J. Eur. Math. Soc. 16, 1687-1748 © European Mathematical Society 2014
DOI 10.4171/JEMS/473

Manuel del Pino - Fethi Mahmoudi - Monica Musso J E MS

Bubbling on boundary submanifolds for the
Lin—Ni-Takagi problem at higher critical exponents

Received August 28, 2012 and in revised form July 24, 2013

Abstract. Let Q2 be a bounded domain in R” with smooth boundary d$2. We consider the equation
n—k+2
d*Au — u + un—=2 = 0 in €, under zero Neumann boundary conditions, where d is a small

positive parameter. We assume that there is a k-dimensional closed, embedded minimal submanifold
K of 0Q2 which is nondegenerate, and a certain weighted average of sectional curvatures of 92 is
positive along K. Then we prove the existence of a sequence d = d; — 0 and a positive solution u 4
such that

d*|\Vugy|> -~ Ssg asd — 0
in the sense of measures, where §x stands for the Dirac measure supported on K and S is a positive
constant.

Keywords. Critical Sobolev exponent, blowing-up solutions, nondegenerate minimal submani-
folds

1. Introduction and statement of main results

Let ©2 be a bounded, smooth domain in R”, v the outer unit normal to 92 and ¢ > 1. The
semilinear Neumann elliptic problem

dPAu—u+u! =0 inQ, g—z=o on 92 (1.1
has been widely considered in the literature for more than 20 years. In 1988 Lin, Ni and
Takagi [27] initiated the study of this problem for small values of d, motivated by the
shadow system of the Gierer—-Meinhardt model of biological pattern formation [20]. In
that context, u roughly represents the (steady) concentration of an activating chemical of
the process, which is thought to diffuse slowly in the region €2, leaving patterns of high
concentration such as small spots or narrow stripes.
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Whenn =2orq < (n+ 2)/(n — 2) the problem is subcritical, and a positive least
energy solution u exists by a standard compactness argument. This solution corresponds
to a minimizer for the the Raleigh quotient

d* [o IVul? + [q ul?
(fQ |u|q+l)2/(q+l)

Qau) = (1.2)
In [26, 27, 39, 40] the authors described accurately the asymptotic behavior of u; as
d — 0. This function attains its maximum at exactly one point p; which lies on 2. The
asymptotic location of p; gets further characterized as

Hyq(pa) — max Hyq(p),
peif2

where Hyq denotes the mean curvature of d€2. Moreover, the asymptotic shape of uy is
indeed highly concentrated around pg:

ug(x) ~ w(lx — pal/d), (1.3)
where w(]x]|) is the unique positive, radially symmetric solution to the problem

Aw—w+wP =0 inR", lim w(x) =0, (1.4)
|x]—00
which decays exponentially. See also [13] for a short proof.

Construction of single and multiple spike-layer patterns for this problem in the sub-
critical case has been the object of many studies: see for instance [6, 7, 8, 10, 12, 13,
14, 21, 22, 24, 25, 29, 51] and the surveys [36, 37]. In particular, in [51] it was found
that whenever one has a nondegenerate critical point py of the mean curvature Hyq(p),
a solution with a profile of the form (1.3) can be found with p; — py.

It is natural to look for solutions to problem (1.1) that exhibit concentration phenom-
ena as d — 0 not just at points but on higher dimensional sets.

Given a k-dimensional submanifold I' of 9€2 and assuming that either k > n — 2 or

q < Z:lzfg the question is whether there exists a solution u; which near I" looks like

ug(x) ~ w(dist(x, I')/d), (1.5)
where now w(|y|) denotes the unique positive, radially symmetric solution to the problem

Aw—w+wl =0 inR*" ¥, lim w(|y]) =0.
ly|—>o00

In [30, 33, 34, 35], the authors have established the existence of a solution with the profile
(1.5) when either I' = 92 or I' is an embedded closed minimal submanifold of 9S2,
which is in addition nondegenerate in the sense that its Jacobi operator is nonsingular
(we recall the exact definitions in the next section). This phenomenon is actually quite
subtle compared with concentration at points: existence can only be achieved along a
sequence of values d — 0. The parameter d must actually remain suitably away from
certain values where resonance occurs, and the topological type of the solution changes:
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unlike the point concentration case, the Morse index of these solutions is very large and
grows asd — 0.
It is natural to analyze the critical case g = % namely the problem

) n42 ) ou

d°Au—u+urn2 =0 in €, 5:0 on 0L2. (1.6)
The lack of compactness of Sobolev’s embedding makes it harder to apply variational
arguments. On the other hand, in [1, 48] it was proven that a nonconstant least energy
solution u,4 of (1.6), i.e. a minimizer of (1.2), exists, provided that d is sufficiently small.
The behavior of u; as d — 0 has been clarified in the subsequent works [4, 38, 43]: as in
the subcritical case, u; concentrates, having a unique maximum point py which lies on
a2 with

Hyq(pa) — max Hyq(p).
peif2

PohoZaev’s identity [41] yields nonexistence of positive solutions to problem (1.4) when
q = %, and thus the concentration phenomenon must necessarily be different. Unlike
the subcritical case, uy(pg) — oo and the profile of u,; near p; is given, for suitable
pa — 0, by

ug(x) ~ d"Dw,, (1x — pal), (1.7)

where w, (]x|) corresponds to a family of radial positive solutions of

Aw+wiZ =0 inR", (1.8)
namely
_ W (=272 _ (n—2)/4
wy(|x]) = an<m> , oy = (n(n —2)) s (1.9)

which, up to translations, correspond to all positive solutions of (1.8) (see [9]). The precise
concentration rates uy are dimension dependent, and found in [5, 23, 43]. In particular
pa ~ d* forn > 5, so that ug(pg) ~ d="=2/2,

As in the subcritical case, construction and estimates for bubbling solutions to prob-
lem (1.6) have been broadly treated. In addition to the above references we refer the reader
to [2, 3,17, 18, 19, 28, 32,42, 44, 45, 46, 49, 50, 52].

In particular, in [3] it was found that for n > 6 and a nondegenerate critical point pg
of the mean curvature with Hyq(po) > 0, there exists a solution whose profile near py is
given by

ug(x) ~d" 2w, (Ix — pol),  wa = anHyq(po)/"~?d?, (1.10)

for a certain explicit constant a,, > 0. See also [42, 43] for the lower dimensional case.
The condition of critical point for Hyg with Hyq(po) > 0 turns out to be necessary for
the boundary bubbling phenomenon to take place (see [5, 23]).

The concentration phenomenon in the critical scenario is more degenerate than in the
subcritical case, and its features are harder to detect because of the rather subtle role of
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the scaling parameter . The purpose of this paper is to unveil the corresponding analog

of a solution like (1.10) for the k-dimensional concentration question, in the so far open

critical case of the k-th critical exponent ¢ = % that is, for the problem

dzA _ n:ki—Z o . a_u i
u—u+ur%2=0 in€, 5 =0 onodf2. (1.11)
v

Notice that for the Dirichlet problem, solutions concentrating along boundary
geodesics near the second critical exponent have been considered by del Pino, Musso
and Pacard [16].

Let K be k-dimensional embedded submanifold of d€2. Under suitable assumptions
we shall find a solution u,4(x) which, for points x € R" near K,

x=p+z, pek, |z]=distx,K),

can be described as

ug(x) = d"FD 2y, (12D, pa(p) = ani H(p)/ D2, (1.12)
where now
(n—k—2)/2
wy(|z]) = an—k(%)
w2+ z|

The form of the quantity H(p) is of course not obvious. It turns out to correspond to a
weighted average of sectional curvatures of d<2 along K, which we shall need to assume
positive. To explain what it is we need some notation.

We denote as usual by 7,0€2 the tangent space to 9§2 at the point p. We consider the
shape operator L : T,0Q2 — T,0%2 defined as

Lle] := =Vev(p),

where V,v(p) is the directional derivative of the vector field v in the direction e. Let us
consider the orthogonal decomposition

7,02 =T,K ® N,K,
where N, K stands for the normal bundle of K. We choose orthonormal bases (ea)];: 1

of T, K and (¢;)]Z}, | of N,K.

Let us consider the (n — 1) x (n — 1) matrix H (p) representing L in these bases, i.e.
Haﬁ(p) = €q L[eﬁ]~

This matrix also represents the second fundamental form of <2 at p in this basis. Hyy (p)
corresponds to the curvature of d€2 in the direction e, . By definition, the mean curvature
of 2 at p is given by the trace of this matrix,

n—1
Haa(p) =) Hjj(p).
j=1
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In order to state our result we need to consider the mean of the curvatures in the
directions of T, K and N, K, i.e. the numbers Zf:l H;;(p) and Z?;I:H H;i(p).

Theorem 1. Assume that 02 contains a closed, embedded, nondegenerate minimal sub-
manifold K of dimension k > 1 withn — k > 7 such that

k n—1
H(p) = ZZHaa(p) + Z Hij(p) >0 forallp € K. (1.13)
a=1 j=k+1

Then, for a sequence d = d; — 0, problem (1.11) has a positive solution ug concentrat-
ing along K in the sense that expansion (1.12) holds as d — 0 and moreover

d*|Vug)? — Sy_idx asd — 0,

where 8k stands for the Dirac measure supported on K, and S, —y is an explicit positive
constant.

Condition (1.13) is new and unexpected. It is worth noticing that it can be rewritten as

n—1
2Hyq(p) — Z Hjj(p) >0 forall p € K.
Jj=k+1
Formally in the case of point concentration, i.e. k = O, this reduces precisely to

Hjyq(p) > 0, which is exactly the condition known to be necessary for point concen-
tration. We suspect that this condition is essential for the phenomenon to take place. On
the other hand, while the high codimension assumption n — k > 7 is important in our
proof, we expect that a similar phenomenon holds provided just n — k > 5, and with a
suitable change in the bubbling scales for n — k > 3 (the difference of rates is formally
due to the fact that fRn wi is finite if and only if n > 5).

It will be convenient to rewrite problem (1.11) in an equivalent form: Set N =n — k
and d? = ¢. Define

—(N=2)/4

ux)=¢ v(e ).

Then, setting 2, := s71Q, problem (1.11) becomes
N+2 .
Av—cv+v8 2 =0 in Q, (1.14)
dv/dv =0 on 9. '

The proof of the theorem has as a main ingredient the construction of an approxi-
mate solution with arbitrary degree of accuracy in powers of ¢, in a neighborhood of the
manifold K, = ¢~!K. Later we build the desired solution by linearizing equation (1.14)
around this approximation. The associated linear operator turns out to be invertible with
inverse controlled in a suitable norm by a certain large negative power of ¢, provided that
& remains away from certain critical values where resonance occurs. The interplay of the
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size of the error and the size of the inverse of the linearization then makes a fixed point
scheme possible.

The accurate approximate solution to (1.14) is built by using an iterative scheme of
Picard’s type which we describe in general next.

Observe that the desired asymptotic behavior (1.12) translates in terms of v as

)TN Pug(ug eIE), x=z4¢ ze€Ke, [¢]=dist(x, Ko),
(1.15)

v(x) ~ po(ez

where

po) =ayHY)/N=2 y =gz e K.

Here and in what follows, wq designates the standard bubble,

(N=-2)/2
wo(&) = wo(€]) = ay <W) . ay = (NN —2)N24 0 (1.16)

We introduce the so-called Fermi coordinates on a neighborhood of K, := ¢ 1K, as
a suitable tool to describe the approximation (1.15). They are defined as follows (we refer
to Subsection 2.2 for further details): we parameterize a neighborhood of K, using the
exponential map in 9€2,,

Ko xRVTT xR, 5 (2, X, Xn) = Y(z, X, Xn)
N-1 N-1
= e (2 xt) — o (ol (L Xiki))
i=1 i=1

Here the vector fields E;(z) represent an orthonormal basis of N, K. Thus, (1.15) corre-
sponds to the statement that after expressing v in these coordinates we get

v(z, X, Xn) & po(e2) "NV wg (g H(e2) (X, X)),

where suitable corrections need to be introduced if we want further accuracy on the in-
duced error: we consider a positive smooth function us = . (p) defined on K, a smooth
function ®, : K — R¥~! and the change of variables (with some abuse of notation)

v(z, X, Xn) = ny V22 e)W (e ™y, nr (e2) (X — @p(e2)), 1y ' (e2) X ), (1.17)
with the new W being a function

y - X-@ XN
Wz, &), z=>, &= S, Ev=—.
& Mg He

We will formally expand W (z, &) in powers of ¢ starting with wqo(&), with the functions
@, (y) and p.(y) correspondingly expanded.

Substituting into the equation, we will arrive formally at linear equations satisfied by
the successive remainders of wg () (as functions of £). These linear equations involve the

. . -1
basic linearized operator £ := —A — pw;, .
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The bounded solvability of the linear equations at each step of the iteration is guaran-
teed by imposing orthogonality conditions on their right-hand sides, with respect to ker £
in L% (RY). These orthogonality conditions amount to choices of the coefficients of an
expansions of p, and ®,: for the latter, the equations involve the Jacobi operator of K
and it is where the nondegeneracy assumption is used. The coefficients for the expansion
of u.(ez) come from algebraic relations, in particular an orthogonality condition in the
first iteration yields

k N—+k—1
o) ==an[2Y Hym+ Y. Hiw]. vek.
j=l1 i=k+1

This is exactly where the sign condition (1.13) in the theorem appears.

The rest of the paper is organized as follows. We first introduce some notation and
conventions. Next, we collect some notions in differential geometry, like the Fermi co-
ordinates (geodesic normal coordinates) near a minimal submanifold, and we expand
the coefficients of the metric near these Fermi coordinates. In Section 3 we expand the
Laplace—Beltrami operator. Section 4 will be mainly devoted to the construction of an
approximate solution to our problem using the local coordinates around the submanifold
K introduced before. In Section 5 we define the approximation globally and we write the
solution to our problem as the sum of the global approximation plus a remainder term.
Thus we express our original problem as a nonlinear problem for the remainder term. To
solve the latter, we need to understand the invertibility properties of a linear operator. To
do so we start by expanding a quadratic functional associated to the linear problem. In
Section 6 we develop a linear theory to study our problem. Then we turn to the proof of
our main theorem in Section 7. Sections 8 and 9 are appendices, to which we postpone
the proofs of some technical facts to facilitate the reading of the paper.

2. Geometric setting

In this section we first introduce Fermi coordinates near a k-dimensional submanifold
of Q2 C R” (with n = N + k) and we expand the coefficients of the metric in these
coordinates. Then, we recall some basic notions about minimal and nondegenerate sub-
manifolds.

2.1. Notation and conventions

Dealing with coordinates, Greek letters like «, g, . . ., will denote indices varying between
1 and n — 1, while capital letters like A, B, ... will vary between 1 and n; Roman letters
like a or b will run from 1 to k, while indices like 7, j, ... willrun between 1 and N —1 :=
n—k—1.

