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Abstract. It is a well-known fact that modules over a commutative ring in general cannot be classi-
fied, and it is also well-known that we have to impose severe restrictions on either the ring or on the
class of modules to solve this problem. One of the restrictions on the modules comes from freeness
assumptions which have been intensively studied in recent decades. Two interesting, distinct but
typical examples are the papers by Blass [1] and Eklof [8], both jointly with Shelah. In the first
case the authors consider almost-free abelian groups and assume the existence of large canonical,
free subgroups. Nevertheless, there exist ℵ1-separable torsion-free groupsG of size ℵ1 with a basic
subgroup B of rank ℵ1 such that all subgroups of G disjoint from B are also free, but the groups
G are still not free. What else can we say about G? The other paper deals with Kaplansky’s test
problems (which are excellent indicators that the objects defy classification). The authors are able
to construct very free abelian groups and verify the test problems for them by a careful choice of
particular elements of their endomorphism rings.

Accordingly, we want to investigate and construct ℵn-free R-modules M (with n an arbitrary,
but fixed natural number) over a domain R with EndRM = R for the first time more systematically
and uniformly. Recall that M is ℵn-free if every subset of size < ℵn is contained in a pure, free
submodule ofM . The requirement EndRM = R implies thatM is indecomposable, hence compli-
cated. (We will also allow that EndRM is a prescribed R-algebra, as in the title of this paper.)

By now it is folklore to construct such modules M using additional set-theoretic axioms, most
notably Jensen’s ♦-principle. In this case the freeness condition can even be strengthened (see [6]
and many examples in [9]). However, if we insist on proving this result in ordinary ZFC, then the
known arguments fail: The classical constructions from the fundamental paper by Corner [2] do
not apply because they are based on pure submodules of p-adic completions of free A-modules,
which are never even ℵ1-free. If we use Shelah’s Black Box instead of Jensen’s ♦-principle, then
the constructed modules M are still ℵ1-free, but always fail to be even ℵ2-free (see [4]). Thus we
must develop new methods, which are presented for the first time in Sections 2 to 6, to achieve the
desired result (Main Theorem 7.6). With these methods we provide a useful tool for a wide range
of problems concerning ℵn-free structures which can then be attacked.
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1. Introduction

A stimulating starting point for this investigation is Corner’s fundamental realization
theorem in [2], showing that any countable, reduced, torsion-free ring is the endomor-
phism ring of a countable, reduced torsion-free abelian group. Corner’s theorem from
1963 has many applications in algebra. With regard to the next observation we would like
to rephrase ‘torsion-free’ by ℵ0-free, which (by Gauß’s theorem about finitely generated
abelian groups) is exactly the same requirement. Thus Corner’s abelian groups are count-
able, reduced and ℵ0-free. This first result was extended to larger cardinals in [6] and in a
uniform way using Shelah’s Black Box, which is designed for such constructions, in [4].
As a byproduct of the combinatorial arguments from the Black Box, it turns out that the
abelian group (or more generally the R-module) is ℵ1-free (of minimal size 2ℵ0 = i1).
Thus the problem of passing on to ℵn-free modules (of size in, i.e. taking n times the
powerset of ℵ0) with the same algebraic property, is in the air.

This question appeared in special cases even earlier; we will first describe some of its
roots and indicate the difficulties in proving a parallel result.

In this section we will assume for simplicity that R is a countable principal ideal do-
main (a condition extended in Section 2.2). We will consider ℵn-free R-modules M with
endomorphism algebra A. The oldest example is the Baer–Specker group (investigated
in 1937) which is ℵ1-free of cardinality 2ℵ0 with |A| = 2ℵ0 , hence definitely not free;
see [10] for its properties and historical remarks. About 45 years later Griffith [18] and
Hill [19] extended this result, showing for each natural number n the existence of ℵn-free
abelian groups of cardinality ℵn which are not free. Surprisingly, no further algebraic
properties of these groups were shown. A first attempt to close this gap was Eda’s paper
[7] giving an example (using an idea from [22]) of an ℵ1-free abelian group G of car-
dinality ℵ1 with trivial dual, G∗ = Hom(G,Z) = 0. Furthermore, inspired by work of
Eklof and Mekler, it was shown, assuming Jensen’s diamond principle, that anyR-algebra
A can be realized as the endomorphism algebra EndRM where M is an A-module with
|A| < κ = |M|, κ is any infinite, regular, but not weakly compact cardinal and M is also
κ-free (and more) (see [6] or also [9, 16]).

This stimulated the question of posing additional algebraic conditions on M . In [12,
13] we elaborate the ‘case ℵ1’: If R is a countable ring with free additive structure, then
there exists an ℵ1-free abelian group G of cardinality ℵ1 with EndG = R. There are
also related results in [4], but restricted to ℵ1. Moreover, a natural barrier appears: the
existence of indecomposable ℵ2-free groups of cardinality ℵ2 or the existence of such
groups with endomorphism ring Z is undecidable.

Despite this obstacle, Eklof and Shelah [8] found a way to realize certain subrings
of a given ring A (which encodes Kaplansky’s test problems) and were able to construct
ℵ1-separable abelian groups G of cardinality ℵ1 which provide counter-examples to Ka-
plansky’s test problems; see Section 9 and [16, pp. 603–606] for those rings.

Nevertheless, passing on under ZFC to ℵn-free abelian groups of size ℵn with endo-
morphism ring Z and n > 1 is impossible, and we must relax our restrictions. We will
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replace the size of the ℵn-free module representing the endomorphism algebra by in (or
larger). Assuming GCH we have ℵn = in, and this illustrates that our assumptions about
the size of the module are reasonable.

The reader may wonder why we restrict ourselves to ℵn-freeness for natural num-
bers n in this paper. As a test case for the present paper, in [14, 24] we first studied the
existence of ℵn-free abelian groups with trivial dual, which basically clears the way for
proceeding. But passing through ℵω, a new difficulty appears, which is Shelah’s singu-
lar compactness theorem showing that λ-free modules of singular cardinality λ are free.
Thus the inductive construction on n in this paper will break down at ℵω. Moreover, a
theorem by Magidor and Shelah [21] presents another warning, that ℵω2+1-free abelian
groups G of size |G| = ℵω2+1 are free in a suitable universe of set theory. Fortunately,
this does not exclude the possibility of finding (in ordinary set theory) ℵω2+1-free abelian
groups G of cardinality |G| > ℵω2+1. However, the tools must be much more refined
and a construction of ℵω-free abelian groups G with trivial dual, as a natural test case,
might need weak additional set-theoretic axioms. (Note that this is not in conflict with the
singular compactness theorem, because |G| > ℵω.) This study is still in progress [25].

Finally, we want to discuss our main results (see Theorems 7.6 and 8.1). For simplicity
we consider a special case. Let A be an R-algebra with free R-module structure AR of
cardinality |A| ≤ µ, where R is a domain with a distinguished element p ∈ R such that
R is p-reduced (

⋂
n<ω p

nR = 0) and Hom(R̂, R) = 0, where R̂ is the p-adic completion
of R. (We then say that R is p-cotorsion-free; cf. [16].) In order to control the size of
the constructed ℵk-free A-modules, we define inductively a (modified) i-sequence: put
i+0 (µ) = µ and i+n+1(µ) = (2

i+n (µ))+, which is the successor cardinal of the powerset
of i+n (µ). We put i+k (ℵ0) = i+k . Then we are ready to state our final result.

Main Theorem 1.1. Let R be a p-cotorsion-free domain and A an R-algebra with free
R-module AR and |A| ≤ µ as above. If λ = i+k (µ) for some positive integer k, then
we can construct an ℵk-free A-module G of cardinality λ with R-endomorphism algebra
EndR G = A.

Thus clearly we get a proper class of ℵk-free A-modules G with EndR G = A. The
idea which leads to ℵk-freeness comes from the classical Black Box (prediction), where
we get ℵ1-freeness for the constructed modules automatically, due to a support argu-
ment on branches of the trees involved (see e.g. [4]). This support will be refined (in
Section 2), and the old arguments must be modified by an elementary-closure condition
(from model theory, hidden in [24]) which, in the Freeness Proposition 3.6 and the Free-
ness Lemma 3.7, will show that unions of suitable ascending chains of submodules of
length ℵk are free. The remaining steps of this paper are arguments to control endomor-
phisms by two prediction principles, the Easy Black Box (Proposition 6.1) and the (older)
Strong Black Box 7.5. The repeated application of the Strong Black Box requires the car-
dinal sequence i+k (µ), which explains |G| = i+k (µ) in Theorem 1.1. And clearly we find
ℵk-free indecomposable R-modules of any size i+k (µ) for |R| ≤ µ. The problem of re-
ducing the size of the modules to the ordinary i-sequence ik(µ) (defined by i0 = µ and
in+1(µ) = 2in(µ)) is left open. It seems plausible that this could follow by an improved
prediction principle replacing the Strong Black Box 7.5.
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It will follow immediately in the proof that the existence of G can be extended to
the existence of a fully A-rigid family of such ℵk-free A-modules G, as explained in
Theorem 8.1. The free choice of an algebra A allows us to prescribe Corner’s list of fi-
nite groups (see Section 9) as exactly those finite groups which appear as automorphism
groups of ℵk-free abelian groups. Moreover, realizing the appropriate R-algebras men-
tioned in Section 9, we also obtain in this situation counter-examples for Kaplansky’s test
problems, showing that decompositions of ℵk-free R-modules behave badly. In addition
(again using the appropriate R-algebras), we find superdecomposable ℵk-free R-modules
which have no indecomposable summands different from 0.

2. The basics for the new combinatorial Black Box

2.1. Set-theoretic preliminaries

The new Black Box depends on a finite sequence of cardinals satisfying some cardinal
conditions. Thus we will fix a positive integer k and a sequence λ = 〈λ1, . . . , λk〉 of
cardinals such that:

(i) λ` := µ+` for 1 ≤ ` ≤ k.
(ii) µ1 = µ

|A|
1 .

(iii) µ`+1 = µ
λ`
`+1 for 1 ≤ ` < k.

This implies that λ1 = λ
|A|
1 and λ`+1 = λ

λ`
`+1; see the Hausdorff formula [20, p. 57,

(5.22)].
If λ is a cardinal, then ω↑λ will denote all order preserving maps η : ω → λ, which

we also call infinite branches on λ, while ω↑>λ denotes the family of all order preserving
finite branches η : n → λ on λ, where the natural number n, λ and ω (the first infinite
ordinal) are considered as sets, e.g. n = {0, . . . , n − 1}, thus the finite branch η has
length n.

Moreover, we associate with λ two sets 3 and 3∗. First, let

3 = ω↑λ1 × · · · ×
ω↑λk. (2.1)

For the second set we replace the m-th (and only the m-th) coordinate ω↑λm by the finite
branches ω↑>λm, thus we let

3m =
ω↑λ1×· · ·×

ω↑>λm×· · ·×
ω↑λk for 1 ≤ m ≤ k and 3∗ =

⋃̇
1≤m≤k

3m. (2.2)

The elements of 3,3∗ will be written as sequences η = (η1, . . . , ηk) with η` ∈ ω↑λ
or η` ∈ ω↑>λ (for 1 ≤ ` ≤ k), respectively.

With each member of 3 we can associate a subset of 3∗:
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Definition 2.1. If η = (η1, . . . , ηk) ∈ 3 and 1 ≤ m ≤ k, n < ω, then let η�〈m, n〉 be the
following element in 3m (thus in 3∗)

(η�〈m, n〉)` =

{
η` if 1 ≤ ` 6= m ≤ k,
ηm�n if ` = m.

We associate with η its support [η] = {η�〈m, n〉 | 1 ≤ m ≤ k, n < ω}, which is a
countable subset of 3∗. For N < ω let [η]N = {η�〈m, n〉 | 1 ≤ m ≤ k,N ≤ n < ω} be
the N -support of η. If S ⊆ 3, then the support of S is the set [S] =

⋃
η∈S[η] ⊆ 3∗.

2.2. Algebraic preliminaries for ℵn-free modules

Let R be a commutative ring with S a countable multiplicatively closed subset contain-
ing 1 such that:

(i) The elements of S are not zero-divisors, i.e. if s ∈ S, r ∈ R and sr = 0, then r = 0.
(ii)

⋂
s∈S sR = 0.

We also say that R is an S-ring. If (i) holds, then R is S-torsion-free, and if (ii) holds,
then R is S-reduced (see [16]). To ease notations we use the letter S only if we want to
emphasize that the argument depends on it. If M is an R-module, then these definitions
naturally carry over toM . Finally, we enumerate S = {sn | n < ω} and put qn =

∏
i<n si ,

thus qn+1 = qnsn.
If G ⊆ M , then G is S-pure in M if G ∩ sM ⊆ sG for all s ∈ S. If G ⊆ M are

torsion-free R-modules, then G∗ denotes the smallest, unique S-pure submodule of M
containing G, and we write G ⊆∗ M if G is S-pure in M .

We also fix an R-algebra A and consider A-modules. Slightly strengthening [9] (by
S-purity) we call an A-moduleM κ-free if there is a family C of S-pure A-submodules of
M satisfying the following conditions:

(i) Every element of C is a <κ-generated free A-submodule of M .
(ii) Every subset of M of cardinality <κ is contained in an element of C.

(iii) C is closed under unions of well-ordered chains of length <κ .

We say that C is <κ-closed.
This definition applies for regular cardinals, in particular for κ = ℵn, which is the

case we are interested in. Purity refers to S-pure A-submodules of M as above.
The S-topology of an S-reduced R-module M is generated by the basis sM (s ∈ S)

of neighbourhoods of 0. It is Hausdorff onM and we consider the S-completion M̂ ofM;
see [16] for elementary facts on the elements of M̂ . The R-module M is cotorsion-free
(with respect to S) if M is S-reduced and HomR(R̂,M) = 0.

Given a cotorsion-free R-algebra A, we first define (similar to the Black Box in [4]),
the basic, free A-module B, which is

B =
⊕
ν∈3∗

Aeν .
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Definition 2.2. If U ⊂ 3∗, then we get a canonical summand BU =
⊕

ν∈U Aeν of B,
and in particular, let Bη = B[η] for η ∈ 3 be the canonical summand of B.

Every element b ∈ B̂ has a natural (3∗-)support [b] ⊆ 3∗, which are those ν ∈ 3∗
contributing to the canonical sum representation b =

∑
ν∈3∗

bνeν with coefficients 0 6=
bν ∈ Â. Thus let [b] = {ν ∈ 3∗ | bν 6= 0}. Note that [b] is at most countable. If
S ⊆ B̂, then the 3∗-support of S is the set [S] =

⋃
b∈S[b]. As in the earlier Black Boxes

(see [16]), we use conditions on the support (given by the prediction) to select particular
elements from B̂ added to B to get the final structure M such that

B ⊆ M ⊆∗ B̂.

We will use B,3∗,3 to define the Strong Black Box for ℵn-free A-modules in Section 7.

3. ℵn-free A-modules

LetR be an S-torsion-free and S-reduced commutative ring,A a cotorsion-freeR-algebra,
and let B =

⊕
ν∈3∗

Aeν be the A-module freely generated by {eν | ν ∈ 3∗} with
3∗ =

⋃
η∈3[η] and [η] = {η�〈m, n〉 | 1 ≤ m ≤ k, n < ω}.

Next we choose particular elements from B̂. If η ∈ 3 and i < ω, then we call

yηi =

∞∑
n=i

qn

qi

( k∑
m=1

eη�〈m,n〉

)
a branch element associated with η. In particular let

yη = yη0 =

∞∑
n=0

qn

( k∑
m=1

eη�〈m,n〉

)
.

Given η ∈ 3, we also choose bη ∈ B, πη =
∑
∞

n=0 qnrn ∈ R̂ and let πηi =∑
∞

n=i(qn/qi)rn. Then we define branch-like elements by

y′ηi = πηibη + yηi .

In particular we have y′η = y
′

η0 = πηbη + yη.

Definition 3.1. Suppose Y∗ ⊆ 3∗.

(i) Y∗ is almost tree-closed if there is a finite set E∗ ⊆ 3∗ such that for any η ∈ 3 with
1 ≤ m ≤ k, n1 ≤ n2 < ω and η�〈m, n2〉 ∈ Y∗ we have η�〈m, n1〉 ∈ Y∗ ∪ E∗.

(ii) In particular X∗ (⊆ Y∗) ⊆ 3∗ is tree-closed (with respect to Y∗) if for any η ∈ 3
with 1 ≤ m ≤ k, n1 ≤ n2 < ω and η�〈m, n2〉 ∈ X∗ (and η�〈m, n1〉 ∈ Y∗) we have
η�〈m, n1〉 ∈ X∗.

Thus Y∗ is tree-closed if and only if Y∗ is almost tree-closed with E∗ = ∅.
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Definition 3.2. A pair (Y∗, Y ) is called 3-closed (over N) if:

(i) Y ⊆ 3 and Y∗ ⊆ 3∗.
(ii) There exists N < ω such that [η]N ⊆ Y∗ for all η ∈ Y .

(iii) Y∗ is almost tree-closed.

Definition 3.3 (The construction of the A-module GY∗Y ). If (Y∗, Y ) is 3-closed
(over N ) and we have a family F = {y′η = πηbη + yη | bη ∈ BY∗ , η ∈ Y } of branch-like
elements y′η, then we let

GY∗Y = 〈BY∗ , Ay
′

ηi | η ∈ Y, N ≤ i < ω〉 = 〈BY∗ , Ay
′

ηN | η ∈ Y 〉∗ ⊆ B̂.

Observation 3.4. If (Y∗, Y ) is 3-closed (over N), then it is 3-closed (over N ′) for
N < N ′, and the A-modules GY∗Y defined by N or by N ′ (as in Definition 3.3), are
the same.

Proof. Trivial. ut

In this paper we mainly consider ℵn-free A-modules (for 1 ≤ n < ω). Thus the following
observation is interesting for us. If the ring R is sufficiently special and the algebra A
is a free R-module, then any ℵ1-free A-module G is cotorsion-free. If we want to show
cotorsion-freeness for more general rings R, then G must be more special. In particular,
if G = GY∗Y this will follow with a support argument from the classical Black Box (see
[16, pp. 447–448]).

Observation 3.5. Let A be a cotorsion-free R-algebra.

(a) If the S-ring R is a countable principal ideal domain, and G is ℵ1-free, then G is
cotorsion-free.

(b) IfR is an S-ring andG is theR-moduleGY∗Y as in Definition 3.3, thenG is cotorsion-
free.

