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Abstract. Itis a well-known fact that modules over a commutative ring in general cannot be classi-
fied, and it is also well-known that we have to impose severe restrictions on either the ring or on the
class of modules to solve this problem. One of the restrictions on the modules comes from freeness
assumptions which have been intensively studied in recent decades. Two interesting, distinct but
typical examples are the papers by Blass [1] and Eklof [8], both jointly with Shelah. In the first
case the authors consider almost-free abelian groups and assume the existence of large canonical,
free subgroups. Nevertheless, there exist 81 -separable torsion-free groups G of size 81 with a basic
subgroup B of rank R such that all subgroups of G disjoint from B are also free, but the groups
G are still not free. What else can we say about G? The other paper deals with Kaplansky’s test
problems (which are excellent indicators that the objects defy classification). The authors are able
to construct very free abelian groups and verify the test problems for them by a careful choice of
particular elements of their endomorphism rings.

Accordingly, we want to investigate and construct X, -free R-modules M (with n an arbitrary,
but fixed natural number) over a domain R with Endg M = R for the first time more systematically
and uniformly. Recall that M is 8, -free if every subset of size < 8, is contained in a pure, free
submodule of M. The requirement Endg M = R implies that M is indecomposable, hence compli-
cated. (We will also allow that Endg M is a prescribed R-algebra, as in the title of this paper.)

By now it is folklore to construct such modules M using additional set-theoretic axioms, most
notably Jensen’s <>-principle. In this case the freeness condition can even be strengthened (see [6]
and many examples in [9]). However, if we insist on proving this result in ordinary ZFC, then the
known arguments fail: The classical constructions from the fundamental paper by Corner [2] do
not apply because they are based on pure submodules of p-adic completions of free A-modules,
which are never even R-free. If we use Shelah’s Black Box instead of Jensen’s <>-principle, then
the constructed modules M are still 8| -free, but always fail to be even R,-free (see [4]). Thus we
must develop new methods, which are presented for the first time in Sections 2 to 6, to achieve the
desired result (Main Theorem 7.6). With these methods we provide a useful tool for a wide range
of problems concerning ¥, -free structures which can then be attacked.
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1. Introduction

A stimulating starting point for this investigation is Corner’s fundamental realization
theorem in [2], showing that any countable, reduced, torsion-free ring is the endomor-
phism ring of a countable, reduced torsion-free abelian group. Corner’s theorem from
1963 has many applications in algebra. With regard to the next observation we would like
to rephrase ‘torsion-free’ by Ro-free, which (by Gauf3’s theorem about finitely generated
abelian groups) is exactly the same requirement. Thus Corner’s abelian groups are count-
able, reduced and Rq-free. This first result was extended to larger cardinals in [6] and in a
uniform way using Shelah’s Black Box, which is designed for such constructions, in [4].
As a byproduct of the combinatorial arguments from the Black Box, it turns out that the
abelian group (or more generally the R-module) is 8{-free (of minimal size 2% = J;).
Thus the problem of passing on to ¥,-free modules (of size J,, i.e. taking n times the
powerset of R¢) with the same algebraic property, is in the air.

This question appeared in special cases even earlier; we will first describe some of its
roots and indicate the difficulties in proving a parallel result.

In this section we will assume for simplicity that R is a countable principal ideal do-
main (a condition extended in Section 2.2). We will consider R,-free R-modules M with
endomorphism algebra A. The oldest example is the Baer—Specker group (investigated
in 1937) which is Rj-free of cardinality 280 with |A| = 280 hence definitely not free;
see [10] for its properties and historical remarks. About 45 years later Griffith [18] and
Hill [19] extended this result, showing for each natural number n the existence of R, -free
abelian groups of cardinality R, which are not free. Surprisingly, no further algebraic
properties of these groups were shown. A first attempt to close this gap was Eda’s paper
[7] giving an example (using an idea from [22]) of an Ri-free abelian group G of car-
dinality 8; with trivial dual, G* = Hom(G, Z) = 0. Furthermore, inspired by work of
Eklof and Mekler, it was shown, assuming Jensen’s diamond principle, that any R-algebra
A can be realized as the endomorphism algebra Endg M where M is an A-module with
|A| < k = |M]|, k is any infinite, regular, but not weakly compact cardinal and M is also
k-free (and more) (see [6] or also [9, 16]).

This stimulated the question of posing additional algebraic conditions on M. In [12,
13] we elaborate the ‘case R1’: If R is a countable ring with free additive structure, then
there exists an R1-free abelian group G of cardinality ¥, with End G = R. There are
also related results in [4], but restricted to 8. Moreover, a natural barrier appears: the
existence of indecomposable R,-free groups of cardinality Ry or the existence of such
groups with endomorphism ring 7 is undecidable.

Despite this obstacle, Eklof and Shelah [8] found a way to realize certain subrings
of a given ring A (which encodes Kaplansky’s test problems) and were able to construct
R-separable abelian groups G of cardinality & which provide counter-examples to Ka-
plansky’s test problems; see Section 9 and [16, pp. 603—606] for those rings.

Nevertheless, passing on under ZFC to 8,,-free abelian groups of size &, with endo-
morphism ring Z and n > 1 is impossible, and we must relax our restrictions. We will
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replace the size of the ®,,-free module representing the endomorphism algebra by 3, (or
larger). Assuming GCH we have R, = J,, and this illustrates that our assumptions about
the size of the module are reasonable.

The reader may wonder why we restrict ourselves to N, -freeness for natural num-
bers n in this paper. As a test case for the present paper, in [14, 24] we first studied the
existence of R, -free abelian groups with trivial dual, which basically clears the way for
proceeding. But passing through 8, a new difficulty appears, which is Shelah’s singu-
lar compactness theorem showing that A-free modules of singular cardinality A are free.
Thus the inductive construction on 7 in this paper will break down at X,,. Moreover, a
theorem by Magidor and Shelah [21] presents another warning, that X >, ,-free abelian
groups G of size |G| = R, are free in a suitable universe of set theory. Fortunately,
this does not exclude the possibility of finding (in ordinary set theory) R > | -free abelian
groups G of cardinality |G| > W, >, . However, the tools must be much more refined
and a construction of R, -free abelian groups G with trivial dual, as a natural test case,
might need weak additional set-theoretic axioms. (Note that this is not in conflict with the
singular compactness theorem, because |G| > 8,,.) This study is still in progress [25].

Finally, we want to discuss our main results (see Theorems 7.6 and 8.1). For simplicity
we consider a special case. Let A be an R-algebra with free R-module structure Ag of
cardinality |A| < u, where R is a domain With a distinguisheq\ element p € R such that
R is p-reduced (), ., P" R = 0) and Hom(R, R) = 0, where R is the p-adic completion
of R. (We then say that R is p-cotorsion-free; cf. [16].) In order to control the size of
the constructed Ry-free A-modules, we define inductively a (modified) 3-sequence: put
J(J)r(,u) = u and DIH (w) = (2:1;("))*, which is the successor cardinal of the powerset
of 3 (w). We put :l,j(&o) = :l,j. Then we are ready to state our final result.

Main Theorem 1.1. Let R be a p-cotorsion-free domain and A an R-algebra with free
R-module Ag and |A| < p as above. If A = :l,:r () for some positive integer k, then
we can construct an Ny-free A-module G of cardinality A with R-endomorphism algebra
Endg G = A.

Thus clearly we get a proper class of N;-free A-modules G with Endg G = A. The
idea which leads to Ni-freeness comes from the classical Black Box (prediction), where
we get Ni-freeness for the constructed modules automatically, due to a support argu-
ment on branches of the trees involved (see e.g. [4]). This support will be refined (in
Section 2), and the old arguments must be modified by an elementary-closure condition
(from model theory, hidden in [24]) which, in the Freeness Proposition 3.6 and the Free-
ness Lemma 3.7, will show that unions of suitable ascending chains of submodules of
length Ry are free. The remaining steps of this paper are arguments to control endomor-
phisms by two prediction principles, the Easy Black Box (Proposition 6.1) and the (older)
Strong Black Box 7.5. The repeated application of the Strong Black Box requires the car-
dinal sequence Jlj(,u,), which explains |G| = 3;’ () in Theorem 1.1. And clearly we find
Ry -free indecomposable R-modules of any size :l,ir (u) for |R| < p. The problem of re-
ducing the size of the modules to the ordinary J-sequence J; (i) (defined by Jg = w and
Jri(n) = 2y ig Teft open. It seems plausible that this could follow by an improved
prediction principle replacing the Strong Black Box 7.5.
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It will follow immediately in the proof that the existence of G can be extended to
the existence of a fully A-rigid family of such ¥;-free A-modules G, as explained in
Theorem 8.1. The free choice of an algebra A allows us to prescribe Corner’s list of fi-
nite groups (see Section 9) as exactly those finite groups which appear as automorphism
groups of Ry-free abelian groups. Moreover, realizing the appropriate R-algebras men-
tioned in Section 9, we also obtain in this situation counter-examples for Kaplansky’s test
problems, showing that decompositions of 8;-free R-modules behave badly. In addition
(again using the appropriate R-algebras), we find superdecomposable Ni-free R-modules
which have no indecomposable summands different from 0.

2. The basics for the new combinatorial Black Box

2.1. Set-theoretic preliminaries

The new Black Box depends on a finite sequence of cardinals satisfying some cardinal
conditions. Thus we will fix a positive integer k and a sequence . = (Af, ..., Ag) of
cardinals such that:

1) Ae ::ujforlf@gk.
Qi) 1 =i,

(iil) pese1 = “2\11 forl <¢ <k.

Ag

This implies that A; = AllAl and Apy1 = )LEH;

(5.22)].

If A is a cardinal, then ®TA will denote all order preserving maps 1 : @ — A, which
we also call infinite branches on A, while ®*> 1 denotes the family of all order preserving
finite branches n : n — X on XA, where the natural number n, A and w (the first infinite
ordinal) are considered as sets, e.g. n = {0,...,n — 1}, thus the finite branch n has
length n.

Moreover, we associate with A two sets A and A, First, let

see the Hausdorff formula [20, p. 57,

A=2Ta x - x M. .1

For the second set we replace the m-th (and only the m-th) coordinate T 1,, by the finite
branches ©*> A,,, thus we let

Ap =T x o x?TZ i x- o xMagforl <m <k and A, = U An.  (22)

1<m<k

The elements of A, A, will be written as sequences 7 = (11, ..., ) wWith ng € o),
or ng € M1 (for 1 < € < k), respectively.
With each member of A we can associate a subset of A,:
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Definition 2.1. If 7= (n1,...,m) € Aand 1 <m < k,n < w, then let 7] (m, n) be the
following element in A,, (thus in A)

_ Ne ifl <f#m<k,
M1 (m,n))¢ = .

Nmln if £ =m.
We associate with 7 its support [7] = {n](m,n) | 1 < m < k, n < w}, which is a
countable subset of Ay. For N < wlet[nly = {n1(m,n) |1 <m <k, N <n < w}be
the N-support of 7. If S C A, then the support of S is the set [S] = Uﬁes[ﬁ] C Ay

2.2. Algebraic preliminaries for X, -free modules

Let R be a commutative ring with S a countable multiplicatively closed subset contain-
ing 1 such that:

(i) The elements of S are not zero-divisors, i.e. if s € S, € R and sr = 0, then r = 0.
(i) NyessR = 0.

We also say that R is an S-ring. If (i) holds, then R is S-torsion-free, and if (ii) holds,
then R is S-reduced (see [16]). To ease notations we use the letter S only if we want to
emphasize that the argument depends on it. If M is an R-module, then these definitions
naturally carry over to M. Finally, we enumerate S = {s, | n < w}and putg, = [],_,, si.
thus g1 = gnSa.

If G C M, then G is S-purein M if GNsM C sG foralls € S.If G C M are
torsion-free R-modules, then G, denotes the smallest, unique S-pure submodule of M
containing G, and we write G C, M if G is S-pure in M.

We also fix an R-algebra A and consider A-modules. Slightly strengthening [9] (by
S-purity) we call an A-module M «-free if there is a family C of S-pure A-submodules of
M satisfying the following conditions:

(i) Every element of C is a <« -generated free A-submodule of M.
(ii) Every subset of M of cardinality <k is contained in an element of C.
(iii) C is closed under unions of well-ordered chains of length <«.

We say that C is <k-closed.

This definition applies for regular cardinals, in particular for k = R, which is the
case we are interested in. Purity refers to S-pure A-submodules of M as above.

The S-topology of an S-reduced R-module M is generated by the basis sM (s € S)
of neighbourhoods of 0. It is Hausdorff on M and we consider the S-completion M of M
see [16] for elementary facts on the elements of AM . The R-module M is cotorsion-free
(with respect to S) if M is S-reduced and Homg (R, M) = 0.

Given a cotorsion-free R-algebra A, we first define (similar to the Black Box in [4]),
the basic, free A-module B, which is

B = @ AEU.

veA,
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Definition 2.2. If U C A,, then we get a canonical summand By = @VGU Aey of B,
and in particular, let B = B[ for 7 € A be the canonical summand of B.

Every element b € B has a natural (A4-)support [b] € A, which are those V € A,
contributing to the canonical sum representation b = » A, bvew with coefficients 0 #

by GAX. Thus let [b] = {v € A, | by # 0}. Note that [b] is at most countable. If
S C B, then the A-support of S is the set [S] = Ubes[b]' As in the earlier Black Boxes
(see [16]), we use conditions on the support (given by the prediction) to select particular
elements from B added to B to get the final structure M such that

BC MC, B.

We will use B, A, A to define the Strong Black Box for R,,-free A-modules in Section 7.