&1, ..., En—_1, &y will denote coordinates in RY = R"* and they will also be written
asé =1, ..., 6nv-1). 5 = (&, én).

The manifold K will be parameterized with coordinates y = (y1, ..., yx). Its dilation
K. := (1/¢)K will be parameterized by coordinates z = (z1, ..., zx) related to the y’s

simply by y = ¢ez.
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Derivatives with respect to the variables y, z or & will be denoted by 9y, 9, 9%, and for
brevity we might sometimes use the symbols 9, o7 and 9; for dy,, 9, and 0, respectively.
In alocal system of coordinates, (g,4)qp are the components of the metric on 9€2 naturally
induced by R". Similarly, (g4 5) ap are the entries of the metric on €2 in a neighborhood of
the boundary. (Hyg)ep Will denote the components of the mean curvature operator of 92
into R”.

2.2. Fermi coordinates on 02 near K and expansion of the metric

Let K be a k-dimensional submanifold of (9€2,g) (1 < k < N — 1). We choose along
K alocal orthonormal frame field ((Ea)ﬁzl, (Ei)fv= _11) which is oriented. At points of K,
we have the natural splitting

ToQ=TK & NK,

where T K is the tangent space to K and NK represents the normal bundle; they are
spanned respectively by (E;), and (E});.

We denote by V the connection induced by the metric g and by V¥ the corresponding
normal connection on the normal bundle. Given p € K, we use some geodesic coordi-
nates y centered at p. We also assume that the normal vectors (E;)!_, are transported
parallel (with respect to V) along geodesics from p, so in particular

g§(VE,E;,E)=0 atp, i, j=1,...,n,a=1,...,k 2.1
In a neighborhood of p in K, we consider normal geodesic coordinates
fO) =expf aEa). ¥ = (1.0 30

where expX is the exponential map on K and summation over repeated indices is under-
stood. This yields the coordinate vector fields X, := f,(dy,). We extend the E; along
each yg (s) so that they are parallel with respect to the induced connection on the normal
bundle N K. This yields an orthonormal frame field X; for NK in a neighborhood of p
in K which satisfies

VXaXi|p S TPK.

A coordinate system in a neighborhood of p in 92 is now defined by
F(y, %) 1= expy, (X0, (%) 3= Oty oo Vs X1u ey av—1), (22)
with corresponding coordinate vector fields
X = F:0y) and X, := Fi(9y,).
By our choice of coordinates, on K the metric g splits as
8(q) = Zap(@)dya ® dyp + 8;j(q)dx; ® dxj, g € K. (2.3)
We denote by FZ () the 1-forms defined on the normal bundle N K by

Spel o = 8pcla(Xi) =8(Vx, Xp, Xi) atg = f(y). 2.4)
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Notice that

k
K is minimal < ZFZ(Ei) =Oforanyi=1,...,N — 1. 2.5)

a=1

Define ¢ = f(y) = F(y,0) € K and let (g,5(y)) be the induced metric on K.

When we consider the metric coefficients in a neighborhood of K, we obtain a devi-
ation from formula (2.3), which is expressed by the next lemma. The proof follows the
same ideas as in [31, Proposition 2.1] but we give it here for completeness. See also the
book [47]. We will denote by Ryp, s the components of the curvature tensor with lowered
indices, which are obtained from the usual ones ng s by means of

Raﬁya = Zuo ngﬁ' 2.6)

Lemma 2.1. At the point F(y, X), foranya =1,...,kandanyi,j=1,...,N—1, we
have

gij = 81‘] ~|— %Ri_g[jxsxz‘ + 0(|x|3)7
2. = O(Ix);
gab = gab - {gacrlcyi + gbcrgi}xi + [Rsabi + gchZSFgI]Xle + 0(|x|3)

Here R;gj (see (2.6)) are computed at the point of K parameterized by (y, 0).

Proof. The Fermi coordinates above are defined so that the metric coefficient

8ap = 8(Xa, Xp)

is equal to 8up at p = F (0, 0), and gup = gap(y) at g = F(y, 0); furthermore, g(X,, X;)
= 0 in some neighborhood of ¢ in K. Taylor expansion of the metric g,4(X, y) at g gives

Zup = 8(Xa, Xp)lg + X;3(Xa. Xp)lgx; + O(Ix]?)
= 2(Xa, Xy + TV, Xar X)) + BV, X5, Xo)lgxj + O(x ).
Since g(Xp, X;) = 0in a neighborhood of ¢, we have
0=Xpg(Xi, Xo) =8(Vx, X, Xo) +8(Xi, Vx, Xo) = 8(Vx,; Xp, Xo) +8(X;, Vx, Xa).
This implies in particular that
8(Vx, Xp, Xo) = —8(Xi, Vx, X0) = =T 8cb-
Then at first order we have

8ap = 8Xa, Xp)lqg +8(Vx; Xa, Xp)lgxj +8(Vx; Xp, Xa)lgxj + 0(x%
= &ab — (T, 8ep + U5 Gea)xi + O(x ).
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Similarly using (2.1) we get
ui = §Xa. XDlg + Z(Vx, Xa. XD)lgxj + 8 (Vx, X1, X)lgxj + O(x?) = O(Ix ).

On the other hand, since every vector field X € N, K is tangent to the geodesic s —
expgQ (sX), we have

Vx+x;(Xe + Xj)lg =0.

This clearly implies that
(Vx, Xj + Vx; Xo)lg = 0.

Then the following expansion holds:
% = 8(Xi, Xplg +8(Vx, Xi, X)) gx1 +8(Vx, X}, Xi)lgx1 + O(x[*) = & + O(Ix|?).

To compute the terms of order two in the Taylor expansion it suffices to compute
Xkagaﬁ at g and polarize (i.e. replace Xy by X; + X;). We have

XiXiZop = BV Xas Xp) +8(Xa, V3, Xp) + 28V, Xou Vi, Xp).  (27)

Now, using the fact every normal vector X € N, K is tangent to the geodesic s
expf]]Q (s X), we see that

VxX|, =ViX|, =0
for every X € N, K. In particular, choosing X = X + X, we obtain
0= Vx,tex; Vxirex; (Xi + €Xj)liq
for every ¢, which implies VX/. Vx Xklp = —2Vx, Vx, Xjlp, and hence
3V3, Xjlg = R(Xk. X)) X¢lg-
We then deduce from (2.7) that
XiXi8ijlg = 38(R(Xk, X)Xk, X))lg-

On the other hand,

V. Xy = Vx, Vx, Xi = Vx, Vx, X + R(Xy, X)) Xx.
Hence

Xk Xigab = 28(R(Xy, X0) Xk» Xp) +28(Vx, Xa, Vx, Xp)
+8(Vx, Vx, Xk, Xp) + 8(Xa, Vx, Vx, Xi).

Now using the fact that Vx X = 0|, at g € K for every X € N, K, the definition of ",
in (2.4) and the formula
R(Xk, Xa) X1 = R]};u[Xya
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we deduce that at the point ¢,

XiXiZaplg = 28(R(Xk, Xa) Xk Xp) + 28aT g Ty = 2R{ 8 (Xe, Xb) + 28cal 4 T
= 2R}y &eb + 28eaTip Uik = 2Ruavk + 28cal iy T

This proves the lemma. O

Next we introduce a parameterization of a neighborhood in 2 of g € 92 via the map YT
given by

T(y,x) = F(y,%) + xyv(y, %), x=(% xy) e RV I xR, 2.8)

where F is the parameterization introduced in (2.2) and v(y, Xx) is the inner unit normal
to 02 at F(y, x). We have

BT_aF( ) + av( 5 BT_BF( )+ 31)( 5
3ya_3yay’x xNayay,x, 3Xi_3xiy’x XNaxi Yo

Let us define the tensor matrix H by

dvy[v] = —H(x)[v]. (2.9)
‘We thus find
oY ___O0F _
o (d —xyH(y, X)]—(, X), (2.10)
Ya 0Ya
oY ___0F _
™ =[d —xyH(y, x)] —(y, X). (2.1
Xi 0x;

Differentiating Y" with respect to xy we also get

oY
— =(y, X). (2.12)
3)CN

Hence, letting gop be the coefficients of the flat metric g of RN*K in the coordinates
(y, X, xy), by easy computations we deduce for y = (y, x) that

8 (5 XN) = Bap () — XN (HusZap + HpsZsa) 5) + X3 Has HopBso (3 (2.13)
gaN =0; gny = 1. (2.14)

In the above expressions, « and B denote any index of the forma = 1,...,kori =
I,...,N—1

We first provide a Taylor expansion of the coefficients of the metric g. From Lemma
2.1 and formula (2.13) we immediately obtain the following result.
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Lemma 2.2. For the (Euclidean) metric g in the above coordinates we have the expan-
sions

gij = 8ij — 2xN Hij + Y Risijxox, + Xy (HDij + O(xP), 1<i,j<N-1;
8aj = —xXN(Hyj+ 8acHej) +O(x)?), 1<a<k 1<j<N-I;

8ab —{&ac FZ,‘ + gbcrsi}xi — xN{Hac8be + Hpcgac} + [ Ryant + gcdrzs Fsl]xsxl
%y (H2)ab + XN Xk [ HaeA oy T + 8o T+ HoelZar T + 8o To )] + O (x ),

1<a,b<k;

8ab

gan=0, a=1,...,k; gn=0, i=1,....,N—1; gyn=1.

In the above expressions Hyg denotes the components of the matrix tensor H defined in
(2.9), Ris:j are the components of the curvature tensor as defined in (2.6), and Fé’ (Ep)
are defined in (2.4). Here we have set

(ANap = AaiAip + Ecd AacApa-
Furthermore, we have the following expansion:
log(det g) = log(det §) — 2xy tr(H) — 2T}, Xk + % RmiitXmX;
+ (@ Rt = T Texmx1 — x3 e(H?) + O(|xP).

Recall first that K minimal implies that F,’J’k = 0. The expansions of the metric in the
above lemma follow from Lemma 2.1 and formulas (2.13)—(2.14) while the expansion of
the log of the determinant of g follows from the fact that g = G + M with

_(& O _
G—(O Ian) and M = O(|x]).

Then we have the following expansion:
log(det g) = log(det G) + tr(G~'M) — L (G~ M) + Oo(IM ).

We are now in a position to give the expansion of the Laplace—Beltrami operator.

Recall that
1

Jdetg

where summation over repeated indices is understood and where g*# denotes the entries
of the inverse of the metric (gqg). The above formula can be rewritten as

Agu = 3 ( detgg“ﬂa,gu),

Agu = g dgpu + 3, (8°")dpu + 534 (log(det )¢ dpu.

Using the expansions in Lemma 2.2 we have the following expansion for the Laplace—
Beltrami operator:
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Lemma 2.3. In the above coordinates the Laplace—Beltrami operator can be expanded
as

Agu(x,y) = Agu + 0ju + Oy yu — tr(H)dyu + 2xy Hij 0 u
+ Xy Q(H)ij0%u — xy tr(H?)dyu + 2xy Hyp T, dju
+ (%leli + gabRiabm - F(C;mrca-i)xmaiu - %Risljxsxlaizj“
+ 2xn (Haj + 8 Hep)gju + (O (Ix1) + 0(1xD3aFY (3, x)) dpu
+{8UTg; + 87T xid0,u + xn{Hacg" + Hype§*Yogu
+ 0(x)3u + O(Ix)o7u + O (x| Igu.
Here Q(H) is a quadratic term in H given by
Q(H);j = 3x} Hy Hyj + x3 QHia Haj + §°° Hia Hp)), (2.15)
while the term 3 (B = b or B = j) is given by
O(IxDF (v, x) = (g — §) + 4 (log(det g)g*" — log(det §)§*).
0(1xDTY (y. x) = g% + 3 log(det §)g* .
Proof. Using the expansion of Lemma 2.2 and the fact that if g = G + M with

(8 O _
G—(O IdRN> and M = O(|x|)

then
¢ '=G6¢"'"-Gc'"MGT' '+ G MG MG + o(IM P,
it is easy to check that the following expansions hold true:
8" = 8ij+2xn Hij — §Risijxsxi + x5 Q(H)ij + O(Ix’),  1<i,j<N-1;
g = xn(Hej +§“He) +0(x), l<a<k 1<j<N-1
g0 = § (T + 8T + xw{Hae 8" + Hpe8*V+ O(xP),  1<a,b<k;
¢N=0 a=1,....k; g¥=0, i=1....N—-1. g"W=1

The lemma follows at once. O

2.3. Nondegenerate minimal submanifolds

Denote by C*°(NK) the space of smooth normal vector fields on K. Then, for & €
C*®(NK), we define the one-parameter family of submanifolds ¢ > K; ¢ by

Ko = {exp)?(®(y) : y € K}. (2.16)
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The first variation formula for the volume is the equation

Vol(Kt@):/ (P, h)y dVk, 2.17)

t=0 K

where h stands for the mean curvature (vector) of K in 9<2, (-, -) y denotes the restriction
of the metric g to NK, and d Vg is the volume element of K.
A submanifold K is said to be minimal if it is a critical point for the volume functional,
that is,
= Vol(K;.¢) =0 forany ® € C*°(NK) (2.18)
=0
or, equivalently by (2.17), if the mean curvature h is identically zero on K. One can prove
that condition (2.18) is equivalent to (2.5).
The Jacobi operator J appears in the expression of the second variation of the volume
functional for a minimal submanifold K:
2

dr?

Vol(K;.¢) = —/ (3O, D)y dVg, @ e CP®(NK), (2.19)
t=0 K

and it is given by
3o = —-A¥Dd + RV o — BV, (2.20)

where RN, BN . NK — NK are defined as
RV O = (R(E,, ®)E)Y, 3BV, ng) = TH(®IL(ng),

for any unit normal vector ng to K. The Jacobi operator defined in (2.20) expressed in
Fermi coordinates takes the form

@®) = —Ax® + (8 Riart — TS(En)TUED)D™, 1=1,...,N—1, (221

where Ryqq1 and I'S (E,,) are smooth functions on K and they are defined respectively in
(2.6) and (2.4). A submanifold K is said to be nondegenerate if the Jacobi operator  is
invertible, or equivalently if the equation J® = 0 has only the trivial solution in sections
of NK.

3. Expressing the equation in coordinates

We recall from (1.14) that we want to find a solution to the problem

N42
Av—gv+vy 7 =0 in€Q,, 3.0
ov/ov =0 on 9%2.

The first element to construct an approximate solution to our problem is the standard

bubble
wo(§) =

oaN

TTEp@In o= (N(N =2)N=2/4 forall £ e RY, (3.2)
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which solves
Jw

ey

It is well known that all positive and bounded solutions to (3.3) are given by the family of
functions
x—P
D (20)
“

for any u > 0 and any point P = (Py, ..., Py—1,0) € 8R1. The solution we are build-
ing will have at main order the shape of a copy of wq, centered and translated along the
k-dimensional manifold K inside d€2. In the original variables in €2, this approximation
will be scaled by a small factor, so that it will turn out to be very much concentrated
around the manifold K.