The final R-modules in Theorems 7.6 and 8.1 are of the form described in Observation
3.5, thus cotorsion-free.

Proof. (a) In this case we can apply [16, p. 426, Proposition 12.3.2], replacing theR\{0}-
topology by any S-topology. Thus G is S-cotorsion-free if and only if the quotient field
Q(R) the modulesR/pR and R̂p for primes p with pR∩S 6= ∅ do not embed intoG. As-
suming thatG is ℵ1-free as an R-module, since |R/pR|, |Q(R)| < ℵ1 it remains to show
that R̂p does not embed into G. We can choose π ∈ R̂ which is transcendental over R
(see [16, p. 16, Theorem 1.1.20] or [11]) and consider the R-submodule 〈1R,πR〉∗ ⊆ R̂,
which has rank 2 and is indecomposable by Baer’s theorem (see [10, Vol. 2, p. 123, Theo-
rem 88.1]). If R̂ embeds intoG, then so does 〈1R,πR〉∗. SinceG is ℵ1-free, the countable
R-module 〈1R,πR〉∗ would be a free R-module of rank 2, which is a contradiction.

(b) Suppose ϕ : R̂ → G is a nontrivial R-homomorphism. Then 1ϕ 6= 0 because G
is reduced and ϕ is continuous. Choose

n < ω with qn(1ϕ) = b +
∑
η∈I

aηy
′

ηN (3.1)
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such that b ∈ B and 0 6= aη ∈ A for all η ∈ I ⊆ Y . Moreover, I is finite. For π ∈ R̂ with
πϕ ∈ G we also have

n ≤ n′ < ω with qn′(πϕ) = b
′
+

∑
η∈I ′

a′ηy
′

ηN (3.2)

such that b′ ∈ B and 0 6= a′η ∈ A for all η ∈ I ′. Moreover, I ′ is finite.
Comparing (3.1) and (3.2) we get

qn′(πϕ) =
qn′

qn
π
[
b +

∑
η∈I

aηy
′

ηN

]
= b′ +

∑
η∈I ′

a′ηy
′

ηN .

If η 6= η′ ∈ 3, then [η]N ∩ [η′]N is finite, and equating coefficients gives I = I ′,
(qn′/qn)πaη = a

′

η for all η ∈ I and therefore also (qn′/qn)πb = b′.
Using the S-purity of A ⊆∗ Â it is immediate that (qn′/qn)Â∩A = (qn′/qn)A, hence

πaη ∈ A (η ∈ I ) and πb ∈ B.
If I 6= ∅, then we can choose a homomorphism ϕ1 : R̂ → A (π 7→ πaη) which is

not the zero homomorphism, a contradiction (because A is cotorsion-free).
If I = ∅, then b 6= 0, b =

∑
ν∈J aνeν (J 6= ∅) and aν 6= 0 (ν ∈ J ⊆ Y∗). Choose any

ν ∈ J . Similarly we get a homomorphism ϕ2 : R̂→ A (π 7→ πaν) which is not the zero
homomorphism, which is a final contradiction showing that G is cotorsion-free. ut

If X is any set, then Pfin(X) denotes the collection of all finite subsets of X.

Freeness Proposition 3.6. Let F : 3→ Pfin(3∗) be any function, 1 ≤ f ≤ k and � a
subset of 3 of cardinality ℵf−1 with a family of sets uη ⊆ {1, . . . , k} satisfying |uη| ≥ f
for all η ∈ �. Then we can find an enumeration 〈ηα | α < ℵf−1〉 of �, `α ∈ uηα and
nα < ω (α < ℵf−1) such that

ηα�〈`α, n〉 /∈ {η
β�〈`α, n〉 | β < α} ∪

⋃
�αF for all n ≥ nα,

where �α = {ηβ | β ≤ α}.

Proof. The proof is by induction on f . We begin with f = 1, hence |�| = ℵ0. Let
� = {ηα | α < ω} be an enumeration without repetitions. From 1 = f ≤ |uη| it follows
that uη 6= ∅ and we can choose any `α ∈ uηα for all α < ω. If α 6= β < ω, then ηα 6= ηβ

and there is nα,β ∈ ω so that ηα�〈`α, n〉 6= ηβ�〈`α, n〉 for all n ≥ nαβ . Since
⋃
�αF is

finite, we may enlarge nα,β , if necessary, so that ηα�〈`α, n〉 /∈
⋃
�αF for all n ≥ nα,β .

If nα = maxβ<α nα,β , then ηα�〈`α, n〉 /∈ {ηβ�〈`α, n〉 | β < α} ∪
⋃
�αF for all n ≥ nα .

Hence the case f = 1 is settled and we let f ′ = f + 1 and assume that the proposition
holds for f .

Let |�| = ℵf and choose an ℵf -filtration � =
⋃
δ<ℵf

�δ with �0 = ∅ and
|�1| = ℵf−1. The next crucial idea comes from [24] based on the construction of ele-
mentary submodels: We can also assume that the chain {�δ | δ < ℵf } is closed, meaning
that for any δ < ℵf , ν, ν′ ∈ �δ and η ∈ � with

{ηm | 1 ≤ m ≤ k} ⊆ {νm, ν′m, ν
′′
m | ν

′′
∈ νF ∪ ν′F, 1 ≤ m ≤ k}
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we have η ∈ �δ . Thus, if η ∈ �δ+1 \�δ , then the set

u∗η = {1 ≤ ` ≤ k | ∃n < ω,µ ∈ �δ such that η�〈`, n〉 = µ�〈`, n〉 or η�〈`, n〉 ∈ µF }

is empty or a singleton. Otherwise there are n, n′ < ω and distinct 1 ≤ `, `′ ≤ k with
η�〈`, n〉 ∈ {ν�〈`, n〉} ∪ νF and η�〈`′, n′〉 ∈ {ν′�〈`′, n′〉} ∪ ν′F for certain ν, ν′ ∈ �δ .
Hence {ηm | 1 ≤ m ≤ k} ⊆ {νm, ν′m, ν

′′
m | ν

′′
m ∈ νF ∪ ν

′F, 1 ≤ m ≤ k}, and the closure
property implies the contradiction η ∈ �δ .

If δ < ℵf , then letDδ = �δ+1 \�δ , and u′η := uη \u
∗

η must have size ≥ f ′− 1 = f .
Thus the induction hypothesis applies to f, {u′η | η ∈ Dδ} for each δ < ℵf and we find
an enumeration ηδα (α < ℵf−1) of Dδ as in the proposition. Finally, we put these chains
for each δ < ℵf together with the induced ordering to get an enumeration 〈ηα | α < ℵf 〉
of � satisfying the proposition. ut

Freeness Lemma 3.7. The module GY∗Y from Definition 3.3 is ℵk-free as an A-module.

Proof. Besides the 3∗-support [g] any element g of the module GY∗Y = 〈BY∗ , Ay
′

ηN |

η ∈ Y 〉∗ has a refined natural finite support [g]Y∗Y arriving from Definition 3.3. It consists
of all those elements of Y∗ and Y , respectively, contributing to g. We observe that g is
generated by elements y′ηN and eν , and simply collect the branches η ∈ Y and ν ∈ Y∗
needed. Clearly [g]Y∗Y is a finite subset of Y∗ ∪ Y .

Hence any subset H of GY∗Y has a natural support [H ]Y∗Y taking the union of the
supports of its elements, and if |H | ≥ ℵ0, then there are subsets �∗ ⊆ Y∗ and � ⊆ Y of
size |�∗|, |�| ≤ |H | such that H is a subset of the pure A-submodule

G�∗� = 〈Aeν, Ay
′

ηN | ν ∈ �∗, η ∈ �〉∗ ⊆ GY∗Y .

Without loss of generality we may assume �∗ =
⋃
η∈�[η]N ∪

⋃
η∈�[bη] and write

G�∗� = G� = 〈Aeη�〈m,n〉, Aeν, Ay
′

ηN | η ∈ �, ν ∈ [bη], 1 ≤ m ≤ k, N ≤ n < ω〉∗

⊆ GY∗Y

as Aeν is a direct summand of G�∗� for all ν ∈ �∗ \ (
⋃
η∈�[η]N ∪

⋃
η∈�[bη]).

Thus, in order to show ℵk-freeness of GY∗Y , we will consider any � ⊆ Y of size
|�| < ℵk and show the freeness of the moduleG�. We may assume that |�| = ℵk−1. Let
F : 3→ Pfin(3∗) be any map which assigns to η ∈ Y the set ηF = [bη].

By Proposition 3.6 (putting simply uη = {1, . . . , k} for all η ∈ �) we can express

G� = 〈eηα�〈m,n〉, eν, y
′

ηαn | α < ℵk−1, ν ∈ η
αF, 1 ≤ m ≤ k, N ≤ n < ω〉A,

where 〈. . . 〉A denotes the A-module generated by 〈. . . 〉, and we find a sequence of pairs
(`α, nα) with 1 ≤ `α ≤ k and N ≤ nα < ω such that for n ≥ nα ,

ηα�〈`α, n〉 /∈ {η
β�〈`α, n〉 | β < α} ∪

⋃
�αF. (3.3)
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Let Gα = 〈eηγ �〈m,n〉, eν, y′ηγ n | γ < α, ν ∈ ηγF , 1 ≤ m ≤ k, N ≤ n < ω〉A for any
α ≤ ℵk−1; thus Gℵk−1 = G�, and if α < ℵk−1, then

Gα+1 = Gα + 〈eηα�〈m,n〉, eν, y
′

ηαn | ν ∈ η
αF, 1 ≤ m ≤ k, N ≤ n < ω〉A

= Gα + 〈eηα�〈`α,n〉 | N ≤ n < nα〉A + 〈y
′

ηαn | n ≥ nα〉A

+ 〈eηα�〈m,n〉, eν | ν ∈ η
αF, 1 ≤ `α 6= m ≤ k, N ≤ n < ω〉A.

Hence any element in Gα+1 can be represented as a sum of the form

g +
∑

N≤n<nα

aneηα�〈`α,n〉 +
∑
n≥nα

any
′

ηαn +

∑
N≤n<ω

∑
`α 6=m≤k

amneηα�〈m,n〉 +
∑
ν∈ηαF

aνeν,

where g ∈ Gα and all coefficients an, amn, aν are from A.
Moreover, the summands involving the eηα�〈m,n〉s have disjoint supports. Now condi-

tion (3.3) applies recursively. Hence, assuming the above sum is zero, by disjointness of
supports (identifying eν (ν ∈ ηαF) with one of the eηα�〈m,n〉s if possible and merging all
eηα�〈m, n〉 ∈ Gα and eν ∈ Gα into g), it also follows that all the coefficients an, amn, aν
and consequently also g must be zero. This shows that Gα+1 = Gα ⊕

⊕
b∈Bα

Ab for

Bα = {eηα�〈`α,k〉, yηα`, eηα�〈m,n〉, eν |

N ≤ k < nα, ` ≥ nα, 1 ≤ `α 6= m ≤ k, N ≤ n < ω, ν ∈ ηαF } \Gα.

Thus G� =
⊕

α<ℵk−1

⊕
b∈Bα

Ab is a free A-module. The ℵk-freeness of GY∗Y is now
immediate from the existence of the <ℵk-closed family F = {G�∗� | |�∗|, |�| < ℵk} of
free, pure submodules of GY∗Y . ut

4. The triple-homomorphism ρ and freeness

Definition 4.1. (a) For each triple (Y∗, Y,X∗) with X∗, Y∗ ⊆ 3∗ and η ∈ Y ⊆ 3 let
uη(X∗) = {1 ≤ m ≤ k | ∃n0 < ω such that η�〈m, n〉 6∈ X∗ for all n ≥ n0}. If X∗
is clear from the context, then we will write uη for uη(X∗). We put YX∗ = {η ∈ Y |
[η]n ⊆ X∗ for some n < ω}.

(b) Let 1 ≤ f ≤ k. Then a triple (Y∗, Y,X∗) is called f -closed if:

(i) (Y∗, Y ) is 3-closed.
(ii) X∗ ⊆ Y∗.

(iii) X∗ is almost tree-closed.
(iv) If η ∈ Y , then either |uη| ≥ f or [η]n ⊆ X∗ for some n < ω.

Observation 4.2. (a) For every f -closed triple (Y∗, Y,X∗), η ∈ Y and 1 ≤ m ≤ k there
is n0 < ω such that either η�〈m, n〉 ∈ X∗ for all n ≥ n0 or η�〈m, n〉 /∈ X∗ for all n ≥ n0,
because X∗ is almost tree-closed.

(b) For k-closed triples (Y∗, Y,X∗) Definition 4.1(b)(iv) is equivalent to the following
condition: If η ∈ Y and there is 1 ≤ m ≤ k such that η�〈m, n〉 ∈ X∗ for arbitrarily large
n < ω, then [η]n′ ⊆ X∗ for some n′ < ω.
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(c) Since X∗ is almost tree-closed, we have

[η]n ⊆ X∗ for some n < ω ⇔ [η]N ⊆ X∗,

where N = max{n | ∃1 ≤ m ≤ k and η ∈ 3 with η�〈m, n〉 ∈ E∗} + 1 (see Definition
3.1(i) for E∗).

Next we define the natural projection ρ.

Definition 4.3. Let (Y∗, Y,X∗) be a triple with X∗ ⊆ Y∗ ⊆ 3∗, Y ⊆ 3 and let

F = {y′η = πηbη + yη | η ∈ Y and bη ∈ BY∗}

be a family of branch-like elements from B̂.

(a) We say that the family F is (Y∗, Y,X∗)-suitable (or just suitable) if [bη] ⊆ X∗ for
each η ∈ YX∗ .

(b) Let the homomorphism ρ = ρY∗YX∗ : GY∗Y → B̂ be defined in two steps. Put

eνρ =

{
0 if ν ∈ X∗,
eν if ν ∈ Y∗ \X∗.

and extend ρ by linearity and continuity with domain GY∗Y . This homomorphism
ρ = ρY∗YX∗ will be called a triple homomorphism.

(c) Let GY∗YX∗ = GY∗YρY∗YX∗ be the triple module for (Y∗, Y,X∗).

Notation 4.4. If F = {y′η = πηbη + yη | η ∈ Y and bη ∈ BY∗} is a family of branch-like
elements from B̂ and X ⊆ Y , then we will write FX = {y

′

η | η ∈ X}.

Triple modules satisfy important freeness conditions.

Theorem 4.5. Let (Y∗, Y,X∗) be an f -closed triple for some 1 ≤ f ≤ k and suppose
that F = {y′η = πηbη + yη | η ∈ Y } is a suitable family of branch-like elements. Then:

(a) If X = YX∗ , then (X∗, X) is 3-closed.
(b) The subfamily FX of F of branch-like elements generates a well-defined A-module

GX∗X (as given in Definition 3.3).
(c) GX∗X ⊆ GY∗Y canonically.
(d) GX∗X and GY∗Y are ℵk-free.
(e) GY∗YX∗ ∼= GY∗Y /GX∗X is ℵf -free.

Proof. (a) We must verify Definition 3.2. Since (i) and (iii) are obvious, we only con-
sider (ii): If η ∈ X, then Observation 4.2(c) yields [η]N ⊆ X∗ for some fixed N < ω, and
(X∗, X) is 3-closed (over N ).

(b) If η ∈ X, then [bη] ⊆ X∗ as F is suitable. Moreover bη ∈ BY∗ because η ∈ Y .
Thus bη ∈ BX∗ .

(c) From (a) we know that (X∗, X) is 3-closed (over N ), while (Y∗, Y ) is 3-closed
(over N ′) and we may assume that N ≥ N ′. Hence (c) is obvious, because GX∗X and
GY∗Y are canonical A-submodules of B̂ with X ⊆ Y , and X∗ ⊆ Y∗.
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(d) is immediate from Lemma 3.7.
(e) Next we claim that ker ρ = GX∗X.
If ν ∈ X∗, then eνρ = 0, and if η ∈ X, then yηNρ = 0 by Definition 3.2 and

continuity of ρ. Since [bη] ⊆ X∗, also πηbηρ = 0 and thus y′ηNρ = 0. It follows that
GX∗X ⊆ ker ρ.

For the converse inclusion we apply a support argument. If x ∈ GY∗Y with xρ = 0,
then we must show that x ∈ GX∗X. Replacing x by qnx with a suitable qn ∈ S it is enough
to show that qnxρ = 0. Thus we may assume that

x =
∑
ν∈Y∗

aνeν +
∑
η∈Y

aηy
′

ηN

and almost all coefficients aν, aη from A are zero.

Case 1: If aη 6= 0 for some η ∈ Y \X, then |uη| ≥ f ≥ 1, and there are some 1 ≤ m ≤ k
and n0 < ω with η�〈m, n〉 /∈ X∗ for all n ≥ n0. Recall that [η′]N ∩ [η]N is finite for
distinct branches η′ 6= η, thus enlarging n0 we may assume that η�〈m, n〉 /∈ X∗ for all
n ≥ n0 and moreover (by the choice of ρ) the eη�〈m,n〉-component of x is aηeη�〈m,n〉 6= 0
and remains invariant under ρ. So x /∈ ker ρ, a contradiction, and so aη = 0 for all
η ∈ Y \X.

Case 2: If now aν 6= 0 for some ν ∈ Y∗ \X∗, then the eν-component of x is nonzero, and
invariant under ρ, a contradiction.

Hence x ∈ GX∗X and the claim ker ρ = GX∗X follows.
We have shown thatGY∗YX∗ = Im ρ ∼= GY∗Y /GX∗X and it remains to show that Im ρ

is ℵf -free. We choose an arbitrary subsetH ⊆ GY∗Y \GX∗X of cardinality ℵf−1 and will
show that Hρ can be embedded into a free, pure submodule of Im ρ.

As in the proof of Lemma 3.7 we can find �∗ ⊆ Y∗ and � ⊆ Y with |�∗|, |�| ≤ |H |
such that

H ⊆ G�∗� = 〈Aeν, Ay
′

ηN ,GX∗X | ν ∈ �∗, η ∈ �〉∗ ⊆ GY∗Y .