3. R, -free A-modules

Let R be an S-torsion-free and S-reduced commutative ring, A a cotorsion-free R-algebra,
and let B = @y, A, Aey be the A-module freely generated by {ey | V € Ay} with
As = Usealmland [7] = (l(m,n) | 1 <m <k, n < w}.

Next we choose particular elements from B.If 7 € A andi < w, then we call

00 k
qn
i =3 (Y enonn)
n=i 4i m=1

a branch element associated with 7). In particular let

) k
yo == an( Y eatimm )
n=0 m=1

Given 1 € A, we also choose by € B, n7 = ZE’;O gnln € R and let T =
Z;O:i (gn/qi)ry. Then we define branch-like elements by

Yii = by + Y-
In particular we have y% = y%o = by + y7.
Definition 3.1. Suppose Y, C A,.

(1) Y« is almost tree-closed if there is a finite set E, € A, such that for any 7 € A with
1<m<k,n <ny<wandnl(m,ny) €Y, wehave g (m,n;) € Y. U E,.

(ii) In particular X, (C Y,) € Ay is tree-closed (with respect to Y,) if for any 7 € A
with 1 <m <k,n; <ny < wand7n|{m,ny) € X, (and 771 (m, n1) € Y,) we have
nl(m,n1) € Xy.

Thus Y is tree-closed if and only if Y, is almost tree-closed with E, = (/.



Prescribing endomorphism algebras of X -free modules 1781

Definition 3.2. A pair (Y, Y) is called A-closed (over N) if:

(i) YC Aand Y, C A,.
(ii) There exists N < w such that [f7]y C Y, foralln € Y.
(iii) Y, is almost tree-closed.

Definition 3.3 (The construction of the A-module Gy,y). If (Y,,Y) is A-closed
(over N) and we have a family § = {y% = mbs + y5 | by € By,,n € Y} of branch-like
elements y%, then we let

o~

Gy,y = (By,, Ay;; IT€Y, N <i <w) = (By,, Ay;y | 7€ Y)s C B.

Observation 3.4. If (Yy,Y) is A-closed (over N), then it is A-closed (over N') for
N < N/, and the A-modules Gy,y defined by N or by N’ (as in Definition 3.3), are
the same.

Proof. Trivial. O

In this paper we mainly consider R, -free A-modules (for 1 < n < w). Thus the following
observation is interesting for us. If the ring R is sufficiently special and the algebra A
is a free R-module, then any R-free A-module G is cotorsion-free. If we want to show
cotorsion-freeness for more general rings R, then G must be more special. In particular,
if G = Gy,y this will follow with a support argument from the classical Black Box (see
[16, pp. 447-448]).

Observation 3.5. Let A be a cotorsion-free R-algebra.

(a) If the S-ring R is a countable principal ideal domain, and G is R|-free, then G is
cotorsion-free.
(b) IfRisanS-ring and G is the R-module Gy,y as in Definition 3.3, then G is cotorsion-

free.

The final R-modules in Theorems 7.6 and 8.1 are of the form described in Observation
3.5, thus cotorsion-free.

Proof. (a) In this case we can apply [16, p. 426, Proposition 12.3.2], replacing the R\ {0}-
topology by any S-topology. Thus G is S-cotorsion-free if and only if the quotient field
Q(R) the modules R/pR and R, for primes p with pRNS # ¥ do not embed into G. As-
suming that G is R -free as an R module, since [R/pR|, [Q(R)| < ¥y it remains to show
that R does not embed into G. We can choose 7 € R which is transcendental over R
(see [16 p- 16, Theorem 1.1.20] or [11]) and consider the R-submodule (1R, w R}, C R
which has rank 2 and is indecomposable by Baer’s theorem (see [10, Vol. 2, p. 123, Theo-
rem 88.1]). If R embeds into G,thensodoes (IR, wR),. Since G is R-free, the countable
R-module (1R, 7 R), would be a free R-module of rank 2, which is a contradiction.
(b) Suppose ¢ : R — G is a nontrivial R-homomorphism. Then 1¢ # 0 because G
is reduced and ¢ is continuous. Choose

n<w with ¢,(1¢) =b+ Zaﬁy%N 3.1
nel
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such thatb € Band 0 # a; € Aforalli € I C Y. Moreover, [ is finite. For 7 € R with
me € G we also have

n<n <w with gy@me)=>b+ Z aryin (3.2)
nel’

such that b’ € B and 0 # a/ﬁ € A for all 7 € I'. Moreover, I’ is finite.
Comparing (3.1) and (3.2) we get

q !
Gw (@) = —nn[b + Z“ﬁy;ﬂv] =b + Z a%y%N.
4n el el

If7 # 7% € A, then [f]y N [7']x is finite, and equating coefficients gives I = I’,
(g /qn)ay = a;; for all 7 € I and therefore also (g, /qn)wb =b'.

Using the S-purity of A C, A it is immediate that (q,,//qn);l\ﬂ A = (qn/qn)A, hence
nmag € A(Mel)andnb € B. R

If I # ¢, then we can choose a homomorphism ¢; : R — A (7 + maz) which is
not the zero homomorphism, a contradiction (because A is cotorsion-free).

IfI =0,thenb #0,b = ZUEJ ayey (J #Q) and ay # 0 (v € J C Y,). Choose any
v € J. Similarly we get a homomorphism ¢, : R — A (w +— may) which is not the zero
homomorphism, which is a final contradiction showing that G is cotorsion-free. O

If X is any set, then *Pgn(X) denotes the collection of all finite subsets of X.

Freeness Proposition 3.6. Let F : A — Pan(Ay) be any function, 1 < f <k and Q a
subset of A of cardinality Ry with a family of sets us; C {1, ..., k} satisfying |uz| > f
for allm € Q. Then we can find an enumeration (7% | a < Ry_1) of @, £y € uz and
ng < o (o < Ry_1) such that

T (s n) & (7P 1(asn) | B < @} U JQuF  foralln = nq,

where Qq = {7 | B < a).

Proof. The proof is by induction on f. We begin with f = 1, hence |Q2] = Rg. Let
Q = {7” | @ < w} be an enumeration without repetitions. From 1 = f < [u7]| it follows
that u5; # ¥ and we can choose any £, € uze foralla < . If @ # B < w, then 7% # 7P
and there is ny, g € w so that *1({y, n) # 7P1(ly, n) forall n > neg. Since |J Q¢ F is
finite, we may enlarge nq, g, if necessary, so that 7%1(€y, n) ¢ |J Qo F for all n > ny g.
If ny = maxg—q ng g, then %1 (L, n) ¢ {ﬁﬂ] (loy,n) | B <a}UlJQyF foralln > ng.
Hence the case f = 1 is settled and we let /' = f + 1 and assume that the proposition
holds for f.

Let [ = Ry and choose an Ry-filtration Q@ = (J;_y, 25 with Qo = ¥ and
[€21] = Ry_1. The next crucial idea comes from [24] based on the construction of ele-
mentary submodels: We can also assume that the chain {25 | § < Ry} is closed, meaning
that for any § < Ry, v,V € Qs and 77 € Q with

{hm | 1 <m <k} S {vp, vy, v, |V €VFUVF, 1 <m <k}
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we have 77 € Q;. Thus, if 7 € Q541 \ Q5, then the set
u%: {1<l<k|3dIn<w,we Qs suchthat (£, n) =ul|{€,n)ornl{€,n) € wF}

is empty or a singleton. Otherwise there are n,n’ < w and distinct 1 < ¢, ¢ < k with
71, n) € P, n)y UVF and 71{€', n’) € {V'1{{,n")} UTV'F for certain v,V € Qs.
Hence {n,, | 1 <m <k} € {vm,v,,,v), | v € VFUV'F, 1 <m <k}, and the closure
property implies the contradiction 77 € €2s.

If 6 < Ry, thenlet Dy = Q541 \ 25, and u% = uﬁ\u% must have size > f'—1 = f.
Thus the induction hypothesis applies to f, {u/ﬁ | 7 € Ds} for each § < Ry and we find
an enumeration 7°% (o < N r—1) of Ds as in the proposition. Finally, we put these chains
for each § < Ny together with the induced ordering to get an enumeration (7% | & < R¢)
of € satisfying the proposition. O

Freeness Lemma 3.7. The module Gy,y from Definition 3.3 is Ry-free as an A-module.

Proof. Besides the A-support [g] any element g of the module Gy,y = (By,, Ay%N |
7 € Y), has arefined natural finite support [g]ly,y arriving from Definition 3.3. It consists
of all those elements of Y, and Y, respectively, contributing to g. We observe that g is
generated by elements y_, and ey, and simply collect the branches 7 € ¥ and v € Y,
needed. Clearly [g]y,y is a finite subset of Y, UY.

Hence any subset H of Gy,y has a natural support [H]y,y taking the union of the
supports of its elements, and if | H| > Ry, then there are subsets Q4 C Y, and 2 C Y of
size |2, |2| < |H| such that H is a subset of the pure A-submodule

Ga,0 = (Aeg, Aygy | U € Qu, 71 € Q) C Gr,y.
Without loss of generality we may assume Q, = Uﬁeﬂ[ﬁ] N U Uﬁeg[bﬁ] and write

Ga,0 = Ga = (Aegimn), Aey, Aypy | T€Q, Ve lbgl, L <m <k, N <n < o)
C Gy,y
as Aey is a direct summand of Gg, g forall v € Q. \ (Uﬁeg[mN U Uﬁeg[bﬁ])-
Thus, in order to show Ny-freeness of Gy,y, we will consider any 2 € Y of size
|Q2] < Ry and show the freeness of the module G . We may assume that |2] = Ry_;. Let

F : A — Pen(Ay) be any map which assigns to 77 € Y the set nF = [b5].
By Proposition 3.6 (putting simply u7 = {1, ..., k} for all 7 € ) we can express

Ga = (€51 (m.n)» v y%o,n o <Np_1, VeER*F,1<m<k, N<n<uwa,

where (...)4 denotes the A-module generated by (.. .), and we find a sequence of pairs
Ly, ny) with1 < £, <kand N < ny < w such that forn > n,,

TV (e ) & (77 1(€arn) | B < 2} U QuF. (33)
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/!

Let Gy = (€571 (m,n) €v, Yirn |y <a,ven’F,1 <m <k, N <n < w)y forany

a < Ry_1;thus Gy, | = Gq,andif o < R;_, then
Got+1 = Go + {€5%1(m.n)» €vs y%an [ Ven’F,1<m<k, N<n<w)

=Gq + (eﬁo‘ﬂ&,,n) | N <n<ng)a+ <y%01n |n>ng)a

+ (eg{mny, ev | VEN'F, 1 <ly #m <k, N <n < )a.

Hence any element in G, can be represented as a sum of the form

g+ Z aneq 1 (Lq.n) + Zany%anﬂL Z Z Amneq®{(mny + Z ayey,

N<n<ng n=ngy N<n<w ly#m=<k venF

where g € G, and all coefficients a,, am,, ay are from A.

Moreover, the summands involving the ez, » s have disjoint supports. Now condi-
tion (3.3) applies recursively. Hence, assuming the above sum is zero, by disjointness of
supports (identifying ey (v € 7% F') with one of the e/, s if possible and merging all
exe|(m,n) € Gy and ey € G into g), it also follows that all the coefficients a;, am,, av
and consequently also g must be zero. This shows that Gy 11 = Go ® P),c B, Ab for

By = {eq1 (g k) Yne» €51 () €7 |
N<k<ng>ng, 1 <ly#m<k,N<n<w,ven*F}\G,.

Thus Gq = @(ka_] @beBa Ab is a free A-module. The R;-freeness of Gy,y is now
immediate from the existence of the <®;-closed family § = {Gq, | 2], 2] < 8} of
free, pure submodules of Gy, y. O

4. The triple-homomorphism p and freeness

Definition 4.1. (a) For each triple (Y, Y, X,) with X,, Y, € Ayand7y € ¥ C A let
uz(Xy) = {1 <m < k | Ing < w such that 1(m, n) & X, for all n > ng}. If X,
is clear from the context, then we will write uz for u7(X,). Weput Yy, = {n €Y |
[7]n € X, for some n < w}.

(b) Let1 < f < k. Then atriple (Y, Y, X,) is called f-closed if:

(i) (Y4, Y)is A-closed.
(i) Xx C Ys.
(iii) X, is almost tree-closed.
(iv) Ifn € Y, then either |uz| > f or [], € X, for some n < w.

Observation 4.2. (a) For every f-closed triple (Y, Y, X,), 7 € Y and 1 < m < k there
is ng < w such that either 7] (m, n) € X, forall n > ng or 7| (m, n) ¢ X, for all n > ng,
because X, is almost tree-closed.

(b) For k-closed triples (Y., Y, X,) Definition 4.1(b)(iv) is equivalent to the following
condition: If 7 € Y and there is 1 < m < k such that 5] (m, n) € X, for arbitrarily large
n < w, then [7],y € X, for some n’ < w.
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(c) Since X, is almost tree-closed, we have
[7]n € Xi forsomen <w & [7ly C X,

where N = max{n | 31 <m < kandn € A with7|{(m,n) € E.} 4+ 1 (see Definition
3.1(i) for E,).

Next we define the natural projection p.
Definition 4.3. Let (Y, Y, X,) be a triple with X, C Y, C A,, Y C A and let
§ = {5 = by + v | 7 € Y and by € By, )

be a family of branch-like elements from B.