To describe this approximation, it will be useful to introduce the following change of
variables. Let (y, x) € R¥*+N be the local coordinates along K introduced in (2.8). Let
7 =y/e € K, and X = x/e € RN. A parameterization of a neighborhood (in ) of
q/e € Ko C 982, close to K, is given by the map Y, defined by

Aw+wv? =0 inRY, =0 indRY. (3.3)

_ 1 _
Y.(z, X, Xy) = -Y(ez,eX), X=(X,Xn) e RV xRY, (3.4)
£

where Y is the parameterization given in (2.8).

Given a positive smooth function u; = pue(y) defined on K and a smooth function
&, : K —> RY~! defined by ®.(y) = (CD;(y), ce dbév_l(y)), y € K, we consider the
change of variables

v(z, X, Xn) =y Ve W (2, 1y N (e) (X — @e(e2)), 1 (e)Xw),  (3.5)
with the new W being a function

_ X-9 Xn
W=WGct), 1= E= £ gy =N
& Me He

(3.6)

To emphasize the dependence of the above change of variables on p, and @, we will use
the notation

v="T. 0 (W) & vand W satisfy (3.5). (3.7

We assume now that the functions u, and @, are uniformly bounded, as ¢ — 0,
on K. Since the original variables (y, x) € RtV are local coordinates along K, we let
the variables (z, §) vary in the set

D={(z,E,En) ez € K, |E| <8/e, 0 <&y < 8/e) (3.8)

for some fixed positive number §. We will also use the notation D = K, x D, where
K. =¢"'K and

D={(E &n): 5| <8/e, 0 < En < B/e).
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Having the expansion of the metric coefficients obtained in Section 2, we easily get
the expansion of the metric in the expanded variables: letting g/, P be the coefficients of
the metric g%, we have

8a.p(2, X) = ga,p(e2, £X),

where g, g are given in Lemma 2.2. By an easy computation we deduce

Lemma 3.1. For the (Euclidean) metric g° in the above coordinates (z, X) we have the
expansions

g = 8ij =26 XN Hij+ 36 Ristj X X+ 2 X5, (HD)ij + 0 (X)), 1<i, j<N-—1;
gh; = —eXN(Hyj + ZocHep) + O(E?IXP) 1<a<k 1<j<N-1
gsb = ga - 8{g2cFZi + chFZi}Xi - SXN{Hacg’Zc + Hbcggc}
+ &2 [Reavt + 8 Tas T Xs Xi + 2 X3 (HD) ap
+ 2 XN Xi[HaelZh, T + 85, Tih) + Hoel8E T + 85, T + 031X P),
1<a,b<k;
gn=0, a=1,....k; giy=0 i=1...,N—-1 gyy=L
In the above expressions, Hyg denotes the components of the matrix tensor H defined

in (2.9), Ris;j are the components of the curvature tensor as defined in (2.6), FZ ; are
defined in (2.4) and g,(z) = gan(£2).

Lemma 3.2. We have the following expansions:

Vdetg® = /det g*{1—eXn t(H)+ & Riniit Xon X1+ 5> (@)™ Rmnabt =T T) X X
+1e2X% w(H)? -2 X% w(HD }+ 00X, (3.9)

and

log(det g°) = log(det §) —2e Xy tr(H)+ 16 Rupiit Xm X
+&2((F)™ Rnabt =TS, TN X X1 — 2 X3 tr(HD) + O (87| X ).

am= ci
We are now in a position to expand the Laplace—Beltrami operator in the new variables
(z, &) in terms of the parameter ¢ and the functions w.(y) and ®,(y). This is the content
of the next lemma, whose proof is postponed to Section 8.

Lemma 3.3. Given the change of variables (3.5), the following expansion holds true:

5
uNTIPAY = Ay, 0, (W) 1= nZ A, W+ AW + Y AW+ BW).  (3.10)
£=0
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Here, the Ay, are the following differential operators:

AoW = 2 e DEW[Ag @] — €2 e Mg e (y W + DeWIED)
+ 67|V e P[Des WIEDR +2(1 + y)D: WIEL + y (1 + )W)
+ &2V e - (2D WIE] + NDgW)[ Vi ] + 6> Dgg W[V @ ]
— 261:8°"[ Ds (0 W)[0p11cE] + D(0aW)[0p@cl + ¥ daptcd3 W],  (3.11)

where we have set y = (N — 2)/2, and

1
AW = Y| 2pee Hign = 567 D Ruijiptebin + O (e + @)

i,j m,l

+ U2eEF Q(H)ij + peeEn Y Dy (e + @é)]a?j W, (3.12)
l

where the @lj{,k are smooth functions of z = y/¢ and are uniformly bounded. Further-
more,

AW = &2 pu Z[Z FRussj + Y (8% Riabj — rsmrzp](ugsm + QM) W,
S

j m,a,b
(3.13)
AW = [—8 tr(H) — 2uee2 tr(H>)éy — 262 Z(Ma&‘ + Cbi)HabFZ,')]MgaN w.
haeb (3.14)
Moreover,
AsW = depén
X > Haj(—eDy (0 W)[0,Pe] + pedz; W — edapie (y ;W + Di (0 W)[ED),
a,j (3.15)
AsW = (32 Dyet ety + ®l1+ e ucDyén)
a,j
x e[ e DeWIBa el + 1o0a W — edape (v W + D WIED]}, (3.16)

where @? and D%, are smooth functions of z = y/e. Finally, the operator B(v) is defined
below in (8.1).
We recall that 0,4, 0z and 0; denote 3y, 0,, and 0, respectively.

After performing the change of variables in (3.5), the original equation in v reduces lo-
cally close to K, = ¢~ 'K to the following equation in W:

—A, oW 4 eulW — WP =0, (3.17)
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where A,,, ¢, is defined in (3.10) and p = %—J_r% We denote by S, the operator given by
(3.17), that is,
Se(v) = —Ay, 0,0+ sugv — P, (3.18)

In order to study equation (3.17) in the set of (z, £) with z € K, || < 8/e and 0 <
En < &/e, we will first construct an approximate solution to (3.17) in the whole space
K¢ xRN~ [0, 00) (see Section 4). Then, by using proper cut-off functions, we will build
a first approximation to (3.17) in the original region z € K, || < §/e and 0 < £y < §/e.

The basic tool for this construction is a linear theory we describe below.

Let us recall the well known fact that, due to the invariance under translations and di-
lations of equation (3.3), and since wy is a nondegenerate solution for (3.3), the functions
wo N -2

a
Zj¢) = e j=1....,N=1, and Zo(§) =§-Vwo(§)+
J

wo(§)  (3.19)

are the only bounded solutions to the linearized equation around wq of problem (3.3),

_ 9
—A¢ — pw} =0 inRV"! x RT, —¢=0 on {£y = 0}

&N

Let us now consider a smooth functiona : K — R witha(y) > A > Oforally € K
and a function g : K x R¥~! x Rt — R that depends smoothly on y € K. Recall that a
variable z € K, has the formez =y € K.

We want to find a linear theory for the following linear problem:

~Apv¢ — pwl ¢ +eae)p =g inRY,
d¢/dény =0 on {§y = 0}, (3.20)
vt (0,00 €2 6)Zj(€)dE =0 forallz € K, j=0,....N — 1.

To do so we first define the following norms: Let § > 0 be a small fixed number and r be
a positive number. For a function w defined in K, x RV=1 x [0, 00), we define

lwlle, = sup (1 + D) w(z, &)] + sup e w(z, &)|.
(z,8)eKe x{|£]<8//5) (z,6)eKe x{|€]=68//c}
(3.21)
Leto € (0, 1). We further define
lwllero = llwle, + sup A+ 1EP 2wl ey
(z,8)eKe x{|§]<8//€}
+ sup e 2wl 1) (3.22)

(z.5)eKe x{|€1=8//¢)
where we have set

[wls,B@E,1) ;== sup ! > 21 (3.23)
£1,62€B(E,1) &1 — &
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Lemma34. Let2 <r < Nando € (0,1). Leta : K — R be a smooth function such
that a(y) > A > Oforally € K. Let g : K x RN~! x [0, 00) — R depend smoothly on
y € K with ||g|le,r < o0 and

[ g(ez,86)2;(§)ds =0 forallze K., j=0,...,N— L
RN=1%[0,00)

Then there exists a positive constant C such that for all sufficiently small ¢ there is a
solution ¢ to problem (3.20) such that

IDE¢ller.o + I Dedller—1.0 + 1Bller—2.0 < Cligllero- (3.24)

Furthermore, ¢ depends smoothly on €z, and for any integer | there exists a positive
constant C; such that

IDLpler—20 < C1 Y IDEgllero- (3.25)
k<l

Proof. The proof is divided into several steps.

Step 1. We start by proving an a priori external estimate for a solution ¢ to problem
(3.20). Given R > 0, we claim that

16z, &) < C(Ipll e =sre-1/2) + 77 lIglle.r) (3.26)

forall z € K, and |&| > RS~ 1/2.

Fix R > 0, independent of ¢. In the region |£| > R8e~/2

the function ¢ solves

—A¢ +ebez, §)p =g,

where
b(ez, &) = a(ez) — pwl ™' /e = a(e2) + 0, (&),

with ®, uniformly bounded in the region as ¢ — 0. Thus b is uniformly positive and
bounded as ¢ — 0. Using the maximum principle, we get

@1l oo i) sRe-1/2) = C(e! gl oo (=5 Re~112) + D]l Loo (e =5 RE-1/2))
< CE P gller + 11l Lo z1=s Re-112))-
which gives (3.26).
Step 2. We will now prove that there exists C > 0 such that

oller—2 < Cliglle,r- (3.27)

Towarrds a contradiction, assume that there exist sequences &, — 0, g, with [lg, ||¢,.r — 0
and solutions ¢, to (3.20) with ||¢, ||, —2 = 1. Let z, € K, and &, be such that

|Pn (Enzns En)| = sup [@n (¥, §)I.
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We may assume that, up to subsequences, €,z, — ¥y in K. On the other hand, from Step 1,

sup ey P Igu(enz §)) < CR™OTV2,
z€Ks, . |E|>8Rey 2

thus choosing R sufficiently large, but independent of ¢,,, we see that

—2))2
sup ey Igu(z 6)|
zeK,, . |E|>8Rey '/

is arbitrarily small. In particular, |§,| < Ce, 12 for some positive constant C independent
of g,.

Now assume that there exists a positive constant M such that |£,| < M. In this
case, up to subsequences, one gets &, — &j. We then consider the functions bulz, €) =
én(z, & + &,). This is a sequence of uniformly bounded functions, and (an) converges
uniformly over compact subsets of K x R¥N~! x R* to a function ¢ solving

{ —A(ﬁ — pwg_l(i =0 in R—[i\-]’
3p/dEN =0 on {&y = 0}.

Since the orthogonality conditions pass to the limit, we get furthermore
/ (v, £)Zj(()de =0 forallye Kand j=0,...,N — 1.
RN=1x[0,00)

These facts imply that ¢ = 0, a contradiction. ~
_ Assume now that lim,,_, « |§,| = 00 and define ¢, (2, §) = Pn(z, 1521§ + &,). Clearly
¢n satisfies the equation

&4 17
(1+ | I&. € + &%)

Consider first the case in which lim,,_, o, £, £, | = 0. Under our assumptions, qg,, is uni-
formly bounded and it converges uniformly over compact sets to ¢ solving

Adn + pCy

SO — lEnlPenady = 16178 2. |6al& + £n).

|2

Ap=0 mRN |p|<ClgP.

Since 2 < r < N, we conclude that ¢~) = 0, a contradiction.
Consider now the other possible case, namely that lim,,_, o0 £,|€,|> = 8 > 0. Then,
up to subsequences, ¢, converges uniformly over compact sets to ¢ solving

Ap—Bag=0 inRY, |g| <Clg*".

This implies that ¢ = 0, a contradiction. Taking into account the result of Step 1, the
proof of (3.27) is complete.

Step 3. We now show that there exists C > 0 such that if ¢ is a solution to (3.20), then

||DS¢||s,r—1 + 1Plle,r—2 < Cliglle,r- (3.28)
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First assume we are in the region || < 8¢~!/2, and z € K,. Then, using estimate
(3.27), we find that ¢ solves —A¢ = g in |&| < 8= /2 with || < [Iglle.,/(1 + [€]").

Now fix e € RN with |e|] = 1 and R > 0. Perform the change of variables qS(z, t) =
R’_2¢(z, Rt 4+ 3Re); then

Ap=g inft| <1,
where g(t,z) = R"g(z, Rt + 3Re); then

IpllLB0.2) + 18ll*B0.2) < I18lle.r-
Elliptic estimates give ||Dq3|| 1B0,1)) < CllgllL(B(0,2))- This inequality implies that
1+ 18D Dl oo <se-12) < CI+ ED gl oo e <250 172)-
Assume now that |£| > 8¢~ 1/2. In this region the function ¢ solves
—A¢ =g,

where |g| < C||g||g,r8’/2, and |¢p| < C||g||g,,8(”2)/2. After scaling out £!/2, elliptic
estimates yield | D¢p| < Ce"~1/2_ This concludes the proof of (3.28).

Step 4. We now show that
ID¢lle.r.o + I Dedller—1.0 + 1Bller—2.0 < Cligllero- (3.29)

First assume we are in the region |£| < 871/, Then ¢ solves —A¢ = g in |§| <
8¢~ 1/2 where, thanks to the C!-estimate of Step 3, [18lle.rc < Cliglls.ro-

Arguing as in the previous step, we fix e € R" with |e] = 1 and R > 0, and
let ¢ and g be as defined in Step 3. Elliptic estimates then give ||D2¢~>||Co,a( BO.1) =
ClIgllco.0 (p(0.2))- This inequality gets translated in terms of ¢ as the desired Schauder
estimate within || < 8¢~ /2. The Holder estimate for D¢ follows by interpolation. In
the region |£| > 8¢~!/2, we argue exactly as in the proof of Step 3. This concludes the
proof of (3.29).

Step 5. Now we prove the existence of the solution ¢ to problem (3.20). We consider
first the following auxiliary problem: find ¢ and « : K, — R solving

—AG — pwl ' f +ea()p = g+ aR)Z(E) inRY,
3p/05n =0 on {&y = 0}, (3.30)

Jav-t e @ EVZ; () dE = fanoi s $(2 )ZE)dE =0 forz € K, and
j=0,...,N—1,

where Z is the first eigenfunction, with corresponding first eigenvalue Ao > 0, in L2(R")
of the problem

Asd + pwo(§)P g =rp inRY. (3.31)
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The above problem is variational: for any fixed z € K, solutions to (3.30) correspond to
critical points of the energy functional

E@) =+ / VEP — pul ™ & + sad® — /
2 JrRN-1 R+

RN-1 xR+

for functions ¢ € H' (RN~ x R*) that satisfy

/ $Z; = / $Z =0
RN-1 xR+ RN-1 xR+

forall j = 0,..., N — 1. This functional is smooth, uniformly bounded from below,
and satisfies the Palais—Smale condition. We thus conclude that E has a minimum, which
gives a solution to (3.30).