Moreover, let 1 = �∗ \ (
⋃
η∈�[η]N ∪

⋃
η∈�[bη] ∪ X∗). Then B1 is a free direct

summand of G�∗�, B1ρ is a free direct summand of G�∗�ρ, and we may assume that
�∗ ⊆

⋃
η∈�[η]N ∪

⋃
η∈�[bη] ∪X∗. We get

G�∗� ⊆ G� := 〈Aeη�〈m,n〉, Aeν, Ay
′

ηN ,GX∗X |

η ∈ � \X, ν ∈ [bη], 1 ≤ m ≤ k, N ≤ n < ω〉∗,

which is a pure submodule of GY∗Y .
Clearly Hρ ⊆∗ G�ρ and G�ρ ⊆∗ GY∗Y /GX∗X = Im ρ is pure by Prüfer (see [10,

p. 115, Lemma 26.1(ii)]) because ker ρ = GX∗X ⊆ G�.
By Proposition 3.6 (applied to � \ X with |uη| ≥ f and uη given by Definition 4.1)

we can express

G� = 〈eηα�〈m,n〉, eν, eν′ , y
′

ηαn, y
′

η′n
|

α < ℵf−1, 1 ≤ m ≤ k, N ≤ n < ω, ν ∈ ηαF, ν′ ∈ X∗, η
′
∈ X〉A



Prescribing endomorphism algebras of ℵn-free modules 1787

and there are pairs (`α, nα) with `α ∈ uηα and N ≤ nα < ω such that

ηα�〈`α, n〉 /∈ {η
β�〈`β , n〉 | β < α} ∪

⋃
�αF for all n ≥ nα.

By Definition 4.1 and `α ∈ uηα we also get

ηα�〈`α, n〉 /∈ {η
β�〈`β , n〉 | β < α} ∪

⋃
�αF ∪X∗.

As in Lemma 3.7 we choose an |� \X|-filtration of G�, so let

Gα = 〈eηγ �〈m,n〉, eν, eν′ , y
′

ηγ n, y
′

η′n
|

γ < α, 1 ≤ m ≤ k, N ≤ n < ω, ν ∈ ηγF, ν′ ∈ X∗, η
′
∈ X〉A.

Thus it is immediate that G0 = GX∗X,G|�\X| = G� and the arguments of Lemma 3.7
show that G� = GX∗X ⊕ F for some free A-module F . This and ker ρ = GX∗X imply
that Hρ can be embedded into a pure, free A-submodule G�ρ, and (e) holds.

The ℵf -freeness of GY∗YX∗ is now immediate from the existence of the <ℵf -closed
family C = {(G� ⊕ B1)ρ | |1|, |�| < ℵf } of free, pure submodules of GY∗YX∗ (cf.
Section 2.2). ut

Next we prove

Transitivity Lemma 4.6. (a) Given two f -closed triples (Z∗, Z, Y∗) and (Y∗, Y,X∗)
such that Y = ZY∗ , the triple (Z∗, Z,X∗) is also f -closed.

(b) Given also a (Z∗, Z, Y∗)-suitable family F = {y′η = πηbη + yη | η ∈ Z, bη ∈ BZ∗}
such that FY is (Y∗, Y,X∗)-suitable, the following holds:

(i) ZX∗ = YX∗ .
(ii) F is (Z∗, Z,X∗)-suitable.

(iii) GY∗YX∗ ⊆ GZ∗ZX∗ with GZ∗ZX∗/GY∗YX∗ ∼= GZ∗ZY∗

Observation 4.7. With Theorem 4.5 it follows from the Transitivity Lemma 4.6 that
GY∗YX∗ ⊆ GZ∗ZX∗ and GZ∗ZX∗/GY∗YX∗ is ℵf -free.

Proof of the Transitivity Lemma. (a) Note that (Z∗, Z) is 3-closed, because (Z∗, Z, Y∗)
is f -closed and X∗ is almost tree-closed because (Y∗, Y,X∗) is f -closed. Now we con-
tinue to exploit the f -closedness of (Y∗, Y,X∗) (see Definition 4.1(b)). First we find that
X∗ ⊆ Y∗, hence if η ∈ Z with |uη(Y∗)| ≥ f , then also |uη(X∗)| ≥ f . Secondly, if
[η]n ⊆ Y∗ for some n < ω, then η ∈ Y , and therefore either |uη(X∗)| ≥ f or [η]n′ ⊆ X∗
for some n′ < ω.

(b) (i) From Y ⊆ Z it follows that YX∗ ⊆ ZX∗ . Conversely, if η ∈ Z and [η]n ⊆ X∗
for some n < ω, then [η]n ⊆ Y∗ (from X∗ ⊆ Y∗) and η ∈ Y by the definition of Y . Now
it follows that ZX∗ ⊆ YX∗ , and therefore ZX∗ = YX∗ .

(ii) If η ∈ ZX∗ , then (i) yields η ∈ YX∗ , and therefore [bη] ⊆ X∗, because FY is
(Y∗, Y,X∗)-suitable.

(iii) Clearly ρY∗YX∗ ⊆ ρZ∗ZX∗ and GY∗Y ⊆ GZ∗Z (see Theorem 4.5). Hence GY∗YX∗
= GY∗YρY∗YX∗ ⊆ GZ∗ZρZ∗ZX∗ = GZ∗ZX∗ .
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Next we calculate with the help of (i) and Theorem 4.5(e):

GZ∗ZX∗/GY∗YX∗ = (GZ∗Z)ρZ∗ZX∗/(GY∗Y )ρY∗YX∗
∼= (GZ∗Z/ ker(ρZ∗ZX∗))/(GY∗Y /ker(ρY∗YX∗)) = (GZ∗Z/GX∗ZX∗ )/(GY∗Y /GX∗YX∗ )

= (GZ∗Z/GX∗ZX∗ )/(GY∗Y /GX∗ZX∗ )
∼= GZ∗Z/GY∗Y

∼= GZ∗ZY∗ . ut

Definition 4.8. A triple (Y∗, Y,X∗) is F-closed for a family

F = {y′η = πηbη + yη | η ∈ Y, bη ∈ BY∗}

if:

(i) (Y∗, Y ) is 3-closed.
(ii) X∗ ⊆ Y∗.

(iii) X∗ is almost tree-closed.
(iv) If η ∈ Y and there is 1 ≤ m ≤ k such that η�〈m, n〉 ∈ X∗ for arbitrarily large n < ω,

then [η]N ⊆ X∗ for some N < ω.
(v) If η ∈ Y and [η]N ⊆ X∗ for some N < ω, then also [bη] ⊆ X∗.

It is clear from the definition and Observation 4.2 that (Y∗, Y,X∗) is F-closed for a
family F as above if and only if (Y∗, Y,X∗) is k-closed and F is (Y∗, Y,X∗)-suitable.

Observation 4.9. Let F={y′η=πηbη+yη | η∈Y, bη∈BY∗} and (Y∗, Y,X1
∗), (Y∗, Y,X

2
∗)

be F-closed. Then:

(a) (Y∗, Y,X1
∗ ∪X

2
∗) is F-closed.

(b) (Y∗, Y,X1
∗ ∩X

2
∗) is F-closed.

Proof. Trivial. ut

Theorem 4.10. (a) If (Y∗, Y,X∗) is F-closed, then (Y∗, Y,X∗) is k-closed.
(b) If (Y∗, Y ) is 3-closed and �∗ ⊆ Y∗, then there exists X∗ ⊆ Y∗ such that (Y∗, Y,X∗)

is k-closed, �∗ ⊆ X∗ and |X∗| ≤ |�∗|ℵ0 . Moreover, there is a unique, minimal
tree-closed X∗ = �∗ = �∗(Y∗, Y ) with respect to Y∗ such that for all η ∈ Y with
[η]n ⊆ X∗ for some n < ω we have [η] ∩ Y∗ ⊆ X∗.

(c) If (Y∗, Y ) is 3-closed, �∗ ⊆ Y∗ and F = {y′η | η ∈ Y , bη ∈ BY∗}, then there is
X∗ ⊆ Y∗ with (Y∗, Y,X∗) F-closed, �∗ ⊆ X∗ and |X∗| ≤ |�∗|ℵ0 . There is a unique,
minimal tree-closed X∗ = �∗ = �∗(Y∗, Y,F) with respect to Y∗ such that for all
η ∈ Y with [η]n ⊆ X∗ for some n < ω we have [η] ∩ Y∗ ⊆ X∗.

Proof. (a) We must show that η ∈ Y with [η]n 6⊆ X∗ for any n < ω implies |uη| = k.
If |uη| < k, then we can choose 1 ≤ m ≤ k with m /∈ uη. Thus (by definition of uη)

it follows that η�〈m, n〉 ∈ X∗ for arbitrarily large n < ω. And from Definition 4.8(iv) it
also follows that [η]n′ ⊆ X∗ for some n′ < ω, which is a contradiction.

(b) �∗ is uniquely determined by the closure of �∗ under Definition 3.1(ii) and Defi-
nition 4.8(iv).

(c) follows similarly to (b) using Definition 4.8(v). ut
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Notation 4.11. Let (Y∗, Y ) be 3-closed and �∗ ⊆ Y∗ as in Theorem 4.10. If �∗ ⊆
�∗ ⊆ Y∗, then we call �∗ F-closed in Y∗ if:

• �∗ ⊆ Y∗ is tree-closed with respect to Y∗, i.e. for any η ∈ 3 with 1 ≤ m ≤ k,
n1 ≤ n2 < ω and η�〈m, n2〉 ∈ �∗ and η�〈m, n1〉 ∈ Y∗ we have η�〈m, n1〉 ∈ �∗.
• If η ∈ Y and there is 1 ≤ m ≤ k such that η�〈m, n〉 ∈ �∗ for arbitrarily large n < ω,

then [η] ∩ Y∗ ⊆ �∗.
• If η ∈ Y and [η]n ⊆ �∗ for some n < ω, then also [bη] ⊆ �∗.

Moreover, we call �∗ = �∗(Y∗, Y,F) the F-closure of �∗ in Y∗ if �∗ is F-closed in Y∗,
and �∗ is minimal with �∗ ⊆ �∗ ⊆ Y∗.

Remark 4.12. Given a 3-closed pair (Y∗, Y ), �∗ ⊆ Y∗, and a family F = {y′η |
η ∈ Y, bη ∈ BY∗}, by Theorem 4.10(c) there is a triple (Y∗, Y,X∗) for �∗ such that
X∗ is the F-closure of �∗ in Y∗. The set X = YX∗ has the following properties (due to
Theorems 4.5 and 4.10(a)):

B�∗ ⊆ GX∗X ⊆∗ GY∗Y , GY∗Y /GX∗X are ℵk-free with |X∗| ≤ |�∗|ℵ0 .

Note that GX∗X is inspired by the concept of elementary submodels.

Observation 4.13. For any 3-closed (Y∗, Y ) and �1
∗, �

2
∗ ⊆ Y∗ and F = {y′η =

πηbη + yη | η ∈ Y, bη ∈ BY∗} the following holds:

(i) �1
∗ ∪�

2
∗ = �

1
∗ ∪�

2
∗.

(ii) �1
∗ ∩�

2
∗ ⊆ �

1
∗ ∩�

2
∗.

A similar statement holds for the k-closures of subsets of Y∗.

Proof. Trivial. ut

Lemma 4.14. Let (Z∗, Z, Y∗) and (Y∗, Y,X∗) be f -closed triples with Y = ZY∗ , F =
{y′η = πηbη + yη | η ∈ Z, bη ∈ BZ∗} being (Z∗, Z, Y∗)-suitable, FY being (Y∗, Y,X∗)-
suitable and U ⊆ GZ∗ZX∗ . Then there exist �∗ ⊆ Z∗ and � ⊆ Z such that:

(a) |�∗|, |�| ≤ |U | · ℵ0.
(b) (Y∗ ∪�∗, Y ∪�, Y∗) is f -closed and Y = (Y ∪�)Y∗ .
(c) FY∪� is (Y∗ ∪�∗, Y ∪�, Y∗)-suitable.
(d) U ⊆ GY∗∪�∗,Y∪�,X∗ ⊆ GZ∗ZX∗ .
(e) If (Z∗, Z,X∗) is f ′-closed, then so is (Y∗ ∪�∗, Y ∪�,X∗).

Proof. Choose a minimal family U ′ ⊆ GZ∗Z of preimages of elements of U under ρ =
ρZ∗ZX∗ with U ′ρ = U and let � be the family of all η ∈ Z such that yη contributes to
the representation of some u ∈ U ′. Moreover, let�∗ be the tree-closure (under Definition
3.1(ii)) of ([U ′] ∪ [�]) ∩ Z∗ with respect to Z∗. Hence (a) obviously holds.

Recall that �∗ and Y∗ are almost tree-closed. Hence also Y∗ ∪ �∗ is almost tree-
closed. If η ∈ �, then [η] ∩ Z∗ ⊆ �∗. Now it is clear that (Y∗ ∪ �∗, Y ∪ �, Y∗) is
f -closed (because (Z∗, Z, Y∗) is). If η ∈ (Y ∪ �)Y∗ , then [η]n ⊆ Y∗ for some n < ω,
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hence η ∈ ZY∗ = Y , so (Y ∪ �)Y∗ ⊆ Y and the converse inclusion is trivial, thus (b)
holds.

Since F is (Z∗, Z, Y∗)-suitable, so is FY∪�, which shows (c).
For (d) recall that (Z∗, Z,X∗) is f -closed due to the Transitivity Lemma 4.6. We note

that U ⊆ GY∗∪�∗,Y∪�,X∗ through our choice of U ′, �∗ and �.
Moreover, GY∗∪�∗,Y∪�,X∗ ⊆ GZ∗ZX∗ follows from ρY∗∪�∗,Y∪�,X∗ ⊆ ρZ∗ZX∗ = ρ,

GY∗∪�∗,Y∪�,X∗ = GY∗∪�∗,Y∪�ρ and GZ∗ZX∗ = GZ∗Zρ with GY∗∪�∗,Y∪� ⊆ GZ∗Z as
required. Now (e) holds trivially. ut

Observation 4.15. (a) The proof of Lemma 4.14 applies for arbitrary almost tree-closed
sets �∗ ⊆ Z∗ with ([U ′] ∪ [�]) ∩ Z∗ ⊆ �∗. In particular, this is the case when �∗ =
([U ′] ∪ [�]) ∩ Z∗(Z∗, Z,F); however, the cardinal condition (a) becomes |�∗| ≤ |U |ℵ0 .

(b) The proof of Lemma 4.14 also applies if we replace � by the larger family
�′ = Z�∗ with �∗ = ([U ′] ∪ [�]) ∩ Z∗(Z∗, Z,F).

Observe that �∗ = ([U ′] ∪ [�′]) ∩ Z∗(Z∗, Z,F) and |�′| ≤ |U |ℵ0 .
(c) Note that by the construction of �∗ and �, the following holds: If U [ ⊆ U ⊆

GZ∗ZX∗ and U,�∗, � are as described in the lemma, then we can choose �[∗ ⊆ �∗ and
�[ ⊆ � so that also U [, �[∗, �[ are as described in the lemma.

Lemma 4.16. Let (Z∗, Z, Y∗) and (Y∗, Y,X∗) be f -closed triples such that Y = ZY∗ ,
F = {y′η = πηbη + yη | η ∈ Z, bη ∈ BZ∗} is (Z∗, Z, Y∗)-suitable, FY is (Y∗, Y,X∗)-
suitable and U ⊆ GY∗YX∗ . Then there exists �∗ ⊆ Y∗ such that:

(a) |�∗| ≤ |U |ℵ0 .
(b) (Z∗, Z,X∗∪�∗) and (X∗∪�∗, Y ′, X∗) are f -closed with Y ′ = ZX∗∪�∗ = YX∗∪�∗ .
(c) F is (Z∗, Z,X∗ ∪�∗)-suitable.
(d) FY ′ is (X∗ ∪�∗, Y ′, X∗)-suitable.
(e) U ⊆ GX∗∪�∗,Y ′,X∗ ⊆ GY∗YX∗ ⊆ GZ∗ZX∗ .

Proof. Let U ′ ⊆ GY∗Y again be a minimal family of preimages of elements of U under
ρ = ρZ∗ZX∗ with U ′ρ = U and put �′∗ = [U

′
] and �∗ = �′∗(Y∗, Y,FY ). Then (a) holds

automatically. Moreover, �∗ ⊆ Y∗ is almost tree-closed and hence so is X∗ ∪�∗.
If η ∈ Z with |uη(Y∗)| ≥ f , then |uη(X∗∪�∗)| ≥ f follows fromX∗∪�∗ ⊆ Y∗. For

otherwise η ∈ Z with [η]n ⊆ Y∗ for some n < ω, so η ∈ Y . If now |[η]n∩�∗| = ℵ0, then
[η]n ⊆ �∗ ⊆ X∗ ∪ �∗ because �∗ = �′∗(Y∗, Y,FY ) is FY -closed. If |[η]n ∩ �∗| < ℵ0,
then uη(X∗ ∪ �∗) = uη(X∗) and |uη(X∗ ∪ �∗)| = |uη(X∗)| ≥ f for some n′ < ω or
[η]n′ ⊆ X∗ ⊆ X∗ ∪ �∗, respectively from the f -closedness of (Y∗, Y,X∗). This is half
of (b).

If η ∈ Z with [η]n ⊆ X∗ ∪ �∗ for some n < ω, then similarly η ∈ Y and [bη] ⊆
X∗∪�∗ because FY is (Y∗, Y,X∗)-suitable and�∗ = �′∗(Y∗, Y,FY ) is FY -closed. Hence
F is (Z∗, Z,X∗ ∪�∗)-suitable. From the above we also have Y ′ = ZX∗∪�∗ = YX∗∪�∗ .

For η ∈ Y ′, by definition we have [η]n ⊆ X∗ ∪ �∗ for some n < ω, hence
(X∗∪�∗, Y

′) is3-closed. Clearly (X∗∪�∗, Y ′, X∗) is f -closed, because (Y∗, Y,X∗) is.
If η ∈ Y ′ ⊆ Y and [η]n ⊆ X∗ for some n < ω, then [bη] ⊆ X∗ because FY is

(Y∗, Y,X∗)-suitable. Hence FY ′ is (X∗ ∪�∗, Y ′, X∗)-suitable and (d) holds.
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For (e) we have U ′ ⊆ GX∗∪�∗,Y ′ from the first line of the proof: For each u ∈ U ′ we
have [u] ⊆ [U ′] ⊆ �∗, while for each η ∈ Y with yη used in the representation of u we
have |[η] ∩ [U ′]| = ℵ0, hence [η] ∩ Y∗ ⊆ �∗ and η ∈ Y ′ because �∗ = �′∗(Y∗, Y,FY ) is
FY -closed. Thus U ⊆ GX∗∪�∗,Y ′,X∗ . The proof of the remaining inclusions of (e) follows
as in Lemma 4.14. ut

Remark 4.17. (i) The family �∗ = �′∗(Y∗, Y,FY ) is FY -closed by construction.
(ii) The construction of U ′, �′∗ and �∗ depends only on (Y∗, Y,X∗),FY and U . By

Y ′ = ZX∗∪�∗ = YX∗∪�∗ also the triple (X∗ ∪ �∗, Y ′, X∗) depends only on (Y∗, Y,X∗),
FY and U .