(a) We say that the family § is (Y, Y, Xy)-suitable (or just suitable) if [bg] € X, for
each?n € Yy,. R
(b) Let the homomorphism p = py,yx, : Gy,y — B be defined in two steps. Put

0 ifvelX,,
eyp = P
ey ifveY,\ X,

and extend p by linearity and continuity with domain Gy,y. This homomorphism
o = py,vx, Will be called a triple homomorphism.
(c) Let Gy*yx* = Gy*y,()y*yx* be the triple module for (Y, Y, X,).

Notation 4.4. If § = {y; = by + y | 7 € Y and by € By, } is a family of branch-like
elements from B and X C Y, then we will write Ty = { y’ﬁ | 7 € X}

Triple modules satisfy important freeness conditions.

Theorem 4.5. Let (Y,, Y, X,) be an f-closed triple for some 1 < f < k and suppose
that § = { y% = nzby + y7 | 1 € Y} is a suitable family of branch-like elements. Then:

(@) If X =Yx,, then (X, X) is A-closed.

(b) The subfamily §x of § of branch-like elements generates a well-defined A-module
Gx,x (as given in Definition 3.3).

(¢) Gx,x € Gy,y canonically.

(d) Gx,x and Gy,y are Ni-free.

() Gy,rx, = Gy,y/Gx,x is Ry-free.

Proof. (a) We must verify Definition 3.2. Since (i) and (iii) are obvious, we only con-
sider (ii): If 7 € X, then Observation 4.2(c) yields [7]y € X, for some fixed N < w, and
(X4, X) is A-closed (over N).

(b) If 7 € X, then [b7] € X, as § is suitable. Moreover by € By, because 77 € Y.
Thus bﬁ S BX*.

(c) From (a) we know that (X, X) is A-closed (over N), while (Y, Y) is A-closed
(over N') and we may assume that N > N’. Hence (c) is obvious, because Gx,x and
Gy,y are canonical A-submodules of B with X CY,and X, C Y,.
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(d) is immediate from Lemma 3.7.

(e) Next we claim that ker p = Gx, x.

If v € X4, then esp = 0, and if 7 € X, then yzyp = 0 by Definition 3.2 and
continuity of p. Since [by] S X, also mzbyzp = 0 and thus yLy o = 0. It follows that
Gx,x C kerp.

For the converse inclusion we apply a support argument. If x € Gy,y with xp = 0,
then we must show that x € Gx, x. Replacing x by g,x with a suitable g, € Sitis enough
to show that g, xp = 0. Thus we may assume that

x = Z ayey + Zaﬁy%N

veY, ney
and almost all coefficients ay, a7 from A are zero.

Case I: If ag # 0 forsome 17 € Y \ X, then |uz| > f > 1, and there are some 1 <m < k
and ng < o with 71(m,n) ¢ X, for all n > ng. Recall that [7']y N [7]y is finite for
distinct branches 7’ # 7, thus enlarging ny we may assume that 7] (m, n) ¢ X, for all
n > ngo and moreover (by the choice of p) the exqu,n)-component of x is ageq| m.ny 7 0
and remains invariant under p. So x ¢ ker o, a contradiction, and so a5 = 0 for all
neY\X.

Case 2: If now ay; # 0 for some vV € Y, \ X, then the ey-component of x is nonzero, and
invariant under p, a contradiction.

Hence x € Gx,x and the claim ker p = G, x follows.

We have shown that Gy,yx, = Imp = Gy,y/Gx,x and it remains to show that Im p
is Ry-free. We choose an arbitrary subset H C Gy,y \ Gx, x of cardinality ¥ and will
show that Hp can be embedded into a free, pure submodule of Im p.

As in the proof of Lemma 3.7 we can find @2, C Y, and Q C Y with |Q,], |2] < |H|
such that

H C Gq,0 = (Aey, Ay%N, Gx,x |VeEQ e CGy,y.

Moreover, let A = Q, \ (Uﬁeﬂ[ﬁ]N U Uﬁeg[bﬁ] U X,). Then By is a free direct
summand of Gq,q, Bap is a free direct summand of Gg,op, and we may assume that
Q C UﬁeQ[ﬁ]N U Uﬁeg[bﬁ] U X.. We get

Ga.0 € Gq = (Aeq m.n), Aev, AY%N, Gx,x |
neQ\X,velbgl, 1 <m =<k, N <n <o),
which is a pure submodule of Gy,y.
Clearly Hp Sy Gqp and Gop S« Gy,y/Gx,x = Im p is pure by Priifer (see [10,
p. 115, Lemma 26.1(ii)]) because ker p = Gx,x C Gq.
By Proposition 3.6 (applied to €2 \ X with |u5| > f and us given by Definition 4.1)
we can express

/ /
GQ = <eﬁaw (m,n)’ €y, ei/a yﬁan, yﬁ/n |

a<Rf_,1<m<k, N<n<w, VET'F,V € Xy, 7T € X)a
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and there are pairs (£, ny) with £y € uze and N < ny < o such that

T {lasn) ¢ (77 1{ep. ) | B <@} U|JQuF  foralln = ng.

By Definition 4.1 and £, € uz« we also get

V(e n) ¢ (17 1(€g,n) | B < @} U| JQaF U X..

As in Lemma 3.7 we choose an |2 \ X|-filtration of G g, so let

/ /
GO( = <€ﬁ1/w (m,n)» €V, €3/, yﬁyn, yﬁ/n |

y<a,l<m<k, N<n<w, ven'F,V eX. 7 €X)a.

Thus it is immediate that Go = Gy, x, G|o\x| = Gq and the arguments of Lemma 3.7
show that Go = Gx,x @ F for some free A-module F. This and ker p = Gx, x imply
that Hp can be embedded into a pure, free A-submodule Ggp, and (e) holds.

The Ry-freeness of Gy,yx, is now immediate from the existence of the <X ¢-closed
family C = {(Gq @ Ba)p | |A[, |2] < Ry} of free, pure submodules of Gy,yx, (cf.
Section 2.2). m]

Next we prove

Transitivity Lemma 4.6. (a) Given two f-closed triples (Z, Z,Yy) and (Y, Y, X,)
such that Y = Zy,, the triple (Z, Z, X) is also f-closed.

(b) Given also a (Z, Z, Y,)-suitable family § = {y% =ngby+y7 | € Z, by € Bgz,}
such that §y is (Yy, Y, Xy)-suitable, the following holds:

1 Zx, =Yx,.
(i) Fis (Z«, Z, X,)-suitable.
(ii) Gy,yx, € Gz, zx, withGz,zx,/Gy,vx, = Gz,zv,

Observation 4.7. With Theorem 4.5 it follows from the Transitivity Lemma 4.6 that
GY*YX* - GZ*ZX* and GZ*ZX*/GY*YX* is Nf—free.

Proof of the Transitivity Lemma. (a) Note that (Z,, Z) is A-closed, because (Zy, Z, Yy)
is f-closed and X, is almost tree-closed because (Y, Y, X,) is f-closed. Now we con-
tinue to exploit the f-closedness of (Y, Y, X,) (see Definition 4.1(b)). First we find that
X4 C Yy, hence if 7 € Z with |uz(Yy)| > f, then also |uz(X4)| = f. Secondly, if
[7], € Y, for some n < w, then 77 € Y, and therefore either |[u7(Xy)| > f or []y € X,
for some n’ < w.

(b) @) From Y C Z it follows that Yy, € Zy,. Conversely, if 7 € Z and [77], € X,
for some n < w, then [77], C Y, (from X, C Y,) and 57 € Y by the definition of Y. Now
it follows that Zx, C Yx,, and therefore Zx, = Yx,.

(ii) If 7 € Zx,, then (i) yields € Yx,, and therefore [b7] C X, because §y is
(Y4, Y, X,)-suitable.

(iii) Clearly py,yx, € pz,zx, and Gy,y € Gz, z (see Theorem 4.5). Hence Gy, yx,
= Gy,ypv,vyx, € Gz,zpz,zx, = Gz,7x,-
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Next we calculate with the help of (i) and Theorem 4.5(e):

&6z,2x./Gy,vyx, = (Gz,2)pz,2x,/(Gy,y)py, v X,
= (Gz,z/ker(pz,zx,))/(Gy,y /[ker(py,vx,) = (Gz,2/Gx,zx,)/(Gy,y/Gx,vy,)
=(Gz,2/Gx,2x,)/(Gy,v/Gx.zx,) = Gz,2/Gy,y = Gz,zv,. O
Definition 4.8. A triple (Y, Y, X,) is §-closed for a family
5= {y%:nﬂm%—yﬁlﬁe Y, bﬁe BY*}
if:
(i) (Y4, Y)is A-closed.
(i) X4 CY,.
(iii) X, is almost tree-closed.
(iv) If 7 € Y and there is 1 < m < k such that 7] (m, n) € X, for arbitrarily large n < w,

then [7]y C X, for some N < w.
(v) If 7 € Y and [y € X, for some N < w, then also [b7] C X.

It is clear from the definition and Observation 4.2 that (Y, Y, X,) is §-closed for a
family § as above if and only if (Y, Y, X) is k-closed and § is (Y, Y, X, )-suitable.

Observation 4.9. Let §={y;=nzbs+yy | T€Y, by€ By,} and (Y, Y, XD, (Y4, Y, X2)
be §-closed. Then:

(@) (Yy, Y, XL U X2) is F-closed.
(b) (Ys, Y, X! N X2) is F-closed.

Proof. Trivial. o

Theorem 4.10. (a) If (Y, Y, X.) is §-closed, then (Y, Y, X,) is k-closed.

) If (Yy,Y) is A-closed and Q2 C Y, then there exists X, C Y, such that (Y, Y, X,)
is k-closed, 2, C X, and |X,| < |Q*|R0. Moreover, there is a unique, minimal
tree-closed Xy = S = Q0 (Yy, Y) with respect to Y, such that for all m € Y with
[7]n € X, for some n < w we have [n] N Y, C X,.

() If (Yi,Y) is A-closed, Q2. C Y, and § = {y’ﬁ | € Y, by € By,}, then there is
X, C Y, with (Y, Y, X,) §-closed, Q. € X, and | X,| < |40, There is a unique,
minimal tree-closed X, = Q0 = Q_*(Y*, Y, §) with respect to Y such that for all
n € Y with [7], C X4 for somen < w we have [n] NY, C X,.

Proof. (a) We must show that 7 € Y with [f]], € X, for any n < w implies |uz| = k.

If |uz| < k, then we can choose 1 < m < k with m ¢ uz. Thus (by definition of usz)
it follows that 771 (m, n) € X, for arbitrarily large n < w. And from Definition 4.8(iv) it
also follows that [77], € X, for some n’ < w, which is a contradiction.

(b) Q. is uniquely determined by the closure of €2, under Definition 3.1(ii) and Defi-
nition 4.8(1v).

(c) follows similarly to (b) using Definition 4.8(v). O
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&tation 4.11. Let (Y, Y) be A-closed and 2, C Y, as in Theorem 4.10. If Q. C
Q. CY,, then we call Q.. §-closed in Y, if:

e Q, C Y, is tree-closed with respect to Y, i.e. forany 7 € A with 1 < m < k,
ny < ny <wand 7l (m, ns) € Q, and 7] (m, n1) € Y, we have 7] (m, n1) € Qs.

e If 77 € Y and there is 1 < m < k such that 7] (m, n) € Q, for arbitrarily large n < o,
then [7] N Y, C Q..

o If7 €Y and[7], C Q, for some n < w, then also [b7] € Q..

More_over, we call Q, = Q_*(Y*_,Y, %) the F-closure of 2 in Yy if Qy is F-closed in Yy,
and 2, is minimal with Q, C Q. C Y.

Remark 4.12. Given a A-closed pair (Yy, Y), Q. € Y,, and a family § = {y% |
N € Y, by € By,}, by Theorem 4.10(c) there is a triple (Y, Y, X,) for Q. such that
X is the §-closure of €2, in Y. The set X = Yy, has the following properties (due to

Theorems 4.5 and 4.10(a)):
Ba, € Gx,x S« Gy,y,» Gy,y/Gx,x are 8;-free with | X,| < [Q2[™0.
Note that Gx, x is inspired by the concept of elementary submodels.

Observation 4.13. For any A-closed (Yy,Y) and QL, Q2 C Y, and § = 5
by + yi | 1 € Y, by € By,} the following holds:

i) Q}kuggzsz_iusz_i.
() QlnQ2calna2
A similar statement holds for the k-closures of subsets of Y.

Proof. Trivial. O

Lemma 4.14. Let (Z.,Z,Y) and (Y., Y, X)) be f-closed triples with Y = Zy,, § =
{y% = npby + yy | 1 € Z, by € Bz} being (Zy, Z, Y)-suitable, Fy being (Y, Y, X,)-
suitable and U € G z,zx,. Then there exist Q. C Z, and Q < Z such that:

(@) [Q2], 2] = U] - Ro.

(b) (YeUSQ,, YUQ,Y,)is f-closedandY = (Y U Q)y,.

(c) Fruais (Y UQ,, Y URQ, Y,)-suitable.

(d) U C Gy,ua,.vue.x, ©Gz,zx,-

©) If (Zy, Z, Xy) is f'-closed, then so is (Y4 U Q,, Y U, X,).

Proof. Choose a minimal family U’ € Gz, 7 of preimages of elements of U under p =
pz,zx, With U'p = U and let Q be the family of all 7 € Z such that ¥y contributes to
the representation of some u € U’. Moreover, let 2, be the tree-closure (under Definition
3.1(3i1)) of ([U'] U [R2]) N Z, with respect to Z,. Hence (a) obviously holds.

