on EmbC(X,M)
if X is compact. Meanwhile EmbC(X,M) is (whether or not X is compact) open in the
strong C∞ topology [Hi, Corollary 2.1.6], and so the first part of Lemma 6.13 together
with the fact that the intersection of a residual set in C∞(X,M) with any open subset
W of C∞(X,M) is residual in the subspace topology on W implies that our subset is
residual in EmbC(X,M). ut
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