The following theorem is the main result of this section. It provides the possibility of
concentrating on those particular triple submodules mentioned below of relatively small
size when proving the principal theorem of this paper.

Main Theorem 4.18. Let (Z∗, Z, Y∗) and (Y∗, Y,X∗) be f -closed triples such that Y =
ZY∗ , F = {y

′

η = πηbη+yη | η ∈ Z, bη ∈ BZ∗} is (Z∗, Z, Y∗)-suitable, FY is (Y∗, Y,X∗)-
suitable and H ⊆ GY∗YX∗ , K ⊆ GZ∗ZX∗ with |H |, |K| ≤ κ . Then there exist triples
(Z′∗, Z

′, Y ′∗), (Y
′
∗, Y
′, X′∗) such that:

(a) Z′∗ ⊆ Z∗, Y
′
∗ ⊆ Y∗, X

′
∗ ⊆ X∗, Z

′
⊆ Z, Y ′ ⊆ Y .

(b) (Z′∗, Z
′, Y ′∗) and (Y ′∗, Y

′, X′∗) are f -closed, and Y ′ = Z′
Y ′∗

.
(c) FZ′ is (Z′∗, Z

′, Y ′∗)-suitable.
(d) FY ′ is (Y ′∗, Y

′, X′∗)-suitable.
(e) H ⊆ GY ′∗Y ′X′∗ ⊆ GY∗YX∗ ⊆ GZ∗ZX∗ .
(f) K ⊆ GZ′∗Z′X′∗ ⊆ GZ∗ZX∗ .
(g) |Z′∗|, |Y

′
∗|, |X

′
∗|, |Z

′
|, |Y ′| ≤ κℵ0 .

(h) Z′ ⊆ Z \ ZX∗ , Y
′
= ZX∗∪Y ′∗ \ ZX∗ , and Z′X∗ = Y

′

X∗
= ∅.

(i) The sets Y ′, Y ′∗ and X′∗ depend only on the choice of Y , Y∗, X∗, FY and H .
(j) If (Z∗, Z,X∗) is f ′-closed, then so is (Z′∗, Z

′, X′∗).

Proof. First we apply Lemma 4.16 and Remark 4.17 to H and we find an FY -closure
�1
∗ ⊆ Y∗ of size |�1

∗| ≤ |H |
ℵ0 such that

(Z∗, Z,X∗ ∪�
1
∗), (X∗ ∪�

1
∗, Y1, X∗) with Y1 = ZX∗∪�1

∗
= YX∗∪�1

∗
(4.1)

are f -closed. Moreover:

(I) F is (Z∗, Z,X∗ ∪�1
∗)-suitable.

(II) FY1 is (X∗ ∪�1
∗, Y1, X∗)-suitable.

(III) H ⊆ GX∗∪�1
∗,Y1,X∗

⊆ GY∗YX∗ .
(IV) The sets �1

∗ and Y1 depend only on (Y∗, Y,X∗), FY and H .

Now we apply Lemma 4.14 and Observation 4.15 to K and to (Z∗, Z,X∗ ∪ �
1
∗),

(X∗ ∪�
1
∗, Y1, X∗) to get the following facts.

(V) There are an F-closure �2
∗ ⊆ Z∗ and �2

= Z�2
∗
⊆ Z with |�2

∗|, |�
2
| ≤ |K|ℵ0 .
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(VI) (X∗ ∪ �1
∗ ∪ �

2
∗, Y1 ∪ �

2, X∗ ∪ �
1
∗) and (X∗ ∪ �1

∗, Y1, X∗) are f -closed with
Y1 = (Y1 ∪�

2)X∗∪�1
∗
.

(VII) FY1∪�2 is (X∗ ∪�1
∗ ∪�

2
∗, Y1 ∪�

2, X∗ ∪�
1
∗)-suitable.

(VIII) K ⊆ GX∗∪�1
∗∪�

2
∗,Y1∪�2,X∗

⊆ GZ∗ZX∗ .
(IX) If (Z∗, Z,X∗) is f ′-closed, then so is (X∗ ∪�1

∗ ∪�
2
∗, Y1 ∪�

2, X∗).

We want to show that the sets

Z′∗ = �
1
∗ ∪�

2
∗, Y ′∗ = �

1
∗, X′∗ = X∗ ∩�

1
∗ (4.2)

and
Z′ = (Y1 ∪�

2) \ (Y1 ∪�
2)X∗ , Y ′ = Y1 \ (Y1)X∗ (4.3)

satisfy the conditions of Theorem 4.18.
If η ∈ Y1, then [η]N ⊆ X∗ ∪�1

∗ for some N < ω through (VI), and

[η]n ⊆ X∗ for some n < ω or [η]N ⊆ �1
∗ (4.4)

follows from either |[η]N ∩ �1
∗| = ℵ0 and the FY -closedness of �1

∗, or uη = ∅ together
with (VI); see Notation 4.11. Hence (by definition of Y ′) [η]N ⊆ �1

∗ for any η ∈ Y ′.
Similarly for η ∈ Y1 ∪�

2 we have [η]N ⊆ X∗ ∪�1
∗ ∪�

2
∗ for some N < ω from (VI),

and

[η]n ⊆ X∗ for some n < ω or [η]N ′ ⊆ �1
∗ for some N ′ < ω or [η]N ⊆ �2

∗

(4.5)
follows from either |[η]N ∩ �2

∗| = ℵ0 and the F-closedness of �2
∗, or uη(X∗ ∪ �1

∗) = ∅

and η ∈ Y1 with the help of (VI). Hence (by definition of Z′) [η]N ′ ⊆ �1
∗ or [η]N ⊆ �2

∗

for any η ∈ Z′.
Using (4.5) and (4.4) we see that (Z′∗, Z

′) and (Y ′∗, Y
′) are 3-closed, because for any

η ∈ Z′ we have [η]N ′′ ⊆ �1
∗ ∪ �

2
∗ = Z

′
∗ for some N ′′ < ω, and for any η ∈ Y ′ we have

[η] ⊆ �1
∗ = Y

′
∗. With X∗ and �1

∗ also X′∗ = X∗ ∩�
1
∗ is almost tree-closed.

Next we show (b) and begin with the f -closedness of (Z′∗, Z
′, Y ′∗). Let η ∈ Z′ ⊆

Y1 ∪ �
2. If |uη(X∗ ∪ �1

∗)| ≥ f , then also |uη(Y ′∗)| ≥ f by Y ′∗ = �
1
∗ ⊆ X∗ ∪ �

1
∗. But

if |uη(X∗ ∪ �1
∗)| < f , then [η]n ⊆ X∗ ∪ �1

∗ for some n < ω and η ∈ Y1 by (VI). From
(4.4) it follows that [η]n′ ⊆ X∗ for some n′ < ω or [η]n ⊆ �1

∗, hence [η]n ⊆ �1
∗ = Y

′
∗,

resulting from the definition of Z′.
Now we show the f -closedness of (Y ′∗, Y

′, X′∗). Let η ∈ Y ′ ⊆ Y1. If |uη(X∗)| ≥ f ,
then also |uη(X′∗)| ≥ f by X′∗ = X∗ ∩ �

1
∗ ⊆ X∗. But if |uη(X∗)| < f , then [η]n ⊆ X∗

for some n < ω and η ∈ Y1 by (VI), which contradicts η ∈ Y ′.
Next we want show that Y ′ = Z′

Y ′∗
. Since Y1 = (Y1 ∪�

2)X∗∪�1
∗
, by (VI) and (4.4) we

see for any η ∈ Y1 ∪ �
2 that η ∈ Y ′ if and only if [η]n ⊆ X∗ ∪ �1

∗ for some n < ω and
[η]n′ 6⊆ X∗ for any n′ < ω. This is the case if and only if [η]n ⊆ �1

∗ for some n < ω and
[η]n′ 6⊆ X∗ for any n′ < ω.

Using that Z′ = (Y1 ∪�
2) \ (Y1 ∪�

2)X∗ we find for η ∈ Y1 ∪�
2 that

η ∈ Z′Y ′∗
⇔ [η]n ⊆ Y

′
∗ = �

1
∗ for some n < ω and [η]n′ 6⊆ X∗ for any n′ < ω.

Hence Y ′ = Z′
Y ′∗

, and (b) is established.



Prescribing endomorphism algebras of ℵn-free modules 1793

For (c) we also consider η ∈ Z′ with [η]n ⊆ Y ′∗ = �
1
∗ for some n < ω. Then η ∈ Y1

by (VI) and [bη] ⊆ �1
∗, using the FY -closedness of �1

∗.
For (d) we let η ∈ Y ′. Then [η]n ⊆ X′∗ ⊆ X∗ for some n < ω contradicts the

definition of Y ′ and the claim of Definition 4.3(a) is empty, thus (d) holds trivially.
Next we show (e). Obviously GY ′∗Y ′ ⊆ GX∗∪�1

∗,Y1
, and also ρY ′∗Y ′X′∗ ⊆ ρX∗∪�1

∗,Y1,X∗

= ρ satisfies eνρ = 0 for all ν ∈ (X∗ ∪ �1
∗) \ Y

′
∗ ⊆ X∗ as well as yηρ = 0 for all

η ∈ Y1 \ Y
′
= (Y1)X∗ . In particular GY ′∗Y ′X′∗ = GY ′∗Y ′ρ = GX∗∪�1

∗,Y1
ρ = GX∗∪�1

∗,Y1,X∗
,

and (III) implies (e).
Condition (f) follows similarly by using GZ′∗Z′X′∗ = GX∗∪�1

∗∪�
2
∗,Y1∪�2,X∗

and (VIII).
The first part of (g) is clear from the choice of �1

∗ and �2
∗: |Z

′
∗|, |Y

′
∗|, |X

′
∗| ≤ κℵ0 .

From (4.4) it follows that |Y ′| ≤ |�1
∗|
ℵ0 ≤ |H |ℵ0 and with (4.5) we also infer that

|Z′| ≤ |�1
∗ ∪�

2
∗|
ℵ0 ≤ κℵ0 .

(i) follows by the definition of Y ′∗, Y
′ and X′∗ with (IV).

For (j) we must show that (Z′∗, Z
′, X′∗) is also f ′-closed. If η ∈ Z′ with

|uη(X∗)| ≥ f
′, then also |uη(X′∗)| ≥ f

′ fromX′∗ = X∗∩�
1
∗ ⊆ X∗. But if |uη(X∗)| < f ′,

then [η]n ⊆ X∗ for some n < ω by (IX) contradicts η ∈ Z′. In particular, also (h) follows
due to the definition of Z′ and Y ′. ut

Remark 4.19. (i) From the definitions of Y ′ and Z′, (V) and (4.1) it follows that

Y ′ = ZX∗∪�1
∗
\ ZX∗ and Z′ = (ZX∗∪�1

∗
∪ Z�2

∗
) \ ZX∗ = Y

′
∪ (Z�2

∗
\ ZX∗).

In particular, Z�2
∗
\ ZX∗ ⊆ Z

′.
(ii) Observe that |�2

∗| ≤ |K|
ℵ0 and |Z�2

∗
\ ZX∗ | ≤ |K|

ℵ0 .

(iii) If for the tuple (H,K,�1
∗, �

2
∗, Y
′, Z′) the theorem holds and K ′⊆K⊆GZ∗ZX∗ ,

then by Observation 4.15 we can choose �2
∗

′
⊆ �2

∗, Z
′′
⊆ Z′ such that the tuple

(H,K ′, �1
∗, �

2
∗

′
, Y ′, Z′′) also fulfills the conclusion of the theorem.

5. Chains of triples

First we define closure properties ‘preserving freeness’, which are also important in [14,
24]; compare Proposition 3.6.

Definition 5.1. Let Y∗ ⊆ 3∗. Then X∗ ⊆ Y∗ is pairwise closed ( for Y∗) if from
η�〈m, n〉, η�〈m′, n′〉 ∈ X∗ with 1 ≤ m < m′ ≤ k, n, n′ < ω, η ∈ 3 it follows that
[η] ∩ Y∗ ⊆ X∗.

Lemma 5.2. Let X∗ ⊆ Y∗ ⊆ 3∗. Then there is a minimal set PC(X∗, Y∗) with X∗ ⊆
PC(X∗, Y∗) ⊆ Y∗, and PC(X∗, Y∗) is pairwise closed ( for Y∗). Moreover, |PC(X∗, Y∗)|
≤ |X∗| · ℵ0.

Proof. Trivial. ut

If Y∗ is clear from the context, we will replace PC(X∗, Y∗) by PC(X∗).
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Theorem 5.3. Let (Z∗, Z, Y∗) and (Y∗, Y,X∗) be f -closed ( for some f ≥ 2) with
Y = ZY∗ , F = {y

′

η = πηbη + yη | η ∈ Z, bη ∈ BZ∗} (Z∗, Z, Y∗)-suitable and FY

(Y∗, Y,X∗)-suitable. Moreover, let �1
∗ ⊆ Y∗, �

2
∗, �

2n
∗ ⊆ Z∗, Z

′, Z′n ⊆ Z (n < ω) have
the following properties:

(A) �1
∗ is FY -closed and �2

∗, �
2n
∗ (n < ω) are F-closed.

(B) PC(�2n
∗ , Z∗) ⊆ �

2,n+1
∗ .

(C) (�1
∗ ∪�

2
∗, Z

′, �1
∗), (�

1
∗ ∪�

2n
∗ , Z

′
n, �

1
∗), (�

1
∗, Y
′, X∗ ∩�

1
∗) are f -closed, with Y ′ =

Z′
�1
∗

= (Z′n)�1
∗

for all n < ω.

(D) FZ′ is (�1
∗ ∪�

2
∗, Z

′, �1
∗)-suitable,

FZ′n is (�1
∗ ∪�

2n
∗ , Z

′
n, �

1
∗)-suitable and

FY ′ is (�1
∗, Y
′, X∗ ∩�

1
∗)-suitable.

(E) G�1
∗∪�

2
∗,Z
′,X∗∩�1

∗
⊆ GZ∗ZX∗ , G�1

∗∪�
2n
∗ ,Z

′
n,X∗∩�

1
∗
⊆ GZ∗ZX∗ and

G�1
∗,Y
′,X∗∩�1

∗
⊆ GY∗YX∗ ⊆ GZ∗ZX∗ .

(F) Z′X∗ = Y
′

X∗
= (Z′n)X∗ = ∅.

(G) Z�2
∗
\ ZX∗ ⊆ Z

′
⊆ Z \ ZX∗ and Z�2n

∗
\ ZX∗ ⊆ Z

′
n ⊆ Z \ ZX∗ .

We define the following subsets of 3 and 3∗, respectively:

(i) Z′′∗ = �
1
∗ ∪�

2
∗ ∪

⋃
n<ω�

2n
∗ ,

(ii) Y ′′∗ = �
1
∗ ∪

⋃
n<ω�

2n
∗ ,

(iii) X′′∗ = X∗ ∩�
1
∗,

(iv) Z′′ = Z′ ∪
⋃
n<ω Z

′
n,

(v) Y ′′ = Y ′ ∪
⋃
n<ω Z

′
n.

Then:

(a) (Z′′∗ , Z
′′, Y ′′∗ ) is (f − 1)-closed, (Y ′′∗ , Y

′′, X′′∗) is f -closed with Y ′′ = Z′′
Y ′′∗

.
(b) FZ′′ is (Z′′∗ , Z

′′, Y ′′∗ )-suitable.
(c) FY ′′ is (Y ′′∗ , Y

′′, X′′∗)-suitable.
(d) GY ′′∗ Y ′′X′′∗ = G�1

∗,Y
′,X∗∩�1

∗
+
∑
n<ωG�1

∗∪�
2n
∗ ,Z

′
n,X∗∩�

1
∗
⊆ GZ∗ZX∗ ,

(e) GZ′′∗Z′′X′′∗ = G�1
∗∪�

2
∗,Z
′,X∗∩�1

∗
+
∑
n<ωG�1

∗∪�
2n
∗ ,Z

′
n,X∗∩�

1
∗
⊆ GZ∗ZX∗ .

(f) Z′′ ⊆ Z \ ZX∗ and Z′′X∗ = Y
′′

X∗
= ∅.

(g) If (Z∗, Z,X∗) is f ′-closed, then so is (Z′′∗ , Z
′′, X′′∗).

Proof. (a) Observe that
⋃
n<ω�

2n
∗ ⊆ Z∗ is almost tree-closed, because �2n

∗ is tree-
closed for Z∗. Hence also Z′′∗ , Y

′′
∗ and X′′∗ are almost tree-closed and (Z′′∗ , Z

′′), (Y ′′∗ , Y
′′)

are 3-closed.
Now we show that (Z′′∗ , Z

′′, Y ′′∗ ) is (f − 1)-closed. Indeed, if η ∈ Z′′ ⊆ Z and
|uη(�

1
∗)| < f , then [η]n′ ⊆ �1

∗ ⊆ Y ′′∗ for some n′ < ω due to the definition of Z′′

and (C).
Conversely, if |uη(�1

∗)| ≥ f , then uη(Y
′′
∗ ) ⊆ uη(�

1
∗) because �1

∗ ⊆ Y ′′∗ . If
|uη(�

1
∗) \ uη(Y

′′
∗ )| > 1, then there are 1 ≤ m1 < m2 ≤ k and n1, n2 < ω such that

m1, m2 ∈ uη(�
1
∗) \ uη(Y

′′
∗ ), η�〈m1, n1〉, η�〈m2, n2〉 ∈ Y

′′
∗ \ �

1
∗ ⊆

⋃
n<ω�

2n
∗ . Hence

η�〈m1, n1〉 ∈ �
2n′1
∗ and η�〈m2, n2〉 ∈ �

2n′2
∗ for some n′1, n

′

2 < ω. If N = max{n′1, n
′

2},
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then η�〈m1, n1〉, η�〈m2, n2〉 ∈ �
2N
∗ and [η]n′ ⊆ �

2,N+1
∗ ⊆ Y ′′∗ for some n′ < ω , as

required.
If, however, |uη(�1

∗)| ≥ f and |uη(�1
∗)\uη(Y

′′
∗ )| ≤ 1, then clearly |uη(Y ′′∗ )| ≥ f −1.