Recall that Q. and Y. are almost tree-closed. Hence also Y, U 2, is almost tree-
closed. If 7 € €, then [7] N Z, C . Now it is clear that (Y, U Q,,Y U Q,7,) is
f-closed (because (Zy, Z,Y,) is). If n € (Y U Q)y,, then [57], € Y, for some n < w,
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hence 7 € Zy, = Y, so (Y U Q)y, € Y and the converse inclusion is trivial, thus (b)
holds.

Since § is (Z, Z, Y,)-suitable, so is Fyugq, which shows (c).

For (d) recall that (Z,, Z, X.) is f-closed due to the Transitivity Lemma 4.6. We note
that U C Gy,ugq,.vuq,x, through our choice of U’, Q, and €.

Moreover, Gy,uq,,vyue,x. & Gz,zx, follows from py,uq, vue,x. € Pz.zx, = P,
Gy,ua,.vue,.x, = Grua,yuepe and Gz, zx, = Gz, zp with Gy,uq, yue C Gz,z as
required. Now (e) holds trivially. O

Observation 4.15. (a) The proof of Lemma 4.14 applies for arbitrary almost tree-closed
sets Qy C Z, with ([U'1U [Q]) N Z, C Q.. In particular, this is the case when Q, =
((UMUIKD N Z(Zs, Z, F); however, the cardinal condition (a) becomes || < |U|™.

(b) The proof of Lemma 4.14 also applies if we replace 2 by the larger family
Q' = Zg, with Q, = ([U'1U[QD N Z(Zs, Z,F).

Observe that Q, = (([UTU[Q']) N Z4(Zy, Z,F) and |Q'| < |U|M.

(c) Note that by the construction of €2, and €2, the following holds: If U bc U C
Gz.zx, and U, Q,, Q are as described in the lemma, then we can choose Qi C Q, and

QP C Q so that also U°, Qi, QP are as described in the lemma.

Lemma 4.16. Let (Z.,Z,Y,) and (Y., Y, X,) be f-closed triples such that Y = Zy,,
g = {y/ﬁ =myby+y5 | 1 € Z,by € Bz} is (Zs, Z, Yy)-suitable, §y is (Ys, Y, X,)-
suitable and U C Gy,yx,. Then there exists Q2 C Yy such that:

(@) 194 < |UM.

(b) (Zy, Z, XU Q) and (X, Uy, Y, X,) are f-closed withY' = Zx uq, = Yx,uq,.
(©) Fis (Zy, Z, X, U Qy)-suitable.

() Fy is (X4 UQy, Y, X,)-suitable.

(e) U< Gyx,ua,.v.x. €Grrx, €Gz.zx,.

Proof. Let U’ C Gy,y again be a minimal family of preimages of elements of U under
p=pz.zx, withU'p = U and put @), = [U'] and Q, = Q_;(Y*, Y, §y). Then (a) holds
automatically. Moreover, 2, C Y, is almost tree-closed and hence so is X, U Q.

It € Z with luz(Y,)| > f, then |uz;(X,USy)| > f follows from X, UQ, C Y. For
otherwise 7 € Z with [77], C Y, forsomen < w,so7n € Y. If now |[77], N Q4| = Rp, then
[7]n C Q4 C X, U Q, because 2, = Q_;(Y*, Y, §y) is Sy-closed. If |[17], N Q4] < No,
then uz (X, U Q) = uz(X,) and uz(X, U Q)| = |uz(Xy)| > f for some n’ < w or
7] € X« C X, U Q,, respectively from the f-closedness of (Y, Y, X,). This is half
of (b).

If y € Z with [77], € X, U Q4 for some n < w, then similarly 7 € Y and [b5] C
X, UQ, because §y is (Y, Y, X,)-suitable and 2, = Q_;(Y*, Y, §y) is §y-closed. Hence
§is (Zs, Z, X, U Q,)-suitable. From the above we also have Y' = Zx_uq, = Yx,uq,

For 7 € Y’, by definition we have [77], € X, U Q, for some n < o, hence
(X, UQy, Y')is A-closed. Clearly (X, US4, Y/, X,) is f-closed, because (Yy, Y, X,) is.

If7 € Y C Y and [7], € X, for some n < w, then [b7] € X, because Fy is
(Y4, Y, X,)-suitable. Hence Fy is (Xx U Q4, Y’, X,)-suitable and (d) holds.
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For (e) we have U’ C Gy, ugq,.y’ from the first line of the proof: For each u € U’ we

have [u] C [U’] € Q., while for each 77 € ¥ with y5 used in the representation of u we
have [[7] N [U’]| = Ro, hence [7] N Y, C Q4 and 77 € Y’ because Q, = Q_;(Y*, Y, §y) is

Sy-closed. Thus U € G, uq,.v’.x,- The proof of the remaining inclusions of (e) follows
as in Lemma 4.14. m}

Remark 4.17. (i) The family Q, = Q_;(Y*, Y, §y) is §y-closed by construction.

(ii) The construction of U’, 2, and €2, depends only on (Yy, Y, X,), §y and U. By
Y = Zx.ua, = Yx,uq, also the triple (X, U Q,, Y’, X,) depends only on (Y, ¥, X,),
Sy and U.

The following theorem is the main result of this section. It provides the possibility of
concentrating on those particular triple submodules mentioned below of relatively small
size when proving the principal theorem of this paper.

Main Theorem 4.18. Let (Z,, Z,Y,) and (Y, Y, X,) be f-closed triples such that Y =
Zy, § = {y% =myby+yy | € Z, by € Bz, }is (Zy, Z, Y,)-suitable, Fy is (Ys, Y, Xy)-
suitable and H C Gy,yx,, K € Gz,zx, with |H|,|K| < k. Then there exist triples
(Z,,7',Y), (Y., Y, X|) such that:

@) Z,<CZ,Y,CY, X, CX, 2 CZ, Y CY.

(b) (Z,,Z',Y))and (Y., Y', X) are f-closed, and Y' = Z;,;.

(©) §z is(Z,,Z', Y])-suitable.

(d) Fy is (Y., Y, X])-suitable.

() H € Gyyx, € Gy,yx, € Gz,zx,-

) K< Gzzx, ©Gzzx,.

ERVARIARCARVARI AR

(h) A cZ \ Zx*, Y = ZX,AJY,; \Zx*, and Z/X* = Y;(* = (.

(i) The sets Y', Y, and X/, depend only on the choice of Y, Y4, X4, &y and H.
G) If (Z«, Z, Xy) is f'-closed, then so is (Z,,, Z', X,).

Proof. First we apply Lemma 4.16 and Remark 4.17 to H and we find an §y-closure
Q! C v, of size |QL] < |H | such that

(Zi, Z, X. U Qy), (X UQL, Y1, X)) with Y1 =Zy yo1 =Yy uor  (4.1)
are f-closed. Moreover:

(D Tis (Z, Z, X U QL)-suitable.
D) Fy, is (X, U QL Y1, X,)-suitable.
) H <€ Gy ual v, x, € Gr.rx,-
(IV) The sets Qi and Y| depend only on (Y, Y, X,), Sy and H.

Now we apply Lemma 4.14 and Observation 4.15 to K and to (Zy, Z, X, U Q}k),
(X, U Qi Y1, X,) to get the following facts.

(V) There are an §-closure QF C Z, and Q* = Zgp C Z with |23, |Q?| < [K[™.
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(VD) (X, UQluQ2 v, uQ? X,uUQl) and (X, UQL ¥, X,) are f-closed with
Y= U QZ)X*USZ};
(VID) Fy,ug2 is (X UQLUQZ, Y1 UQ2 X, UQL)-suitable.
(VII) K S Gy, ualuez ruez.x, € Gz.zx,-
(IX) If (Zy, Z, X,) is f'-closed, then so is (X, U QL U Q2, ¥1 U Q?, X,).
‘We want to show that the sets

zZ.=Qlu@2 v =l Xx. =x.nq! 4.2)

and
Z=(u@)\(nudx,, Y =Y\)x (4.3)
satisfy the conditions of Theorem 4.18.
If 5 € Yy, then [77]y € X, U Q}k for some N < w through (VI), and

[7]n € X« forsomen <w or [fly C Qi 4.4

follows from either |[77]y N Q}k| = Ry and the §Fy-closedness of Qi, or uy; = ¥ together
with (VI); see Notation 4.11. Hence (by definition of Y’) [f]y € Q! forany 7 € Y'.

Similarly forn € Y U Q? we have [7ly € XU Q}k U Qi for some N < w from (VI),
and

[7], € X, forsomen <w or [f]y C Qi forsome N' <w or [7ly C Qi
4.5)
follows from either |[]xy N Q£| = Ry and the §-closedness of Qi or uz(Xy U Qi) =0
and 77 € Y| with the help of (VI). Hence (by definition of Z’) [7]n' € Qi or [7]y C Qﬁ
forany 77 € Z'.

Using (4.5) and (4.4) we see that (Z,, Z') and (Y], Y’) are A-closed, because for any
7 € Z' we have []y» € QLU Q2 = Z/ for some N” < w, and for any 77 € ¥’ we have
[7] € QL = Y.. With X, and Q! also X/, = X, N QL is almost tree-closed.

Next we show (b) and begin with the f-closedness of (Z,,Z',Y]). Let7] € Z' C
Y1 U Q2 If |uz(X, U QL) > £, then also |uz(Y])| > f by Y, = Q! € X, UQl. But
if uz(X. U Q| < f, then [7], € X, U QL for some n < w and 7 € ¥ by (VI). From
(4.4) it follows that [7],; X, for some n’ < w or [7], C R}, hence [7], € QL =Y/,
resulting from the definition of Z’.

Now we show the f-closedness of (Y, Y’, X}). Let € Y’ C Yi.If luz(X,)| > f,
then also [up(X.)| > f by X, = X, N QL C X,. Butif |uz(X,)| < £. then [7], < X,
for some n < w and 7 € Y; by (VI), which contradicts 7 € Y’.

Next we want show that Y/ = Z;,;. Since Y; = (Y; U Qz)x*uszia by (VI) and (4.4) we

see for any 77 € ¥; U Q2 that 77 € Y’ if and only if [77], € X, U Qi for some n < w and
(7] € X, for any n’ < w. This is the case if and only if [7],, € Qi for some n < w and
(7] & X, forany n’ < w.

Using that Z' = (Y] U Q2) \ (Y] U Q%)x, we find for 7 € ¥, U Q that

NeZy < M CY, = Q! for some n < w and [7j],y Z X, forany n’ < w.

Hence Y/ = Z

vs» and (b) is established.
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For (c) we also consider 7j € Z’ with [77], € Y = Q! for some n < w. Then 7] € Y}
by (VI) and [b5] € Qi, using the §y-closedness of Qi

For (d) we let 7 € Y'. Then [77], € X € X, for some n < o contradicts the
definition of ¥’ and the claim of Definition 4.3(a) is empty, thus (d) holds trivially.

Next we show (e). Obviously Gy;yr € Gy, gl y,» and also pyry'x, S px,uql v, x,
= p satisfies egp = O forallv € (X, U Ql) \ Y, € X, as well as y;p0 = 0 for all
7€ Y1\ Y = (Y)x,. Inparticular Gy;yx; = Gy;y'p = Gy ual v, P = Gx,ual v, X,
and (IIT) implies (e).

Condition (f) follows similarly by using Gz, z'x;, = Gx,uqlua? vue?,x, and (VIID).

The first part of (g) is clear from the choice of Q! and Q2: |Z.|, [Y]], |X.] < &M,
From (4.4) it follows that |Y'| < |§2>}<|RO < |H|¥ and with (4.5) we also infer that
1Z'] < |1QLU Q2N < kMo,

(i) follows by the definition of Y, Y’ and X/, with (IV).

For (j) we must show that (Z,Z’, X.) is also f’-closed. If 7 € Z’' with
luz(X.)| = f', then also |uz(X})| > f' from X = X*ﬂQi C X.. Butif luz(X,)| < f/,
then [77], € X, for some n < w by (IX) contradicts 77 € Z'. In particular, also (h) follows

due to the definition of Z’ and Y. O
Remark 4.19. (i) From the definitions of Y" and Z’, (V) and (4.1) it follows that
Y'=Zy o1\ Zx, and Z'=(Zy g UZg) \ Zx, =Y U(Zgz \ Zy,).

In particular, ZQi \Zx, € Z'.

(ii) Observe that |Q2] < |K | and 1Zg2 \ Zx,| < |K Mo,

(iii) If for the tuple (H, K, L, Q2,Y’, Z') the theorem holds and K'C K € Gz, 7x, ,
then by Observation 4.15 we can choose Qi/ - Qi Z" C Z’ such that the tuple
(H,K',QL, Q2" y’, 7") also fulfills the conclusion of the theorem.

5. Chains of triples

First we define closure properties ‘preserving freeness’, which are also important in [14,
24]; compare Proposition 3.6.

Definition 5.1. Let Y, € A,. Then X, C Y, is pairwise closed (for Y,) if from
7l{m,n), 7{m',n’y € X, with1 <m < m' < k,n,n’ < w,7 € A it follows that
(M1NYs € X,

Lemma 5.2. Let X, C Y, C A. Then there is a minimal set PC (X, Y,) with X, C
PC (X4, Yy) C Yy, and PC(Xy, Yy) is pairwise closed (for Y,). Moreover, |PC (X, Yy)|
= [X«| - Ro.