Observe now that multiplying the equation in (3.30) by Z, integrating over
RN~1 x R*, and using the orthogonality conditions in (3.30), one easily gets

a(z) = f g(z,86)Z(E)dE  forall z € K,. (3.32)
RN—IXRJr

Given a solution (d;, «) to (3.30), we define

[8(z,&)Z (&) dé&

p=¢+pBZ with B(z) = Ao + ga(ez)

A straightforward computation shows that ¢ is a solution to (3.30).
Finally, estimate (3.25) follows by direct differentiation of (3.20) and using (3.24).
This concludes the proof of Lemma 3.4. O

4. Construction of approximate solutions

This section will be devoted to building an approximate solution to problem (3.17) locally
close to K., using an iterative method that we describe below. Let I be an integer. The
expanded variables (z, £) will be defined as in (3.6) with

Me(€z) = o + pie + -+ Ui, 4.1

where (Lo, 1¢, - - ., i1,¢ are smooth functions on K, with 1o positive, and
Qe(e2) =Pre+- -+ Py, (4.2)
where @ ¢, ..., ;. are smooth functions defined along K with values in RY=! In the

(z, &) variables, the shape of the approximate solution will be given by

Wit1,6(z,E,68) = wo(€) + w1 e(z,6) + -+ wip16(2,8), &=, &), 43)
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where wy is given by (3.2) and the functions w; . for j > 1 are to be determined so that
the above function Wy, . satisfies formally

N+2
2 N=2
A0, Witre +eugWigre — W,

l,e

=0@E"?) ink, x RN x RT.

This can be done by expanding equation (3.17) formally in powers of & (and in terms
of ue and ®;) for W = Wy (using basically Lemma 3.3) and analyzing each term
separately. For example, looking at the coefficient of ¢ in the expansion we will determine
wo and wi., while looking at the coefficient of g1+i/2 we will determine Wje, Uj—1,e
and ®;_y ¢, for j = 2,..., 1 + 1. In this procedure we use crucially the nondegeneracy
assumption on K (which implies the invertibility of the Jacobi operator) when considering
the projection on some elements of the kernel of the linearization of (1.14) at wg, while
when projecting on the remaining part of the kernel we have to choose the functions u; ¢.
This section is devoted to presenting this construction.

Lemma 4.1. For any integer I € N there exist smooth functions n, : K — R and
@, : K — RV such that
e Lo iy + 18atell ooy + 19 el ek < C. 4.4)
1Pell oo k) + 100 ®ell oo k) + 107 Pell Loy < C, 4.5)

for some positive constant C, independent of e. In particular,

lwe — pollLexy = 0, [P — PollLex)y — O, (4.6)

where (g is the function defined explicitly as

fM En 101 wol?

[ZHaa(y) + Hii(y)]~
fM w)

mo(y) =

By assumption (1.13), the function o is strictly positive along K. Moreover ®g is a
smooth function along K with values in RN='. Furthermore there exists a positive func-
tion Wyy1,. 1 Ke X Rf — R such that

ApeoeWigre) —euiWrpre + W =& in Ko x RY,
oW
hiHLe _ 0 on BRf

v

with

IWitt,e — Wiellen—ao < Ce'T/2, 4.7)

1€r41.elle.n—2.0 < Ce'TUFD2, (4.8)

We should emphasize that f w(z) is indeed finite thanks to the fact that N > 5, and we are
actually assuming that N > 7.
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Construction of w; .. Using Lemma 3.3, we formally have
A0, Wie + epiWie — W, = —Apvwo — wf
+ (—Agywy e — pw(’)’_lwl,g + 8M(%w1,s)
+ epol Hyo Ogy wo — 26N H;j 3,»2]- wo + po(y)wol
+ &6+ Qe(wie),
where &  is a sum of functions of the form
epo(epo + edapto + 32 10)a(2)b(€)

and a(ez) is a smooth function uniformly bounded, together with its derivatives, as ¢ — 0,
while the function b is such that

sup (1 +ENHb(E)] < oo.

The term Q. (wy ) is quadratic in wy , in fact it is explicitly given by

—1
—(wo + wi,e)” + wh + pwl T wi .

Observe now that the term of order O (in the power expansion in €) vanishes because of
the equation satisfied by wyg. In order to make the coefficient of ¢ vanish, w  must satisfy

{ —Awi e — pwl wi e +epdwie = g1 e(e7,6) inRY, 49)
dwi,e /0y =0 on {&y =0}, '
where

81,6(62,8) = —po(¥)[Hye 0gy wo — 2§NHij3,~2jwo + no(y)wol. (4.10)
Using Lemma 3.4, we see that (4.9) is solvable if the right hand side is Lz-orthogonal
to the functions Z; for j = 0, ..., N — 1. These conditions, for j = 1,..., N — 1, are

clearly satisfied since both dywp and Bizj wo are even in &, while the Z;’s are odd in & for
every i. It remains to compute the L2 product of the right hand side with Z. We claim
that

[ (s = 288603 0) 20 = Yoo — 2 i (@.11)
RY '
where 2(p and 2l are the constants defined by
1 N =2 2N
Ay = —/ En Vol — —f Evw) (4.12)
2 Jry 2N Jry
2 =/ En|diwol* > 0. (4.13)
RY

Furthermore,

/ woZo = —/ wg. (4.14)
RY R

N
+
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Indeed, since (9w )|u=1 = —Zo, we have
[ o= f w1 ([ )
woLog = — wo w =1 =—= w
RY RY wWu)|p 5 RY u et
1
2 RY /=

We postpone the proof of (4.11). We turn now to the solvability in wj ¢. Assuming the
quantity on the right hand side of (4.11) is negative, we define

Ao Hyo — A1 Hjj
fM wg

With this choice for po, the integral of the right hand side in (4.9) against Z( vanishes
on K and this implies the existence of w1 ¢, thanks to Lemma 3.4. Moreover, it is straight-
forward to check that

mo(y) == (4.15)

lgtelle,n—2,0 < C

for some o € (0, 1). Lemma 3.4 thus implies that
IDFwielle.n—2.0 + I Dswiellen—3.0 + [Wiellen—t0 < Ce (4.16)

and that there exists a positive constant 8 (depending only on 2, K and N) such that for
any integer ¢,
IVOw ez, lle,n-20 < BCre, 7€ Ke, 4.17)

where C; depends only on /, p, K and €2.
Proof of (4.11)—(4.13). We first compute fmz wodywp. To do so, for any u > 0 we
denote by w), the scaled function

—(N-2)/2

wy(x) = p wo (™" x).

Since (9, wy)|,-, = —Zo, a direct differentiation and integration by parts gives

fza =9 1/§|v 1? N_zg 7
o 00NWQ = 0y ) Rﬁ NIVWy N NWy |M=1'

+

Now changing variables £ — w&, a direct computation gives

1 , N—=2 5 1 , N—=2 5

E/RN§N|VU)M| —WfRN%'qu =pu E/RNENWWM _W,[RNSNWO ,
+ + + +

from which (4.12) follows. Next, we compute —2 fRﬁ En 81'2] woZo. By symmetry we have

szﬁ En afj woZo = 01if i # j. Assume then that i = j is fixed. Integration by parts and
direct differentiation yields

—2/ sNa,%wozo=2/ sNaiwoaizo=—aM[/ smalwmz}
RY RY RY lu=1
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and also

/N§N|3lwu|2:M/N€N|3lw0|2-
RY RY

The above facts yield (4.11).
Now we claim that 2(p = 2%;. Indeed,

/ sN|Vwo|2=f sN|ano|2+/ (w0l
RY RY RY
=/ sN|ano|2+(N—1>/ En1d1wol*
RY RY
= (N+1)/RN Enlorwol* = (N + D2
+

Here we have used the fact that fRﬁ Exlonwol? =2 fRﬂ £n]01wo|? since

2 2 EN 2 1 2 ;
/M.smaszm =N J TR T NI T RfNaN((leP)N‘)

_p 1 / Ev
NN —1 Jry (1 +[gHN

and
‘i:l 2 1 1
sN|alwo|2=a2/ ENEl —— 5 = — sNaal —_
/Ry Ve N A ERY T TV a2 (14 €[N
_ o 1 &N
Mo — 1) Joy (14 2N
On the other hand,
2N 1 2N 1 2N N+2
N-2 _ N-Z _ _ _ N=2
[ o™ = 2/ NG 2/RN T
N+2
= / SNanO wo N=2 N 2/ SNano(aNNwo-i-&”wo).
N——
—Aw

Now we use the fact that
/ EZONwod% ywo = —2 / ENINwINwo — / £20% ywodnwo,
RY RY RY
which implies that

/ EXONWOdF ywo = —/ EnONwodywy = —22;.
RY RY
+ +
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Now integrating first in &1 and then in &y yields

11:/ £ 0N wodT wo —/ 5;%/312\;111)03111)0:/ dwody (£301wo)
RY RY RY

+

fN dwo(2Endwo + £3 07y wo) = 22y — 1.

RY

This implies that

I=2, and /N ExdNwodiwy = (N — 1)fN EXdNwWOdT wo = (N — 1)2;.
RY RY

‘We deduce that
2N N N(N —3)
N2 — (=22 N-—-DA)) = ——2;.
/MéNwo N 2( 1+ ( )2A1) N5 M
Hence
1 5 2N
2y = 5/ En|Vwol” — / Enwy
RY
N +1 N -2 N(N —
= A Ql =22
2 T 2N N-2 b

This proves the claim. In particular, equation (4.15) can be written as

2Hyo — Hi; 2Huq + Hi;
po(y) = A ———— = A —= + . (4.18)
fM Wo fM Wo

Construction of wy .. Wetake I = 2, ue = o + p1,e, e = 1o and Wo(z,§) =
wo(§) +wie(z, &) +wae(z, &), where o and wy . have already been constructed in the
previous step. Computing S(W» ) (see (3.18)) we get

—Aw e+ epdwae — pwh T wae =egac+Erc+ Qe(wa,).  (419)
In (4.19) the function g3 . is given by
82,6 = 1,e(V)[—Huo gy wo + 28N Hij ,] — 2powol
+ oY) —Huadsy w1, + 26N H;j ,jwl el +e82:(&, z, wo, (o)
- EHOAKCDLEBjWO — gSMoRmijl(SmCDl,s + Ez@'l",g)a,-zjwo

+ Fe10Rnssj @7 0jwo + £10 ()™ Rmaaj — T (Em)TE(E))) DT, djwo.
(4.20)

In (4.20), &3 (&, z, wo, w1 ¢, o) is a sum of functions of the form

Q(10, dapro, 92 1t0)a(ez)b (&),
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where Q denotes a quadratic function of its arguments, a(ez) is a smooth function uni-
formly bounded, together with its derivatives, in € as ¢ — 0, while b is such that

sn;p(l +1EIV D) b(E)] < 0.

In (4.19) the term &, , can be described as a sum of functions of the form

(eLpr, 1) + Qui, P1))a(ez)b(é),

where (1, P1) = (U1.e, dalh1 e, 83/11,8, Dy, 0P, 8a2d>1,8), L denotes a linear func-
tion of its arguments, Q denotes a quadratic function of its arguments, and a(ez) and b
have the same properties as above. Finally, the term Q, (w2 ¢) is a sum of quadratic terms
in wy . like

—(wo + wi e + w2 )P + (wo + wie)” + p(wo 4+ wie)’ woe

and linear terms in wy  multiplied by a term of order ¢, like

_ —1
p((wo +wi )P —wh Hwye.

We will choose w» ¢ to satisfy

421

—1
—Awy e — pwl wae +eudwre =eg2e onRY,
dwy /06y =0 on {&y = 0}.

Again by Lemma 3.4, the above equation is solvable if g3 . is L?-orthogonal to Z;, j =
0,1,..., N — 1. These orthogonality conditions will define the parameters (| and the
normal section @1 ;.

Projection onto Z and choice of 11| .. Recalling that by definition of 1.9 one has
[ = Huabiy o+ 26w Hydh o = jouolZode =0, (422)
RN-I xR+
and using the fact that wy is an even function in é , we have
/ 82,20 = Mo/ [— Hoo Oy w6 + zsNHijal’zjwl,e]ZO dg
RY RY

—/Lom,a/N woZo d& +8/11;<N 2. (&, 2, wo, 1o) Zo d&.
+

RY

We observe that the term that factors like 141 ¢ in the definition of g2 . in (4.20) disappears
after integration thanks to relation (4.22). Here and later, &; . designates a quantity that
may change from line to line and which is uniformly bounded in & and depends smoothly
on its arguments.
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Then, we define w ¢ to make the above quantity zero. The above relation defines (1, as

a smooth function of y in K. From estimates (4.16) for w; . we get

2
let,ell ooy + 10apt,ellLoe (k) + 10, 11,6 llLoo(k) < Ce.

(4.23)

Projection onto Z; and choice of ®; .. Multiplying g> . with d;wy, integrating over Ri’

and using the fact wy is even in the variable E, one obtains

(ep0) " /NgZ,sale

RY

= —Akq){S/ 3jw031w0+,u;1/ G2.:(8, 2, wo, 1o, Wi,¢)wo
©~ JRY RY

+

— LRz, /R @+ ) w0ty
+

+ [ Rossj ® + (@) R — TS(En)THE) D] /  djwodyw.
R

+

First of all, observe that by oddness in § we have

/ djwodwo = 8;Co  with  Co :=/ 181 wol?.
RY RY

+ +

On the other hand, the integral fRN En 81-2]. wod;wo is nonzero only if either i =
+

4.24)

j and

m=1,ori =land j =m,ori =m and j = [. In the latter case we have R,,;;; = 0 (by
the antisymmetry of the curvature tensor in the first two indices). Therefore, the first term

of the second line of the above formula becomes simply
1 Rynijs /N §m©§’833,~m31w0 = I Riiis @}, fN £18;wod} wo d&
RY RY
+ %Rj,‘js(bsl’s /N Ejaiwoaizjwo ds.
]R+
Observe that, integrating by parts, when ! # i (otherwise Rj;j;s = 0) we have
f &101w0d]wo dE = —/ £0;wodj; wo dé.
RY RY
Hence, still by the antisymmetry of the curvature tensor, we are left with

—3Rijjs @ ¢ /RN &0 wod7; wo d.
+

The last integral can be computed with a further integration by parts and is equal to — % Co,

so we get
1 s
§C0Rijjsq>]’5~
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In a similar way (permuting the indices s and m in the above argument), one obtains
1 2 1
§Rsijm '/RN Escb'fgaijwoalwo = §C0 Z Rijjmq)rlrtg-
+ i
Collecting the above computations yields

_%Rmijs /RN(quDiE + %'sqy{fg)aizjwoalwo + %Rm”jCD'{fe /RN 8jw031w0 =0.
+

+

Hence formula (4.24) becomes simply

/ | 82.601w0 = —epoColg @, +e10Co((§) Rmaar — T4 (Em)TE(ED) @Y

IRJr
+8/ (’52,88111)0.
RN

+

We then conclude that g2 .(z, &, wo, ..., wi), on the right hand side of (4.21), is L2-
orthogonalto Z; (! = 1,..., N — 1) if and only if & , satisfies an equation of the form

Ag @, — (@) Ruavj — TS(EnTE(ED) DT, = Gae(e2), (4.25)

for some expression G . smooth in its argument. Observe that the operator acting on @1
on the left hand side is nothing but the Jacobi operator (see (2.21)), which is invertible by
the nondegeneracy of K. This implies the solvability of the above equation in @ .