Next we show that (Y ′′∗ , Y
′′, X′′∗) is f -closed. Recall that (Z∗, Z,X∗) is f -closed by

the Transitivity Lemma 4.6 and the assumptions of the theorem. If η ∈ Y ′′ ⊆ Z and
|uη(X∗)| ≥ f , then |uη(X′′∗)| ≥ f from X′′∗ ⊆ X∗. But if |uη(X∗)| < f , then [η]n′ ⊆ X∗
for some n′ < ω by the f -closedness of (Z∗, Z,X∗), and the branch η belongs to either
Y ′X∗ or (Z′n)X∗ for some n, which contradicts (F).

Finally, we must show Y ′′=Z′′
Y ′′∗

. The inclusion⊆ is obvious. Conversely, let η∈Z′′
Y ′′∗

.

Then [η]n′ ⊆ �1
∗ ∪

⋃
n<ω�

2n
∗ for some n′ < ω. If |uη(�1

∗)| < f , then [η]n′′ ⊆ �1
∗ for

some n′′ < ω and η ∈ Y ′ ⊆ Y ′′ by definition of Z′′ and (C). If, however, |uη(�1
∗)| ≥

f ≥ 2, then again there are 1 ≤ m1 < m2 ≤ k and n1, n2 < ω such that m1, m2 ∈

uη(�
1
∗) and η�〈m1, n1〉, η�〈m2, n2〉 ∈

⋃
n<ω�

2n
∗ . As above there is N < ω such that

η�〈m1, n1〉, η�〈m2, n2〉 ∈ �
2N
∗ . By (B) we have [η] ∩ Z∗ ⊆ �

2,N+1
∗ , and η ∈ Z

�
2,N+1
∗

.
Using (G) and the definition of Z′′, we also have Z′′ ⊆ Z \ ZX∗ , and thus η /∈ ZX∗ .
Finally η ∈ Z

�
2,N+1
∗

\ ZX∗ ⊆ Z
′

N+1 ⊆ Y
′′, and so Y ′′ = Z′′

Y ′′∗
. Thus (a) holds.

(b) If η ∈ Z′′ and [η]n′ ⊆ Y ′′∗ for some n′ < ω, then (using the arguments above)
[η]n′′ is a subset of either �1

∗ or �2n
∗ for some n, n′′ < ω. If [η]n′′ ⊆ �1

∗, then due
to (D) and the definition of Z′′ we have [bη] ⊆ �1

∗ ⊆ Y
′′
∗ . For [η]n′′ ⊆ �2n

∗ we find that
[bη] ⊆ �

2n
∗ ⊆ Y

′′
∗ , because �2n

∗ is F-closed.
(c) If η ∈ Y ′′ and [η]n′ ⊆ X′′∗ ⊆ X∗ for some n < ω, then η belongs to either Y ′X∗ or

(Z′n)X∗ for some n, which contradicts (F), so (c) follows.
(d) Clearly ρ�1

∗,Y
′,X∗∩�1

∗
⊆ ρY ′′∗ Y ′′X′′∗ = ρ and ρ�1

∗∪�
2n
∗ ,Z

′
n,X∗∩�

1
∗
⊆ ρY ′′∗ Y ′′X′′∗ = ρ, and

hence

G�1
∗,Y
′,X∗∩�1

∗
+

∑
n<ω

G�1
∗∪�

2n
∗ ,Z

′
n,X∗∩�

1
∗
=

(
G�1

∗Y
′ +

∑
n<ω

G�1
∗∪�

2n
∗ ,Z

′
n

)
ρ = GY ′′∗ Y ′′ρ

= GY ′′∗ Y ′′X′′∗ .

The inclusion GY ′′∗ Y ′′X′′∗ ⊆ GZ∗ZX∗ follows from (E).
(e) follows by the same arguments as (d).
(f) From (G) and the definition of Z′′ it follows that Z′′ ⊆ Z \ ZX∗ . Similarly Z′′X∗ =

Y ′′X∗ = ∅ is a consequence of (F).
(g) If η ∈ Z′′ and |uη(X∗)| ≥ f ′, then also |uη(X′′∗)| ≥ f

′ because X′′∗ ⊆ X∗. But if
|uη(X∗)| < f ′, then [η]n ⊆ X∗ for some n < ω because (Z∗, Z,X∗) is f ′-closed, which
contradicts (f), showing (g). ut

6. The Step Lemma

If δ is an ordinal with cf(δ) = ω, then let

0δ = {η ∈
ω↑δ | sup η = δ}, and if η ∈ ω↑δ, then [η] = {η�n | n < ω} ⊆ ω↑>δ.
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Proposition 6.1 (The Easy Black Box). For each cardinal λ ≥ ℵ0 and set 4 of cardi-
nality ≤ λℵ0 there is a family 〈gη | η ∈ ω↑λ〉 with the following properties:

(i) gη : [η] → 4.
(ii) For each map g : ω↑>λ→ 4 there exists some η ∈ ω↑λ with gη ⊆ g.

Proof (see [14, p. 55, Lemma 2.3], which we outline for the convenience of the reader).
Since |4| ≤ λℵ0 = |

ωλ|, we can fix an embedding π : 4 ↪→ ωλ. And since |ω>λ| = λ,
there is also a list ω>λ = 〈µα | α < λ〉 with enough repetitions for each η ∈ ω>λ, i.e.
{α < λ | µα = η} ⊆ λ is unbounded. Moreover, we define for each n < ω a coding map

πn :
n4→ n2

λ ⊆ ω>λ (ϕ = 〈ϕ0, . . . , ϕn−1〉 7→ ϕπn = (ϕ0π�n)
∧ . . . ∧(ϕn−1π�n)).

Finally, let X ⊆ ω↑λ be the collection of all order preserving maps η : ω→ λ such that

∃ϕ = 〈ϕi | i < ω〉 ∈ ω4 with (ϕ�n)πn = µnη for all n < ω. (6.1)

By definition of πn it follows that ϕ is uniquely determined by (6.1). (Just note that
µnη determines ϕmπ�n for all m < n.)

We now prove the two statements of the proposition. For (i) we consider any η ∈ ω↑λ.
If η /∈ X, then we can choose arbitrary elements gη(η�n) ∈ 4, and if η ∈ X, then we
choose the uniquely determined sequence ϕ from (6.1) and let gη(η�n) = ϕn.

For (ii) we consider some g : ω↑>λ → 4. In this case we must define η = 〈αn |
n < ω〉 ∈ ω↑λ. Since the list of µαs is unbounded, we can choose inductively αn > αn−1
with 〈g(η�m) | m < n〉πn = µαn for all n < ω.

Finally, we check (ii). Using (6.1) we will find that the sequence η belongs to X:
If ϕ = 〈g(η�i) | i < ω〉 ∈ ω4, then (ϕ�n)πn = 〈g(η�m) | m < n〉πn = µαn =

µnη for all n < ω, and gη(η�n) = ϕn = g(η�n) for all n < ω is immediate. ut

Definition 6.2. If 0 ≤ f < k and ξ ∈ ω↑λf+1 × · · · ×
ω↑λk , then we put

• 3ξ = {η ∈ 3 | η�(f, k] = ξ}.
• 3

ξ
∗ = {ν ∈ 3∗ | ν�(f, k] = ξ}.

• If f < i ≤ k, then 3ξi∗ = {ν ∈ 3∗ | νi E ξi 6= νi, νm = ξm for all 1 < m 6= i ≤ k}.
• 3ξ∗ =

⋃̇
f<i≤k3

ξi
∗ .

Lemma 6.3. If 1 ≤ f < k, ξ ∈ ω↑λf+1 × · · · ×
ω↑λk and E∗ ⊆ 3∗ is a finite subset,

then (J∗, J, I∗) is f -closed for J∗ = I∗ ∪3
ξ
∗, J = 3ξ and I∗ = 3ξ∗ ∪ E∗.

Proof. From the hypothesis and Definition 6.2 it follows that 3ξ∗,3
ξi
∗ ,3ξ∗ are tree-

closed, hence I∗ and J∗ are almost tree-closed. If η ∈ J , then [η] ⊆ 3
ξ
∗∪̇3ξ∗ ⊆ J∗.

Moreover, (J∗, J ) is3-closed. Hence we must only check Definition 4.1(b)(iv). If η ∈ J ,
then {1, . . . , f } ⊆ uη(I∗) follows from3

ξ
∗∩3ξ∗ = ∅ and finiteness ofE∗. Thus |uη| ≥ f

as required. ut
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Definition 6.4. (a) For ν ∈ 3∗ we define the ordinal content orco ν =
⋃
{Im νm | 1 ≤

m ≤ k}.
(b) If Y∗ ⊆ 3∗, then orcoY∗ =

⋃
ν∈Y∗

orco ν.
(c) If S, T ⊆ λk and τ : S → T is a bijection, then τ extends canonically to a bijection

τ : ω≥S → ω≥T and for η ∈ 3∗ ∪3 we define ητ = (η1τ, . . . , ηkτ).
(d) If X∗ ⊆ 3∗, then we call a bijection τ : S → T X∗-admissible if orcoX∗ ⊆ S and

X∗τ ⊆ 3∗.
(e) If τ : S → T is an X∗-admissible bijection, then τ extends canonically to an A-

module monomorphism τ : B̂X∗ → B̂3∗ = B̂, which we call the shift isomorphism
(onto its image).

We want to show that X∗-admissible maps are compatible with the notions of triple
modules etc. from the last sections.

Observation 6.5. (i) If X ⊆ 3 and τ : S → T is an [X]-admissible bijection, then
Xτ ⊆ 3.

(ii) If (Y∗, Y,X∗) is f -closed and τ : S → T is a Y∗-admissible bijection, then
(Y∗, Y,X∗)τ := (Y∗τ, Y τ,X∗τ) is f -closed as well.

(iii) If F = {y′η = πηbη+yη | η ∈ Y } is (Y∗, Y,X∗)-suitable and τ is Y∗-admissible, then
Fτ := {y

′

ητ = πη(bητ)+ yητ | η ∈ Y } = {y
′

η′
= πη′τ−1(bη′τ−1τ)+ yη′ | η

′
∈ Yτ } is

(Y∗, Y,X∗)τ -suitable.
(iv) If GY∗YX∗ is the triple module from Theorem 4.5 generated by the triple (Y∗, Y,X∗)

and the family F of branches, and if τ is Y∗-admissible, then G(Y∗YX∗)τ :=

GY∗τ,Y τ,X∗τ (for (Y∗, Y,X∗)τ and Fτ ) is a well-definedA-module and (GY∗YX∗)τ =
G(Y∗YX∗)τ .

(v) If τ is Y∗-admissible, then (�∗(Y∗, Y,F))τ = �∗τ(Y∗τ, Y τ,Fτ ).
(vi) If τ is Y∗-admissible, then PC(X∗, Y∗)τ = PC(X∗τ, Y∗τ).

Proof. Since all statements are obvious, for illustration we only show that Xτ ⊆ 3 for
X ⊆ 3, which is part of (i).

If η ∈ X, then [η] ⊆ [X] and [η]τ ⊆ 3∗ In particular, η�〈m, n〉τ ∈ 3∗ for any
1 ≤ m ≤ k and n < ω. Thus (ηm�n)τ ∈ ω↑>λm and ηmτ ∈ ω↑λm, and so ητ ∈ 3. ut

We now prove the central step lemma. Step lemmas are designed to kill unwanted homo-
morphisms. It is critical that the construction takes place in the category we are interested
in, in this paper ℵn-free A-modules. The preparation for this is the work in the preceding
sections.

Step Lemma 6.6. Using the notation from Section 4 and above, assume that the follow-
ing parameters are given:

(i) 0 ≤ f < k and ξ ∈ ω↑λf+1 × · · · ×
ω↑λk.

(ii) E∗ ⊆ 3∗ is a finite set.
(iii) (J∗, J, I∗) is a triple such that

I∗ = I∗(ξ) = 3ξ∗ ∪ E∗, J = J (ξ) = 3ξ , J∗ = J∗(ξ) = I∗ ∪3
ξ
∗.
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(iv) G1 = G1(ξ) = BI∗ is a free A-module.
(v) (V∗, V ,U∗) is (f + 1)-closed.

(vi) G = {y′′η = π
′

ηb
′

η + yη | η ∈ V } is (V∗, V ,U∗)-suitable.
(vii) G = GV∗VU∗ and ϕ : G1 → G is a homomorphism with zϕ 6= 0 for some z ∈

BE∗ ⊆ G1.

Then there are πη ∈ R̂ (η ∈ J ) such that G2 = GJ∗J with H = {xη = πηz+ yη | η ∈ J }
has the following property.

If (Z∗, Z, Y∗) and (Y∗, Y,X∗) are (f + 1)-closed with Y = ZY∗ , F = {y
′

η =

ρηbη + yη | η ∈ Z} is (Z∗, Z, Y∗)-suitable, FY is (Y∗, Y,X∗)-suitable and τ is a V∗-
admissible bijection with (V∗, V ,U∗)τ = (Y∗, Y,X∗), Gτ = FY and G4 = GZ∗ZX∗ ,
G3 = GY∗YX∗ , then G1 ⊆ G2, Gτ = G3 ⊆ G4 and

ϕτ : G1 → G3 does not extend to a homomorphism G2 → G4.

Remark 6.7. The πη’s can be chosen to depend only onG, or on G \GVU∗ , respectively,
but not on GVU∗ .

The mappings in the step lemma can be visualized by the following diagram, where
arrows without a name are inclusions.

G2
@ // G4

G   
τ

    
G1

OO

ϕ
>>

ϕτ // G3

OO

Proof. The step lemma is shown by induction on f .

The case f = 0

If f = 0, then the basic sets satisfy

ξ ∈ 3, 3
ξ
∗ = ∅, J = 3ξ = {ξ}, 3ξ∗ = [ξ ],

I∗ = [ξ ] ∪ E∗ (E∗ ⊆ 3∗ finite), J∗ = I∗ ∪3
ξ
∗ = I∗,

and the corresponding A-modules are

G1 = BI∗ (which is free), G2 = GJ∗J = 〈BJ∗ , Axξ 〉∗ = 〈BI∗ , Axξi | i < ω〉 ⊆∗ B̂.

Hence G2/G1 ∼= S−∞A is an S-divisible, S-torsion-free A-module of A-rank 1. So the
S-adic closure G1 of G1 is G1 = G2. Moreover, G = GV∗VU∗ is ℵ1-free by Theo-
rem 4.5 because (V∗, V ,U∗) is 1-closed and G is (V∗, V ,U∗)-suitable. In particular G is
S-cotorsion-free by Observation 3.5(b) and 0 6= zϕ ∈ G. Thus we find π ∈ R̂ (the
S-completion of R) such that πzϕ /∈ G.
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The choice of π depends only on G: Using that GV∗,V \VU∗ ⊆ GV∗V with the associ-
ated family G \GVU∗ of branch elements and ρV∗,V \VU∗ ,U∗ ⊆ ρV∗VU∗ = ρ with y′′ηρ = 0
for all η ∈ VU∗ , we find that GV∗VU∗ = GV∗,V \VU∗ ,U∗ . Hence the choice of π does not
depend on GVU∗ . This explains Remark 6.7.

Next we consider two extensions of G1, namely G′2 = 〈BJ∗ , Ayξ 〉∗ and G′′2 =
〈BJ∗ , A(πz + yξ )〉∗, and claim that ϕ cannot extend to a homomorphism ϕ̂ of both with
image inG. Otherwise πzϕ = (πz+yξ )ϕ̂−yξ ϕ̂ ∈ G is a contradiction. So we can choose
πξ ∈ {0, π} such that ϕ : G1 → G does not extend to a homomorphism ϕ̂ : G2 → G,
where G2 = 〈BJ∗ , A(πξz+ yξ )〉∗. In particular,

xξ ϕ̂ /∈ G, where xξ = πξz+ yξ . (6.2)

If there are (Z∗, Z, Y∗), (Y∗, Y,X∗), F and τ contradicting the step lemma, then by
the Transitivity Lemma 4.6(b)(iii) we have G4/G3 ∼= GZ∗ZY∗ , and GZ∗ZY∗ is ℵ1-free by
Observation 4.7 because (Z∗, Z, Y∗) is 1-closed and F is (Z∗, Z, Y∗)-suitable. Hence G3
is S-adically closed in G4 by Observation 3.5. The homomorphism ϕ : G1 → G extends
uniquely (by continuity) to ϕ̂ : G2 → Ĝ, and the shift isomorphism τ : G → G3 also
extends uniquely to τ̂ : Ĝ→ Ĝ3.

If the composition map ϕτ : G1 → G3 extends to ψ : G2 → G4, then by uniqueness
ψ = ϕ̂ τ̂ and xξψ = xξ ϕ̂ τ̂ ∈ G4 ∩ Ĝ3 = G3 = Gτ . We get xξ ϕ̂ ∈ G, which is a
contradiction.

The case f > 0

Now suppose that f > 0 and the lemma is already shown for f − 1. Let λ = λf
and θ = λf−1 (setting λ0 = |A|), hence θ < λ. The A-modules G1 and G are given.
In particular, G1 = BI∗ is free and (J∗, J, I∗) is f -closed by Lemma 6.3. Moreover,
{1, . . . , f } ⊆ uη(I∗) for each η ∈ J , hence |uη(I∗)| ≥ f , and in particular [η] 6⊆ I∗,
hence I := JI∗ = ∅, and H = {xη = πηz + yη | η ∈ J } is (J∗, J, I∗)-suitable. (Observe
that the factors πη (η ∈ J ) are not yet known, but [πηz] ⊆ I∗, which suffices here to see
that H is (J∗, J, I∗)-suitable.)

So G1 = BI∗ = GI∗I is as stated in Theorem 4.5 and

G1 ⊆ G2 = GJ∗J ,G1,G2 are ℵk-free, and G2/G1 ∼= GJ∗J I∗ is ℵf -free.

By construction, |I∗| = |J∗| = |J∗|ℵ0 = λℵ0 = λ. Since f > 0 and |A| ≤ λ1 ≤ λf = λ

we may also assume that |G1| = |G2| = λ, and using the assumption that (V∗, V ,U∗)
is (f + 1)-closed and G is (V∗, V ,U∗)-suitable, we see that the module G = GV∗VU∗ is
also ℵf+1-free by Theorem 4.5.