Proof. Trivial. o

If Y, is clear from the context, we will replace PC (X, Y,) by PC(X,).
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Theorem 5.3. Let (Z., Z,Y,) and (Y,Y, Xy) be f-closed (for some f > 2) with
Y =Zy,§ = {y% = myby + y5 | 1 € Z, by € Bz,} (Zs, Z, Yy)-suitable and Fy
(Ys, Y, X,)-suitable. Moreover, let Q}k C Y, Qﬁ, Qi” CZ,Z,Z,CZ(n < w) have
the following properties:

(A) Qi is §y-closed and Qi, Qi” (n < w) are §-closed.

(B) PC(Q¥,Z,) C "

©) (luz z,eh, @luq2, z. Qb (QL, Y, X.NQL) are f-closed, with Y' =
Z;Z}k = (Z))q foralln < w.

D) Tz is (QLUQ2, 7/, Q)-suitable,
Sz is (QLuQ, Z,, QL)-suitable and
Sy is (QL Y, X, 0 QL)-suitable.

(B) Galue2 7z x.ne! € Gz.zx. Gaiuar 71 x,nal € Gz.zx, and
Galy x,nal € Gr.yx, € Gz, zx,.

(F) Zy =Yy =(Z)x. =0

(G) ZQ»% \ZX* cz cZz \ Zx, and Zgin \ZXJF - Z; CZ\ Zx,.

We define the following subsets of A and A, respectively:

() z/=qluQiul,., Q¥
(11) Y>;/</ = Q}ﬁ U Un<w Qin’
(i) X! = X, NQL
(iv) 2" =2'"ul,_, Z.,
v Y =Y'ul,_,Z.

Then:

(@ (Z],Z",Y])is (f — D-closed, (Y], Y", X) is f-closed withY" = Z},.
* * % « “

(b) Fzvis(ZY,Z",Y])-suitable.

(c) Fyris (Y, Y", X])-suitable.

(d) GY;’Y//X;’ = GQLY/’X*QQJ« + Zn<w GQ}FUQ@,Z;,X*OQL g GZ*ZX*J

(e) GZ;/Z//X;/ = GQLUQi,ZCX*ﬂQL + Zn<a) GQiUQ%H,Z;,X*ﬂQi - GZ*ZX*~

() 2" CZ\Zx, and Z§ =Yy =0

(&) If (Zs, Z, X)) is f'-closed, then so is (Z)], Z", X7)).

Proof. (a) Observe that |, _, Q2" C Z, is almost tree-closed, because Q2" is tree-
closed for Z,. Hence also Z/, Y] and X! are almost tree-closed and (Z/, Z"), (Y], Y")
are A-closed.

Now we show that (Z, Z",Y) is (f — 1)-closed. Indeed, if 7 € Z” C Z and
|“ﬁ(9i)| < f, then [, € QL C Y/ for some n’ < w due to the definition of Z”
and (C).

Conversely, if |Mﬁ(Qi)| > f, then uz(Y)) C uﬁ(Q}k) because Q! < Y/ If
|uﬁ(9}k) \ um(Y])| > 1, then there are 1 < m; < mp < k and ny,ny < w such that
mi,my € ug(QL)\ ug(Y)), 71(mi, n1), 7l{m2,n2) € Y\ QL < U,_, 2. Hence

_ 2n’ _ 2n/,
7limi,n1) € Q" and 7] (ma, na) € Q. * for some n|,ny < o If N = max{n}, n},
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then 771{m1, n1), 71{my, n2) € QiN and [77],y C Qi’NH C v/ for some n’ < w, as
required.

If, however, |uz(QL)| > f and |uz(QL) \uz(Y))| < 1, then clearly |uz(Y])| > f —1.

Next we show that (Y, Y, X!) is f-closed. Recall that (Z,, Z, X,) is f-closed by
the Transitivity Lemma 4.6 and the assumptions of the theorem. If 7 € Y” C Z and
luz(X)| > f, then |uﬁ(X;’)| > f from X! C X,. Butif luz(Xs)| < f,then [7],y € X,
for some n’ < w by the f-closedness of (Z,, Z, X,), and the branch 7 belongs to either
Y )/(* or (Z))x, for some n, which contradicts (F).

Finally, we must show Y/ =Z gﬁ!. The inclusion C is obvious. Conversely, let 77 € Z;ﬁ!.
Then [7],y € QLUU,_,, 22" for some n' < w. If [uz(QL)| < f, then [7],» < Q! for
some n” < wand 7 € Y’ C Y” by definition of Z” and (C). If, however, |uﬁ(§2}k)| >
f = 2, then again there are 1 < m; < my < k and n1,n2 < o such that my,my €
uﬁ(Qi) and 71 (my, n1), 71{ma, n2) € U, -, Qi”. As above there is N < w such that
7 (m1, n1), 7l (ma, n2) € Q2N By (B) we have [7] 1 Z. € Q2™ and 7 € Zgpwa.
Using (G) and the definition of Z”, we also have Z” C Z \ Zx,, and thus 77 ¢ Zx,.
Finally 7 € Zoonvi \ Zx, € Zyy CY" andso Y = Zg};,. Thus (a) holds.

(b) If 7 € Z” and [77],y C Y/ for some n’ < w, then (using the arguments above)
[7], is a subset of either Q1 or Q2" for some n,n” < w. If [7],» € ., then due
to (D) and the definition of Z” we have [b5] C Q! C v/ For [7],» € Q2" we find that
[b7] € Q2" C ¥/, because Q2" is F-closed.

(©)If 7 € Y and [77],y € X C X, for some n < w, then 7 belongs to either Y)’(* or
(Z))x, for some n, which contradicts (F), so (c) follows.

(d) Clearly Paly x,.nal < pyryrxy =P and Palua 7/ x,NQl < pyryrxy = p, and
hence

Gaty x.nel + D Gaiue,z, x.nal = (GQLY’ +> GQLuQ%ﬂ,Z;)p = Gyyyrp

n<w n<w

= GY:Y”X;’ .

The inclusion Gyyyrx» € Gz,zx, follows from (E).

(e) follows by the same arguments as (d).

(f) From (G) and the definition of Z” it follows that Z” C Z \ Zy,. Similarly Z;’(* =
Y }/(’* = @ is a consequence of (F).

(@) If7 € Z" and |uz(X,)| > f', then also |uz(X)| > f’ because X, C X,. But if
luz(X.)| < f’, then [77], € X, for some n < w because (Z, Z, X) is f’'-closed, which

contradicts (f), showing (g). ]

6. The Step Lemma

If § is an ordinal with cf(§) = w, then let

Is={ne®s|supnp=3}, andifne® s, then [n]={nln|n<w)c>s.



1796 Riidiger Gobel et al.

Proposition 6.1 (The Easy Black Box). For each cardinal » > Ry and set E of cardi-
nality < AN there is a family (gnlne @A) with the following properties:

-

@) gy:[nl— &
(ii) For each map g : 1>\ — B there exists some n € ®T 1 with gn S &g

Proof (see [14, p. 55, Lemma 2.3], which we outline for the convenience of the reader).
Since |E| < AN = |“A|, we can fix an embedding 7 : E < “A. And since |7 A| = A,
there is also a list ®” A = (uy | @ < A) with enough repetitions for each n € 74, i.e.
{0 < A | ug = n} € X is unbounded. Moreover, we define for each n < w a coding map

2 — —
T "E > "AC N @ = (@0, ..., 0n1) > @y = (@0t )" . N Qa7 ).
Finally, let X € “T A be the collection of all order preserving maps 1 : @ — A such that

w

Jo=(pili <w)e®B with (@[n)m, = pupy foralln < w. 6.1)

By definition of 7, it follows that @ is uniquely determined by (6.1). (Just note that
Wy determines @, [n for all m < n.)

We now prove the two statements of the proposition. For (i) we consider any n € ®TA.
If n ¢ X, then we can choose arbitrary elements g,(n[n) € &, and if n € X, then we
choose the uniquely determined sequence @ from (6.1) and let g,,(n[n) = @,.

For (ii) we consider some g : ®’>1 — E. In this case we must define n = (o, |
n < ) € “TA. Since the list of 14 is unbounded, we can choose inductively o, > a,_1
with (g(n[m) | m < n)mw, = pg, foralln < w.

Finally, we check (ii). Using (6.1) we will find that the sequence 1 belongs to X:

Ifo = (gl | i < w) € “E, then (pln)m, = (g(n[m) | m < Ny = po, =
tny foralln < w, and g, (nn) = ¢, = g(nln) for all n < w is immediate. o

Definition 6.2. If 0 < f < k and é_‘ € wT)\.f+1 x -+ x ®T )4, then we put

o Af={(ijeA|TI(fk]=E).

o Al={Ve A VI(fK=5).

o If f<i<kthen Ay = (Ve Au|v; & # v, vy =&y forall | <m #i <k).
° AE* =Uf<i§kAil'

Lemma 63. If1 < f <k & € “Mrpyy x -+ x ®"Ag and E,, C A, is a finite subset,
then (Jy, J, 1) is f-closed for J, = I, U Ai, J = A% and I, = Ag* U E,.

Proof. From the hypothesis and Definition 6.2 it follows that Aé, Aéi, Ag* are tree-
closed, hence I, and J, are almost tree-closed. If 7 € J, then [n7] C AiUAg* C J,.
Moreover, (Jx, J) is A-closed. Hence we must only check Definition 4.1(b)(iv). If 7 € J,

then {1, ..., f} C uz(l;) follows from AiﬁAg* = @ and finiteness of E. Thus |uz| > f
as required. O
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Definition 6.4. (a) For v € A, we define the ordinal content orcov = | J{Imvy, | 1 <
m < k}.

(b) If Y, C Ay, thenorcoY, = Uiey* orcov.

(c) If S, T C Arand t : S — T is a bijection, then T extends canonically to a bijection
T:925 — ®ZT and for 7 € A, U A we define T = (917, ..., Nk 7).

(d) If X, € Ay, then we call a bijection 7 : § — T X,-admissible if orco X,, C S and
X4T C A,

() If t : § — T isan X,- admlss1ble bljeCthH then 7 extends canonically to an A-
module monomorphism 7 : BX — BA = B which we call the shift isomorphism
(onto its image).

We want to show that X ,-admissible maps are compatible with the notions of triple
modules etc. from the last sections.

Observation 6.5. (i) If X C Aandt : S — T is an [X]-admissible bijection, then
Xt C A.

@) If (Y, Y, Xy) is f-closed and © : S — T is a Yy-admissible bijection, then
Yy, Y, X1 := (Yet, Y1, Xi7) is f-closed as well.

(1) If§ = {y% = mgby+y7 | € Y}is (Y, Y, Xy)-suitable and © is Yy-admissible, then
e = {57 = y(byt) + ye |1 € Y} = Ay, = 71 (b1 T) +yy | T € Y}is
(Y, Y, X)) T-suitable.

@iv) If Gy,yx, is the triple module from Theorem 4.5 generated by the triple (Y., Y, X,)
and the family § of branches, and if Tt is Y.-admissible, then Gy,yx,): =
Gy, v x, (for Yy, Y, Xs)t and §+) is a well-defined A-module and (Gy,yx,)T =
Gr.rxe- L L

V) If t is Yi-admissible, then (2 (Yy, Y, §))T = Qut(Yyt, Y1, F1).

(vi) If t is Yy-admissible, then PC (X, Y.)T = PC (X1, Y,7).

Proof. Since all statements are obvious, for illustration we only show that Xt € A for
X C A, which is part of (i).

If 7 € X, then [57] € [X] and [77]t € A, In particular, 77 (m, n)t € A, for any
1 <m <kandn < w. Thus (1, [n)t € ®*>A,, and 1,7 € ®* A, and so T € A. O

We now prove the central step lemma. Step lemmas are designed to kill unwanted homo-
morphisms. It is critical that the construction takes place in the category we are interested
in, in this paper R, -free A-modules. The preparation for this is the work in the preceding
sections.

Step Lemma 6.6. Using the notation from Section 4 and above, assume that the follow-
ing parameters are given:

() 0< f<kand& € “Phpyy x - x 2T
(i) E. C Ay is a finite set.
(i) (Jy, J, L) is a triple such that

L=1LE=Ag UE., J=J@=A% J,=J@®=LUAL
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iv) G1 =G 1(¢) = By, is a free A-module.
V) (Vi, V, Uy is (f + 1)-closed.
vi) & = {y% = T[%b% + yy | 71 € V}is (Vi, V, Uy)-suitable.
(vii) G = Gy,vy, and ¢ : G1 — G is a homomorphism with z¢ # 0 for some z €
Bg, € G.

Then there are m; € ﬁ(ﬁ € J)suchthat Gy =Gy gwith) ={xg=mzz+yzln € J}
has the following property.

If (Z«,Z,Yy) and (Y, Y, Xy) are (f + 1)-closed with Y = Zy, § = {yf =
piby + y7 | 1 € Z} is (Zy, Z, Yy)-suitable, Sy is (Yy, Y, X,)-suitable and t is a V-
admissible bijection with (V,, V,U)t = (Y. Y, Xy), &1 = Fy and G4 = Gz, zx,,
G3 = Gy,yx,, then G| € G2, Gt = G3 € G4 and

ot : G1 — G3 does not extend to a homomorphism Gy — Gg.

Remark 6.7. The 75;’s can be chosen to depend only on G, or on & \ By, , respectively,
but not on Gy, .

The mappings in the step lemma can be visualized by the following diagram, where
arrows without a name are inclusions.

G, —————> Gy

N

G1—>G3

Proof. The step lemma is shown by induction on f.

The case f =0
If f = 0, then the basic sets satisfy

Fen, Al=g, J=AT=(F), A=)
I. = E1U E, (E. C A, finite), J, = L UAS =1,
and the corresponding A-modules are
Gi = By, (whichis free), Gy =G,y = (By,. Axg)x = (B, Axg; | i < w) C, B.