Furthermore, equation (4.25) defines ®1 . as a smooth function on K, of order ¢;
more precisely we have

1D 1ellLoe (k) + 18aP1ellLok) + 185 P1 el Lk < C. (4.26)
By our choice of i1, and ®; . we have solvability of (4.21) in wy .. Moreover, it is
straightforward to check that
&3/2
leg2,6 (62, &) < Celdgywi el < Cw-
Furthermore, for a given o € (0, 1) we have

3/2
llega,elle,n—2,0 < Ce / .

Lemma 3.4 then shows that

IDFwaelle.n—2.0 + | DewaelleN-3.0 + W2 elle.n—st.0 < Ce? 4.27)

and that there exists a positive constant 8 (depending only on €2, K and #) such that for
any integer £,
Vw2 (z, Me,nv-20 < B2, 2 € Ke, (4.28)

where C; depends only on /, p, K and 2.
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Expansion at an arbitrary order. We now take an arbitrary integer /. Let

Me = o + Mie + -+ Ui-1e + KL, (4.29)

o = ch,s + -+ q)I—l,S + qJI,Ea (430)

Wiste = wo(8) +wie(@ ) + -+ wre(@. &) + wii1(. 6), “31)

where (o, 16y RI-1,6>Ples ..., Pr—1cand wy g, ..., wy . have already been con-
structed following an iterative scheme, as described in the previous steps.

In particular, foranyi =1,...,1 — 1,
a6l ooy + N3attivell ooy + 108 thive | Loy < Ce'TETD/2, (4.32)
1 ¢l () + 1180 Pi.e | Lov ) + 107 PivellLoqxy < Ce™D/2, (4.33)

and, fori =0,...,1 —1,
IDFwis1elleN—2.0 + I Dswisiellen-3.0 + lwit1ellen—s.0 < Ce' T2 (434)
and, for any integer ¢,
IVOW 416z Men-20 < BCT, zeK,. (4.35)

The new triplet (¢, ®re, wr+1,¢) Will be found by reasoning as in the construction of
(11,6, P1e, wa,¢). Computing S(Wy 1) (see (3.18)) we get

-1
— AW/ + EUGWIL1e — PWY Wig1e = e811e + Erpre + Qe(Witre). (4.36)
In (4.36) the function g;41 ¢ is given by
81416 = ir.e (1) —Haa ey wo + 26N H;j0;w0 — 2p0wo]
+ oW —HuaOsywr e + 26N H;j 3lzjw1,s]
+ 8614—1,8(57 Z, WO, .-, 61,5’ MO’ LR :u'l—l,é‘v q>1,8’ LR (DI—I,S)
— oAk @, 0jwo — Fep0RmijiEn @, + EPT )0 wo
+ 5610 Rmssj P 0jwo + 1108 ((Z°)” Rmabj — T (En)TE(E))) @ 0jwo.  (4.37)
In (4.37), &141.¢(&, z, .. .) is a smooth function with
187 41ellen—2.0 < Ce't/2 (4.38)

In (4.36) the term &4 . can be described as a sum of functions of the form

(eLur, @) + Qur, Pr))ale)b(§),

where (w7, @) = (1e, bl e, 32;“,5, Dre, 0,Pre, 82@1‘8), L denotes a linear func-
tion of its arguments, Q denotes a quadratic function of its arguments, a(¢z) is a smooth
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function uniformly bounded, together with its derivatives, in ¢ as ¢ — 0, while b is such
that
sup (1 + 1§V "2)[b()| < oo.
&

Finally the term Q. (wy41,¢) is a sum of quadratic terms in w4 ¢ like
(wo +wi e+ +wr1e)’ — (wo+wie + -+ wigre)”
—p(wo+wi e+ +wr ) wrg
and linear terms in w; 1 . multiplied by a term of order &2, like
p((wo + wi )P ! — wgfl)w1+1,a~

We define wyy ¢ to satisfy

(4.39)

-1
—Awigle — pwY Wit + Epudwisre = €gr41,. onRY,
dwry1,6/06y =0 on {&y = 0}.

Again by Lemma 3.4, the above equation is solvable if gri ¢ is L?-orthogonal to Z;,
j=0,1,..., N — 1. These orthogonality conditions will define the parameters 11 . and
the normal section @y ;.

Projection onto Z and choice of 117 .. Thanks to the definition of 11y one has
/N gi+1,eZo = MO/N[—HaaagN wye + ZENHijaizjwl,s]Zo dé
RY RY

— opre / WoZodt + ¢ / B 1110 (E. 2) Z0 dE.
RY RY

We define ;. to make the above quantity zero. The above relation defines ;. as a
smooth function of ez in K. From estimates (4.34) for w; . we get

lirellzooky + 18amrell ooy + 18211 llLooky < Ce'TU=D/2, (4.40)
Projection onto Z; and choice of ®;.. Multiplying g;+1 . with dwo, integrating

over Rﬁf and arguing as in the construction of ®; ., we get

/ | 8r+1e0w0 = —epoAg @), + ep10((8) Rman — To(Em)TE(ED) P
R

+

+8/N 051_;,_1153111)0.

R+
We then conclude that g741 (2, &, wo, ..., wr¢), on the right hand side of (4.39), is L2-
orthogonalto Z; (! = 1,..., N — 1) if and only if & satisfies an equation of the form

Ag @), = (B Rmant — TS(En)TE(ED) DT, = Gry16(e2), (441
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where G4, is a smooth function on K. Using again the nondegeneracy of K we have
solvability of the above equation in ®; .. Furthermore, taking into account (4.38), we get

D6 lloek) + 18aPrell oo k) + 182P1 e ll oo k) < Ce' T2, (4.42)

By our choice of pjy1, and @741, we have solvability of (4.39) in w;1 . More-
over, it is straightforward to check that

1+1/2

legri1.6(ez,8)] < CW'

Furthermore, for a given o € (0, 1) we have
legrstellen—2o < Ce' T2,
Lemma 3.4 then implies that
D? D <ce't? (443
IDiwriielle,N-2.0 + 1Dswrtrelle N-3,0 + lWrt1ellen-4,0 < Ce (4.43)

and that there exists a positive constant 8 (depending only on 2, K and n) such that for
any integer /£,

IV O w116z e n—2,0 < BCeT2, 7€ K. (4.44)

This concludes our construction and proves the validity of Lemma 4.1.

5. A global approximation and expansion of a quadratic functional

Let pe(y), @< (y) and Wy . be the functions whose existence and properties have been
established in Lemma 4.1. We define locally around K, := e 1K c 9, in Q, the
function
Ve@, X) 1= g VD2 () Wigr e (z, 1 (€2) (X — @e(e2)), 1y (e2) X )
X xe(I(X = @c(s2), XN, (5.1)

where z € K. In (5.1) the function yx, is a smooth cut-off function with

5.2)

1 forr €[0,2¢77],
Xe(r) = _ _
0 forr e[3s77,4e77],

and
|Xg(l)(”)| < Clgl” forall/ > 1,

for some y € (1/2, 1) to be fixed later.
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The function V, is well defined in a small neighborhood of K, inside .. We will
look for a solution to (1.14) of the form

ve = Ve + 0.
This translates into the fact that ¢ has to satisfy the nonlinear problem

—Ap+ep—pVPTp = S (Vo) + Ne(§)  in Qs

dp/dv =0 on 982, (>3)

where
Se(Ve) = AV, — eV + V2, (5.4)
Ne(@) = (Ve +¢)P — VI — pVPle. (5.5)

Define

Le(¢p) = —A¢p +ep — pVP~'o.

Our strategy consists in solving the nonlinear problem (5.3) using a fixed point argument
based on the contraction mapping principle. To do so, we need to establish some invert-
ibility properties of the linear problem
. d¢
Le(@)=f inQq, 8_:0 on 9%,
Vv
with f € L?(2,). We do this in two steps. First we study the above problem in a strip
close to the scaled manifold K, = ¢~'K in 8Q,. Then we establish a complete theory
for the problem in the whole domain €2,; this is done in Section 7.
Let y € (1/2, 1) be the number fixed before in (5.2) and consider

Qey = {x € Qg : dist(x, Ky) < 2e77}. (5.6)

We are first interested in solving the following problem: given f € LZ(Q&V),

~Ap+ep—pVETlo=f inQ.,,
/v =0 on 32 N Qe (5.7
=0 in 82, \ 982%.

Observe that in the region we are considering, the function V. is nothing but
T, 0, (Wis1,e), where Wiy . is the function whose existence and properties are proven
in Lemma 4.1. For the argument in this part of our proof it is enough to take / = 3, and
for simplicity of notation we will denote by w the function W; . with I = 3. Referring
to (4.3), we have

4
Ww(z, &) = wo(§) + Z w; (2, 6), (5.8)
i=1
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where wy is defined by (3.2) and
IDZwis1ellen-2.0 + 1 Dewistellen-3.0 + [Wit1elen—s0 < Ce'T/2 (59)
and, for any integer £,
IV w16z, en—2.0 < BC1e'T2, 2z € Ke,

foranyi =0, 1, 2, 3.
We will establish a solvability theory for problem (5.7) in Section 6. For the moment,
we devote the rest of this section to expanding the quadratic functional associated to (5.7).
Define

H! ={ue H'(Q,) 1 ux) =0forx € 32, \ 92} (5.10)
and the quadratic functional

1
E@) = 5/9 (VP + e — pVP~'%) 5.11)

for ¢ € Hsl.
Let (z, X) € R¥N be the local coordinates along K, introduced in (3.4); with abuse
of notation we will denote
#(Te(z, X)) = ¢(z, X). (5.12)

Since the original variables (z, X) € RKHN (see (3.4)) are only local coordinates
along K, we let (z, X) vary in the set

Ce=1{(z, X, Xn):62€ K,0<Xny<e 7, |X| <& 7). (5.13)
We write C, = e 'K x és where
Co={(X,XN):0< Xy <&V, |X| <& 7). (5.14)

Observe that Cs approaches, as ¢ — 0, the half-space ]Rﬁ .
In these new local coordinates, the energy density associated to the energy E in (5.11)
is given by

3Vl +e¢® — pVP 9% /detge, (5.15)

where Ve denotes the gradient in the new variables and g° is the flat metric in RNk in
the coordinates (z, X).

Having the expansion of the metric coefficients (see Lemma 3.1), we are in a position
to expand the energy (5.11) in the new variables (z, X):
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Lemma 5.1. Let (y, x) € R¥™N be the local coordinates along the submanifold K in-
troduced in (2.8), and let (z, X) be the expanded variables introduced in (5.12). Assume
that (z, X) vary in C, (see (5.13)). Then the energy functional (5.11) in the new variables
(5.12) is given by

eXlg
+/ R %Eij(SZ, X)0;¢d;¢p+/det g€ dzdX
K xCq
+%/ N |VK5¢|2 detggdZdX—l—[ . B(¢, )/det g¢ dzdX. (5.16)
K Ky x

e xCe 3

In the above expression, we have
Bij(ez, X) =2eH;j XN — %ezR,'slele, 5.17)
we denote by B(¢, ¢) a quadratic term in ¢ that can be expressed in the form
B, ¢) = O(Xy + X + & Xn|X1* + £’ X5 1X1) 0,090
+&2|Vk, 0120 (el X|) + 89329 O (e X| + 2 X3, (5.18)

and we use the Einstein summation convention over repeated indices. Furthermore we
use the notation 9, = dy, and 9 = 0z,.

Proof. Our aim is to expand

/ LV + e¢” — pVP~p?) /det ge.

For simplicity we will omit the ¢ in the notation of g°. Recalling our convention about
repeated indices, we write |Vg£¢)|2 as

IVeed|? = (85N onpang + (850 0a00p¢ + (5)7 3;09; ¢ + 2(g°)Y 849090,

where (g°)®P represent the coefficients of the inverse of the metric g¢ = (ggﬁ). Using the
expansion of the metric in Lemma 3.1, we see that

Vo> = ano|* + 18;1* + (26 Hij Xy — 36 Ris1j X, X1)0i99;¢ + dapdacp (1 + €| X|)
+0(E* X% + 31X11)8108;0 + O(eXy + 2 0(1X|*))0apd; 9.

This, together with the expansion of 4/det g given in Lemma 3.1, proves Lemma 5.1. O

Given ¢ € HE1 (see (5.10)), we write

S N-1 dj
b= [—ng (Z0) + Y T, (Z)) + im%(z)}i& vob 61
He j=1 He Me
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where the expression 7, ¢, (v) is defined in (3.7), the functions Zy and Z; are defined in
(3.19) and where Z is the eigenfunction, with fRN Z? = 1, corresponding to the unique
positive eigenvalue Aq in L2(RY) of the problem

Apnd + pwl'p =nrop iRV (5.20)

It is worth mentioning that Z(£) is even and it has exponential decay of order O (e~ Vholél)
at infinity. The function x, is a smooth cut-off function defined by

) . X—-d, Xy
XS(X)ZXé‘(‘( 5,_)
Me He

>, 5.21)

with x(r) = 1 forr € (0, %S_V), and x(r) = 0 for r > 2&77. Finally, in (5.19),
8 =68(ez),d! = d’(ez7) and e = e(e7) are functions defined in K such that for all z € K,

/é 6 T 0. (Z0) e = /C 6 T 0. (Z))7e = /C S T 0, (DT = 0. (522)

We will denote by (Hgl )™ the subspace of Hg1 consisting of the functions that satisfy the
orthogonality conditions (5.22).
A direct computation shows that

[ ¢Tp..0.(Zo) ;
8(ez) = #zg“ +0(M) + 0<e2)(]Z d(e2) +e(e2) ),
d/(e2) = M(l +0(ED) + 06N (3 + Y d'(62) + e(e2)),
ne [ 2] iZ]
VA .
e(e2) = %(1 +0(Y) + 0 (8(e0) + JZ‘” €2)).

Observe that since ¢ € Hgl, one easily sees that 8, d/ and e belong to the Hilbert space
HYK)={c e LX(K): 0, € LX(K), a=1,...,k}. (5.23)

Thanks to the above decomposition (5.19), we have the following expansion for E(¢).