Preparing the predictions on G1 for the step lemma

For the next steps we recall (from above) the definition of 0 = ω↑λ =
⋃̇
δ∈λo0δ with

λo = {α ∈ λ | cf(α) = ω}. From our choice of cardinals in Section 2.1 (i)–(iii), for
any δ ∈ λo we have |δ| ≤ µf , and thus |0δ| ≤ µ

ℵ0
f = µf < λ. We can first well-order
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each 0δ for δ ∈ λo and then extend the ordering lexicographically using that λ = µ+f is
regular. This gives an enumeration 〈ηα | α < λ〉 of 0 without repetitions and a monotonic
norm function ‖ · ‖ : λ→ λo (α 7→ ‖α‖) satisfying ηα ∈ 0‖α‖ for all α ∈ λ, which we
fix for the rest of this investigation.

For ν ∈ ω↑>λ and ξ ∈ ω↑λf+1 × · · · ×
ω↑λk , we define

3
νξ
∗ := {ν ∈ 3∗ | νf E ν, ], ν�(f, k] = ξ}, G1ν = B

3
νξ
∗

, G = {G1ν | ν ∈
ω↑>λ}.

Clearly |G1ν | = θ and |G| = λ.
Let (V ′∗, V

′, U ′∗) = (�
1
∗, V

′, U∗ ∩ �
1
∗) be the triple defined in Theorem 4.18 and in

(4.2) by (V∗, V ,U∗) and Imϕ ⊆ GV∗VU∗ with the associated family GV ′ of branches.
From Theorem 4.18 it follows that (V ′∗, V

′, U ′∗) is (f + 1)-closed and |V ′∗|, |V
′
|, |U ′∗| ≤

|Imϕ|ℵ0 ≤ |G1|
ℵ0 = λ. In particular |orcoV ′∗| ≤ λ = λf , and we can find 1 ⊆ λf+1 \

orcoV ′∗ with |1| = λ.
Until now we have used sequences λ = 〈λ1, . . . , λk〉 (as in Section 2.1) based on

cardinals λ` (which are ordinals and hence particular sets). In order to have room for the
construction of A-modules, we must now pass to sets of ordinals. Extending Section 2.1
we define a sequence λ′ = 〈λ′1, . . . , λ

′

k〉 of sets of ordinals by

λ′` =

{
λ` if 1 ≤ ` ≤ f,
1 ∪̇ orcoV ′∗ if f < ` ≤ k.

Similarly to the old definition for 3 we now set 3′ = ωλ′1 × · · · ×
ωλ′k and 3′m =

ωλ′1 × · · · ×
ω>λ′m × · · · ×

ωλ′k for any 1 ≤ m ≤ k. In contrast to the definition of 3
we do not utilize the ordering on λ′` (as a set of ordinals). Again put 3′∗ =

⋃̇
1≤m≤k3

′
m.

Now we are ready to define a relatively small A-module V into which we send interesting
submodules by shift isomorphisms for their predictions. Let V = ̂⊕

ν∈3′∗
Ae′ν , which

is the S-adic completion of the free A-module
⊕

ν∈3′∗
Ae′ν , thus a canonical Â-module.

Moreover, let H = {H ⊆ V | H is an A-submodule, |H | ≤ θ}. The cardinalities of these
new structures are immediate due to Section 2.1(iii). We have

|3′| = |3′∗| = λ
ℵ0 = λ, |V| = λℵ0 = λ, |H| = λθ = λλf−1

f = λ.

Now we can also give the exact definition of a trap. This notion comes from [4]; it
is designed to ‘catch’ small unwanted homomorphisms and is derived from particular
elementary submodels.

Definition 6.8. A tuple (G,H, P,Q,R, ψ) is a trap (for the step lemma) if G ∈ G,
H ∈ H, ψ : G→ H is an R-homomorphism, P ⊆ 3′∗, Q ⊆ 3

′ and R ⊆ V are subsets
such that |P |, |Q|, |R| ≤ θ . Let 2 be the family of all traps (G,H, P,Q,R, ψ).

Next we must determine the size of2, which is clearly |2| = |G| · |H| · |3′∗|θ · |3′|θ ·
|V|θ · θθ = λ ·λθ · θθ = λ. Thus we can consider the easy black box stated as Proposition
6.1, but with the new crucial family 2 of traps:

The Easy Black Box 6.9. There is a family 〈gη | η ∈ ω↑λ〉 with gη : [η] → 2 such that
for each map g : ω↑>λ→ 2 there exists some η ∈ ω↑λ with gη ⊆ g.
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The construction of G2

First we would like to indicate our strategy: In order to construct the desired ℵn-free
A-module G with EndG = A we must find particular generators of G which will be
branch-like elements involving a summand with a ring element π ∈ R̂ as factor which will
prevent unwanted endomorphisms. The A-module G2 is (a weak form of) an elementary
submodel of G; thus it is not surprising that we must determine these factors first for G2.

For α < λ and ξ ∈ ω↑λf+1 × · · · ×
ω↑λk as in (i) of the Step Lemma 6.6 let ξα ∈

ω↑λf × · · · ×
ω↑λk be defined by (ξα)f = ηα ∈ 0 and (ξα)�(f, k] = ξ .

Next we will choose recursively the elements πη ∈ R̂ for η ∈ 3ξα and for each α < λ.
Since J = 3ξ =

⋃̇
α<λ3

ξα (by the definition of 0), in the end we will have constructed
a family of ring elements πη (η ∈ J ) from R̂ as needed for the triple (J∗, J, I∗) from
above. Hence G2 will be determined by G2 = GJ∗J and H = {xη = πηz+ yη | η ∈ J }.

Let α < λ and (Gαn, Hαn, Pαn,Qαn,Rαn, ψαn) := gηα (ηα�n) ∈ 2 be the traps
given by the Easy Black Box 6.9. A special choice of πη for η ∈ 3ξα is only needed in
particular situations of these traps, namely when they represent the local version of an
unwanted endomorphism of G, and fortunately this will only be the case when we get
support from the results of the last section. Otherwise we may put πη = 0.

Next we specify these conditions when πη ∈ R̂ must (seriously) be chosen (for killing
maps):

We must work, i.e. do some book-keeping by using the results from Sections 4 and 5,
if there are (f + 1)-closed triples (Z†

∗, Z
†, Y

†
∗ ), (Y

†
∗ , Y

†, X
†
∗) with Y †

= Z
†
Y

†
∗

and there is
an associated family F†

= {y
′†
η = ρ

†
ηb

†
η + yη | η ∈ Z

†
} of branch-like elements which is

(Z
†
∗, Z

†, Y
†
∗ )-suitable, F†

Y † is (Y †
∗ , Y

†, X
†
∗)-suitable, and if there are

�1†
∗ ⊆ Y

†
∗ , �2n†

∗ ⊆ Z
†
∗, Y ′† ⊆ Y †,

Z′†n ⊆ Z
†(n < ω) and τ † a V∗-admissible injective map,

and in addition there is a shift homomorphism σ † with the following properties:

(A)† �
1†
∗ is F†

Y † -closed and �2n†
∗ is F†-closed for n < ω.

(B)† PC(�
2n†
∗ , Z

†
∗) ⊆ �

2,n+1†
∗ .

(C)† (�
1†
∗ ∪ �

2n†
∗ , Z

′†
n , �

1†
∗ ) and (�1†

∗ , Y
′†, X

†
∗ ∩ �

1†
∗ ) are (f + 1)-closed with Y ′† =

(Z
′†
n )�1†

∗

for all n < ω.

(D)† F†
Z
′†
n

is (�1†
∗ ∪�

2n†
∗ , Z

′†
n , �

1†
∗ )-suitable and F†

Y ′†
is (�1†

∗ , Y
′†, X

†
∗ ∩�

1†
∗ )-suitable.

(E)† G
�

1†
∗ ∪�

2n†
∗ ,Z

′†
n ,X

†
∗∩�

1†
∗

⊆ G
Z∗

†Z†X
†
∗

and G
�

1†
∗ ,Y

′†,X
†
∗∩�

1†
∗

⊆ G
Y

†
∗ Y

†X
†
∗
.

(F)† (Y ′†)
X

†
∗
= (Z

′†
n )X†

∗
= ∅.

(G)† (Z†)
�

2n†
∗

\ (Z†)
X

†
∗
⊆ Z

′†
n ⊆ Z

†
\ (Z†)

X
†
∗
.

(H)† (V∗, V ,U∗)τ
†
= (Y

†
∗ , Y

†, X
†
∗) and Gτ †

= F†
Y † .

(I)† (�1
∗, V

′, U∗ ∩�
1
∗)τ

†
= (�

1†
∗ , Y

′†, X
†
∗ ∩�

1†
∗ ) and GV ′τ

†
= F†

Y ′†
.

(J)† σ †
: orco(�1†

∗ ∪
⋃
n<ω�

2n†
∗ )→ 1 ∪ orco�1

∗ is injective.
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(K)† σ †� orco�1†
∗ = (τ

†)−1� orco�1†
∗ .

(L)† Pαn = �
2n†
∗ σ †.

(M)† Qαn = (Z
′†
n \ Y

′†)σ † and R = F†
Z
′†
n \Y

′†
σ †.

(N)† Hαn ⊆ (G�1†
∗ ∪�

2n†
∗ ,Z

′†
n ,X

†
∗∩�

1†
∗

)σ †.

(O)† Gαn = G1ηα�n.
(P)† The maps ψαn : Gαn→ Hαn (n < ω) extend each other, so that

ψα =
⋃
n<ω

ψαn and Gα = G1ηα =
⋃
n<ω

G1ηα�n =
⋃
n<ω

Gαn are well-defined. (6.3)

Due to (6.3), (N)† and (P)† the map

ψα(σ
†)−1
: Gα →

∑
n<ω

G
�

1†
∗ ∪�

2n†
∗ ,Z

′†
n ,X

†
∗∩�

1†
∗

is also a well-defined homomorphism.
Next as in Theorem 5.3 we define unions of the above sets:

(ii)† Y
′′†
∗ = �

1†
∗ ∪

⋃
n<ω�

2n†
∗ .

(iii)† X
′′†
∗ = X

†
∗ ∩�

1†
∗ .

(v)† Y ′′† = Y ′† ∪
⋃
n<ω Z

′†
n .

Hence (Y ′′†∗ , Y ′′†, X
′′†
∗ ) is (f + 1)-closed and in particular f -closed. Moreover, we

have the map

(vi)† ϕτ †
: G1(ξ)→ G

�
1†
∗ ,Y

′†,X
†
∗∩�

1†
∗

,

which is well-defined by the definition of (V ′∗, V
′, U ′∗) and (I)†. From G1(ξα) =

G1(ξ)⊕Gα it follows that

(vii)† ϕ†
= ϕτ †

⊕ ψα(σ
†)−1

is also a well-defined homomorphism

ϕ†
: G1(ξα)→ G

�
1†
∗ ,Y

′†,X
†
∗∩�

1†
∗

+

∑
n<ω

G
�

1†
∗ ∪�

2n†
∗ ,Z

′†
n ,X

†
∗∩�

1†
∗

= G
Y
′′†
∗ Y
′′†X
′′†
∗

(6.4)

satisfying zϕ†
= zϕτ †

6= 0. We now apply the induction hypothesis of the step lemma.
Replace f , E∗, G1(ξ), GV∗VU∗ , ϕ, z respectively by

f − 1, E∗, G1(ξα), GY ′′†∗ ,Y ′′†,X
′′†
∗
, ϕ†, z. (6.5)

The Step Lemma 6.6 holds for f − 1, and the existence of elements πη ∈ R̂ (η ∈ 3ξα )
follows. Recall that now all of {πη | η ∈ J } and H = {xη = πηzη + yη | η ∈ J } are
known. This finishes the construction of G2.

G2 satisfies the Step Lemma 6.6 for f .

We finally must show that the family H = {xη = πηzη + yη | η ∈ J } and thus G2 is as
required in the Step Lemma 6.6. We will prove this by contradiction.
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Suppose that (Z‡
∗, Z

‡, Y
‡
∗ ) and (Y ‡

∗ , Y
‡, X

‡
∗) are (f+1)-closed triples with Y ‡

= Z
‡
Y

‡
∗

,

F‡
= {y

′‡
η = ρ

‡
ηb

‡
η + yη | η ∈ Z

‡
} is (Z‡

∗, Z
‡, Y

‡
∗ )-suitable, F‡

Y ‡ is (Y ‡
∗ , Y

‡, X
‡
∗)-suitable

and τ ‡ is a V∗-admissible bijection with

(H)‡ (V∗, V ,U∗)τ
‡
= (Y

‡
∗ , Y

‡, X
‡
∗) and Gτ ‡

= F‡
Y ‡ ,

but fails to satisfy the conclusion of the lemma. Thus the homomorphism

ϕτ ‡
: G1 → G3 = GY ‡

∗ Y
‡X

‡
∗

lifts to ψ‡
: G2 → G4 = GZ‡

∗Z
‡X

‡
∗

(6.6)

(see the next diagram).
We now apply Theorem 4.18 to (Z‡

∗, Z
‡, Y

‡
∗ ), (Y

‡
∗ , Y

‡, X
‡
∗), Imϕτ ‡

⊆ G3 and Imψ‡

⊆ G4 and get (�1‡
∗ ∪ �

2‡
∗ , Z

′‡, �
1‡
∗ ) and (�1‡

∗ , Y
′‡, X

‡
∗ ∩ �

1‡
∗ ) as in (4.2). In particular

we have:

(A)‡ �
1‡
∗ ⊆ Y

‡
∗ is F‡

Y ‡ -closed and �2‡
∗ ⊆ Z

‡
∗ is F‡-closed, Y ′‡ ⊆ Y ‡ and Z′‡ ⊆ Z‡.

(C)‡ (�
1‡
∗ ∪ �

2‡
∗ , Z

′‡, �
1‡
∗ ) and (�1‡

∗ , Y
′‡, X

‡
∗ ∩ �

1‡
∗ ) are (f + 1)-closed with Y ′‡ =

(Z′‡)
�

1‡
∗

.

(D)‡ F‡
Z′‡

is (�1‡
∗ ∪�

2‡
∗ , Z

′‡, �
1‡
∗ )-suitable and F‡

Y ′‡
is (�1‡

∗ , Y
′‡, X

‡
∗ ∩�

1‡
∗ )-suitable.

(E)‡ Imψ‡
⊆ G

�
1‡
∗ ∪�

2‡
∗ ,Z

′‡,X
‡
∗∩�

1‡
∗

⊆ G
Z∗

‡Z‡X
‡
∗

and Imϕτ ‡
⊆ G

�
1‡
∗ ,Y

′‡,X
‡
∗∩�

1‡
∗

⊆

G
Y∗

‡Y ‡X
‡
∗

.

(F)‡ Y ′‡
X

‡
∗

= Z′‡
X

‡
∗

= ∅.

(G)‡ Z‡
�

2‡
∗

\ Z‡
X

‡
∗

⊆ Z′‡ ⊆ Z‡
\ Z‡

X
‡
∗

. (Compare Remark 4.19.)

(I)‡ (�1
∗, V

′, U∗∩�
1
∗)τ

‡
= (�

1‡
∗ , Y

′‡, X
‡
∗ ∩�

1‡
∗ ) and GV ′τ

‡
= F‡

Y ′‡
. (Compare Obser-

vation 6.5.)
(Q)‡ |�1‡

∗ |, |�
2‡
∗ |, |Z

′‡
|, |Y ′‡| ≤ λ (because |G1| = |G2| = λ).

(R)‡ Y ′‡ and �1‡
∗ are uniquely determined by Y ‡, Y

‡
∗ , X

‡
∗,F

‡
Y ‡ and Imϕτ ‡.

Next we choose an injection σ ‡ with

(J)‡ σ ‡
: orco(�1‡

∗ ∪�
2‡
∗ )→ 1 ∪ orco�1

∗ such that
(K)‡ σ ‡� orco�1‡

∗ = (τ
‡)−1� orco�1‡

∗ .

This is possible, because |�1‡
∗ |, |�

2‡
∗ | ≤ λ = |1|. Also note �1

∗τ
‡
= �

1‡
∗ by (I)‡.

Let us pause for a moment and describe the present situation of maps by a diagram.
Recall that G is defined by G = GV∗VU together with G, G2 comes from GJ∗J with H,
and G1 = BI∗ is a free A-module. Moreover, G3 = G

Y
‡
∗ Y

‡X
‡
∗

and G4 = G
Z

‡
∗Z

‡X
‡
∗

above come with F‡
Y ‡ and F‡, respectively. Naturally, we let G′ = G�1

∗,V
′,U∗∩�1

∗
, G‡

3 =

G
�

1‡
∗ ,Y

′‡,X
‡
∗∩�

1‡
∗

and G‡
4 = G

�
1‡
∗ ∪�

2‡
∗ ,Z

′‡,X
‡
∗∩�

1‡
∗

. Thus we have the following diagram
(where arrows with no name are again inclusions):
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G2
ψ‡

// G‡
4

// G4

G′ ��
τ ‡

�� ��

//

__σ ‡

____
G ��

τ ‡

�� ��
G1

OO

??

ϕτ ‡
// G‡

3

OO

// G3

OO

We want to construct a function g : ω↑>λ→ 2 for the use of Proposition 6.1. For this
choose any ν ∈ ω↑>λ. The definitions show thatG1ν ⊆ G2, andψ‡�G1ν is a well-defined
homomorphism. Similarly to the first ‘‡-step’ we now continue with a ‘ν‡-step’.

Using Theorem 4.18 let (�1ν‡
∗ ∪ �

2ν‡
∗ , Z′

ν‡
, �

1ν‡
∗ ) and (�1ν‡

∗ , Y ′
ν‡
, X

ν‡
∗ ∩ �

1ν‡
∗ ) be

determined by the triples (Z‡
∗, Z

‡, Y
‡
∗ ), (Y

‡
∗ , Y

‡, X
‡
∗), Imϕτ ‡

⊆ G3 and G1νψ
‡
⊆ G4;

compare also (4.2). In particular we have:

(A)ν‡ �
1ν‡
∗ ⊆ Y

‡
∗ is F‡

Y ‡ -closed and �2ν‡
∗ ⊆ Z

‡
∗ is F‡-closed, Y ′ν‡

⊆ Y ‡ and Z′ν‡
⊆ Z‡.

(C)ν‡ (�
1ν‡
∗ ∪ �

2ν‡
∗ , Z′

ν‡
, �

1ν‡
∗ ) and (�1ν‡

∗ , Y ′
ν‡
, X

‡
∗ ∩ �

1ν‡
∗ ) are (f + 1)-closed with

Y ′ν‡
= (Z′

ν‡
)
�

1ν‡
∗

.