Hence G,/G| = S™™A is an S-divisible, S-torsion-free A-module of A-rank 1. So the
S-adic closure G| of G| is G| = G,. Moreover, G = Gy,yy, is R;-free by Theo-
rem 4.5 because (Vy, V, U,) is 1-closed and & is (Vi, V, Uy)-suitable. In particula}r\G is
S-cotorsion-free by Observation 3.5(b) and 0 # z¢ € G. Thus we find 7 € R (the
S-completion of R) such that 7z ¢ G.
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The choice of = depends only on G: Using that Gy, v\v,, € Gyv,v with the associ-
ated family & \ &y, of branch elements and pv, v\v;, v, S pv,vu, = p With y%,o =0
for all ; € Vy,, we find that Gy,vy, = Gy, v\v,, u,- Hence the choice of 7 does not
depend on &y, . This explains Remark 6.7.

Next we consider two extensions of G, namely G, = (By,, Ayg)* and G/Z’ =
(Bj,, A(mz + yg))*, and claim that ¢ cannot extend to a homomorphism ¢ of both with
image in G. Otherwise wz¢p = (nz—i—yg)fﬁ— ygfﬁ € G is a contradiction. So we can choose
g € {0, } such that ¢ : G; — G does not extend to a homomorphism ¢ : G, — G,
where G, = (By,, A(ngz + yg))*. In particular,

xgﬁ ¢ G, where xgp=mgz+ yg (6.2)

If there are (Z,, Z, Yy), (Yy, Y, X,), § and t contradicting the step lemma, then by
the Transitivity Lemma 4.6(b)(iii) we have G4/G3 = Gz, zy,, and Gz, zy, is R;-free by
Observation 4.7 because (Z,, Z, Y,) is 1-closed and § is (Z, Z, Y,)-suitable. Hence G3
is S-adically closed in G4 by Observation 3.5. The homomorphism ¢ : G| — G extends
uniquely (by continuity) to ¢ : G» — G, and the shift isomorphism 7 : G — G3 also
extends uniquely to T : G — 63.

If the composition map ¢t : G1 — G3 extends to ¢ : G2 — G4, then by uniqueness
Y = ¢7Tand xg¥ = x0T € G4 N Gz = G3 = Gt. We get xg¢ € G, which is a
contradiction.

The case f > 0

Now suppose that f > 0 and the lemma is already shown for f — 1. Let A = Ay
and & = Ay (setting Ao = |A|), hence & < A. The A-modules G| and G are given.
In particular, G = By, is free and (J,, J, I,) is f-closed by Lemma 6.3. Moreover,
{1,..., f} € uz(ly) for each 7 € J, hence |uz(Ix)| = f, and in particular [7] & I,
hence I := Jj, =0, and $ = {x7 = nzz + y7 | 71 € J}is (Js, J, I)-suitable. (Observe
that the factors 77 (7 € J) are not yet known, but [77z] C I, which suffices here to see
that $ is (Ji, J, I,)-suitable.)
So G| = By, = Gy, is as stated in Theorem 4.5 and

G1 € Gy =Gy, y,G1,Grare R-free, and G2/G1 = Gy, yy, is Ry-free.

By construction, |Iy| = |Ji| = |J4|™ = A% = A. Since f > Oand |[A| < A < Af =X
we may also assume that |G| = |G2| = A, and using the assumption that (V,, V, U,)
is (f 4+ 1)-closed and & is (Vi, V, U,)-suitable, we see that the module G = Gy, vy, is
also Ry 1-free by Theorem 4.5.

Preparing the predictions on G| for the step lemma

For the next steps we recall (from above) the definition of I' = oty = Useko I's with
A = {a € A | cf(a) = w}. From our choice of cardinals in Section 2.1 (i)-(iii), for
any § € A° we have 8] < uy, and thus [I's| < M?O = py < A. We can first well-order
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each I's for § € A° and then extend the ordering lexicographically using that A = ,u}“ is
regular. This gives an enumeration (4 | @ < A) of I' without repetitions and a monotonic
norm function || - || : A — A° (¢ > |la]) satisfying no € I'|g for all @ € A, which we
fix for the rest of this investigation.

Forve ™ rand & € “TAsyy x - x Ty, we define

A = e Al Y v V(ALK =EL Gu=B,z G=I{Gnlve“ A

Clearly |G| = 6 and |G| = A.

Let (V, V', UL) = (2L, V', U, N QL) be the triple defined in Theorem 4.18 and in
(4.2) by (Vi, V,Uy) and Img C Gy,yy, with the associated family &y of branches.
From Theorem 4.18 it follows that (V/, V', U}) is (f + 1)-closed and |V/|, |V'|, |U,| <
[Tm [N < |G1|™ = A. In particular |orco V]| < A = As, and we can find A C Apqq \
orco V, with |A| = A.

Until now we have used sequences A = (A,..., At (as in Section 2.1) based on
cardinals A, (which are ordinals and hence particular sets). In order to have room for the
construction of A-modules, we must now pass to sets of ordinals. Extending Section 2.1

we define a sequence A/ = (A}, ..., Ay) of sets of ordinals by
3 = Ag ifl <e<f,
¢ AUorco V] if f <t <k
Similarly to the old definition for A we now set A" = “A| x --- x “A} and A, =
M X e X 9T X oo x @) forany 1 < m < k. In contrast to the definition of A

we do not utilize the ordering on ), (as a set of ordinals). Again put A}, = [J, <m<i D
Now we are ready to define a relatively small A-module V into which we send interesting
submodules by shift isomorphisms for their predictions. Let V = Py AL Ael, which
is the S-adic completion of the free A-module Py, Aeg, thus a canonical A-module.
Moreover, let H = {H C V | H is an A-submodule, |H| < 6}. The cardinalities of these
new structures are immediate due to Section 2.1(iii). We have
A=A =N =0, V=AM =g, H =0 =0 =k

Now we can also give the exact definition of a trap. This notion comes from [4]; it
is designed to ‘catch’ small unwanted homomorphisms and is derived from particular
elementary submodels.

Definition 6.8. A tuple (G, H, P, Q, R, {) is a trap (for the step lemma) if G € G,
H €M,y : G — H isan R-homomorphism, P € A,, 0 € A’ and R C V are subsets
such that | P|, |Q], |R| < 6. Let ® be the family of all traps (G, H, P, O, R, V).

Next we must determine the size of ®, which is clearly || = |G| - |H] - |AL|? - |A"|° -
[V]?-0% = A -1? .67 = A. Thus we can consider the easy black box stated as Proposition
6.1, but with the new crucial family ® of traps:

The Easy Black Box 6.9. There is a family (g, | n € @\ with &n : [n] — O such that
for each map g : “1> ). — © there exists some n € “* ) with g, < g.



Prescribing endomorphism algebras of X -free modules 1801

The construction of G2

First we would like to indicate our strategy: In order to construct the desired X,-free
A-module G with End G = A we must find particular generators of G which will be
branch-like elements involving a summand with aring element 7 € R as factor which will
prevent unwanted endomorphisms. The A-module G is (a weak form of) an elementary
submodel of G; thus it is not surprising that we must determine these factors first for G».

Fora < Aand & € wTAf+1 x - x ®T; as in (i) of the Step Lemma 6.6 let £, €
‘”T)\f x -+ x ®T 34 be defined by (Ea)f =1y € I' and (Ea) [(f, k] = §

Next we will choose recursively the elements 7 € Rfor7 € Af« and foreacha < A.
Since J = A% = J,; A%« (by the definition of I'), in the end we will have constructed
a family of ring elements 77 (7 € J) from R as needed for the triple (Jy, J, 1)) from
above. Hence G, will be determined by G, = G,y and ) = {xg =nzz + y5 | 7 € J}.

Let o < A and (Gan, Han, Pun, Qan> Rans Yan) = &y, (MaIn) € © be the traps
given by the Easy Black Box 6.9. A special choice of n77 for 7 € Afe is only needed in
particular situations of these traps, namely when they represent the local version of an
unwanted endomorphism of G, and fortunately this will only be the case when we get
support from the results of the last section. Otherwise we may put 77 = 0.

Next we specify these conditions when 77 € R must (seriously) be chosen (for killing
maps):

We must work, i.e. do some book-keeping by using the results from Sections 4 and 5,
if there are (f + 1)-closed triples (ZI, VAR T) (Yl, YT, XT) with YT = ZTT and there is
an associated family §' = { yﬁ = ,onbj7 +yglne Z"} of branch-like elements which is

(Zl, AR Y* )-suitable, %';% is (YJ, YT, X*) suitable, and if there are

elfcyf, @ czl, yvicr’,

Z: C ZT(n < w) and T a Vi-admissible injective map,

and in addition there is a shift homomorphism o with the following properties:
A Q}J is S;T—closed and QE"T is Ff-closed for n < w.
®)" pc@i, zl) c @i

©F @ ue?, z7 ol and (@, Y, X n QL) are (f + 1)-closed with Y/ =
(Z;,T)Qu foralln < w.

(D) g*z is (L' u Q2. z/f Ql")-suitable and gY is (L, Y7, xI n Ql")-suitable.
(E)Jr GQ w2 7t xinalt - G xi andG G
®F Ny =@y =0

@ (ZNgqui \ (2D 1 € 27 € 2P\ (Z1) 1.

M (Vi V. Uth = v, vT X)) and 677 = 5],

o' @ v, uv.neht =@l vt xi OQI')and Gyt =5
OUAE orco(Q* uly 2"') — A U orco Q] is injective.

n<w

Al oy xingl vivixi

Y
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K)" o' orco QLT = (7)1 orco Q1.

L)F Poy = "o,

M) Qun = (2 \ Yol and R =5, o7,

(N)T Hy, C (GQEUSZ?W’Z;,XiinT)GT'

(O)Jr Gan = Glr]a n-

P)" The maps Yy, : Gan = Hun (n < w) extend each other, so that

Yo = U Yan and Gy = Gy, = U Giggtn = U Gan are well-defined. (6.3)

n<w n<w n<w

Due to (6.3), (N)" and (P)" the map

fy-1. Z S ot s
1//(1((7 ) . Ga — GQL‘UQ?“,Z;,X;HQH

n<w

is also a well-defined homomorphism.
Next as in Theorem 5.3 we define unions of the above sets:
@' v =fuy,., "
Gin® x7" = xinqll.
ot yt=ytul,_, Zy.

n<w =N

Hence (Y), YT, X!™) is (f + 1)-closed and in particular f-closed. Moreover, we
have the map
VDT 971 G1E) = Gty yingrts

which is well-defined by the definition of (V.,V',Ul) and (DT. From G|(,) =
G1(£) ® G it follows that

i)' ¢f = ¢’ @ Yo
is also a well-defined homomorphism

T Gq(E . . Z . . -
o' G1(Ey) —> GQ,{',Y’T,XIQQL‘ + GQ,{'uszi"T,z,’,‘,X,;mszH = GY,;’*Y”TX;’T (6.4)
n<w

satisfying zo' = ch_rT # 0. We now apply the induction hypothesis of the step lemma.
Replace f, E., G1(§), Gv,vu,, ¢, z respectively by

f =1, Ex, GiGo), Gyt y gt @' 2. (6.5)

The Step Lemma 6.6 holds for f — 1, and the existence of elements 73 € R m e Aga)
follows. Recall that now all of {n7 | 7 € J}and $ = {x7 = 7gzz + y7 | 7 € J} are
known. This finishes the construction of G,.

G satisfies the Step Lemma 6.6 for f.

We finally must show that the family $ = {x7 = n7z7 + y7 | 7 € J} and thus G, is as
required in the Step Lemma 6.6. We will prove this by contradiction.
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Suppose that (Z%, Z*%, Y) and (Y7, Y#, XF) are (f+1)-closed triples with Y# = Zj;i,

§ =0 = pibi+ yy | 7 € Z%)is (ZE, ZF, ) -suitable, i, is (Y7, ¥¥, XT)-suitable
and 7¥ is a V,-admissible bijection with

() (V, V, Uoth = (¥E, ¥E x5 and 61 = §F,,

but fails to satisfy the conclusion of the lemma. Thus the homomorphism

et G > G3=G liftsto ¥*¥:Gy—> G4=G (6.6)

vivixi zizix}
(see the next diagram).

We now apply Theorem 4.18 to (Z%, Z*, Y7), (Y5, Y¥, X5), Imgt? € G3 and Im y/#
C G4 and get (L U Q¥ z%, Q%) and (@)F, Y%, X n QL) as in (4.2). In particular
we have:

(A)* Qii C Yf is gf,i—closed and Qii C Zf is Ft-closed, Y* C Y¥ and Z"* C Z%.

©F (@F U, 7% ol and (@, Y%, XE 0 QL) are (f + 1)-closed with Y/ =
(VASINTS

O)F §L, is @F v, 2%, @.F)-suitable and §},, is (@4F, Y%, XE 0 @)-suitable.

E)F Imy* © G
GY*iin;f'

Py, g, —

B V=28 =0

(G)* Zini \ Z"txi c z7*cz¥\ Zixi. (Compare Remark 4.19.)

O @l v, u.nehrt =@, v XinQ) and Gyt = Sf,/i. (Compare Obser-
vation 6.5.)

(QF 1247, 195, 1271, Y] < 4 (because |G1| = | Gal = 4).

(R)* Y* and Q}f are uniquely determined by Y, Y*i, Xi, S;T and Im (pri.

C

. i .
C GZﬁZ?Xf and Imgt* C GQH,Y’;‘XIF‘QH -

Hugd 7 xinelt S

Next we choose an injection 0¥ with

(J)fF ot orco(Q,lf U Qij") — A U orco Q}k such that
(K)* o*]orco QE = (tH " orco Q?.