Theorem 2. Let y = 1 — o for some o > 0 small. Write ¢ € Hsl as in (5.19) and let

d=(d",...,dN7Y). Then there exists ey > 0 such that, for all 0 < & < &,
E(@) = E(¢") + e ¥ [Po(8) + Q:(d) + Re(e)] + M(p™, 8. d, e). (5.24)
Here
P.(8) = P(8) + P1(9) (5.25)
with

Ae 2 2y ge 2, B 2
P@6) = 7/1{8 184 (8(1 + o(e7) By (¥)))] +85/K3 (5.26)
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with A, a real number such that lim,_,0 A, = A 1= fRﬁ Z%, B=— fRﬁ woZo > 0 and
B is an explicit smooth function defined on K which is uniformly bounded as & — 0;
furthermore, Py (8) is a small compact perturbation in H' (K) which is a sum of quadratic
functionals in § of the form
&? / ()13,
K

where b(y) denotes a generic explicit function, smooth and uniformly bounded, as ¢ — 0,
in K. Moreover, in (5.24),
Q:(d) = Q(d) + Q1(d) (5.27)

with

2
e -
0 = 5Ce ( / |02 (d(1+0(*)B5 (NP + / ((gg)“”Rmabl—F;<Em>rz(El>)d’"d’>
K K
(5.28)
where Cg is a real number such that limg_,g C; = C := fRﬁ Z%, ﬂg is an explicit smooth

function defined on K which is uniformly bounded as ¢ — 0, and the terms Ry qp; and
IS (Ey,) are smooth functions on K defined respectively in (2.6) and (2.4). Furthermore,
Q1(d) is a small compact perturbation in H' (K) which is a sum of quadratic functionals
in d of the form

83/ b(y)d'd/,
K

where again b(y) is a generic explicit function, smooth and uniformly bounded, as ¢ — 0,
in K. Moreover, in (5.24),

R¢(e) = R(e) + Ri(e), (5.29)

A

R(e) :ek[%<e2/K 104 (e(1 +e*7°€’y,3§(y)))|2 —xofl(ezﬂ, (5.30)

with D a real number such that limg_.o D, = D := fRﬁ Z2, ,3§ an explicit smooth
function in K, which is uniformly bounded as ¢ — 0, and L the positive number defined
in (5.20). Furthermore, Ry is a small compact perturbation in H'(K) which is a sum of
quadratic functionals in e of the form

&’ / b(y)e?
K

where again b(y) is a generic explicit function, smooth and uniformly bounded, as ¢ — 0,
in K. Finally, in (5.24),

M (HHE x HY K )N S R

is a continuous and differentiable functional with respect to the natural topologies, ho-
mogeneous of degree 2:

Mtpt, 18, 1d, te) = P M(¢p*,8,d,e) forallt.
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The derivative of M with respect to each of its variables is a small multiple of a linear
operator in (¢J‘, 8,d, e) and satisfies

IDL 500 M(@T . 81.d1. e1) — Dy 5 5y My, 82, do, e2)|| < Ce? V™)

x [llo1 — o3 Il + & 51181 — 82ll01 (k) + & ¥ lldL — dall 31 geyyv—1 + & Fller — eallag iy ]-
(5.31)

Furthermore, there exists a constant C > 0 such that
M@, 8. d, )l < C2[llg™ 1P + e ISI15,1 ) + 1131 ) + NelFpn )] (5:32)

We postpone the proof of Theorem 2 to Appendix 9.

6. Solving a linear problem close to the manifold K

In this section we study the problem of finding ¢ € Hs1 (see (5.10)) solving the linear
problem (5.7) for a given f € LZ(QS,V) (see (5.6)), and we establish a priori bounds for
the solution. The result is contained in the following

Theorem 3. There exist a constant C > 0 and a sequence ¢y = ¢ — 0 such that for any
fe LZ(QS,V) there exists a solution ¢ € Hg1 to problem (5.7) such that

Il < Ce™ ™0 fll 2, - (6.1)

The entire section is devoted to proving Theorem 3.
Given ¢ € Hg1 (2¢,y). Asin (5.19), we have the decomposition

N—

8
¢ = [M—m,%(zo) Z

Il&

Tie, 0. (Z) + Tiee., CDS(Z)i|Xe +ot

We then define the energy functional associated to problem (5.7),
E:(HH x HYKHYN T - R,

by
E@r,8,d,e) = E(p) — Lf($), (6.2)

where E is the functional in (5.11) and Ly is the linear operator given by

L) = / £9.
Qg’y

Observe that
Ly(@) =L@ + e L) + L} (d) + L} (e)],
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where £} : H! — R, £7, £} : H'(K) - Rand £} : (H'(K)¥~! — R with

6
Li(¢h) = / for, &R LEE) = / f—Tue.0.(Z0) e
Qe.y Q., Me
—k 3 = d’ - —k pd e -
SCICEDY i ST @k L = i S T D)k

Finding a solution ¢ € Hg1 to (5.7) reduces to finding a critical point (¢>L, 8,d,e) for £.
This will be done in several steps.

Step 1. We claim that there exist 0 > 0 and &g such that for all ¢ € (0, &9) and all
¢t € (H)™S,
E@") > ot (6.3)

Using the local change of variables (3.4) and (5.12), together with Lemma 5.1, we see
that, for sufficiently small ¢ > 0,

1
E(¢l)Zon(¢L) with  Eo(¢pT) = / IVxet P — pvPTlgt/det gt

KexCe

for any ¢+ = ¢t (ez, X) with z € K, = ¢”'K. The set C, is defined in (5.14) and the
function V; is given by (5.1). We recall that C; — Ri\_’ ase — 0.
We will establish (6.3) by showing that

Eo@h) = oll¢t|7, forall ¢t (6.4)

To do so, we first observe that if we scale in the z-variable, defining <pJ-(y, X) =
¢+ (y/e, X), the relation (6.4) becomes

Eo(ph) = allgt|2,. (6.5)
Thus we are led to prove (6.5). For contradiction, assume that for any n € N*, there exist

&, — 0Oand (pnl € (Hsln)l such that

1
Eo(gy) < ;nwiniz. (6.6)

Without loss of generality we can assume that the sequence (||<an IDn is bounded. Hence,
up to subsequences, we have

(pj‘ —~ ¢t inHY(K x Rﬁ) and gofl‘ — ¢ in L*(K x R_‘A_]).

Furthermore, using the estimate in (4.7) we get

(1+ |X|)N—4[VS(¥ X) - MJ‘N‘””(y)wo(X —Poky) - Xw )N =0
€ mo(y)  po(y)

sup
yeK, XeRY

as ¢ — 0, where ug and ®( are the smooth explicit functions defined in (4.6) and (4.15).
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Letting n — o0 in (6.6) and applying the dominated convergence theorem, we get

N_ X - @ X p—1
/ [Wxgoﬂz—p(%“v 2”2(y>wo< o) Xy )) (goiﬂ dydX < 0.
K xRY mo(y)  pro(y) 67
7

Furthermore, passing to the limit in the orthogonality conditions we get, for any y € K,

/ o (y, X)Zo(X — %0l Xy )dx -0, (6.8)

RY po(y)  po(y)

/ (pL(y,X)Zj(X_ ®o)  Xw )dX -0, j=1,....N—1, (69
RY po(y)  po(y)

/ ot X)Z(X — $o0G)  _Xw )dX =0. (6.10)
RY po(y)  pro(y)

We thus get a contradiction with (6.7), since for any function ¢ satisfying the orthogo-
nality conditions (6.8)—(6.10) for any y € K one has

CN_ X - X p-l
/ [Ww% - p(uo W 2)/2(Y)w0< o) X )) wﬂ dydX > 0
K xRY mo(y)  po(y)

(see for instance [16, 45]).

Step 2. For all ¢ > 0 small, the functional P.(5) defined in (5.25) is continuous and
differentiable in 7! (K); furthermore, it is strictly convex and bounded from below since

P.(8) > 1 égz 10481 + Es 82| = ae?|5)2 (6.11)
a2 St 2"k 17 HIEK) '
for some small but fixed o > 0. A direct consequence of these properties is that
H'(K) 3 8+ P(8) — L7(5)
has a unique minimum §, and furthermore
e 218130 k) < Ce N fll2c, )
for a given positive constant C.
Step 3. For all ¢ > 0 small, the functional Q. defined in (5.27) is a small perturbation in
(HY(K)N 1 of the quadratic form &2 Qo(d), defined by
2 & 2 sevab - I
e°Qo(d) = EC[/ |0ad| +/ (€ Rmabi — Fé(Em)F?(Ez))dmd}
K K

with C = f]M Z% and the terms Ry,qp; and T'S (E,,) are smooth functions on K defined

respectively in (2.6) and (2.4). Recall that the nondegeneracy assumption on the minimal
submanifold K is equivalent to the invertibility of the operator Q¢(d).
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A consequence is that, for each f € LZ(QEQ},), the map
H' KDV SR, de 0:(d) — L),
has a unique critical point d, which satisfies

e 2 Ndll g k-1 <581 f e,
for some o > 0.

Step 4. Let f € LZ(Q&),) and assume that e is a given (fixed) function in H! (K). We
claim that for all ¢ > 0 small enough, the functional G : (Hel)L x (HY{(EK)HN - R given
by

@, 8,d) ~ E@*,8,d, )
has a critical point (¢, 8, d). Furthermore there exists a positive constant C, independent
of &, such that

11+ 67218 g1 i) + Il g2 k-1 < Ce 201 2, ) + 826 el i) ).
(6.12)
To prove the above assertion, we first consider the functional

Go(¢™,8,d) = G(¢*,8,d,e) — M(¢p*,8,d, e),

where M is the functional that collects all mixed terms, as defined in (5.24). A direct
consequence of Steps 1-3 is that Gy has a critical point (d)J- = ¢J-(f), 6 =68(f).d=
d(f)), that is, the system

Dy E(@¢Y) = Dy L(@7), & "?DsPe(8) = DsLF(3), ¢ */?DaQe(d) = DaL}(d)
is uniquely solvable in (H!)* x (H!'(K))", and furthermore

Il gs + &2 1811201 k) + &Nl 31 g1 < Ce2 N fll 2

ey)

for some constant C > 0, independent of ¢.
If we now consider the complete functional G, a critical point of G will satisfy the
system

DyLE(¢™) = D1 L1($5) + Dyt M(¢™,8,d, ),
DsPe(8) = DsL3(8) + DsM(¢™,8,d, e), (6.13)
DyQ:(d) = DaL}(d) + DaM($*. 8. d. e).

On the other hand as already observed in Theorem 2,

1Dt 5.0 M(@T . 81, d1, e1) — Dy 5.0y M(5, 82, da, e2)|| < Ce?
[ =3 I+e 21181 =821l i) +& 2 ldi —dall 301 (kw1 +& P ller —eall 3 i) |-
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Thus the contraction mapping theorem guarantees the existence of a unique solution

(¢, 8, d) to (6.13) in the set

16 11y + &7 218191 k) + €721l 341 iy
< Cle”’If g, + 876 Pllelap i)

Furthermore, the solution (;_SJ- = ¢_>i(f, e),8 = S(f, e)andd = c?(f, e) depends on e in a
smooth and nonlocal way.

S_tep 5_ Given f € LZ(QS,},), we insert the critical point (qz_bl = qp(f, e),8 = S(f, e),
d = d(f, e)) of G obtained in the previous step into the functional £ (¢J-, 8,d, e), thus
getting a new functional depending only on e € H!(K), which we denote by F; (¢), given
by

Fee) = e *[Re(e) — L)+ E(@™(e) —e L@ (e) + 67 [Pe(5(e)) — L7(5(e))]
+&740:(d(e) — L}(d(e)] + M (e), (e), d(e), e).

The rest of the proof is devoted to showing that there exists a sequence ¢ = &g — 0 such
that
D.Fe(e) =0 (6.14)

is solvable. Using the fact that (¢, 8, d) is a critical point for G (see Step 4 for the
definition), we find that

D.Fe(e) = ¢ “De[Re(e) — L}(e)] + DeM($(e), 3(e), d(e), ). (6.15)

Define
Ly := e *D,R.(e) + DM (P (e), 5(e), d(e), e), (6.16)

regarded as a self-adjoint operator in L? (K). The work to solve the equation D, F¢(e) = 0
consists in showing the existence of a sequence &; — 0 such that O lies suitably far away
from the spectrum of Ly,.

We recall now that the map

(¢t,8.d, e) — D,M(p",8.d, e)

is a linear operator in the variables qu-, 8, d, while it is constant in e. This is stated in The-
orem 2. If we furthermore take into account that the terms ¢+, § and d depend smoothly
and in a nonlocal way on e, we conclude that, for any e € H! (K),

DMt (e), 5(e), d(e), e)[e] = e? N7k f (en1(e)dge + m(e)e)®,  (6.17)
K

where 71 and 7, are nonlocal operators in e, which are bounded, as ¢ — 0, on bounded
subsets of L2(K ). Thanks to Theorem 2 and the above observation, we conclude that the
quadratic from

Ye(e) := e XD, Re(e)[e]l + DeM(p(e), 5(e), d(e), e)le]
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can be written as follows:

Ye(e) = ek Te(e) = YO(e) — Xof e +eTle), (6.18)
K
where
T(e) = & / A+ NI (e)|dale(1 + e BEONI (6.19)
K

In the above expression, A is the positive number defined by
e (], A
R+

Tel (e) is a compact quadratic form in HY(K), and ,3§ is a smooth and bounded (as ¢ — 0)
function on K, given by (5.30). Finally, »; is a nonlocal operator in e, which is uniformly
bounded as ¢ — 0 on bounded sets of L2(K ).

Thus, for any ¢ > 0, the eigenvalues of

Lee =he, ecHY(K),
form a sequence A (¢), characterized by the Courant—Fisher formulas

. Tas(e) . ’?a(e)
Aj(e) = sup inf > = _inf  sup 5
dim(M)=j—1 eeM+\{0} fK e dim(M)=J ¢em\{0} fK e

(6.20)

The proof of Theorem 3 and of the inequality (6.1) will then follow from Step 4 and
formula (6.12), together with

Lemma 6.1. There exist a sequence g — 0 and a constant ¢ > 0 such that, for all j,
A (en)] = cef. 6.21)

The proof of this lemma follows closely the proof of a related result established in [15],
but we reproduce it for completeness. We shall thus devote the rest of this section to
proving Lemma 6.1.
We write T (e) = Ye(e)/ [¢ €.
For notational convenience, we let ¢ = £2. We are thus interested in the eigenvalue
problem
Lon=An, neH (K. (6.22)

With this notation and using (6.18) and (6.19) together with the fact that y (N — 3) > 2,
we have

o [x +0(6)771(6)?3ae(2€(1 +0(0) B3 () —X0+JET;(6)
K

Yo (e) =

where o(o) - Oas o — 0.