(D)ν‡ F‡
Z′ν‡ is (�1ν‡

∗ ∪ �
2ν‡
∗ , Z′

ν‡
, �

1ν‡
∗ )-suitable, and F‡

Y ′ν‡ is (�1ν‡
∗ , Y ′

ν‡
, X

‡
∗ ∩ �

1ν‡
∗ )-

suitable.
(E)ν‡ G1νψ

‡
⊆ G

�
1ν‡
∗ ∪�

2ν‡
∗ ,Z′ν‡,X

‡
∗∩�

1ν‡
∗

⊆ G
Z

‡
∗Z

‡X
‡
∗

, Imϕτ ‡
⊆ G

�
1ν‡
∗ ,Y ′ν‡,X

‡
∗∩�

1ν‡
∗

⊆

G
Y∗

‡Y ‡X
‡
∗

.

(F)ν‡ Y ′ν‡
X

‡
∗

= Z′ν‡
X

‡
∗

= ∅.

(G)ν‡ Z‡
�

2ν‡
∗

\ Z‡
X

‡
∗

⊆ Z′ν‡
⊆ Z‡

\ Z‡
X

‡
∗

. (Compare again Remark 4.19.)

(I)ν‡ (�1
∗, V

′, U∗ ∩ �
1
∗)τ

‡
= (�

1ν‡
∗ , Y ′ν‡, X

‡
∗ ∩ �

1ν‡
∗ ) and GV ′τ

‡
= F‡

Y ′ν‡ . (Compare
also Observation 6.5.)

(Q)ν‡
|�

1ν‡
∗ |, |Y

′ν‡
| ≤ λ and |�2ν‡

∗ |, |Z
′ν‡
\ Y ′

ν‡
| ≤ θ (because |G1ν | = θ ).

(R)ν‡ Y ′ν‡ and �1ν‡
∗ are uniquely determined by Y ‡, Y

‡
∗ , X

‡
∗,F

‡
Y ‡ and Imϕτ ‡. In particu-

lar, Y ′ν‡
= Y ′‡, �

1ν‡
∗ = �

1‡
∗ for all ν ∈ ω↑>λ. (Compare (R)‡.)

(S)ν‡ Z′ν‡
⊆ Z′‡, �

2ν‡
∗ ⊆ �

2‡
∗ for all ν ∈ ω↑>λ. (This follows from Remark 4.19.)

(B)ν‡ PC(�
2,ν�((lg ν)−1),‡
∗ , Z

‡
∗) ⊆ �∗

2ν‡ can be ensured by a recursive construction of
Z′ν‡, �

2ν‡
∗ along the length lg ν.

Now we describe the refinement of the last diagram by the last application of Theorem
4.18. Naturally we put

G
ν‡
4 = G�1ν‡

∗ ∪�
2ν‡
∗ ,Z′ν‡,X

‡
∗∩�

1ν‡
∗

⊆ G
‡
4

and get the following diagram with the free A-modules

G1 = BI∗ and G1ν = B
3
νξ
∗
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from above, where ψν = (ψ‡�G1ν)σ
‡, otherwise restrictions of homomorphisms have

the same name, and inclusions have no name.

V

G2 G
‡
4 G4

G′ +G1νψ
‡σ ‡

G1 ⊕G1ν G
‡
3 +G

ν‡
4 G4

G′ G

G1 G
‡
3 G3

ψ‡σ ‡

77

ψ‡
//

σ ‡

gg

//

OO

ψ‡
//

ϕ⊕ψν
77

OO

σ ‡

gg

//

OO OO

//

OO

''
τ ‡

'' ''gg
σ ‡

gggg ��
τ ‡

�� ��

OO

ϕ

77

ϕτ ‡
// //

OO OO

We now define the map g : ω↑>λ→ 2 which we want to predict by

g(ν) = (Gν, H ν, P ν,Qν,Rν, ψν)

and the following requirements:

(L)ν‡ P ν = �
2ν‡
∗ σ ‡.

(M)ν‡ Qν
= (Z′

ν‡
\ Y ′

ν‡
)σ ‡ and Rν

= F‡
Z′ν‡\Y ′ν‡σ

‡.
(O)ν‡ Gν = G1ν .
(T)ν‡ H ν

= G1νψ
‡σ ‡.

(U)ν‡ ψν = (ψ‡�G1ν)σ
‡
: Gν → H ν .

From (Q)ν‡ it follows that |P ν |, |Qν
|, |Rν

| ≤ θ , and also Gν ∈ G, H ν
∈ H and

P ν ⊆ 3′∗, Q
ν
⊆ 3′, Rν

⊆ V, and consequently (Gν, H ν, P ν,Qν,Rν, ψν) ∈ 2.
The domain orco(�1‡

∗ ∪ �
2‡
∗ ) of σ ‡ is ‘large enough’, in particular �2ν‡

∗ ⊆ �
2‡
∗ due to

(S)ν‡, and following (E)ν‡ we have

(N)ν‡ H ν
⊆ (G

�
1‡
∗ ∪�

2ν‡
∗ ,Z′ν‡,X

‡
∗∩�

1‡
∗

)σ ‡.

Finally, the definition of ψν in (U)ν‡ yields

(P)ν‡ ψν�((lg ν)−1)
⊆ ψν .

Thus we can apply the Easy Black Box 6.9 and we find some η ∈ 0 with gη ⊆ g. There
is some α < λ such that η = ηα . Now for the construction of πη (η ∈ 3ξα ) the ‘serious’
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case applies as it is witnessed by the choice of

(Z‡
∗, Z

‡, Y ‡
∗ ), (Y

‡
∗ , Y

‡, X‡
∗),F

‡ and

�1‡
∗ , �

2n‡
∗ := �

2,ηα�n,‡
∗ , Y ′‡, Z′‡n := Z

′ηα�n,‡, τ ‡, σ ‡

as possible candidates for

(Z†
∗, Z

†, Y †
∗ ), (Y

†
∗ , Y

†, X†
∗),F

† and �1†
∗ , �

2n†
∗ , Y ′†, Z′†n , τ

†, σ †.

The necessary conditions (A)† to (P)† are satisfied by (A)‡ to (P)‡ and (A)ν‡ to (P )ν‡.
The concluding arguments of this proof are visualized in the following diagram: Sim-

ilarly to the construction of the ring elements πη (η ∈ 3ξα ) we define (as in Theorem 5.3)

(i)‡ Z
′′‡
∗ = �

1‡
∗ ∪�

2‡
∗ ∪

⋃
n<ω�

2n‡
∗ = �

1‡
∗ ∪�

2‡
∗ ,

(ii)‡ Y
′′‡
∗ = �

1‡
∗ ∪

⋃
n<ω�

2n‡
∗ ,

(iii)‡ X
′′‡
∗ = X

‡
∗ ∩�

1‡
∗ ,

(iv)‡ Z′′‡ = Z′‡ ∪
⋃
n<ω Z

′‡
n ,

(v)‡ Y ′′‡ = Y ′‡ ∪
⋃
n<ω Z

′‡
n .

Hence (Y ′′∗
‡
, Y ′′‡, X

′′‡
∗ ) is (f + 1)-closed, and (Z′′∗

‡
, Z′′‡, Y

′′‡
∗ ) is (only!) f -closed. As in

the construction of the ring elements πη (η ∈ 3ξα ), we have

(Gαn, Hαn, Pαn,Qαn,Rαn, ψαn) := gηα�n and ψα =
⋃
n<ω

ψαn,

and let

(vii)‡ ϕ‡
= ϕτ ‡

⊕ ψα(σ
‡)−1.

This is again a well-defined homomorphism

ϕ‡
: G1(ξα)→ G

Y ′′∗
‡Y ′′‡X

′′‡
∗

.

By the prediction of the Easy Black Box 6.9 we get the following identities:

(L) �2n†
∗ σ †

= Pαn = �
2n‡
∗ σ ‡.

(M) (Z′†n \ Y ′†)σ †
= Qαn = (Z

′‡
n \ Y

′‡)σ ‡ and F†
Zn
′†
\Y ′†

σ †
= Rαn = F‡

Z
′‡
n \Y

′‡
σ ‡.

(O) Gαn = G1ηα�n ⊆ G1ηα = Gα (see (6.3)).
(U) ψαn = (ψ‡�Gαn)σ ‡ and ψα = (ψ‡�Gα)σ ‡.

Now we consider the bijection σ := σ †(σ ‡)−1 of ordinals. By definition �2n†
∗ σ =

�
2n‡
∗ , and (I)†, (I)‡, (K)†, (K)‡ yield

�1†
∗ σ = (�

1†
∗ σ

†)(σ ‡)−1
= (�1†

∗ (τ
†)−1)(σ ‡)−1

= �1
∗(σ

‡)−1
= �1‡

∗ .

Since Y ′′†∗ = �
1†
∗ ∪

⋃
n<ω�

2n†
∗ , from these definitions it follows that σ is a Y ′′∗

†-
admissible bijection with Y ′′∗

†
σ = Y ′′∗

‡. Similarly, using the statements (M), (I)†, (I)‡,
(K)†, (K)‡, also (Z′†n \ Y ′†)σ = Z

′‡
n \ Y

′‡ and Y ′†σ = Y ′‡. Hence Y ′′†σ = Y ′′‡.
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Similarly, X′′†∗ σ = X
′′‡
∗ , (Y ′′†∗ , Y ′′†, X

′′†
∗ )σ = (Y

′′‡
∗ , Y

′′‡, X
′′‡
∗ ), and F†

Zn
′†
\Y ′†

σ =

F‡
Z
′‡
n \Y

′‡
.

Using (I)†, (I)‡, (K)†, (K)‡, (vii)† and (vii)‡, we get (ϕτ †)σ = ϕτ ‡ and thus finally

ϕ†σ = (ϕτ †
⊕ ψα(σ

†)−1)σ = (ϕτ †)σ ⊕ ψα(σ
†)−1σ = ϕτ ‡

⊕ ψα(σ
‡)−1
= ϕ‡.

In view of (U) and (6.6) we get

ϕ†σ = ϕτ ‡
⊕ ψα(σ

‡)−1
= ϕτ ‡

⊕ (ψ‡�G1ηα ) ⊆ ψ
‡.

G2 G
‡
4

G′ +
∑
n<ωHαn G′ +

∑
n<ωHαn

G
Y
′′†
∗ Y
′′†X

′′†
∗

G1(ξα) G
Y
′′‡
∗ Y
′′‡X
′′‡
∗

G′ G′

G
†
3 G1(ξ) G

‡
3

ψ‡
//

OO OO

σ †

??

σ ‡

__

ϕ†
oo ϕ‡

//

ϕ⊕ψα

^^

ϕ⊕ψα

@@

OO OO OO

OO OO

??

σ †

?? ?? ��

τ †

����

��

τ ‡

�� ��__

σ ‡

____

ϕτ †
oo ϕτ ‡

//

ϕ

^^

ϕ

@@

The existence of (Z′′∗
‡
, Z′′‡, Y

′′‡
∗ ), (Y ′′∗

‡
, Y ′′‡, X

′′‡
∗ ), F

‡
Z′′‡

, σ and ψ‡ with ϕ†σ ⊆ ψ‡

contradicts the statement of the step lemma, when we replace f,E∗,G1(ξ),GV∗VU∗ , ϕ, z

by f − 1, E∗,G1(ξα),GY ′′∗
†,Y ′′†,X′′∗

† , ϕ†, z. In particular this contradicts the choice of

πη (η ∈ 3
ξα ) at (6.5). Thus the step lemma follows. ut
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7. Application of the Strong Black Box

In this section we want to construct ℵk-free R-modules with prescribed endomorphism
R-algebras A using our preliminary work and the Strong Black Box as the prediction
principle. The Strong Black Box comes from Shelah [23, Lemma 3.24, p. 28, Chapter IV],
a model-theoretic version can be found in Eklof–Mekler [9], and a version adjusted to
algebraic applications appears in Göbel–Wallutis [17]. We will apply [17], which is also
outlined in [16]. As with other applications of the Strong Black Box, its setting has to fit
its applications (cf. [16]): We must specify what we want to predict! Thus its formulation
has to wait until we are ready for its use. We begin with the construction of an ℵk-free
R-module related to the algebra A. Although it will be necessary and sufficient to assume
that its R-module structure AR is also ℵk-free, we will restrict ourselves for simplicity
to the most interesting case when the R-algebra has a free R-module structure AR . (The
extension requires just a few technical changes.) Moreover, let |A| < λ1. (Also here we
could replace the size of the modules under study by their ranks and argue with cardinals
of ranks; thus rkA ≤ λ1 would be possible, which we however leave to the reader.)

Recall that 〈λ1, . . . , λk〉 is the cardinal sequence from Section 2.1 satisfying the car-
dinal conditions (i)–(iii). We will fix in this section the cardinals λ = λk and θ = λk−1.
The Strong Black Box will require |R| ≤ |A| ≤ θ and µθk = µk , but this is no further
restriction on µk due to assumptions (i)–(iii).

Also recall from Section 2.2 the definition of the free A-module B =
⊕

ν∈3∗
Aeν and

its S-adic completion B̂. Prediction principles, also the Strong Black Box, will need the
notion of a trap, which are the objects to be predicted. This is intimately connected with
an ordering which will tell us later which prediction comes first. Thus we define a very
natural λ-norm on 3 and 3∗.

Definition 7.1 (The λ-norm function).

(a) For η ∈ ω≥λ let ‖η‖ = sup`<lg η(η(`)+ 1) ∈ λ;
in particular ‖α‖ = α + 1 for α ∈ λ.

(b) For η ∈ 3 let ‖η‖ = ‖ηk‖, and for ν ∈ 3∗ let ‖ν‖ = ‖νk‖.
(c) For Y ⊆ 3 put ‖Y‖ = supη∈Y ‖η‖ and note that ‖Y‖ = λ if and only if |Y | = λ.

Similarly ‖Y‖ = supν∈Y ‖ν‖ if Y ⊆ 3∗.
(d) If b ∈ B̂, then ‖b‖ = ‖[b]‖, and for S ⊆ B̂, let ‖S‖ = supb∈S ‖b‖.

The black boxes also need a weak version of well-orderings, which reads as follows.

Definition 7.2. For V ⊆ 3 the family F = {y′η = πηbη + yη | η ∈ V } of branch-like
elements (from Section 3) is regressive if ‖bη‖ < ‖η‖ = ‖yη‖ for all η ∈ V .

We are now ready to define the final version of a trap for the Strong Black Box. Note
that we already used a different trap for the step lemma, which also needs a prediction.
The crucial sets for this definition can be seen in Definition 6.2.

Definition 7.3. A quintuple p = (η, V∗, V ,F, ϕ) is a trap ( for the Strong Black Box) if
the following hold:
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(i) η ∈ ω↑λ.
(ii) V∗ ⊆ 3∗ and V ⊆ 3 with |V∗|, |V | ≤ θ .

(iii) (V∗, V ) is 3-closed.
(iv) ‖ν‖ < ‖η‖ for all ν ∈ V∗, and ‖η‖ < ‖η‖ for all η ∈ V .
(v) 3〈η〉∗ ⊆ V∗ (recall that by definition 3〈η〉∗ = {ν ∈ 3∗ | νk � η, νk 6= η}).

(vi) 3〈ηk〉 ⊆ V for all η ∈ V (recall that 3〈ηk〉 = {ν ∈ 3 | νk = ηk}).
(vii) For η ∈ 3 and 1 ≤ m < k, n < ω with η�〈m, n〉 ∈ V∗ we have [η] ⊆ 3

〈ηk〉
∗ ∪

3〈ηk〉∗ ⊆ V∗ (recall that 3〈ηk〉∗ = {ν ∈ 3∗ | νk = ηk}).
(viii) If η ∈ 3, ‖η‖ < ‖η‖ and η�〈k, n〉 ∈ V∗ for infinitely many n < ω, then η ∈ V .

(ix) F = {y′η = πηbη + yη | bη ∈ BV∗ , η ∈ V } is regressive.
(x) ϕ : P → P is an R-endomorphism of the A-module P = GV∗V generated by V∗

and F; compare Definition 3.3.

Convention 7.4. In the definition of a trap we put ‖p‖ = ‖η‖ = ‖V∗‖, which is the norm
of the trap p.

Recall that λo = {α ∈ λ | cfα = ω}.

The Strong Black Box 7.5. Let θ ≤ λ = µ+ and µθ = µ. If E ⊆ λo is a stationary
subset of λo, then there is a sequence pα = (ηα, Vα∗, Vα,Fα, ϕα) (α < λ) of traps with
the following properties:

(i) ‖pα‖ ∈ E for all α < λ.
(ii) ‖pα‖ ≤ ‖pβ‖ for all α < β < λ.

(iii) THE DISJOINTNESS CONDITION: If α 6= β and ‖pα‖ = ‖pβ‖, then ‖Vα∗ ∩ Vβ∗‖
< ‖pα‖, in particular ηα 6= ηβ .

(iv) THE PREDICTION: For any VG ⊆ 3 with regressive family F = {y′η = πηbη + yη |
η ∈ VG}, G = G3∗,VG generated by 3∗ and F, ϕ ∈ EndR G and any set S ⊆ 3∗
with |S| ≤ θ , the set

{α ∈ E | ∃β < λ with ‖pβ‖ = α, Vβ = (VG)Vβ∗ ⊆ VG,

Fβ = FVβ , ϕβ ⊆ ϕ, S ⊆ Vβ∗}

is stationary.

While in the earlier black boxes the prediction is about the existence of partial endomor-
phisms of B̂, the main point is that we now deal with homomorphisms which are related
to a special class of submodules G ⊆ B̂. Indeed, by definition of the traps, this particular
black box will fail to predict arbitrary endomorphisms of B̂.

Proof of 7.5. See the proof in Göbel–Wallutis [17] or in [16] with minor adjustments;
note that λ = λk satisfies the required cardinal conditions. For Vβ = (VG)Vβ∗ observe
that all traps pβ of the Strong Black Box (like the other Black Boxes [4, 16, 23]) are
unions of admissible chains of partial traps (pnβ)n<ω. At stage n we can also choose
(VG)V nβ∗

⊆ V n+1
β . This now implies Vβ = (VG)Vβ∗ , because any η ∈ (VG)Vβ∗ satisfies

[η] ⊆ Vβ∗. Thus ‖η‖ = ‖η�〈1, 0〉‖ < ‖η‖ by Definition 7.3(iv) and η�〈k, n〉 ∈ Vβ∗
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for infinitely many n < ω. Definition 7.3(viii) implies η ∈ Vβ . The reverse inclusion is
trivial. ut

We now want to apply the Strong Black Box 7.5 to derive the following main theo-
rem. Here recall that the ring R has an S-adic topology which is Hausdorff, hence the
S-completions R̂ and B̂ are well-defined, and Hom(R̂, R) = 0, i.e. R (and thus also A) is
cotorsion-free. See the definition of the i+-sequence in Section 1.