This is possible, because |2F], 23] < A = |A|. Also note Q! 7% = QIF by ()*.
Let us pause for a moment and describe the present situation of maps by a diagram.
Recall that G is defined by G = Gy, yy together with &, G comes from G j, ; with $),

and G; = By, is a free A-module. Moreover, G3 = GY,fyixf and G4 = szzixi

above come with SJ;: and ST‘, respectively. Naturally, we let G’ = GQL VL UNQL G§ =

. P e s L
Gty xingtt and Gy = Goti ot 7 yipgli-

(where arrows with no name are again inclusions):

Thus we have the following diagram
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G G: G4

We want to construct a function g : “?>1 — © for the use of Proposition 6.1. For this
choose any v € ®1>3 . The definitions show that G, < G», and I/ﬁt [G1y is a well-defined
homomorphism. Similarly to the first “*-step’ we now continue with a ‘"*-step’.

Using Theorem 4.18 let (217F U @2, 2%, Q1) and (Q1"F, ¥"*, X2 N Q%) be
determined by the triples (Z;f, VAS Yf), (Yf, Y, Xi), Im gori C Gj3 and Gl,,l/ffF C Gy;
compare also (4.2). In particular we have:

(A)V*
(€)%

(D)v*

(B)v#

(F)#
(G)V*
M+

Q*
(R)"#

(S)v*
(B)*

lei - Y,;T is Sq;,i—closed and Qi”i - Z; is F¥-closed, Y"V¥ C Y¥ and ZV¥ C Z%.

@Ey Q¥ 7z @l and (@I, vV, XE N Q") are (f + 1)-closed with
i _ avk

Y = (2" .

Fhu is (P U QM 2" Q") -suitable, and §,, is (1, ¥, XEn Q)"
suitable.

Gyt < G gt zvt xing!t € Ozizexis Imet? © Gt yrt xinglt S
Gyﬁyixi'

Y/viX;E — Z/uq&X32 =¢.

Zigzui \Zix;f c 7Vt c 7Z¥\ Zixi' (Compare again Remark 4.19.)

@l v, u.nebrt = @, v xEn ") and 6y ot = F,,. (Compare
also Observation 6.5.)

IQMH 1Y < aand |Q27F), 127\ Y'"F] < 6 (because |G| = ).

Y"# and ini are uniquely determined by Y#, Y*i , X 3: S;T and Im @7, In particu-
lar, Y% = v7*, Q! = QI for all v € ©1> . (Compare (R)*.)

ZvE C 7% Q¥ < Q% forall v € ®*> . (This follows from Remark 4.19.)
pe(@V 10—t 74 — G 2% can be ensured by a recursive construction of
7%, Q2"F along the length Ig v.

Now we describe the refinement of the last diagram by the last application of Theorem
4.18. Naturally we put

vi _ . A, 1
Gy = GQ,{‘*UQ&”?,Z’”?,XimQ% <Gy

and get the following diagram with the free A-modules

G1=BI* and le:BAuE



Prescribing endomorphism algebras of X -free modules 1805

from above, where ¥ = (¥*[G1,)o%, otherwise restrictions of homomorphisms have
the same name, and inclusions have no name.

\%
wi‘ai

wi

G'+Gnyiot

V \
$
v ’

G119 Gy Gi4+G)f ————=Gy

G|

We now define the map g : “7> 1 — © which we want to predict by
gw)=(G",H", P", Q",R", ¢")

and the following requirements:
LY PY =00t
M) Q" = (2" \ Yot and R” =
(0)"* G =Gy
(D' H” = Gyyfot.
U)" ¥ = ¥ Gp)ot 1 G — H'.
From (Q)"* it follows that |P"|,|Q"|,|R"| < 6, and also G* € G, H’ € H and
P’ C A, Q¥ € A, R" €V, and consequently (G*, H", P¥, Q",R",¥") € O.

The domain orco(Q}ki U Qii) of o is ‘large enough’, in particular ini - Qii due to
(S)"#, and following (E)"* we have

TZ/v:]t\y/vq‘. Ui'

) et
Ly zmt xinglt)O

(N)"* HY € (G,
Finally, the definition of ¥ in (U)"* yields
(Py"E yvIgn =D  yv.

Thus we can apply the Easy Black Box 6.9 and we find some 1 € I' with g, C g. There

is some a < A such that n = n,. Now for the construction of 77 (77 € Af«) the ‘serious’
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case applies as it is witnessed by the choice of
(Z5, 24,79, (vE Y5 XD, § and
2,na [n,% t o (7,5
Q}ki, Qi"i = Q" I LY Z,’f = ZMalnt ot oE

as possible candidates for
z:,z'v), vl yT, XD, F and Q@27 v,z o 6T
The necessary conditions (A)" to (P)T are satisfied by (A)* to (P)* and (A)"* to (P)"*.

The concluding arguments of this proof are visualized in the following diagram: Sim-
ilarly to the construction of the ring elements 757 (77 € Afe) we define (as in Theorem 5.3)

if zZF=fueiful,_, " =t ued,

I‘l<(l)
(ll)i // _ QIT U Un<a) 2n1:’
(iii)* X”;t X ﬂS’Z* s .
(iv)¥ 27 = ’i UU,w Z f,

W YR =v%0l,_, Zn
Hence (¥, Y%, X*)is (f + 1)-closed, and (Z/*, Z"*, ) is (only!) f-closed. As in
the construction of the ring elements 77 (37 € Af), we have
(Gan> Hans Pon,s Oun; Ran, V/an) = 8y In and Yo = U Yan,
n<w
and let
Vi) ¢F = ot @ Yo (0H) L.

This is again a well-defined homomorphism

(pI . Gl(ga) g GY!iY”jFX;/i'

By the prediction of the Easy Black Box 6.9 we get the following identities:

L) QZnI =P, = QZni

M) (Z\ Y0 = Oun = (2 V)0 and §)

(O) Gom = Glno, In - GJ’I& = Ga (SCCL(6.3)). .

(V) Yan = (0¥ 1Gan)o* and Yy = (¥¥[Gy)o™.
Now we consider the bijection o := o' (c¥)~! of ordinals. By definition

Q" and (O, O, (K)F, (K)* yield

ot = Si

Z,/ "\yrt z¥ \y/;

2’”0 —
Qi = @lToNHeH ™ = (@TeH HeH T =QlehH) ™! = Qlt

Since YT = @lT U Un<w Q2" from these definitions it follows that o is a Y/ t
admissible bijection with ¥/7o = Y/*. Similarly, using the statements (M), (), ()%,
K)T, (K)¥, also (Z, \ Yo = Z \ Y*# and Y''o = Y"*. Hence Yo = Y,
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, Similarly, xVo = X @y xMe = 0, v X0, and §, i@ =
3, n

Ziy
Using (DT, (D, (K)T, (K)F, (vii)T and (vii)¥, we get (970 = ¢7¥ and thus finally

plo = (" @ Yo (0 ™Mo = (p1No ® Y (6N o = ot ® Yo (6H) ™! = ¢*.
In view of (U) and (6.6) we get

9o =ott @ Yy (oH 7! = gt ® (WG, C vE

s
G, Y Gﬁ

©DVa
POV

GY:TY”TX;/T Gl (SQ) GY!iY”iXﬁ:

G1(®) G}
The existence of (Z/*, 2%, YJ), (Y%, Y, X[%), § ., o and ¥# with To C 3t

contradicts the statement of the step lemma, when we replace f, E, G| (E), Gv,vu,, ¢,z
by f — 1, Ex, G1(§,), Gyt yri xris goT, z. In particular this contradicts the choice of

7 ( € Agor) at (6.5). Thus the step lemma follows. ]
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7. Application of the Strong Black Box

In this section we want to construct R;-free R-modules with prescribed endomorphism
R-algebras A using our preliminary work and the Strong Black Box as the prediction
principle. The Strong Black Box comes from Shelah [23, Lemma 3.24, p. 28, Chapter IV],
a model-theoretic version can be found in Eklof-Mekler [9], and a version adjusted to
algebraic applications appears in Gobel-Wallutis [17]. We will apply [17], which is also
outlined in [16]. As with other applications of the Strong Black Box, its setting has to fit
its applications (cf. [16]): We must specify what we want to predict! Thus its formulation
has to wait until we are ready for its use. We begin with the construction of an Ni-free
R-module related to the algebra A. Although it will be necessary and sufficient to assume
that its R-module structure Ay is also Ni-free, we will restrict ourselves for simplicity
to the most interesting case when the R-algebra has a free R-module structure Ag. (The
extension requires just a few technical changes.) Moreover, let |A| < A;. (Also here we
could replace the size of the modules under study by their ranks and argue with cardinals
of ranks; thus rk A < A1 would be possible, which we however leave to the reader.)

Recall that (A1, ..., A) is the cardinal sequence from Section 2.1 satisfying the car-
dinal conditions (i)—(iii). We will fix in this section the cardinals A = Ay and 6 = A;_1.
The Strong Black Box will require |[R| < |A| < 6 and uz = g, but this is no further
restriction on i due to assumptions (i)—(iii).

Also recall from Section 2.2 the definition of the free A-module B = P, , Aey and
its S-adic completion B. Prediction principles, also the Strong Black Box, will need the
notion of a trap, which are the objects to be predicted. This is intimately connected with
an ordering which will tell us later which prediction comes first. Thus we define a very
natural A-norm on A and A..

Definition 7.1 (The A-norm function).

(a) Forn e “=Alet [nl = supy_j,,(n(£) + 1) € A;
in particular ||| = o + 1 for @ € A.

(b) Forn € Alet |7l = lInkll, and for v € Ay let V]| = [lvell.

(c) For Y € A put Y| = supgey 7]l and note that ||Y|| = A if and only if [Y] = A.
Similarly || V|| = supyey D] if ¥ © Ay _

(d) If b € B, then ||b|| = ||[b]]|, and for S C B, let || S|| = sup,es 1]l

The black boxes also need a weak version of well-orderings, which reads as follows.

Definition 7.2. For V C A the family § = { y/ﬁ = myby + y7 | 7 € V} of branch-like
elements (from Section 3) is regressive if ||bgll < |[7]| = |lyzll forall € V.

We are now ready to define the final version of a trap for the Strong Black Box. Note
that we already used a different trap for the step lemma, which also needs a prediction.
The crucial sets for this definition can be seen in Definition 6.2.

Definition 7.3. A quintuple p = (1, Vi, V, §, @) is a trap (for the Strong Black Box) if
the following hold:
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(i) ne*.
(i) Ve C Ayand V C A with |V, |[V] < 0.
(iii) (Vi, V) is A-closed.
@iv) |[v]l < |In|l forallv € Vi, and ||77]| < ||| forallj € V .
(V) Ay« C Vi (recall that by definition Ay« = {V € Ay | ve <, vp # 1)),
(vi) A C V forall7 € V (recall that A = (T € A | v = ni}).
(vii) Forje Aand 1 <m < k,n < w with 7] (m, n) € Vi we have [5] € A/ U
Anys € Vi (recall that AT — (5 e Ay | e = ).
(viii) If 7 € A, |71l < |Inll and 771 ({k, n) € V, for infinitely many n < w, then? € V.
(ix) § = {y; = 7yby + yq | by € By, 7 € V} is regressive.
(x) ¢ : P — P is an R-endomorphism of the A-module P = Gy, v generated by Vi
and §; compare Definition 3.3.

Convention 7.4. In the definition of a trap we put || p|| = ||n]| = || k||, which is the norm
of the trap p.

Recall that A° = {x € A | cfa = w}.

The Strong Black Box 7.5. Let 0 < A = ut and n’ = . If E C )° is a stationary
subset of A°, then there is a sequence py, = Ny, Vax, Vo, Sa»> Po) (@ < LX) of traps with
the following properties:

1) llpall € E foralla < A.
(1) [lpall < Ippll foralla < f < A
(iii) THE DISTOINTNESS CONDITION: Ifa # B and || pull = Ipgll, then ||Vasx N Vayll
< Ipall, in particular ng # ng.
(iv) THE PREDICTION: For any Vg C A with regressive family § = {y;], = 7t5by + yi7 |
1 € V), G = G, v, generated by A, and §, ¢ € Endg G and any set S C A,
with |S| < 6, the set

{a € E[3B < rwith|pgll =a, Vg = (Vi)vs, S Ve,
Sp =73, 0 S @, S S Vi)
is stationary.

While in the earlier black boxes the prediction is about the existence of partial endomor-
phisms of B, the main point is that we now deal with homomorphisms which are related
to a special class of submodules G C B. Indeed, by deﬁnigi\on of the traps, this particular
black box will fail to predict arbitrary endomorphisms of B.

Proof of 7.5. See the proof in Gobel-Wallutis [17] or in [16] with minor adjustments;
note that A = Xy satisfies the required cardinal conditions. For Vg = (V(;)vﬁ* observe
that all traps pg of the Strong Black Box (like the other Black Boxes [4, 16, 23]) are
unions of admissible chains of partial traps (p/’é),Ka,. At stage n we can also choose
(VG)VE* C Vg“. This now implies Vg = V6) v, because any 77 € V6) v, satisfies
[7] € Vgs. Thus |[7]l = |I71(1,0) < linll by Definition 7.3(iv) and 71({k,n) € Vgx
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for infinitely many n < w. Definition 7.3(viii) implies 7 € Vg. The reverse inclusion is
trivial. ]

We now want to apply the Strong Black Box 7.5 to derive the following main theo-
rem. Here recall that the ring R has an S-adic topology which is Hausdorff, hence the
S-completions R and B are well- defined, and Hom(R R) =0, i.e. R (and thus also A) is
cotorsion-free. See the definition of the JT-sequence in Section 1.