Bubbling on boundary submanifolds 1731

We claim that there exists a number § > 0 such that for any o, > 0 and for any j > 1
such that
o2+ [Aj(02)| < §
and any o7 with 02/2 < 01 < 07, we have
Aj(o1) < Aj(02). (6.23)

To prove this, we start by observing that, since 5 is an explicit, smooth and bounded
(as o0 — 0) function on K, given by (5.30), and since 7 is a nonlocal operator in e, which
is uniformly bounded as o — 0 on bounded sets of L?*(K), we have

fK(l +0(0)n1()[8a(e(1 + 0(0) BT (YN [i 10ae|?
a—>0 fK 2 - fK e2

lim J_T (e)

o—0 f
uniformly for any e.
Consider now two numbers 0 < o1 < o02. Then for any e with f % e =1, we have

(6.24)

and

(6.25)

_ _ - 02— 0] _
o7 20, (€) — 05 ' B, (e) = —Ro +o7'12 () — 05112 (e)
0102
—1/2 —1/2
+o, 21k (@ — o7 (o).

A consequence of (6.24) and (6.25) is that there exists o* > 0 such that, for all o7 <
oy < o¥,
o115, () — 0, ' Y0, (@)] < c(o2 — o1)

and
“1/201 1201 02 — 0]
T, T, ()| <c—
o1 €)= ol = 0102(01 + 02)

for some constant ¢, and uniformly for any e with f % ¢% = 1. Thus, for some y—, v+ >0,

- - - - 2y
07 S (e) + (02 — 01) = < 05 ' o, (e) < 07 ' B (€) + (02 — 1) =
205 o
for any o1 < 0 < o* and any e with [ % ¢ = 1. In particular, there exists o* such that
forall0 < o] <oy <o™and j > 1,

y_ _ _ V-
(02— 01)2— <05 'Aj(02) — o) 'Aj(o1) < 202 — 01)—;- (6.26)
205 oh
From (6.26) it follows directly that, for all j > 1, the function (0,0*) 3 o = 1;(0) is
continuous. If we now assume that o7 > 0, /2, formula (6.26) gives

o1 — 0) 01
Aj(o1) < Aj(o2) + |:?»j(02) + )/0—21| (6.27)
for some y > 0. This proves (6.23).
We will find a sequence o; € (2~¢+D 271) for [ large as in the statement of the
lemma.
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Define
E={oce@ ™V 27  ker L, # {0}}.

If 0 € £ then A;(0) = 0 for some j. Choosing ! sufficiently large, the continuity of the
function o + A;(0) together with (6.23) implies that A; (2’(”1)) < 0. In other words,
for all / sufficiently large,

card(t) < N2~ U+, (6.28)
where N (o) denotes the number of negative eigenvalues of problem (6.22). We next
estimate ZV (o) for small values of o. To do so, let a > 0 be a positive constant such
that @ > )¢ and consider the operator

LI =—Akx —ajo. (6.29)
We call its eigenvalues )Lf (0). The Courant-Fisher characterization of eigenvalues gives

Aj(o) =< )Lj(a) for all j and all o small. Thus N(o) < N4(o), where N4 (o) is the
number of negative eigenvalues of (6.29).

Denote now by (i, the eigenvalues of —Ag (ordered so as to be nondecreasing in j,
and counted with multiplicity). Weyl’s asymptotic formula (see for instance [11]) states
that

i =Crj*’* +0(**) asj— o0
for some positive constant Cg depending only on the dimension k of K. Since )»f =
uj —ajo, we get

Ny(o) = Co k2 +0(0—k/2) aso — 0.

This fact, together with (6.28), gives card(L) < C 2k/2 Hence there exists an interval
(a1, by) c 2= 271 such that a7, by € ¥4, and all o with ker £, # {0} are in (a;, by)

so that , G4
2=l _ 92—
by—a > —— > 2 lHK/D) 6.30
A= T ) (6.30)

Let o1 = (a; + b;) /2. We will show that this sequence satisfies the statement of Lemma
6.1 and the corresponding estimate (6.21). For contradiction, assume that for some j we
have

nj(o)| < 80, (6.31)

for some 6 > O arbitrarily small. Assume first that 0 < A;(07) < 6olk/ 2 Then from (6.27)
we get
o] —aj

a

Ajlar) < Aj(op) — [/\j(dz) + V—}

207
and using (6.30)—(6.31) we get

—1(14k/2)

k/2 2 va
hj(a) < 8o’ — CT[Aj(ol) + 2—61] <0,
for 6 small. From this it follows that A; (o) must vanish at some o € (4, b;), contrary to
the choice of the interval (a;, by).
The case —Sdlk/ 2 - Aj(o7) < O can be treated in a very similar way.

This concludes the proof of Lemma 6.1.
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7. Proof of the result
In this section, we show the existence of a solution to problem (1.14) of the form

ve = Ve + 0,

where V; is defined in (5.1). As already observed at the end of Section 4, this reduces to
finding a solution ¢ to

—Ap+e¢—pVP T = Se(Ve) + Ne(d)  in 2,

7.1
9¢p/0v =0 on 92, 7.1
where S, (V,) is defined in (5.4), and N.(¢) in (5.5).
Given the result of Lemma 4.1, a first fact is that
1S (Vo) 12(q,) < Ce!TUHD/2 (7.2)

as a direct consequence of estimate (4.8).

Define L.¢p := —A¢ + e¢p — pvgp_l¢. We claim that there exist a sequence & — 0
and a positive constant C > 0 such that, for any f € L2(Qg,), there exists a solution
¢ e H (£2,) to the equation

3
Lyd=f inQ, % _0 on A%,
av
Furthermore, ok
Ieli g, < Cor ™9 fll2,)- (73)

We postpone the proof of this fact for the moment. For simplicity of notation we omit
the dependence of € on [ setting &; = ¢. Thus ¢ € H'(S,) is a solution to (7.1) if and
only if

¢ = L' (Se(Ve) + Ne(9)).

Notice that

161151, forp =<2

16131, forp>2

[Ne(@ 2,y = C{ ol =1, 74

and

[Ne(p1) — Ne(@2) 120,

-1 -1
—c {(anl i,y + 1921l @ 191 = 2ll i,y forp <2,

(7.5)
16111110, + 1621 @) 101 — B2l g1 (@) for p > 2,

for any ¢1, ¢z in H'(R¢) with ||y 1@ 19201 Q) = 1-
Defining 7, : H' () — H'(Q,) as

Te(¢) = L7 (Se(Ve) + Ne(9))
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we will show that 7y, is a contraction in some small ball in H!(€2;). A direct consequence
of (7.2)—(7.3) is that

D2 gl g, forp =2,

" TIEDR L o17, o )  forp > 2.

1T g1 (g, < Ce™ ™M {
HY(Q)

Now we choose integers d and [ so that

{max{2, kKi/p—1 forp=2, I >d— 1+ max{2,k}.

max{2, k} for p > 2,
Then one easily sees that 7, has a unique fixed point in

B={pecH Q) : ol g, <)

as a direct application of the contraction mapping theorem. This concludes the proof of
Theorem 1.

We next prove the claim ending with (7.3). For contradiction, assume that for all
& — 0 there exists a solution (¢, A¢), ¢ # 0, to

I
ov

Le(¢e) i= Ape — e¢e + pVF ' = Aegpe  in Q, =0 ondQ, (7.6
with
[Aple™ ™2k 5 0 ase — 0. (7.7)

Let n. be a smooth cut-off function (like the one defined in (5.2)) so that n, = 1 if
dist(y, K;) < ¢77/2 and n, = 0 if dist(y, K;) > ¢~V. In particular |Vn,| < ce¥ and
|An.| < ce?, in the whole domain.

Define ¢ = ¢,1,. Then ¢, solves

Ls(d;s) = )\8(138 - Vn Vo, — Ane¢p. in Qe,y
e /0v =0 on 982 \ Q. , (7.8)
¢ =0 in Q2 N 9%,y ,

where € ,, is defined in (5.6). Now Theorem 3 guarantees the existence of a sequence
g; — 0 and a constant ¢ such that

~ _ z’k ~
ey, < e, MR e 2 + 1V Ve |2 + 1| Ane e 1l 2] (7.9)

Observe now that, in the region where Vn,, # 0 and An,, # 0, the function Vg, can
be uniformly bounded as |V, (y)| < ce, with a positive constant c; this follows directly
from (5.1) and (4.7). Furthermore, since we are assuming (7.7), we see that in the region
we are considering, namely where V., # 0 and An,, # 0, the function ¢, satisfies
—Adgyg, + g1ag,(y)pe, = 0 for a certain smooth function a,, which is uniformly positive
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’

.. . . . . _g7
and bounded as &; — 0. Elliptic estimates show that, in this region, |¢.,| < ce é  and

v’ . .. .
Ve, | < ce™ forsome y’ > 0and ¢ > 0. Inserting this in (7.9), it is easy to see that

~ _ 2,]( ~
6y < cer ™ e 11 (1 -+ 0(1).

where o(1) — 0 as g — 0. Taking into account (7.7), the above inequality contradicts
the fact that ¢, is never identically zero. This concludes the proof of the claim.

8. Appendix: Proof of Lemma 3.3
The proof is simply based on a Taylor expansion of the metric coefficients in terms of the

geometric properties of €2 and K, as in Lemma 3.1. Recall that the Laplace—Beltrami
operator is given by

1
A R a d & e\AB
g Getg A(v/det g (g)* " d3),

where A and B run between 1 and n = N + k. We can write
Ao, = (€035 + 048" P95 + 94 (log /det g°) (g°)*# 9.
Now, if v and W are defined as in (3.5), one has
pNIDRO% v =02 Wz, §) = )W,
uNTIRL v =05 W(z, &) =y W,
uNID22 oy = —gawsa,W + wedgy W — dapuct o, W — 007 95 W
and

pAD2g2 N(N -2)

Zalb = 4

N-=-2
aﬁﬂsagﬂaw - Tﬂe(aaﬂe BEW + 35,%3& W)

N . )
+ NogjuedpueEsds W+ 5{35;%3;;@’ + 05005 D/ }O; W
N-2 2.2 2 2

- Tﬂsaagﬂaw + I‘Lgaa};w - lisaagﬂsg]a]w - Maam;q) W

— e O10cE 707 W + Daptc€ s 95, W) — e (957075 W + 85<1>j8j25W)

+ Qapedp e s ELDT L W + {Dapre d5 " + D5 10e 05 D1 NES 9T, W

I 2
+0;P 8,;<D18jlW
= Aﬂba

where 9, = 0y, and 9; = 9., and J, L run between 1 and N, while as before j, [ run
between 1 and N — 1.
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Using the above expansions of the metric coefficients, we easily see that
uNTDR(ABOT v = OFW + 0N W + uZ(B5) Vo5 W + 2uceén Hijo i W
+ {367 ulen (H)ij — 36> Ruiji(uedi + ) (et + @™ 05 W
~ N-2 "
+ 286N (Hja+(8°)" Hej) (— —5—dakke ) W+?88§j W —0acEL07, W—0: 90, W)
+ -Aaa + Bl (W),

where

BiW) = 0(e2(1eF + @)% + 2ok (1 + @) + e2263)
N ® ‘
X <_58&MSBZW + faang - 8&“851812]W - B&QJSZZ/W>

+ O (| 1e T+ PP + & ek |ie 3 + PP + & UZEN e 3 + |+ ulex )05 W
+ O(Jpney + @le + epebn)) Aap-
Now recall the expansion of log(det g%) given in Lemma 3.2:
log(det g°) = log(det §°) — 2 X tr(H) — 2eT0 X + 1 Ryiirxm X
+ 23 Rmavt — Ty T X X1 — 2 X3 tr(H?) + O (2| X ).

Hence, differentiating with respect to X;, X and z, (and performing the change of vari-
ables z = y/eand & = (X — ®)/u, and §y = Xn /1) one has

dxy log /det g = —e tr(H) — 2uce%Ey tr(H?) + O(I(11c€ + p)[%€),
dx, logy/det g¢ = &2(§ Rmssj + (8°)" Rmavj — Ty (Em)TE(E))) (skm + @™)
+ 0 (et + O,
and
3, log/det g¢ = ependa tr(H) + O (2| (11e€ + ®)).
It follows that
uVI22 4 (log /det g°) (8 Bopv = e tt(H)INW + 2ee? (—pob tr(H?) Oy W
+ 1168” (3 Rnssj (ebm + D) + 1@ Riabj — To(En) T (ENY ek + ™))} W
+ As1 + B2 (W),

where
2,2 N-2 i
As1 = —e g En g tr(H) —T%MSW + edgW — (0ape&soyv + 9P/ 9; W) |,

Bo(W) = O(*(11eE + @) + s (14eE + @) + 2 ulEn ) (et W + ety W)
+ O (% (ek + )2 + ey (eE + @) + e2p2e%)

_N _ 2 (9. 2 _dJ a2
X 73au831W+,u83mW (8a,us“§jalJW+3aCD ale) .
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Finally, using the properties of the curvature tensor (R;;;; = 0 and Ryysj = — Rypssj) We
get

w2984 P)asv = 8:((89)7)3v + 3a((87) )3 + 8a((87) )3y
+0;((g°)Y) v
= 367 e Riiij (ki + @D W + Ay W + By(W),
where we have set

AW = (Df1edj + /1> + ey D)

x {Me[—ngW[aaCP] + eda W — edapte <NT_2W + Dg W[E])] }

where ”va and D9, are smooth functions in z, and

By(W) = O(e%(11eE + ) + e j1pEn (e + @) + 2 U2ER ) oo (3 W + 3z W)

+ ((ek + D)% + ety (11:E + ®) + p267)
x {Ms[—ngW[aﬁcb] + pedgW — 835M8<%W + D;W[g])} }

Collecting these formulas together and setting
k
Ao = ZAaa» As = Asi + Asz,
a=1
and

B(v) = Bi(v) + Ba2(v) + B3 (v), 8.1)

the result follows at once.

9. Appendix: Proof of Theorem 2

The main ingredient to prove Theorem 2 is the following

Lemma 9.1. Under the assumptions and notation of Theorem 2, there exists ey > 0 such
that for all 0 < ¢ < g,

1)

E(M—T,Lg,cpe(zo)xg) = e P.(8), 9.1)
d’ _ & .

E M—T,Lg,@g(zj)xg =e %0, (d)), 9.2)

E<Mi7;£,¢£<2)xg) = e Re(e). 9.3)
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Proof. Define

1 1 1
F(u) = —|Vxul* + —eu® — p+1) Jdet gt dzdX
(u) fK A<2| xu| +28u p+1u etgédz

e xCe

1
+/ . EEU(&‘Z, X)0judju/det g® dzdX
K. xC,

1

+ —/ _ Jzudzu+/det gé dde—l—/ _ B(u,u)\/detgédzdX. (9.4)
2 KexCe K¢ xCq

We refer to Lemma 5.1 for the definitions of the objects appearing in (9.4).