Main Theorem 7.6. If R is a cotorsion-free S-ring and A an R-algebra with free
R-module AR , |A| < µ, k < ω and λ = i+k (µ), then we can construct an ℵk-free
A-module G of cardinality λ with R-endomorphism algebra EndR G = A.

Remark 7.7. Assuming that A is countable, the smallest examples of ℵk-free
A-modules G in Theorem 7.6 have size |G| = i+k .

Proof of Theorem 7.6. We first construct the A-module G. We continue using the earlier
notations |A| < λ1 < · · · < λk from Section 2.1.

Thus we must construct a specific regressive family F = {y′η = πηbη + yη | η ∈ VG}
such that the A-module G = G3∗,VG generated by 3∗, F satisfies the conclusion of
Theorem 7.6 and in particular EndR G = A.

Recall that B =
⊕

ν∈3∗
Aeν has cardinality λ and λ = µ+k is regular. By Solovay’s

decomposition theorem (see Jech [20, p. 433]) there is a decomposition λo =
⋃̇
z∈BEz

into stationary sets Ez.
For all Ez (z ∈ B) with the help of the Strong Black Box 7.5 we choose a list of

traps pzα (α < λ) and relabel them (preserving the norms) to get a uniform sequence of
traps

pα = (ηα, Vα∗, Vα,Fα, ϕα) (α < λ) with ‖pα‖ ≤ ‖pβ‖ for all α < β < λ. (7.1)

Put VG =
⋃̇
α<λ3

〈ηα〉. For each η ∈ VG we must choose πη ∈ R̂ and bη ∈ B for the
definition of y′η = πηbη + yη. We will choose recursively the pairs (πη, bη) for η ∈ 3〈ηα〉

and α < λ. Thus we consider the trap pα = (ηα, Vα∗, Vα,Fα, ϕα) and choose z ∈ B with
‖pα‖ ∈ Ez. If z /∈ BVα∗ , then we do not work and put

πη = bη = 0 for all η ∈ 3〈ηα〉. (7.2)

Now let z ∈ BVα∗ ⊆ Pα = Domϕα , hence zϕα ∈ Pα is well-defined by Defini-
tion 7.3(x). We will distinguish three cases.

Case 1: Let z = eν for some ν ∈ 3∗. If zϕα ∈ Az, we do not work and choose the pair
again trivially as in (7.2).

Otherwise zϕα /∈ Az, and we arrive at the interesting case which needs work. We
want to apply the Step Lemma 6.6 for f = k − 1, ξ = 〈ηα〉, E∗ = {ν, ν′} using some ν′

with ν 6= ν′ ∈ [zϕα], which exist as a result of the action of ϕα . Now we have

G1(ξ) = B3ξ∗∪E∗
⊆ Pα,

because E∗ ⊆ Vα∗ and 3ξ∗ ⊆ Vα∗ by Definition 7.3(v).
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In order to adjust our notations to the preliminaries of the Step Lemma 6.6 we put

V∗ := Vα∗ ∪̇3
ξ
∗, V := Vα ∪̇3

ξ , U∗ := (3ξ∗ \ E∗) ∪3
ξ
∗ ∪ {ν}.

It is immediate that U∗ is almost tree-closed and (V∗, V ) is 3-closed, and it follows that
uη(U∗) = {1, . . . , k} for η ∈ Vα and uη(U∗) = ∅ for η ∈ 3ξ .

If ν′ = η′�〈m, n〉, then [η]n+1 ⊆ U∗ for all η ∈ 3ξ , hence VU∗ = 3
ξ and the triple

(V∗, V ,U∗) is k-closed.
Put G = GVα∗ ∪̇ G

3ξ
with GVα∗ := Fα (given by the Strong Black Box 7.5), and

G
3ξ
:= {y′′η = π

′

ηz+ yη | η ∈ 3
ξ
} = GVU∗ .

We would like to point out that we have chosen the π ′ηs in G
3ξ

arbitrarily. This does
not do any harm, as noted in Remark 6.7. Of course, the intended canonical choice is to
set π ′η := πη (η ∈ 3

ξ ), but these elements πη are not yet known and will arrive at the final
construction step. Due to this choice, G is (V∗, V ,U∗)-suitable, because from [η]n′ ⊆ U∗
for some n′ < ω it follows that η ∈ VU∗ , and hence [bη] = [z] = ν ∈ U∗.

If ψα = (ϕα�G1)ρV∗VU∗ with G1 = G1(ξ), then ψα : G1 → G = GV∗VU∗ and also
zψα 6= 0 by ν′ ∈ [zϕα].

Now the assumptions of the Step Lemma 6.6 hold for

f = k − 1, ξ = 〈ηα〉, E∗ = {ν, ν′}, G1(ξ), GV∗VU∗ , ψα, z,

and by the step lemma we find elements πη ∈ R̂ (η ∈ 3ξ ), while setting bη = z for all
η ∈ 3ξ . From z ∈ Pα it also follows that ‖bη‖ = ‖z‖ < ‖η‖, and the related family F is
regressive.

Case 2: Let z = eν1 − eν2 for distinct ν1, ν2 ∈ 3∗. In this case we change the basis and
let eν1 = e

′

ν1
+ e′ν2

and eν = e′ν for all ν 6= ν1. Thus we have reduced Case 2 to Case 1,
and the choice of the pairs (πη, bη = z) for η ∈ 3〈ηα〉 is as in Case 1.

Case 3: Now z is neither of the form z = eν nor of the form z = eν1 − eν2 . In this case
again we do not work and choose the pairs trivially as in (7.2).

Thus all pairs (πη, bη) (η ∈ VG) are constructed and the A-module G is defined by
G = G3∗,VG with the help of the family F = {y′η = πηbη + yη | η ∈ VG}.

It remains to show that

G is as required in Theorem 7.6.

Clearly |G| = λ, and G is an ℵk-free A-module by the Freeness Lemma 3.7. Since A
acts faithfully on the A-module G, it is also clear that A ⊆ EndR G, where we identify
every a ∈ A with its induced scalar multiplication on G. Thus it remains to show that
EndR G ⊆ A, and we let ϕ ∈ EndR G.

First we want to show

Claim 1. If ν ∈ 3∗, then eνϕ ∈ Aeν .
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Suppose for contradiction that there is ν ∈ 3∗ with eνϕ /∈ Aeν . By construction the fam-
ily F is regressive, and applying the Strong Black Box 7.5 for the stationary set Eeν ⊆ λ

o

we see for G,F, ϕ and S = {ν} that the set

{α ∈ Eeν | ∃β < λ with ‖peνβ ‖ = α, V
eν
β = (VG)V

eν
β∗
⊆ VG,

Feνβ = (F)V eνβ
, ϕ

eν
β ⊆ ϕ, ν ∈ V

eν
β∗}

is stationary.
In particular there is α < λ such that

‖pα‖ ∈ Eeν , Vα = (VG)Vα∗ , Fα = FVα , ϕα ⊆ ϕ, ν ∈ Vα∗. (7.3)

Hence eν ∈ BVα∗ ⊆ Pα = Domϕα and by assumption eνϕα /∈ Aeν . Now Case 1 of the
construction applies and the πη ∈ R̂ (η ∈ 3〈ηα〉) are chosen with the Step Lemma 6.6. In
order to derive the desired contradiction, we denote the relevant sets similarly to Section 6.
Put

Z∗ := 3∗, Z := VG, Y∗ := Vα∗ ∪̇3
〈ηα〉
∗ (= V∗), Y := Vα ∪̇3

〈ηα〉 (= V ),

X∗ := (3〈ηα〉∗ \ E∗) ∪3
〈ηα〉
∗ ∪ {ν} (= U∗).

From the same argument as in the construction for VG it follows that (Y∗, Y,X∗) is
k-closed.

Next we show that also

(Z∗, Z, Y∗) is k-closed. (7.4)

If η ∈ Z and ‖η‖ > ‖pα‖, then |uη(Y∗)| = k because ‖Y∗‖ = ‖pα‖.
If ‖η‖ < ‖pα‖ and |uη(Y∗)| < k, then there is 1 ≤ m ≤ k withm /∈ uη(Y∗). Ifm = k,

then η�〈k, n〉 ∈ Vα∗ ⊆ Y∗ for infinitely many n < ω. Definition 7.3(viii) implies η ∈ Vα ,
and [η]N ⊆ Vα∗ ⊆ Y∗ for some N < ω, as required. If m < k, then η�〈m, n〉 ∈ Vα∗ for
some n < ω, and Definition 7.3(vii) also yields [η] ⊆ 3

〈ηk〉
∗ ∪̇ 3〈ηk〉∗ ⊆ Vα∗ ⊆ Y∗, as

required.
If ‖η‖ = ‖pα‖, then it follows from η ∈ Z = VG that ηk = ηβ for some β < λ. If

β = α, then [η] ⊆ 3〈ηα〉∗∪3
〈ηα〉
∗ ⊆ Y∗ by Definition 7.3(v). If finally β 6= α, then clearly

{1, . . . , k−1} ⊆ uη(Y∗). If k /∈ uη(Y∗), then by ηk = ηβ we have η�〈k, n〉 ∈ Vα∗∩Vβ∗ for
infinitely many n < ω. It follows that ‖Vα∗ ∩ Vβ∗‖ = ‖pα‖ = ‖pβ‖, but this contradicts
the disjointness condition of the Strong Black Box 7.5(iii). So (7.4) holds.

Next we show that Y = ZY∗ : If η ∈ Z, then η ∈ ZY∗ if and only if [η]n ⊆ Y∗ for
some n < ω, hence |uη(Y∗)| = 0. This is equivalent to [η]N ⊆ Vα∗ for some N < ω or
η ∈ 3〈ηα〉, and also η ∈ (VG)Vα∗ ∪3

〈ηα〉 = Vα ∪3
〈ηα〉 = Y by (7.3).

It is easy to see that F is also (Z∗, Z, Y∗)-suitable: If [η]n ⊆ Y∗ for some η ∈ Z and
some n < ω , then by definition η ∈ ZY∗ = Y = Vα ∪ 3

〈ηα〉, and we distinguish two
cases. If η ∈ Vα , then y′η ∈ FVα = Fα (by (7.3)). Definition 7.3(ix) yields bη ∈ BVα∗
and [bη] ⊆ Vα∗ ⊆ Y∗. If η ∈ 3〈ηα〉, then by construction bη = eν ∈ BVα∗ , and [bη] ⊆
Vα∗ ⊆ Y∗, which we required.
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FY is also (Y∗, Y,X∗)-suitable. Note that FY = FVα ∪̇F3〈ηα 〉 = Fα ∪̇F3〈ηα 〉 . ‘Suitable’
then follows as shown in the construction of πη ∈ R̂ (η ∈ 3〈ηα〉).

The construction implies (V∗, V ,U∗) = (Y∗, Y,X∗). In this case the triple (V∗, V ,U∗)
and FY with the help of the Step Lemma 6.6 generates the same elements πη (η ∈ 3〈ηα〉)
as with G (and also the induced modules GV∗VU∗ are the same) (see Remark 6.7). The
homomorphism ϕρ3∗VU∗ extends the homomorphism ψα = (ϕα�G1)ρV∗VU∗ to G, and
hence to G2 ⊆ G.

The existence of (Z∗, Z, Y∗), (Y∗, Y,X∗),F, τ = id and ψα ⊆ ϕρ3∗VU∗ contradicts
the Step Lemma 6.6 (and the choice of elements πη (η ∈ 3〈ηα〉) for f = k− 1, ξ = 〈ηα〉,
E∗ = {ν, ν′}, G1(ξ), GV∗,V ,U∗ , ψα , z = eν).

It remains to show

Claim 2. If ν1 6= ν2 ∈ 3∗, then (eν1 − eν2)ϕ ∈ A(eν1 − eν2).

But this follows from the same arguments as in Case 2 in the construction.
From Claims 1 and 2 it is immediate that ϕ ∈ A. ut

8. Fully rigid systems of ℵk-free R-modules with prescribed R-algebra A

Finally, we will use the arguments of Section 7 to extend Theorem 7.6 and show the
existence of fully rigid families of A-modules. (See the definition of the i+-sequence in
Section 1.)

Theorem 8.1. If R is a cotorsion-free ring and A an R-algebra with free R-module AR
and |A| < µ, k < ω and λ = i+k (µ) (as in Section 2.1), then there is a family of ℵk-free
A-modules 〈Gu | u ⊆ λ〉 of cardinality λ with the following properties for any u, v ⊆ λ:

HomR(Gu,Gv) =

{
A if u ⊆ v,
0 if u * v.

Moreover, Gu ⊆ Gv for all u ⊆ v ⊆ λ.

Proof. For the construction of the rigid family 〈Gu | u ⊆ λ〉 above we will modify the
construction of the A-module G of Theorem 7.6 with EndR G = A slightly; so compare
the first part of that proof. First we decompose λo =

⋃̇
β<λEβ and then Eβ =

⋃̇
z∈BEβz

into stationary sets Eβz using Solovay’s partition theorem (see Jech [20, p. 433]). The list
of traps pα = (ηα, Vα∗, Vα,Fα, ϕα) (α < λ) needed here is a composition of traps pβzα
(α < λ) from the Strong Black Box 7.5 for the stationary sets Eβz (β < λ, z ∈ B). As in
the construction above we will find a family

F = {y′η = πηbη + yη | η ∈ VG}

of branch-like elements with VG =
⋃̇
α<λ3

〈ηα〉, and G = G3∗VG satisfies EndR G = A,
as seen from the second part of the proof of Theorem 7.6.
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If u ⊆ λ, then put

Vu :=
⋃̇
{3〈ηα〉 | α < λ, pα = p

βz
α , β ∈ u, z ∈ B}

and Gu = G3∗Vu , which is generated by FVu . Then it is immediate that G = Gλ and
Gu ⊆ Gv for all u ⊆ v ⊆ λ.

If u, v ⊆ λ and ϕ : Gu → Gv , then as in Section 7 it is clear that ϕ ∈ A, thus
HomR(Gu,Gv) = A for u ⊆ v. For u * v and 0 6= ϕ ∈ A, from Vu\v ⊆ Vu it
follows that Vu\vϕ ⊆ Gv . Thus u \ v 6= ∅ and Vu\v ⊆ Vv are a contradiction. Hence
HomR(Gu,Gv) = 0 in this case. ut

9. Applications of the Main Theorem

The applications of Theorem 7.6 are by now standard. All R-algebras A inserted into
Theorem 7.6 and constructed earlier (see [16, Chapter 15]) have a free R-module struc-
ture. We assume that the ground ring R is a domain (thus has no nontrivial idempotents).
Moreover, the algebras A are p-reduced by some element p ∈ R. Thus Theorem 7.6
applies. Under this hypothesis we can find R-algebras A which are countably generated
over R with any of the following properties:

(i) A has no regular idempotents (see [16, p. 587, Example 15.1.1]).
(ii) Let q > 0 be an integer. A has free generators σ i, σi (0 ≤ i ≤ q) subject to

the only relations σ iσj = δij and
∑

0≤i≤q σiσ
i
= 1. Moreover, there is a ‘trace’-

homomorphism T : A→ R/qR such that for any σ, ϕ ∈ A:

(a) (σ + ϕ)T = σT + ϕT .
(b) (σϕ)T = (ϕσ)T .
(c) 1T = 1+ qR.

(iii) Let G be a finite group. Then G is a group of units of a domain R if and only if G
is from Corner’s list of subdirect products of primordial groups; see Corner [3] for
these groups G.

Recall that the primordial groups are the cyclic groups Z2, Z4 and

Gεδ = 〈a, b | a2+ε
= b2+δ

= (ab)2〉 for ε, δ ∈ {0, 1}.

The latter groups are the quaternion groupG00, the dicyclic groupG01 and the tetrahedral
group G11.

An immediate application (cf. [16, pp. 595–596, 603–606]) of these algebras estab-
lishes the following

Corollary 9.1. LetR be a countable domain as above. Then ( for each natural number k)
there are ℵk-free R-modules G of cardinality i+k with any of the following properties:

(i) G has no indecomposable summands different from 0, i.e. G is superdecomposable.
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(ii) Let R = Z and q > 0 be an integer. Then G satisfies the Kaplansky test problem,
i.e. for any r, s ∈ N,

Gr ∼= G
s
⇔ r ≡ s mod q.

(iii) Let R = Z. A finite group G is the automorphism group of an ℵk-free abelian group
if and only if it belongs to Corner’s list of finite groups.

(iv) G is an indecomposable R-module.

Clearly these applications can be extended to similar fully rigid systems of modules using
Theorem 8.1.

Acknowledgments. The collaboration was supported by the project No. I-963-98.6/2007 of the
German-Israeli Foundation for Scientific Research & Development.

References

[1] Blass, A., Shelah, S.: Basic subgroups and freeness, a counterexample. In: Models, Modules
and Abelian Groups (in memory of A. L. S. Corner), R. Göbel and B. Goldsmith (eds.), de
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[13] Göbel, R., Shelah, S.: Almost free indecomposable modules—the local case. Canad. J. Math.
50, 719–738 (1998) Zbl 0959.20049 MR 1638607

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1192.20039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2513227
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0116.02403&format=complete
http://www.ams.org/mathscinet-getitem?mr=0153743
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1197.20048&format=complete
http://www.ams.org/mathscinet-getitem?mr=2513226
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0562.20030&format=complete
http://www.ams.org/mathscinet-getitem?mr=0779399
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1148.20308&format=complete
http://www.ams.org/mathscinet-getitem?mr=1997988
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0506.16022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0670040
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0687.20049&format=complete
http://www.ams.org/mathscinet-getitem?mr=0995283
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1054.20037&format=complete
http://www.ams.org/mathscinet-getitem?mr=1914985
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0894.20041&format=complete
http://www.ams.org/mathscinet-getitem?mr=1485469
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0209.05503&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0257.20035&format=complete
http://www.ams.org/mathscinet-getitem?mr=0348006
http://www.ams.org/mathscinet-getitem?mr=0349869
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.13004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1005423
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0842.20046&format=complete
http://www.ams.org/mathscinet-getitem?mr=1378201
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0959.20049&format=complete
http://www.ams.org/mathscinet-getitem?mr=1638607
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