Main Theorem 7.6. If R is a cotorsion-free S-ring and A an R-algebra with free
R-module Ag, |A] < u, k < w and A = Jz(u), then we can construct an Ky-free
A-module G of cardinality . with R-endomorphism algebra Endg G = A.

Remark 7.7. Assuming that A is countable, the smallest examples of N-free
A-modules G in Theorem 7.6 have size |G| = :l,j.

Proof of Theorem 7.6. We first construct the A-module G. We continue using the earlier
notations |A| < A} < --- < A from Section 2.1.

Thus we must construct a specific regressive family § = {y;. = by + yi | 7 € Vi)
such that the A-module G = G, v, generated by A,, § satisfies the conclusion of
Theorem 7.6 and in particular Endg G = A.

Recall that B = ;. A, Aey has cardinality A and A = /L,‘: is regular. By Solovay’s

decomposition theorem (see Jech [20, p. 433]) there is a decomposition A’ = UZG gE:
into stationary sets E.

For all E; (z € B) with the help of the Strong Black Box 7.5 we choose a list of
traps p% (e < A) and relabel them (preserving the norms) to get a uniform sequence of
traps

Pa = (Mas Vaxs Var Sas o) (@ <2 with [[pe|l < llpgll  foralle < g <2a. (7.1)

Put Vg = UadA(”a). For each 7 € Vz we must choose 757 € R and by € B for the
definition of y = mzby + y5. We will choose recursively the pairs (77, by) for 7 € N
and o < A. Thus we consider the trap py = (N, Vs, Vs Sas @) and choose z € B with
|pall € E;. If z ¢ By,,, then we do not work and put

mg=b;=0 foralljje A, (7.2)

Now let z € By,, € P, = Domg,, hence z¢, € P, is well-defined by Defini-
tion 7.3(x). We will distinguish three cases.

Case 1: Let z = ey for some vV € A,. If zg, € Az, we do not work and choose the pair
again trivially as in (7.2).

Otherwise zp, ¢ Az, and we arrive at the interesting case which needs work. We
want to apply the Step Lemma 6.6 for f =k — 1,& = (1), Ex = {V, V'} using some 7’
with U # V' € [z¢4], which exist as a result of the action of ¢,. Now we have

G1(§) = BAg*UE* C Py,

because E, C V,4 and Ag* C Vyx« by Definition 7.3(v).
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In order to adjust our notations to the preliminaries of the Step Lemma 6.6 we put

Vii=Vax UAL V= Vo UAS,  Uyi= (Mg, \ Eo) UAS U (B).

It is immediate that U, is almost tree-closed and (Vi, V') is A-closed, and it follows that
uz(Uy) = {1, ..., k} forn € V, and uz(Uy) = @ for ij € AS.

If V' = 7'(m, n), then [7],4+1 C U for all j € A%, hence Vy, = A% and the triple
(Vi, V, U,) is k-closed.

Put & = &y, U Q5Ag with &y, = §, (given by the Strong Black Box 7.5), and
G ei={yy =z +yy|T € AS} =By, .

We would like to point out that we have chosen the n%s in & , ¢ arbitrarily. This does
not do any harm, as noted in Remark 6.7. Of course, the intended canonical choice is to
set n% =m7(1 € A%), but these elements 777 are not yet known and will arrive at the final
construction step. Due to this choice, & is (Vy, V, U,)-suitable, because from [77],y € U,
for some n’ < w it follows that 7 € Vy,, and hence [bzl = [zl =V € Us.

If Yo = (9o |G1)pv, vy, With G| = G1(&), then ¥, : G| — G = Gy,yy, and also
Yo #0by V' € [zgal.

Now the assumptions of the Step Lemma 6.6 hold for

f=k—1,&= ), Ex={,V}, Gi(€), Gv,vu., Va2,

and by the step lemma we find elements 777 € R GRS Ag), while setting by = z for all

ne A%, Fromz € Py, it also follows that ||b5|| = ||z]| < [|7]l, and the related family ¥ is
regressive.

Case 2: Let z = ey, — ey, for distinct V1, V2 € A. In this case we change the basis and
let ey, = e’Ul + e’iz and ey = e/, for all V # V1. Thus we have reduced Case 2 to Case 1,

and the choice of the pairs (75, b7 = z) for 7 € A%/ is as in Case 1.

Case 3: Now z is neither of the form z = ey nor of the form z = ey, — ey,. In this case
again we do not work and choose the pairs trivially as in (7.2).

Thus all pairs (77, by) (7 € V) are constructed and the A-module G is defined by
G = G, v, with the help of the family § = {y’ﬁ = ngby + y7 | 7 € Vi)

It remains to show that

G is as required in Theorem 7.6.

Clearly |G| = A, and G is an Rj-free A-module by the Freeness Lemma 3.7. Since A
acts faithfully on the A-module G, it is also clear that A € Endgr G, where we identify
every a € A with its induced scalar multiplication on G. Thus it remains to show that
Endr G C A, and we let ¢ € Endg G.

First we want to show

Claim 1. If v € A, then eyp € Aey.
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Suppose for contradiction that there is V € A, with ezp ¢ Aey. By construction the fam-
ily § is regressive, and applying the Strong Black Box 7.5 for the stationary set E,, C A°
we see for G, §, ¢ and S = {v} that the set

(o € Ee |38 < 2 with | pll = e, V7 = (V6)er € Vo

Vﬁ:
%’/egv = (%)V;T” (P? - @, Ve V;Z}

is stationary.
In particular there is « < A such that

”poz” € Eevv Voz = (VG)VD,*’ 30( = SVM Pa - @, Ve Va*' (73)

Hence ey € By,, Py = Domgy and by assumption eypy ¢ Aey. Now Case 1 of the
construction applies and the 7r5; € R (7] € A%y are chosen with the Step Lemma 6.6. In
order to derive the desired contradiction, we denote the relevant sets similarly to Section 6.
Put

Zii=As, Z:=Vg, Y=V UAM (=Vy), Y=V, UAU (= V),
Xy = (Ao, \ Ex) UAY U (B} (= U,).

From the same argument as in the construction for V it follows that (Y, Y, X, ) is
k-closed.
Next we show that also

(Zy, Z, V) is k-closed. 7.4

It € Z and ||7]| > || p«l, then |uz(Yy)| = k because || Y|l = || pall-

If |71l < llpell and |uz(Yy)| < k, then thereis 1 < m < k withm ¢ uz(Y,). It m =k,
then 171 (k, n) € Vyy C Y, for infinitely many n < w. Definition 7.3(viii) implies 77 € V,,
and [7]y € Vys C Y, for some N < w, as required. If m < k, then 77| (m, n) € Vg, for
some n < w, and Definition 7.3(vii) also yields [5] € A U Apye € Vs € Ya, as
required.

If 71l = || p«|l, then it follows from 7 € Z = V; that nx = ng for some g < A. If

B = a, then [7]] € Ay,)x UA™ C ¥, by Definition 7.3(v). If finally 8 # o, then clearly
{1, ..., k=1} Cuz(Yy). If k ¢ uz(Yy), thenby np = ng we have 7 (k, n) € Vs N Vg, for
infinitely many n < w. It follows that ||V« N V|l = lIpell = I pgll, but this contradicts
the disjointness condition of the Strong Black Box 7.5(iii). So (7.4) holds.

Next we show that Y = Zy,: If 7 € Z, then 7 € Zy, if and only if [7], € Y for
some n < w, hence |uz(Yx)| = 0. This is equivalent to [77]y € Vs for some N < w or
7€ A and also 77 € (Vg)y,, U A =V, U Alle) = Y by (7.3).

It is easy to see that § is also (Z, Z, Y, )-suitable: If [n], € Y, for some i € Z and
some n < w , then by definition € Zy, =Y = V, U A%) and we distinguish two
cases. If 7 € V,, then y’ﬁ € Sv, = S« (by (7.3)). Definition 7.3(ix) yields by € By,
and [by] C Vos C Y, If 7 € Ae) | then by construction by = ey € By,,, and [b5] C
Vax € Yy, which we required.
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Ty is also (Y, Y, X,)-suitable. Note that §y = Fv, UF pt) = S UT gt - “Suitable’
then follows as shown in the construction of 75 € R (m e Alady,

The construction implies (Vi, V, Uy) = (Y, Y, X,). In this case the triple (V, V, Uy)
and §y with the help of the Step Lemma 6.6 generates the same elements mr5; (77 € Al
as with & (and also the induced modules Gy, vy, are the same) (see Remark 6.7). The
homomorphism ¢px, vy, extends the homomorphism ¥, = (¢, [G1)pv, vy, to G, and
hence to G» C G.

The existence of (Zy, Z, Y,), (Ys, Y, X4), §, v = id and ¥4, C ¢pa, vy, contradicts
the Step Lemma 6.6 (and the choice of elements 77 (77 € Ay for f =k —1,E = (),
E,={v,V'}, G1(4), Gy, .v.u,> Va» 2 = €7).

It remains to show

Claim 2. If V| # V2 € Ay, then (e5, — ev,)p € Aley, — ep,).

But this follows from the same arguments as in Case 2 in the construction.
From Claims 1 and 2 it is immediate that ¢ € A. O

8. Fully rigid systems of ¥;-free R-modules with prescribed R-algebra A

Finally, we will use the arguments of Section 7 to extend Theorem 7.6 and show the
existence of fully rigid families of A-modules. (See the definition of the ' -sequence in
Section 1.)

Theorem 8.1. If R is a cotorsion-free ring and A an R-algebra with free R-module Ag
and |Al < i, k < wand A = :l,'c|r (w) (as in Section 2.1), then there is a family of Ry -free
A-modules (G, | u C A) of cardinality A with the following properties for any u, v C A:

A ifuCw,

H Gy, Gy) =
OmR( u v) 0 ifugév.

Moreover, G, C Gy forallu C v C A

Proof. For the construction of the rigid family (G, | u € ) above we will modify the
construction of the A-module G of Theorem 7.6 with Endg G = A slightly; so compare
the first part of that proof. First we decompose A° = Uﬁ<AE'3 and then Eg = (J..gEp;
into stationary sets Eg, using Solovay’s partition theorem (see Jech [20, p. 433]). The list
of traps py = (N> Vax, Vs Sas ¥a) (¢ < A) needed here is a composition of traps pgz
(a < A) from the Strong Black Box 7.5 for the stationary sets Eg; (8 < A,z € B). Asin
the construction above we will find a family

§ = {yg = by + yq | 7 € Va)

of branch-like elements with Vg = U(K L AM) Jand G = Gy, satisfies Endg G = A,
as seen from the second part of the proof of Theorem 7.6.
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If u C A, then put

V, = LJ{A(””> |a < A, pa:p(’fz, B eu, ze B}

and G, = Ga,v,, which is generated by §y,. Then it is immediate that G = G, and
G, CGyforallu CvCA.

Ifu,v € X and ¢ : G, — Gy, then as in Section 7 it is clear that ¢ € A, thus
Homg(G,,G,) = A for u C v. For u ,¢_ vand 0 # ¢ € A, from V,, C V, it
follows that V,\y¢ € Gy,. Thus u \ v # ¥ and V,\, € V, are a contradiction. Hence
Homg(G,, G,) = 0 in this case. O

9. Applications of the Main Theorem

The applications of Theorem 7.6 are by now standard. All R-algebras A inserted into
Theorem 7.6 and constructed earlier (see [16, Chapter 15]) have a free R-module struc-
ture. We assume that the ground ring R is a domain (thus has no nontrivial idempotents).
Moreover, the algebras A are p-reduced by some element p € R. Thus Theorem 7.6
applies. Under this hypothesis we can find R-algebras A which are countably generated
over R with any of the following properties:

(i) A has no regular idempotents (see [16, p. 587, Example 15.1.1]).

(ii) Let ¢ > 0 be an integer. A has free generators o/, 0; (0 < i < ¢) subject to
the only relations ol oj = §;j and ZOS- <q o;ol = 1. Moreover, there is a ‘trace’-
homomorphism 7 : A — R/qR such that for any o, ¢ € A:

@ (c+o)T =0T + ¢T.
(®) (6p)T = (po)T.
(¢) IT =1+¢R.

(iii) Let G be a finite group. Then G is a group of units of a domain R if and only if G
is from Corner’s list of subdirect products of primordial groups; see Corner [3] for
these groups G.

Recall that the primordial groups are the cyclic groups Z, Z4 and
G =(a,b|a® = b = (ab)?) fore, s € {0,1}.

The latter groups are the quaternion group G, the dicyclic group G°! and the tetrahedral
group G'1.

An immediate application (cf. [16, pp. 595-596, 603—606]) of these algebras estab-
lishes the following

Corollary 9.1. Let R be a countable domain as above. Then ( for each natural number k)
there are Ri-free R-modules G of cardinality :l,:r with any of the following properties:

(1) G has no indecomposable summands different from 0, i.e. G is superdecomposable.
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(i)

(iii)
(iv)

Let R = 7Z and q > 0 be an integer. Then G satisfies the Kaplansky test problem,
i.e. foranyr,s € N,
G =G’ ¢ r=smodg.

Let R = 7. A finite group G is the automorphism group of an Ny-free abelian group
if and only if it belongs to Corner’s list of finite groups.
G is an indecomposable R-module.

Clearly these applications can be extended to similar fully rigid systems of modules using
Theorem 8.1.
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