Step 1: Proof of (9.1). Given a small ¢ # 0, Taylor expansion gives
= ~ 8 _
[DFmgﬂa@aMm)—DFmgﬁgwmomﬁ:nwm@wm>
£
ar = 8 _
=4Wmemwm{;nﬂu%u%a+mm
&

) _
= —21E<M—E8,¢S(Zo)xe>(l +0®). 9.5)
&
On the other hand, we write, for any ¥,

[DF(T, 1458, (W) Xe) — DF (T, 0, (W) xe)1(¥) = a(t) — a(0) + b(t) +c(1), (9.6)

where

a(r) = /;( (VT 48,0, W) XV + €T 15,0, (W) X ¥ — (T418,0, (W) Xe) P

e xCse

+/ Bij(ez, X)0i (Tuesrs, @, (W) Xe)0j 7,
K¢ xCq

b(r) = /K - 02 (Te+18,0, (W) Xe)0a Y — . 9a(Tie, 0, (W) Xe)a,

& xCy K xCq

CM=AAM%mm@%W—AAMﬁ@@%W)

eXClg eXClg

We now compute a(¢) with ¢ = %nﬁt&% (Zo) . Performing the change of vari-

ables X = (jis + 18)E + &, Xy = (e + t8)Ey in the integral a(r) and using (3.9)
together with the definition of x, in (5.21), we get

) N 2 A ~ 2 2
at) = [—/ — VOV Zo+e (e +18)* W Zo— P Zo) (1+¢ (e +18)éN Hoa +67 O ([E]%))

8
—/M—[—zs(u€+t8)SNHij +520(|§|2)]8iﬁ)3120]

x (1 4+ 0@)(1+ 0@)+0E"N ). (9.7
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Thus we see immediately from (9.7) that

82
~at) — a(0)] = [25 / 820 Zo — / e[V Zo + ept2h Zo — HF Zolén How

Me

2
+ 28/ ‘S—gNHiA,aiwa,zo}(l +0@0))(1+ 0() + 0"V ).
e

Integrating by parts in the & variables and using the fact that Co — Rf as ¢ — 0 one can
write

82
t~a@) — a(0)] = [28 / 82WZy — / e—[— AW + e — WP1ZoEN Hy
e

82 82
+/8—12)ZOHW — 28/ M—gNH,-,-aijﬁ)zo](l + 0@+ 0(s) + 07Ny,
£

Me

Now using the fact that || —Aw + sugﬁ) — WPl n_2 < Ce> we get

2
1 [a(0) — a(0)] = [28f52wzo+s[/ 8—(] Hua® Zokn —2/ Hijaiijo)}
Mo \JRY RY
+ 82Q(8)](1 +O0@)(1+ 0() + 0Ny,

Since N > 6, we can choose y = 1 — 0,0 > 0so that y(N — 4) > 2. Thanks to the
definition of ug given in (4.15), we conclude that

a(r) — a(0) = tek[—BS/ 82+ 0(82)Q(5)i|(1 + 0@)(1+ 0(e)), 9.8)
K

where

—-B= / wZo <0 and Q) = / Kk (y)8?
RY K
for some smooth and uniformly bounded (as ¢ — 0) function « defined on K.
Observe that 8,7, o (W) = —ﬁn@(zo)(l +&Ry(z, £)), where R is a smooth func-
tion of the variables (z, &), uniformly bounded in z and satisfying

CH(y)
[Ro(y, 8)| < W

for some positive constant C independent of ¢, and some generic function ¥ (y) defined
on K, smooth and uniformly bounded as ¢ — 0. Hence, recalling the definition of the
function b above, Taylor expansion gives

b(t) = —t/ R
K¢ xCe

2
a+0@)).

é _
3a<M—7LS,5>S(Zo)Xs>

&€
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Observe now that

) _ 1 _ 1 _
da (—ﬁg,cbg(zo)xe) = (0a6) — Ty, 0. (Zo) Xe + 80a <—7L€,<I>g (Zo)xs)
Me Me Me
1 _ 1 _
= S(Ba‘s)_ng,d)g(ZO)Xs + 58(8aﬂe)au£ __ng,tbg(ZO)Xs
Me Me
1 _
+£8(0aP:)0g, <—7;F,<1>€(Zo)xs>.
N\ T
Since [ (T, 0, (Z0)%e)* dX = A(1 + o(e)). we conclude that

b(r) = —1e7* [Agsz /K 184 (3(1 +o(82)ﬁf(y)))l2}, 9.9)

where A, € R, lim;_,g A, = A = fRﬁ Z% and ,318 is an explicit smooth function in K,

which is uniformly bounded as ¢ — 0. Finally, we observe that the last term c¢(¢) defined

above is of lower order, and can be absorbed in the terms described in (9.8) and (9.9).
The expansion (9.1) clearly holds from (9.5), (9.6), (9.8) and (9.9).

Step 2: Proof of (9.2). To get the expansion in (9.2) we argue in the same spirit as before.
Let d be the vector field along K defined by d(ez) = (d'(¢2), ...,d""'(ez)). For any
t # 0 small, we have (see (9.4))

[DF (T, @ +1ta (W) Xe) — DF (Ty, 0, (W) xe)1l¢]

dl
= (D’F(T;,. .o, (fv);@)[z T (Zz)Xe}[rp](l + 001+ 0(s))
Ji &

for any ¢ € H/. In particular, choosing ¢ =
fRﬂ Z;Z; = Coéj;)

‘1—27;5@8 (Z;)xs we get (using the fact that

m
- o [dl _
[DF(Tp. 0, 41a(W) xs) — DF Ty, 0, (w)xg)][ﬂ—ﬂs,cpg (Zj)xg}
J
= ZIE(Z—%,%(Z/)Xe)(l +0@)(14 0()). (9.10)

On the other hand, as in the previous step, we write

. N L i}
[DF (T, 0.41a(W)Xe) — DF (T, o, (w)xe)][ﬂ—’&gmg (Zj)xs]

= a2(t) — a2(0) + b2 () + c2(r), (9.1
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where we have set, for ¢ = Z—'/ng,q;g (Zj) Xs»

a(1) = / (VxTrae 000 DTV + €T 00410 VTV — Ty 0114 (DTN Y
+ / 247 (62, X00; (T 0114 (D) )5,

ba(t) = / 0a (T o010 () %) Ty 414 () e
- f 0 (The 00 () 7D (The 0, (D) ),

() = /3(7;;8,@8+,d(@))?s,¢)—/3(7726@8(11)))?8,1#)-

We now compute a;(¢) with ¢ = %ﬂm% (Z;). Defining the tensor R,,; by

Ront = (&%) Ryabr — TS(En)TA(E)),

performing the change of variables X = (e + t8) + ®,, Xy = (jis + 18)&y in the
integral a;(¢), using (3.9), (5.16) and recalling the definition of the cut-off function .,
we obtain

i _ . N A
ax(t) = {/ u_[vaZj +8/ngzj - pprj][l — &N Hoa
&

+ 82<Rmiil + Rt

< 7><sussm + Do+ 1d™) (efisE + Doy +1d") + 0<e3|s|3>}

d’
+f _[ZSENHir - %32Rimlr(llvs€m + Qe +td™) (el + Py ‘|’tdl)

&

+ 0(83ISI3)]8ni18rZ,-}(1 F0®)(1+0(e) + 0Ny,

Thus we immediately get (using the fact that y (N — 3) > 1)

al _2 A N
t_l[az(t) —a(0)] = 82{/ M_[VwVZj + s,ungj — pprj]
&€

Ryii Rim - I m
. < 6ﬂ + Tl> [(em + q)em)dl + (b + @e)d™]
d’ Ripmr . _ ! "9 0 + +
a U 3 [(iteém + Pem)d" + (e&r + Der)d ]aiwarzj I+ 0@E)d + 0@).
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Integration by parts in the £ variables and using the fact that ¢ — Rﬁ as e — 0, we get

-1 2 dj ~ A ~
t () —w0)] =- /M—[—Aw+sugw—pw]zj

&

Rmijl Rim m
X 6 + — ) [(ebm + q)sm)d + (ue& + Pg)d™]

Ruiji R Ri
_/( mijl lm)d/[alwd’”+3mwdl]2 +/d/[ = gt +ﬂd’“]zizj}

6 2 3 3
x (1+ 0(@)(1+ 0@)).
Now using the fact that || — A® + eu2d — WP |l y—2 < Ce> and Ry = 0, we deduce
that
R R . R: .
“MNax(1) — a2 (0)] = &7 —c/ " Vgl g +c/ I gm g
Ke 3 2 Ks 3

x (1 +o()(1+ 0@))
- 8k82|:—C/ %dfdm + O(e)Q(d)](l L 0@0), (9.12)
where we have set

czf Z? and Q(d) :=fn(y)d"df'
RY K

+

for some smooth and uniformly bounded (as ¢ — 0) function 7 (y). To estimate the term
by above we argue as in (9.9) to get

1 ba(t) = —7* [ezcg /K 19 (d (1 + ﬁi(y)o(ez)))lz}(l +0(@)). (9.13)

Finally we observe that the last term ¢, (¢) is of lower order, and can be absorbed in the
terms described in (9.12) and (9.13). We get the expansion (9.2) from (9.10)—(9.13).

Step 3: Proof of (9.3). To get the expansion in (9.3), we compute
e
E(—m,¢a(2)> =1+1+1l, (9.14)
Me
where

2
/ 3 (VT 0, (2P +oT, 0, (2P =p VI Ty 0, (20 Vot dz X

8

2
/ . _%
/ ( TLLS,QS(Z))aa(Mins,og(Z)),/dethdzdx,

1 = B(— 0. (2), ns,q,g(Z)),/dethdzdx.
K5><C5 Mg

u,] (62, X)0i Th,, 0. (2)0; Ty, 0, (Z)/det g8 dzd X,

u



Bubbling on boundary submanifolds 1743

Using the change of variables X = ,ugé + P, Xy = €N in I, we can write

1 82 .
1=/§;[WZF—pw”‘lZ%eu?zz](l+80<e—'f'>>.

&€

Then, recalling the definition of A¢ in (5.20), we get

A
Izsk[——OD/ e2+sQ(e)], (9.15)
2 Jk
where we have set

D= / Z*(&)de and Q(e) := / T(y)e’dy,
RY K

for some smooth and uniformly bounded, as ¢ — 0, function 7. Moreover, using a direct
computation and arguing as in (9.9), we get

D _ D ,
== |oge+e 7 Bi(ez)e)? = 7* —%2/ 19 (e(1+ e BsmI* |,
2 K. 2 K
(9.16)

where ,3§ is an explicit smooth function on K, which is uniformly bounded as ¢ — 0,
while )/ is a positive real number. Finally, we observe that the last term II1 is of lower
order, and can be absorbed in the terms described in (9.15) and (9.16). This concludes the
proof of (9.3). O

Proof of Theorem 2. Given the result in Lemma 9.1, we can write

s -l /4
M(pt,8,.d,e) = E(p) — E(p™) — E(M—Eg,qag(Zo))'(a) - E(M—]77L8,¢5(Z/)Xs>

j=1
4 -

—E _7;45,<I>E(Z)Xe .
Me

Thus it is clear that the term M collects all the mixed terms in the expansion of E(¢).
Indeed, if we define

m(f.g) = /K (VxfVxg +efg — pVP fg) /detgt dzdX

&€

+f _ Bijez, X)0; f 9jg/detg®dzdX

K¢ xCe

+/ 05 f 0zgy/detgfdzdX +/ _ B(f,g)ydetgtdzdX
K Ky x

eXCleg &
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for f and g in Hsl, then
1 1 8 - Z 1 4 -
M(¢ ) 87 d’ e) =m ¢ ) M_ng,q)g (ZO)XS + m ¢ ) M_EF’CDF(ZJ)XS
&€ ] &

TMF @, (Z)Xs)

< Tiie 0. (Z; )X& = 77% o, (Zi )Xa)

d’ _
Z ( Tree. ¢F(Zo>xs,u—ns,a,g<zj)xg)
i£j

+m( (Z0)ier —T (Z)')
e ‘:I) 0)Xe> e e, P Xe

+) m ( Te 0 (Z)Kes ~—The, ¢£(Z)x8) (9.17)
F He

One can see clearly that M is homogeneous of degree 2 and that its first derivative with
respect to its variables is a linear operator in (¢J-, 8,d,e).

We now prove estimate (5.32); the validity of (5.31) is shown in a very similar way.
To prove (5.32), we should treat each one of the above terms. Since the computations are
very similar, we will limit ourselves to the term

d’ _
_ng,Qg(Zj)Xe)~

&

) _
m = m(—ng,cps(zo)xe,
Me

This term can be written as
5
m=>y mi, (9.18)
i=1
where
m =/ (VxfVxg— pVF~ fg)y/detgf dzdX,
K¢ xCe
my :/ R efgy/detgt dzdX, m3 :/ _ Bijez, X)aifajg\/(ﬁg‘adzdx’
KexCe KexCe
my =/ . 0afdagy/detg® dzdX, ms =/  B(f, g)y/det g° dzdX,
KexCs KexCe

with f = 2T, & (Zo)Xe and g = L T;,, 0, (Z})Xe. Using the fact that

AZy+pwl ' Zy=0 inRV,
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with fRﬁ 0gy Z0Z; = 0, and integrating by parts in the X variable (recalling the expansion

of \/det g?), one gets

8d/ _ _
mp = {/ F[—Aﬁg,@(zo) — PV 0 (ZONR2 T 0, (Z)+/det g¢

&

8d/ 1
+/Fag,v(m,cpg(Zo)ie)m,%(zj)u—(str(H)+0(82))25}(1+o(1)),

&

where o(1) — 0 as ¢ — 0. Thus, the Holder inequality yields
im1] < Ce™ " MRS 2 ) A | 2k -

Moreover, using the orthogonality condition fRN ZyZ;j =0, we get
+

Ima| < Cee™ (/ ZOZj>||5||L2(1()||dj||L2(1<)
|&]>e~Y
< Ce "NV Ns oy d M L2k -

Now, since [,v En0;Zo01Z; = O foranyi, j,/ =1,..., N — 1, one gets
RY J y

m3| < Cee™ ( f sNa,»zoazzj)||8||L2<K)||d-" 2w
[E]>e™Y
< Ce XTIV oy d N L2 -

A direct computation m4 gives

Imy| < Cs"{ez( / zozj)||aaa||Lz(K>||aadf||Lz<,<)
[§|>e7Y

+ 8(/ ZOZ/’)(||5||L2(1()||3adj||L2(K) + 10481 220k 1 11 2k ))
|§]>e7Y

+ (/ Zon)||5||L2(K)”dj”L2(K)}
[E|>e™Y
< Cs’key(Né)[IlfSII%{l(K) + ||d]”%—tl(1<)]'

Since |ms5| < C ijl |m;| we conclude that
— -3 2 2
m| < Ce™ " NTISIZ,1 ) + 17 151 k) -

Each one of the terms appearing in (9.17) can be estimated to finally get the validity of
(5.32). This concludes the proof of Theorem 2. ]
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